7042560 A2 |00 0 D0 O O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

21 May 2004 (21.05.2004)

(10) International Publication Number

WO 2004/042560 A2

(51)

21

(22)

(25)

(26)

(30)

(63)

(1)

(72)
(75)

International Patent Classification’: GOGF 9/30
International Application Number:
PCT/US2003/034557
International Filing Date: 31 October 2003 (31.10.2003)
Filing Language: English
Publication Language: English
Priority Data:
60/422,503 31 October 2002 (31.10.2002) US
10/683,929 9 October 2003 (09.10.2003) US
10/683,932 9 October 2003 (09.10.2003) US
10/684,053 9 October 2003 (09.10.2003) US
10/684,057 9 October 2003 (09.10.2003) US
10/684,102 9 October 2003 (09.10.2003) US

Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:

UsS
Filed on

60/422,503 (CIP)
31 October 2002 (31.10.2002)

Applicant (for all designated States except US): LOCK-
HEED MARTIN CORPORATION [US/US]; Building
400, Mail Drop 043, 9500 Godwin Drive, Manassas, VA
20110 (US).

Inventors; and

Inventors/Applicants (for US only): MATHUR, Chan-
dan [US/US]; 11162 Privatess Court, Manassas, VA
20109 (US). HELLENBACH, Scott [US/US]; 15381
Quail Ridge Drive, Amessville, VA 20106 (US). RAPP,

(74)

(81)

(84)

John, W. [US/US]; 9350 River Crest Road, Manassas,
VA 20110 (US). JACKSON, Larry [US/US]; 13093
Crestbrook Drive, Manassas, VA 20112 (US). JONES,
Mark [US/US]; 15342 Oakmere Place, Centreville, VA
20120 (US). CHERASARO, Troy [US/US]; 1524 Kestral
Court, Culpeper, VA 22701 (US).

Agents: SANTARELLI, Bryan, A. et al.; Graybeal Jack-
son Haley LLP, 155-108th Avenue NE, Suite 350, Bellevue,
WA 98004 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BW, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
K7, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BE, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: IMPROVED COMPUTING ARCHITECTURE AND RELATED SYSTEM AND METHOD

(57) Abstract: A peer-vector machine includes a host processor and a hardwired pipeline accelerator. The host processor executes

a program, and, in response to the program, generates host data, and the pipeline accelerator generates pipeline data from the host

¥ data. Alternatively, the pipeline accelerator generates the pipeline data, and the host processor generates the host data from the
S pipeline data. Because the peer-vector machine includes both a processor and a pipeline accelerator, it can often process data more

=

efficiently than a machine that includes only processors or only accelerators. For example, one can design the peer-vector machine

so that the host processor performs decision-making and non-mathematically intensive operations and the accelerator performs non-

decision-making and mathematically intensive operations. By shifting the mathematically intensive operations to the accelerator, the
peer-vector machine often can, for a given clock frequency, process data at a speed that surpasses the speed at which a processor-only
machine can process the data.

WO 2004/042560 PCT/US2003/034557

IMPROVED COMPUTING ARCHITECTURE AND RELATED SYSTEM AND
METHOD

CLAIM OF PRIORITY

[1] This application claims priority to U.S. Provisional Application Serial
No. 60/422,503, filed on October 31, 2002, which is incorporated by reference.

CROSS REFERENCE TO RELATED APPLICATIONS

[2] This application is related to U.S. Patent App. Serial Nos. 10/684,053
entited COMPUTING MACHINE HAVING IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND METHOD; 10/683,929 entitled
PIPELINE ACCELERATOR FOR IMPROVED COMPUTING ARCHITECTURE AND
RELATED. SYSTEM AND METHOD; 10/684,057 entitted PROGRAMMABLE
CIRCUIT AND RELATED COMPUTING MACHINE AND METHOD; and 10/683,932
entitled PIPELINE ACCELERATOR HAVING MULTIPLE PIPELINE UNITS AND
RELATED COMPUTING MACHINE AND METHOD; all filed on October 9, 2003,

and having a common owner, and which are incorporated by reference.
BACKGROUND

[3] A common computing architecture for processing relatively large
amounts of data in a relatively short period of time includes multiple interconnected
processors that share the processing burden. By sharing the processing burden,
these multiple processors can often process the data more quickly than a single
“processor can for a given clock frequency. For example, each of the processors can
process a respective portion of the data or execute a respective portion of a

processing algorithm.

[4] FIG. 1 is a schematic block diagram of a conventional computing
machine 70 having a multi-processor architecture. The machine 70 includes a
master processor 12 and coprocessors 147 — 14,, which communicate with each
other and the master processor via a bus 76, an input port 78 for receiving raw data
from a remote device (not shown in FIG. 1), and an output port 20 for providing
processed data to the remote source. The machine 70 also includes a memory 22

for the master processor 12, respective memories 24 — 24, for the coprocessors 144

1

WO 2004/042560 PCT/US2003/034557

— 14, and a memory 26 that the master processor and coprocessors share via the
" bus 16. The memory 22 serves as both a program and a working memory for the
master processor 712, and each memory 24, — 24, serves as both a program and a
working memory for a respective coprocessor 144 — 14,. The shared memory 26
allows the master processor 72 and the coprocessors 74 to transfer data among
themselves, and from/to the remote device via the ports 18 and 20, respectively.
The master processor 72 and the coprocessors 74 also receive a common clock

signal that controls the speed at which the machine 10 processes the raw data.

[5] In general, the computing machine 70 effectively divides the
processing of raw data among the master processor 72 and the coprocessors 74.
The remote source (not shown in FIG. 1) such as a sonar array (FIG. 5) loads the
raw data via the port 18 into a section of the shared memory 26, which acts as a
first-in-first-out (FIFO) buffer (not shown) for the raw data. The master processor 712
retrieves the raw data from the memory 26 via the bus 716, and then the master
processor and the coprocessors 714 process the raw data, transferring data among
themselves as necessary via the bus 76. The master processor 72 loads the
processed data into another FIFO buffer (not shown) defined in the shared memory
26, and the remote source retrieves the processed data from this FIFO via the port
20.

[6] In an example of operation, the computing machine 10 processes the
raw data by sequentially performing n + 1 respective operations on the raw data,
where these operations together compose a processing algorithm such as a Fast
Fourier Transform (FFT). More specifically, the machine 70 forms a data-processing
pipeline from the master processor 72 and the coprocessors 74. For a given
frequency of the clock signal, such a pipeline often allows the machine 70 to process

the raw data faster than a machine having only a single processor.

[7] After retrieving the raw data from the raw-data FIFO (not shown) in the
memory 26, the master processor 12 performs a first operation, such as a
trigonometric function, on the raw data. This operation yields a first result, which the
processor 12 stores in a first-result FIFO (not shown) defined within the memory 26.
Typically, the processor 712 executes a program stored in the memory 22, and

performs the above-described actions under the control of the program. The

2

WO 2004/042560 PCT/US2003/034557

processor 712 may also use the memory 22 as working memory to temporarily store

data that the processor generates at intermediate intervals of the first operation.

[8] Next, after retrieving the first result from the first-result FIFO (not
shown) in the memory 26, the coprocessor 144 performs a second operation, such
as a logarithmic function, on the first result. This second operation yields a second
result, which the coprocessor 74, stores in a second-result FIFO (not shown) defined
within the memory 26. Typically, the coprocessor 14, executes a program stored in
the memory 244, and performs the above-described actions under the control of the
program. The coprocessor 144 may also use the memory 24, as working memory to
temporarily store data that the coprocessor generates at intermediate intervals of the

second operation.

[9] Then, the coprocessors 24, — 24, sequentially perform third — n"
operations on the second — (n-1)" results in a manner similar to that discussed

above for the coprocessor 24;.

[10] The n™ operation, which is performed by the coprocessor 24,, yields
the final result, i.e., the processed data. The coprocessor 24, loads the processed
data into a processed-data FIFO (not shown) defined within the memory 26, and the

remote device (not shown in FIG. 1) retrieves the processed data from this FIFO.

[11] Because the master processor 712 and coprocessors 74 are
simultaneously performing different operations of the processing algorithm, the
computing machine 70 is often able to process the raw data faster than a computing
machine having a single processor that sequentially performs the different
operations. Specifically, the single processor cannot retrieve a new set of the raw
data until it performs all n + 1 operations on the previous set of raw data. But using
the pipeline technique discussed above, the master processor 72 can retrieve a new
set of raw data after performing only the first operation. Consequently, for a given
clock frequency, this pipeline technique can increase the speed at which the
machine 70 processes the raw data by a factor of approximately n + 1 as compared

to a single-processor machine (not shown in FIG. 1).

[12] Alternatively, the computing machine 70 may process the raw data in

parallel by simultaneously performing n + 1 instances of a processing algorithm,

3

WO 2004/042560 PCT/US2003/034557

such as an FFT, on the raw data. That is, if the algorithm includes n + 1 sequential
operations as described above in the previous example, then each of the master
processor 72 and the coprocessors 74 sequentially perform all n + 1 operations on
respective sets of the raw data. Consequently, for a given clock frequency, this
parallel-processing technique, like the above-described pipeline technique, can
increase the speed at which the machine 10 processes the raw data by a factor of
approximately n + 1 as compared to a single-processor machine (not shown in FIG.
1). ;

[13] Unfortunately, although the computing machine 10 can process data
more quickly than a single-processor computer machine (not shown in FIG. 1), the
data-processing speed of the machine 70 is often significantly less than the
frequency of the processor clock. Specifically, the data-processing speed of the
computing machine 10 is limited by the time that the master processor 72 and
coprocessors 14 require to process data. For brevity, an example of this speed
limitation is discussed in conjunction with the master processor 712, although it is
understood that this discussion also applies to the coprocessors 74. As discussed
above, the master processor 712 executes a program that controls the processor to
manipulate data in a desired manner. This program includes a sequence of
instructions that the processor 12 executes. Unfortunately, the processor 712
typically requires multiple clock cycles to execute a single instruction, and often must
execute multiple instructions to process a single value of data. For example,
suppose that the processor 712 is to multiply a first data value A (not shown) by a
second data value B (not shown). During a first clock cycle, the processor 12
retrieves a multiply instruction from the memory 22. During second and third clock
cycles, the processor 712 respectively retrieves A and B from the memory 26. During
a fourth clock cycle, the processor 72 multiplies A and B, and, during a fifth clock
cycle, stores the resulting product in the memory 22 or 26 or provides the resulting
product to the remote device (not shown). This is a best-case scenario, because in
many cases the processor 72 requires additional clock cycles for overhead tasks
such as initializing and closing counters. Therefore, at best the processor 12
requires five clock cycles, or an average of 2.5 clock cycles per data value, to
process A and B..

WO 2004/042560 PCT/US2003/034557

[14] Consequently, the speed at which the computing machine 70
processes data is often significantly lower than the frequency of the clock that drives
the master processor 72 and the coprocessors 14. For example, if the processor 712
is clocked at 1.0 Gigahertz (GHz) but requires an average of 2.5 clock cycles per
data value, than the effective data-processing speed equals (1.0 GHz)/2.5 = 0.4
GHz. This effective data-processing speed is often characterized in units of
operations per second. Therefore, in this example, for a clock speed of 1.0 GHz, the
processor 72 would be rated with a data-processing speed of 0.4

Gigaoperations/second (Gops).

[15] FIG. 2 is a block diagram of a hardwired data pipeline 30 that can
typically process data faster than a processor can for a given clock frequency, and
often at substantially the same rate at which the pipeline is clocked. The pipeline 30
includes operator circuits 32, — 32, that each perform a respective operation on
respective data without executing program instructions. That is, the desired
operation is “burned in” to a circuit 32 such that it implements the operation
automatically, without the need of program instructions. By eliminating the overhead
associated with executing program instructions, the pipeline 30 can typically perform

more operations per second than a processor can for a given clock frequency.

[16] For example, the pipeline 30 can often solve the following equation

faster than a processor can for a given clock frequency:
(1) Y(x) = (5x + 3)2%

where xi represents a sequence of raw data values. In this example, the operator
circuit 324 is a multiplier that calculates 5x, the circuit 32; is an adder that calculates

5x + 3, and the circuit 32, (n = 3) is a multiplier that calculates (5x, + 3)2*%.

[17] During a first clock cycle k=1, the circuit 324 receives data value x4 and

multiplies it by 5 to generate 5x;.

[18] During a second clock cycle k = 2, the circuit 32, receives 5x4 from the
circuit 324 and adds 3 to generate 5x4 + 3. Also, during the second clock cycle, the

circuit 324 generates 5xo.

[19] [19] During a third clock cycle k = 3, the circuit 323 receives 5x; + 3
from the circuit 32, and multiplies by 2¥'(effectively right shifts 5x; + 3 by X1) to
5

WO 2004/042560 PCT/US2003/034557

generate the first result (5x1 + 3)2*'. Also during the third clock cycle, the circuit 324

generates 5x3 and the circuit 32, generates 5x, + 3.

[20] The pipeline 30 continues processing subsequent raw data values xi in

this manner until all the raw data values are processed.

[21] Consequently, a delay of two clock cycles after receiving a raw data
value x1 — this delay is often called the latency of the pipeline 30 — the pipeline
generates the result (5x; + 3)2*', and thereafter generates one result each clock

cycle.

[22] Disregarding the latency, the pipeline 30 thus has a data-processing
speed equal to the clock speed. In comparison, assuming that the master processor
12 and coprocessors 14 (FIG. 1) have data-processing speeds that are 0.4 times the
clock speed as in the above example, the pipeline 30 can process data 2.5 times

faster than the computing machine 70 (FIG. 1) for a given clock speed.

[23] Still referring to FIG. 2, a designer may choose to implement the
pipeline 30 in a programmable logic IC (PLIC), such as a field-programmable gate
array (FPGA), because a PLIC allows more design and modification flexibility than
does an application specific IC (ASIC). To configure the hardwired connections
within a PLIC, the designer merely sets interconnection-configuration registers
disposed within the PLIC to predetermined binary states. The combination of all
these binary states is often called “firmware.” Typically, the designer loads this
firmware into a nonvolatile memory (not shown in FIG. 2) that is coupled to the PLIC.
When one “turns on” the PLIC, it downloads the firmware from the memory into the
interconnection-configuration registers. Therefore, to modify the functioning of the
PLIC, the designer merely modifies the firmware and allows the PLIC to download
the modified firmware into the interconnection-configuration registers. This ability to
modify the PLIC by merely modifying the firmwére is particularly useful during the
prototyping stage and for upgrading the pipeline 30 “in the field”.

[24] Unfortunately, the hardwired pipeline 30 typically cannot execute all
algorithms, particularly those that entail significant decision making. A processor can
typically execute a decision-making instruction (e.g., conditional instructions such as

“if A, then go to B, else go to C”) approximately as fast as it can execute an

6

WO 2004/042560 PCT/US2003/034557

operational instruction (e.g., “A + B”) of comparable length. But although the pipeline
30 may be able to make a relatively simple decision (e.g., “A > B?"), it typically
cannot execute a relatively complex decision (e.g., “if A, then go to B, else go to C”).
And although one may be able to design the pipeline 30 to execute such a complex
decision, the size and complexity of the required circuitry often makes such a design
impractical, particularly where an algorithm includes multiple different complex

decisions.

[25] Consequently, processors are typically used in applications that require
significant decision making, and hardwired pipelines are typically limited to “number

crunching” applications that entail little or no decision making.

[26] Furthermore, as discussed below, it is typically much easier for one to
design/modify a processor-based computing machine, such as the computing
machine 10 of FIG. 1, than it is to design/modify a hardwired pipeline such as the
pipeline 30 of FIG. 2, particularly where the pipeline 30 includes multiple PLICs.

[27] Computing components, such as processors and their peripherals
(e.g., memory), typically include industry-standard communication interfaces that
facilitate the interconnection of the components to form a processor-based

computing machine.

[28] Typically, a standard communication interface includes two layers: a

physical layer and an service layer.

[29] The physical layer includes the circuitry and the corresponding circuit
interconnections that form the interface and the operating parameters of this
circuitry. For example, the physical layer includes the pins that connect the
component to a bus, the buffers that latch data received from the pins, and the
drivers that drive data onto the pins. The operating parameters include the
acceptable voltage range of the data signals that the pins receive, the signal timing
for writing and reading data, and the supported modes of operation (e.g., burst
mode, page mode). Conventional physical layers include transistor-transistor logic
(TTL) and RAMBUS.

[30] The service layer includes the protocol by which a computing

component transfers data. The protocol defines the format of the data and the

7

WO 2004/042560 PCT/US2003/034557

manner in which the component sends and receives the formatted data.
Conventional communication protocols include file-transfer protocol (FTP) and
TCP/IP (expand).

[31] Consequently, because manufacturers and others typically design
computing components having industry-standard communication layers, one can
typically design the interface of such a component and interconnect it to other
computing components with relatively little effort. This allows one to devote most of
his time to the designing the other portions of the computing machine, and to easily

modify the machine by adding or removing components.

[32] Designing a computing component that supports an industry-standard
communication layer allows one to save design time by using an existing
physical-layer design from a design library. This also insures that he/she can easily

interface the component to off-the-shelf computing components.

[33] And designing a computing machine using computing components that
support a common industry-standard communication layer allows the designer to
interconnect the components with little time and effort. Because the components
support a common interface layer, the designer can interconnect them via a system
bus with little design effort. And because the supported interface layer is an industry
standard, one can easily modify the machine. For example, one can add different
components and peripherals to the machine as the system design evolves, or can
easily add/design next-generation components as the technology evolves.
Furthermore, because the components support a common industry-standard service
layer, one can incorporate into the computing machine’s software an existing
software module that implements the corresponding protocol. Therefore, one can
interface the components with little effort because the interface design is essentially
already in place, and thus can focus on designing the portions (e.g., software) of the

machine that cause the machine to perform the desired function(s).

[34] But unfortunately, there are no known industry-standard
communication layers for components, such as PLICs, used to form hardwired

pipelines such as the pipeline 30 of FIG. 2.

WO 2004/042560 PCT/US2003/034557

[35] Consequently, to design a pipeline having multiple PLICs, one typically
spends a significant amount of time and exerts a significant effort designi\ng and
debugging the communication layer between the PLICs “from scratch.” Typically,
such an ad hoc communication layer depends on the parameters of the data being
transferred between the PLICs. Likewise, to design a pipeline that interfaces to a
processor, one would have to spend a significant amount of time and exert a
significant effort in designing and debugging the communication layer between the

pipeline and the processor from scratch.

[36] Similarly, to modify such a pipeline by adding a PLIC to it, one typically
spends a significant amount of time and exerts a significant effort designing and
debugging the communication layer between the added PLIC and the existing
PLICs. Likewise, to modify a pipeline by adding a processor, or to modify a
computing machine by adding a pipeline, one would have to spend a significant
amount of time and exert a significant effort in designing and debugging the

communication layer between the pipeline and processor.

[37] Consequently, referring to FIGS. 1 and 2, because of the difficulties in
interfacing multiple PLICs and in interfacing a processor to a pipeline, one is often
forced to make significant tradeoffs when designing a computing machine. For
example, with a processor-based computing machine, one is forced to trade number-
crunching speed for complex decision-making ability and design/modification
flexibility. Conversely, with a hardwired pipeline-based computing machine, one is
forced to trade complex-decision-making ability and design/modification flexibility for
number-crunching speed. Furthermore, because of the difficulties in interfacing
multiple PLICs, it is often impractical for one to design a pipeline-based machine
having more than a few PLICs. As a result, a practical pipeline-based machine often
has limited functionality. And because of the difficulties in interfacing a processor to
a PLIC, it would be impractical to interface a processor to more than one PLIC. As a
result, the benefits obtained by combining a processor and a pipeline would be

minimal.

[38] Therefore, a need has arisen for a new computer architecture that
allows one to combine the decision-making ability of a processor-based machine
with the number-crunching speed of a hardwired-pipeline-based machine.

9

WO 2004/042560 PCT/US2003/034557

SUMMARY

[39] In an embodiment of the invention, a peer-vector machine includes a
host processor and a hardwired pipeline accelerator. The host processor executes a
program, and, in response to the program, generates host data, and the pipeline

accelerator generates pipeline data from the host data.

[40] According to another embodiment of the invention, the pipeline
accelerator generates the pipeline data, and the host processor generates the host

data from the pipeline data.

[41] Because the peer-vector machine includes both a processor and a
hardwired pipeline accelerator, it can often process data more efficiently than a
computing machine that includes only processors or only hardwired pipelines. For
example, one can design the peer vector machine so that the host processor
performs decision-making and non-mathematically intensive operations while the
accelerator performs mathematically intensive operations. By shifting the
mathematically intensive operations to the accelerator, the peer-vector machine
often can, for a given clock frequency, process data at a speed that surpasses the

speed at which a processor-only machine can process the data.
BRIEF DESCRIPTION OF THE DRAWINGS

[42] FIG. 1 is a block diagram of a computing machine having a

conventional multi-processor architecture.
[43] FIG. 2 is a block diagram of a conventional hardwired pipeline.

[44] FIG. 3 is schematic block diagram of a computing machine having a

peer-vector architecture according to an embodiment of the invention.

[45] FIG. 4 is a schematic block diagram of an electronic system that
incorporates the peer-vector computing machine of FIG. 3 according to an

embodiment of the invention.
DETAILED DESCRIPTION

[46] FIG. 3 is a schematic block diagram of a computing machine 40, which
has a peer-vector architecture according to an embodiment of the invention. In

addition to a host processor 42, the peer-vector machine 40 includes a pipeline

10

WO 2004/042560 PCT/US2003/034557

accelerator 44, which performs at least a portion of the data processing, and which
thus effectively replaces the bank of coprocessors 74 in the computing machine 70
of FIG. 1. Therefore, the host-processor 42 and the accelerator 44 are “peers” that
can transfer data vectors back and forth. Because the accelerator 44 does not
execute program instructions, it typically performs mathematically intensive
operations on data significantly faster than a bank of coprocessors can for a given
clock frequency. Consequently, by combing the decision-making ability of the
processor 42 and the number-crunching ability of the accelerator 44, the machine 40
has the same abilities as, but can often process data faster than, a conventional
computing machine such as the machine 70. Furthermore, as discussed in
previously cited U.S. Patent App. Serial Nos. 10/684,053 entitted COMPUTING
MACHINE HAVING IMPROVED COMPUTING ARCHITECTURE AND RELATED
SYSTEM AND METHOD and 10/683,929 entitled PIPELINE ACCELERATOR FOR
IMPROVED COMPUTING ARCHITECTURE AND RELATED SYSTEM AND |
METHOD, providing the accelerator 44 with the same communication layer as the
host processor 42 facilitates the design and modification of the machine 40,
particularly where the communications layer is an industry standard. And where the
accelerator 44 includes multiple components (e.g., PLICs), providing these
components with this same communication layer facilitates the design and
modification of the accelerator, particularly where the communication layer is an
industry standard. Moreover, the machine 40 may also provide other advantages as

described below and in the previously cited patent applications.

[47] In addition to the host processor 42 and the pipeline accelerator 44, the
peer-vector computing machine 40 includes a processor memory 46, an interface
memory 48, a bus 50, a firmware memory 52, optional raw-data input ports 54 and

56, processed-data output ports 58 and 60, and an optional router 61.

[48] The host processor 42 includes a processing unit 62 and a message
handler 64, and the processor memory 46 includes a processing-unit memory 66
and a handler memory 68, which respectively serve as both program and working
memories for the processor unit and the message handler. The processor memory
46 also includes an accelerator-configuration registry 70 and a

message-configuration registry 72, which store respective configuration data that

11

WO 2004/042560 PCT/US2003/034557

allow the host processor 42 to configure the functioning of the accelerator 44 and the

structure of the messages that the message handler 64 generates.

[49] The pipeline accelerator 44 is disposed on at least one PLIC (not
shown) and includes hardwired pipelines 747 — 74, which process respective data
without executing program instructions. The firmware memory 52 stores the
configuration firmware for the accelerator 44. If the accelerator 44 is disposed on
multiple PLICs, these PLICs and their respective firmware memories may be
disposed on multiple circuit boards, i.e., daughter cards (not shown). The
accelerator 44 and daughter cards are discussed further in previously cited U.S.
Patent App. Serial Nos. 10/683,929 entitled PIPELINE ACCELERATOR FOR
IMPROVED COMPUTING ARCHITECTURE AND RELATED SYSTEM AND
METHOD and 10/683,932 entitled PIPELINE ACCELERATOR HAVING MULTIPLE
PIPELINE UNITS AND RELATED COMPUTING MACHINE AND METHOD.
Alternatively, the accelerator 44 may be disposed on at least one ASIC, and thus
may have internal interconnections that are unconfigurable. In this alternative, the
machine 40 may omit the firmware memory 52. Furthermore, although the
accelerator 44 is shown including multiple pipelines 74, it may include only a single

pipeline.

[50] Still referring to FIG. 3, the operation of the peer-vector machine 40is
discussed below according to an embodiment of the invention.

Configuring the Peer-Vector Machine

[51] When the peer-vector machine 40 is first activated, the processing unit
62 configures the message handler 64 and the pipeline accelerator 44 (where the
accelerator is configurable) so that the machine will execute the desired algorithm.
Specifically, the processing unit 62 executes a host application program that is
stored in the memory 66 and that causes the processing unit to configure the
message handler 64 and the accelerator 44 as discussed below.

[52] To configure the message handler 64, the processing unit 62 retrieves
message-format information from the registry 72 and provides this format information
to the message handler, which stores this information in the memory 60. When the

machine 40 processes data as discussed below, the message handler 64 uses this

12

WO 2004/042560 PCT/US2003/034557

format information to generate and decipher data messages that have a desired
format. In one embodiment, the format information is written in Extensible Markup
Language (XML), although it can be written in another language or data format.
Because the processing unit 62 configures the message handler 64 each time the
peer-vector machine 40 is activated, one can modify the message format merely by
modifying the format information stored in the registry 72. Alternatively, an external
message-configuration library (not shown) can store information for multiple
message formats, and one can design and/or modify the host application so that the
processing unit 62 updates the registry 72 from selected parts of the library, and then
downloads the desired format information from the updated registry to the message
handler 64. The message format and the generating and deciphering of messages
are further discussed below and in previously cited U.S. Patent App. Serial No.
10/684,053 entitled COMPUTING MACHINE HAVING IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND METHOD.

[53] Similarly, to configure the interconnection layout of the pipeline
accelerator 44, the processing unit 62 retrieves configuration firmware from the
registry 70 and downloads this firmware to the memory 52 via the message handler
64 and the bus 50. The accelerator 44 then configures itself by downloading the
firmware from the memory 52 into its interconnection-configuration registers (not
shown). Because the processing unit 62 configures the accelerator 44 each time the
peer-vector machine 40 is activated, one can modify the interconnection-layout —
and thus the functioning — of the accelerator 44 merely by modifying the firmware
stored in the registry 70. Alternatively, an external accelerator-configuration library
(not shown) can store firmware for multiple configurations of the accelerator 44, and
one can design and/or modify the host application so that the processing unit 62
updates the registry 70 from selected parts of the library, and then downloads the
desired firmware from the updated registry to the memory 52. [Furthermore, the
external library or the registry 70 may store firmware modules that define different
portions and/or functions of the accelerator 44] Therefore, one can use these
modules to facilitate the design and/or modification of the accelerator 44. In addition,
the processing unit 62 may use these modules to modify the accelerator 44 while the

machine 40 is processing data. The interconnection-configuration of the accelerator

13

WO 2004/042560 PCT/US2003/034557

44 and the firmware modules are discussed further in previously cited U.S. Patent
App. Serial No. 10/684,057 entitted PROGRAMMABLE CIRCUIT AND RELATED
COMPUTING MACHINE AND METHOD.

[54] The processing unit 62 may also “soft configure” the pipeline
accelerator 44 while the peer-vector machine 40 is processing data. That is, the
processing unit 62 may configure the functioning of the accelerator 44 without
altering the accelerator’s interconnection layout. Such soft configuration is
discussed further below and in U.S. Patent App. Serial No. 10/683,929 entitled
PIPELINE ACCELERATOR FOR IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD.

Processing Data with the Peer-Vector Machine

[55] In general, the peer-vector machine 40 effectively divides the
processing of raw data between the host processor 42 and the pipeline accelerator
44. For example, the host processor 42 may perform most or all of the
decision-making operations related to the data, and the accelerator 44 may perform
most or all of the mathematically intensive operations on the data. However, the

machine 40 can divide the data processing in any desired manner.

Operation of the Host Processor

[56] In one embodiment, the host processor 42 receives the raw data from
and provides the resulting processed data to a remote device such as a sonar array
(FIG. 5).

[57] The host processor 42 first receives the raw data from the remote
device via the input port 54 or the bus 50. The peer-vector machine 40 may include
a FIFO (not shown) for buffering the received raw data.

[58] Next, the processing unit 62 prepares the raw data for processing by
the pipeline accelerator 44. For example, the unit 62 may determine, e.g., which of
the raw data to send to the accelerator 44 or in which sequence to send the raw
data. Or, the unit 62 may process the raw data to generate intermediate data for
sending to the accelerator 44. The preparation of the raw data is further discussed
in previously cited U.S. Patent App. Serial No. 10/684,053 entitled COMPUTING

14

WO 2004/042560 PCT/US2003/034557

MACHINE HAVING IMPROVED COMPUTING ARCHITECTURE AND RELATED
SYSTEM AND METHOD.

[59] While preparing the raw data, the processing unit 54 may also
generate one or more “soft-configuration” commands to modify the functioning of the
accelerator 44. Unlike the firmware that configures the interconnection layout of the
accelerator 44 when the machine 40 is activated, a soft-configuration command
controls the functioning of the accelerator without altering its interconnection layout.
For example, a soft-configuration command may control the size of the data strings
(e.g., 32 bits or 64 bits) that the accelerator 44 processes. Soft configuration of the
accelerator 44 is discussed further in previously cited U.S. Patent App. Serial No.
10/683,929 entitled PIPELINE ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND METHOD.

[60] The processing unit 62 then loads the prepared data and/or soft-
configuration command(s) into a corresponding location of the interface memory 48,

which acts as a FIFO buffer between the unit 62 and the accelerator 44.

[61] Next, the message handler 64 retrieves the prepared data and/or
software command(s) from the interface memory 48 and generates message objects
that include the data and/or command(s) and related information. Typically, the
accelerator 44 needs four identifiers that describe the data/command(s) and the
related information (collectively “information”): a) the information’s intended
destination (e.g., the pipeline 744), b) the priority (e.g., should the accelerator
process this data before or after previously received data), ¢) the length or the end of
the message object, and d) the unique instance of the data (e.g., sensor signal
number nine from an array of one thousand sensors). To facilitate this
determination, the message handler 64 generates message objects that have a
predetermined format as discussed above. In addition to the prepared
data/soft-configuration command(s), a message object typically includes a header
that includes the four above-described identifiers and that may also include
identifiers that describe the type of information that object includes (e.g., data,
command), and the algorithm by which the data is to be processed. This latter
identifier is useful where the destination pipeline 74 implements multiple algorithms.

The handler 64 may retrieve the header information from the interface memory 48, or

15

WO 2004/042560 PCT/US2003/034557

may generate the header based on the location within the interface memory from
which it retrieves the prepared data or command(s). By deciphering the message
header, the router 67 and/or the accelerator 44 can direct the information within the
message object to the desired destination, and cause that destination to process the

information in a desired sequence.

[62] Alternative embodiments for generating the message objects exist. For
example, although each message object is described as including either data or a
soft-configuration command, a single message object may include both data and one
or more commands. Furthermore, although the message handler 64 is described as
receiving the data and commands from the interface memory 48, it may receive the

data and commands directly from the processing unit 54.

[63] The generation of message objects is discussed further in previously
cited U.S. Patent App. Serial No. 10/684,053 entitted COMPUTING MACHINE
HAVING IMPROVED COMPUTING ARCHITECTURE AND RELATED SYSTEM
AND METHOD.

Pipeline Accelerator

[64] The pipeline accelerator 44 receives and deciphers the message
objects from the message handler 64 and effectively directs the data and/or
commands within the objects to the desired destination(s). This technique is
particularly useful where the number of algorithms implemented by the processing
unit 62 and the pipelines 74 are relatively small, and thus the router 67 can be
omitted. Alternatively, where the number of algorithms implemented by the
processing unit 62 or the number pipelines 74 is relatively large, the router 61
receives and deciphers the message objects from the message handler 64 and
effectively directs the data and/or commands within the objects to the desired

destination(s) within the accelerator 44.

[65] In one embodiment where there are small numbers of processing-unit
algorithms and pipelines 74, each pipeline simultaneously receives a message
object and analyzes the header to determine whether or not it is an intended
recipient of the message. If the message object is intended for a particular pipeline

74, then that pipeline deciphers the message and processes the recovered

16

WO 2004/042560 PCT/US2003/034557

data/command(s). If, however, the message object is not intended for a particular
pipeline 74, then that pipeline ignores the message object. For example, suppose a
message object includes data for processing by the pipeline 74,. Therefore, the
pipeline 741 analyzes the message header, determines that it is an intended
destination for the data, recovers the data from the message, and processes the
recovered data. Conversely, each of the pipelines 74, — 74, analyzes the'message
header, determines that it is not an intended destination for the data, and thus does
not recover or process the data. If the data within the message object is intended for
multiple pipelines 74, then the message handler 64 generates and sends a
sequence of respective message objects that include the same data, one message
for each destination pipeline. Alternatively, the message handler 64 may
simultaneously send the data to all of the destination pipelines 74 by sending a
single message object having a header that identifies all of the destination pipelines.
Recovering data and soft-configuration commands from message objects is
discussed further in previously cited U.S. Patent App. Serial No. 10/683,929 entitled
PIPELINE ACCELERATOR FOR IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD.

[66] In another embodiment where there are large numbers of
processing-unit processes or pipelines 74, each pipeline receives message objects
from the router 61. Although the router 67 should ideally send message objects only
to the target pipeline 74, the target pipeline still analyzes the header to determine
whether or not it is an intended recipient of the message. Such an analysis identifies
potential message routing errors, i.e., exceptions. If the message object is intended
for target pipeline 74, then that pipeline deciphers the message and processes the
recovered data/command(s). If, however, the message object is not intended for the
target pipeline 74, then that pipeline ignores the processing for that message object,
and may also issue a new message to the host processor 42 indicating that a routing
exception has occurred. Handling of routing exceptions is discussed in previously
cited U.S. Patent App. Serial No. 10/;684,053 entitled COMPUTING MACHINE
HAVING IMPROVED COMPUTING ARCHITECTURE AND RELATED SYSTEM
AND METHOD.

17

WO 2004/042560 PCT/US2003/034557

[67] Next, the pipeline accelerator 44 processes the incoming data and/or

commands recovered from the message objects.

[68] For data, the destination pipeline or pipelines 74 perform a respective
operation or operations on the data. As discussed in conjunction with FIG. 2,
because the pipelines 74 do not execute program instructions, they can often
process the data at a rate that is substantially the same as the frequency of the

pipeline clock.

[69] In a first embodiment, a single pipeline 74 generates resulting data by

processing the incoming data.

[70] In a second embodiment, multiple pipelines 74 generate resulting data
by serially processing the incoming data. For example, the pipeline 74 may generate
first intermediate data by performing a first operation on the incoming data. Next, the
pipeline 74, may generate second intermediate data by performing a second
operation on the first intermediate data, and so on, until the final pipeline 74 in the

chain generates the result data.

[71] In a third embodiment, multiple pipelines 74 generate the resulting data
by processing the incoming data in parallel. For example, the pipeline 74, may
generate a first set of resulting data by performing a first operation on a first set of
the incoming data. At the same time, the pipeline 74, may generate a second set of
resulting data by performing a second operation on a second set of the incoming

data, and so on.

[72] Alternatively, the pipelines 74 may generate resulting data from the
incoming data according to any combination of the above three embodiments. For
example, the pipeline 74, may generate a first set of resulting data by performing a
first operation on a first set of the incoming data. At the same time, the pipelines 74,
and 74, may generate a second set of resulting data by serially performing second

and third operations on a second set of the incoming data.

[73] In any of the above embodiments and alternatives, a single pipeline 74
may perform multiple operations. For example, the pipeline 74; may receive data,
generate first intermediate data by performing a first operation on the received data,

temporarily store the first intermediated data, generate second intermediate data by

18

WO 2004/042560 PCT/US2003/034557

performing a second operation on the first intermediate data, and so on, until it
generates result data. There are a number of techniques for causing the pipeline 74,
to switch from performing the first operation to performing the second operation, and
so on. Such techniques are discussed in previously cited U.S. Patent App. Serial

* No. 10/683.929 entitled PIPELINE ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND METHOD (Attorney Docket No.
1934-13-3).

[74] For a soft-configuration command, the accelerator 44 sets the bits in
the corresponding soft-configuration register(s) (not shown) as indicated by the
message header. As discussed above, setting these bits typically changes the
functioning of the accelerator 44 without changing its interconnection layout. This is
similar to setting bits in a control register of a processor for, e.g., setting an externél
pin as an input pin or an output pin or selecting an addressing mode. Furthermore, a
soft-configuration command can partition a register or table (an array of registers) for
holding data. Another soft-configuration command or an operation performed by the
accelerator 44 may load data into the soft-configured register or table. Soft
configuration of the accelerator 44 is discussed further in previously cited U.S.
Patent App. Serial No. 10/683,929 entitled PIPELINE ACCELERATOR FOR
IMPROVED COMPUTING ARCHITECTURE AND RELATED SYSTEM AND
METHOD (Attorney Docket No. 1934-13-3).

[75] Next, the pipeline accelerator 44 provides the resulting data to the host
processor 42 via the router 67 (or directly if the router is omitted) for further

processing.

[76] Alternatively, the accelerator 44 provides the resulting data to the
remote destination (FIG. 5) either directly via the output port 60, or indirectly via the
router 61 (if present), the bus 50, the host processor 42, and the output port 58.
Consequently, in this alternative embodiment, the resulting data generated by the

" accelerator 44 is the final processed data.

[77] When the accelerator 44 provides the resulting data to the host
processor 42 — either for further processing or for pass through to the remote device
(FIG. 5) — it sends this data in a message object that has the same format as the

message objects generated by the message handler 64. Like the message objects
19

WO 2004/042560 PCT/US2003/034557

generated by the message handler 64, the message objects generated by the
accelerator 44 include headers that specify, e.g., the destination and the priority of
the resulting data. For example, the header may instruct the message handler 64 to
pass through the resulting data to the remote device via the port 58, or may specify
which portion of the program executed by the processing unit 62 is to control the
processing of the data. By using the same message format, the accelerator 44 has
the same interface layer as the host processor 42. This facilitates designing and
modifying the peer-vector machine 40, particularly if the interface layer is an industry
standard.

[78] The structure and operation of the pipeline accelerator 44 and the
pipelines 66 are discussed further in previously cited U.S. Patent App. Serial No.
10/683,929 entitled PIPELINE ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND METHOD (Attorney Docket No.
1934-13-3).

Receiving And Processing From the Pipeline Accelerator With the Host

Processor

[79] When it receives a message object from the accelerator 44, the
message handler 64 first deciphers the message header and directs the recovered
data to the indicated destination.

[80] If the header indicates that the data is to be passed to the remote
device (FIG. 5) via the port 58, then the message handler 64 may provide the data
directly to the port 58, or to a port FIFO buffer (not shown) formed in the interface
memory 48 or in another memory and then from the buffer to the port 58. Multiple
ports 58 and multiple respective remote devices are also contemplated.

[81] If, however, the header indicates that the processing unit 62 is to
further process the data, then the message handler 62 stores the data in a location
of the interface memory 48 that corresponds to the portion of the processing-unit
program that is to control the processing of the data. More specifically, the same
header now indirectly indicates which portion(s) of the program executed by the
processing unit 54 is(are) to control the processing of the data. Consequently, the

20

WO 2004/042560 PCT/US2003/034557

message handler 64 stores the data in the location (such as a FIFO) of the interface

memory 48 corresponding to this program portion.

[82] As discussed above, the interface memory 48 acts as a buffer between
the accelerator 44 and the processing unit 62, and thus allows the transfer of data
when the processing unit is not synchronized to the accelerator. For example, this
lack of synchronization may occur when the accelerator 44 processes data faster
than the processing unit 62. By using the interface memory 48, the accelerator 44 is
not slowed by the slower response of the processing unit 62. This also avoids the
inefficiency penalties associated with the processing unit’s indeterminate response
time to handling interrupts. The indeterminate handling by the processing unit 62 of
the accelerator 44 output messages would unnecessarily complicate the
accelerator’s design by forcing the designer to provide either: a) storage and
handling for the backed up output messages, or b) idling controls throughout the
pipeline to prevent the backed up messages from being overwritten. Therefore, the
use of interface memory 48, which acts as a buffer between the accelerator 44 and
the processing unit 62, has several desirable consequences a) accelerators are
easier to design, b) accelerators need less infrastructure and can hold larger PLIC
applications, c) accelerators can be streamlined to run faster because output data is

not “blocked” by a slower processor.

[83] Then, for data that the message handler 64 has stored in the interface
memory 48, the processing unit 62 retrieves the data from the interface memory.
The processing unit 62 may poll the interface memory 48 to determine when new
data has arrived in a particular location, or the message handler 64 may generate an
interrupt or other signal that notifies the processing unit of the data’s arrival. In one
embodiment, before the processing unit 62 retrieves data, the message handler 64
generates a message object that includes the data. More specifically, one may
design the program executed by the ;;rocessing unit 62 to receive data in message
objects. The message handler 64, therefore, could store a message object in the
interface memory 48 instead of storing only the data. But a message object typically
occupies significantly more memory space than does the data it contains.
Consequently, to save memory, the message handler 64 deciphers a message
object from the pipeline accelerator 44, stores the data in the memory 48, and then

21

WO 2004/042560 PCT/US2003/034557

effectively regenerates the message object when the processing unit 62 is ready to
receive the data. Then, the processing unit 62 deciphers the message object and
processes the data under the control of the program portion identified in the

message header.

[84] Next, the processor unit 62 processes the retrieved data under the
control of the destination portion of the program, generates processed data, and
stores the processed data in a location of the interface memory 48 that corresponds

to the intended destination of the processed data.

[85] Then, the message handler 64 retrieves the processed data and
provides it to the indicated destination. To retrieve the processed data, the message
handler 64 may poll the memory 48 to determine when the data has arrived, or the
processing unit 62 may notify the message handler of the data’s arrival with an
interrupt or other signal. To provide the processed data to its intended destination,
the message handler 64 may generate a message object that includes the data, and
send the message object back to the accelerator 44 for further processing of the
data. Or, the handler 56 may send the data to the port 58, or to another location of
the memory 48 for further processing by the processing unit 62.

[86] The host processor’s receiving and processing of data from the

pipeline accelerator 44 is discussed further in previously cited U.S. Patent App.

Serial No. 10/684,053 entitled COMPUTING MACHINE HAVING IMPROVED

COMPUTING ARCHITECTURE AND RELATED SYSTEM AND METHOD (Attorney
" Docket No. 1934-12-3).

Alternative Data Processing Techniques Using the Peer-Vector Machine

[87] Still referring to FIG. 3, there exist alternatives to the above-described
embodiments in which the host processor 44 receives and processes data, and then

sends the data to the pipeline accelerator 44 for further processing.

[88] In one alternative, the host processor 44 performs all of the processing
on at least some of the data, and thus does not send this data to the pipeline

accelerator 44 for further processing.

[89] In another alternative, the pipeline accelerator 44 receives the raw data
directly from the remote device (FIG. 5) via the port 56 and processes the raw data.
22

WO 2004/042560 PCT/US2003/034557

The accelerator 44 may then send the processed data directly back to the remote
device via the port 60, or may send the processed data to the host processor 42 for
further processing. In the latter case, the accelerator 44 may encapsulate the data in

message objects as discussed above.

[90] In yet another alternative, the accelerator 44 may include, in addition to
the hardwired pipelines 74, one or more instruction-executing processors, such as a

Digital Signal Processor (DSP), to complement the number-crunching abilities of the

pipelines.
Example Implementation of the Peer-Vector Machine
[91] Still referring to FIG. 3, in one embodiment, the pipeline bus 50 is a

standard 133 MHz PCI bus, the pipelines 74 are included on one or more standard
PMC cards, and the memory 52 is one or flash memories that are each located on a

respective PMC card.

Example Application of the Peer-Vector Machine

[92] FIG. 4 is a block diagram of a sonar system 80 that incorporates the
peer-vector machine 40 of FIG. 3 according to an embodiment of the invention. In
addition to the machine 40, the system 80 includes an array 82 of transducer
elements 84, — 84, for receiving and transmitting sonar signals, digital-to-analog
converters (DACs) 86 — 86,, analog-to-digital converters (ADCs) 88, — 88, and a
data interface 90. Because generating and processing sonar signals are often
mathematically intensive functions, the machine 40 can often perform these
functions more quickly and efficiently than a conventional computing machine —
such as the multi-processor machine 70 (FIG. 1) — can for a given clock frequency

as discussed above in conjunction with FIG. 3.

[93] During a transmit mode of operation, the array 82 transmits a sonar
signal into a medium such as water (not shown). First, the peer-vector machine 40
converts raw signal data received on a port 92 into n digital signals, one for each of
the array elements 84. The magnitudes and phases of these signals dictate the
transmission-beam pattern of the array 82. Next, the machine 40 provides these
digital signals to the interface 90, which provides these signals to the respective

DACs 86 for conversion into respective analog signals. For example, the interface

23

WO 2004/042560 PCT/US2003/034557

90 may act as a buffer that serially receives the digital signals from the machine 40,
stores these signals until it receives and buffers all n of them, and then
simultaneously provides these sequential signal samples to the respective DACs 86.
Then, the transducer elements 84 convert these analog signals into respective

soundwaves, which interfere with one another to form the beams of a sonar signal.

[94] During a receive mode of operation, the array 82 receives a sonar
signal from the medium (not shown). The received sonar signal is composed of the
portion of the transmitted sonar signal that is reflected by re‘}mote objects and the
sound energy emitted by the environment and the remote objects. First, the
transducer elements 84 receive respective soundwaves that compose the sonar
signal, convert these soundwaves into n analog signals, and provide these analog
signals to the ADCs 88 for conversion into n respective digital signals. Next, the
interface 90 provides these digital signals to the peer-vector machine 40 for
processing. For example, the interface 90 may act as a buffer that receives the
digital signals from the ADCs 88 in parallel and then serially provides these signals
to the machine 40. The processing that the machine 40 performs on the digital
signals dictates the receive-beam pattern of the array 82. Additional processing
steps such as filtering, band shifting, spectral transformation (e.g., the Fourier
Transform), and convolution are applied to the digital signals. The machine 40 then
provides the processed signal data via a port 94 to another apparatus such as a

display device for viewing located objects.

[95] Although discussed in conjunction with the sonar system 80, systems

other than sonar systems may also incorporate the peer-vector machine 40.

[96] The preceding discussion is presented to enable a person skilled in the
art to make and use the invention. Various modifications to the embodiments will be
readily apparent to those skilled in the art, and the generic principles herein may be
applied to other embodiments and applications without departing from the spirit and
scope of the present invention. Thus, the present invention is not intended to be
limited to the embodiments shown, but is to be accorded the widest scope consistent

with the principles and features disclosed herein.

24

WO 2004/042560 PCT/US2003/034557

WHAT IS CLAIMED IS:

1. A peer-vector machine, comprising:

a host processor operable to execute a program, and, in response to the
program, operable to generate first host data; and

a pipeline accelerator coupled to the host processor and operable to receive

the first host data and to generate first pipeline data from the first host data.

2. The peer-vector machine of claim 1 wherein the host processor is
further operable to:
receive second data; and

generate the first host data from the second data.

3. The peer-vector machine of claim 1 wherein the host processor is
further operable to:
receive the first pipeline data from the pipeline accelerator; and

process the first pipeline data.

4, The peer-vector machine of claim 1 wherein the host processor is
further operable to:
receive the first pipeline data from the pipeline accelerator; and

generate the first host data from the first pipeline data.

5. The peer-vector machine of claim 1, further comprising:
an interface memory coupled to the host processor and to the pipeline
accelerator and having a first memory section:;
wherein the host processor is operable to,
store the first host data in the first memory section, and
provide the first host data from the first memory section to the pipeline

accelerator.

6. The peer-vector machine of claim 1, further comprising:

an interface memory coupled to the host processor and to the pipeline
accelerator and having first and second memory sections;

wherein the host processor is operable to,

store the first host data in the first memory section,

25

WO 2004/042560 PCT/US2003/034557

provide the first host data from the first memory section to the pipeline
accelerator,
receive the first pipeline data from the pipeline accelerator,
store the first pipeline data in the second memory section,
retrieve the first pipeline data from the second memory section to the
host processor, and
process the first pipeline data.

7. The peer-vector machine of claim 1 wherein the host processor is

operable to configure the pipeline accelerator.

8. The peer-vector machine of claim 1 wherein the pipeline accelerator

comprises a programmable-logic integrated circuit.

9. A peer-vector machine, comprising:

a pipeline accelerator operable to generate first pipeline data; and

a host processor coupled to the pipeline accelerator and operable to execute
a program and, in response to the program, operable to receive the first pipeline data

and to generate first host data from the first pipeline data.

10. The peer-vector machine of claim 9 wherein the pipeline accelerator is
further operable to:
receive second data; and

generate the first pipeline data from the second data.

11. The peer-vector machine of claim 9 wherein the pipeline accelerator is
further operable to:
receive the first host data from the host processor; and

process the first host data.

12. The peer-vector machine of claim 9 wherein the pipeline accelerator is
further operable to:
receive the first host data from the host processor; and

generate the first pipeline data from the first host data.

13. The peer-vector machine of claim 9, further comprising:
an interface memory coupled to the pipeline accelerator and to the host
processor and having a first memory section; and
26

WO 2004/042560 PCT/US2003/034557

wherein the host processor is operable to,
store the first pipeline data from the pipeline accelerator in the first
memory section, and
retrieve the first pipeline data from the first memory section.

14. The peer-vector machine of claim 9, further comprising:

an interface memory coupled to the pipeline accelerator and to the host
processor and having first and second memory sections;
wherein the host processor is operable to,
store the first pipeline data from the pipeline accelerator in the first
memory section,
retrieve the first pipeline data from the first section,
store the first host data in the second memory section, and
provide the first host data from the second memory section to the
pipeline accelerator; and
wherein the pipeline accelerator is operable to process the first host data

received from the second memory section.

15. The peer-vector machine of claim 9 wherein the host processor is

operable to configure the pipeline accelerator.

16. A system, comprising:

a device operable to generate raw data;

a host processor coupled to the device and operable to execute a program,
and, in response to the program, operable to generate host data from the raw data;
and

a pipeline accelerator coupled to the host processor and operable to receive
the host data and to generate pipeline data from the host data.

17. A system, comprising:
a device operable to generate raw data;
a pipeline accelerator coupled to the device and operable to generate pipeline

data from the raw data; and

27

WO 2004/042560 PCT/US2003/034557

a host processor coupled to the pipeline accelerator and operable to execute
a program and, in response to the program, operable to receive the pipeline data

and to generate host data from the pipeline data.

18. A method, comprising:
generating first host data by executing a program with a host processor; and
generating first pipeline data from the first host data with a pipeline

accelerator.

19. The method of claim 18, further comprising:
receiving raw data;
wherein generating the first host data comprises generating the first host data

from the raw data.

20. The method of claim 18 wherein generating the first host data

comprises generating the first host data from the first pipeline data.

21. The method of claim 18, further comprising generating second host

data from the first pipeline data by executing the program with the host processor.

22, The method of claim 18, further comprising configuring the pipeline

accelerator by executing the program with the host processor.

23. A method, comprising:
generating first pipeline data with a pipeline accelerator; and
generating first host data from the first pipeline data by executing a program

with a host processor.

24. The method of claim 23, further comprising:
receiving raw data;
wherein generating the first pipeline data comprises generating the first

pipeline data from the raw data.

25. The method of claim 23 wherein generating the first pipeline data

comprises generating the first pipeline data from the first host data.

26. The method of claim 23, further comprising generating second pipeline

data from the first host data with the pipeline accelerator.

28

WO 2004/042560 PCT/US2003/034557

27. The method of claim 23, further comprising configuring the pipeline
accelerator by executing the program with the host processor.

29

PCT/US2003/034557

WO 2004/042560

(LYV ¥OIdd) L 'Ol

~— |
M2010 0l
AHOWIWN [«—— 4OSSTOOHI-0D |[—>] \ 8l \
\ . \ . NI V.LVQ MVY
u L] u] oc
ve | b e\; [
. . 100 Y.LVYa a3s8S300ud
[] []
M001D
B S
n AHOWIN
AHONIN |«——>) HOSSIOOU0D [+——>| 8 |*—» o rre
NVN N.v_\ 9c
M2010 M201D
AMOWIN [«——> HOSSTIOOUI-0D [——> Rim—— mw_mmwmmww,_mn_ «——>» AMOWIW
/ / A /
e 14" cl ¢c

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/034557

WO 2004/042560

-

¢ 'Old

1N0 VYiva aass320yd

H01vd3do

%

[A

HOLvd3do

/

d401vd3do

-

0010

%

‘ze

NI VAVO MVY

2/4

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/034557

WO 2004/042560

[4%
AHONIN
JHYMNAIS

llllll 7
_
INM3dId __ MO0
1 3uvMauvH _mz:ua_n_
!
\ “
“v1 _
HOLYYI1300V | 19
3aNIN3did |
z _ Y
O
/ _ 1
| n
mz_._mm_n_ | o
N
] 3uvMauvH | |
_
g7 |
/ |
_
, _
<> ANMEdId ||
FAVMAUVH | |
_

s | i s i wvtiuon m—— ot ———— et g,
B .

- .
~— 1NO V1vd d3ss3ooyd Oy /
/7 /
85 NI V.1Va MVY \ /
e 0 _ I
r —= — I_ _
T umanwm | | AMOWIIN
05 || 3ovssam [‘ _ HITANVH
* _ _
A —_
m | _ g7 ||
| _ >
g _ | 3 ZL
LA 2 | AY1SIOFY
3 _ I | u Y ||| NOILYENOIINOD
w | I | o m_ _ ‘FOVSSIN
1 “ | _m,_ 3 |!
3 | L | —_—
| | W N 0L
d ¥OSSA00Ud | | _ ANLSIOFY
! I LSpH _ | | NoILYHNDIANGD
| | || ¥OLv¥31300V
| v 1 _
! _ | —
~ 4 . _ 99
_ LINN J I AJOWIN
| | ONISSIO0Ud _ LINN |
/ _~ ._ ONISSIO0Ud | -
N | ————— F T
/
v MO010 H0SS3I00Yd

—— = m————

3/4

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/034557

WO 2004/042560

c8

|
|
|
|
|
|
|
|
|
|
il
|
|
|
|
|
|
|
|
|

(TYNOILdO) . /
NI VAV MY ¥ 'Old 7
:.w.m. N
06 — [——— o
«— | 00V J_
[}
._,8/ L EERER
I__
3 .|||»|I.|l ovd m :\l.
9 | e,
1/
26 4 ‘g8 | %8 e
¥ | o\
o4 . Y
« N aNIHOYI AHHV N % _ INIWTTS
LNO YLYd HOLD3IA-H3Ad | - _ﬁ_
g3ss300dd v _ _
(IYNO1LdO) 1 mmf) _ g
v | \
g [oav J_
14 .
I
08 RO EERE!
06 2
__
/ ————» OvQd _
| AVHYV ¥VNOS |

4/4

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

