权利要求书 1 页 说明书 6 页 附图 1 页

实用新型名称
MICS 智能监控系统

摘要
本实用新型公开了一种 MICS 智能监控系统，包括数据采集单元、数据处理单元、数据合成单元和数据显示单元。数据采集单元由视频数据采集模块和音频数据采集模块组成，数据处理单元由视频数据处理模块和音频数据处理模块组成，视频数据采集模块由摄像头构成，视频数据采集模块采集的图像输入视频数据处理模块，音频数据采集模块由测音装置构成，音频数据采集模块采集的音频数据输入音频数据处理模块，经音频数据处理模块处理过的图像信号和经音频数据处理模块处理过的音频信号同时输入数据合成单元，在数据合成单元将图像信号和音频信号进行合成后输入到数据显示单元中，数据显示单元由 MICS 主窗体和显示终端构成。
1. 一种 MICS 智能监控系统，其特征在于：包括数据采集单元 (2)、数据处理单元 (3)、数据合成单元 (4) 和数据显示单元 (5)，数据采集单元 (2) 由视频数据采集模块 (6) 和音频数据采集模块 (7) 组成，数据处理单元 (3) 由视频数据处理模块 (8) 和音频数据处理模块 (9) 组成，视频数据采集模块 (6) 由摄像头构成，视频数据采集模块 (6) 采集的图像输入视频数据处理模块 (8)，音频数据采集模块 (7) 由话筒装置构成，音频数据采集模块 (7) 采集的音频数据输入音频数据处理模块 (9)，经视频数据处理模块 (8) 处理过的图像信号和经音频数据处理模块 (9) 处理过的音频信号同时输入数据合成单元 (4)，在数据合成单元 (4) 将图像信号和音频信号进行合成后输入到数据显示单元 (5) 中，数据显示单元 (5) 由 MICS 主窗口和显示终端构成。
技术领域：

本实用新型属于计算机通信领域，涉及一种计算机图像采集、视频合成的系统。

背景技术：

监控系统的应用十分广泛，在不明人员进入、设备发生异常等情况下可以快速的发出警报提醒值班人员，为企事业单位的安全、生产提供了有力的保障。在国外几乎所有企业都有一套完善的监控系统体系。近年来，由于数字技术的飞速发展，模拟监控系统正逐渐被数字化、网络化的监控系统取代。此类系统的普遍特点是更加安全高效，能实现大范围数据共享、人工干预更少。但鉴于各方面技术还不是十分成熟，硬件和软件发展明显脱节，专业的网络摄像头监控软件需要定制，而且售价都很高。

我们深入调研了监控系统在国内应用的实际情况，发现普遍在使用智能化程度很低、需人工全天值守的模拟系统。有些企业采用了数字化系统，但都是找厂商单独定制，通用性差，维护很不方便且费用较高。

随着现代科学技术与信息社会的进一步发展，人们对信息获取的要求越来越高，不仅是文字信息，还需要实时的图像信息。视频监控以其直观方便、内容丰富的特点日益受到人们的青睐。监控产品也经历着从最初的模拟化向数字化、网络化、智能化和移动化的转变。

视频监控系统的发展大致经历了三个阶段。二十世纪九十年代初以前，主要是采用摄像机和磁带录像机等模拟设备为主的闭路电视监控，这是第一
代模拟监控系统。二十世纪九十年代中期，随着计算机处理能力的提高和视频技术的发展，人们利用计算机的高速数据处理能力进行视频采集，利用显示器的高分辨率实现图像多画面显示，大大提高了监控质量，这种基于多媒体主控台的系统被称为第二代数字化本地视频监控系统。二十世纪九十年代末，随着网络计算机处理能力的快速提高，以及各种视频处理技术的出现，视频监控步入了全数字化的网络时代，称为第三代远程视频监控系统。第三代视频监控系统以网络为依托，以数字视频的压缩、传输、存储和播放为核心，引发了视频监控业的革命。而在今天，随着 “anytime、anywhere、anydevice” 等概念的提出，普通的网络视频监控已经不能满足日益增长的多元化需求；一种全新的解决方案—基于移动设备的 “移动视频监控” 应运而生。国外权威机构调查表明，到 2010 年全球视频监控的市场将达到 100 亿美元。

视频监控作为一种传统视频技术与现代通信技术相结合的应用，目前在国内外已引起了越来越多的关注。近年来，随着宽带的普及，计算机技术的发展，图像处理技术的提高，视频监控正越来越广泛地渗透到教育、政府、娱乐、医疗、运动分析等其它各个领域。特别是在安防领域，传统的安保系统都需要专人监视，必须有专人观察、控制、分析摄像机里的图像，有着较大的局限性，系统并不能自动检测入侵者、跟踪目标，不支持对视频画面中的重要部分自动放大，并且各个摄像机之间无法自动切换持续跟踪目标，摄像机的监控作用基本停留在 “事后取证” 的水平上，安装了摄像机并不意味着安全。智能视觉监控则将监控的作用由 “事后取证” 过渡到了 “事前预警”，极大地提高了监控的作用。因此获得了日益广泛的研究与应用。
实用新型内容：

本实用新型的目的在于克服上述现有技术的缺点，提供一种 MICS 智能
监控系统，包括数据采集单元 2、数据处理单元 3、数据合成单元 4 和数据显
示单元 5，数据采集单元 2 由视频数据采集模块 6 和音频数据采集模块 7 组成，
数据处理单元 3 由视频数据处理模块 8 和音频数据处理模块 9 组成，视频数
据采集模块 6 由摄像头构成，视频数据采集模块 6 采集的图像输入视频数据
处理模块 8，音频数据采集模块 7 由测音装置构成，音频数据采集模块 7 采集
的音频数据输入音频数据处理模块 9，经视频数据处理模块 8 处理过的图像信
号和经音频数据处理模块 9 处理过的音频信号同时输入数据合成单元 4，在数
据合成单元 4 将图像信号和音频信号进行合成后输入到数据显示单元 5 中，
数据显示单元 5 由 MICS 主窗体和显示终端构成。

MICS 监控系统的主窗体能够实现单摄像头浏览、多摄像头多服务器浏
览、多摄像头多服务器浏览，支持局域网、互联网连续浏览。

所述视频数据处理模块 8 采用动态缓存技术，当测得帧速出现偏差时，
通过调节缓存消除跳帧。

所述音频数据处理模块 9 包括语音分析和语音合成。

所述语音分析是对输入语音进行分析，以确定句子的低层结构，包括文
本的断句、字词切分、数字的处理和缩略语的处理。

所述语音合成是把处理好的文本所对应的单字或短语从语音合成库中
提取，把语言学描述转化成语音波形。

MICS 语音控制系统主要包括以下几部分：

1. 语音分析-对输入语音进行分析，以确定句子的低层结构，包括文本
的断句、字词切分、数字的处理、缩略语的处理等。

2. 语音合成-把处理好的文本所对应的单字或短语从语音合成库中提取,
把语言学描述转化成言语波形。

语言模型主要分为规则模型和统计模型两种。统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律，MISCS 使用 N-Gram 模型。该模型基于这样一种假设，第 n 个词的出现只与前面 N-1 个词相关，而与其它任何词都不相关，整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计 N 个词同时出现的次数得到。语言模型的性能通常用交叉熵和复杂度（Perplexity）来衡量。交叉熵的意义是用该模型对文本识别的难度，或者从压缩的角度来看，每个词平均要用几个位来编码。复杂度的意义是用该模型表示这一文本平均的分支数，其倒数可视为每个词的平均概率。平滑是指对未观察到的 N 元组合赋予一个概率值，以保证词序列总能通过语言模型得到一个概率值。MISCS 使用的平滑技术为 Kneser-Ney 平滑。

MISCS 听写机架模型建立在前述声学模型和语言模型基础上的 HMM 拓扑结构（图 4-2）。训练时对每个基元用前向后向算法获得模型参数，识别时，将基元串接成词，词间加上静音模型并引入语言模型作为词间转移概率，形成循环结构，用 Viterbi 算法进行解码。

MISCS 多功能智能监控系统主体严格遵循面向对象的设计原则，各模块分立，各司其职，因而扩展性、移植性极强。主程序体只负责显示图像和存储用户档案，而各种类型摄像头的解码方式、配置信息等都单独编译成 DLL 文件，每次启动时主程序体将自动寻找并安装相应模块，用户也可自行编写新的 DLL 配置文件以适应其需求。

MISCS 智能监控系统是将计算机网络技术、人工智能技术与监控技术有机地结合起来的一种全新的监控系统。它能将监控系统和计算机网络系统连
接起来，使两个相互独立的系统开始走向融合，实现真正的三网合一（数据、语音和图像），在理念和方式上取得了重大突破。利用计算机网络技术，将数字化的监控信息传送到网络上，与现有的信息管理系统融为一体，使网络中的每一台多媒体计算机上均可实现对监控信息的管理和调用，提高管理水平和管理效率。MISCS 智能监控系统已经超出了传统监控的范畴，在其基础上增加了管理的概念，可以作为现代化管理的一个有力工具，实现模拟化向数字化、网络化、智能化和移动化的转变。着宽带网络的普及和行业管理部门对管理水平提高的需求增加，城市公安、交通、金融、环保、电力、医疗、教育等管理部门对城市范围内的大型联网安全与视频监控平台的需求也在这两年开始大量增加。就城市公安领域和金融领域两方面来看，MISCS 的市场潜力就十分巨大。公安部门正在大力进行科技强警示范城市的建设，首批 22 个城市的治安监控系统已经开始实施，2008 年科技强警示范建设城市将达到 180 个，而最终我国 660 个城市和 1642 个县城都需要上基于网络的公共安全与图像监控系统；在金融领域，在过去的几年中，国内各大国有银行和商业银行根据中国人民银行总行和公安部关于银行图像监控系统的数字化改建要求，已经建设完成了大量基层网点的数字化监控系统建设改造工作，目前也已经开始进行各种联网监控管理系统的改造试点工作。因而，本系统具有极高的实用价值和现实意义，适用于需要进行监控的各个企事业单位，且能为其定制定智能化解决方案，从而大大提高效率，节省人工劳务开支，实现全天候无人值守监控，并拥有一定自动解决突发问题的能力。

附图说明：

图 1 为本实用新型的结构示意图；
具体实施方式:

下面结合附图对本实用新型做进一步详细描述:

参见图1，一种MISC5智能监控系统，包括数据采集单元2、数据处理单元3、数据合成单元4和数据显示单元5。数据采集单元2由视频数据采集模块6和音频数据采集模块7组成，数据处理单元3由视频数据处理模块8和音频数据处理模块9组成，视频数据采集模块6由摄像头构成，视频数据采集模块6采集的图像输入视频数据处理模块8，音频数据采集模块7由测音装置构成，音频数据采集模块7采集的音频数据输入音频数据处理模块9，经视频数据处理模块8处理过的图像信号和经音频数据处理模块9处理过的音频信号同时输入数据合成单元4，在数据合成单元4将图像信号和音频信号进行合成后输入到数据显示单元5中，数据显示单元5由MISC5主窗体和显示终端构成。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明，不能认定本发明的具体实施方式仅限于此，对于本发明所属技术领域的普通技术人员来说，在不脱离本发明构思的前提下，还可以做出若干简单的推演或替换，都应当视为属于本发明由所提交的权利要求书确定专利保护范围。
图 1