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TRIPLE DES CRITICAL TIMING PATH
IMPROVEMENT

RELATED APPLICATIONS

This application is related to U.S. patent application Ser.
No. 10/730,640, filed on Dec. 8, 2003, entitled “TRIPLE DES
GIGABIT/s PERFORMANCE USING SINGLE DES
ENGINE.”

FIELD OF INVENTION

The invention is generally related to the field of computer
or network devices and more particularly to methods and
systems for improving the performance of a 3DES crypto-
graphic device or system for providing [Psec security pro-
cessing within a host network interface.

BACKGROUND OF THE INVENTION

Host-computing systems, such as personal computers, are
often operated as nodes on a communications network, where
each node is capable of receiving data from the network and
transmitting data to the network. Data is transferred over a
network in groups or segments, wherein the organization and
segmentation of data are dictated by a network operating
system protocol, and many different protocols exist. In fact,
data segments that correspond to different protocols can co-
exist on the same communications network. In order for a
node to receive and transmit information packets, the node is
equipped with a peripheral network interface device, which is
responsible for transferring information between the commu-
nications network and the host system. For transmission, a
processor unit in the host system constructs data or informa-
tion packets in accordance with a network operating system
protocol and passes them to the network peripheral. In recep-
tion, the processor unit retrieves and decodes packets
received by the network peripheral. The processor unit per-
forms many of its transmission and reception functions in
response to instructions from an interrupt service routine
associated with the network peripheral. When a received
packet requires processing, an interrupt may be issued to the
host system by the network peripheral. The interrupt has
traditionally been issued after either all of the bytes in a
packet or some fixed number of bytes in the packet have been
received by the network peripheral.

Networks are typically operated as a series or stack of
layers or levels, where each layer offers services to the layer
immediately above. Many different layered network architec-
tures are possible, where the number of layers, the function
and content of each layer may be different for different net-
works. The international standards organization (ISO) has
developed an open systems interconnection (OSI) model
defining a seven layer protocol stack including an application
layer (e.g., layer 7), a presentation layer, a session layer, a
transport layer, a network layer, a data link layer, and a physi-
cal layer (e.g., layer 1), wherein control is passed from one
layer to the next, starting at the application layer in one
station, proceeding to the bottom layer, over the channel to the
next station and back up the hierarchy. The user of a host
system generally interacts with a software program running at
the uppermost (e.g., application) layer and the signals are sent
across the network at the lowest (e.g., physical) layer.

One popular network architecture is sometimes referred to
as a TCP/IP stack, in which the application layer is one of FTP
(file transfer protocol), HTTP (hyper text transfer protocol),
or SSH (secure shell). In these networks, the transport layer
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protocol is typically implemented as transmission control
protocol (TCP) or user datagram protocol (UDP), and the
network layer employs protocols such as the internet protocol
(IP), address resolution protocol (ARP), reverse address reso-
Iution protocol (RARP), or internet control message protocol
(ICMP). The data link layer is generally divided into two
sublayers, including a media access control (MAC) sublayer
that controls how a computer on the network gains access to
the data and permission to transmit it, as well as a logical link
control (LLC) sublayer that controls frame synchronization,
flow control and error checking. The physical layer conveys
the data as a bit stream of electrical impulses, light signals,
and/or radio signals through the network at the physical (e.g.,
electrical and mechanical) level. The physical layer imple-
ments Ethernet, RS232, asynchronous transfer mode (ATM),
or other protocols with physical layer components, where
Ethernet is a popular local area network (LAN) defined by
IEEE 802.3.

One or more layers in a network protocol stack often pro-
vide tools for error detection, including checksumming,
wherein the transmitted messages include a numerical check-
sum value typically computed according to the number of set
bits in the message. The receiving network node verifies the
checksum value by computing a checksum using the same
algorithm as the sender, and comparing the result with the
checksum data in the received message. If the values are
different, the receiver can assume that an error has occurred
during transmission across the network. In one example, the
TCP and IP layers (e.g., layers 4 and 3, respectively) typically
employ checksums for error detection in a network applica-
tion.

Data may also be divided or segmented at one or more of
the layers in a network protocol stack. For example, the TCP
protocol provides for division of data received from the appli-
cation layer into segments, where a header is attached to each
segment. Segment headers contain sender and recipient ports,
segment ordering information, and a checksum. Segmenta-
tion is employed, for example, where a lower layer restricts
data messages to a size smaller than a message from an upper
layer. In one example, a TCP frame may be as large as 64
kbytes, whereas an Ethernet network may only allow frames
of'a much smaller size at the physical layer. In this case, the
TCP layer may segment a large TCP frame into smaller seg-
mented frames to accommodate the size restrictions of the
Ethernet.

One or more of the network protocol layers may employ
security mechanisms such as encryption and authentication to
prevent unauthorized systems or users from reading the data,
and/or to ensure that the data is from an expected source, as
well as decryption to allow the intended authorized systems
or users to read the data. For instance, IP security (IPsec)
standards have been adopted for the IP layer (e.g., layer 3 of
the OSI model) to facilitate secure exchange of data, which
has been widely used to implement virtual private networks
(VPNs). IPsec supports various security processing crypto-
systems such as DES (Data Encryption Standard), its succes-
sor AES (Advanced Encryption Standard) and an improved
form of DES defined as 3DES or Triple DES. DES and 3DES
can encrypt and decrypt data or a message using a single
secret key. In the receiver system, the message is decrypted at
the IP layer, wherein the sender and receiver systems share a
public key through a security association (SA). Key sharing is
typically accomplished via an Internet security association
and key management protocol (ISAKMP) that allows the
receiver to obtain a public key and authenticate the sender
using digital certificates.
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In conventional networks, the tasks of the upper and inter-
mediate layers are performed in the host system software.
Such conventional systems, however, require the host soft-
ware to implement many if not all of the layer 3 and layer 4
(e.g., IP and TCP/UDP) functions, including frame creation,
segmentation and reassembly, checksumming, and security
processing. These functions are typically computation inten-
sive, requiring a significant amount of host processing over-
head, device real estate, power consumption, and significant
processing time. Thus, there is a need for improved network
systems and methods for reducing the processing load on
networked host systems while reducing the real estate, power,
and processing time of such a system.

SUMMARY OF THE INVENTION

The following presents a simplified summary of the inven-
tion in order to provide a basic understanding of some aspects
of'the invention. This summary is not an extensive overview
of the invention. It is intended neither to identify key or
critical elements of the invention nor to delineate the scope of
the invention. Rather, the primary purpose of this summary is
to present some concepts of the invention in a simplified form
as a prelude to the more detailed description that is presented
later. The invention relates to improved security processing
circuits of a host system and methods for performing 3DES
encryption and decryption services for the host system using
a single DES engine. The improved circuit makes use of a
unique circuit component arrangement to provide shortened
path timings within the single DES engine processing. To
accomplish this overall timing performance improvement,
the permutation and inverse permutation blocks are removed
from these critical path timings of the three individual DES
processing operations, and moved to the beginning and end of
the 3DES process.

In one aspect of the invention, an improved 3DES security
processing circuit (e.g., a 3DES [Psec circuit) comprises a
single DES engine, a security keys circuit, and a data output
circuit. The 3DES circuit has amessage input as a 64 bit block
of data, a set of cipher keys input as 48 bit blocks of datato a
keys register coupled to the single DES engine, a data output,
and an intermediate result feedback coupled (e.g., looped
back) to an input node of the single DES engine. The single
DES engine is adapted to selectively process input data from
the message input during a first DES processing operation,
and subsequently to process the intermediate result data from
the data output during a second and third DES processing
operation. The final result of the third single DES security
processing operation is latched to a data output register of the
circuit to obtain an encrypted or decrypted 3DES data output
result, based on the application of the set of encryption or
decryption security keys, respectively.

In another aspect of the invention, the single DES engine of
the 3DES IPsec circuit comprises a permutation block
coupled to a data input multiplexor (MUX) coupled to an
intermediate result register. The intermediate result register is
coupled to a set of 8 cipher blocks feedback coupled to the
data input MUX and to a pre-data output MUX coupled to a
pre-data output register feedback coupled to the pre-data
output MUX.

In yet another aspect of the invention, the security keys
circuit of the 3DES security processing circuit comprises a set
of cipher keys input, a key output, a keys input MUX,; and a
security keys register. The set of cipher keys comprise three
different cipher keys, each cipher key associated with one of
the three DES processing operation of the 3DES security
processing. The set of cipher keys are received by the input
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MUX that selects and couples a cipher key to the security keys
register for storage for subsequent use by the single DES
engine.

In still another aspect of the invention, the data output
circuit of the 3DES security processing circuit comprises a
pre-data input, a data output, an inverse permutation block, an
XOR gate, a data output MUX, and a data output register. The
data output circuit is operable to further security process data
from the pre-data input and to selectively XOR an initializa-
tion vector input with the processed data and latch a final third
DES result to the data output of the 3DES security processing
circuit.

In yet another aspect of the invention, the 3DES security
processing circuit (3DES IPsec circuit) is provided as a circuit
element of a network interface device, comprising a bus inter-
face to transfer data between the network interface device and
a host system and a media access control system to transfer
data between the network interface device and the network.
The network interface device also receives incoming data and
transmits outgoing data being transferred between the net-
work and the host system. The 3DES IPsec circuit selectively
encrypts outgoing data and selectively decrypts incoming
data between the network and the host system. In addition to
the security processing functions of the 3DES IPsec circuit,
the network interface device may provide functions such as
frame creation, segmentation and reassembly, and checksum-
ming. In one implementation, the security processing circuit
encrypts information from the host corresponding to an out-
going data frame from the host system. The bus interface,
media access control, and security processing circuit may be
included within a single integrated circuit in one example.

In one implementation of the present invention, the 3DES
IPsec circuit may also operate in one of a variety of modes
including, for example, an electronic code book (ECB) mode,
or a cyclic block chaining (CBC) mode, each of which is
commonly used with conventional DES/3DES cryptographic
processing.

In another aspect of the invention, the 3DES IPsec circuit
comprises a discrete device residing and interfacing external
to an associated network interface device between the net-
work and the host system, wherein the network interface
device may be fabricated as a single integrated circuit chip.

In another aspect of the invention, a method is provided for
3DES security processing using a security processing circuit
employing a single DES engine. The exemplary method oper-
ates symmetrically whether encrypting incoming data or
decrypting outgoing data, or whether the 3DES IPsec circuit
resides external or internal to an associated interface device
between the network and the host system.

The method comprises latching an input message data
block and first key data block from the network interface
device using an input and key select switches (e.g., multiplex-
ors), respectively, selecting and coupling the data to the single
DES engine. The method further comprises first DES pro-
cessing the data to obtain a first intermediate result at a
DataOut bus feedback to the single DES engine. Subse-
quently, in a second and third DES processing operation, the
first and second intermediate result data is selected and
coupled along with the second and third key data to the single
DES engine to obtain a second and third result at a DataOut
bus of the single DES engine. The third result from the third
DES processing operation is latched at the DataOut bus. The
method may further comprise transferring the third result data
from the security processing circuit to the network interface
device.

In addition, security processing (e.g., encryption, decryp-
tion, authentication, etc.) may be selectively performed onthe
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incoming or outgoing data treated as input data to the 3DES
IPsec circuit. The final result output data is then transferred
from the 3DES IPsec circuit to the network interface device,
which then determines whether the data is incoming data
decrypted for use in the host system or outgoing data
encrypted for the network.

To the accomplishment of the foregoing and related ends,
the following description and annexed drawings set forth in
detail certain illustrative aspects and implementations of the
invention. These are indicative of but a few of the various
ways in which the principles of the invention may be
employed. Other objects, advantages and novel features of
the invention will become apparent from the following
detailed description of the invention when considered in con-
junction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram of a conventional DES engine
illustrating symmetric key cipher operations for encryption
and decryption processing;

FIG. 1B is a process diagram illustrating several rounds of
the basic DES algorithm using the Feistel Cipher;

FIG. 1C and 1D are process diagrams illustrating two
modes of operation for DES/3DES IPsec processing;

FIG. 1E is a block diagram illustrating an exemplary 3DES
IPsec circuit used within a network interface device in accor-
dance with one or more aspects of the present invention;

FIG. 1F is a block diagram illustrating an exemplary 3DES
IPsec circuit in accordance with one or more aspects of the
present invention;

FIG. 1G is a timing diagram illustrating an exemplary
3DES IPsec processing sequence in accordance with the
invention and FIGS. 1E and 1F;

FIG. 1H is a flow diagram illustrating exemplary 3DES
encryption or decryption processing in accordance with the
invention;

FIG. 11 1s a circuit diagram illustrating an exemplary 3DES
IPsec circuit using a single DES engine for security process-
ing in accordance with an aspect of the invention;

FIG. 1] is a circuit diagram illustrating another exemplary
3DES IPsec circuit using a single DES engine for security
processing in accordance with an aspect of the invention, the
3DES circuit having improved timing capable of gigabit/sec
processing;

FIG. 1K is a spread sheet illustrating a comparison of the
path timings between the exemplary 3DES IPsec circuits of
FIGS. 1H and 17,

FIG. 2 is a schematic diagram illustrating another exem-
plary network interface device in which various aspects of the
invention may be carried out;

FIG. 3 is a schematic diagram illustrating an exemplary
single-chip network controller implementation of the net-
work interface device of FIG. 2;

FIG. 4 is a schematic diagram illustrating a host system
interfacing with a network using the exemplary network con-
troller of FIG. 3;

FIG. 5 is a schematic diagram illustrating security process-
ing of outgoing data in the network interface device of FIG. 3;

FIG. 6 is a schematic diagram illustrating security process-
ing of incoming network data in the network interface device
of FIG. 3;

FIG. 7A is a schematic diagram illustrating an exemplary
security association table write access in the network inter-
face device of FIG. 3;
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FIG. 7B is a schematic diagram illustrating an exemplary
SA address register format in the network interface device of
FIG. 3,

FIG. 7C is a schematic diagram illustrating an exemplary
SPI table entry format in the network interface device of FIG.
3; and

FIG. 7D is a schematic diagram illustrating an exemplary
SA memory entry format in the network interface device of
FIG. 3.

DETAILED DESCRIPTION OF THE INVENTION

As previously introduced, encryption is the transformation
of data to a form which is very difficult to read without the
appropriate knowledge or key. There are different approaches
to cryptography like public/secret key encryption, and differ-
ent algorithms are used for each type of system. DES and its
successor 3DES are cryptosystems that can encrypt and
decrypt data using a single secret key.

DES is an acronym for Data Encryption Standard, origi-
nally developed by IBM in the early 1970s as Lucifer, then
modified and renamed DES by the NSA and NIST. DES was
adopted as a federal standard in 1976. However, as computers
have become more powerful, simple DES has become more
vulnerable to security breaches, so NIST defined 3DES or
Triple DES in 1999 to replace DES. 3DES uses three stages of
DES so it is much more secure and suffices for most applica-
tions currently.

DES is a block cipher; that is, DES acts on a fixed-length
block of plaintext data and converts it into a block of cipher-
text data of the same size by using the secret key. In DES, the
block size for plaintext is 64 bits. The length of the key is also
64 bits, but 8 bits are used for parity. Hence the effective key
length is only 56 bits. In 3DES, 3 stages of DES are applied
with a separate key for each stage. So the key length in 3DES
is 168 bits (3x56 bits).

DES decryption is accomplished by applying the reverse
transformation to the block of ciphertext using the same key.
Since the same key is used both in encryption and decryption,
DES is a called a symmetric key cipher. This method differs
from algorithms like RSA encryption that use different keys
to encrypt and decrypt a message.

FIG. 1A illustrates this symmetric property of the DES
method of operation 1. In other words (flowing from left to
right), a plaintext block of data (message) is encrypted using
DES and a secret cipher key to produce a ciphertext block of
data. Symmetrically (flowing from right to left), the cipher-
text block of data may be decrypted using DES and the same
secret cipher key to reproduce the original plaintext block of
data.

FIG. 1B illustrates a basic DES algorithm 2, which
encrypts a plaintext block by a process that has 16 rounds (or
steps). In the encryption process, the block of plaintext is split
into two halves (L,R,), each of which is 32 bits long and
comprises 8 steps of processing. Also, DES uses the original
56 bit key to generate 16 keys of 48 bits each (k,). These
subkeys are used in the 16 rounds.

In each round, the function F is applied to one half the data
using a subkey k; and the result is XORed with the other data
half. The two halves are then swapped and the process is
repeated. All the rounds follow the same pattern except the
last one, where there is no swap. The final result is the cipher-
text (L,,R,). Hence the plaintext (L,,R) is transformed to
(LV5RV)'

Decryptionis structurally identical to encryption. Thus, the
same machinery may be used as described above. However,
the input with decryption is the pair (R,,Lr) rather than (L,
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R,). Further, the input subkeys are applied in the reverse
order, so the ith subkey isk,_,, ; rather thank,. The final result
is the original text (L,,R,), so the ciphertext (R,,[.) is
decrypted to (Lo,Ry).

In the 3DES algorithm, the same basic DES machinery as
described above may be used three times over using 3 keys k;,
k,, k5. The plaintext (M) is encrypted using k; . This result is
encrypted with k,, and the result is then encrypted with k; to
obtain a ciphertext (C).

C=Ep3(Ep(Ery(M))).

This mode of using 3DES is called the DES-EEE mode
since all three keys run in the encryption mode. The other
mode is called DES-EDE where the second stage is run in
decryption mode. i.e.

C=E3(Dio(Epn(M))).

The 3 keys k,, k,, k; may or may not be independent. For
the DES-EDE mode, three options are defined.

1) The keys k;, k,, and k; are independent.

2) k, and k, are independent but k,=k;.

3) k,=k,=k;—In this case, 3DES becomes backward com-
patible with DES.

Modes of Operation for DES/3DES

While encrypting or decrypting large data files, for
example, different strategies are used to either speed up the
process or mask patterns in the data. The main modes of
operation of DES are: Electronic Code Book (ECB), and
Cyclic Block Chaining (CBC).

FIG. 1C illustrates the ECB mode of operation 3. In ECB,
each block is encrypted independently. Hence, it is very easy
to parallelize the process. However, plaintext patterns are not
concealed since identical blocks of plaintext give identical
blocks of ciphertext.

FIG. 1D illustrates the CBC mode of operation 4. In CBC,
the plaintext block is XORed with the previous ciphertext
block and then encrypted. This mode conceals any patterns in
the plaintext because of the XOR operation with the previous
ciphertext block. Although, it is difficult to parallelize this
process, CBC is the most common and most secure mode of
using DES/3DES.

The other main modes of DES/3DES operation are CFB
(Cipher Feedback Mode) and OFB (Output Feedback Mode).
Both of these modes make use of XOR operations and feed-
back. CFB and OFB allow use of feedback that is less than
one full data block, but this is not usually recommended.

In a conventional security processing system, the three
stages of 3DES and particularly 3DES-CBC, may be accom-
plished using three discrete DES engines. By contrast, the
3DES IPsec circuit of the present invention provides 3DES/
3DES-ECB/3DES-CBC processing using a single DES
engine to obtain an intermediate result that is looped back to
the input of the engine for second and third DES processing
operations. Thus the present invention accomplishes more
security processing with less hardware, semiconductor real
estate, and correspondingly less power consumption, while
maintaining gigabit/s (Gb/s) processing speeds.

One or more implementations of the present invention will
now be described with reference to the drawings, wherein like
reference numerals are used to refer to like elements through-
out.

Referring initially to FIGS. 1E-1K, illustrates an exem-
plary 3DES security processing circuit (3DES IPsec circuit)
5, provided as a circuit element of a network interface device
6. The 3DES IPsec circuit 5, comprises a single DES engine
5a, a message input data 5b as a 64 bit block of data, a set of
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security keys data 5S¢ input as 48 bit blocks of data to the single
DES engine 54, a data output 54, and an intermediate result Se
feedback coupled (looped back) to an input node of the single
DES engine 5a. The single DES engine 5a is adapted to
selectively process input data from the message input data 55
during a first DES processing operation, and subsequently to
process the intermediate result data Se during a second and
third DES processing operation. The result of the three single
DES security processing operations is latched to an output
register of the circuit to obtain an encrypted or decrypted
3DES data output result based on whether a set of encryption
or decryption security keys, respectively, is applied to the
keys data 5c¢.

As a circuit element of a network interface device 6, the
3DES IPsec circuit 5 comprises a bus interface 9 to transfer
data between the network interface device 6 and a host system
7 and a media access control system 10 to transfer data
between the network interface device 6 and the network 8.
The network interface device 6 also receives incoming data
and transmits outgoing data being transferred between the
network 8 and the host system 7. The 3DES IPsec circuit 5
selectively encrypts outgoing data and selectively decrypts
incoming data between the network 8 and the host system 7.
In addition to the security processing functions of the 3DES
IPsec circuit 5, the network interface device 6 may provide
functions such as frame creation, segmentation and reassem-
bly, and checksumming. In one implementation, the security
processing circuit 5 encrypts information from the host 7
corresponding to an outgoing data frame from the host system
7. The bus interface 9, media access control 10, and security
processing circuit 5 may be included within a single inte-
grated circuit in one example.

The network interface device 6 comprises a bus interface 9
which can be operatively coupled with the host system 7, such
as via a bus in the host system, where the bus interface 9 is
adapted to transfer data between the network interface device
6 and the host system 7. A media access control (MAC)
system 10 in the network interface device 6 may be opera-
tively coupled with the network 8, such as via a media inde-
pendent interface (e.g., MII, GMII, etc.) compliant trans-
ceiver (not shown), wherein the MAC system 10 is operable
to transfer data between the network interface device 6 and
the network 8.

The 3DES IPsec circuit 5 may be constructed using any
electrical circuitry or components configured or configurable
to perform the 3DES security processing utilizing a single
DES engine. In particular, 3DES IPsec circuit 5 may com-
prise any combination of hardware such as logic devices,
analog circuits, electrical connectors, etc., which may be
programmable or configurable by software and/or firmware
within, as a circuit element of, or as a separate component in
communication with the network interface device 6.

The 3DES IPsec circuit 5 is configured or configurable to
selectively perform security processing for incoming and/or
outgoing data in the network interface device 6. The 3DES
IPsec circuit 5, may be constructed using any suitable elec-
tronic devices, such as analog and logic circuitry, configured
or configurable to perform security processing for incoming
and/or outgoing data in the interface device 6. In one imple-
mentation, the 3DES IPsec circuit 5 is an IPsec system
adapted to selectively provide encryption and decryption
functions for incoming and outgoing data, as illustrated and
described further below. However, other forms of security
processing circuits and other types of security processing are
contemplated within the scope of the invention.

FIG. 1F, for example, illustrates an exemplary 3DES IPsec
circuit 20 comprising a single DES engine 21 having a feed-
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back path 22 coupling a DataOut bus 23 of the 3DES circuit
20 to a data select switch 24 (e.g., a Mux) that is also coupled
to an input data node 25 of the single DES engine 21 in
accordance with an aspect of the invention. A data message is
input (e.g., 64 bit block of data), arriving on a Dataln bus 26,
and is selected for connection to the input data node 25 by
asserting a 3DES-in-prgs signal 27 to the data select switch
24. The 3DES IPsec circuit 20 further comprises a set of keys
28 (e.g., three 48 bit blocks of data) input, for example, via
another key select switch, a keys register, and a data register
(e.g., either internal or external to the single DES engine),
associated with the single DES engine 21. The set of keys
comprises three different keys, for example, a first, second
and third key associated with a first, second and third DES
processing operation, respectively, of the 3DES process.

Timing of the 3DES IPsec circuit 20 may be controlled by
the application of a system clock signal Clk 29. The data
output, DataOut 23 of the single DES engine 21 is looped
back via feedback loop 22 to the same engine 21 for the
second and third DES processing operations of the 3DES
process. For example, at each of the first, second and third
DES processing loops, a different key from the set of keys 28,
is selected for coupling to the single DES engine 21, by
asserting a keys selection signal to the key select switch.

The single DES engine 21 is adapted to selectively process
input data from the Dataln 26 message during the first DES
processing operation, and subsequently to process an inter-
mediate result data from the data output DataOut bus 23
during the second and third DES processing operations using
the data select switch 24. For example, during the first DES
processing, the data select switch 24 selectively couples the
input data message block on the Dataln bus 26 to the input
node 25 of the single DES engine, by deasserting the 3DES-
in-prgs signal 27. Subsequently, during the second and third
DES processing operations, the intermediate result is coupled
to the input node 25 of'the single DES engine, by asserting the
3DES-in-prgs signal 27 to the data select switch 24. Follow-
ing the second and third single DES security processing
operations, the final result may be latched to an output register
of' the circuit to obtain an encrypted or decrypted 3DES data
output result at DataOut bus 23, based on the application of a
set of encryption or decryption security keys, respectively, at
keys 28 selected for coupling to the single DES engine 21 by
asserting the keys selection signal to the key select switch.

In accordance with the present invention, it is desirable to
perform the 3DES operation at gigabit/s processing speeds
(Gb/s), or 1 bit/ns. Since a triple DES engine processes a 64
bit block of data at one time, the gigabit processing would
need to process the 64 bit block in 64 ns.

1 Gb/s=1 bit/ns.=64 bits/64 ns.

In the present application, it is also desirable to minimize
gate count yet meet the gigabit/s processing data rate perfor-
mance. Thus the single DES engine of the present invention
would need to complete the full 3DES process in the 64 ns.
The internal clock 29 applied to the engine 21 controls the
cycles and speed of the process. As it is also desirable to
minimize power consumption in such circuitry, and a high
internal clock rate typically consumes more power, the lowest
clock speed is selected in the present invention, which will
accomplish the gigabit/s processing rate. For example, if a
clock period of 8 ns (125 MHz) were chosen, there will be a
timing budget of:

Total cycle time budget/time for a clock cycle=64 ns/8
ns=8 clock cycles.
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Thus, the exemplary maximum allowable timing budgets 8
clock cycles for the full 3DES processing. In one implemen-
tation, the following must take place in those 8 clk cycles:

a) 1 clock cycle of overhead for latching input data.

b) 6 clock cycles for the 3DES processing.

¢) 1 clock cycle of overhead for latching output data.

Allowing 6 clock cycles for the 3DES processing, leaves 2
clock cycles for each of the three single DES processes. As the
DES algorithm comprises 16 steps or rounds of block cipher
processing divided into two halves of 8 steps or rounds each,
a further gate count reduction may be made by having each
half (e.g., left and right half of the 64 bit block) of 8 steps
completed in one clock cycle for 8 steps per clock cycle. A
loop back within the single DES engine could be used to
perform the next 8 steps of the second halfin the second clock
cycle. Effectively, the full 3DES processing would then be
completed within the budgeted 6 clock cycles using a single
DES engine, such as the single DES engine 21 used in the
3DES IPsec circuit 20 of FIG. 1F.

FIG. 1G illustrates a timing diagram of an exemplary
3DES IPsec processing sequence 30 in accordance with the
invention and FIGS. 1E and 1F. As explained above, and as
illustrated in the top row of the timing, clock cycle 1 may be
used to latch input data (e.g., Dataln 26 of FIG. 1F) into the
3DES IPsec circuit 20. Clock cycles 2-7 perform the 3DES
processing using the three secret keys (e.g., Keys 28 of FIG.
1F). Finally, in clock cycle 8 the result of the processing is
latched as output data (e.g., DataOut 23 of FIG. 1F). In the
second row of the timing diagram, the 3DES process is bro-
ken down into the three single DES processes (e.g., DES1,
DES2, and DES3), using the three separate keys (e.g., Key1,
Key2, and Key3) used to either encrypt or decrypt the input
data based on the selection of the keys asserted to the 3DES
IPsec circuit 20. Lastly, in the third row, each single DES
processing stage is broken down further into the left and right
half of the 64 bit data blocks, comprising 32 bits each (e.g.,
DES2; and DES2,) in 8 rounds (steps) each, using the same
key (e.g., Key2) for each half.

Operationally then, a block of data is initially input as a
data message to Dataln 26 to the 3DES IPsec circuit 20 during
clock cycle 1. Data select switch 24 (e.g., a Mux) initially
selects the input data block at Dataln 26, by deasserting the
3DES-in-prgs signal 27 to the data select switch 24, thereby
coupling the data to input data node 25 of the single DES
engine 21. By the end of clock cycle 1, the input data message
is latched into the single DES engine 21, for example, using a
data register synchronized by clock input 29.

At the beginning of clock cycle 2, a security key (e.g.,
Key1) associated with a first DES process (e.g., DES1), is
selected from the set of security keys 28, for example, using
an internal or external key select switch asserting a key selec-
tion signal to couple Keyl to the single DES engine 21.
During clock cycles 2 and 3, the DES1 process proceeds,
DES1 comprising 16 rounds of security processing on the
input data in two data halves, for example, feedback looped
22 thru a set of 8 cipher blocks within the single DES engine
21. Upon completion of clock cycle 3, a first intermediate
result of the first DES process DESI1, is generated at DataOut
bus 23 feedback coupled 22 to data select switch 24. By the
end of clock cycle 3, 3DES-in-prgs is asserted to data select
switch 24, thereby coupling the first intermediate result of the
DES1 processing back into the input data node of the single
DES engine 21, and latching the first intermediate result, for
example, in a data register.

During clock cycles 4 and 5, a second security process
DES2 proceeds as before with DES1, except that DES2,
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begins with the first intermediate result of DES1 as the input
data and a different security key Key2 associated with DES2.
Key2 is selected, for example, by asserting the key selection
signal to the key selection switch. Upon completion of clock
cycle 5, a second intermediate result of DES2 is generated at
DataOut bus 23 feedback coupled 22 for input connection by
data select switch 24 asserted by 3DES-in-prgs signal 27.

During clock cycles 6 and 7, a third security process DES3
proceeds as before with DES2, except that DES3, begins with
the second intermediate result of DES2 as the input data and
a different security key Key3 associated with DES3. Upon
completion of clock cycle 7, a final result of DES3 is gener-
ated at DataOut bus 23 for output from the 3DES engine 20.
During clock cycle 8 the final result of DES3 may be further
processed and latched, for example, using a data output reg-
ister.

FIG. 1H illustrates an exemplary 3DES processing meth-
odology using a single DES engine method flow 40 in accor-
dance with another aspect of the invention, which may be
implemented in the exemplary 3DES IPsec circuit 20 or other
systems. Although the exemplary method 40 and other meth-
ods are illustrated and described below as a series of acts or
events, it will be appreciated that the present invention is not
limited by the illustrated ordering of such acts or events. For
example, some acts may occur in different orders and/or
concurrently with other acts or events apart from those illus-
trated and/or described herein, in accordance with the inven-
tion. In addition, not all illustrated steps may be required to
implement a methodology in accordance with the present
invention. Furthermore, the methods according to the present
invention may be implemented in association with the opera-
tion of the network interface devices, which are illustrated
and described herein as well as in association with other
systems and devices not illustrated.

Beginning at 41, the method 40 comprises initially latching
input and key data blocks at 42 input from an associated input
data buss. In one example, the 3DES IPsec circuit 20 in FIG.
1F obtains input and key data block information from the
Dataln bus 26 message data and from the Keys 28 secret keys
datablocks, respectively. In another example, the 3DES I[Psec
circuit 20 in FIG. 1F is a component within the network
interface device 6, and obtains input and key data block
information associated with incoming data to be decrypted
from the network 8 or outgoing data to be encrypted from the
host system 7 via the bus interface 9 or the MAC system 10,
respectively. The input and a first key data (e.g., input data 54
and 26, and keys data 5¢ and 28 of FIGS. 1E and 1F, respec-
tively) is then selected and coupled at 44 (e.g., using the data
select switch 24, and a key select switch) into the single DES
engine 5a and 21. At 46, a first DES process obtains a first
Intermediate result (e.g., intermediate result Se) at an output
data bus (e.g., DataOut bus 23) is looped back (e.g., feedback
line 22) to the single DES engine (e.g., single DES engine 5a
and 21 via data select switch 24 to the input node 25 by
asserting the 3DES-in-prgs signal 27).

The first intermediate result and a second key (e.g., inter-
mediate result 5e, feedback 22, and a second key) is then
selected and coupled at 48 (e.g., using the data select switch
24 selected using 3DES-in-prgs signal 27, and a key select
switch) into the single DES engine 5a and 21. At 50, a second
DES process obtains a second intermediate result (e.g., inter-
mediate result 5e) at the output data bus DataOut bus 23 and
is looped back to the single DES engine (e.g., single DES
engine 5a and 21).

The second intermediate result and a third key (e.g., inter-
mediate result Se, feedback 22, and a second key) is then
selected and coupled at 52 (e.g., using the data select switch
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24 selected by asserting the 3DES-in-prgs signal 27, and the
key select switch) into the single DES engine (e.g., single
DES engine 5a and 21). At 54, a third DES process obtains a
third result (e.g., final result output data 5d), which is made
available to the output data bus DataOut bus 23 of the single
DES engine (e.g., single DES engine 5a and 21).

Finally, at 56 the third result data is latched into the output
data bus DataOut bus 23 as a 3DES result data (e.g., encryp-
tion or decryption result) in accordance with the present
invention. Thereafter at 58, optionally, the 3DES data may be
selectively transferred from the 3DES IPsec circuit 5 or 20 to
the network interface device 6 for use in the network 8 or host
7 via bus interfaces 10 and 9, respectively, based on the
selection of the input and keys data supplied the 3DES IPsec
circuit 5 or 20, before the method 50 ends at 59.

Attempting to implement such a 3DES processing circuit
on chip employing only a single DES engine to accomplish
the Gb/s speeds is not a simple task. This difficulty is particu-
larly true when each single DES processing operation must be
accomplished within only two clock cycles as discussed ear-
lier in association with the timing diagram of FIG. 1G. The
following figures and descriptions will illustrate these diffi-
culties and highlight one or more successful solutions in
accordance with the present invention.

FIGS. 11 and 117 illustrate two exemplary implementations
of'a 3DES processing circuit similar to that of FIGS. 1E and
1F, using a single DES engine in accordance with an aspect of
the invention or other such circuits and devices. The exem-
plary 3DES IPsec circuits 60 and 80 use different circuit
arrangements which result in two different timing schemes,
referred to herein as scheme A and scheme B, respectively.
Scheme B of FIG. 1] will demonstrate a significant critical
timing path improvement over Scheme A of FIG. 11. The
timing paths will also be contrasted in the spreadsheet com-
parison of FIG. 1K.

FIG. 11, for example, illustrates an exemplary 3DES IPsec
circuit 60 and timing scheme A using a single DES engine for
security processing in accordance with an aspect of the inven-
tion. 3DES IPsec circuit 60, for example, comprises a single
DES engine 61, a keys input section 62, and a data output
section 63. The single DES engine 61, comprises a data input
multiplexor DI Mux 61a for selectively coupling either an
input message M or a feedback input to a message register
MSG_REG 615. The single DES engine 61 also comprises a
permutation block PB 61c¢, an inverse permutation block IPB
614, a multiplexor Mux A 61e, a set of 8 cipher blocks 61f; a
pair of temporary holding registers RO_TMP/LO_TMP 61g,
and a preliminary data output register PRE_DO 614.

The keys input section 62, comprises a keys input multi-
plexor, key Mux 62a for selectively coupling one of the set of
security keys (e.g., skey,.,, skeys ,s) to a key register
SK_REG 6254 used to assert the selected key to the 8 cipher
blocks 61/

The data output section 63, comprises an XOR 63a for
logically combining an initialization vector IV 635 with the
data output of PRE_DO 61/. Data output section 63, further
comprises a data output multiplexor DO Mux 63¢ for selec-
tively coupling either the data output of PRE_DO 61/ or the
logical output of the XOR 63a, as controlled by the state of a
3DES_in_prgs signal 634, the output of DO Mux 63¢ being
transferred to a data output register DO_REG 63e.

The 3DES IPsec circuit 60, in accordance with one aspect
of the present invention, is operable to receive the plaintext
message M, and to DES or 3DES cryptographically process
the plaintext message M into a cyphertext C using the set of
secret keys (e.g., skey,_,, skeyg_ ;5) utilizing a single DES
engine 61. As previously stated, since this process is symmet-
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ric, the set of secret keys may be used to either encrypt or
decrypt the data input at plaintext message M and output at
cyphertext C.

The timing paths of the 3DES IPsec circuit 60 and timing
scheme A using a single DES engine, will now be described
including problems associated with the gate delays in a criti-
cal path (the longest timing path). The timing paths of circuit
60 comprise a Pathl 65, a Path2 66, and a Path3 67 through
the single DES engine 61, a PathSK 68 through the keys input
section 62, and a PathDO 69 through the data output section
63. Note, the order and timing of each of the paths described
herein have no bearing on the numbers used in the path labels.
In fact, one or more of the paths may run concurrently, con-
secutively, or begin and end independently of other paths. For
example, PathSK 68 may run concurrently with Path1 65 and
Path2 66 to supply the keys needed during the processing of
the 8 cipher blocks 61f. Each of the timing paths indicated
generally begin from a clock input start point of a flip flop
(indicated by the “>” symbol in the flip flop) to the path end
point at the data input of the next flip flop (e.g., or the same flip
flop, if the path loops back).

Referencing FIG. 11 and the spreadsheet of FIG. 1K, the
single DES engine 61 of circuit 60 and timing scheme A
contains three critical timing paths, Pathl 65, Path 2 66, and
Path3 67 (e.g., paths which include the 8 cipher blocks). In
addition, there is another path (not shown), which starts at
MSG_REG 615, and ends at PRE_DO 61/, basically used as
a subset of Path3 67 for latching the third DES result during
3DES processing. Operationally, for example, a 64 bit block
of data is input as a plaintext message M as selected by DI
Mux 61a and stored in the MSG_REG 615 in a first clock
cycle (e.g., clock cycle 1) as indicated in FIG. 1G. In one
example, Pathl 65 comprises the first 8 steps of the DES
processing, using RO_TMP/L0_TMP 61g to temporarily reg-
ister the result of the processing (e.g., the left 32 bits half of
the 64 bit block stored in register LO_TMP) within one clock
cycle (e.g., clock cycle 2). Path2 66 comprises the second 8
steps of the DES process in the next clock cycle (e.g., clock
cycle 3), using R0_TMP/L.O_TMP 61g to temporarily register
the result of the processing (e.g., the right 32 bits halfofthe 64
bit block stored in register RO_TMP). Note, for the “back-
to-back” 3DES processing, this path needs to be completed
within one clock cycle. The Path3 67 timing comprises the
path to loop back the data from one DES process stage to the
next DES stage. This path must be completed within 1 clock
cycle, in time enough to latch the result of one DES process-
ing (e.g., DES1, DES2) into the MSG_REG 615 for the next
DES processing (e.g., DES2, DES3).

In paths Pathl 65, the data is processed thru permutation
block PB 61¢, Mux A 61e, 8 cipher blocks 61/ and tempo-
rarily stored in temporary holding registers RO_TMP/
LO_TMP 61g being feedback coupled thru Mux A 61e for the
next half of a DES processing operation. In Path2 66, the last
half of the data (e.g., 32 bits of the 64 bit block) is processed
thru the 8 cipher blocks 61f. Concurrently with paths Path1-2,
path PathSK 68 starts at SK_REG 624, and transfers the first
secret key of the set of keys to the 8 cipher blocks 61ffor the
security processing (e.g., encryption or decryption). In the
final timing path of the single DES engine 61, Path3 67
initially traverses the same route as Path1 65. Path3 67 starts
at the clock input of message register MSG_REG 6154, pro-
cesses thru permutation block PB 61c, Mux A 61le, the 8
cipher blocks 61f; inverse permutation block PB 614 that
feeds PRE_DO 61/ and also feedback couples thru DI Mux
61a back to MSG_REG 615 for latching the data in prepara-
tion for another DES stage of the 3DES process.
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FIG. 1K details something of the path length and the pos-
sible areas for gate delays in these and the other identified
paths. Note, in FIG. 1K, Path3 67 (the loopback path for
3DES processing) is the worst case path, because Path3 67
has more gate delays as compared to paths Path1 65 and Path2
66. Path3 67 comprises permutation block PB 61¢, Mux A
61e, 8 cipher blocks 61f, inverse permutation block PB 61d
feedback coupled thru DI Mux 61a back to MSG_REG 615,
PB61d also feeding data to PRE_DO 61%. In PathDO 69,
PRE_DO 61/ holds data prior to the XOR 63a operation
during initialization, or selectively transfers the data to output
register DO_REG 63e based on control by the 3DES_in_prgs
signal 634 during the last DES processing operation of a
3DES process. Note, in PathDO 69, tB 70 indicates the path
delay timing from the output of PRE_DO 61 to the input of
DO_REG 63e. The timing of tB 70 relative to the data output
path PathDO 69 will be addressed further in a subsequent
discussion of the improved scheme B of FIG. 1J.

In addition to the gate count, real estate, and power reduc-
tions afforded to the use of a single DES engine 61 for 3DES
processing, the inventor of the present invention has further
realized that gate delay reductions may be made to the circuit
to improve the timing of the worst case critical timing Path3
67. The inventor further realized that these gate delay reduc-
tions were advantageous to obtaining the gigabit/s processing
speeds desired, as provided by the 3DES IPsec circuit 60 of
scheme A. The inventor observed that in the worst case criti-
cal path Path3 67, data processed through the permutation
block PB 61c¢, is cancelled as it is processed again through the
inverse permutation block IPB 614 resulting in no require-
ment for the permutation in Path3 67. Therefore, these per-
mutation blocks (e.g., PB 61c¢ and IPB 61d) may be effec-
tively moved out of Path3 67. This change then provides other
opportunities for reductions. For example, the permutation
block PB 61¢ may be moved to the input data ports of the
MSG_REG 615 to remove it from Path3 67. In addition, the
inverse permutation block IPB 614 may be moved to the
output of the PRE_DO 61/ register, where a cycle of timing
may be essentially “stolen” during the 8” clock cycle by
performing the inverse permutation during the same clock
cycle as the XOR operation. This is possible, because the
PathDO 69 timing allows sufficient clock margin during the
8 clock cycle to keep the processing time within one clock
cycle as illustrated by timing tB 70.

FIG. 17 illustrates one exemplary implementation of the
proposed gate delay reduction strategy, resulting in the
improved 3DES IPsec circuit 80 of scheme B. The improved
3DES IPsec circuit 80 of FIG. 1] is similar to that of FIG. 11
and therefore need not be described again in full detail for the
sake of brevity. 3DES IPsec circuit 80, for example, com-
prises a single DES engine 81, a keys input section 82, and a
data output section 83. The improved 3DES IPsec circuit 80 is
similarly operable to cryptographically process a plaintext
message M (e.g., a 64 bit block of data) into a 3DES cypher-
text C using a set of secret keys (e.g., skey, ,, skeyg ;s)
utilizing a single DES engine 81.

By relocating the PB and IPB outside the critical timing
paths (e.g., paths which include the 8 cipher blocks), relative
to that of circuit 60 of scheme A, the critical path timings are
improved as well as the number of critical timing paths, as
indicated in the Scheme B column of the spreadsheet com-
parison of FIG. 1K. By reducing the number and length (delay
times) of critical timing paths in this way, each DES process
ofa3DES process may be completed within two clock cycles.
Thus, in accordance with the present invention, the timing
improvements of the 3DES IPsec circuit 80 of scheme B,
enable gigabit/s processing speeds to be realized while utiliz-
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ing the single DES engine 81. Further, the improved 3DES
circuit 80, eliminates the need for Mux A 61¢ and RO_TMP/
LO_TMP 61G in contrast to that of circuit 60 of FIG. 11,
thereby reducing the circuit gate count, chip real estate, and
the associated power consumption.

The single DES engine 81 of the improved 3DES IPsec
circuit 80, comprises permutation block PB 81a, a DI Mux
8156, an intermediate result register R_REG/L._REG 81c¢. The
single DES engine 81 further comprises 8 cipher blocks 814,
PDO Mux 81e and PRE_DO 81/

The keys input section 82, comprises a Key Mux 82a
coupled to akey register SK_REG 825 coupled to the 8 cipher
blocks 81d. The keys input section 82 is operable to select one
of'aset of secret keys (e.g., skey,_-, skeyg | 5), and transfer the
selected keys to the 8 cipher blocks 81d. For example,

skey0,8 to cipher block 1,

skey1,9 to cipher block 2,

skey2,10 to cipher block 3,

skey7,16 to cipher block 8.

Finally, the data output section 83 comprises an inverse
permutation block IPB 834, a logical XOR function 835 for
exclusive Oring an initialization vector 83¢ with the pro-
cessed data from the IPB 834, a data output multiplexor DO
Mux 83d, selected by a 3DES_in_prgs signal 83e, and fed to
a data output register DO_REG 83 The data output section
83 selectively initializes the 3DES process, or finalizes the
3DES process, and latches the final data output result.

The timing paths of the improved 3DES IPsec circuit 80
and the timing scheme B using a single DES engine, will now
be described. The timing paths of circuit 80 comprise a Path1
85, and a Path2 86 through the single DES engine 81, a
PathSK 88 through the keys input section 82, and a PathDO
89 through the data output section 83. Note, as indicated
earlier, the order and timing of each of the paths described
herein have no bearing on the numbers used in the path labels.
In fact one or more of the paths may run concurrently, con-
secutively, or begin and end independently of other paths. For
example, PathSK 88 may run concurrently with Pathl 85
and/or Path2 86 to supply the keys needed during the process-
ing of the 8 cipher blocks 814.

Referencing FIG. 1] and the spreadsheet of FIG. 1K, the
single DES engine 81 of circuit 80 and timing scheme B
contains only two critical timing paths, Path1 85, and Path 2
86. Operationally, for example, a 64 bit block of data is input
as a plaintext message M to an initial permutation processing
by PB 8l1a, initially selected by DI Mux 8154 and stored in
right and left halves in R_REG/L._REG 81c¢ in a first clock
cycle (e.g., clock cycle 1) as indicated in FIG. 1G. Then, in
one example, Path2 86 is used comprising the first 8 steps of
the DES processing, with the result fed back to R_REG/
L_REG 81c¢ to temporarily store the result of the first 8 steps
of'processing (e.g., the right and left 32 bit halves of the 64 bit
block) within one clock cycle (e.g., clock cycle 2). Path1 85 is
then used comprising the second 8 steps of the DES process in
the next clock cycle (e.g., clock cycle 3), using PRE_DO 811
to temporarily register the result of the second 8 steps of the
processing (e.g., the right and left 32 bit halves of the 64 bit
block stored in register PRE_DO 81f). By contrast to
MSG_REG 615 of FIG. 11, register R_REG/L_REG 81c¢ of
FIG. 1] has a dual purpose, storing the initial permutation of
M as well as the result of the first 8 steps of the DES process,
while MSG_REG 6154 only stores M (within a single DES
processing of'a 3DES process). Both MSG_REG 615 of FIG.
11, and R_REG/L_REG 81c¢ of FIG. 1], store the second 8
step results for the next DES processing of a 3DES process.
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Meanwhile, PathSK 88 may run concurrently with Pathl
85 and Path2 86 to supply the keys needed during the pro-
cessing of the 8 cipher blocks 814 for paths Pathl 85 and
Path2 86. Pathl 85 and Path2 86, and PathSK 88 will be
repeated during each of the remaining DES processes (e.g.,
during clock cycles 4-7) of the Three DES process, with
feedback to R_REG/L._REG 81c¢ to temporarily hold the data
for the next DES process. On the final half of the third DES
process of the 3DES process, Pathl 85 is traversed to
PRE_DO 81ffollowed by PathDO 89 through the data output
section 83 to finalize the 3DES processing (e.g., during clock
cycle 8). The PathDO 89 processes through the inverse per-
mutation IPB 834, the XOR 835, then, with the aid of feed-
back thru the data output multiplexor DOMux 83d, as
selected by the 3DES_in_prgs signal 83e, latches the crypto-
graphically processed result into the data output register
DO_REG 83f. Note, for the “back-to-back™ 3DES process-
ing, this path needs to be completed within one clock cycle.

As indicated the timing in clock cycles 2-7 is improved by
the relocation of PB 81a and IPB 83a outside the critical
timing paths Path1 85 and Path2 86 (e.g., paths which include
the 8 cipher blocks), as indicated by the 6 clock cycles of the
3DES process 91. In addition, the timing of the final (e.g., 7
and 8”) clock cycles contributes to this improvement, as
evidenced in the PathDO 89 output path as follows. The
inventor realized that the PathDO 89 output path must be
completed within 1 clock cycle (e.g., the 8% clock cycle), so
that the 3DES process may be completed within 8 cycles and
provide the gigabit/s processing speeds. On the 7 positive
clock cycle edge, the 3DES result (not including the inverse
permutation and I'V, of timing 92) is ready at PRE_DO 81fas
indicated in timing 93. The output is registered on the 8
clock edge, however, there is sufficient time remaining from
the 7% clock edge to the 87 clock edge to perform the final
IPB+the IV XOR functions 92, and latch the 3DES result 93
in DO_REG 83/

Although each result from the three single DES processing
operations will pass through Data Output section 83, only the
third DES result will be captured in the present invention. The
result of first DES will pass through section 83 on third clock,
result of second DES will pass through section 83 on 5th
clock, result of third DES will pass through section 83 on 7th
clock. On the 7th clock the third DES result will pass through
83a,b,d. By the end of the 7th clock the processing of the data
should be completed before the rising edge of the 8th clock.
Then, on the rising edge of the 8th clock, the final result of the
3DES is captured. Thus, each of the three single DES process
results pass through IPB 83a, but only the final result is
captured on 8th clock, as controlled by an external state
machine.

Beneficially, therefore, external feedback is not necessary
in the present invention. Instead, the feedback takes place on
timing path 86, for all three DES processing, leaving PB &
IPB out of each of the single DES processing. Although
external feedback is functionally permissible, mathemati-
cally it is unnecessary because IPB is actually the inverse of
PB. Therefore, with PB and IPB out of the feedback path, the
overall timing performance is improved. Thus, in 3DES pro-
cessing, these functions only need to be accomplished once,
and consume processing time once. Removing the permuta-
tion and inverse permutation blocks from the critical path
timings of the three single DES operations, and replacing
them at the beginning and end of the 3DES process accom-
plishes the overall timing performance improvement.

Thus, the improved 3DES IPsec circuit 80 of the present
invention is operable to cryptographically process a 64 bit
message block into a 3DES result utilizing a single DES
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engine and a set of secret keys within 8 clock cycles at gigabit
per second processing speeds. The invention thus facilitates
expeditious security processing in a 3DES IPsec circuit 5 or
device utilizing a single DES engine 54, wherein the circuit 5
may be used together with a network interface device 6 for
processing of incoming and outgoing data between the net-
work 8 and the host system 7. In addition, the DES-CBC and
the 3DES-CBC mode may be used in the 3DES IPsec circuit
(e.g., circuit 5, 20, 60, 80) when provided a 64-bit block
message M, and a 64-bit security key (including 8 parity bits)
using the cipher block chaining (CBC) algorithm with
explicit initialization vector (IV). Moreover, the various
aspects of the invention provide a reduction in gate counts,
chip real estate, and power consumption by using only the
single DES engine (e.g., 5a, 21, 61, 81), improved 3DES
process timing by the relocation of permutation functions
(e.g.,61cand 614, 814, 61, 81) and the elimination of specific
circuit components (e.g., Mux A 6le, Register RO_TMP/
LO_TMP 61g), and skillfully choreographed path timings in
circuit 5 and 80.

A structural/functional and operational overview of an
exemplary network controller (e.g., the network interface
device 6) in accordance with the present invention will be
provided below in conjunction with FIGS. 2-4, in order to
facilitate a thorough understanding of the present invention.

FIG. 2 illustrates a network interface peripheral or network
controller 102 in accordance with one or more aspects of the
present invention, and FIGS. 3 and 4 illustrate an exemplary
single-chip implementation 102a of the network controller
102. The exemplary single-chip network controller 102a
includes all the functionality and components described
herein with respect to the network interface device 102. The
various blocks, systems, modules, engines, etc. described
herein may be implemented using any appropriate analog
and/or digital circuitry, wherein one or more of the blocks,
etc. described herein may be combined with other circuitry in
accordance with the invention.

The network controller 102 includes a 64-bit PCI-X bus
interface 104 for connection with ahost PCI or PCI-X bus 106
that operates at a clock speed up to 133 MHz in PCI-X mode
or up to 66 MHz in standard PCI mode. The network control-
ler 102 may be operated as a bus master or a slave. Much of
the initialization can be done automatically by the network
controller 102 when it reads an optional EEPROM (not
shown), for example, via an EEPROM interface 114 (FIG. 3).
The network controller 102 can be connected to an IEEE
802.3 or proprietary network 108 through an IEEE 802.3-
compliant Media Independent Interface (MII) or Gigabit
Media Independent Interface (GMII) 110, for interfacing the
controller 102 with the network 108 via an external trans-
ceiver device 111. For 1000 Mb/s (1 Gb/s) operation the
controller 102 supports either the byte-wide IEEE 802.3
Gigabit Media Independent Interface (GMII) for
1000BASE-T PHY devices 111 or the IEEE 802.3 Ten-Bit
Interface (TBI) for 1000BASE-X devices 111. The network
controller 102 supports both half-duplex and full-duplex
operation at 10 and 100 Mb/s rates and full-duplex operation
at 1000 Mb/s.

A host device, such as a host processor 112 on the host
PCI-X bus 106 in a host system 180, may interface with the
network controller 102 via the bus 106 and a host bridge 117.
The host processor 112 includes one or more processors that
can operate in a coordinated fashion. Referring also to FI1G. 4,
the network single-chip network controller 102a may be pro-
vided on a network interface card or circuit board 182,
together with a PHY transceiver 111 for interfacing the host
processor 112 with the network 108 via the host bridge 117,
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the host bus 106, and the transceiver 111. The PCI-X bus
interface 104 includes PCI configuration registers used to
identify the network controller 102a to other devices on the
PCI bus and to configure the device. Once initialization is
complete, the host processor 112 has direct access to the [/O
registers of the network controller 102 for performance tun-
ing, selecting options, collecting statistics, and starting trans-
missions through the host bridge 117 and the bus 106. The
host processor 112 is operatively coupled with the host sys-
tem memory 128 and a cache memory 115 via a memory/
cache controller 113. One or more application software pro-
grams 184 executing in the host processor 112 may be
provided with network service via layer 4 (e.g., transport
layer) software, such as transmission control protocol (TCP)
layer software 186, layer 3 (e.g., network layer) software 188,
such as internet protocol (IP) software 188, and a software
network driver 190, also running on the host processor 112.
As discussed below, the network driver software 190 interacts
with the host memory 128 and the network controller 102 to
facilitate data transfer between the application software 184
and the network 108.

As illustrated in FIG. 2, the exemplary network controller
102 comprises first and second internal random access
memories MEMORY A 116 and MEMORY B 118, organized
as first-in first-out (FIFO) memories for storage of frames. A
memory control unit 120 is provided for control and operation
ofthe memories 116 and 118. The network controller 102 also
comprises a media access control (MAC) engine 122 satisfy-
ing requirements for operation as an Ethernet/IEEE 802.3-
compliant node and providing the interface between the
memory 118 and the GMII 110. The MAC engine 122 may be
operated in full or half-duplex modes. An Internet Protocol
Security (IPsec) engine 124 coupled with the memories 116
and 118 provides authentication and/or encryption functions.

The PCI-X bus interface 104 includes a Direct Memory
Access (DMA) controller 126 that automatically transfers
network frame data between the network controller 102 and
buffers in host system memory 128 via the host bus 106. The
operation of the DMA controller 126 is directed by a descrip-
tor management unit 130 according to data structures called
descriptors 192, which include pointers to one or more data
buffers 194 in system memory 128, as well as control infor-
mation. The descriptors 192 are stored in the host system
memory 128 in queues called descriptor rings. Four transmit
descriptor rings are provided for transmitting frames and four
receive descriptor rings for receiving frames, corresponding
to four priorities of network traffic in the illustrated controller
102. Additionally, four receive status rings are provided, one
for each priority level that facilitates synchronization
between the network controller 102 and the host system.
Transmit descriptors 192 control the transfer of frame data
from the system memory 128 to the controller 102, and
receive descriptors 192 control the transfer of frame data in
the other direction. In the exemplary controller 102, each
transmit descriptor 192 corresponds to one network frame,
whereas each receive descriptor 192 corresponds to one or
more host memory buffers in which frames received from the
network 108 can be stored.

The software interface allocates contiguous memory
blocks for descriptors 192, receiver status, and data buffers
194. These memory blocks are shared between the software
(e.g., the network driver 190) and the network controller 102
during normal network operations. The descriptor space
includes pointers to network frame data in the bufters 194, the
receiver status space includes information passed from the
controller 102 to the software in the host 112, and the data
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buffer areas 194 for storing frame data that is to be transmitted
(e.g., outgoing data) and for frame data that has been received
(e.g., incoming data).

Synchronization between the controller 102 and the host
processor 112 is maintained by pointers stored in hardware
registers 132 in the controller 102, pointers stored in a con-
troller status block (CSB) 196 in the host system memory
128, and interrupts. The CSB 196 is a block of host system
memory 128 that includes pointers into the descriptor and
status rings and a copy of the contents of the controller’s
interrupt register. The CSB 196 is written by the network
controller 102 and read by the host processor 112. Each time
the software driver 190 in the host 112 writes a descriptor or
set of descriptors 192 into a descriptor ring, it also writes to a
descriptor write pointer register in the controller 102. Writing
to this register causes the controller 102 to start the transmis-
sion process if a transmission is not already in progress. Once
the controller has finished processing a transmit descriptor
192, it writes this information to the CSB 196. After receiving
network frames and storing them in receive buffers 194 of the
host system memory 128, the controller 102 writes to the
receive status ring and to a write pointer, which the driver
software 190 uses to determine which receive buffers 194
have been filled. Errors in received frames are reported to the
host memory 128 via a status generator 134.

The IPsec module or engine 124 provides standard authen-
tication, encryption, and decryption functions for transmitted
and received frames. For authentication, the IPsec module
124 implements the HMAC-MDS5-96 algorithm defined in
RFC 2403 (a specification set by the Internet Engineering
Task Force) and the HMAC-SHA-1-96 algorithm defined in
RFC 2404. For encryption, the module implements the ESP
DES-CBC (RFC 2406), the 3DES-CBC, and the AES-CBC
encryption algorithms. For transmitted frames, the controller
102 applies IPsec authentication and/or encryption as speci-
fied by Security Associations (SAs) stored in a private local
SA memory 140, which are accessed by [Psec system 124 via
an SA memory interface 142. SAs are negotiated and set by
the host processor 112. SAs include [Psec keys, which are
required by the various authentication, encryption, and
decryption algorithms, IPsec key exchange processes are per-
formed by the host processor 112. The host 112 negotiates
SAs with remote stations and writes SA data to the SA
memory 140. The host 112 also maintains an [Psec Security
Policy Database (SPD) in the host system memory 128.

Areceive (RX) parser 144 associated with the MAC engine
122 examines the headers of received frames to determine
what processing needs to be done. If it finds an IPsec header,
it uses information contained in the header, including a Secu-
rity Parameters Index (SPI), an IPsec protocol type, and an IP
destination address to search the SA memory 140 using SA
lookup logic 146 and retrieves the applicable security asso-
ciation. The result is written to an SA pointer FIFO memory
148, which is coupled to the lookup logic 146 through the SA
memory interface 142. The key corresponding to the SA is
fetched and stored in RX key FIFO 152. A receive (RX) IPsec
processor 150 performs the processing requires by the appli-
cable SA using the key. The controller 102 reports what
security processing it has done, so that the host 112 can check
the SPD to verify that the frame conforms with policy. The
processed frame is stored in the memory 116.

A receive IPsec parser 154, associated with [Psec proces-
sor 150, performs parsing that cannot be carried out before
packet decryption. Some of this information is used by a
receive (Rx) checksum and pad check system 156, which
computes checksums specified by headers that may have been
encrypted and also checks pad bits that may have been
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encrypted to verify that they follow a pre-specified sequence
for pad bits. These operations are carried out while the
received frame is passed to the PCI-X bus 104 via FIFO 158.
The checksum and pad check results are reported to the status
generator 134.

In the transmit path, an assembly RAM 160 is provided to
accept frame data from the system memory 128, and to pass
the data to the memory 116. The contents of a transmit frame
can be spread among multiple data buffers 194 in the host
memory 128, wherein retrieving a frame may involve mul-
tiple requests to the system memory 128 by the descriptor
management unit 130. These requests are not always satisfied
in the same order in which they are issued. The assembly
RAM 160 ensures that received chunks of data are provided to
appropriate locations in the memory 116. For transmitted
frames, the host 112 checks the SPD (IPsec Security Policy
Database) to determine what security processing is needed,
and passes this information to the controller 102 in the
frame’s descriptor 192 in the form of a pointer to the appro-
priate SA in the SA memory 140. The frame data in the host
system memory 128 provides space in the IPsec headers and
trailers for authentication data, which the controller 102 gen-
erates. Likewise, space for padding (to make the payload an
integral number of blocks) is provided when the frame is
stored in the host system memory buffers 194, but the pad bits
are written by the controller 102.

As the data is sent out from the assembly RAM 160, it
passes also into a first transmit (TX) parser 162, which reads
the MAC header, the IP header (if present), the TCP or UDP
header, and determines what kind of a frame it is, and looks at
control bits in the associated descriptor. In addition, the data
from the assembly RAM 160 is provided to a transmit check-
sum system 164 for computing IP header and/or TCP check-
sums, which values will then be inserted at the appropriate
locations in the memory 116. The descriptor management
unit 130 sends a request to the SA memory interface 142 to
fetch an SA key, which is then provided to akey FIFO 172 that
feeds a pair of TX IPsec processors 174a and 1745. Frames
are selectively provided to one of a pair of TX IPsec proces-
sors 174a and 1745 for encryption and authentication via TX
IPsec FIFOs 176a and 1765, respectively, wherein a transmit
IPsec parser 170 selectively provides frame data from the
memory 116 to a selected one of the processors 174. The two
transmit IPsec processors 174 are provided in parallel
because authentication processing cannot begin until after
encryption processing is underway. By using the two proces-
sors 174, the speed is comparable to the receive side where
these two processes can be carried out simultaneously.

Authentication does not cover mutable fields, such as occur
in IP headers. The transmit [Psec parser 170 accordingly
looks for mutable fields in the frame data, and identifies these
fields to the processors 174a and 174b. The output of the
processors 174a and 1745 is provided to the second memory
118 via FIFOs 178a and 1785, respectively. An Integrity
Check Value (ICV), which results from authentication pro-
cessing, is inserted into the appropriate [Psec header by an
insertion unit 179 as the frame data is passed from the
memory 118 to the MAC engine 122 for transmission to the
network 108.

In the single-chip implementation of FIG. 3, the controller
102a comprises a network port manager 182, which may
automatically negotiate with an external physical (PHY)
transceiver via management data clock (MDC) and manage-
ment data /O (MDIO) signals. The network port manager
175 may also set up the MAC engine 122 to be consistent with
the negotiated configuration. Circuit board interfacing for
LED indicators is provided by an LED controller 171, which
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generates LED driver signals LEDO0-LED3' for indicating
various network status information, such as active link con-
nections, receive or transmit activity on the network, network
bit rate, and network collisions. Clock control logic 173
receives a free-running 125 MHz input clock signal as a
timing reference and provides various clock signals for the
internal logic of the controller 102a.

A power management unit 188, coupled with the descriptor
management unit 130 and the MAC engine 122, can be used
to conserve power when the device is inactive. When an event
requiring a change in power level is detected, such as a change
in a link through the MAC engine 122, the power manage-
ment unit 188 provides a signal PME' indicating that a power
management event has occurred. The external serial
EEPROM interface 114 implements a standard EEPROM
interface, for example, the 93Cxx EEPROM interface proto-
col. The leads of external serial EEPROM interface 114
include an EEPROM chip select (EECS) pin, EEPROM data
in and data out (EEDI and EEDQO, respectively) pins, and an
EEPROM serial clock (EESK) pin.

In the bus interface unit 104, address and data are multi-
plexed on bus interface pins AD[63:0]. A reset input RST'
may be asserted to cause the network controller 102a to
perform an internal system reset. A cycle frame I/O signal
FRAME!'is driven by the network controller when it is the bus
master to indicate the beginning and duration of a transaction,
and a PCI clock input PCI_CLK is used to drive the system
bus interface over a frequency range of 15 to 133 MHz on the
PCIbus (e.g., host bus 106). The network controller 1024 also
supports Dual Address Cycles (DAC) for systems with 64-bit
addressing, wherein low order address bits appear on the
ADJ[31:0] bus during a first clock cycle, and high order bits
appear on AD[63:32] during the second clock cycle. A
REQ64' signal is asserted by a device acting as bus master
when it wants to initiate a 64-bit data transfer, and the target
of the transfer asserts a 64-bit transfer acknowledge signal
ACK64' to indicate that it is willing to transfer data using 64
bits. A parity signal PAR64 is an even 8 byte parity signal that
protects AD[63:32] The bus master drives PAR64 for address
and write data phases and the target drives PAR64 for read
data phases.

The network controller 1024 asserts a bus request signal
REQ' to indicate that it wishes to become a bus master, and a
bus grant input signal GNT" indicates that the access to the bus
has been granted to the network controller. An initialization
device select input signal IDSEL is used as a chip select for
the network controller during configuration read and write
transactions. Bus command and byte enable signals C/BE[7:
0] are used to transfer bus commands and to indicate which
physical bytes of data lines AD[63:0] carry meaningful data.
A parity 1/O signal PAR indicates and verifies even parity
across AD[31:0] and C/BE[3:0].

The network controller drives a drive select 1/O signal
DEVSEL' when it detects a transaction that selects the net-
work controller 102q as a target. The network controller 1024
checks DEVSEL' to see if a target has claimed a transaction
that the network controller initiated. TRDY" is used to indi-
cate the ability of the target of the transaction to complete the
current data phase, and IRDY" indicates the ability of the
initiator of the transaction to complete the current data phase.
Interrupt request output signal INTA' indicates that one or
more enabled interrupt flag bits are set. The network control-
ler 102a asserts a parity error I/O signal PERR' when it detects
a data parity error, and asserts a system error output signal
SERR'when it detects an address parity error. In addition, the
controller 102a asserts a stop 1/O signal STOP' to inform the
bus master to stop the current transaction.
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In the MAC engine 122, a physical interface reset signal
PHY_RST is used to reset the external PHY 111 (MII, GMII,
TBI), a PHY loop-back output PHY_LPBK is used to force
an external PHY device 111 into loop-back mode for systems
testing, and a flow control input signal FC controls when the
MAC transmits a flow control frame. The network controller
102a provides an external PHY interface 110 that is compat-
ible with either the Media Independent Interface (M11),
Gigabit Media Independent Interface (GMII), or Ten Bit
Interface (TBI) per IEEE Std 802.3. Receive data input sig-
nals RXD[7:0] and output signals TXD[7:0] are used for
receive and transmit data exchange, respectively. When the
network controller 102a is operating in GMII or MII mode,
TX_EN/TXD[8] is used as a transmit enable. In TBI mode,
this signal is bit 8 of the transmit data bus. RX_DV/RXD[8]
is an input used to indicate that valid receive data is being
presented on the RX pins. In TBI mode, this signal is bit 8 of
the receive data bus.

When the network controller 1024 is operating in GMII or
MII mode, RX_ER/RXD[9] is an input that indicates that the
external transceiver device has detected a coding error in the
receive frame currently being transferred on the RXD pins. In
TBI mode, this signal is bit 9 of the receive data bus. MII
transmit clock input TX_CILK is a continuous clock input that
provides the timing reference for the transfer of the TX_EN
and TXD[3:0] signals out of the network controller 1024 in
MIImode. GTX_CLK is a continuous 125 MHz clock output
that provides the timing reference for the TX_EN and TXD
signals from the network controller when the device is oper-
ating in GMII or TBI mode. RX_CILK is a clock input that
provides the timing reference for the transfer of signals into
the network controller when the device is operating in MII or
GMII mode. COL is an input that indicates that a collision has
been detected on the network medium, and a carrier sense
input signal CRS indicates that a non-idle medium, due either
to transmit or receive activity, has been detected (CRS is
ignored when the device is operating in full-duplex mode).

In TBI mode, 10-bit code groups represent 8-bit data pack-
ets. Some 10-bit code groups are used to represent com-
mands. The occurrence of even and odd code groups and
special sequences called commas are all used to acquire and
maintain synchronization with the PHY 110. RBCLK][0] is a
62.5 MHz clock input that is used to latch odd-numbered code
groups from the PHY device, and RBCLK[1] is used to latch
even-numbered code groups. RBCLKJ[1] is always 180
degrees out of phase with respect to RBCLK[0]. COM_DET
is asserted by an external PHY 111 to indicate the code group
on the RXD[9:0] inputs includes a valid comma.

The IPsec module 124 includes an external RAM interface
to memories 116 and 118. When CKE is driven high, an
internal RAM clock is used to provide synchronization, oth-
erwise the differential clock inputs CK and CK_L are used.
The RAM’s have a command decoder, which is enabled when
a chip select output CS_L is driven low. The pattern on the
WE_L,RAS_L, and CAS_L pins defines the command that is
being issued to the RAM. Bank address output signals BA[1:
0] are used to select the memory to which a command is
applied, and an address supplied by RAM address output pins
A[10:0] selects the RAM word that is to be accessed. ARAM
data strobe 1/O signal DQS provides the timing that indicates
when data can be read or written, and data on RAM data 1/O
pins DQ[31:0] are written to or read from either memory 116
or 118.

Returning again to FIG. 2, an operational discussion of
receive and transmit operation of the network controller 102
is provided below. Starting with receipt of a data frame from
the network media 108 (e.g., an optical fiber), the frame is
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delivered to the GMII 110 (the Gigabit Media-Independent
Interface), for example, as a series of bytes or words in par-
allel. The GMII 110 passes the frame to the MAC 122 accord-
ing to an interface protocol, and the MAC 122 provides some
frame management functions. For example, the MAC 122
identifies gaps between frames, handles half duplex prob-
lems, collisions and retries, and performs other standard Eth-
ernet functions such as address matching and some checksum
calculations. The MAC 122 also filters out frames, checks
their destination address and accepts or rejects the frame
depending on a set of established rules.

The MAC 122 can accept and parse several header formats,
including for example, IPv4 and IPv6 headers. The MAC 122
extracts certain information from the frame headers. Based on
the extracted information, the MAC 122 determines which of
several priority queues (not shown) to put the frame in. The
MAC places some information, such as the frame length and
priority information, in control words at the front of the frame
and other information, such as whether checksums passed, in
status words at the back of the frame. The frame passes
through the MAC 122 and is stored in the memory 118 (e.g.,
a32 KB RAM). In this example, the entire frame is stored in
memory 118. The frame is subsequently downloaded to the
system memory 128 to a location determined by the descrip-
tor management unit 130 according to the descriptors 192 in
the host memory 128 (FIG. 4), wherein each receive descrip-
tor 192 comprises a pointer to a data buffer 194 in the system
memory 128. Transmit descriptors include a pointer or a list
of pointers, as will be discussed in greater detail supra. The
descriptor management unit 130 uses the DMA 126 to read
the receive descriptor 192 and retrieve the pointer to the buffer
194. After the frame has been written to the system memory
128, the status generator 134 creates a status word and writes
the status word to another area in the system memory 128,
which in the present example, is a status ring. The status
generator 134 then interrupts the processor 112. The system
software (e.g., the network driver 190 in FIG. 4) can then
check the status information, which is already in the system
memory 128. The status information includes, for example,
the length of the frame, what processing was done, and
whether or not the various checksums passed.

In transmit operation, the host processor 112 initially dic-
tates a frame transmission along the network 108, and the
TCP layer 186 of the operating system (OS) in the host
processor 112 is initiated and establishes a connection to the
destination. The TCP layer 186 then creates a TCP frame that
may be quite large, including the data packet and a TCP
header. The IP layer 188 creates an IP header, and an Ethernet
(MAC) header is also created, wherein the data packet, and
the TCP, IP, and MAC headers may be stored in various
locations in the host memory 128. The network driver 190 in
the host processor 112 may then assemble the data packet and
the headers into a transmit frame, and the frame is stored in
one or more data buffers 194 in the host memory 128. For
example, a typical transmit frame might reside in four buffers
194: the first one containing the Ethernet or MAC header, the
second one having the IP header, the third one the TCP
header, and the fourth buffer containing the data. The network
driver 190 generates a transmit descriptor 192 that includes a
list of pointers to all these data buffers 194.

The frame data is read from the buffers 194 into the con-
troller 102. To perform this read, the descriptor management
unit 130 reads the transmit descriptor 192 and issues a series
of'read requests on the host bus 106 using the DM A controller
126. However, the requested data portions may not arrive in
order they were requested, wherein the PCI-X interface 104
indicates to the DMU 130 the request with which the data is
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associated. Using such information, the assembly RAM logic
160 organizes and properly orders the data to reconstruct the
frame, and may also perform some packing operations to fit
the various pieces of data together and remove gaps. After
assembly in the assembly RAM 160, the frame is passed to
the memory 116 (e.g., a 32 KB RAM in the illustrated
example). As the data passes from the assembly RAM 160,
the data also passes to the TX parser 162. The TX parser 162
reads the headers, for example, the MAC headers, the IP
headers (if there is one), the TCP or UDP header, and deter-
mines what kind of a frame it is, and also looks at the control
bits that were in the associated transmit descriptor 192. The
data frame is also passed to the transmit checksum system 164
for computation of TCP and/or IP layer checksums.

The transmit descriptor 192 may comprise control infor-
mation, including bits that instruct the transmit checksum
system 164 whether to compute an IP header checksum and/
or TCP checksum. If those control bits are set, and the parser
162 identifies or recognizes the headers, then the parser 162
tells the transmit checksum system 164 to perform the check-
sum calculations, and the results are put at the appropriate
location in the frame in the memory 116. After the entire
frame is loaded in the memory 116, the MAC 122 can begin
transmitting the frame, or outgoing security processing (e.g.,
encryption and/or authentication) can be performed in the
IPsec system 124 before transmission to the network 108.

By offloading the transmit checksumming function onto
the network controller 102 of the present invention, the host
processor 112 is advantageously freed from that task. In order
for the host processor 112 to perform the checksum, signifi-
cant resources must be expended. Although the computation
of the checksum is relatively simple, the checksum, which
covers the entire frame, must be inserted at the beginning of
the frame. In conventional architectures, the host computer
makes one pass through the frame to calculate the checksum,
and then inserts the checksum at the beginning of the frame.
The data is then read another time as it is loaded into the
controller. The network controller 102 further reduces the
load on the host processor 112 by assembling the frame using
direct access to the system memory 128 via the descriptors
192 and the DMA controller 126. Thus, the network control-
ler 102 frees the host processor 112 from several time con-
suming memory access operations.

In addition to the receive and transmit functions identified
above, the network controller 102 may also be programmed to
perform various segmentation functions during a transmit
operation. For example, the TCP protocol allows a TCP frame
to be as large as 64,000 bytes. The Ethernet protocol does not
allow data transfers that large, but instead limits a network
frame to about 1500 bytes plus some headers. Even in the
instance of a jumbo frame option that allows 16,000 byte
network frames, the protocol does not support a 64 KB frame
size. In general, a transmit frame initially resides in one or
more of the data buffers 194 in system memory 128, having a
MAC header, an IP header, and a TCP header, along with up
to 64 KB of data. Using the descriptor management unit 130,
the frame headers are read, and an appropriate amount of data
(as permitted by the Ethernet or network protocol) is taken
and transmitted. The descriptor management unit 130 tracks
the current location in the larger TCP frame and sends the data
block by block, each block having its own set of headers.

For example, when a data transmit is to occur, the host
processor 112 writes a descriptor 192 and informs the con-
troller 102. The descriptor management unit 130 receives a
full list of pointers, which identify the data buffers 194, and
determines whether TCP segmentation is warranted. The
descriptor management unit 130 then reads the header buffers
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and determines how much data can be read. The headers and
an appropriate amount of data are read into the assembly
RAM 160 and the frame is assembled and transmitted. The
controller 102 then re-reads the headers and the next block or
portion of the untransmitted data, modifies the headers appro-
priately and forms the next frame in the sequence. This pro-
cess is then repeated until the entire frame has been sent, with
each transmitted portion undergoing any selected security
processing in the IPsec system 124.

The network controller 102 of the present invention also
advantageously incorporates IPSec processing therein. In
contrast with conventional systems that offload IPSec pro-
cessing, the present invention employs on-board IPSec pro-
cessing, which may be implemented as a single-chip device
102a (FIG. 3). In conventional systems, either the host pro-
cessor carries out IPSec processing or a co-processor, sepa-
rate from the network controller, is employed. Use of the host
processor is very slow, and in either case, the frame passes at
least three times through the memory bus. For example, when
a co-processor is used, the frame passes through the bus once
as it is read from memory and sent to the co-processor, again
as it passes back to the system memory, and a third time as it
is sent to the network controller. This processing consumes
significant bandwidth on the PCI bus and negatively impacts
system performance. A similar performance loss is realized in
the receive direction.

IPSec processing has two primary goals: first is to encrypt,
or scramble, the data so that an unauthorized person or system
cannot read the data. The second goal is authentication, which
ensures that the packet is uncorrupted and that the packet is
from the expected person or system. A brief discussion of the
on-board IPSec processing follows below. The network con-
troller 102 of the present invention takes advantage of secu-
rity associations (SAs) using the SA memory interface 142,
the SA lookup 146, and the SA memory 140. As briefly
highlighted above, a security association is a collection of bits
that describe a particular security protocol, for example,
whether the [PSec portion 124 is to perform an encryption or
authentication, or both, and further describes what algorithms
to employ. There are several standard encryption and authen-
tication algorithms, so the SA interface 142 and SA lookup
146 indicates which one is to be used for a particular frame.
The SA memory 140 in the present example is a private
memory, which stores the encryption keys. The SAs are
obtained according to an IPSec protocol whereby sufficient
information is exchanged with a user or system on the net-
work to decide which algorithms to use and allow both parties
to generate the same keys. After the information exchange is
completed, the software calls the driver 190, which writes the
results into the SA memory 140.

Once the key exchange is complete, the appropriate bits
reside in the SA memory 140 that indicate which key is to be
used and which authentication algorithm, as well as the actual
keys. In transmit mode, part of the descriptor 192 associated
with a given outgoing frame includes a pointer into the SA
memory 140. When the descriptor management unit 130
reads the descriptor 192, it sends a request to the SA memory
interface 142 to fetch the key, which then sends the key to the
key FIFO 172, that feeds the TX IPSec processing modules
174a and 174b, respectively. When both encryption and
authentication are to be employed in transmit, the process is
slightly different because the tasks are not performed in par-
allel. The authentication is a hash of the encrypted data, and
consequently, the authentication waits until at least a portion
of the encryption has been performed. Because encryption
may be iterative over a series of data blocks, there may be a
delay between the beginning of the encryption process and
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the availability of the first encrypted data. To avoid having this
delay affect device performance, the exemplary network
interface 102 employs two TX IPSec process engines 174a
and 174b, wherein one handles the odd numbered frames and
the other handles the even numbered frames in the illustrated
example.

Prior to performing the IPSec processing, the TX IPsec
parser 170 parses the frame headers and looks for mutable
fields therein, which are fields within the headers that are not
authenticated because they vary as the frame travels over the
network 108. For example, the destination address in the IP
header varies as the frame goes across the Internet from router
to router. The transmit IPsec parser 170 identifies the mutable
fields and passes the information to the TX IPSec processors
174, which selectively skip over the mutable field portions of
the frames. The processed frames are sent to FIFOs 1784 and
1786 and subsequently accumulated in the memory 118. The
result of the authentication processing is an integrity check
value (ICV), which is inserted by insertion block 179 into the
appropriate [Psec header as the frame is transmitted from the
memory 118 to the network media 108.

Inreceive mode, a received frame comes into the MAC 122
and the RX parser 144. The RX parser 144 parses the incom-
ing frame up to the IPsec headers and extracts information
therefrom. The fields that are important to the RX parser 144
are, for example, the destination IP address in the IP header,
the SPI (Security Protocol Index), and a protocol bit that
indicates whether an IPSec header is an authentication header
(AH) or an encapsulation security protocol (ESP) header.
Some of the extracted information passes to the SA lookup
block 146. The SA lookup block 146 identifies the appropri-
ate SA and conveys the information to the SA memory inter-
face 142 that retrieves the SA and places it into the key FIFO
152.

The SA lookup block 146 employs an on-chip SPI Table
and the oft-chip SA memory 140. The SPI Table is organized
into 4096 bins, each comprising 4 entries. The entries include
the 32-bit SPI, a hash of'the destination address (DA), a bit to
indicate the protocol, and a bit to indicate whether the entry is
used. Corresponding entries in the SA memory contain the
full DAs and the SA (two SAs when there is both authentica-
tion and encryption). The bin for each entry is determined by
ahash of'the SPI. To look up an SA, a hash of the SPI from the
received frame is used to determine which bin to search.
Within the bin, the SA lookup block 146 searches the entries
for a match to the full SPI, the destination address hash, and
the protocol bit. After searching, the SA lookup block writes
an entry to the SA pointer FIFO 148, which either identifies a
matching entry or indicates no match was found. A check of
the DA address from the SA memory is made just before
security processing. If there is no match, security processing
is not performed on the frame in question. Based on the
entries in the SA pointer FIFO 148, the keys are fetched from
the external SA memory 140 and placed in the key FIFO 152.
The RX IPSec processor 150 takes the keys that come in from
the FIFO 152, reads the corresponding frame data out of the
memory 118, and begins processing the frame, as required.
For receive processing, decryption and authentication pro-
ceed in parallel (on receive, decryption and authentication are
not sequential processes), and thus in this example only one
RX IPSec processor is used.

The RX IPsec parser 154 parses the headers that follow the
ESP header. Any header that follows the ESP header will be
encrypted and cannot be parsed until decryption has taken
place. This parsing must be completed before TCP/UDP
checksums can be computed and before pad bits can be
checked. The decrypted data is stored in the memory 116. To
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perform the TCP/UDP checksums and pad checks without
having to store the frame data another time, these functions
are carried out by checksum and pad check system 156 while
the data is being transferred from the memory 116 to the host
memory 128. In addition to the on-board IPSec processing
and TCP segmentation highlighted above, the network con-
troller 102 also provides performance improvements in the
execution of interrupts. Read latencies are large when a host
processor is required to read a register from a network device.
These latencies negatively impact system performance. In
particular, as the host processor clock speed continues to
increase, the disparity between the clock speed and the time it
takes to get a response from a network controller over a PCI
or other host bus becomes larger. Accordingly, when a host
processor needs to read from a network device, the processor
must wait a greater number of clock cycles, thereby resulting
in opportunity loss.

The network interface 102 avoids many read latencies by
replacing read operations with write operations. Write opera-
tions are not as problematic because they can take place
without involving the processor 112. Thus when write infor-
mation is sent to a FIFO, as long as the writes are in small
bursts, the network controller 102 can take the necessary time
to execute the writes without negatively loading the proces-
sor. To avoid read operations during a transmit operation, the
driver creates a descriptor 192 in the system memory 128 and
then writes a pointer to that descriptor to the register 132 of
the network controller 102. The DMU 130 of the controller
102 sees the contents in the register 132 and reads the neces-
sary data directly from the system memory 128 without fur-
ther intervention of the processor 112. For receive operations,
the driver software 190 identifies empty buffers 194 in the
system memory 128, and writes a corresponding entry to the
register 132. The descriptor management unit 130 writes to
pointers in the transmit descriptor rings to indicate which
transmit descriptors 192 have been processed and to pointers
in the status rings to indicate which receive buffers 194 have
been used.

Unlike conventional architectures that require a host pro-
cessor to read an interrupt register in the network controller,
the present invention generates and employs a control status
block (CSB) 196 located in a predetermined region of the
system memory 128 (e.g., a location determined upon initial-
ization). The network controller 102 writes to the CSB 196
any register values the system needs. More particularly, after
aframe has been completely processed, prior to generating an
interrupt, the network controller 102 writes a copy of the
interrupt register to the CSB 196. Then the controller 102
asserts the interrupt; thus when the host processor 112 sees
the interrupt in the register 132, the received data is already
available in the receive data buffer 194.

Various operational and structural details of the exemplary
network interface controller 102 are hereinafter provided in
conjunction with the figures. In particular, details of the secu-
rity processing are illustrated and described below in greater
detail to facilitate an understanding of the present invention in
the context of the exemplary controller 102.

Security Processing

Referring now to FIGS. 2-4, 5, 6, and 7A-7D, the exem-
plary IPsec security system 124 is configurable to provide
Internet protocol security (IPsec) authentication and/or
encryption/decryption services for transmitted and received
frames in accordance with RFC 2401. For authentication
header (AH) processing the module implements the HMAC-
MD5-96 algorithm defined in RFC 2404 and the HMAC-
SHA-1-96 defined in RFC 2404. The HMAC-MD?35-96 imple-
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mentation provides a 128-bit key, a 512-bit block size, and a
128-bit message authentication code (MAC), truncated to 96
bits. The implementation of the HMAC-SHA-1-96 algorithm
provides a 160-bit key, a 512-bit block size, and a 160-bit
message authentication code (MAC), truncated to 96 bits. For
encapsulating security payload (ESP) processing, the IPsec
module 124 also implements the HMAC-MDS5-96 and
HMAC-SHA-1-96 algorithms for authentication and the ESP
DES-CBC (RFC 2406), the 3DES-CBC, and the AES-CBC
(draft-ietf-ipsec-ciph-aes-cbc-01) encryption algorithms.
The DES-CBC algorithm in the IPsec module 124 provides a
64-bit key (including 8 parity bits), a 64-bit block size, and
cipher block chaining (CBC) with explicit initialization vec-
tor (IV). The 3DES-CBC algorithm provides a 192-bit key
(including 24 parity bits), a 64-bit block size, and CBC with
explicitIV. The AES-CBC algorithm provides a 128-,192-, or
256-bit key; 10, 12, or 14 rounds, depending on key size; a
128-bit block size, and CBC with explicit IV.

The exemplary security system 124 provides cryptographi-
cally-based IPsec security services for IPv4 and IPv6, includ-
ing access control, connectionless integrity, data origin
authentication, protection against replays (a form of partial
sequence integrity), confidentiality (encryption), and limited
traffic flow confidentiality. These services are provided at
layer 3 (IP layer), thereby offering protection for IP and/or
upper layer protocols through the use of two traffic security
protocols, the authentication header (AH) and the encapsu-
lating security payload (ESP), and through the use of crypto-
graphic key management procedures and protocols. The IP
authentication header (AH) provides connectionless integ-
rity, data origin authentication, and an optional anti-replay
service, and the ESP protocol provides confidentiality (en-
cryption), and limited traffic flow confidentiality, and may
provide connectionless integrity, data origin authentication,
and an anti-replay service. The AH and ESP security features
may be applied alone or in combination to provide a desired
set of security services in IPv4 and IPv6, wherein both pro-
tocols support transport mode and tunnel mode. In transport
mode, the protocols provide protection primarily for upper
layer protocols and in tunnel mode, the protocols are applied
to tunneled IP packets.

For outgoing frames, the controller 102 selectively pro-
vides IPsec authentication and/or encryption processing
according to security associations (SAs) stored in the SA
memory 140. If an outgoing frame requires IPsec authentica-
tion, the IPsec unit 124 calculates an integrity check value
(ICV) and inserts the ICV into the AH header or ESP trailer.
If the frame requires encryption, the unit 124 replaces the
plaintext payload with an encrypted version. For incoming
(e.g., received) frames, the IPsec unit 124 parses [Psec head-
ers to determine what processing needs to be done. Ifan [Psec
header is found, the IPsec system 124 uses the security
parameters index (SPI) from the header plus the IPsec proto-
col type and IP destination address to search the SA memory
140 to retrieve a security association corresponding to the
received frame. Acceptable combinations of [Psec headers
for the exemplary controller 102 include an AH header, an
ESP header, and an AH header followed by an ESP header.

For IPsec key exchange, the host 112 negotiates SAs with
remote stations and writes SA data to the SA memory 140. In
addition, the host 112 maintains an IPsec security policy
database (SPD) in the system memory 128. For each trans-
mitted frame the host processor 112 checks the SPD to deter-
mine what security processing is needed, and passes this
information to the controller 102 in the transmit descriptor
192 as a pointer SA_PTR[14:0] to the appropriate SA in the
SA memory 140. For incoming received frames the controller
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102 reports what security processing it has done in a receive
status ring entry, and the host processor 112 checks the SPD
to verify that the frame conforms with the negotiated policy.
The SAs include information describing the type of security
processing that must be done and the encryption keys to be
used. Individual security associations describe a one-way
connection between two network entities, wherein a bi-direc-
tional connection requires two SAs for incoming and outgo-
ing traffic. SAs for incoming traffic are stored partly in an
internal SPI table or memory 270 (FIG. 6) and partly in the
external SA memory 140. These SA tables are maintained by
the host processor 112, which writes indirectly to the SPI
table 270 and the SA memory 140 by first writing to an SA
data buffer in host memory 128 and then writing a command
to the SA address register. This causes the controller 102 to
copy the data to the external SA memory 140 and to the
internal SPI table memory 270.

One of the fields in an SPI table entry is a hash code
calculated by the host 112 according to the IP destination
address. In addition, the host 112 calculates a hash code based
on the SPI to determine where to write an SPI table. If an
incoming or outgoing SA requires authentication, the host
CPU calculates the values H(K XOR ipad) and H(K XOR
opad) as defined in RFC 2104, HMAC: Keyed-Hashing for
Message Authentication, where the host 112 stores the two
resulting 128 or 160-bit values in the SA memory 140. If
necessary, at initialization time the host CPU can indirectly
initialize the Initialization Vector (IV) registers used for
Cipher Block Chaining in each of four encryption engines in
the IPsec system 124.

Referring to FIGS. 2 and 9, to begin a transmission process,
the host processor 112 prepares a transmit frame in one or
more data buffers 194 in the host memory 128, writes a
transmit descriptor 192 in one of the transmit descriptor rings,
and updates the corresponding transmit descriptor write
pointer (TX_WR_PTR[x]). The frame data in the data buffers
194 includes space in the IPsec headers for authentication
data, for an initialization vector (IV) 635, 83¢, and for an ESP
trailer if appropriate. The contents of these fields will be
generated by the [Psec system 124 in the controller 102.
Similarly, if padding is required (e.g., for alignment or to
make the ESP payload an integer multiple of encryption
blocks), the padding is included in the host memory buffers
194, and sequence numbers for the AH and ESP SEQUENCE
NUMBER fields are provided in the data buffers 194 by the
host 112. The IPsec system 124 does not modify these fields
unless automatic TCP segmentation is also selected, in which
case the IPsec system 124 uses the sequence numbers from
the buffers 194 for the first generated frame and then incre-
ments these numbers appropriately for the rest of the gener-
ated segment frames. If IPsec processing is required for a
particular outgoing frame, the corresponding transmit
descriptor 192 includes a pointer in the SA_PTR field to the
appropriate SA entry in the external SA memory 140, and the
IPsec system 124 uses information from the SA to determine
how to process the frame. The transmit parser 162 examines
the frame to determine the starting and ending points for
authentication and/or encryption and where to insert the
authentication data, if necessary.

If ESP encryption is required, the IPsec system 124
encrypts the payload data using the algorithm and key speci-
fied in the SA. If ESP authentication is required, the system
124 uses the authentication algorithm and IPAD/OPAD infor-
mation specified in the SA to calculate the authentication data
integrity check value (ICV), and stores the results in the
authentication data field. If both ESP encryption and authen-
tication are required, the encryption is done first, and the
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encrypted payload data is then used in the authentication
calculations. The encryption and authentication processes are
pipelined so that the encryption engine within one of the [Psec
processors 174 is processing one block of data while the
authentication engine is processing the previous block. The
IPsec system 124 does not append padding to the payload data
field, unless automatic TCP segmentation is also enabled. The
host processor 112 provides the ESP trailer with appropriate
padding in the frame data buffers 194 in the system memory
128, and also provides the proper value for the ESP
SEQUENCE NUMBER field in the ESP header.

If ESP processing is combined with automatic TCP seg-
mentation, the IPsec system 124 adds any necessary pad bytes
to make the encrypted data length a multiple of the block
length specified for the selected encryption algorithm. If ESP
processing is combined with TCP or UDP checksum genera-
tion, the host 112 provides correct NEXT HEADER and PAD
LENGTH values for the ESP trailer and the Transmit
Descriptor 192. If ESP processing is combined with auto-
matic TCP segmentation, the host 112 provides values for the
NEXT HEADER and PAD LENGTH fields of the transmit
descriptor 192 that are consistent with the corresponding
frame data buffers 194. In this combination, the controller
102 copies the NEXT HEADER field from the transmit
descriptor 192 into the ESP trailer of each generated frame,
and uses the PAD LENGTH field of the descriptor 192 to find
the end of the TCP data field in the frame data bufter 194. In
addition, the maximum segment size field MSS[13:0] of the
transmit descriptor 192 is decreased to compensate for the
IPsec header(s), the ESP padding, and the ICV.

Where ESP processing is combined with TCP segmenta-
tion or with TCP or UDP checksum generation, the software
driver 190 sets the ESP_AH, IVLENO, and IVLEN1 bits of
the transmit descriptor 192 accordingly. The transmit parser
162 uses this information to locate the TCP or UDP header,
and if no TCP or UDP processing is required, these bits are
ignored.

The encryption algorithms supported by the [Psec system
124 employ cipher block chaining (CBC) mode with explicit
initialization vectors (IVs 635 FIG. 11, 83¢ FIG. 1J). To allow
a certain amount of parallel processing the [Psec system 124
includes two TX IPSEC processor systems 174a and 1745,
each of which comprises a DES/3DES (data encryption stan-
dard) encryption system and an advanced encryption stan-
dard (AES) encryption engine. Each of the four encryption
engines in the TX IPSEC processors 174 includes an IV
register, which are cleared to zero on reset. When the control-
ler 102 is enabled, the contents of the IV register associated
with an encryption engine are used as the initialization vector
635, 83¢ for the first transmit frame encrypted by that engine.
Thereafter the last encrypted data block from one frame is
used as the IV 634, 83¢ for the following frame. The host
processor 112 can initialize the IV registers in the [Psec
system 124 with random data, for example, by transmitting
frames with random data in the payload fields. In one
example, the host 112 can put the external PHY device into an
isolate mode to prevent these random data frames from reach-
ing the network 108. The IPsec system 124 inserts the IV
value 635, 83c¢ at the beginning of the payload field. The host
112 provides space in the frame data bufter 194 for this field
635, 83c. The length of the IV 635, 83c¢ is the same as the
encryption block size employed in the TX IPSEC processors
174, for example, 64 bits for the DES and 3DES algorithms,
and 128 bits for the AES algorithm.

Where authentication header (AH) processing is selected,
the security system 124 employs authentication algorithm
and authentication ipad and opad data specified in the SA to
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calculate the authentication data integrity check value (ICV),
and it stores the results in the authentication data field. The
transmit [Psec parser 170 detects mutable fields (as defined
by the AH specification, RFC 2402) and insures that the
contents of these fields and the authentication data field are
treated as zero for the purpose of calculating the ICV. In the
ICV calculation the IPsec system 124 employs the destination
address from the SA rather than the destination address from
the packet’s IP header, to ensure that if source routing options
or extensions are present, the address of the final destination
is used in the calculation.

Referring now to FIGS. 2 and 10, the IPsec system 124
provides security processing for incoming (e.g., received)
frames from the network 108. The RX parser 144 examines
incoming frames to find IPsec headers, and looks up the
corresponding SA in the SA memory 140. The RX IPSEC
processor 150 then performs the required IPsec authentica-
tion and/or decryption according to the SA. If decryption is
required, the processor 150 replaces the original ciphertext in
the frame with plaintext in the memory 116. The descriptor
management unit 130 sets status bits in the corresponding
receive status ring entry to indicate what processing was done
and any errors that were encountered.

FIG. 6 illustrates the flow of incoming data through the
IPsec system 124. The receive parser 144 examines the head-
ers of incoming frames from the MAC engine 122 while the
incoming frame is being received from the network 108. The
parser 144 passes the results of its analysis to the SA lookup
logic 146. This information is also provided to the memory
118 in the form of a control block that is inserted between
frames. The control block includes information about the
types and locations of headers in the incoming frame. If the
parser 144 finds that a frame includes an IP packet fragment,
IPsec processing is bypassed, and the frame is passed onto the
host memory 128 with the IP Fragment bit being set in the
IPSEC_STAT1 field in the corresponding receive status ring
entry. For IPv4 frames, a fragment is identified by a non-zero
fragment offset field or a non-zero more fragments bit in the
1Pv4 header. For IPv6 packets, a fragment is indicated by the
presence of a fragment extension header.

If the parser 144 finds an IPsec header or an acceptable
combination of headers, it passes the SPI, the IP destination
address, and a bit indicating the IPsec protocol (AH or ESP)
to the SA lookup engine 146. The SA lookup engine 146 uses
the SPI, protocol bit, and a hash of the destination address to
search an internal SPI memory 270 (FIG. 6). The results of
this search are written to the SA pointer FIFO 148, including
apointer to an entry in the external SA memory 140, a bit that
indicates whether [Psec processing is required, and two bits
that indicate the success or failure of the SA lookup. The SA
pointer FIFO 148 includes an entry corresponding to each
incoming frame in the memory 118. If the SA pointer FIFO
148 does not have room for a new entry at the time that an
incoming frame arrives from the network 108 or if the
received frame would cause the receive portion of the
memory 118 to overflow, the frame is dropped, and a receive
missed packets counter (not shown) is incremented.

An RX KEY FETCH state machine 262 (FIG. 6) retrieves
the corresponding entry from the SA pointer FIFO 148 and
determines what, if any, processing is required. If the control
bits indicate that processing is required, the state machine 262
uses the contents of the pointer field to fetch the SA informa-
tion from the external SA memory 140. Ifa DA field of the SA
does not match the DA field of the IP header in the frame, the
IPsec processor 150 causes an error code to be written to the
receive status ring and passes the frame to the memory 118
unmodified. If the DA field of the SA matches the DA field of
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the IP header, the processor 150 decrypts the payload portion
of'the received frame and/or checks the authentication data as
required by the SA.

Referring also to FIGS. 11A-11D, the security association
system used in outgoing IPsec processing in the exemplary
controller 102 is hereinafter described. FIG. 7A illustrates an
exemplary security association table write access, FIG. 7B
illustrates an exemplary SA address register format, FIG. 7C
illustrates an exemplary SPI table entry in the SPI memory
270, and FIG. 7D illustrates an exemplary SA memory entry
in the SA memory 140. The SA lookup engine 146 uses the
SPI memory 270 and the external SA memory 140, both of
which are maintained by the host processor 112, where the
exemplary SPI memory 270 is organized as a collection of
4096 bins, each bin having up to 4 entries. The address of an
entry in the SPI memory 270 is 14 bits long, with the 12 high
order bits thereof indicating a bin number. As illustrated in
FIG. 7C, each SPI table entry 272 in the SPI memory 270
includes a 32-bit security parameters index SPI[31:0], a hash
of the destination address DA_HASH[39:32], a protocol bit
PROTO indicating the security protocol (e.g., AH or ESP),
and a VALID bit indicating whether the entry is valid or
unused.

FIG. 7D illustrates an exemplary entry 274 in the SA
memory 140, wherein the SA memory 140 includes an entry
corresponding to each entry 272 in the SPI memory 270, with
entries 274 and 272 in the two memories 140 and 270 being in
the same order. The entry 274 includes a three bit ESP encryp-
tion algorithm field ESP_ALG indicating whether ESP
encryption is required, and if so, which algorithm is to be
employed (e.g., DES; 3DES; AES-128, 10 rounds; AES-192,
12 rounds; AES-256, 14 rounds; etc.). An electronic code-
book bit ECB indicates whether ECB mode is used for
encryption, and a two bit ESP authentication field ESPA-
H_ALG indicates whether ESP authentication is required,
and if so, which algorithm is to be employed (e.g., MDS5,
SHA-1, etc.). A two bit AH field AH_ALG indicates whether
AH processing is required, and if so which algorithm is to be
employed (e.g., MDS5, SHA-1, etc.). A protocol bit PROTO-
COL indicates whether the first [Psec header is an ESP header
or an AH header, and an IPv6 bit indicates whether the SA is
defined for IPv4 or IPv6 frames.

A BUNDLE bit indicates a bundle of two SAs specifying
AH followed by ESP, and a 32 bit SPI field specifies an SPI
associated with the second SA (e.g., ESP) in a bundle of 2
SAs, which is ignored for SAs that are not part of bundles. An
IP destination address field IPDA[127:0] indicates the
address to which the SA is applicable, wherein the SA applies
only to packets that contain this destination address. An
AH_IPAD field includes a value obtained by applying the
appropriate authentication hash function (e.g., MD5 or SHA-
1) to the exclusive OR of the AH authentication key and the
HMAC ipad string as described in RFC 2104. If the authen-
tication function is MDS5, the result is 16 bytes, which are
stored in consecutive bytes starting at offset 24. If the authen-
tication function is SHA-1, the result is 20 bytes, which
occupies the entire AH_IPAD field.

An AH_OPAD field includes a value obtained by applying
the appropriate authentication hash function (e.g., MD5 or
SHA-1) to the exclusive OR of the AH authentication key and
the HMAC opad string as described in RFC 2104. If the
authentication function is MDS5, the result is 16 bytes, which
are stored in consecutive bytes starting at offset 44. If the
authentication function is SHA-1, the result is 20 bytes,
which occupies the entire AH_OPAD field. The SA memory
entry 274 also includes an ESP_IPAD field having a value
obtained by applying the authentication hash function (MDS5
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or SHA-1) to the exclusive OR of the ESP authentication key
and the HMAC ipad string as described in RFC 2104, as well
as an ESP_OPAD field including a value obtained by apply-
ing the authentication hash function (MD5 or SHA-1) to the
exclusive OR of the ESP authentication key and the HMAC
opad string as described in RFC 2104. An encryption key field
ENC_KEY includes an encryption/decryption key used for
ESP processing.

The IPsec system 124 reads from the SA and SPI memories
140 and 270, respectively, but does not write to them. To
minimize the lookup time the SPI memory 270 is organized as
a hash table in which the bin number of an entry 272 is
determined by a hash function of the SPI. The lookup logic
146 uses the SPI and the IPsec protocol (AH or ESP) to search
the SPI memory 270, by computing a hash value based on the
SPI and using the result to address a bin in the SPI memory
270. A second hash value is computed for the IP destination
address, and the lookup logic 146 compares the SPI, protocol,
and destination address hash with entries in the selected bin
until it either finds a match or runs out of bin entries. The
lookup logic 146 then writes an entry into the SA pointer
FIFO 148, including the address of the matching entry in the
SPI memory 270 and an internal status code that indicates
whether or not IPsec processing is required and whether or
notthe SA lookup was successful. The Rx key fetch logic 262
fetches the DA from the SA memory 140 to compare with the
DA in the IP packet header. If the DA from the SA memory
140 does not match the DA from the received frame, the frame
is passed on to host memory 128 via the memory 116 and the
bus interface 106 without IPsec processing, and the corre-
sponding receive status ring entry indicates that no IPsec
processing was done.

Referring also to FIG. 7A, the SA memory 140 and the SPI
memory 270 are maintained by the host processor 112. Dur-
ing normal operation, the host 112 uses write and delete
accesses to add and remove table entries 274, 272. The exem-
plary SA memory 140 is divided into two regions, one for
incoming SAs and one for outgoing SAs, wherein each region
provides space for 16K entries. Access to the SA and SPI
memories 140 and 270 by the host 112 is performed using an
SA address register SA_ADDR 280 and a 144-byte SA buffer
282. The SA buffer 282 holds one 136-byte SA memory entry
274 followed by a corresponding 8-byte SPI table entry 272.
For outgoing SAs, the SPI table entry section 272 ofthe buffer
282 is not used. To write an SA table entry, the host 112
creates a 136 or 144 byte entry in the host memory 128 and
writes the target address in the SA memory 140 to the
SA_ADDR register 280. The controller 102 uses DMA to
copy the SA information first to the internal SA Buffer 282
and then to the appropriate locations in the SA memory 140
and the SPI memory 270. The host 112 writes the physical
address of an SA entry buffer 284 in the host memory 128 to
an SA_DMA_ADDR register 286. If the software driver 190
uses the same buffer 284 in host memory 128 for loading all
SA table entries, it only has to write to the SA_DMA_ADDR
register 286 once.

Incoming security associations are stored in locations
determined by the hash algorithm. For outgoing (transmit)
frames the driver software 190 includes a pointer to the appro-
priate SA in the transmit descriptor 192. This makes it unnec-
essary for the controller 102 to search the SA memory 140 for
outgoing SAs, and transmit SAs can be stored in any order.
No outgoing SA is stored at offset 0, since the value 0 in the
SA_PTR field of the descriptor 192 is used to indicate that no
IPsec processing is required.

Referring also to FIG. 7B, the SA address register 280
includes the address of the SA table entries 274 to be accessed
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plus six SA access command bits. These command bits
include SA read, write, delete, and clear bits (SA_RD,
SA_WR, SA_DEL, and SA_CLEAR), an SA direction bit
SA_DIR, and a command active bit SA_ ACTIVE. The read-
only SA_ACTIVE bit is 1 while the internal state machine
262 is copying data to or from the SA buffer 282, during
which time the host 112 refrains from accessing the SA buffer
282. Selection between the incoming and outgoing regions of
the external SA memory 140 is controlled by the SA_DIR bit,
which acts as a high-order address bit. This bit is set to 1 for
an incoming SA or to 0 for an outgoing SA. If this bit is set to
1, data is transferred to or from the internal SPI memory 270
as well as to or from the external SA memory 140. Outgoing
SA table accesses affect only the external SA memory 140.
When the host 112 sets the SA_RD inthe SA address register
280, a state machine copies data from the external SA
memory 140 to the SA buffer 282. Ifthe direction bit SA_DIR
is 1, the corresponding entry 272 from the internal SPI
memory 270 is also copied to the SA buffer 282. An SA
address field SA_ADR[13:0] of the SA address register 280
points to the entries 272 and/or 274 to be copied.

When the host 112 sets the SA_WR bit in the SA_ ADDR
register 280, the resulting action depends on the value of the
SA_DIR bit. Ifthis bitis 1 (e.g., indicating an incoming SA),
the state machine copies data first from the buffer 284 in host
memory 128 into the internal SA buffer 282, and them from
the SA buffer 282 into the external SA memory 140 and also
into the corresponding internal SPI memory 270. If the
SA_DIR bit is 0 (e.g., indicating a transmit SA), when the
access command is ‘write’, only the SA field of the SA buffer
282 is copied to the SA memory 140 entry selected by the SA
address register 280, and the SPI field is not copied. For
bundle processing, a BUNDLE bit is set in the SA corre-
sponding to the first IPsec header in the frame, indicating that
the frame is expected to include an AH header followed by an
ESP header. The corresponding entry in the external SA
memory 140 includes information for both these headers,
including the expected SPI of the second IPsec header.

For receive AH processing, the value of the AH_ALG field
in the SA memory entry 274 is non-zero, indicating that AH
processing is required for the received frame. The Rx parser
144 scans the frame IP header (e.g., and IPv6 extension head-
ers if present) to determine the locations of mutable fields, as
set forth in RFC 2402). The parser 144 inserts a list of these
mutable field locations into the control block in the memory
118. If AH processing is enabled, the IPsec processor 150
replaces the mutable fields and the ICV field of the AH header
with zeros for the purpose of calculating the expected ICV
(the frame data that is copied to the host memory 128 is not
altered). The destination address field of the IP header is
considered to be mutable but predictable, because intermedi-
ate routers may change this field if source routing is used.
However, since the originating node uses the final destination
address for the ICV calculation, the receiver treats this field as
immutable for its ICV check.

The control block in the memory 118 includes pointers to
the starting and ending points of the portion of the received
frame that is covered by AH authentication. The IPsec pro-
cessor 150 uses this control block information to determine
where to start and stop its authentication calculations. The
AH_ALG field in the SA memory entry 274 indicates which
authentication algorithm is to be used. The exemplary [Psec
system 124 provides HMAC-SHA-1-96 as defined in RFC
2404 and HMAC-MD5-96 as defined in RFC 2403 for AH
processing. In either case the Rx IPsec processor 150 uses
preprocessed data from the AH_IPAD and AH_OPAD fields
of'the SA entry 274 along with the frame data to execute the
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HMAC keyed hashing algorithm as described in RFC 2104. If
the results of this calculation do not match the contents of the
authentication data field of the AH header, the AH_ERR bit is
set in the corresponding receive status ring entry.

For receive ESP processing, the ESPAH_ALG field of the
SA memory entry 274 is non-zero, indicating that ESP
authentication is required, and the non-zero value indicates
which authentication algorithm will be employed (e.g., MDS,
SHA-1, etc.). The Rx IPsec processor 150 uses the prepro-
cessed ipad and opad data from the ESP_IPAD and ESP_O-
PAD fields of the SA entry 274 along with frame data to
execute the HMAC keyed hashing algorithm as described in
RFC 2104. It uses pointers extracted from the control block of
the memory 118 to determine what part of the frame to use in
the ICV calculation. The data used in the calculation start at
the beginning of the ESP header and ends just before the
authentication data field of the ESP trailer, wherein none of
the fields in this range are mutable. If the results of this ICV
calculation do not match the contents of the authentication
data field in the ESP trailer, the ESP_ICV_ERR bit is set in
the corresponding receive status ring entry.

If the ESP_ALG field of the SA memory entry 274 is
non-zero, ESP decryption is required, and the receive [Psec
processor 150 uses the ESP_ALG and ECB fields of the entry
274 to determine which decryption algorithm and mode to
use (e.g., DES; 3DES; AES-128, 10 rounds; AES-192, 12
rounds; AES-256, 14 rounds; etc.). The Rx IPsec processor
150 retrieves the decryption key from the ENC_KEY field of
the entry 274, and uses information from the control block in
the memory 118 to determine which part of the frame is
encrypted (e.g., the portion starting just after the ESP header
and ending just before the authentication data field of the ESP
trailer). Ifthe SA indicates that no ESP authentication is to be
performed, the length of the authentication data field is zero
and the encrypted data ends just before the FCS field.

Once the payload has been decrypted, the IPsec processor
150 checks the pad length field of the ESP trailer to see if pad
bytes are present. If the pad length field is non-zero, the
processor 150 examines the pad bytes and sets the PAD_ERR
bit in the receive status ring entry if the pad bytes do not
consist of an incrementing series of integers starting with 1
(e.g., 1,2, 3,...). The IPsec processor 150 replaces the
encrypted frame data with (decrypted) plaintext in the
memory 118. The exemplary processor 150 does not recon-
struct the original IP packet (e.g., the processor 150 does not
remove the ESP header and trailer and replace the Next
Header field of the previous unencrypted header). If the
encryption uses CBC mode, the first 8 or 16 bytes of the ESP
payload field contain the unencrypted IV, which the [Psec
processor 150 does not change. The encrypted data following
the 1V is replaced by its decrypted counterpart.

In the exemplary IPsec system 124, the SPI table bin num-
ber and the IP destination address hash codes are both calcu-
lated using a single 12-bit hash algorithm. The bin number is
calculated by shifting the SPI through hash logic in the [Psec
processor 150. For the destination address (DA) hash, the
32-bit IPv4 destination address or the 128-bit IPv6 destina-
tion address is shifted through the hashing logic, which pro-
vides 12 output bits used for the bin number, where only the
8 least significant bits are used for the DA hash. The hash
function is defined by a programmable 12-bit polynomial in a
configuration register of the controller 102, wherein each bit
in the polynomial defines an AND/XOR tap in the hash logic
of the processor 150. The incoming bit stream is exclusive-
ORed with the output of the last flip-flop in the hash function.
The result is ANDed bitwise with the polynomial, exclusive-
ORed with the output of the previous register, and then

20

25

30

40

45

50

55

60

65

36

shifted. The hash function bits are initialized with zeros. The
search key is then passed through the hash function. After the
input bit stream has been shifted into the hash function logic,
the 12-bit output is the hash key.

Although the invention has been illustrated and described
with respect to one or more implementations, alterations and/
or modifications may be made to the illustrated examples
without departing from the spirit and scope of the appended
claims. In particular regard to the various functions per-
formed by the above described components or structures
(blocks, units, engines, assemblies, devices, circuits, sys-
tems, etc.), the terms (including a reference to a “means”)
used to describe such components are intended to correspond,
unless otherwise indicated, to any component or structure
which performs the specified function of the described com-
ponent (e.g., that is functionally equivalent), even though not
structurally equivalent to the disclosed structure which per-
forms the function in the herein illustrated exemplary imple-
mentations of the invention. In addition, while a particular
feature of the invention may have been disclosed with respect
to only one of several implementations, such feature may be
combined with one or more other features of the other imple-
mentations as may be desired and advantageous for any given
or particular application. Furthermore, to the extent that the
terms “including”, “includes”, “having”, “has”, “with”, or
variants thereof are used in either the detailed description and
the claims, such terms are intended to be inclusive in a manner
similar to the term “comprising.”

What is claimed is:

1. An improved security processing circuit for performing
3DES IPsec security processing services for a host system
using a DES engine, the security processing circuit compris-
ing:

the DES engine having a message input, a cipher key input,
and a pre-data output, the engine adapted to receive and
selectively process a block of data from the message
input of the security processing circuit during a first DES
processing operation, and subsequently to process data
from an intermediate result during second and third DES
processing operations and store an intermediate result of
the third DES processing operation to the pre-data out-
put;

a security keys circuit having a set of cipher keys input and
a key output, the security keys circuit operable to select
and transfer a different cipher key to the key output
coupled to the cipher key input of the DES engine
selected from the set of cipher keys associated with each
DES processing operation during the first, second and
third DES processing operations; and

a data output circuit having a pre-data input and a data
output, the pre-data input of the data output circuit
coupled to the pre-data output of the DES engine, and
the data output selectively coupleable to the host system,
the data output circuit operable to further security pro-
cess data from the pre-data input and to selectively
exclusive OR an initialization vector with the processed
data and latch a final third DES result to the data output
of the security processing circuit for use by the host
system,

wherein the DES engine comprises:

a permutation block having the message input and a
permutation output, the permutation block operable
to receive a block of data at the message input and to
perform an initial permutation of the message input
data and provide a permutation result at the permuta-
tion output;



US 7,545,928 B1

37

a data input multiplexer having a first and second input
and a data selection output, the data input multiplexer
operable to select and couple one of the first and
second inputs to the data selection output;

an intermediate result register having a data input
coupled to the data selection output, a clock input, and
a latched data output, the register operable to store
right and left half results of the initial permutation or
of'an eight round cipher process based on data present
at the data input upon receipt of a clock signal at the
clock input;

eight cipher blocks having a data input, a key input, and
a cipher output, operable to receive data at the data
input and a key at the key input, to perform the cipher
process comprising right and left halves of a sequen-
tial eight step cipher process on the data at the data
input employing the key, and to provide a first and
second cipher result during a first and second eight
step cycle of each of the three DES processing opera-
tions;

a pre-data output multiplexer having a first and second
input and a data selection output, the pre-data output
multiplexer operable to select and couple one of the
first and second inputs to the data selection output;
and

a pre-data output register having a data input, a clock
input, and a latched data output,

wherein the permutation output of the permutation block
is coupled to the first input of the data input multi-
plexer, the data selection output of the data input
multiplexer coupled to the data input of the interme-
diate result register, the latched data output of the
intermediate result register coupled to the data input
of the eight cipher blocks having the cipher output of
the eight cipher blocks feedback coupled to the sec-
ond input of the data input multiplexer and to the first
input of the pre-data output multiplexer, the data
selection output of the pre-data output multiplexer
coupled to the pre-data output register, the latched
data output of the pre-data output register feedback
coupled to the second input of the pre-data output
multiplexer and the pre-data output.

2. The security processing circuit of claim 1,

wherein the DES engine is further operable to perform the
initial permutation of the message input data using the
permutation block, initially select the permutation result
with the data input multiplexer and couple and store the
result to the intermediate result register during a data
input latch cycle, to transfer the initial result and the
cipher key from the security keys circuit to the eight
cipher blocks for cipher processing and intermediate
storage of the right and left halves of the first eight step
cipher results subsequent to selection of the second input
of the data input multiplexer into the intermediate result
register during the first cipher process cycle, to transfer
the stored intermediate result and the cipher key from the
security keys circuit to the eight cipher blocks for cipher
processing and intermediate storage of the right and left
halves of the second eight step cipher results subsequent
to selection of the second input of the data input multi-
plexer into the intermediate result register and the pre-
data output register subsequent to selection of the first
input of the pre-data output multiplexer during the sec-
ond cipher process cycle of the first DES processing
operation, and

wherein the DES engine is operable to repeat the first and
second cipher process cycles for the subsequent second
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and third DES security processing operations of the
security processing circuit, and latch the intermediate
result of the third DES operation to the pre-data output of
the pre-data output register of the DES engine, using the
selection of the second input of the pre-data output mul-
tiplexer during the third DES processing operation of the
3DES security processing.

3. The security processing circuit of claim 2, wherein the
3DES processing is completed in three single DES process-
ing operations.

4. The security processing circuit of claim 2, wherein the
3DES processing is completed in eight clock cycles.

5. The security processing circuit of claim 2, wherein the
first, second and third DES processing operations each have a
duration of two clock cycles.

6. The security processing circuit of claim 4, wherein the
clock cycle has a period of about 8 ns.

7. The security processing circuit of claim 4, wherein the
eight clock cycles of the 3DES security processing comprise:

a data input latch cycle;

a first DES processing operation comprising two cycles;

a second DES processing operation comprising two cycles;

a third DES processing operation comprising two cycles;
and

a data output latch cycle.

8. The security processing circuit of claim 1, further com-
prising a clock input coupled to one or more of the DES
engine, the security keys circuit, and the data output circuit
for timing clock cycles of the first, second and third DES
processing operations of the 3DES processing for the security
processing circuit.

9. The security processing circuit of claim 1, wherein the
security keys circuit comprises:

a set of cipher keys input, wherein the set of cipher keys
comprise three different cipher keys, each cipher key
associated with one of the three DES processing opera-
tions of the 3DES security processing;

a keys input multiplexer having a set of cipher keys input,
and a cipher key selection output, the keys input multi-
plexer operable to select and couple a cipher key to the
cipher key selection output; and

a security keys register having a data input, a clock input,
and a latched data output, the register operable to store
the cipher key selection associated with one of the three
DES processing operation of the 3DES security process-
ing based on cipher key data at the data input upon
receipt of a clock signal at the clock input, the latched
data output of the security keys register coupled to the
key input of the eight cipher blocks.

10. The security processing circuit of claim 9, wherein the
keys input multiplexer is operable to receive the three cipher
keys and to selectively couple one of the three cipher keys
associated with a DES processing operation to the Des engine
during the three DES processing operations of the 3DES
security process.

11. The security processing circuit of claim 1, wherein the
data output circuit comprises:

an inverse permutation block having a pre-data input and
an inverse permutation output, the inverse permutation
block operable to receive and further security process
the pre-data output from the DES engine, performing an
inverse permutation of the pre-data and transfer the pro-
cessed data to the inverse permutation output;

an XOR gate having a processed data input, an initializa-
tion vector input, and an XOR gate output, the XOR gate
operable to selectively exclusive OR the initialization
vector at the initialization vector input together with the
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processed data from the inverse permutation output of
the inverse permutation block coupled to the processed
data input, and transfer the XOR data to the XOR gate
output;

a data output multiplexer having a first and second input, a
selection control signal, and a data selection output, the
data output multiplexer operable to select and couple
one of the first and second inputs to the data selection
output, based on the state of the selection control signal,
the first input coupled to the XOR gate output, and the
second input coupled to a data output register; and

the data output register having a data input, a clock input,
and a latched data output, the register operable to store
the output data results of the third DES process based on
data present at the data input upon receipt of a clock
signal at the clock input, the latched data output of the
data output register feedback coupled to the second
input of the data output multiplexer to insure latching of
the data at the output,

wherein the data output circuit is operable to further secu-
rity process data from the pre-data input and to selec-
tively exclusive OR an initialization vector with the pro-
cessed data and latch a final third DES result to the data
output of the security processing circuit for use by the
host system.

12. The security processing circuit of claim 11, wherein the
data output circuit is operable to further security process data
from the pre-data input and to selectively exclusive OR an
initialization vector with the processed data and latch a final
third DES result to the data output of the security processing
circuit for use by the host system.

13. The security processing circuit of claim 1, wherein the
security processing circuit resides within a network interface
device of a host system for performing 3DES encryption and
decryption services for the host system using a Des engine.

14. The security processing circuit of claim 1, further com-
prising a network interface device coupled with the security
processing circuit, the network interface device being
adapted to selectively encrypt outgoing data from the host
system to cryptographically process data for transmission to
the network.

15. The security processing circuit of claim 14, wherein the
network interface device comprises a bus interface, a media
access control system, and the security processing circuit.

16. The security processing circuit of claim 15, wherein the
network interface device is a single integrated circuit.

17. The security processing circuit of claim 1, wherein the
circuit comprises an [Psec circuit adapted to selectively pro-
vide authentication, encryption, and decryption functions for
incoming and outgoing data.

18. An improved DES engine used in a security processing
circuit for performing 3DES IPsec security processing, the
DES engine comprising:

a permutation block having the message input and a per-
mutation output, the permutation block operable to
receive a block of data at the message input and to
perform an initial permutation of the message input data
and provide a permutation result at the permutation out-
put;

a data input multiplexer having a first and second input and
a data selection output, the data input multiplexer oper-
able to select and couple one of the first and second
inputs to the data selection output;

an intermediate result register having a data input coupled
to the data selection output, a clock input, and a latched
data output, the register operable to store right and left
halfresults of the initial permutation or of an eight round

15

20

25

30

35

40

45

50

55

60

65

40

cipher process based on data present at the data input
upon receipt of a clock signal at the clock input;

eight cipher blocks having a data input, a key input, and a
cipher output, operable to receive data at the data input
and a key at the key input, to perform the cipher process
comprising right and left halves of a sequential eight step
cipher process on the data at the data input employing
the key, and to provide a first and second cipher result
during a first and second eight step cycle of each of the
three DES processing operations;

a pre-data output multiplexer having a first and second
input and a data selection output, the pre-data multi-
plexer operable to select and couple one of the first and
second inputs to the data selection output; and

apre-data output register having a data input, a clock input,
and a latched data output,

wherein the engine is adapted to receive and selectively
process a block of data from the message input of the
security processing circuit during a first DES processing
operation, and subsequently to process data from an
intermediate result during second and third DES pro-
cessing operations of a 3DES security processing and
store an intermediate result of the third DES processing
operation to a pre-data output of the pre-data output
register, and

wherein the permutation output of the permutation block is
coupled to the first input of the data input multiplexer,
the data selection output of the data input multiplexer
coupled to the data input of the intermediate result reg-
ister, the latched data output of the intermediate result
register coupled to the data input of the eight cipher
blocks having the cipher output of the eight cipher
blocks feedback coupled to the second input of the data
input multiplexer and to the first input of the pre-data
output multiplexer, the data selection output of the pre-
data output multiplexer coupled to the pre-data output
register, the latched data output of the pre-data output
register feedback coupled to the second input of the
pre-data output multiplexer and the pre-data output.

19. The DES engine of claim 18,

wherein the engine is further operable to perform the initial
permutation of the message input data using the permu-
tation block, initially select the permutation result with
the data input multiplexer and coupled and store the
result to the intermediate result register during a data
input latch cycle, to transfer the initial result and the
cipher key from the security keys circuit to the eight
cipher blocks for cipher processing and intermediate
storage of the right and left halves of the first eight step
cipher results subsequent to selection of the second input
of the data input multiplexer into the intermediate result
register during the first cipher process cycle, to transfer
the stored intermediate result and the cipher key from the
security keys circuit to the eight cipher blocks for cipher
processing and intermediate result register and the pre-
data output register subsequent to selection of the first
input of the pre-data output multiplexer during the sec-
ond cipher process cycle of the first DES processing
operation, and

wherein the DES engine is operable to repeat the first and
second cipher process cycles for the subsequent second
and third DES security processing operations of the
security processing circuit, and latch the intermediate
result of the third DES operation to the pre-data output of
the pre-data output register of the DES engine, using the
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selection of the second input of the pre-data output mul-
tiplexer during the third DES processing operation of the
3DES security processing.

20. The DES engine of claim 18, wherein the timing of the
3DES processing is completed in three single DES process-
ing operations.

21. The DES engine of claim 18, wherein the timing of the
3DES processing is completed in eight clock cycles.

22. The DES engine of claim 18, wherein the first, second
and third DES processing operations each have a duration of
two clock cycles.

23. The DES engine of claim 21, wherein the clock cycle
has a period of about 8 ns.
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24. The DES engine of claim 21, wherein the eight clock
cycles of the 3DES security processing comprise:

a data input latch cycle;

a first DES processing operation comprising two cycles;

a second DES processing operation comprising two cycles;

a third DES processing operation comprising two cycles;

and

a data output latch cycle.

25. The DES engine of claim 18, further comprising a clock
input coupled to one or more of the DES engine, the security
keys circuit, and the data output circuit for timing clock cycles
of'the first, second and third DES processing operations of the
3DES processing for the security processing circuit.
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