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TRIPLE DESCRITICAL TIMING PATH 
IMPROVEMENT 

RELATED APPLICATIONS 

This application is related to U.S. patent application Ser. 
No. 10/730,640, filed on Dec. 8, 2003, entitled “TRIPLE DES 
GIGABITAS PERFORMANCE USING SINGLE DES 
ENGINE 

FIELD OF INVENTION 

The invention is generally related to the field of computer 
or network devices and more particularly to methods and 
systems for improving the performance of a 3DES crypto 
graphic device or system for providing IPsec security pro 
cessing within a host network interface. 

BACKGROUND OF THE INVENTION 

Host-computing systems, such as personal computers, are 
often operated as nodes on a communications network, where 
each node is capable of receiving data from the network and 
transmitting data to the network. Data is transferred over a 
network in groups or segments, wherein the organization and 
segmentation of data are dictated by a network operating 
system protocol, and many different protocols exist. In fact, 
data segments that correspond to different protocols can co 
exist on the same communications network. In order for a 
node to receive and transmit information packets, the node is 
equipped with a peripheral network interface device, which is 
responsible for transferring information between the commu 
nications network and the host system. For transmission, a 
processor unit in the host system constructs data or informa 
tion packets in accordance with a network operating system 
protocol and passes them to the network peripheral. In recep 
tion, the processor unit retrieves and decodes packets 
received by the network peripheral. The processor unit per 
forms many of its transmission and reception functions in 
response to instructions from an interrupt service routine 
associated with the network peripheral. When a received 
packet requires processing, an interrupt may be issued to the 
host system by the network peripheral. The interrupt has 
traditionally been issued after either all of the bytes in a 
packet or some fixed number of bytes in the packet have been 
received by the network peripheral. 

Networks are typically operated as a series or stack of 
layers or levels, where each layer offers services to the layer 
immediately above. Many different layered network architec 
tures are possible, where the number of layers, the function 
and content of each layer may be different for different net 
works. The international standards organization (ISO) has 
developed an open systems interconnection (OSI) model 
defining a seven layer protocol stack including an application 
layer (e.g., layer 7), a presentation layer, a session layer, a 
transport layer, a network layer, a data link layer, and a physi 
cal layer (e.g., layer 1), wherein control is passed from one 
layer to the next, starting at the application layer in one 
station, proceeding to the bottom layer, over the channel to the 
next station and back up the hierarchy. The user of a host 
system generally interacts with a software program running at 
the uppermost (e.g., application) layer and the signals are sent 
across the network at the lowest (e.g., physical) layer. 
One popular network architecture is sometimes referred to 

as a TCP/IP stack, in which the application layer is one of FTP 
(file transfer protocol), HTTP (hyper text transfer protocol), 
or SSH (secure shell). In these networks, the transport layer 
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2 
protocol is typically implemented as transmission control 
protocol (TCP) or user datagram protocol (UDP), and the 
network layer employs protocols such as the internet protocol 
(IP), address resolution protocol (ARP), reverse address reso 
lution protocol (RARP), or internet control message protocol 
(ICMP). The data link layer is generally divided into two 
Sublayers, including a media access control (MAC) sublayer 
that controls how a computer on the network gains access to 
the data and permission to transmit it, as well as a logical link 
control (LLC) Sublayer that controls frame synchronization, 
flow control and error checking. The physical layer conveys 
the data as a bit stream of electrical impulses, light signals, 
and/or radio signals through the network at the physical (e.g., 
electrical and mechanical) level. The physical layer imple 
ments Ethernet, RS232, asynchronous transfer mode (ATM), 
or other protocols with physical layer components, where 
Ethernet is a popular local area network (LAN) defined by 
IEEE 802.3. 

One or more layers in a network protocol stack often pro 
vide tools for error detection, including checksumming, 
wherein the transmitted messages include a numerical check 
Sum value typically computed according to the number of set 
bits in the message. The receiving network node verifies the 
checksum value by computing a checksum using the same 
algorithm as the sender, and comparing the result with the 
checksum data in the received message. If the values are 
different, the receiver can assume that an error has occurred 
during transmission across the network. In one example, the 
TCP and IPlayers (e.g., layers 4 and 3, respectively) typically 
employ checksums for error detection in a network applica 
tion. 

Data may also be divided or segmented at one or more of 
the layers in a network protocol stack. For example, the TCP 
protocol provides for division of data received from the appli 
cation layer into segments, where a header is attached to each 
segment. Segment headers contain sender and recipient ports, 
segment ordering information, and a checksum. Segmenta 
tion is employed, for example, where a lower layer restricts 
data messages to a size Smaller than a message from an upper 
layer. In one example, a TCP frame may be as large as 64 
kbytes, whereas an Ethernet network may only allow frames 
of a much smaller size at the physical layer. In this case, the 
TCP layer may segment a large TCP frame into smaller seg 
mented frames to accommodate the size restrictions of the 
Ethernet. 

One or more of the network protocol layers may employ 
security mechanisms such as encryption and authentication to 
prevent unauthorized systems or users from reading the data, 
and/or to ensure that the data is from an expected Source, as 
well as decryption to allow the intended authorized systems 
or users to read the data. For instance, IP security (IPsec) 
standards have been adopted for the IPlayer (e.g., layer 3 of 
the OSI model) to facilitate secure exchange of data, which 
has been widely used to implement virtual private networks 
(VPNs). IPsec supports various security processing crypto 
systems such as DES (Data Encryption Standard), its succes 
sor AES (Advanced Encryption Standard) and an improved 
form of DES defined as 3DES or Triple DES. DES and 3DES 
can encrypt and decrypt data or a message using a single 
secret key. In the receiver system, the message is decrypted at 
the IPlayer, wherein the sender and receiver systems share a 
public key through a security association (SA). Key sharing is 
typically accomplished via an Internet Security association 
and key management protocol (ISAKMP) that allows the 
receiver to obtain a public key and authenticate the sender 
using digital certificates. 
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In conventional networks, the tasks of the upper and inter 
mediate layers are performed in the host system Software. 
Such conventional systems, however, require the host soft 
ware to implement many if not all of the layer 3 and layer 4 
(e.g., IP and TCP/UDP) functions, including frame creation, 
segmentation and reassembly, checksumming, and security 
processing. These functions are typically computation inten 
sive, requiring a significant amount of host processing over 
head, device real estate, power consumption, and significant 
processing time. Thus, there is a need for improved network 
systems and methods for reducing the processing load on 
networked host systems while reducing the real estate, power, 
and processing time of Such a system. 

SUMMARY OF THE INVENTION 

The following presents a simplified Summary of the inven 
tion in order to provide a basic understanding of some aspects 
of the invention. This summary is not an extensive overview 
of the invention. It is intended neither to identify key or 
critical elements of the invention nor to delineate the scope of 
the invention. Rather, the primary purpose of this Summary is 
to present some concepts of the invention in a simplified form 
as a prelude to the more detailed description that is presented 
later. The invention relates to improved security processing 
circuits of a host system and methods for performing 3DES 
encryption and decryption services for the host system using 
a single DES engine. The improved circuit makes use of a 
unique circuit component arrangement to provide shortened 
path timings within the single DES engine processing. To 
accomplish this overall timing performance improvement, 
the permutation and inverse permutation blocks are removed 
from these critical path timings of the three individual DES 
processing operations, and moved to the beginning and end of 
the 3DES process. 

In one aspect of the invention, an improved 3DES security 
processing circuit (e.g., a 3DES IPsec circuit) comprises a 
single DES engine, a security keys circuit, and a data output 
circuit. The 3DES circuit has a message input as a 64-bit block 
of data, a set of cipher keys input as 48 bit blocks of data to a 
keys register coupled to the single DES engine, a data output, 
and an intermediate result feedback coupled (e.g., looped 
back) to an input node of the single DES engine. The single 
DES engine is adapted to selectively process input data from 
the message input during a first DES processing operation, 
and Subsequently to process the intermediate result data from 
the data output during a second and third DES processing 
operation. The final result of the third single DES security 
processing operation is latched to a data output register of the 
circuit to obtain an encrypted or decrypted 3DES data output 
result, based on the application of the set of encryption or 
decryption security keys, respectively. 

In another aspect of the invention, the single DES engine of 
the 3DES IPsec circuit comprises a permutation block 
coupled to a data input multiplexor (MUX) coupled to an 
intermediate result register. The intermediate result registeris 
coupled to a set of 8 cipher blocks feedback coupled to the 
data input MUX and to a pre-data output MUX coupled to a 
pre-data output register feedback coupled to the pre-data 
output MUX. 

In yet another aspect of the invention, the security keys 
circuit of the 3DES security processing circuit comprises a set 
of cipher keys input, a key output, a keys input MUX, and a 
security keys register. The set of cipher keys comprise three 
different cipher keys, each cipher key associated with one of 
the three DES processing operation of the 3DES security 
processing. The set of cipher keys are received by the input 
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4 
MUX that selects and couples a cipher key to the security keys 
register for storage for Subsequent use by the single DES 
engine. 

In still another aspect of the invention, the data output 
circuit of the 3DES security processing circuit comprises a 
pre-data input, a data output, an inverse permutation block, an 
XOR gate, a data output MUX, and a data output register. The 
data output circuit is operable to further security process data 
from the pre-data input and to selectively XOR an initializa 
tion vector input with the processed data and latch a final third 
DES result to the data output of the 3DES security processing 
circuit. 

In yet another aspect of the invention, the 3DES security 
processing circuit (3DESIPsec circuit) is provided as a circuit 
element of a network interface device, comprising a bus inter 
face to transfer data between the network interface device and 
a host system and a media access control system to transfer 
data between the network interface device and the network. 
The network interface device also receives incoming data and 
transmits outgoing data being transferred between the net 
work and the host system. The 3DESIPsec circuit selectively 
encrypts outgoing data and selectively decrypts incoming 
data between the network and the host system. In addition to 
the security processing functions of the 3DESIPsec circuit, 
the network interface device may provide functions such as 
frame creation, segmentation and reassembly, and checksum 
ming. In one implementation, the security processing circuit 
encrypts information from the host corresponding to an out 
going data frame from the host system. The bus interface, 
media access control, and security processing circuit may be 
included within a single integrated circuit in one example. 

In one implementation of the present invention, the 3DES 
IPsec circuit may also operate in one of a variety of modes 
including, for example, an electronic code book (ECB) mode, 
or a cyclic block chaining (CBC) mode, each of which is 
commonly used with conventional DES/3DES cryptographic 
processing. 

In another aspect of the invention, the 3DESIPsec circuit 
comprises a discrete device residing and interfacing external 
to an associated network interface device between the net 
work and the host system, wherein the network interface 
device may be fabricated as a single integrated circuit chip. 

In another aspect of the invention, a method is provided for 
3DES Security processing using a security processing circuit 
employing a single DES engine. The exemplary method oper 
ates symmetrically whether encrypting incoming data or 
decrypting outgoing data, or whether the 3DESIPsec circuit 
resides external or internal to an associated interface device 
between the network and the host system. 
The method comprises latching an input message data 

block and first key data block from the network interface 
device using an input and key select Switches (e.g., multiplex 
ors), respectively, selecting and coupling the data to the single 
DES engine. The method further comprises first DES pro 
cessing the data to obtain a first intermediate result at a 
DataOut bus feedback to the single DES engine. Subse 
quently, in a second and third DES processing operation, the 
first and second intermediate result data is selected and 
coupled along with the second and third key data to the single 
DES engine to obtain a second and third result at a DataOut 
bus of the single DES engine. The third result from the third 
DES processing operation is latched at the DataOutbus. The 
method may further comprise transferring the third result data 
from the security processing circuit to the network interface 
device. 

In addition, security processing (e.g., encryption, decryp 
tion, authentication, etc.) may be selectively performed on the 
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incoming or outgoing data treated as input data to the 3DES 
IPsec circuit. The final result output data is then transferred 
from the 3DESIPsec circuit to the network interface device, 
which then determines whether the data is incoming data 
decrypted for use in the host system or outgoing data 
encrypted for the network. 

To the accomplishment of the foregoing and related ends, 
the following description and annexed drawings set forth in 
detail certain illustrative aspects and implementations of the 
invention. These are indicative of but a few of the various 
ways in which the principles of the invention may be 
employed. Other objects, advantages and novel features of 
the invention will become apparent from the following 
detailed description of the invention when considered in con 
junction with the drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A is a block diagram of a conventional DES engine 
illustrating symmetric key cipher operations for encryption 
and decryption processing: 

FIG. 1B is a process diagram illustrating several rounds of 
the basic DES algorithm using the Feistel Cipher: 

FIG. 1C and 1D are process diagrams illustrating two 
modes of operation for DES/3DESIPsec processing: 

FIG.1E is a block diagram illustrating an exemplary 3DES 
IPsec circuit used within a network interface device in accor 
dance with one or more aspects of the present invention; 

FIG.1F is a block diagram illustrating an exemplary 3DES 
IPsec circuit in accordance with one or more aspects of the 
present invention; 

FIG. 1G is a timing diagram illustrating an exemplary 
3DES IPsec processing sequence in accordance with the 
invention and FIGS. 1E and 1F: 

FIG. 1H is a flow diagram illustrating exemplary 3DES 
encryption or decryption processing in accordance with the 
invention; 

FIG.1I is a circuit diagram illustrating an exemplary 3DES 
IPsec circuit using a single DES engine for security process 
ing in accordance with an aspect of the invention; 

FIG. 1J is a circuit diagram illustrating another exemplary 
3DESIPsec circuit using a single DES engine for security 
processing in accordance with an aspect of the invention, the 
3DES circuit having improved timing capable of gigabit/sec 
processing: 

FIG. 1K is a spread sheet illustrating a comparison of the 
path timings between the exemplary 3DESIPsec circuits of 
FIGS. 1H and 1 I; 

FIG. 2 is a schematic diagram illustrating another exem 
plary network interface device in which various aspects of the 
invention may be carried out; 

FIG. 3 is a schematic diagram illustrating an exemplary 
single-chip network controller implementation of the net 
work interface device of FIG. 2; 

FIG. 4 is a schematic diagram illustrating a host system 
interfacing with a network using the exemplary network con 
troller of FIG. 3; 

FIG. 5 is a schematic diagram illustrating security process 
ing of outgoing data in the network interface device of FIG.3: 

FIG. 6 is a schematic diagram illustrating security process 
ing of incoming network data in the network interface device 
of FIG.3: 

FIG. 7A is a schematic diagram illustrating an exemplary 
security association table write access in the network inter 
face device of FIG. 3; 
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6 
FIG. 7B is a schematic diagram illustrating an exemplary 

SA address register format in the network interface device of 
FIG.3: 

FIG. 7C is a schematic diagram illustrating an exemplary 
SPI table entry format in the network interface device of FIG. 
3; and 

FIG. 7D is a schematic diagram illustrating an exemplary 
SA memory entry format in the network interface device of 
FIG. 3. 

DETAILED DESCRIPTION OF THE INVENTION 

As previously introduced, encryption is the transformation 
of data to a form which is very difficult to read without the 
appropriate knowledge or key. There are different approaches 
to cryptography like public/secret key encryption, and differ 
ent algorithms are used for each type of system. DES and its 
Successor 3DES are cryptosystems that can encrypt and 
decrypt data using a single secret key. 
DES is an acronym for Data Encryption Standard, origi 

nally developed by IBM in the early 1970s as Lucifer, then 
modified and renamed DES by the NSA and NIST. DES was 
adopted as a federal standard in 1976. However, as computers 
have become more powerful, simple DES has become more 
vulnerable to security breaches, so NIST defined 3DES or 
Triple DES in 1999 to replace DES. 3DES uses three stages of 
DES so it is much more secure and suffices for most applica 
tions currently. 
DES is a block cipher; that is, DES acts on a fixed-length 

block of plaintext data and converts it into a block of cipher 
text data of the same size by using the secret key. In DES, the 
block size for plaintext is 64bits. The length of the key is also 
64 bits, but 8 bits are used for parity. Hence the effective key 
length is only 56 bits. In 3DES, 3 stages of DES are applied 
with a separate key for each stage. So the key length in 3DES 
is 168 bits (3x56 bits). 
DES decryption is accomplished by applying the reverse 

transformation to the block of ciphertext using the same key. 
Since the same key is used both in encryption and decryption, 
DES is a called a symmetric key cipher. This method differs 
from algorithms like RSA encryption that use different keys 
to encrypt and decrypt a message. 

FIG. 1A illustrates this symmetric property of the DES 
method of operation 1. In other words (flowing from left to 
right), a plaintext block of data (message) is encrypted using 
DES and a secret cipher key to produce a ciphertext block of 
data. Symmetrically (flowing from right to left), the cipher 
text block of data may be decrypted using DES and the same 
secret cipher key to reproduce the original plaintext block of 
data. 

FIG. 1B illustrates a basic DES algorithm 2, which 
encrypts a plaintextblock by a process that has 16 rounds (or 
steps). In the encryption process, the block of plaintext is split 
into two halves (LoR), each of which is 32 bits long and 
comprises 8 steps of processing. Also, DES uses the original 
56 bit key to generate 16 keys of 48 bits each (k). These 
subkeys are used in the 16 rounds. 

In each round, the function F is applied to one half the data 
using a subkeyk, and the result is XORed with the other data 
half. The two halves are then swapped and the process is 
repeated. All the rounds follow the same pattern except the 
last one, where there is no swap. The final result is the cipher 
text (L.R.). Hence the plaintext (LR) is transformed to 
(L.R.). 

Decryption is structurally identical to encryption. Thus, the 
same machinery may be used as described above. However, 
the input with decryption is the pair (R, Lir) rather than (Lo, 
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Ro). Further, the input subkeys are applied in the reverse 
order, so the ith subkey is k, rather thank. The final result 
is the original text (LoR), so the ciphertext (RL) is 
decrypted to (LoRo). 

In the 3DES algorithm, the same basic DES machinery as 
described above may be used three times over using 3 keysk, 
k. k. The plaintext (M) is encrypted using k. This result is 
encrypted with k, and the result is then encrypted with k to 
obtain a ciphertext (C). 

This mode of using 3DES is called the DES-EEE mode 
since all three keys run in the encryption mode. The other 
mode is called DES-EDE where the second stage is run in 
decryption mode. i.e. 

The 3 keysk, k.k. may or may not be independent. For 
the DES-EDE mode, three options are defined. 

1) The keysk, k, and k are independent. 
2) k and k are independent but kk. 
3) k-k-k- In this case, 3DES becomes backward com 

patible with DES. 
Modes of Operation for DES/3DES 

While encrypting or decrypting large data files, for 
example, different strategies are used to either speed up the 
process or mask patterns in the data. The main modes of 
operation of DES are: Electronic Code Book (ECB), and 
Cyclic Block Chaining (CBC). 

FIG. 1C illustrates the ECB mode of operation 3. In ECB, 
each block is encrypted independently. Hence, it is very easy 
to parallelize the process. However, plaintext patterns are not 
concealed since identical blocks of plaintext give identical 
blocks of ciphertext. 

FIG. 1D illustrates the CBC mode of operation 4. In CBC, 
the plaintext block is XORed with the previous ciphertext 
block and then encrypted. This mode conceals any patterns in 
the plaintext because of the XOR operation with the previous 
ciphertext block. Although, it is difficult to parallelize this 
process, CBC is the most common and most secure mode of 
using DES/3DES. 

The other main modes of DES/3DES operation are CFB 
(Cipher Feedback Mode) and OFB (Output Feedback Mode). 
Both of these modes make use of XOR operations and feed 
back. CFB and OFB allow use of feedback that is less than 
one full data block, but this is not usually recommended. 

In a conventional security processing system, the three 
stages of 3DES and particularly 3DES-CBC, may be accom 
plished using three discrete DES engines. By contrast, the 
3DESIPsec circuit of the present invention provides 3DES/ 
3DES-ECB/3DES-CBC processing using a single DES 
engine to obtain an intermediate result that is looped back to 
the input of the engine for second and third DES processing 
operations. Thus the present invention accomplishes more 
security processing with less hardware, semiconductor real 
estate, and correspondingly less power consumption, while 
maintaining gigabit/s (Gb/s) processing speeds. 
One or more implementations of the present invention will 

now be described with reference to the drawings, wherein like 
reference numerals are used to refer to like elements through 
Out. 

Referring initially to FIGS. 1E-1K, illustrates an exem 
plary 3DES security processing circuit (3DESIPsec circuit) 
5, provided as a circuit element of a network interface device 
6. The 3DESIPsec circuit 5, comprises a single DES engine 
5a, a message input data 5b as a 64-bit block of data, a set of 
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8 
security keys data 5c input as 48 bit blocks of data to the single 
DES engine 5a, a data output 5d, and an intermediate result5e 
feedback coupled (looped back) to an input node of the single 
DES engine 5a. The single DES engine 5a is adapted to 
selectively process input data from the message input data 5b 
during a first DES processing operation, and Subsequently to 
process the intermediate result data 5e during a second and 
third DES processing operation. The result of the three single 
DES security processing operations is latched to an output 
register of the circuit to obtain an encrypted or decrypted 
3DES data output result based on whether a set of encryption 
or decryption security keys, respectively, is applied to the 
keys data 5c. 
As a circuit element of a network interface device 6, the 

3DESIPsec circuit 5 comprises a bus interface 9 to transfer 
data between the network interface device 6 and a host system 
7 and a media access control system 10 to transfer data 
between the network interface device 6 and the network 8. 
The network interface device 6 also receives incoming data 
and transmits outgoing data being transferred between the 
network 8 and the host system 7. The 3DES IPsec circuit 5 
selectively encrypts outgoing data and selectively decrypts 
incoming data between the network 8 and the host system 7. 
In addition to the security processing functions of the 3DES 
IPsec circuit 5, the network interface device 6 may provide 
functions such as frame creation, segmentation and reassem 
bly, and checksumming. In one implementation, the security 
processing circuit 5 encrypts information from the host 7 
corresponding to an outgoing data frame from the host system 
7. The bus interface 9, media access control 10, and security 
processing circuit 5 may be included within a single inte 
grated circuit in one example. 
The network interface device 6 comprises a bus interface 9 

which can be operatively coupled with the host system 7, such 
as via a bus in the host system, where the bus interface 9 is 
adapted to transfer data between the network interface device 
6 and the host system 7. A media access control (MAC) 
system 10 in the network interface device 6 may be opera 
tively coupled with the network 8, such as via a media inde 
pendent interface (e.g., MII, GMII, etc.) compliant trans 
ceiver (not shown), wherein the MAC system 10 is operable 
to transfer data between the network interface device 6 and 
the network 8. 
The 3DES IPsec circuit 5 may be constructed using any 

electrical circuitry or components configured or configurable 
to perform the 3DES Security processing utilizing a single 
DES engine. In particular, 3DES IPsec circuit 5 may com 
prise any combination of hardware such as logic devices, 
analog circuits, electrical connectors, etc., which may be 
programmable or configurable by Software and/or firmware 
within, as a circuit element of, or as a separate component in 
communication with the network interface device 6. 
The 3DESIPsec circuit 5 is configured or configurable to 

selectively perform security processing for incoming and/or 
outgoing data in the network interface device 6. The 3DES 
IPsec circuit 5, may be constructed using any suitable elec 
tronic devices, such as analog and logic circuitry, configured 
or configurable to perform security processing for incoming 
and/or outgoing data in the interface device 6. In one imple 
mentation, the 3DES IPsec circuit 5 is an IPsec system 
adapted to selectively provide encryption and decryption 
functions for incoming and outgoing data, as illustrated and 
described further below. However, other forms of security 
processing circuits and other types of security processing are 
contemplated within the scope of the invention. 

FIG.1F, for example, illustrates an exemplary 3DESIPsec 
circuit 20 comprising a single DES engine 21 having a feed 
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back path 22 coupling a DataOut bus 23 of the 3DES circuit 
20 to a data select switch 24 (e.g., a Mux) that is also coupled 
to an input data node 25 of the single DES engine 21 in 
accordance with an aspect of the invention. A data message is 
input (e.g., 64bit block of data), arriving on a DataIn bus 26, 
and is selected for connection to the input data node 25 by 
asserting a 3DES-in-prgs signal 27 to the data select switch 
24. The 3DESIPsec circuit 20 further comprises a set of keys 
28 (e.g., three 48 bit blocks of data) input, for example, via 
another key select Switch, a keys register, and a data register 
(e.g., either internal or external to the single DES engine), 
associated with the single DES engine 21. The set of keys 
comprises three different keys, for example, a first, second 
and third key associated with a first, second and third DES 
processing operation, respectively, of the 3DES process. 

Timing of the 3DESIPsec circuit 20 may be controlled by 
the application of a system clock signal Clk 29. The data 
output, DataOut 23 of the single DES engine 21 is looped 
back via feedback loop 22 to the same engine 21 for the 
second and third DES processing operations of the 3DES 
process. For example, at each of the first, second and third 
DES processing loops, a different key from the set of keys 28, 
is selected for coupling to the single DES engine 21, by 
asserting a keys selection signal to the key select Switch. 
The single DES engine 21 is adapted to selectively process 

input data from the DataIn 26 message during the first DES 
processing operation, and Subsequently to process an inter 
mediate result data from the data output DataOut bus 23 
during the second and third DES processing operations using 
the data select switch 24. For example, during the first DES 
processing, the data select Switch 24 selectively couples the 
input data message block on the DataIn bus 26 to the input 
node 25 of the single DES engine, by deasserting the 3DES 
in-prgs signal 27. Subsequently, during the second and third 
DES processing operations, the intermediate result is coupled 
to the input node 25 of the single DES engine, by asserting the 
3DES-in-prgs signal 27 to the data select switch 24. Follow 
ing the second and third single DES Security processing 
operations, the final result may be latched to an output register 
of the circuit to obtain an encrypted or decrypted 3DES data 
output result at DataOut bus 23, based on the application of a 
set of encryption or decryption security keys, respectively, at 
keys 28 selected for coupling to the single DES engine 21 by 
asserting the keys selection signal to the key select Switch. 

In accordance with the present invention, it is desirable to 
perform the 3DES operation at gigabit/s processing speeds 
(Gb/s), or 1 bit/ns. Since a triple DES engine processes a 64 
bit block of data at one time, the gigabit processing would 
need to process the 64 bit block in 64 ns. 

1 Gbis=1 bitins. F64 bits 64 ns. 

In the present application, it is also desirable to minimize 
gate count yet meet the gigabit/s processing data rate perfor 
mance. Thus the single DES engine of the present invention 
would need to complete the full 3DES process in the 64 ns. 
The internal clock 29 applied to the engine 21 controls the 
cycles and speed of the process. As it is also desirable to 
minimize power consumption in Such circuitry, and a high 
internal clock rate typically consumes more power, the lowest 
clock speed is selected in the present invention, which will 
accomplish the gigabit/s processing rate. For example, if a 
clock period of 8 ns (125 MHz) were chosen, there will be a 
timing budget of 

Total cycle time budgettime for a clock cycle=64 ns/8 
ins=8 clock cycles. 
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Thus, the exemplary maximum allowable timing budgets 8 
clock cycles for the full 3DES processing. In one implemen 
tation, the following must take place in those 8 clk cycles: 

a) 1 clock cycle of overhead for latching input data. 
b) 6 clock cycles for the 3DES processing. 
c) 1 clock cycle of overhead for latching output data. 

Allowing 6 clock cycles for the 3DES processing, leaves 2 
clock cycles for each of the three single DES processes. As the 
DES algorithm comprises 16 steps or rounds of block cipher 
processing divided into two halves of 8 steps or rounds each, 
a further gate count reduction may be made by having each 
half (e.g., left and right half of the 64 bit block) of 8 steps 
completed in one clock cycle for 8 steps per clock cycle. A 
loop back within the single DES engine could be used to 
perform the next 8 steps of the second half in the second clock 
cycle. Effectively, the full 3DES processing would then be 
completed within the budgeted 6 clock cycles using a single 
DES engine, such as the single DES engine 21 used in the 
3DES IPSec circuit 20 of FIG.1F. 

FIG. 1G illustrates a timing diagram of an exemplary 
3DESIPsec processing sequence 30 in accordance with the 
invention and FIGS. 1E and 1F. As explained above, and as 
illustrated in the top row of the timing, clock cycle 1 may be 
used to latch input data (e.g., DataIn 26 of FIG. 1F) into the 
3DESIPsec circuit 20. Clock cycles 2-7 perform the 3DES 
processing using the three secret keys (e.g., Keys 28 of FIG. 
1F). Finally, in clock cycle 8 the result of the processing is 
latched as output data (e.g., DataOut 23 of FIG. 1F). In the 
second row of the timing diagram, the 3DES process is bro 
ken down into the three single DES processes (e.g., DES1, 
DES2, and DES3), using the three separate keys (e.g., Key 1, 
Key2, and Key3) used to either encrypt or decrypt the input 
databased on the selection of the keys asserted to the 3DES 
IPsec circuit 20. Lastly, in the third row, each single DES 
processing stage is broken down further into the left and right 
half of the 64 bit data blocks, comprising 32 bits each (e.g., 
DES2 and DES2) in 8 rounds (steps) each, using the same 
key (e.g., Key2) for each half. 

Operationally then, a block of data is initially input as a 
data message to DataIn 26 to the 3DESIPsec circuit 20 during 
clock cycle 1. Data select switch 24 (e.g., a Mux) initially 
selects the input data block at DataIn 26, by deasserting the 
3DES-in-prgs signal 27 to the data select switch 24, thereby 
coupling the data to input data node 25 of the single DES 
engine 21. By the end of clock cycle 1, the input data message 
is latched into the single DES engine 21, for example, using a 
data register synchronized by clock input 29. 
At the beginning of clock cycle 2, a security key (e.g., 

Key1) associated with a first DES process (e.g., DES1), is 
selected from the set of security keys 28, for example, using 
an internal or external key select Switch asserting a key selec 
tion signal to couple Key 1 to the single DES engine 21. 
During clock cycles 2 and 3, the DES1 process proceeds, 
DES1 comprising 16 rounds of security processing on the 
input data in two data halves, for example, feedback looped 
22 thru a set of 8 cipher blocks within the single DES engine 
21. Upon completion of clock cycle 3, a first intermediate 
result of the first DES process DES1, is generated at DataOut 
bus 23 feedback coupled 22 to data select switch 24. By the 
end of clock cycle 3, 3DES-in-prgs is asserted to data select 
switch 24, thereby coupling the first intermediate result of the 
DES1 processing back into the input data node of the single 
DES engine 21, and latching the first intermediate result, for 
example, in a data register. 

During clock cycles 4 and 5, a second security process 
DES2 proceeds as before with DES1, except that DES2, 
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begins with the first intermediate result of DES1 as the input 
data and a different security key Key2 associated with DES2. 
Key2 is selected, for example, by asserting the key selection 
signal to the key selection Switch. Upon completion of clock 
cycle 5, a second intermediate result of DES2 is generated at 
DataOutbus 23 feedback coupled 22 for input connection by 
data select switch 24 asserted by 3DES-in-prgs signal 27. 

During clock cycles 6 and 7, a third security process DES3 
proceeds as before with DES2, except that DES3, begins with 
the second intermediate result of DES2 as the input data and 
a different security key Key3 associated with DES3. Upon 
completion of clock cycle 7, a final result of DES3 is gener 
ated at DataOut bus 23 for output from the 3DES engine 20. 
During clock cycle 8 the final result of DES3 may be further 
processed and latched, for example, using a data output reg 
ister. 

FIG. 1H illustrates an exemplary 3DES processing meth 
odology using a single DES engine method flow 40 in accor 
dance with another aspect of the invention, which may be 
implemented in the exemplary 3DESIPsec circuit 20 or other 
systems. Although the exemplary method 40 and other meth 
ods are illustrated and described below as a series of acts or 
events, it will be appreciated that the present invention is not 
limited by the illustrated ordering of such acts or events. For 
example, some acts may occur in different orders and/or 
concurrently with other acts or events apart from those illus 
trated and/or described herein, in accordance with the inven 
tion. In addition, not all illustrated steps may be required to 
implement a methodology in accordance with the present 
invention. Furthermore, the methods according to the present 
invention may be implemented in association with the opera 
tion of the network interface devices, which are illustrated 
and described herein as well as in association with other 
systems and devices not illustrated. 

Beginning at 41, the method 40 comprises initially latching 
input and key data blocks at 42 input from an associated input 
data buss. In one example, the 3DESIPsec circuit 20 in FIG. 
1F obtains input and key data block information from the 
DataIn bus 26 message data and from the Keys 28 secret keys 
data blocks, respectively. In another example, the 3DESIPsec 
circuit 20 in FIG. 1F is a component within the network 
interface device 6, and obtains input and key data block 
information associated with incoming data to be decrypted 
from the network 8 or outgoing data to be encrypted from the 
host system 7 via the bus interface 9 or the MAC system 10, 
respectively. The input and a first key data (e.g., input data 5b 
and 26, and keys data 5c and 28 of FIGS. 1E and 1F, respec 
tively) is then selected and coupled at 44 (e.g., using the data 
select switch 24, and a key select switch) into the single DES 
engine 5a and 21. At 46, a first DES process obtains a first 
Intermediate result (e.g., intermediate result Se) at an output 
data bus (e.g., DataOut bus 23) is looped back (e.g., feedback 
line 22) to the single DES engine (e.g., single DES engine 5a 
and 21 via data select switch 24 to the input node 25 by 
asserting the 3DES-in-prgs signal 27). 
The first intermediate result and a second key (e.g., inter 

mediate result 5e, feedback 22, and a second key) is then 
selected and coupled at 48 (e.g., using the data select Switch 
24 selected using 3DES-in-prgs signal 27, and a key select 
switch) into the single DES engine 5a and 21. At 50, a second 
DES process obtains a second intermediate result (e.g., inter 
mediate result 5e) at the output data bus DataOut bus 23 and 
is looped back to the single DES engine (e.g., single DES 
engine 5a and 21). 
The second intermediate result and a third key (e.g., inter 

mediate result Se, feedback 22, and a second key) is then 
selected and coupled at 52 (e.g., using the data select Switch 
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24 selected by asserting the 3DES-in-prgs signal 27, and the 
key select Switch) into the single DES engine (e.g., single 
DES engine 5a and 21). At 54, a third DES process obtains a 
third result (e.g., final result output data 5d), which is made 
available to the output data bus DataOut bus 23 of the single 
DES engine (e.g., single DES engine 5a and 21). 

Finally, at 56 the third result data is latched into the output 
data bus DataOut bus 23 as a 3DES result data (e.g., encryp 
tion or decryption result) in accordance with the present 
invention. Thereafter at 58, optionally, the 3DES data may be 
selectively transferred from the 3DESIPsec circuit 5 or 20 to 
the network interface device 6 for use in the network 8 or host 
7 via bus interfaces 10 and 9, respectively, based on the 
selection of the input and keys data supplied the 3DESIPsec 
circuit 5 or 20, before the method 50 ends at 59. 

Attempting to implement such a 3DES processing circuit 
on chip employing only a single DES engine to accomplish 
the Gb/s speeds is not a simple task. This difficulty is particu 
larly true when each single DES processing operation must be 
accomplished within only two clock cycles as discussed ear 
lier in association with the timing diagram of FIG. 1G. The 
following figures and descriptions will illustrate these diffi 
culties and highlight one or more Successful solutions in 
accordance with the present invention. 

FIGS. 1 I and 1J illustrate two exemplary implementations 
of a 3DES processing circuit similar to that of FIGS. 1E and 
1F, using a single DES engine in accordance with an aspect of 
the invention or other such circuits and devices. The exem 
plary 3DES IPsec circuits 60 and 80 use different circuit 
arrangements which result in two different timing schemes, 
referred to herein as scheme A and scheme B, respectively. 
Scheme B of FIG. 1J will demonstrate a significant critical 
timing path improvement over Scheme A of FIG. 1I. The 
timing paths will also be contrasted in the spreadsheet com 
parison of FIG. 1K. 

FIG. 1I, for example, illustrates an exemplary 3DESIPsec 
circuit 60 and timing scheme A using a single DES engine for 
security processing in accordance with an aspect of the inven 
tion. 3DESIPsec circuit 60, for example, comprises a single 
DES engine 61, a keys input section 62, and a data output 
section 63. The single DES engine 61, comprises a data input 
multiplexor DI Mux 61a for selectively coupling either an 
input message M or a feedback input to a message register 
MSG REG 61b. The single DES engine 61 also comprises a 
permutation block PB 61c, an inverse permutation block IPB 
61d, a multiplexor Mux A 61e, a set of 8 cipher blocks 61f a 
pair of temporary holding registers R0 TMP/L0 TMP 61g, 
and a preliminary data output register PRE DO 61h. 
The keys input section 62, comprises a keys input multi 

plexor, key Mux 62a for selectively coupling one of the set of 
Security keys (e.g., Skeyo 7, Skeyss) to a key register 
SK REG 62b used to assert the selected key to the 8 cipher 
blocks 61f. 
The data output section 63, comprises an XOR 63a for 

logically combining an initialization vector IV 63b with the 
data output of PRE DO 61h. Data output section 63, further 
comprises a data output multiplexor DO Mux 63c for selec 
tively coupling either the data output of PRE DO 61h or the 
logical output of the XOR 63a, as controlled by the state of a 
3DES in prgs signal 63d, the output of DO Mux 63c being 
transferred to a data output register DO REG 63e. 
The 3DESIPsec circuit 60, in accordance with one aspect 

of the present invention, is operable to receive the plaintext 
message M. and to DES or 3DES cryptographically process 
the plaintext message Minto a cyphertext C using the set of 
Secret keys (e.g., Skeyo-7, Skeyss) utilizing a single DES 
engine 61. As previously stated, since this process is symmet 
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ric, the set of secret keys may be used to either encrypt or 
decrypt the data input at plaintext message M and output at 
cyphertext C. 
The timing paths of the 3DESIPsec circuit 60 and timing 

scheme A using a single DES engine, will now be described 
including problems associated with the gate delays in a criti 
cal path (the longest timing path). The timing paths of circuit 
60 comprise a Path 165, a Path2 66, and a Path367 through 
the single DES engine 61, a PathSK 68 through the keys input 
section 62, and a Pathl)O 69 through the data output section 
63. Note, the order and timing of each of the paths described 
herein have no bearing on the numbers used in the path labels. 
In fact, one or more of the paths may run concurrently, con 
secutively, or begin and end independently of other paths. For 
example, PathSK 68 may run concurrently with Path1 65 and 
Path2 66 to supply the keys needed during the processing of 
the 8 cipher blocks 61f. Each of the timing paths indicated 
generally begin from a clock input start point of a flip flop 
(indicated by the “Z” symbol in the flip flop) to the path end 
point at the data input of the next flip flop (e.g., or the same flip 
flop, if the path loops back). 

Referencing FIG. 1 I and the spreadsheet of FIG. 1 K, the 
single DES engine 61 of circuit 60 and timing scheme A 
contains three critical timing paths, Path 165, Path 266, and 
Path3 67 (e.g., paths which include the 8 cipher blocks). In 
addition, there is another path (not shown), which starts at 
MSG REG 61b, and ends at PRE DO 61h, basically used as 
a subset of Path3 67 for latching the third DES result during 
3DES processing. Operationally, for example, a 64-bit block 
of data is input as a plaintext message M as selected by DI 
Mux 61a and stored in the MSG REG 61b in a first clock 
cycle (e.g., clock cycle 1) as indicated in FIG. 1G. In one 
example, Path1 65 comprises the first 8 steps of the DES 
processing, using R0 TMP/L0 TMP 61g to temporarily reg 
ister the result of the processing (e.g., the left 32 bits half of 
the 64bit block stored in register LO TMP) within one clock 
cycle (e.g., clock cycle 2). Path2 66 comprises the second 8 
steps of the DES process in the next clock cycle (e.g., clock 
cycle 3), using R0 TMP/L0 TMP 61g to temporarily register 
the result of the processing (e.g., the right 32 bits half of the 64 
bit block stored in register RO TMP). Note, for the “back 
to-back” 3DES processing, this path needs to be completed 
within one clock cycle. The Path3 67 timing comprises the 
path to loop back the data from one DES process stage to the 
next DES stage. This path must be completed within 1 clock 
cycle, in time enough to latch the result of one DES process 
ing (e.g., DES1, DES2) into the MSG REG 61b for the next 
DES processing (e.g., DES2, DES3). 

In paths Path1 65, the data is processed thru permutation 
block PB 61c, Mux A 61e, 8 cipher blocks 61f and tempo 
rarily stored in temporary holding registers RO TMP/ 
L0 TMP 61g being feedback coupled thru Mux A 61e for the 
next half of a DES processing operation. In Path2 66, the last 
half of the data (e.g., 32 bits of the 64 bit block) is processed 
thru the 8 cipher blocks 61f. Concurrently with paths Path 1-2, 
path PathSK 68 starts at SK REG 62b, and transfers the first 
secret key of the set of keys to the 8 cipher blocks 61f for the 
security processing (e.g., encryption or decryption). In the 
final timing path of the single DES engine 61, Path3 67 
initially traverses the same route as Path165. Path367 starts 
at the clock input of message register MSG REG 61b, pro 
cesses thru permutation block PB 61c, Mux A 61e, the 8 
cipher blocks 61f inverse permutation block PB 61d that 
feeds PRE DO 61h and also feedback couples thru DI Mux 
61a back to MSG REG 61b for latching the data in prepara 
tion for another DES stage of the 3DES process. 
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FIG. 1K details something of the path length and the pos 

sible areas for gate delays in these and the other identified 
paths. Note, in FIG. 1 K, Path3 67 (the loopback path for 
3DES processing) is the worst case path, because Path3 67 
has more gate delays as compared to paths Path 165 and Path2 
66. Path3 67 comprises permutation block PB 61c, Mux A 
61e, 8 cipher blocks 61f inverse permutation block PB 61d 
feedback coupled thru DI Mux 61a back to MSG REG 61b, 
PB61d also feeding data to PRE DO 61h. In PathDO 69, 
PRE DO 61h holds data prior to the XOR 63a operation 
during initialization, or selectively transfers the data to output 
register DO REG 63e based on control by the 3DES in prgs 
signal 63d during the last DES processing operation of a 
3DES process. Note, in PathlDO 69, thB 70 indicates the path 
delay timing from the output of PRE DO 61h to the input of 
DO REG 63e. The timing oftB 70 relative to the data output 
path Pathl)O 69 will be addressed further in a subsequent 
discussion of the improved scheme B of FIG. 1.J. 

In addition to the gate count, real estate, and power reduc 
tions afforded to the use of a single DES engine 61 for 3DES 
processing, the inventor of the present invention has further 
realized that gate delay reductions may be made to the circuit 
to improve the timing of the worst case critical timing Path3 
67. The inventor further realized that these gate delay reduc 
tions were advantageous to obtaining the gigabit/s processing 
speeds desired, as provided by the 3DESIPsec circuit 60 of 
scheme A. The inventor observed that in the worst case criti 
cal path Path3 67, data processed through the permutation 
block PB 61c, is cancelled as it is processed again through the 
inverse permutation block IPB 61d resulting in no require 
ment for the permutation in Path3 67. Therefore, these per 
mutation blocks (e.g., PB 61c and IPB 61d) may be effec 
tively moved out of Path367. This change then provides other 
opportunities for reductions. For example, the permutation 
block PB 61c may be moved to the input data ports of the 
MSG REG 61b to remove it from Path3 67. In addition, the 
inverse permutation block IPB 61d may be moved to the 
output of the PRE DO 61h register, where a cycle of timing 
may be essentially “stolen” during the 8' clock cycle by 
performing the inverse permutation during the same clock 
cycle as the XOR operation. This is possible, because the 
PathDO 69 timing allows sufficient clock margin during the 
8" clock cycle to keep the processing time within one clock 
cycle as illustrated by timing thB 70. 

FIG. 1J illustrates one exemplary implementation of the 
proposed gate delay reduction strategy, resulting in the 
improved 3DESIPsec circuit 80 of scheme B. The improved 
3DESIPsec circuit 80 of FIG. 1J is similar to that of FIG. 1 I 
and therefore need not be described again in full detail for the 
sake of brevity. 3DES IPsec circuit 80, for example, com 
prises a single DES engine 81, a keys input section 82, and a 
data output section83. The improved 3DESIPsec circuit 80 is 
similarly operable to cryptographically process a plaintext 
message M (e.g., a 64-bit block of data) into a 3DES cypher 
text C using a set of Secret keys (e.g., Skeyo-7, Skeys-s) 
utilizing a single DES engine 81. 
By relocating the PB and IPB outside the critical timing 

paths (e.g., paths which include the 8 cipher blocks), relative 
to that of circuit 60 of scheme A, the critical path timings are 
improved as well as the number of critical timing paths, as 
indicated in the Scheme B column of the spreadsheet com 
parison of FIG.1K. By reducing the number and length (delay 
times) of critical timing paths in this way, each DES process 
of a 3DES process may be completed within two clock cycles. 
Thus, in accordance with the present invention, the timing 
improvements of the 3DES IPsec circuit 80 of scheme B, 
enable gigabit/s processing speeds to be realized while utiliz 
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ing the single DES engine 81. Further, the improved 3DES 
circuit 80, eliminates the need for Mux A 61e and RO TMP/ 
L0 TMP 61G in contrast to that of circuit 60 of FIG. 1I, 
thereby reducing the circuit gate count, chip real estate, and 
the associated power consumption. 

The single DES engine 81 of the improved 3DES IPsec 
circuit 80, comprises permutation block PB 81a, a DI Mux 
81b, an intermediate result register R REG/L REG 81c. The 
single DES engine 81 further comprises 8 cipher blocks 81d. 
PDO Mux 81e and PRE DO 81?. 
The keys input section 82, comprises a Key Mux 82a 

coupled to a key register SK REG 82b coupled to the 8 cipher 
blocks 81d. The keys input section 82 is operable to select one 
of a set of secret keys (e.g., Skeyo-7, Skeyss), and transfer the 
selected keys to the 8 cipher blocks 81d. For example, 

skey0.8 to cipher block 1, 
skey 1.9 to cipher block 2. 
skey2.10 to cipher block 3, 

skey 7.16 to cipher block 8. 
Finally, the data output section 83 comprises an inverse 

permutation block IPB 83a, a logical XOR function 83b for 
exclusive Oring an initialization vector 83c with the pro 
cessed data from the IPB 83a, a data output multiplexor DO 
Mux 83d, selected by a 3DES in prgs signal 83e, and fed to 
a data output register DO REG 83f. The data output section 
83 selectively initializes the 3DES process, or finalizes the 
3DES process, and latches the final data output result. 
The timing paths of the improved 3DESIPsec circuit 80 

and the timing scheme Busing a single DES engine, will now 
be described. The timing paths of circuit 80 comprise a Path 1 
85, and a Path2 86 through the single DES engine 81, a 
PathSK 88 through the keys input section 82, and a Pathl O 
89 through the data output section 83. Note, as indicated 
earlier, the order and timing of each of the paths described 
herein have no bearing on the numbers used in the path labels. 
In fact one or more of the paths may run concurrently, con 
secutively, or begin and end independently of other paths. For 
example, PathSK 88 may run concurrently with Path1 85 
and/or Path286 to supply the keys needed during the process 
ing of the 8 cipher blocks 81d. 

Referencing FIG. 1J and the spreadsheet of FIG. 1 K, the 
single DES engine 81 of circuit 80 and timing scheme B 
contains only two critical timing paths, Path185, and Path 2 
86. Operationally, for example, a 64-bit block of data is input 
as a plaintext message M to an initial permutation processing 
by PB 81a, initially selected by DI Mux 81b and stored in 
right and left halves in R REG/L REG 81c in a first clock 
cycle (e.g., clock cycle 1) as indicated in FIG. 1G. Then, in 
one example, Path286 is used comprising the first 8 steps of 
the DES processing, with the result fed back to R REG/ 
L REG 81c to temporarily store the result of the first 8 steps 
of processing (e.g., the right and left 32 bit halves of the 64 bit 
block) within one clock cycle (e.g., clock cycle 2). Path1.85 is 
then used comprising the second 8 steps of the DES process in 
the next clock cycle (e.g., clock cycle 3), using PRE DO 81f 
to temporarily register the result of the second 8 steps of the 
processing (e.g., the right and left 32 bit halves of the 64 bit 
block stored in register PRE DO 81f). By contrast to 
MSG REG 61b of FIG. 1I, register R REG/L REG 81c of 
FIG. 1J has a dual purpose, storing the initial permutation of 
Mas well as the result of the first 8 steps of the DES process, 
while MSG REG 61b only stores M (within a single DES 
processing of a 3DES process). Both MSG REG 61b of FIG. 
1I, and R REG/L REG 81c of FIG. 1J, store the second 8 
step results for the next DES processing of a 3DES process. 
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Meanwhile, PathSK 88 may run concurrently with Path1 

85 and Path286 to supply the keys needed during the pro 
cessing of the 8 cipher blocks 81d for paths Path1 85 and 
Path2 86. Path1 85 and Path2 86, and PathSK 88 will be 
repeated during each of the remaining DES processes (e.g., 
during clock cycles 4-7) of the Three DES process, with 
feedback to R REG/L REG 81c to temporarily hold the data 
for the next DES process. On the final half of the third DES 
process of the 3DES process, Path1 85 is traversed to 
PRE DO 81ffollowed by PathDO 89 through the data output 
section 83 to finalize the 3DES processing (e.g., during clock 
cycle 8). The Pathl)O 89 processes through the inverse per 
mutation IPB 83a, the XOR 83b, then, with the aid of feed 
back thru the data output multiplexor DOMux 83d, as 
selected by the 3DES in prgs signal 83e, latches the crypto 
graphically processed result into the data output register 
DO REG 83f. Note, for the “back-to-back” 3DES process 
ing, this path needs to be completed within one clock cycle. 
As indicated the timing in clock cycles 2-7 is improved by 

the relocation of PB 81a and IPB 83a outside the critical 
timing paths Path1.85 and Path286 (e.g., paths which include 
the 8 cipher blocks), as indicated by the 6 clock cycles of the 
3DES process 91. In addition, the timing of the final (e.g., 7" 
and 8") clock cycles contributes to this improvement, as 
evidenced in the Pathl)O 89 output path as follows. The 
inventor realized that the PathDO 89 output path must be 
completed within 1 clock cycle (e.g., the 8' clock cycle), so 
that the 3DES process may be completed within 8 cycles and 
provide the gigabit/s processing speeds. On the 7" positive 
clock cycle edge, the 3DES result (not including the inverse 
permutation and IV. of timing 92) is ready at PRE DO 81f as 
indicated in timing 93. The output is registered on the 8" 
clock edge, however, there is sufficient time remaining from 
the 7" clock edge to the 8' clock edge to perform the final 
IPB+the IV XOR functions 92, and latch the 3DES result 93 
in DO REG 83f. 

Although each result from the three single DES processing 
operations will pass through Data Output section 83, only the 
third DES result will be captured in the present invention. The 
result of first DES will pass through section 83 on third clock, 
result of second DES will pass through section 83 on 5th 
clock, result of third DES will pass through section 83 on 7th 
clock. On the 7th clock the third DES result will pass through 
83a, b, d. By the end of the 7th clock the processing of the data 
should be completed before the rising edge of the 8th clock. 
Then, on the rising edge of the 8th clock, the final result of the 
3DES is captured. Thus, each of the three single DES process 
results pass through IPB 83a, but only the final result is 
captured on 8th clock, as controlled by an external state 
machine. 

Beneficially, therefore, external feedback is not necessary 
in the present invention. Instead, the feedback takes place on 
timing path 86, for all three DES processing, leaving PB & 
IPB out of each of the single DES processing. Although 
external feedback is functionally permissible, mathemati 
cally it is unnecessary because IPB is actually the inverse of 
PB. Therefore, with PB and IPB out of the feedback path, the 
overall timing performance is improved. Thus, in 3DES pro 
cessing, these functions only need to be accomplished once, 
and consume processing time once. Removing the permuta 
tion and inverse permutation blocks from the critical path 
timings of the three single DES operations, and replacing 
them at the beginning and end of the 3DES process accom 
plishes the overall timing performance improvement. 

Thus, the improved 3DESIPsec circuit 80 of the present 
invention is operable to cryptographically process a 64 bit 
message block into a 3DES result utilizing a single DES 
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engine and a set of secret keys within 8 clock cycles at gigabit 
per second processing speeds. The invention thus facilitates 
expeditious security processing in a 3DESIPsec circuit 5 or 
device utilizing a single DES engine 5a, wherein the circuit 5 
may be used together with a network interface device 6 for 5 
processing of incoming and outgoing data between the net 
work 8 and the host system 7. In addition, the DES-CBC and 
the 3DES-CBC mode may be used in the 3DESIPsec circuit 
(e.g., circuit 5, 20, 60, 80) when provided a 64-bit block 
message M. and a 64-bit security key (including 8 parity bits) 10 
using the cipher block chaining (CBC) algorithm with 
explicit initialization vector (IV). Moreover, the various 
aspects of the invention provide a reduction in gate counts, 
chip real estate, and power consumption by using only the 
single DES engine (e.g., 5a, 21, 61, 81), improved 3DES 15 
process timing by the relocation of permutation functions 
(e.g., 61c and 61d. 81a, 61,81) and the elimination of specific 
circuit components (e.g., Mux A 61e, Register RO TMP/ 
L0 TMP 61g), and skillfully choreographed path timings in 
circuit 5 and 80. 2O 
A structural/functional and operational overview of an 

exemplary network controller (e.g., the network interface 
device 6) in accordance with the present invention will be 
provided below in conjunction with FIGS. 2-4, in order to 
facilitate a thorough understanding of the present invention. 25 

FIG. 2 illustrates a network interface peripheral or network 
controller 102 in accordance with one or more aspects of the 
present invention, and FIGS. 3 and 4 illustrate an exemplary 
single-chip implementation 102a of the network controller 
102. The exemplary single-chip network controller 102a 30 
includes all the functionality and components described 
herein with respect to the network interface device 102. The 
various blocks, systems, modules, engines, etc. described 
herein may be implemented using any appropriate analog 
and/or digital circuitry, wherein one or more of the blocks, 35 
etc. described herein may be combined with other circuitry in 
accordance with the invention. 
The network controller 102 includes a 64-bit PCI-X bus 

interface 104 for connection with a host PCI or PCI-X bus 106 
that operates at a clock speed up to 133 MHz in PCI-X mode 40 
or up to 66 MHz in standard PCI mode. The network control 
ler 102 may be operated as a bus master or a slave. Much of 
the initialization can be done automatically by the network 
controller 102 when it reads an optional EEPROM (not 
shown), for example, via an EEPROM interface 114 (FIG.3). 45 
The network controller 102 can be connected to an IEEE 
802.3 or proprietary network 108 through an IEEE 802.3- 
compliant Media Independent Interface (MII) or Gigabit 
Media Independent Interface (GMII) 110, for interfacing the 
controller 102 with the network 108 via an external trans- 50 
ceiver device 111. For 1000 Mb/s (1 Gb/s) operation the 
controller 102 supports either the byte-wide IEEE 802.3 
Gigabit Media Independent Interface (GMII) for 
1000BASE-T PHY devices 111 or the IEEE 802.3 Ten-Bit 
Interface (TBI) for 1000BASE-X devices 111. The network 55 
controller 102 supports both half-duplex and full-duplex 
operation at 10 and 100 Mb/s rates and full-duplex operation 
at 1000 Mb/s. 
A host device. Such as a host processor 112 on the host 

PCI-X bus 106 in a host system 180, may interface with the 60 
network controller 102 via the bus 106 and a host bridge 117. 
The host processor 112 includes one or more processors that 
can operate in a coordinated fashion. Referring also to FIG. 4. 
the network single-chip network controller 102a may be pro 
vided on a network interface card or circuit board 182, 65 
together with a PHY transceiver 111 for interfacing the host 
processor 112 with the network 108 via the host bridge 117. 

18 
the host bus 106, and the transceiver 111. The PCI-X bus 
interface 104 includes PCI configuration registers used to 
identify the network controller 102a to other devices on the 
PCI bus and to configure the device. Once initialization is 
complete, the host processor 112 has direct access to the I/O 
registers of the network controller 102 for performance tun 
ing, selecting options, collecting statistics, and starting trans 
missions through the host bridge 117 and the bus 106. The 
host processor 112 is operatively coupled with the host sys 
tem memory 128 and a cache memory 115 via a memory/ 
cache controller 113. One or more application software pro 
grams 184 executing in the host processor 112 may be 
provided with network service via layer 4 (e.g., transport 
layer) software, such as transmission control protocol (TCP) 
layer software 186, layer 3 (e.g., network layer) software 188, 
such as internet protocol (IP) software 188, and a software 
network driver 190, also running on the host processor 112. 
As discussed below, the network driver software 190 interacts 
with the host memory 128 and the network controller 102 to 
facilitate data transfer between the application software 184 
and the network 108. 

As illustrated in FIG. 2, the exemplary network controller 
102 comprises first and second internal random access 
memories MEMORYA 116 and MEMORY B118, organized 
as first-in first-out (FIFO) memories for storage of frames. A 
memory control unit 120 is provided for control and operation 
of the memories 116 and 118. The network controller102 also 
comprises a media access control (MAC) engine 122 satisfy 
ing requirements for operation as an Ethernet/IEEE 802.3- 
compliant node and providing the interface between the 
memory 118 and the GMII 110. The MAC engine 122 may be 
operated in full or half-duplex modes. An Internet Protocol 
Security (IPsec) engine 124 coupled with the memories 116 
and 118 provides authentication and/or encryption functions. 
The PCI-X bus interface 104 includes a Direct Memory 

Access (DMA) controller 126 that automatically transfers 
network frame data between the network controller 102 and 
buffers in host system memory 128 via the hostbus 106. The 
operation of the DMA controller 126 is directed by a descrip 
tor management unit 130 according to data structures called 
descriptors 192, which include pointers to one or more data 
buffers 194 in system memory 128, as well as control infor 
mation. The descriptors 192 are stored in the host system 
memory 128 in queues called descriptor rings. Four transmit 
descriptor rings are provided for transmitting frames and four 
receive descriptor rings for receiving frames, corresponding 
to four priorities of network traffic in the illustrated controller 
102. Additionally, four receive status rings are provided, one 
for each priority level that facilitates synchronization 
between the network controller 102 and the host system. 
Transmit descriptors 192 control the transfer of frame data 
from the system memory 128 to the controller 102, and 
receive descriptors 192 control the transfer of frame data in 
the other direction. In the exemplary controller 102, each 
transmit descriptor 192 corresponds to one network frame, 
whereas each receive descriptor 192 corresponds to one or 
more host memory buffers in which frames received from the 
network 108 can be stored. 

The Software interface allocates contiguous memory 
blocks for descriptors 192, receiver status, and data buffers 
194. These memory blocks are shared between the software 
(e.g., the network driver 190) and the network controller 102 
during normal network operations. The descriptor space 
includes pointers to network frame data in the buffers 194, the 
receiver status space includes information passed from the 
controller 102 to the software in the host 112, and the data 
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buffer areas 194 for storing frame data that is to be transmitted 
(e.g., outgoing data) and for frame data that has been received 
(e.g., incoming data). 

Synchronization between the controller 102 and the host 
processor 112 is maintained by pointers stored in hardware 
registers 132 in the controller 102, pointers stored in a con 
troller status block (CSB) 196 in the host system memory 
128, and interrupts. The CSB 196 is a block of host system 
memory 128 that includes pointers into the descriptor and 
status rings and a copy of the contents of the controller's 
interrupt register. The CSB 196 is written by the network 
controller 102 and read by the host processor 112. Each time 
the software driver 190 in the host 112 writes a descriptor or 
set of descriptors 192 into a descriptor ring, it also writes to a 
descriptor write pointer register in the controller 102. Writing 
to this register causes the controller 102 to start the transmis 
sion process if a transmission is not already in progress. Once 
the controller has finished processing a transmit descriptor 
192, it writes this information to the CSB 196. After receiving 
network frames and storing them in receive buffers 194 of the 
host system memory 128, the controller 102 writes to the 
receive status ring and to a write pointer, which the driver 
Software 190 uses to determine which receive buffers 194 
have been filled. Errors in received frames are reported to the 
host memory 128 via a status generator 134. 

The IPsec module or engine 124 provides standard authen 
tication, encryption, and decryption functions for transmitted 
and received frames. For authentication, the IPsec module 
124 implements the HMAC-MD5-96 algorithm defined in 
RFC 2403 (a specification set by the Internet Engineering 
Task Force) and the HMAC-SHA-1-96 algorithm defined in 
RFC 2404. For encryption, the module implements the ESP 
DES-CBC (RFC 2406), the 3DES-CBC, and the AES-CBC 
encryption algorithms. For transmitted frames, the controller 
102 applies IPsec authentication and/or encryption as speci 
fied by Security Associations (SAs) stored in a private local 
SA memory 140, which are accessed by IPsec system 124 via 
an SA memory interface 142. SAS are negotiated and set by 
the host processor 112. SAS include IPsec keys, which are 
required by the various authentication, encryption, and 
decryption algorithms, IPsec key exchange processes are per 
formed by the host processor 112. The host 112 negotiates 
SAS with remote stations and writes SA data to the SA 
memory 140. The host 112 also maintains an IPsec Security 
Policy Database (SPD) in the host system memory 128. 
A receive (RX) parser 144 associated with the MAC engine 

122 examines the headers of received frames to determine 
what processing needs to be done. If it finds an IPsec header, 
it uses information contained in the header, including a Secu 
rity Parameters Index (SPI), an IPsec protocol type, and an IP 
destination address to search the SA memory 140 using SA 
lookup logic 146 and retrieves the applicable security asso 
ciation. The result is written to an SA pointer FIFO memory 
148, which is coupled to the lookup logic 146 through the SA 
memory interface 142. The key corresponding to the SA is 
fetched and stored in RX key FIFO 152. A receive (RX) IPsec 
processor 150 performs the processing requires by the appli 
cable SA using the key. The controller 102 reports what 
security processing it has done, so that the host 112 can check 
the SPD to verify that the frame conforms with policy. The 
processed frame is stored in the memory 116. 
A receive IPsec parser 154, associated with IPsec proces 

sor 150, performs parsing that cannot be carried out before 
packet decryption. Some of this information is used by a 
receive (RX) checksum and pad check system 156, which 
computes checksums specified by headers that may have been 
encrypted and also checks pad bits that may have been 
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encrypted to verify that they follow a pre-specified sequence 
for pad bits. These operations are carried out while the 
received frame is passed to the PCI-X bus 104 via FIFO 158. 
The checksum and pad check results are reported to the status 
generator 134. 

In the transmit path, an assembly RAM 160 is provided to 
accept frame data from the system memory 128, and to pass 
the data to the memory 116. The contents of a transmit frame 
can be spread among multiple data buffers 194 in the host 
memory 128, wherein retrieving a frame may involve mul 
tiple requests to the system memory 128 by the descriptor 
management unit 130. These requests are not always satisfied 
in the same order in which they are issued. The assembly 
RAM 160 ensures that received chunks of data are provided to 
appropriate locations in the memory 116. For transmitted 
frames, the host 112 checks the SPD (IPsec Security Policy 
Database) to determine what security processing is needed, 
and passes this information to the controller 102 in the 
frame's descriptor 192 in the form of a pointer to the appro 
priate SA in the SA memory 140. The frame data in the host 
system memory 128 provides space in the IPsec headers and 
trailers for authentication data, which the controller 102 gen 
erates. Likewise, space for padding (to make the payload an 
integral number of blocks) is provided when the frame is 
stored in the host system memory buffers 194, but the pad bits 
are written by the controller 102. 
As the data is sent out from the assembly RAM 160, it 

passes also into a first transmit (TX) parser 162, which reads 
the MAC header, the IP header (if present), the TCP or UDP 
header, and determines what kind of a frame it is, and looks at 
control bits in the associated descriptor. In addition, the data 
from the assembly RAM 160 is provided to a transmit check 
sum system 164 for computing IP header and/or TCP check 
sums, which values will then be inserted at the appropriate 
locations in the memory 116. The descriptor management 
unit 130 sends a request to the SA memory interface 142 to 
fetch an SA key, which is then provided to a key FIFO 172 that 
feeds a pair of TX IPsec processors 174a and 174b. Frames 
are selectively provided to one of a pair of TX IPsec proces 
sors 174a and 174b for encryption and authentication via TX 
IPsec FIFOs 176a and 176b, respectively, wherein a transmit 
IPsec parser 170 selectively provides frame data from the 
memory 116 to a selected one of the processors 174. The two 
transmit IPsec processors 174 are provided in parallel 
because authentication processing cannot begin until after 
encryption processing is underway. By using the two proces 
sors 174, the speed is comparable to the receive side where 
these two processes can be carried out simultaneously. 

Authentication does not cover mutable fields. Such as occur 
in IP headers. The transmit IPsec parser 170 accordingly 
looks for mutable fields in the frame data, and identifies these 
fields to the processors 174a and 174b. The output of the 
processors 174a and 174b is provided to the second memory 
118 via FIFOs 178a and 178b, respectively. An Integrity 
Check Value (ICV), which results from authentication pro 
cessing, is inserted into the appropriate IPsec header by an 
insertion unit 179 as the frame data is passed from the 
memory 118 to the MAC engine 122 for transmission to the 
network 108. 

In the single-chip implementation of FIG. 3, the controller 
102a comprises a network port manager 182, which may 
automatically negotiate with an external physical (PHY) 
transceiver via management data clock (MDC) and manage 
ment data I/O (MDIO) signals. The network port manager 
175 may also setup the MAC engine 122 to be consistent with 
the negotiated configuration. Circuit board interfacing for 
LED indicators is provided by an LED controller 171, which 
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generates LED driver signals LED0'-LED3' for indicating 
various network status information, such as active link con 
nections, receive or transmit activity on the network, network 
bit rate, and network collisions. Clock control logic 173 
receives a free-running 125 MHZ input clock signal as a 
timing reference and provides various clock signals for the 
internal logic of the controller 102a. 
A power management unit 188, coupled with the descriptor 

management unit 130 and the MAC engine 122, can be used 
to conserve power when the device is inactive. When an event 
requiring a change in power level is detected, such as a change 
in a link through the MAC engine 122, the power manage 
ment unit 188 provides a signal PME' indicating that a power 
management event has occurred. The external serial 
EEPROM interface 114 implements a standard EEPROM 
interface, for example, the 93CXX EEPROM interface proto 
col. The leads of external serial EEPROM interface 114 
include an EEPROM chip select (EECS) pin, EEPROM data 
in and data out (EEDI and EEDO, respectively) pins, and an 
EEPROM serial clock (EESK) pin. 

In the bus interface unit 104, address and data are multi 
plexed on bus interface pins AD 63:0. A reset input RST 
may be asserted to cause the network controller 102a to 
perform an internal system reset. A cycle frame I/O signal 
FRAME is driven by the network controller when it is the bus 
master to indicate the beginning and duration of a transaction, 
and a PCI clock input PCI CLK is used to drive the system 
bus interface over a frequency range of 15 to 133 MHz on the 
PCI bus (e.g., hostbus 106). The network controller102a also 
supports Dual Address Cycles (DAC) for systems with 64-bit 
addressing, wherein low order address bits appear on the 
AD31:0 bus during a first clock cycle, and high order bits 
appear on AD 63:32 during the second clock cycle. A 
REQ64 signal is asserted by a device acting as bus master 
when it wants to initiate a 64-bit data transfer, and the target 
of the transfer asserts a 64-bit transfer acknowledge signal 
ACK64 to indicate that it is willing to transfer data using 64 
bits. A parity signal PAR64 is an even 8 byte parity signal that 
protects AD63:32 The bus master drives PAR64 for address 
and write data phases and the target drives PAR64 for read 
data phases. 
The network controller 102a asserts a bus request signal 

REQ' to indicate that it wishes to become a bus master, and a 
bus grant input signal GNT indicates that the access to the bus 
has been granted to the network controller. An initialization 
device select input signal IDSEL is used as a chip select for 
the network controller during configuration read and write 
transactions. Bus command and byte enable signals C/BEI7: 
O are used to transfer bus commands and to indicate which 
physical bytes of data lines AD 63:0 carry meaningful data. 
A parity I/O signal PAR indicates and verifies even parity 
across AD31:0 and C/BE3:0. 
The network controller drives a drive select I/O signal 

DEVSEL' when it detects a transaction that selects the net 
work controller102a as a target. The network controller 102a 
checks DEVSEL' to see if a target has claimed a transaction 
that the network controller initiated. TRDY is used to indi 
cate the ability of the target of the transaction to complete the 
current data phase, and IRDY" indicates the ability of the 
initiator of the transaction to complete the current data phase. 
Interrupt request output signal INTA indicates that one or 
more enabled interrupt flag bits are set. The network control 
ler102a asserts aparity error I/O signal PERR' when it detects 
a data parity error, and asserts a system error output signal 
SERR' when it detects an address parity error. In addition, the 
controller 102a asserts a stop I/O signal STOP' to inform the 
bus master to stop the current transaction. 
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In the MAC engine 122, a physical interface reset signal 

PHY RST is used to reset the external PHY 111 (MII, GMII, 
TBI), a PHY loop-back output PHY LPBK is used to force 
an external PHY device 111 into loop-back mode for systems 
testing, and a flow control input signal FC controls when the 
MAC transmits a flow control frame. The network controller 
102a provides an external PHY interface 110 that is compat 
ible with either the Media Independent Interface (M11), 
Gigabit Media Independent Interface (GMII), or Ten Bit 
Interface (TBI) per IEEE Std 802.3. Receive data input sig 
nals RXD7:0 and output signals TXD7:0 are used for 
receive and transmit data exchange, respectively. When the 
network controller 102a is operating in GMII or MII mode, 
TX EN/TXD8 is used as a transmit enable. In TBI mode, 
this signal is bit 8 of the transmit data bus. RX DV/RXD8 
is an input used to indicate that valid receive data is being 
presented on the RX pins. In TBI mode, this signal is bit 8 of 
the receive data bus. 
When the network controller 102a is operating in GMII or 

MII mode, RX ER/RXD9 is an input that indicates that the 
external transceiver device has detected a coding error in the 
receive frame currently being transferred on the RXD pins. In 
TBI mode, this signal is bit 9 of the receive data bus. MII 
transmit clockinput TX CLK is a continuous clockinput that 
provides the timing reference for the transfer of the TX EN 
and TXD3:0 signals out of the network controller 102a in 
MII mode. GTX CLK is a continuous 125MHz clock output 
that provides the timing reference for the TX EN and TXD 
signals from the network controller when the device is oper 
ating in GMII or TBI mode. RX CLK is a clock input that 
provides the timing reference for the transfer of signals into 
the network controller when the device is operating in MII or 
GMII mode. COL is an input that indicates that a collision has 
been detected on the network medium, and a carrier sense 
input signal CRS indicates that a non-idle medium, due either 
to transmit or receive activity, has been detected (CRS is 
ignored when the device is operating in full-duplex mode). 

In TBI mode, 10-bit code groups represent 8-bit data pack 
ets. Some 10-bit code groups are used to represent com 
mands. The occurrence of even and odd code groups and 
special sequences called commas are all used to acquire and 
maintain synchronization with the PHY 110. RBCLKO is a 
62.5 MHZ clockinput that is used to latch odd-numbered code 
groups from the PHY device, and RBCLK1 is used to latch 
even-numbered code groups. RBCLK1 is always 180 
degrees out of phase with respect to RBCLKIO). COM DET 
is asserted by an external PHY 111 to indicate the code group 
on the RXD9:0 inputs includes a valid comma. 
The IPsec module 124 includes an external RAM interface 

to memories 116 and 118. When CKE is driven high, an 
internal RAM clock is used to provide synchronization, oth 
erwise the differential clock inputs CK and CK L are used. 
The RAMs have a command decoder, which is enabled when 
a chip select output CS L is driven low. The pattern on the 
WE. L. RAS L, and CAS L pins defines the command that is 
being issued to the RAM. Bank address output signals BA 1: 
0 are used to select the memory to which a command is 
applied, and an address Supplied by RAM address output pins 
A 10:0 selects the RAM word that is to be accessed. ARAM 
data strobe I/O signal DQS provides the timing that indicates 
when data can be read or written, and data on RAM data I/O 
pins DQ31:0 are written to or read from either memory 116 
or 118. 

Returning again to FIG. 2, an operational discussion of 
receive and transmit operation of the network controller 102 
is provided below. Starting with receipt of a data frame from 
the network media 108 (e.g., an optical fiber), the frame is 
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delivered to the GMII 110 (the Gigabit Media-Independent 
Interface), for example, as a series of bytes or words in par 
allel. The GMII 110 passes the frame to the MAC 122 accord 
ing to an interface protocol, and the MAC 122 provides some 
frame management functions. For example, the MAC 122 
identifies gaps between frames, handles half duplex prob 
lems, collisions and retries, and performs other standard Eth 
ernet functions such as address matching and some checksum 
calculations. The MAC 122 also filters out frames, checks 
their destination address and accepts or rejects the frame 
depending on a set of established rules. 
The MAC 122 can acceptandparse several header formats, 

including for example, IPv4 and IPv6 headers. The MAC 122 
extracts certaininformation from the frame headers. Based on 
the extracted information, the MAC 122 determines which of 
several priority queues (not shown) to put the frame in. The 
MAC places some information, such as the frame length and 
priority information, in control words at the front of the frame 
and other information, such as whether checksums passed, in 
status words at the back of the frame. The frame passes 
through the MAC 122 and is stored in the memory 118 (e.g., 
a 32 KB RAM). In this example, the entire frame is stored in 
memory 118. The frame is subsequently downloaded to the 
system memory 128 to a location determined by the descrip 
tor management unit 130 according to the descriptors 192 in 
the host memory 128 (FIG. 4), wherein each receive descrip 
tor 192 comprises a pointer to a data buffer 194 in the system 
memory 128. Transmit descriptors include a pointer or a list 
of pointers, as will be discussed in greater detail Supra. The 
descriptor management unit 130 uses the DMA 126 to read 
the receive descriptor 192 and retrieve the pointer to the buffer 
194. After the frame has been written to the system memory 
128, the status generator 134 creates a status word and writes 
the status word to another area in the system memory 128, 
which in the present example, is a status ring. The status 
generator 134 then interrupts the processor 112. The system 
software (e.g., the network driver 190 in FIG. 4) can then 
check the status information, which is already in the system 
memory 128. The status information includes, for example, 
the length of the frame, what processing was done, and 
whether or not the various checksums passed. 

In transmit operation, the host processor 112 initially dic 
tates a frame transmission along the network 108, and the 
TCP layer 186 of the operating system (OS) in the host 
processor 112 is initiated and establishes a connection to the 
destination. The TCP layer 186 then creates a TCP frame that 
may be quite large, including the data packet and a TCP 
header. The IPlayer 188 creates an IP header, and an Ethernet 
(MAC) header is also created, wherein the data packet, and 
the TCP, IP, and MAC headers may be stored in various 
locations in the host memory 128. The network driver 190 in 
the host processor 112 may then assemble the data packet and 
the headers into a transmit frame, and the frame is stored in 
one or more data buffers 194 in the host memory 128. For 
example, a typical transmit frame might reside in four buffers 
194: the first one containing the Ethernet or MAC header, the 
second one having the IP header, the third one the TCP 
header, and the fourth buffer containing the data. The network 
driver 190 generates a transmit descriptor 192 that includes a 
list of pointers to all these data buffers 194. 
The frame data is read from the buffers 194 into the con 

troller 102. To perform this read, the descriptor management 
unit 130 reads the transmit descriptor 192 and issues a series 
ofread requests on the hostbus 106 using the DMA controller 
126. However, the requested data portions may not arrive in 
order they were requested, wherein the PCI-X interface 104 
indicates to the DMU 130 the request with which the data is 
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associated. Using Such information, the assembly RAM logic 
160 organizes and properly orders the data to reconstruct the 
frame, and may also perform some packing operations to fit 
the various pieces of data together and remove gaps. After 
assembly in the assembly RAM 160, the frame is passed to 
the memory 116 (e.g., a 32 KB RAM in the illustrated 
example). As the data passes from the assembly RAM 160, 
the data also passes to the TX parser 162. The TX parser 162 
reads the headers, for example, the MAC headers, the IP 
headers (if there is one), the TCP or UDP header, and deter 
mines what kind of a frame it is, and also looks at the control 
bits that were in the associated transmit descriptor 192. The 
data frame is also passed to the transmit checksum system 164 
for computation of TCP and/or IP layer checksums. 
The transmit descriptor 192 may comprise control infor 

mation, including bits that instruct the transmit checksum 
system 164 whether to compute an IP header checksum and/ 
or TCP checksum. If those control bits are set, and the parser 
162 identifies or recognizes the headers, then the parser 162 
tells the transmit checksum system 164 to perform the check 
Sum calculations, and the results are put at the appropriate 
location in the frame in the memory 116. After the entire 
frame is loaded in the memory 116, the MAC 122 can begin 
transmitting the frame, or outgoing security processing (e.g., 
encryption and/or authentication) can be performed in the 
IPsec system 124 before transmission to the network 108. 
By offloading the transmit checksumming function onto 

the network controller 102 of the present invention, the host 
processor 112 is advantageously freed from that task. In order 
for the host processor 112 to perform the checksum, signifi 
cant resources must be expended. Although the computation 
of the checksum is relatively simple, the checksum, which 
covers the entire frame, must be inserted at the beginning of 
the frame. In conventional architectures, the host computer 
makes one pass through the frame to calculate the checksum, 
and then inserts the checksum at the beginning of the frame. 
The data is then read another time as it is loaded into the 
controller. The network controller 102 further reduces the 
load on the host processor 112 by assembling the frame using 
direct access to the system memory 128 via the descriptors 
192 and the DMA controller 126. Thus, the network control 
ler 102 frees the host processor 112 from several time con 
Suming memory access operations. 

In addition to the receive and transmit functions identified 
above, the network controller 102 may also be programmed to 
perform various segmentation functions during a transmit 
operation. For example, the TCP protocol allows a TCP frame 
to be as large as 64,000 bytes. The Ethernet protocol does not 
allow data transfers that large, but instead limits a network 
frame to about 1500 bytes plus some headers. Even in the 
instance of a jumbo frame option that allows 16,000 byte 
network frames, the protocol does not support a 64 KB frame 
size. In general, a transmit frame initially resides in one or 
more of the data buffers 194 in system memory 128, having a 
MAC header, an IP header, and a TCP header, along with up 
to 64 KB of data. Using the descriptor management unit 130, 
the frame headers are read, and an appropriate amount of data 
(as permitted by the Ethernet or network protocol) is taken 
and transmitted. The descriptor management unit 130 tracks 
the current location in the larger TCP frame and sends the data 
block by block, each block having its own set of headers. 

For example, when a data transmit is to occur, the host 
processor 112 writes a descriptor 192 and informs the con 
troller 102. The descriptor management unit 130 receives a 
full list of pointers, which identify the data buffers 194, and 
determines whether TCP segmentation is warranted. The 
descriptor management unit 130 then reads the header buffers 
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and determines how much data can be read. The headers and 
an appropriate amount of data are read into the assembly 
RAM 160 and the frame is assembled and transmitted. The 
controller 102 then re-reads the headers and the next block or 
portion of the untransmitted data, modifies the headers appro 
priately and forms the next frame in the sequence. This pro 
cess is then repeated until the entire frame has been sent, with 
each transmitted portion undergoing any selected security 
processing in the IPsec system 124. 
The network controller 102 of the present invention also 

advantageously incorporates IPSec processing therein. In 
contrast with conventional systems that offload IPSec pro 
cessing, the present invention employs on-board IPSec pro 
cessing, which may be implemented as a single-chip device 
102a (FIG. 3). In conventional systems, either the host pro 
cessor carries out IPSec processing or a co-processor, sepa 
rate from the network controller, is employed. Use of the host 
processor is very slow, and in either case, the frame passes at 
least three times through the memory bus. For example, when 
a co-processor is used, the frame passes through the bus once 
as it is read from memory and sent to the co-processor, again 
as it passes back to the system memory, and a third time as it 
is sent to the network controller. This processing consumes 
significant bandwidth on the PCI bus and negatively impacts 
system performance. A similar performance loss is realized in 
the receive direction. 

IPSec processing has two primary goals: first is to encrypt, 
or scramble, the data so that an unauthorized person or system 
cannot read the data. The second goal is authentication, which 
ensures that the packet is uncorrupted and that the packet is 
from the expected person or system. A brief discussion of the 
on-board IPSec processing follows below. The network con 
troller 102 of the present invention takes advantage of secu 
rity associations (SAS) using the SA memory interface 142, 
the SA lookup 146, and the SA memory 140. As briefly 
highlighted above, a security association is a collection of bits 
that describe a particular security protocol, for example, 
whether the IPSec portion 124 is to perform an encryption or 
authentication, or both, and further describes what algorithms 
to employ. There are several standard encryption and authen 
tication algorithms, so the SA interface 142 and SA lookup 
146 indicates which one is to be used for a particular frame. 
The SA memory 140 in the present example is a private 
memory, which stores the encryption keys. The SAS are 
obtained according to an IPSec protocol whereby sufficient 
information is exchanged with a user or system on the net 
work to decide which algorithms to use and allow both parties 
to generate the same keys. After the information exchange is 
completed, the software calls the driver 190, which writes the 
results into the SA memory 140. 
Once the key exchange is complete, the appropriate bits 

reside in the SA memory 140 that indicate which key is to be 
used and which authentication algorithm, as well as the actual 
keys. In transmit mode, part of the descriptor 192 associated 
with a given outgoing frame includes a pointer into the SA 
memory 140. When the descriptor management unit 130 
reads the descriptor 192, it sends a request to the SA memory 
interface 142 to fetch the key, which then sends the key to the 
key FIFO 172, that feeds the TX IPSec processing modules 
174a and 174b, respectively. When both encryption and 
authentication are to be employed in transmit, the process is 
slightly different because the tasks are not performed in par 
allel. The authentication is a hash of the encrypted data, and 
consequently, the authentication waits until at least a portion 
of the encryption has been performed. Because encryption 
may be iterative over a series of data blocks, there may be a 
delay between the beginning of the encryption process and 
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the availability of the first encrypted data. To avoid having this 
delay affect device performance, the exemplary network 
interface 102 employs two TX IPSec process engines 174a 
and 174b, wherein one handles the odd numbered frames and 
the other handles the even numbered frames in the illustrated 
example. 

Prior to performing the IPSec processing, the TX IPsec 
parser 170 parses the frame headers and looks for mutable 
fields therein, which are fields within the headers that are not 
authenticated because they vary as the frame travels over the 
network 108. For example, the destination address in the IP 
header varies as the frame goes across the Internet from router 
to router. The transmit IPsec parser 170 identifies the mutable 
fields and passes the information to the TX IPSec processors 
174, which selectively skip over the mutable field portions of 
the frames. The processed frames are sent to FIFOs 178a and 
178b and subsequently accumulated in the memory 118. The 
result of the authentication processing is an integrity check 
value (ICV), which is inserted by insertion block 179 into the 
appropriate IPsec header as the frame is transmitted from the 
memory 118 to the network media 108. 

In receive mode, a received frame comes into the MAC 122 
and the RX parser 144. The RX parser 144 parses the incom 
ing frame up to the IPsec headers and extracts information 
therefrom. The fields that are important to the RX parser 144 
are, for example, the destination IP address in the IP header, 
the SPI (Security Protocol Index), and a protocol bit that 
indicates whetheran IPSec header is an authentication header 
(AH) or an encapsulation security protocol (ESP) header. 
Some of the extracted information passes to the SA lookup 
block 146. The SA lookup block 146 identifies the appropri 
ate SA and conveys the information to the SA memory inter 
face 142 that retrieves the SA and places it into the key FIFO 
152. 
The SA lookup block 146 employs an on-chip SPI Table 

and the off-chip SA memory 140. The SPI Table is organized 
into 4096 bins, each comprising 4 entries. The entries include 
the 32-bit SPI, a hash of the destination address (DA), a bit to 
indicate the protocol, and a bit to indicate whether the entry is 
used. Corresponding entries in the SA memory contain the 
full DAs and the SA (two SAS when there is both authentica 
tion and encryption). The bin for each entry is determined by 
ahash of the SPI. To look up an SA, a hash of the SPI from the 
received frame is used to determine which bin to search. 
Within the bin, the SA lookup block 146 searches the entries 
for a match to the full SPI, the destination address hash, and 
the protocol bit. After searching, the SA lookup block writes 
an entry to the SA pointer FIFO 148, which either identifies a 
matching entry or indicates no match was found. A check of 
the DA address from the SA memory is made just before 
security processing. If there is no match, security processing 
is not performed on the frame in question. Based on the 
entries in the SA pointer FIFO 148, the keys are fetched from 
the external SA memory 140 and placed in the key FIFO 152. 
The RXIPSec processor 150 takes the keys that come in from 
the FIFO 152, reads the corresponding frame data out of the 
memory 118, and begins processing the frame, as required. 
For receive processing, decryption and authentication pro 
ceed in parallel (on receive, decryption and authentication are 
not sequential processes), and thus in this example only one 
RX IPSec processor is used. 
The RX IPsec parser 154 parses the headers that follow the 

ESP header. Any header that follows the ESP header will be 
encrypted and cannot be parsed until decryption has taken 
place. This parsing must be completed before TCP/UDP 
checksums can be computed and before pad bits can be 
checked. The decrypted data is stored in the memory 116. To 
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perform the TCP/UDP checksums and pad checks without 
having to store the frame data another time, these functions 
are carried out by checksum and pad check system 156 while 
the data is being transferred from the memory 116 to the host 
memory 128. In addition to the on-board IPSec processing 
and TCP segmentation highlighted above, the network con 
troller 102 also provides performance improvements in the 
execution of interrupts. Read latencies are large when a host 
processor is required to read a register from a network device. 
These latencies negatively impact system performance. In 
particular, as the host processor clock speed continues to 
increase, the disparity between the clock speed and the time it 
takes to get a response from a network controller over a PCI 
or other host bus becomes larger. Accordingly, when a host 
processor needs to read from a network device, the processor 
must wait a greater number of clock cycles, thereby resulting 
in opportunity loss. 
The network interface 102 avoids many read latencies by 

replacing read operations with write operations. Write opera 
tions are not as problematic because they can take place 
without involving the processor 112. Thus when write infor 
mation is sent to a FIFO, as long as the writes are in Small 
bursts, the network controller 102 can take the necessary time 
to execute the writes without negatively loading the proces 
sor. To avoid read operations during a transmit operation, the 
driver creates a descriptor 192 in the system memory 128 and 
then writes a pointer to that descriptor to the register 132 of 
the network controller 102. The DMU 130 of the controller 
102 sees the contents in the register 132 and reads the neces 
sary data directly from the system memory 128 without fur 
ther intervention of the processor 112. For receive operations, 
the driver software 190 identifies empty buffers 194 in the 
system memory 128, and writes a corresponding entry to the 
register 132. The descriptor management unit 130 writes to 
pointers in the transmit descriptor rings to indicate which 
transmit descriptors 192 have been processed and to pointers 
in the status rings to indicate which receive buffers 194 have 
been used. 

Unlike conventional architectures that require a host pro 
cessor to read an interrupt register in the network controller, 
the present invention generates and employs a control status 
block (CSB) 196 located in a predetermined region of the 
system memory 128 (e.g., a location determined upon initial 
ization). The network controller 102 writes to the CSB 196 
any register values the system needs. More particularly, after 
a frame has been completely processed, prior to generating an 
interrupt, the network controller 102 writes a copy of the 
interrupt register to the CSB 196. Then the controller 102 
asserts the interrupt; thus when the host processor 112 sees 
the interrupt in the register 132, the received data is already 
available in the receive data buffer 194. 

Various operational and structural details of the exemplary 
network interface controller 102 are hereinafter provided in 
conjunction with the figures. In particular, details of the Secu 
rity processing are illustrated and described below in greater 
detail to facilitate an understanding of the present invention in 
the context of the exemplary controller 102. 
Security Processing 

Referring now to FIGS. 2-4, 5, 6, and 7A-7D, the exem 
plary IPsec security system 124 is configurable to provide 
Internet protocol security (IPsec) authentication and/or 
encryption/decryption services for transmitted and received 
frames in accordance with RFC 2401. For authentication 
header (AH) processing the module implements the HMAC 
MD5-96 algorithm defined in RFC 2404 and the HMAC 
SHA-1-96 defined in RFC 2404. The HMAC-MD5-96 imple 
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mentation provides a 128-bit key, a 512-bit block size, and a 
128-bit message authentication code (MAC), truncated to 96 
bits. The implementation of the HMAC-SHA-1-96 algorithm 
provides a 160-bit key, a 512-bit block size, and a 160-bit 
message authentication code (MAC), truncated to 96 bits. For 
encapsulating security payload (ESP) processing, the IPsec 
module 124 also implements the HMAC-MD5-96 and 
HMAC-SHA-1-96 algorithms for authentication and the ESP 
DES-CBC (RFC 2406), the 3DES-CBC, and the AES-CBC 
(draft-ietflipsec-ciph-aes-cbc-01) encryption algorithms. 
The DES-CBC algorithm in the IPsec module 124 provides a 
64-bit key (including 8 parity bits), a 64-bit block size, and 
cipher block chaining (CBC) with explicit initialization vec 
tor (IV). The 3DES-CBC algorithm provides a 192-bit key 
(including 24 parity bits), a 64-bit block size, and CBC with 
explicit IV. The AES-CBC algorithm provides a 128-, 192-, or 
256-bit key; 10, 12, or 14 rounds, depending on key size; a 
128-bit block size, and CBC with explicit IV. 
The exemplary security system 124 provides cryptographi 

cally-based IPsec security services for IPv4 and IPv6, includ 
ing access control, connectionless integrity, data origin 
authentication, protection against replays (a form of partial 
sequence integrity), confidentiality (encryption), and limited 
traffic flow confidentiality. These services are provided at 
layer 3 (IPlayer), thereby offering protection for IP and/or 
upper layer protocols through the use of two traffic security 
protocols, the authentication header (AH) and the encapsu 
lating security payload (ESP), and through the use of crypto 
graphic key management procedures and protocols. The IP 
authentication header (AH) provides connectionless integ 
rity, data origin authentication, and an optional anti-replay 
service, and the ESP protocol provides confidentiality (en 
cryption), and limited traffic flow confidentiality, and may 
provide connectionless integrity, data origin authentication, 
and an anti-replay service. The AH and ESP security features 
may be applied alone or in combination to provide a desired 
set of security services in IPv4 and IPv6, wherein both pro 
tocols Support transport mode and tunnel mode. In transport 
mode, the protocols provide protection primarily for upper 
layer protocols and in tunnel mode, the protocols are applied 
to tunneled IP packets. 

For outgoing frames, the controller 102 selectively pro 
vides IPsec authentication and/or encryption processing 
according to security associations (SAS) stored in the SA 
memory 140. Ifan outgoing frame requires IPsec authentica 
tion, the IPsec unit 124 calculates an integrity check value 
(ICV) and inserts the ICV into the AH header or ESP trailer. 
If the frame requires encryption, the unit 124 replaces the 
plaintext payload with an encrypted version. For incoming 
(e.g., received) frames, the IPsec unit 124 parses IPsec head 
ers to determine what processing needs to be done. If an IPsec 
header is found, the IPsec system 124 uses the security 
parameters index (SPI) from the header plus the IPsec proto 
col type and IP destination address to search the SA memory 
140 to retrieve a security association corresponding to the 
received frame. Acceptable combinations of IPsec headers 
for the exemplary controller 102 include an AH header, an 
ESP header, and an AH header followed by an ESP header. 

For IPsec key exchange, the host 112 negotiates SAS with 
remote stations and writes SA data to the SA memory 140. In 
addition, the host 112 maintains an IPsec security policy 
database (SPD) in the system memory 128. For each trans 
mitted frame the host processor 112 checks the SPD to deter 
mine what security processing is needed, and passes this 
information to the controller 102 in the transmit descriptor 
192 as a pointer SA PTR 14:0 to the appropriate SA in the 
SA memory 140. For incoming received frames the controller 
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102 reports what security processing it has done in a receive 
status ring entry, and the host processor 112 checks the SPD 
to verify that the frame conforms with the negotiated policy. 
The SAS include information describing the type of security 
processing that must be done and the encryption keys to be 
used. Individual security associations describe a one-way 
connection between two network entities, wherein a bi-direc 
tional connection requires two SAS for incoming and outgo 
ing traffic. SAS for incoming traffic are stored partly in an 
internal SPI table or memory 270 (FIG. 6) and partly in the 
external SA memory 140. These SA tables are maintained by 
the host processor 112, which writes indirectly to the SPI 
table 270 and the SA memory 140 by first writing to an SA 
data buffer in host memory 128 and then writing a command 
to the SA address register. This causes the controller 102 to 
copy the data to the external SA memory 140 and to the 
internal SPI table memory 270. 
One of the fields in an SPI table entry is a hash code 

calculated by the host 112 according to the IP destination 
address. In addition, the host 112 calculates a hash code based 
on the SPI to determine where to write an SPI table. If an 
incoming or outgoing SA requires authentication, the host 
CPU calculates the values H(KXOR ipad) and H(KXOR 
opad) as defined in RFC 2104, HMAC: Keyed-Hashing for 
Message Authentication, where the host 112 stores the two 
resulting 128 or 160-bit values in the SA memory 140. If 
necessary, at initialization time the host CPU can indirectly 
initialize the Initialization Vector (IV) registers used for 
Cipher Block Chaining in each of four encryption engines in 
the IPsec system 124. 

Referring to FIGS. 2 and 9, to begin a transmission process, 
the host processor 112 prepares a transmit frame in one or 
more data buffers 194 in the host memory 128, writes a 
transmit descriptor 192 in one of the transmit descriptor rings, 
and updates the corresponding transmit descriptor write 
pointer (TX WR PTRX). The frame data in the data buffers 
194 includes space in the IPsec headers for authentication 
data, for an initialization vector (IV) 63b, 83c, and for an ESP 
trailer if appropriate. The contents of these fields will be 
generated by the IPsec system 124 in the controller 102. 
Similarly, if padding is required (e.g., for alignment or to 
make the ESP payload an integer multiple of encryption 
blocks), the padding is included in the host memory buffers 
194, and sequence numbers for the AH and ESP SEQUENCE 
NUMBER fields are provided in the data buffers 194 by the 
host 112. The IPsec system 124 does not modify these fields 
unless automatic TCP segmentation is also selected, in which 
case the IPsec system 124 uses the sequence numbers from 
the buffers 194 for the first generated frame and then incre 
ments these numbers appropriately for the rest of the gener 
ated segment frames. If IPsec processing is required for a 
particular outgoing frame, the corresponding transmit 
descriptor 192 includes a pointer in the SA PTR field to the 
appropriate SA entry in the external SA memory 140, and the 
IPsec system 124 uses information from the SA to determine 
how to process the frame. The transmit parser 162 examines 
the frame to determine the starting and ending points for 
authentication and/or encryption and where to insert the 
authentication data, if necessary. 

If ESP encryption is required, the IPsec system 124 
encrypts the payload data using the algorithm and key speci 
fied in the SA. If ESP authentication is required, the system 
124 uses the authentication algorithm and IPAD/OPAD infor 
mation specified in the SA to calculate the authentication data 
integrity check value (ICV), and stores the results in the 
authentication data field. If both ESP encryption and authen 
tication are required, the encryption is done first, and the 
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encrypted payload data is then used in the authentication 
calculations. The encryption and authentication processes are 
pipelined so that the encryption engine within one of the IPsec 
processors 174 is processing one block of data while the 
authentication engine is processing the previous block. The 
IPsec system 124 does not append padding to the payload data 
field, unless automatic TCP segmentation is also enabled. The 
host processor 112 provides the ESP trailer with appropriate 
padding in the frame data buffers 194 in the system memory 
128, and also provides the proper value for the ESP 
SEQUENCE NUMBER field in the ESP header. 

If ESP processing is combined with automatic TCP seg 
mentation, the IPsec System 124 adds any necessary padbytes 
to make the encrypted data length a multiple of the block 
length specified for the selected encryption algorithm. If ESP 
processing is combined with TCP or UDP checksum genera 
tion, the host 112 provides correct NEXT HEADER and PAD 
LENGTH values for the ESP trailer and the Transmit 
Descriptor 192. If ESP processing is combined with auto 
matic TCP segmentation, the host 112 provides values for the 
NEXT HEADER and PAD LENGTH fields of the transmit 
descriptor 192 that are consistent with the corresponding 
frame data buffers 194. In this combination, the controller 
102 copies the NEXT HEADER field from the transmit 
descriptor 192 into the ESP trailer of each generated frame, 
and uses the PAD LENGTH field of the descriptor 192 to find 
the end of the TCP data field in the frame data buffer 194. In 
addition, the maximum segment size field MSS13:0 of the 
transmit descriptor 192 is decreased to compensate for the 
IPsec header(s), the ESP padding, and the ICV. 
Where ESP processing is combined with TCP segmenta 

tion or with TCP or UDP checksum generation, the software 
driver 190 sets the ESP AH, IVLENO, and IVLEN1 bits of 
the transmit descriptor 192 accordingly. The transmit parser 
162 uses this information to locate the TCP or UDP header, 
and if no TCP or UDP processing is required, these bits are 
ignored. 
The encryption algorithms supported by the IPsec system 

124 employ cipher block chaining (CBC) mode with explicit 
initialization vectors (IVs 63b FIG. 1I,83c FIG. 1J). To allow 
a certain amount of parallel processing the IPsec system 124 
includes two TX IPSEC processor systems 174a and 174b, 
each of which comprises a DES/3DES (data encryption stan 
dard) encryption system and an advanced encryption stan 
dard (AES) encryption engine. Each of the four encryption 
engines in the TX IPSEC processors 174 includes an IV 
register, which are cleared to Zero on reset. When the control 
ler 102 is enabled, the contents of the IV register associated 
with an encryption engine are used as the initialization vector 
63b, 83c for the first transmit frame encrypted by that engine. 
Thereafter the last encrypted data block from one frame is 
used as the IV 63b, 83c for the following frame. The host 
processor 112 can initialize the IV registers in the IPsec 
system 124 with random data, for example, by transmitting 
frames with random data in the payload fields. In one 
example, the host 112 can put the external PHY device into an 
isolate mode to prevent these random data frames from reach 
ing the network 108. The IPsec system 124 inserts the IV 
value 63b, 83c at the beginning of the payload field. The host 
112 provides space in the frame data buffer 194 for this field 
63b, 83c. The length of the IV 63b, 83c is the same as the 
encryption block size employed in the TX IPSEC processors 
174, for example, 64bits for the DES and 3DES algorithms, 
and 128 bits for the AES algorithm. 
Where authentication header (AH) processing is selected, 

the security system 124 employs authentication algorithm 
and authentication ipad and opad data specified in the SA to 
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calculate the authentication data integrity check value (ICV), 
and it stores the results in the authentication data field. The 
transmit IPsec parser 170 detects mutable fields (as defined 
by the AH specification, RFC 2402) and insures that the 
contents of these fields and the authentication data field are 
treated as Zero for the purpose of calculating the ICV. In the 
ICV calculation the IPsec system 124 employs the destination 
address from the SA rather than the destination address from 
the packet's IP header, to ensure that if source routing options 
or extensions are present, the address of the final destination 
is used in the calculation. 

Referring now to FIGS. 2 and 10, the IPsec system 124 
provides security processing for incoming (e.g., received) 
frames from the network 108. The RX parser 144 examines 
incoming frames to find IPsec headers, and looks up the 
corresponding SA in the SA memory 140. The RX IPSEC 
processor 150 then performs the required IPsec authentica 
tion and/or decryption according to the SA. If decryption is 
required, the processor 150 replaces the original ciphertext in 
the frame with plaintext in the memory 116. The descriptor 
management unit 130 sets status bits in the corresponding 
receive status ring entry to indicate what processing was done 
and any errors that were encountered. 

FIG. 6 illustrates the flow of incoming data through the 
IPsec system 124. The receive parser 144 examines the head 
ers of incoming frames from the MAC engine 122 while the 
incoming frame is being received from the network 108. The 
parser 144 passes the results of its analysis to the SA lookup 
logic 146. This information is also provided to the memory 
118 in the form of a control block that is inserted between 
frames. The control block includes information about the 
types and locations of headers in the incoming frame. If the 
parser 144 finds that a frame includes an IP packet fragment, 
IPsec processing is bypassed, and the frame is passed onto the 
host memory 128 with the IP Fragment bit being set in the 
IPSEC STAT1 field in the corresponding receive status ring 
entry. For IPv4 frames, a fragment is identified by a non-zero 
fragment offset field or a non-Zero more fragments bit in the 
IPv4 header. For IPv6 packets, a fragment is indicated by the 
presence of a fragment extension header. 

If the parser 144 finds an IPsec header or an acceptable 
combination of headers, it passes the SPI, the IP destination 
address, and a bit indicating the IPsec protocol (AH or ESP) 
to the SA lookup engine 146. The SA lookup engine 146 uses 
the SPI, protocol bit, and a hash of the destination address to 
search an internal SPI memory 270 (FIG. 6). The results of 
this search are written to the SA pointer FIFO 148, including 
a pointer to an entry in the external SA memory 140, a bit that 
indicates whether IPsec processing is required, and two bits 
that indicate the success or failure of the SA lookup. The SA 
pointer FIFO 148 includes an entry corresponding to each 
incoming frame in the memory 118. If the SA pointer FIFO 
148 does not have room for a new entry at the time that an 
incoming frame arrives from the network 108 or if the 
received frame would cause the receive portion of the 
memory 118 to overflow, the frame is dropped, and a receive 
missed packets counter (not shown) is incremented. 
An RX KEY FETCH state machine 262 (FIG. 6) retrieves 

the corresponding entry from the SA pointer FIFO 148 and 
determines what, if any, processing is required. If the control 
bits indicate that processing is required, the state machine 262 
uses the contents of the pointer field to fetch the SA informa 
tion from the external SA memory 140. If a DA field of the SA 
does not match the DA field of the IP header in the frame, the 
IPsec processor 150 causes an error code to be written to the 
receive status ring and passes the frame to the memory 118 
unmodified. If the DA field of the SA matches the DA field of 
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the IP header, the processor 150 decrypts the payload portion 
of the received frame and/or checks the authentication data as 
required by the SA. 

Referring also to FIGS. 11A-11D, the security association 
system used in outgoing IPsec processing in the exemplary 
controller 102 is hereinafter described. FIG. 7A illustrates an 
exemplary security association table write access, FIG. 7B 
illustrates an exemplary SA address register format, FIG. 7C 
illustrates an exemplary SPI table entry in the SPI memory 
270, and FIG. 7D illustrates an exemplary SA memory entry 
in the SA memory 140. The SA lookup engine 146 uses the 
SPI memory 270 and the external SA memory 140, both of 
which are maintained by the host processor 112, where the 
exemplary SPI memory 270 is organized as a collection of 
4096 bins, each bin having up to 4 entries. The address of an 
entry in the SPI memory 270 is 14 bits long, with the 12 high 
order bits thereof indicating a bin number. As illustrated in 
FIG. 7C, each SPI table entry 272 in the SPI memory 270 
includes a 32-bit security parameters index SPI31:0, a hash 
of the destination address DA. HASH39:32, a protocol bit 
PROTO indicating the security protocol (e.g., AH or ESP), 
and a VALID bit indicating whether the entry is valid or 
unused. 

FIG. 7D illustrates an exemplary entry 274 in the SA 
memory 140, wherein the SA memory 140 includes an entry 
corresponding to each entry 272 in the SPI memory 270, with 
entries 274 and 272 in the two memories 140 and 270 being in 
the same order. The entry 274 includes a three bit ESP encryp 
tion algorithm field ESP ALG indicating whether ESP 
encryption is required, and if so, which algorithm is to be 
employed (e.g., DES: 3DES: AES-128, 10 rounds: AES-192, 
12 rounds; AES-256, 14 rounds; etc.). An electronic code 
book bit ECB indicates whether ECB mode is used for 
encryption, and a two bit ESP authentication field ESPA 
H ALG indicates whether ESP authentication is required, 
and if so, which algorithm is to be employed (e.g., MD5, 
SHA-1, etc.). A two bit AH field AH ALG indicates whether 
AH processing is required, and if so which algorithm is to be 
employed (e.g., MD5, SHA-1, etc.). A protocol bit PROTO 
COL indicates whether the first IPsec header is an ESPheader 
or an AH header, and an IPv6 bit indicates whether the SA is 
defined for IPv4 or IPv6 frames. 
A BUNDLE bit indicates a bundle of two SAS specifying 

AH followed by ESP and a 32 bit SPI field specifies an SPI 
associated with the second SA (e.g., ESP) in a bundle of 2 
SAs, which is ignored for SAS that are not part of bundles. An 
IP destination address field IPDA 127:0 indicates the 
address to which the SA is applicable, wherein the SA applies 
only to packets that contain this destination address. An 
AH IPAD field includes a value obtained by applying the 
appropriate authentication hash function (e.g., MD5 or SHA 
1) to the exclusive OR of the AH authentication key and the 
HMAC ipad string as described in RFC 2104. If the authen 
tication function is MD5, the result is 16 bytes, which are 
stored in consecutive bytes starting at offset 24. If the authen 
tication function is SHA-1, the result is 20 bytes, which 
occupies the entire AH IPAD field. 
An AH OPAD field includes a value obtained by applying 

the appropriate authentication hash function (e.g., MD5 or 
SHA-1) to the exclusive OR of the AHauthentication key and 
the HMAC opad string as described in RFC 2104. If the 
authentication function is MD5, the result is 16 bytes, which 
are stored in consecutive bytes starting at offset 44. If the 
authentication function is SHA-1, the result is 20 bytes, 
which occupies the entire AH OPAD field. The SA memory 
entry 274 also includes an ESP IPAD field having a value 
obtained by applying the authentication hash function (MD5 
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or SHA-1) to the exclusive OR of the ESP authentication key 
and the HMAC ipad string as described in RFC 2104, as well 
as an ESP OPAD field including a value obtained by apply 
ing the authentication hash function (MD5 or SHA-1) to the 
exclusive OR of the ESP authentication key and the HMAC 
opad string as described in RFC 2104. An encryption key field 
ENC KEY includes an encryption/decryption key used for 
ESP processing. 
The IPsec system 124 reads from the SA and SPI memories 

140 and 270, respectively, but does not write to them. To 
minimize the lookup time the SPI memory 270 is organized as 
a hash table in which the bin number of an entry 272 is 
determined by a hash function of the SPI. The lookup logic 
146 uses the SPI and the IPsec protocol (AH or ESP) to search 
the SPI memory 270, by computing a hash value based on the 
SPI and using the result to address a bin in the SPI memory 
270. A second hash value is computed for the IP destination 
address, and the lookup logic 146 compares the SPI, protocol, 
and destination address hash with entries in the selected bin 
until it either finds a match or runs out of bin entries. The 
lookup logic 146 then writes an entry into the SA pointer 
FIFO 148, including the address of the matching entry in the 
SPI memory 270 and an internal status code that indicates 
whether or not IPsec processing is required and whether or 
not the SA lookup was successful. The Rx key fetch logic 262 
fetches the DA from the SA memory 140 to compare with the 
DA in the IP packet header. If the DA from the SA memory 
140 does not match the DA from the received frame, the frame 
is passed on to host memory 128 via the memory 116 and the 
bus interface 106 without IPsec processing, and the corre 
sponding receive status ring entry indicates that no IPsec 
processing was done. 

Referring also to FIG. 7A, the SA memory 140 and the SPI 
memory 270 are maintained by the host processor 112. Dur 
ing normal operation, the host 112 uses write and delete 
accesses to add and remove table entries 274,272. The exem 
plary SA memory 140 is divided into two regions, one for 
incoming SAS and one for outgoing SAS, wherein each region 
provides space for 16K entries. Access to the SA and SPI 
memories 140 and 270 by the host 112 is performed using an 
SA address register SA ADDR 280 and a 144-byte SA buffer 
282. The SAbuffer 282 holds one 136-byte SA memory entry 
274 followed by a corresponding 8-byte SPI table entry 272. 
For outgoing SAs, the SPI table entry section 272 of the buffer 
282 is not used. To write an SA table entry, the host 112 
creates a 136 or 144 byte entry in the host memory 128 and 
writes the target address in the SA memory 140 to the 
SA ADDR register 280. The controller 102 uses DMA to 
copy the SA information first to the internal SA Buffer 282 
and then to the appropriate locations in the SA memory 140 
and the SPI memory 270. The host 112 writes the physical 
address of an SA entry buffer 284 in the host memory 128 to 
an SA DMA ADDR register 286. If the software driver 190 
uses the same buffer 284 in host memory 128 for loading all 
SA table entries, it only has to write to the SA DMA ADDR 
register 286 once. 

Incoming security associations are stored in locations 
determined by the hash algorithm. For outgoing (transmit) 
frames the driver software 190 includes a pointer to the appro 
priate SA in the transmit descriptor 192. This makes it unnec 
essary for the controller 102 to search the SA memory 140 for 
outgoing SAS, and transmit SAS can be stored in any order. 
No outgoing SA is stored at offset 0, since the value 0 in the 
SA PTR field of the descriptor 192 is used to indicate that no 
IPsec processing is required. 

Referring also to FIG. 7B, the SA address register 280 
includes the address of the SA table entries 274 to be accessed 
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plus six SA access command bits. These command bits 
include SA read, write, delete, and clear bits (SA RD, 
SA WR, SA DEL, and SA CLEAR), an SA direction bit 
SA DIR, and a command active bit SA ACTIVE. The read 
only SA ACTIVE bit is 1 while the internal state machine 
262 is copying data to or from the SA buffer 282, during 
which time the host 112 refrains from accessing the SA buffer 
282. Selection between the incoming and outgoing regions of 
the external SA memory 140 is controlled by the SA DIRbit, 
which acts as a high-order address bit. This bit is set to 1 for 
an incoming SA or to 0 for an outgoing SA. If this bit is set to 
1, data is transferred to or from the internal SPI memory 270 
as well as to or from the external SA memory 140. Outgoing 
SA table accesses affect only the external SA memory 140. 
When the host 112 sets the SA RD in the SA address register 
280, a state machine copies data from the external SA 
memory 140 to the SAbuffer 282. If the direction bit SA DIR 
is 1, the corresponding entry 272 from the internal SPI 
memory 270 is also copied to the SA buffer 282. An SA 
address field SA ADR13:0 of the SA address register 280 
points to the entries 272 and/or 274 to be copied. 
When the host 112 sets the SA WR bit in the SA ADDR 

register 280, the resulting action depends on the value of the 
SA DIR bit. If this bit is 1 (e.g., indicating an incoming SA), 
the state machine copies data first from the buffer 284 in host 
memory 128 into the internal SA buffer 282, and them from 
the SA buffer 282 into the external SA memory 140 and also 
into the corresponding internal SPI memory 270. If the 
SA DIR bit is 0 (e.g., indicating a transmit SA), when the 
access command is write, only the SA field of the SA buffer 
282 is copied to the SA memory 140 entry selected by the SA 
address register 280, and the SPI field is not copied. For 
bundle processing, a BUNDLE bit is set in the SA corre 
sponding to the first IPsec header in the frame, indicating that 
the frame is expected to include an AH header followed by an 
ESP header. The corresponding entry in the external SA 
memory 140 includes information for both these headers, 
including the expected SPI of the second IPsec header. 

For receive AH processing, the value of the AH ALG field 
in the SA memory entry 274 is non-zero, indicating that AH 
processing is required for the received frame. The RX parser 
144 scans the frame IP header (e.g., and IPv6 extension head 
ers if present) to determine the locations of mutable fields, as 
set forth in RFC 2402). The parser 144 inserts a list of these 
mutable field locations into the control block in the memory 
118. If AH processing is enabled, the IPsec processor 150 
replaces the mutable fields and the ICV field of the AH header 
with Zeros for the purpose of calculating the expected ICV 
(the frame data that is copied to the host memory 128 is not 
altered). The destination address field of the IP header is 
considered to be mutable but predictable, because intermedi 
ate routers may change this field if source routing is used. 
However, since the originating node uses the final destination 
address for the ICV calculation, the receiver treats this field as 
immutable for its ICV check. 
The control block in the memory 118 includes pointers to 

the starting and ending points of the portion of the received 
frame that is covered by AH authentication. The IPsec pro 
cessor 150 uses this control block information to determine 
where to start and stop its authentication calculations. The 
AH ALG field in the SA memory entry 274 indicates which 
authentication algorithm is to be used. The exemplary IPsec 
system 124 provides HMAC-SHA-1-96 as defined in RFC 
2404 and HMAC-MD5-96 as defined in RFC 2403 for AH 
processing. In either case the Rx IPsec processor 150 uses 
preprocessed data from the AH IPAD and AH OPAD fields 
of the SA entry 274 along with the frame data to execute the 
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HMAC keyed hashing algorithm as described in RFC 2104. If 
the results of this calculation do not match the contents of the 
authentication data field of the AH header, the AH ERR bit is 
set in the corresponding receive status ring entry. 

For receive ESP processing, the ESPAH ALG field of the 
SA memory entry 274 is non-zero, indicating that ESP 
authentication is required, and the non-Zero value indicates 
which authentication algorithm will be employed (e.g., MD5, 
SHA-1, etc.). The Rx IPsec processor 150 uses the prepro 
cessed ipad and opad data from the ESP IPAD and ESP O 
PAD fields of the SA entry 274 along with frame data to 
execute the HMAC keyed hashing algorithm as described in 
RFC 2104. It uses pointers extracted from the control block of 
the memory 118 to determine what part of the frame to use in 
the ICV calculation. The data used in the calculation start at 
the beginning of the ESP header and ends just before the 
authentication data field of the ESP trailer, wherein none of 
the fields in this range are mutable. If the results of this ICV 
calculation do not match the contents of the authentication 
data field in the ESP trailer, the ESP ICV ERR bit is set in 
the corresponding receive status ring entry. 

If the ESP ALG field of the SA memory entry 274 is 
non-zero, ESP decryption is required, and the receive IPsec 
processor 150 uses the ESP ALG and ECB fields of the entry 
274 to determine which decryption algorithm and mode to 
use (e.g., DES: 3DES: AES-128, 10 rounds; AES-192, 12 
rounds; AES-256, 14 rounds; etc.). The Rx IPsec processor 
150 retrieves the decryption key from the ENC KEY field of 
the entry 274, and uses information from the control block in 
the memory 118 to determine which part of the frame is 
encrypted (e.g., the portion starting just after the ESP header 
and ending just before the authentication data field of the ESP 
trailer). If the SA indicates that no ESP authentication is to be 
performed, the length of the authentication data field is zero 
and the encrypted data ends just before the FCS field. 
Once the payload has been decrypted, the IPsec processor 

150 checks the pad length field of the ESP trailer to see if pad 
bytes are present. If the pad length field is non-zero, the 
processor 150 examines the pad bytes and sets the PAD ERR 
bit in the receive status ring entry if the pad bytes do not 
consist of an incrementing series of integers starting with 1 
(e.g., 1, 2, 3, . . . ). The IPsec processor 150 replaces the 
encrypted frame data with (decrypted) plaintext in the 
memory 118. The exemplary processor 150 does not recon 
struct the original IP packet (e.g., the processor 150 does not 
remove the ESP header and trailer and replace the Next 
Header field of the previous unencrypted header). If the 
encryption uses CBC mode, the first 8 or 16 bytes of the ESP 
payload field contain the unencrypted IV, which the IPsec 
processor 150 does not change. The encrypted data following 
the IV is replaced by its decrypted counterpart. 

In the exemplary IPsec system 124, the SPI table bin num 
ber and the IP destination address hash codes are both calcu 
lated using a single 12-bit hash algorithm. The bin number is 
calculated by shifting the SPI through hash logic in the IPsec 
processor 150. For the destination address (DA) hash, the 
32-bit IPv4 destination address or the 128-bit IPv6 destina 
tion address is shifted through the hashing logic, which pro 
vides 12 output bits used for the bin number, where only the 
8 least significant bits are used for the DA hash. The hash 
function is defined by a programmable 12-bit polynomial in a 
configuration register of the controller 102, wherein each bit 
in the polynomial defines an AND/XOR tap in the hash logic 
of the processor 150. The incoming bit stream is exclusive 
ORed with the output of the last flip-flop in the hash function. 
The result is ANDed bitwise with the polynomial, exclusive 
ORed with the output of the previous register, and then 
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shifted. The hash function bits are initialized with Zeros. The 
search key is then passed through the hash function. After the 
input bit stream has been shifted into the hash function logic, 
the 12-bit output is the hash key. 

Although the invention has been illustrated and described 
with respect to one or more implementations, alterations and/ 
or modifications may be made to the illustrated examples 
without departing from the spirit and scope of the appended 
claims. In particular regard to the various functions per 
formed by the above described components or structures 
(blocks, units, engines, assemblies, devices, circuits, sys 
tems, etc.), the terms (including a reference to a “means' 
used to describe such components are intended to correspond, 
unless otherwise indicated, to any component or structure 
which performs the specified function of the described com 
ponent (e.g., that is functionally equivalent), even though not 
structurally equivalent to the disclosed structure which per 
forms the function in the herein illustrated exemplary imple 
mentations of the invention. In addition, while a particular 
feature of the invention may have been disclosed with respect 
to only one of several implementations, such feature may be 
combined with one or more other features of the other imple 
mentations as may be desired and advantageous for any given 
or particular application. Furthermore, to the extent that the 
terms “including”, “includes”, “having”, “has”, “with', or 
variants thereofare used in either the detailed description and 
the claims, such terms are intended to be inclusive in a manner 
similar to the term "comprising.” 
What is claimed is: 
1. An improved security processing circuit for performing 

3DESIPsec security processing services for a host system 
using a DES engine, the security processing circuit compris 
1ng: 

the DES engine having a message input, a cipher key input, 
and a pre-data output, the engine adapted to receive and 
Selectively process a block of data from the message 
input of the security processing circuit during a first DES 
processing operation, and Subsequently to process data 
from an intermediate result during second and third DES 
processing operations and store an intermediate result of 
the third DES processing operation to the pre-data out 
put; 

a security keys circuit having a set of cipher keys input and 
a key output, the security keys circuit operable to select 
and transfer a different cipher key to the key output 
coupled to the cipher key input of the DES engine 
selected from the set of cipher keys associated with each 
DES processing operation during the first, second and 
third DES processing operations; and 

a data output circuit having a pre-data input and a data 
output, the pre-data input of the data output circuit 
coupled to the pre-data output of the DES engine, and 
the data output selectively coupleable to the host system, 
the data output circuit operable to further security pro 
cess data from the pre-data input and to selectively 
exclusive OR an initialization vector with the processed 
data and latch a final third DES result to the data output 
of the security processing circuit for use by the host 
system, 

wherein the DES engine comprises: 
a permutation block having the message input and a 

permutation output, the permutation block operable 
to receive a block of data at the message input and to 
perform an initial permutation of the message input 
data and provide a permutation result at the permuta 
tion output; 
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a data input multiplexer having a first and second input 
and a data selection output, the data input multiplexer 
operable to select and couple one of the first and 
second inputs to the data selection output; 

an intermediate result register having a data input 
coupled to the data selection output, a clockinput, and 
a latched data output, the register operable to store 
right and left half results of the initial permutation or 
of an eight round cipher process based on data present 
at the data input upon receipt of a clock signal at the 
clock input; 

eight cipher blocks having a data input, a key input, and 
a cipher output, operable to receive data at the data 
input and a key at the key input, to perform the cipher 
process comprising right and left halves of a sequen 
tial eight step cipher process on the data at the data 
input employing the key, and to provide a first and 
second cipher result during a first and second eight 
step cycle of each of the three DES processing opera 
tions; 

a pre-data output multiplexer having a first and second 
input and a data selection output, the pre-data output 
multiplexer operable to select and couple one of the 
first and second inputs to the data selection output; 
and 

a pre-data output register having a data input, a clock 
input, and a latched data output, 

wherein the permutation output of the permutation block 
is coupled to the first input of the data input multi 
plexer, the data selection output of the data input 
multiplexer coupled to the data input of the interme 
diate result register, the latched data output of the 
intermediate result register coupled to the data input 
of the eight cipher blocks having the cipher output of 
the eight cipher blocks feedback coupled to the sec 
ond input of the data input multiplexer and to the first 
input of the pre-data output multiplexer, the data 
selection output of the pre-data output multiplexer 
coupled to the pre-data output register, the latched 
data output of the pre-data output register feedback 
coupled to the second input of the pre-data output 
multiplexer and the pre-data output. 

2. The security processing circuit of claim 1, 
wherein the DES engine is further operable to perform the 

initial permutation of the message input data using the 
permutation block, initially select the permutation result 
with the data input multiplexer and couple and store the 
result to the intermediate result register during a data 
input latch cycle, to transfer the initial result and the 
cipher key from the security keys circuit to the eight 
cipher blocks for cipher processing and intermediate 
storage of the right and left halves of the first eight step 
cipher results Subsequent to selection of the second input 
of the data input multiplexer into the intermediate result 
register during the first cipher process cycle, to transfer 
the stored intermediate result and the cipher key from the 
security keys circuit to the eight cipher blocks for cipher 
processing and intermediate storage of the right and left 
halves of the second eight step cipher results subsequent 
to selection of the second input of the data input multi 
plexer into the intermediate result register and the pre 
data output register Subsequent to selection of the first 
input of the pre-data output multiplexer during the sec 
ond cipher process cycle of the first DES processing 
operation, and 

wherein the DES engine is operable to repeat the first and 
second cipher process cycles for the Subsequent second 
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and third DES security processing operations of the 
security processing circuit, and latch the intermediate 
result of the third DES operation to the pre-data output of 
the pre-data output register of the DES engine, using the 
Selection of the second input of the pre-data output mul 
tiplexer during the third DES processing operation of the 
3DES security processing. 

3. The security processing circuit of claim 2, wherein the 
3DES processing is completed in three single DES process 
ing operations. 

4. The security processing circuit of claim 2, wherein the 
3DES processing is completed in eight clock cycles. 

5. The security processing circuit of claim 2, wherein the 
first, second and third DES processing operations each have a 
duration of two clock cycles. 

6. The security processing circuit of claim 4, wherein the 
clock cycle has a period of about 8 ns. 

7. The security processing circuit of claim 4, wherein the 
eight clock cycles of the 3DES Security processing comprise: 

a data input latch cycle; 
a first DES processing operation comprising two cycles; 
a second DES processing operation comprising two cycles; 
a third DES processing operation comprising two cycles; 

and 
a data output latch cycle. 
8. The security processing circuit of claim 1, further com 

prising a clock input coupled to one or more of the DES 
engine, the security keys circuit, and the data output circuit 
for timing clock cycles of the first, second and third DES 
processing operations of the 3DES processing for the security 
processing circuit. 

9. The security processing circuit of claim 1, wherein the 
security keys circuit comprises: 

a set of cipher keys input, wherein the set of cipher keys 
comprise three different cipher keys, each cipher key 
associated with one of the three DES processing opera 
tions of the 3DES security processing: 

a keys input multiplexer having a set of cipher keys input, 
and a cipher key selection output, the keys input multi 
plexer operable to select and couple a cipher key to the 
cipher key selection output; and 

a security keys register having a data input, a clock input, 
and a latched data output, the register operable to store 
the cipher key selection associated with one of the three 
DES processing operation of the 3DES security process 
ing based on cipher key data at the data input upon 
receipt of a clock signal at the clock input, the latched 
data output of the security keys register coupled to the 
key input of the eight cipher blocks. 

10. The security processing circuit of claim 9, wherein the 
keys input multiplexer is operable to receive the three cipher 
keys and to selectively couple one of the three cipher keys 
associated with a DES processing operation to the Des engine 
during the three DES processing operations of the 3DES 
security process. 

11. The security processing circuit of claim 1, wherein the 
data output circuit comprises: 

an inverse permutation block having a pre-data input and 
an inverse permutation output, the inverse permutation 
block operable to receive and further security process 
the pre-data output from the DES engine, performing an 
inverse permutation of the pre-data and transfer the pro 
cessed data to the inverse permutation output; 

an XOR gate having a processed data input, an initializa 
tion vector input, and an XOR gate output, the XOR gate 
operable to selectively exclusive OR the initialization 
vector at the initialization vector input together with the 
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processed data from the inverse permutation output of 
the inverse permutation block coupled to the processed 
data input, and transfer the XOR data to the XOR gate 
output; 

a data output multiplexer having a first and second input, a 
Selection control signal, and a data selection output, the 
data output multiplexer operable to select and couple 
one of the first and second inputs to the data selection 
output, based on the state of the selection control signal, 
the first input coupled to the XOR gate output, and the 
second input coupled to a data output register, and 

the data output register having a data input, a clock input, 
and a latched data output, the register operable to store 
the output data results of the third DES process based on 
data present at the data input upon receipt of a clock 
signal at the clock input, the latched data output of the 
data output register feedback coupled to the second 
input of the data output multiplexerto insure latching of 
the data at the output, 

wherein the data output circuit is operable to further secu 
rity process data from the pre-data input and to selec 
tively exclusive OR an initialization vector with the pro 
cessed data and latch a final third DES result to the data 
output of the security processing circuit for use by the 
host system. 

12. The security processing circuit of claim 11, wherein the 
data output circuit is operable to further security process data 
from the pre-data input and to selectively exclusive OR an 
initialization vector with the processed data and latch a final 
third DES result to the data output of the security processing 
circuit for use by the host system. 

13. The security processing circuit of claim 1, wherein the 
security processing circuit resides within a network interface 
device of a host system for performing 3DES encryption and 
decryption services for the host system using a Des engine. 

14. The security processing circuit of claim 1, further com 
prising a network interface device coupled with the security 
processing circuit, the network interface device being 
adapted to selectively encrypt outgoing data from the host 
system to cryptographically process data for transmission to 
the network. 

15. The security processing circuit of claim 14, wherein the 
network interface device comprises a bus interface, a media 
access control system, and the security processing circuit. 

16. The security processing circuit of claim 15, wherein the 
network interface device is a single integrated circuit. 

17. The security processing circuit of claim 1, wherein the 
circuit comprises an IPsec circuit adapted to selectively pro 
vide authentication, encryption, and decryption functions for 
incoming and outgoing data. 

18. An improved DES engine used in a security processing 
circuit for performing 3DES IPsec security processing, the 
DES engine comprising: 

a permutation block having the message input and a per 
mutation output, the permutation block operable to 
receive a block of data at the message input and to 
performan initial permutation of the message input data 
and provide a permutation result at the permutation out 
put; 

a data input multiplexerhaving a first and second input and 
a data selection output, the data input multiplexer oper 
able to select and couple one of the first and second 
inputs to the data selection output; 

an intermediate result register having a data input coupled 
to the data selection output, a clock input, and a latched 
data output, the register operable to store right and left 
half results of the initial permutation or of an eight round 
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cipher process based on data present at the data input 
upon receipt of a clock signal at the clock input; 

eight cipher blocks having a data input, a key input, and a 
cipher output, operable to receive data at the data input 
and a key at the key input, to perform the cipher process 
comprising right and left halves of a sequential eight step 
cipher process on the data at the data input employing 
the key, and to provide a first and second cipher result 
during a first and second eight step cycle of each of the 
three DES processing operations; 

a pre-data output multiplexer having a first and second 
input and a data selection output, the pre-data multi 
plexer operable to select and couple one of the first and 
second inputs to the data selection output; and 

a pre-data output register having a data input, a clockinput, 
and a latched data output, 

wherein the engine is adapted to receive and selectively 
process a block of data from the message input of the 
security processing circuit during a first DES processing 
operation, and Subsequently to process data from an 
intermediate result during second and third DES pro 
cessing operations of a 3DES Security processing and 
store an intermediate result of the third DES processing 
operation to a pre-data output of the pre-data output 
register, and 

wherein the permutation output of the permutation block is 
coupled to the first input of the data input multiplexer, 
the data selection output of the data input multiplexer 
coupled to the data input of the intermediate result reg 
ister, the latched data output of the intermediate result 
register coupled to the data input of the eight cipher 
blocks having the cipher output of the eight cipher 
blocks feedback coupled to the second input of the data 
input multiplexer and to the first input of the pre-data 
output multiplexer, the data selection output of the pre 
data output multiplexer coupled to the pre-data output 
register, the latched data output of the pre-data output 
register feedback coupled to the second input of the 
pre-data output multiplexer and the pre-data output. 

19. The DES engine of claim 18, 
wherein the engine is further operable to perform the initial 

permutation of the message input data using the permu 
tation block, initially select the permutation result with 
the data input multiplexer and coupled and store the 
result to the intermediate result register during a data 
input latch cycle, to transfer the initial result and the 
cipher key from the security keys circuit to the eight 
cipher blocks for cipher processing and intermediate 
storage of the right and left halves of the first eight step 
cipher results Subsequent to selection of the second input 
of the data input multiplexer into the intermediate result 
register during the first cipher process cycle, to transfer 
the stored intermediate result and the cipher key from the 
security keys circuit to the eight cipher blocks for cipher 
processing and intermediate result register and the pre 
data output register Subsequent to selection of the first 
input of the pre-data output multiplexer during the Sec 
ond cipher process cycle of the first DES processing 
operation, and 

wherein the DES engine is operable to repeat the first and 
second cipher process cycles for the Subsequent second 
and third DES security processing operations of the 
security processing circuit, and latch the intermediate 
result of the third DES operation to the pre-data output of 
the pre-data output register of the DES engine, using the 
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Selection of the second input of the pre-data output mul 
tiplexer during the third DES processing operation of the 
3DES security processing. 

20. The DES engine of claim 18, wherein the timing of the 
3DES processing is completed in three single DES process 
ing operations. 

21. The DES engine of claim 18, wherein the timing of the 
3DES processing is completed in eight clock cycles. 

22. The DES engine of claim 18, wherein the first, second 
and third DES processing operations each have a duration of 
two clock cycles. 

23. The DES engine of claim 21, wherein the clock cycle 
has a period of about 8 ns. 
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24. The DES engine of claim 21, wherein the eight clock 

cycles of the 3DES security processing comprise: 
a data input latch cycle; 
a first DES processing operation comprising two cycles; 
a second DES processing operation comprising two cycles; 
a third DES processing operation comprising two cycles; 

and 
a data output latch cycle. 
25. The DES engine of claim 18, further comprising a clock 

input coupled to one or more of the DES engine, the security 
keys circuit, and the data output circuit for timing clock cycles 
of the first, second and third DES processing operations of the 
3DES processing for the security processing circuit. 
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