(54) Title	Meningitis diagnostic and intervention tool for emergency dispatch
(51) International Patent Classification(s)	G06Q 50/24 (2012.01)
(21) Application No:	2017203036
(22) Date of Filing:	2017.05.08
(43) Publication Date:	2017.06.01
(43) Publication Journal Date:	2017.06.01
(62) Divisional of:	2012207250
(71) Applicant(s)	Jeffrey J. CLAWSON
(72) Inventor(s)	CLAWSON, Jeffrey J.
(74) Agent / Attorney	Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001, AU
Abstract of the Disclosure

Systems and methods to assist an emergency medical dispatcher in responding to emergency calls are disclosed. A computer-implemented emergency dispatch protocol is provided that includes interrogatories for a dispatcher to ask a caller to generate an appropriate response. A diagnostic tool is provided to aid a dispatcher in determining a likelihood that the patient has meningitis. The diagnostic tool determines a likelihood that the patient has meningitis based on caller-relayed information concerning the caller's observations of the patient. The diagnostic tool can be launched automatically by the emergency dispatch protocol, or manually, as desired by a dispatcher. The diagnostic tool presents a user interface that may provide, among other things, questions to guide the caller in identifying signs and symptoms that the patient has meningitis and input components associated with the questions.
MENINGITIS DIAGNOSTIC AND INTERVENTION TOOL FOR EMERGENCY DISPATCH

Related Application

[0001] This application is a divisional application of Australian application no. 2012207250, the disclosure of which is incorporated herein by reference.

Technical Field

[0002] This disclosure relates to computer systems and methods for providing medical protocol interrogation, instruction, and emergency dispatch. More specifically, the disclosure is directed to computer-implemented tools to assist a dispatcher during an interrogation and instruction of an emergency caller.

Brief Description of the Drawings

[0003] Non-limiting and non-exhaustive embodiments of the disclosure are described, including various embodiments of the disclosure with reference to the figures, in which:

[0004] FIG. 1 is a block diagram of an emergency medical dispatch system, according to one embodiment.

[0005] FIG. 2 is a user interface of an emergency medical dispatch system, according to one embodiment.

[0006] FIGS. 3A-3C are embodiments of a user interface of a meningitis diagnostic tool.

[0007] FIG. 4 is a high-level flow diagram of a protocol 400 of a meningitis diagnostic tool, according to one embodiment.

[0008] FIG. 5 is a flow diagram of a protocol of a meningitis diagnostic tool, according to one embodiment.

Detailed Description

[0009] Emergency dispatchers handle emergency calls reporting a wide variety of emergency situations. An automated emergency dispatch system, which may be implemented on a computer, can aid a dispatcher in prioritizing the calls and processing the calls to generate an appropriate emergency dispatch response. Regardless of the experience or skill level of the dispatcher, automated emergency dispatch systems can enable a consistent and predictable emergency dispatch response, despite the diverse aspects of emergency situations, including inter alia
signs, symptoms, conditions, and circumstances, that may be reported from one call to the next.

[0010] Although an automated emergency dispatch system can enable collection and processing of widely divergent aspects of emergency situations, some of the emergency situations and/or aspects reported should be explored in greater depth as they are reported. This further exploration may require the dispatcher to probe more deeply to gather more descriptive details. Moreover, some emergency situations may be improved by more detailed instructions. Still other emergency situations may involve a clinical presentation of a condition that is not easily diagnosed, but which could alter the appropriate dispatch response if properly diagnosed.

[0011] A dispatcher with little or no medical training or experience likely cannot properly explore situations and/or aspects or diagnose medical conditions, let alone instruct a caller to do so. Furthermore, the automated emergency dispatch systems are not equipped to assist or enable a dispatcher to explore situations in greater depth, to provide further instruction, or to diagnose conditions. Accordingly, the present disclosure is directed to diagnostic tools that supplement an automated emergency dispatch system to attempt to address these and other shortcomings of automated emergency dispatch systems.

[0012] The embodiments of the disclosure will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the disclosed embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the systems and methods of the disclosure is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments of the disclosure. In addition, the steps of a method do not necessarily need to be executed in any specific order, or even sequentially, nor need the steps be executed only once, unless otherwise specified.

[0013] In some cases, well-known features, structures or operations are not shown or described in detail. Furthermore, the described features, structures, or operations may be combined in any suitable manner in one or more embodiments. It will also be readily understood that the components of the embodiments as generally
described and illustrated in the figures herein could be arranged and designed in a wide variety of different configurations.

[0014] Several aspects of the embodiments described will be illustrated as software modules or components. As used herein, a software module or component may include any type of computer instruction or computer executable code located within a memory device and/or computer-readable storage medium. A software module may, for instance, comprise one or more physical or logical blocks of computer instructions, which may be organized as a routine, program, object, component, data structure, etc. that performs one or more tasks or implements particular abstract data types.

[0015] In certain embodiments, a particular software module may comprise disparate instructions stored in different locations of a memory device, which together implement the described functionality of the module. Indeed, a module may comprise a single instruction or many instructions, and may be distributed over several different code segments, among different programs, and across several memory devices. Some embodiments may be practiced in a distributed computing environment where tasks are performed by a remote processing device linked through a communications network. In a distributed computing environment, software modules may be located in local and/or remote memory storage devices. In addition, data being tied or rendered together in a database record may be resident in the same memory device, or across several memory devices, and may be linked together in fields of a record in a database across a network.

[0016] Suitable software to assist in implementing the invention is readily provided by those of skill in the pertinent art(s) using the teachings presented here and programming languages and tools, such as Java, Pascal, C++, C, database languages, APIs, SDKs, assembly, firmware, microcode, and/or other languages and tools.

[0017] An emergency dispatch system as disclosed herein may be computer-implemented in whole or in part on a digital computer. The digital computer includes a processor performing the required computations. The computer further includes a memory in electronic communication with the processor for storing a computer operating system. The computer operating systems may include MS-DOS, Windows, Linux, Unix, AIX, CLIX, QNX, OS/2, and Apple. Alternatively, it is expected that future embodiments will be adapted to execute on other future
operating systems. The memory also stores application programs including a Computer Aided Dispatch (CAD) program, an automated emergency dispatch protocol, a user interface program, and data storage. The computer may further include an output device, such as a display unit, for viewing the displayed instructions and inquiries, and a user input device for inputting response data.

[0018] FIG. 1 is an emergency medical dispatch system 100, according to one embodiment. At a dispatch center 102, a dispatcher 104 may operate a computer 106. The computer 106 may include a memory 107 to store protocols, modules, tools, data, etc. The computer 106 may be configured to execute an emergency medical dispatch protocol 108 to enable the dispatcher 104 to rapidly and consistently address a medical emergency of a patient 117 as reported by a caller 118. The emergency medical dispatch protocol 108 provides a logic tree with questions, possible responses from a caller 118, and instructions to the caller 118. The responses may route to subsequent questions and/or instructions to the caller. The responses are processed according to predetermined logic to provide to the dispatcher 104 the correct emergency medical dispatch response (e.g., by trained emergency responders) and the appropriate doctor-approved post-dispatch instructions for relay to the caller 118 before professional help arrives at the scene. The emergency medical dispatch system 100 may also aid the dispatcher in determining an appropriate priority of the emergency call, including but not limited to a priority of the emergency call relative to other emergency calls.

[0019] Although an emergency medical dispatch system 100 and emergency medical dispatch protocol 108 are disclosed and described herein, a person of ordinary skill can appreciate that other emergency dispatch systems and emergency dispatch protocols are contemplated, including but not limited to emergency fire dispatch systems and protocols and emergency police dispatch systems and protocols. Exemplary embodiments of such emergency dispatch systems and protocols are disclosed in U.S. Patent Nos. 5,857,966, 5,989,187, 6,004,266, 6,010,451, 6,053,864, 6,076,065, 6,078,894, 6,106,459, 6,607,481, 7,106,835, and 7,428,301, which are incorporated herein by reference.

[0020] The computer 106 may also operate a determinant value calculator 110 to calculate a determinant value from the responses of the caller 118 to protocol questions. The computer 106 presents the determinant value to generate an appropriate emergency dispatch response and/or establish the priority of the
emergency call. The response may include dispatching professional emergency responders to the scene of the emergency. Because the questions asked and the recommendations that are made deal directly with life and death decisions, the protocols used shall have passed through a rigorous medical review by a panel of doctors and EMS public safety experts who specialize in emergency medicine. The determinant value calculator 110 may be stored on the memory 107 of the computer.

[0021] Many calls for medical services are not true medical emergencies, so it is important to prioritize the calls in several ways. First, calls that are true emergencies should be dispatched first. Second, if an agency has units with different capabilities, the more advanced units should be sent to more severe medical problems. And finally, if lights-and-siren are not needed from a medical standpoint, they should not be used, thereby increasing the safety of all those on the road and in the emergency vehicles. While many medical calls are not true emergencies, all situations can benefit from medical evaluation and instruction. Prior to the arrival of professional help on-scene, the emergency medical dispatch protocol 108 can provide the dispatcher 104 with instructions for the caller 118 that are appropriate to the type of call, from a patient 117 with minor lacerations to a patient 117 who is not breathing.

[0022] The determinant value provides a categorization code of the type and level of the incident. The code may be provided to a Computer Aided Dispatch (CAD) system 112 for processing. The CAD system 112 is a tool used by a dispatcher 104 to track and allocate emergency response resources. The CAD system 112 may operate in whole or in part on a separate computer in communication with the computer 106. In another embodiment, the CAD system 112 operates on the computer 106. The primary information used by the CAD system 112 is location information of both the incident and units, unit availability and the type of incident. The CAD system 112 may use third party solutions, vehicle location transponders and mobile data terminals (MDT’s) for automating the location and availability tasks. The CAD system may also use an emergency medical dispatch protocol 108 to facilitate structured call taking for incident interrogation, as previously described.

[0023] The computer 106 may also include a reporting module 114 to statistically measure the performance of individual staff and overall performance of the dispatch center 102. These statistics include compliance rates, call processing statistics, and peer measurements. The reporting module 114 may be stored on the memory 107 of the computer 106.
The computer 106 may further comprise an input device, such as a keyboard, mouse, or other input device, and also an output device such as a display monitor. The input device receives input from a user (generally a dispatcher) and provides it to the emergency medical dispatch system 100. The input may be provided to the computer 106, the emergency medical dispatch protocol 108, the diagnostic tools 120, and/or the CAD system 112. An output device receives output from the emergency medical dispatch system 100 and displays or otherwise presents the output to the user. In another embodiment, the input device and the output device are provided by the CAD system 112. In still another embodiment, the CAD system 112 runs on the computer 106.

The dispatch center 102 includes telephony equipment 116 to answer emergency calls. A call into the dispatch center 102 from a caller 118 may initiate creation of a medical call incident. The dispatcher 104 identifies the call as requiring an emergency medical dispatch, and the emergency medical dispatch protocol 108 is accessed. The emergency medical dispatch protocol 108 may provide instructions that are expertly drafted to assist a novice caller 118 in diagnosing a condition of a patient 117. The emergency medical dispatch protocol 108 may also provide expertly drafted first aid instructions to assist a patient 117 prior to the arrival of trained emergency responders. The instructions may be vocally relayed by the dispatcher 104 to the caller 118 over the telephony equipment 116.

Some of the questions presented by the emergency medical dispatch protocol 108 may be readily answerable by the caller 118, whereas others are more difficult to answer. Certain diagnostic inquiries may be difficult for the untrained caller to determine or may be difficult to answer under the stress of an emergency situation. For example, the caller may have a difficult time diagnosing whether a patient has meningitis. Accordingly, in addition to instructions, the emergency medical dispatch system 100 may provide one or more computer-implemented diagnostic tools 120. The diagnostic tools 120 may greatly improve information collection and intervention for emergency medical response situations and aid in saving lives.

A diagnostic tool 120 may aid the dispatcher 104 and/or the caller 118 (via instructions from the dispatcher 104) in diagnosing a condition of a patient 117. A diagnostic tool 120 may also be an interventional tool, providing instructions that direct a caller 118 to intervene, or take action, to treat a patient 117, or otherwise
change the circumstances or conditions of an emergency situation. For sake of clarity, diagnostic tools and interventional tools are both referred to herein generally as diagnostic tools. Accordingly, a diagnostic tool 120, as referred to herein, may provide diagnostic instructions, interventional instructions, or both diagnostic and interventional instructions. Whether a diagnostic tool 120 provides merely diagnostic instructions, merely interventional instructions, or both diagnostic and interventional instructions, the diagnostic tool can provide consistent and reliable instruction, information gathering, and/or timing for a particular emergency situation.

[0028] The diagnostic tools 120 are computer implemented software modules that enable a dispatcher 104 to provide consistent, expert advice to assist a caller with regards to a particular aspect of an emergency situation. In highly stressful conditions, the diagnostic tools 120 provide a necessary resource to reading critical signs. The diagnostic tools 120 may be stored in the memory 107 of the computer 106 and initiated and executed as required. The diagnostic tools 120 may be embodied as computer executable software applications and associated data.

[0029] The emergency medical dispatch protocol 108 may call on a diagnostic tool 120, for example, to assist with an interrogatory, and may route to the appropriate diagnostic tool 120 when needed. When directed according to the protocol 108, the emergency medical dispatch system 100 may automatically, i.e., without dispatcher intervention, initiate the appropriate diagnostic tool 120 on the dispatch center computer 106. This may occur when the emergency medical dispatch protocol 108 arrives at a diagnosis step in the protocol and initiates a corresponding diagnostic tool 120. The emergency medical dispatch system 100 may also allow the dispatcher 104 the option to manually call upon a diagnostic tool 120 as desired. Icons and/or buttons may be displayed in a tool bar, or other convenient location on a user interface to allow the dispatcher 104 to initiate a corresponding diagnostic tool 120. In another embodiment, the emergency medical dispatch protocol 108 may simply prompt the dispatcher 104 to launch the appropriate diagnostic tool 120 when needed.

[0030] The diagnostic tool 120 discussed herein comprises a meningitis diagnostic tool 122. The meningitis diagnostic tool 122 may be configured to facilitate diagnosing whether a patient has meningitis, or otherwise assess the likelihood that the patient has meningitis. The meningitis diagnostic tool 122 may effectively assess the likelihood of meningitis regardless of whether the meningitis is
bacterial meningitis or viral meningitis. Specifically, the meningitis diagnostic tool 122 may present a user interface providing questions for relay to the caller 118 to guide the caller 118 in identifying the indicators, including signs, symptoms, conditions, circumstances, or other criteria, that indicate the patient 117 may have meningitis. As used herein, the term indicator includes, but is not limited to, signs, symptoms, conditions, circumstances, or other criteria that can be used to diagnose or otherwise assess the patient’s medical condition and particularly the patient’s condition as it may relate to meningitis. The questions may probe for the caller’s observations of various indicators relating to meningitis. The questions may have a form similar to the interrogatories presented by an emergency dispatch protocol. The user interface may further present input fields to collect dispatcher-entered input indicative of caller-relayed information relating to the caller’s observations of the various indicators. The meningitis diagnostic tool 122 may receive the input corresponding to, or otherwise indicative of, the various identified indicators and use the input to make a determination whether the patient has meningitis. The meningitis diagnostic tool 122 is discussed below with reference to figures of graphical user interfaces that exemplify certain embodiments. One of skill in the art will appreciate that such interfaces may be implemented and designed in various ways.

[0031] FIG. 2 illustrates a user interface 200 of an emergency medical dispatch protocol, according to one embodiment. The emergency medical dispatch protocol user interface 200 allows a dispatcher to interface with the emergency medical dispatch protocol. The emergency medical dispatch protocol may present interrogatories 202 via the emergency medical dispatch protocol user interface 200. The interrogatories 202 are provided for the dispatcher to direct to the caller to gather information regarding the medical emergency of the patient. The dispatcher and/or the emergency medical dispatch system may gather the information in the form of caller responses to the interrogatories 202. The dispatcher may input the caller’s responses to the interrogatories 202 into response fields 204 provided by the user interface 200. The response fields 204 may include, for example, familiar user interface components, including but not limited to text fields, text boxes, menus, drop-down menus, drop-down selection boxes, lists, buttons, check boxes, and radio buttons. The response fields 204 may correspond to information indicative of one or more responses of the caller to the interrogatories 202.
The caller responses, and information included therein, relayed from the caller to the dispatcher, and entered (or input) into the system, may be used by the emergency medical dispatch protocol to determine subsequent interrogatories and instructions to present to the dispatcher. The caller responses, and information therein, may indicate the caller’s observations of indicators of the patient’s medical condition, or other information concerning indicators for assessing the patient’s medical condition. The information gathered from the caller responses may be used by the emergency medical dispatch system to generate an emergency medical dispatch response by trained emergency responders. The information gathered from the caller responses may be used by the determinant value calculator to calculate a determinant value that can be communicated to the emergency responders. Further details of emergency medical dispatch protocols and user interfaces to interact with the same can be found in the earlier referenced U.S. patents.

The emergency medical dispatch system user interface may also provide one or more diagnostic tool launch input components. As illustrated, one or more buttons may be provided on the user interface as diagnostic tool launch input components. As will be appreciated by a person of ordinary skill, the diagnostic tool launch input components may comprise a component other than a button, including familiar user interface components such as a drop down menu, a drop down selection box, a list, a check box, and a radio button. The diagnostic tool launch input components enable the dispatcher to launch a particular diagnostic tool. Although the emergency medical dispatch protocol may automatically initiate a diagnostic tool based on dispatcher-entered input indicative of one or more responses of the caller, the diagnostic tool launch input components provide a way for the dispatcher to manually (e.g., anytime, at the dispatcher’s discretion) initiate a diagnostic tool. In FIG. 2, the user interface provides a meningitis diagnostic tool launch input component. The meningitis diagnostic tool launch input component may comprise a button on the emergency medical dispatch system user interface. The button may include an icon, such as an image of an individual’s head that is swelling, to indicate that the button is the meningitis diagnostic tool launch input component that manually initiates the meningitis diagnostic tool. In another embodiment, the button may include a label to convey that the button is the meningitis diagnostic tool launch input component.
FIGS. 3A-3C illustrate an embodiment of a user interface 300 of a meningitis diagnostic tool, according to one embodiment. Referring collectively to FIGS. 3A-3C, the user interface 300 provides one or more instructions 302 to the dispatcher, age classification input components 304a, 304b, a questions pane 306, response input components 308a, 308b, a navigation input component 310, a diagnostic indicators pane 312, a progress indicator 314, a criteria summary pane 316, a recommendation field 318, a return input component 320, and a reset input component 322. The user interface 300 may also present a scoring percentage pane 330 (FIG. 3C) to concisely summarize the severity of the positive factors.

As previously mentioned, the user interface 300 is configured to assist a dispatcher in determining the likelihood that a patient has meningitis. When an emergency caller reports that a patient is suspected to have meningitis, or otherwise reports symptoms that raise concern that the patient may have meningitis, the appropriate level of emergency response may depend largely on the likelihood that the patient has meningitis. A difficulty arises in that often emergency callers are not skilled in identifying symptoms or other indicators that are factors used in determining or assessing the likelihood that the patient has meningitis. Accordingly, a question from the dispatcher, such as “Do you think the patient may have meningitis?,” may not successfully elicit the information the dispatcher may need to dispatch an appropriate emergency response. Similarly, the dispatcher may lack skill and experience to properly inquire and guide the caller in identifying (and weighing) symptoms and other indicators that are factors used in determining or assessing the likelihood that the patient has meningitis.

The user interface 300 of a meningitis diagnostic tool, according to one embodiment of the present disclosure may provide a pre-scripted interrogation of questions that help identify indicators that can be used to determine whether the patient may have meningitis. The user interface 300 receives input corresponding to, or otherwise indicative of, the various identified indicators and uses the input to determine a likelihood that the patient has meningitis, or to otherwise make a determination whether the patient has meningitis. The determination can be conveyed to the dispatcher via the user interface and/or conveyed to the emergency dispatch system. The manner by which the meningitis diagnostic tool can aid in determining the likelihood that a patient has meningitis will be made apparent by the
following description of the illustrated embodiment of the user interface 300 of a meningitis diagnostic tool, according to one embodiment.

[0037] The user interface 300 may present one or more instructions intended to guide the dispatcher in using the tool. In the illustrated embodiment, the user interface 300 provides an instruction 302, such as “Select age,” to request that the dispatcher classify the patient into an age grouping. Meningitis may manifest itself differently in children under two years of age than in adults and children over two years of age. Accordingly, the diagnostic tool may function differently based on the age of the patient, and the diagnostic tool may seek information regarding the patient’s age grouping to determine how to function. Age information of the patient may be communicated to the diagnostic tool by the emergency dispatch system, if the age information was previously obtained during processing of the call. The user interface 300 also provides one or more age classification input components 304a, 304b to allow the dispatcher to provide the information to the diagnostic tool. As can be appreciated, the dispatcher may need to ask the caller the age of the patient if this information is not known. However, the configuration of the instruction 302 and age classification input components 304a, 304b of the user interface 300 provide intuitive guidance to the dispatcher to gather and/or provide information to the diagnostic tool concerning the patient’s age or agegrouping.

[0038] In the illustrated embodiment, the age classification input components 304a, 304b are buttons that the dispatcher can click to quickly and efficiently designate the age grouping of the patient. FIG. 3A illustrates the user interface 300 prior to the dispatcher providing age classification input to the diagnostic tool. The age classification input components 304a, 304b include a label to clearly indicate to the dispatcher the information that will be entered by operating the button. For example, a first age classification input component 304a includes a label “< 2 years” to indicate that clicking on the input component 304a enters information to the diagnostic tool that the patient is less than two years old. A second age classification input component 304b includes a label “=> 2 years” to indicate that clicking on the input component 304b enters information to the diagnostic tool that the patient is two years old or older. As can be appreciated, in another embodiment, the age classification input components 304a, 304b are not limited to buttons and may include, for example, familiar user interface components, including but not
limited to text fields, text boxes, menus, drop-down menus, drop-down selection boxes, lists, buttons, check boxes, and radio buttons, or any combination thereof.

[0039] The questions pane 306 presents one or more questions 324 (FIG. 3B) to the dispatcher. The questions 324 may include caller questions intended to be relayed by the dispatcher to the caller, to aid the dispatcher in guiding the caller to identify indicators that the patient has meningitis. The questions 324 may also include dispatcher (or call taker) questions directed solely to the dispatcher. FIG. 3B illustrates the user interface 300 presenting a question 324 in the questions pane 306. In the illustrated embodiment, the questions are presented serially, with only one question 324 displayed at a time. As can be appreciated, other presentation forms are possible, including but not limited to presenting an entire listing of questions along with an indication of a current question.

[0040] The questions 324 generally may relate to identifying indicators that the patient has meningitis. For example, in FIG. 3B the question presented is “Is s/he vomiting?”. Other questions 324 that may be presented may include, but are not limited to, the following: “Does s/he have a rash?”, “Is it [the rash] splotched (mottled) or looking like a bruise?”, “Is s/he crying?”, “Does s/he have a shrill or strange cry?”, “Does s/he appear sleepy or not alert?”, “Is s/he refusing to feed?”, “Is s/he distressed by bright lights?”, “Are her/his hands or feet cold to the touch?”, and “Did s/he ever stop breathing or turn blue?”. The particular questions presented, and the order in which they are presented, may depend on previously entered input. For example, the questions 324 that are presented may depend on the age group of the patient. As another example, the questions presented may depend on responses to previously presented questions, such that whether a particular question is presented may depend upon caller responses to earlier presented questions (e.g. whether the question “Is it [the rash] splotched (mottled) or looking like a bruise?” is presented may depend on the answer to the question “Does s/he have a rash?”). The diagnostic tool may traverse a logic tree that defines which questions are presented in which order, as discussed more fully below with reference to FIG. 4. By traversing a logic tree, the meningitis diagnostic tool can provide an orderly and predictable pre-scripted interrogation to gather pertinent information, enabling a more complete and detailed understanding of the patient.

[0041] The questions pane 306 may also present one or more dispatcher questions (or call taker questions) directed to the dispatcher or other call taker.
These dispatcher questions are intended to not be relayed to the caller. Rather, the dispatcher questions prompt the dispatcher to enter information known by or otherwise readily available to the dispatcher. The user interface 300 may provide an indication of which questions 324 presented in the questions pane 306 are intended for the caller (caller questions) and which questions are intended for the dispatcher (dispatcher questions). For example, dispatcher questions may be presented in a different color than the caller questions. Caller questions may be presented in black text while dispatcher questions may be presented in blue text. Examples of dispatcher questions may include, but are not limited to, “Did the caller report that the glass/blanch test was performed?” and “Did the caller ever say anything like ‘S/he [the patient] doesn’t look right?’”.

[0042] The response input components 308a, 308b (collectively 308) provided by the user interface allow the dispatcher to quickly enter the caller’s response to the question 324 presented in the questions pane 306. Regardless of whether the questions 324 are caller questions or dispatcher questions, the response input components 308a, 308b enable the dispatcher to enter input associated with a presented question 324.

[0043] In the illustrated embodiment, the response input components 308 are buttons that can be clicked to enter an associated input. For example, a first response input component 308a can be clicked to enter a “Yes” response to the question 324 presented in the questions pane 306 and a second input component 308b can be clicked to enter a “No” response to the question 324 presented in the questions pane. As can be appreciated, in another embodiment, the response input components 308 may correspond to input (i.e., responses to the questions) other than “Yes” and “No.” For example, the response input components 308 may present a plurality of choices (e.g., “Never,” “Occasionally,” “Often,” “Always”). As can also be appreciated, in another embodiment, the response input components 308a, 308b are not limited to buttons and may include, for example, familiar user interface components, including but not limited to text fields, text boxes, menus, drop-down menus, drop-down selection boxes, lists, buttons, check boxes, and radio buttons, or any combination thereof.

[0044] When the last question 324 has been presented and input has been provided by the dispatcher, the diagnostic tool may use the input to make a determination whether the patient has meningitis. The determination may be
presented in the recommendation field 318, as will be described below. The user interface 300 can also provide interaction with other functionality of the diagnostic tool.

[0045] The navigation input component 310 provided by the user interface 300 enables the dispatcher to go back to a previous question. In the illustrated embodiment, the navigation input component 310 is a button that a dispatcher can click on to change the question presented back to the previous question that was presented. As can be appreciated, in another embodiment, a plurality of navigation input components 310 may be provided, including a back navigation input component and a forward navigation input component.

[0046] The diagnostic indicators pane 312 displays the diagnostic indicators 326 (FIG. 3B) (e.g., signs, symptoms, conditions, circumstances, or other criteria) of meningitis that are gathered through the dispatcher-entered input. The diagnostic indicators pane 312 enumerates the indicators gathered via dispatcher-entered input that suggest the patient may have meningitis. Because the dispatcher-entered input corresponds to caller-relayed responses to the questions 324, the diagnostic indicators pane 312 may also provide a concise summary of the caller’s responses to the questions 324.

[0047] In the illustrated embodiment shown in FIG. 3B, the diagnostic indicators pane 312 provides the indicators 326 “Rash,” “Splotched,” “Glass/blanch test performed,” and “Refusing to feed.” As can be appreciated, other indicators are possible, including but not limited to, “Crying,” “Shrill/strange cry,” “Sleepy/not alert,” “Vomiting,” “Distressed by bright lights,” “Hands or feet cold to the touch,” “Stopped breathing/turned blue,” and “Doesn’t look right.” In the illustrated embodiment, the diagnostic indicators pane 312 displays only the positive indicators, and omits mention of any indicator that is not present. In another embodiment, all relevant indicators 326 may be presented in the diagnostic indicators pane 312, and the positive indicators may be distinguished from the negative indicators.

[0048] The progress indicator 314 provides a dispatcher with an easy and intuitive display of the progress of collecting information (including indicators) helpful to assessing whether the patient has meningitis. In FIG. 3A, the progress indicator 314 is empty, indicating that prior to receiving input categorizing the age of the patient, no progress has been made. In FIG. 3B, the progress indicator 314 is partially filled, indicating that progress has been made in collecting information.
(including indicators) helpful to assessing whether the patient has meningitis. In FIG. 3C, the progress indicator 314 is completely filled, indicating the entire progression of the diagnostic tool is complete. Stated differently, the progress indicator 314 can indicate progression of the diagnostic tool along a logic tree. When the progress indicator 314 indicates progress is complete, progression of the logic tree may be complete.

[0049] Referring again collectively to FIGS. 3A-3C, and specifically to FIG. 3C, the criteria summary pane 316 presents a concise tally of the type of positive indicators received that indicate the patient may have meningitis. The criteria summary pane 316 provides one or more tally fields 328a, 328b, 328c (collectively 328) that display a tally of one or more types of indicators. The tally displayed in a tally field 328a, 328b, 328c concisely communicates, for example to a dispatcher, a basis for a likelihood that a patient has meningitis. A tally can be an objective value that quantifies the factors in favor of a determination or diagnosis that the patient has meningitis.

[0050] In the illustrated embodiment, a plurality of tally fields 328 are presented to provide tallies of indicators in a plurality of ranges of severity. Some of the indicators of meningitis may be more determinative, or more strongly suggest a likelihood that the patient has meningitis, than other indicators. For example, some indicators alone may be critical indicators because they may be substantially determinative that the patient has meningitis. A tally labeled “Critical Single Criteria” may be helpful to indicate, for example to the dispatcher, the number of these critical indicators that are present with the patient. A first tally field 328a may present the tally of critical indicators. Other indicators may be strong indicators, but not solely determinative. A tally “Major Criteria” may be helpful to indicate the number of strong indicators. A second tally field 328b may present the tally of strong indicators. Finally, a number of minor indicators, cumulatively, may strongly suggest that the patient has meningitis. A tally “Minor Criteria” may be helpful to indicate the number of minor indicators. A third tally field 328c may present the tally of minor indicators. The plurality of tally fields 328 can provide insight to the dispatcher as to how and why the diagnostic tool reaches a particular result (or diagnosis). The plurality of tally fields 328 can provide a summary explanation of why a patient may have meningitis.

[0051] As an example, the critical indicators that may be substantially determinative and counted in the tally “Critical Single Criteria” may include: a positive
glass test, stopped breathing, turned blue, and “doesn’t look right” and the patient is under 2 years of age.

[0052] As another example, the strong indicators that may be counted in the tally “Major Criteria” for a patient under 2 years of age may include: a rash with a positive glass test, the patient is limp or like a rag doll, the patient “doesn’t look right”, stopped breathing, turned blue, the patient is sleepy or not alert, a splotched or bruised rash and no glass test performed.

[0053] As another example, the strong indicators that may be counted in the tally “Major Criteria” for a patient 2 years of age or older may include: a rash with a positive glass test, a stiff neck, the patient is limp or like a rag doll, the patient is confused or not alert, “doesn’t look right”, a spldched or bruised rash and no glass test performed.

[0054] As another example, the minor indicators that cumulatively may strongly suggest meningitis and may be counted in the tally “Minor Criteria” for a patient under 2 years of age may include: a rash with no glass test performed, a shrill or strange cry, refuses to feed, vomiting, distressed by bright lights, and hands or feet are cold to the touch.

[0055] As another example, the minor indicators that cumulatively may strongly suggest meningitis and may be counted in the tally “Minor Criteria” for a patient 2 years of age or older, may include: a rash with no glass test performed, avoids bright lights, severe headache, nausea or vomiting, and hands or feet are cold to the touch.

[0056] In the illustrated embodiment, the tally fields 328 provide a final tally, after progression of the diagnostic tool is complete. Accordingly, the tally fields 328 in FIG. 3B display a tally of “0” for each of the types of indicators, despite a number of positive indicators being recorded in the diagnostic indicators pane 312. Displaying only a final tally can provide clarity that a tally is not complete. However, as can be appreciated, in other embodiments, the tally fields 328 may provide a running tally of positive indicators that have been received. A running tally may allow a dispatcher to anticipate a diagnosis or result of the diagnostic tool, enabling the dispatcher to prepare for the next steps in processing the emergency call.

[0057] The user interface 300 may also present a scoring percentage pane 330 to concisely summarize the severity of the positive factors, as shown in FIG. 3C. In the illustrated embodiment, the scoring percentage pane 330 is presented in place of the diagnostic indicators pane 312, after dispatcher-entered input is provided for the last
question. The scoring percentage pane 330 may provide a pie-chart 332 or other relative depiction to indicate what scoring percentage contributed to the determination by the diagnostic tool that the patient does or does not have meningitis. The pie-chart 332 may provide a more graphically visual way of showing the indicators listed in the criteria summary pane 316.

[0058] The recommendation field 318 provides an indication to the dispatcher of a recommendation and/or a determination made by the diagnostic tool as to whether the patient has meningitis. In FIG. 3C, the recommendation field 318 presents a recommendation or indication “SIGNIFICANT Evidence” to indicate that the diagnostic tool has determined that there is significant evidence, and/or a high likelihood, that the patient has meningitis. The recommendation field 318 may also present a recommendation or indication “PARTIAL Evidence” to indicate that the diagnostic tool has determined that there is some evidence that the patient has meningitis. The recommendation field may also present a recommendation or indication “NO TEST Evidence” to indicate that there is not sufficient evidence, or no determined or discovered evidence, to determine that the patient has meningitis. As can be appreciated, other recommendations are possible, including but not limited to “NEGATIVE” to indicate that the patient likely does not have meningitis.

[0059] A scoring formula may be included to score the criteria and make a determination of the recommendation to present. As an example, the following scoring formula(s) may be used by the tool to determine a recommendation to present in the recommendation field 318:

SIGNIFICANT Evidence if:
 Any Single Critical indicators are present, OR
 Two Major indicators are present, OR
 One Major indicator and two or more Minor indicators are present.

PARTIAL Evidence if:
 One Major indicator and one Minor indicator are present, OR
 Three or more Minor indicators are present.

NO TEST Evidence if:
 No Major or Minor indicators are present, OR
 Two or fewer Minor indicators are present.
Other scoring formula(s) may be used. The scoring formula(s) may also evolve, changing over time as accuracy of the prediction of outcomes is assessed and improvements are made in diagnosing meningitis.

A return input component 320 is also presented to the dispatcher by the user interface 300 to close the diagnostic tool and/or diagnostic tool user interface 300, and return processing and/or control to the medical dispatch protocol. In the depicted embodiment, the return input component 320 is provided as a button that the user can click on and that is labeled “Return to KQs.” The dispatcher clicks the return input component 320 button to close the meningitis diagnostic tool. In another embodiment, the return input component 320 may also signal to the diagnostic tool to transfer the recommendation and/or the information provided concerning the patient’s diagnostic instruction responses to the emergency medical dispatch protocol and/or determinant value calculator, prior to the diagnostic tool closing.

In another embodiment, a close input component may be presented to the dispatcher by the user interface 300 to close the diagnostic tool and/or diagnostic tool user interface 300. The close input component may be provided as a button that the user can click on to close the meningitis diagnostic tool. The close input component may also signal to the diagnostic tool to transfer the recommendation and/or the information provided concerning the caller’s responses and/or the patient responses to the emergency medical dispatch protocol and/or determinant value calculator, prior to the diagnostic tool closing.

A reset input component 322 is also provided by the user interface 300 of FIGS. 3A-3C to allow a dispatcher to reset the user interface 300. The reset input component 322 may clear all dispatcher-entered input from the user interface 300 and/or the diagnostic tool. The reset input component 322 also moves progression along the logic tree back to the beginning, essentially starting the diagnostic tool over.

A comments field 334 may be provided to display additional information and/or comments regarding a particular indicator, or alternatively a plurality of indicators. As can be appreciated, additional user interface components and functionality can be provided.

FIG. 4 is a high-level flow diagram of a protocol 400 of a meningitis diagnostic tool, according to one embodiment. The meningitis diagnostic may be initiated (e.g., launched) from within the emergency dispatch protocol. The
emergency dispatch protocol may automatically launch the tool based on input received by the emergency dispatch protocol indicating that the patient may have meningitis. The meningitis diagnostic tool may also be launched manually, as desired, by the dispatcher. Upon launching, the meningitis diagnostic tool may present a user interface.

[0065] The protocol 400 may provide 402 an instruction to the dispatcher, such as an instruction to select the age, or an age category, of the patient. The protocol 400 may also provide 404 a question for the dispatcher to direct to the caller to gather information concerning the indicators whether the patient may have meningitis. The protocol 400 also presents 406 one or more input component(s) to enable the dispatcher to provide the protocol with input corresponding to a caller response to the question and the protocol receives 408 the dispatcher-entered input. The protocol 400 may provide 404 additional questions, present 406 one or more input component(s) for entering input corresponding to responses to those additional questions, and receive 408 the dispatcher-entered input. The protocol 400 may make a determination 410 as to whether the patient likely has meningitis based on the input received 408. After the determination 410 is made, the logic flow of the protocol 400 ends and control is transferred back to the emergency dispatch protocol.

[0066] FIG. 5 is a flow diagram of one embodiment of a protocol 500 of a meningitis diagnostic tool. An instruction may be provided to the dispatcher to select 502 the age of the patient. As described above, age classification input components 304a, 304b (see FIG. 3A) may be provided for the dispatcher to select 502 the age of the patient. As can be appreciated, the meningitis diagnostic tool receives input from the dispatcher corresponding to instructions and questions, as was explained above with reference to FIGS. 3A-3C and FIG. 4. The input may be received substantially in real-time, as the dispatcher provides the input. Alternatively, or in addition, the input may be received from the emergency medical dispatch system because information sought by the protocol may have previously been obtained from the dispatcher via the emergency dispatch protocol. Alternatively, or in addition, the input may be received from a different diagnostic tool. While explicit steps of receiving information are not depicted in FIG. 5, an ordinarily skilled artisan will recognize that input may be received at various points in the protocol 500 of the meningitis diagnostic tool.
The protocol 500 may question 504 the caller (e.g., present a question to the dispatcher for relay to the caller), “Does the patient have a rash?” If the patient has a rash, the protocol may question 506, “Is the rash splotched (mottled) or looking like a bruise?”. The dispatcher may then be questioned 508, “Did the caller report that the glass/blanch test was performed.” Questioning 508 the dispatcher, rather than the caller, regarding the glass/blanch test may allow gathering information about this useful test for diagnosing meningitis from a caller already familiar with the test and its significance, yet avoid a tedious explanation to a caller who is not familiar with the test or is otherwise untrained in the medical field. Questions directed to the dispatcher may be indicated, or otherwise differentiated from questions directed to the caller, so as to clearly convey to the dispatcher which questions are to be conveyed to the caller. For example, questions to the dispatcher may be presented in a different color, such as blue, than the color in which caller questions are presented, such as black.

After questioning 508 the dispatcher regarding the glass/blanch test, or if the patient does not have a rash, the protocol 500 may determine 510 the patient’s age category, such as whether the patient is under two years of age, or two years of age or older, based on input received in response to the dispatcher selecting 502 the age category of the patient. Alternatively, the protocol 500 may also determine 510 the patient’s age category based on information received from an emergency dispatch system and relayed to the meningitis diagnostic tool.

If the patient is less than two years of age, the protocol 500 may proceed with a branch of questions different than if the patient is two years of age or older. In the illustrated embodiment, if the patient is less than two years of age, the protocol 500 may question 512 the caller, “Is the patient crying?” If the patient is not crying, the caller may be questioned 518, “Is the patient limp or like a rag doll?” If the patient is crying, the caller may be questioned 514, “Is the cry shrill or strange?”

After questioning 518 if the patient is limp or like a rag doll or questioning 514 if the cry of the patient is shrill or strange, the protocol 500 may question 516, “Is the patient sleepy or not alert?” The protocol may provide other questioning, such as a question 520, “Is the patient refusing to feed?”, a question 522, “Is the patient vomiting?”, a question 524, “Is the patient distressed by bright lights?”, a question 526, “Are the patient’s hands or feet cold to the touch?,” and a question 528, “Has the patient stopped breathing or turned blue?”.
The protocol 500 may further question 532 the dispatcher, “Did the caller ever say anything like ‘S/he doesn’t look right’?”. If the dispatcher enters input that the caller did say something similar, the protocol may further question 534 the dispatcher, “What did s/he say?,” and present an input field in which the dispatcher can enter what the caller said. If the dispatcher enters input that the caller did not say anything similar, or after the protocol 500 receives what the caller said, the protocol 500 may make a determination 536 of the likelihood that the patient has meningitis. As described above, the determination 536 whether the patient has meningitis may be based on one or more tallies of indicators in one or more categories or ranges of severity. The determination may be displayed to the dispatcher and/or communicated to the emergency dispatch protocol and/or emergency responders.

If the patient is two years of age or older, the protocol 500 may proceed with a branch of questions different than if the patient is less than two years of age. In the illustrated embodiment, if the patient is two years of age or older, the protocol 500 may provide questioning such as a question 538, “Does the patient have a stiff neck?”, a question 540, “Is the patient limp or like a rag doll?”, a question 542, “Is the patient confused or not alert?”, a question 544, “Does the patient want to avoid bright lights?”, a question 546, “Does the patient have a severe headache?”, a question 548, “Is the patient nauseated or vomiting?”, and a question 550, “Are the patient’s hands or feet cold to the touch?”.

As before, the protocol 500 may further question 532 the dispatcher, “Did the caller ever say anything like ‘S/he doesn’t look right’?”. If the dispatcher enters input that the caller did say something similar, the protocol may further question 534 the dispatcher, “What did s/he say?,” and present an input field in which the dispatcher can enter what the caller said. If the dispatcher enters input that the caller did not say anything similar, or after the protocol 500 receives what the caller said, the protocol 500 may make a determination 536 of the likelihood that the patient has meningitis. As described above, the determination 536 whether the patient has meningitis may be based on one or more tallies of indicators in one or more categories or ranges of severity. The determination may be displayed to the dispatcher and/or communicated to the emergency dispatch protocol and/or emergency responders.
The embodiments described above, as previously mentioned, may transfer or otherwise communicate a result of the determination whether the patient has meningitis to the emergency medical dispatch protocol and/or the determinant value calculator to aid in determining the priority of the dispatch response. The result of the determination whether the patient has meningitis may be incorporated into the traversal of the logic tree of the emergency dispatch protocol. For example, subsequent decisions as to how the emergency dispatch protocol proceeds along the logic tree may be based, at least in part, upon the determination whether the patient has meningitis of the meningitis diagnostic tool. In another embodiment, the result of the determination whether the patient has meningitis and/or input to the meningitis diagnostic tool may be communicated to other components of the emergency medical dispatch system as well. Moreover, other information may be communicated as well. All information gathered by the diagnostic tools may be stored by the emergency medical dispatch system and conveyed to the determinant value calculator, the reporting module, the CAD system, and/or to trained emergency responders. This information may be used to assist emergency responders prior to arrival. The diagnostic tools, including the meningitis diagnostic tool, greatly improve information collection and intervention for emergency medical response situations and aid in saving lives.

While specific embodiments and applications of the disclosure have been illustrated and described, it is to be understood that the disclosure is not limited to the precise configuration and components disclosed herein. Various modifications, changes, and variations apparent to those of skill in the art may be made in the arrangement, operation, and details of the methods and systems of the disclosure without departing from the spirit and scope of the disclosure.

What is claimed is:
Claims

1. A computer-implemented method performed on a dispatch center computer to assist a dispatcher when communicating with a caller via telephone regarding a medical emergency of a patient, comprising:

 providing on the dispatch center computer system an emergency dispatch protocol to assist the dispatcher, the protocol presenting a plurality of pre-scripted interrogatories for the dispatcher to ask the caller to gather information regarding the emergency and generate an emergency dispatch response by emergency responders;

 initiating a diagnostic tool on the dispatch center computer, the diagnostic tool configured to assist the dispatcher in guiding the caller to obtain information that can be used by the diagnostic tool to diagnose whether the patient has meningitis;

 the diagnostic tool presenting to the dispatcher a user interface;

 the diagnostic tool providing one or more questions via the user interface for the dispatcher to vocally relay to the caller over the telephone to guide the caller in identifying signs and symptoms that the patient has meningitis;

 the diagnostic tool receiving dispatcher-entered input indicative of caller-relayed information concerning the caller's observations of the patient, including signs and symptoms that indicate whether the patient has meningitis, wherein the caller's observations are vocally relayed over the telephone to the dispatcher; and

 the diagnostic tool determining a likelihood that the patient has meningitis based on the dispatcher-entered input indicative of the caller-relayed information.

2. The computer-implemented method of claim 1, further comprising the diagnostic tool indicating to the dispatcher, via the user interface, a result of the determination whether the patient has meningitis.

3. The computer-implemented method of claim 1, further comprising:

 the diagnostic tool generating a recommendation that can be relayed to the emergency responders based on a result of the determination whether the patient has meningitis; and

 displaying on the user interface of the diagnostic tool the recommendation.

4. The computer-implemented method of claim 1, wherein the dispatch center computer system initiates the diagnostic tool based on dispatcher-entered input
indicative of one or more responses of the caller to the interrogatories presented to
the dispatcher by the protocol.

5. The computer-implemented method of claim 1, further comprising the
diagnostic tool communicating to the emergency dispatch protocol a result of
determining a likelihood that the patient has meningitis.

6. The computer-implemented method of claim 5, further comprising the
dispatch center computer system determining a priority for the emergency dispatch
response based on a result of the diagnostic tool determining a likelihood that the
patient has meningitis.

7. The computer-implemented method of claim 6, wherein the dispatch center
computer system determining the priority further comprises determining a
determinant value.

8. The computer-implemented method of claim 1, further comprising the
dispatch center computer system presenting to the dispatcher an emergency
dispatch protocol user interface having a diagnostic tool launch input to initiate the
diagnostic tool, wherein the dispatch center computer system initiates the diagnostic
tool in response to the diagnostic tool launch input.

9. The computer-implemented method of claim 1, wherein the one or more
questions provided by the user interface for the dispatcher to vocally relay to the
caller comprise a question asking if the patient has a rash.

10. The computer-implemented method of claim 1, wherein the one or more
questions provided by the user interface for the dispatcher to vocally relay to the
caller comprise a question asking if the patient has a stiff neck.

11. The computer-implemented method of claim 1, wherein the one or more
questions provided by the user interface for the dispatcher to vocally relay to the
caller comprise a question asking if the patient is limp or acting like a rag doll.

12. The computer-implemented method of claim 1, wherein the one or more
questions provided by the user interface for the dispatcher to vocally relay to the
caller comprise a question asking if the patient appears confused or not alert.

13. The computer-implemented method of claim 1, wherein the one or more
questions provided by the user interface for the dispatcher to vocally relay to the
caller comprise a question asking if the patient wants to avoid bright lights.
14. The computer-implemented method of claim 1, wherein the one or more questions provided by the user interface for the dispatcher to vocally relay to the caller comprise a question asking if the patient has a severe headache.

15. The computer-implemented method of claim 1, wherein the one or more questions provided by the user interface for the dispatcher to vocally relay to the caller comprise a question asking if the patient is nauseated or vomiting.

16. The computer-implemented method of claim 1, wherein the one or more questions provided by the user interface for the dispatcher to vocally relay to the caller comprise a question asking if the patient's hands or feet are cold to the touch.

17. The computer-implemented method of claim 1, further comprising:
 the diagnostic tool providing via the user interface a question directed to the dispatcher; and
 the diagnostic tool receiving dispatcher-entered input indicative of a response of the dispatcher to a question directed to the dispatcher.

18. The computer-implemented method of claim 17, wherein the question directed to the dispatcher comprises a question asking if the caller reported that the glass/blanch test was performed.

19. The computer-implemented method of claim 17, wherein the question directed to the dispatcher comprises a question asking if the caller ever said that the patient does not look right.

20. The computer-implemented method of claim 1, the diagnostic tool providing one or more input components via the user interface to receive dispatcher entered-input indicative of an age grouping of the patient, wherein the one or more questions provided by the diagnostic tool via the user interface are dependent on the indicated age grouping of the patient.

21. A computer system to perform a method to assist a dispatcher when communicating with a caller via telephone regarding a medical emergency of a patient, the computer system comprising:
 a processor;
 an input device in electrical communication with the processor;
 an output device in electrical communication with the processor; and
 a memory in electrical communication with the processor, and having stored thereon:
an emergency dispatch protocol including a plurality of pre-scripted
interrogatories for the dispatcher to ask the caller to generate an emergency
dispatch response; and

a diagnostic tool to assist the dispatcher in guiding the caller to obtain
information that can be used by the diagnostic tool to determine a likelihood
that the patient has meningitis, wherein the diagnostic tool is configured to
present to the dispatcher a user interface comprising:

one or more questions for the dispatcher to vocally relay to the
caller over the telephone to guide the caller in identifying signs and
symptoms that the patient has meningitis, and

one or more input components associated with the one or more
questions, the input components to receive dispatcher-entered input
indicative of caller-relayed information concerning the caller’s
observations of the patient, including signs and symptoms that indicate
whether the patient has meningitis,

wherein the caller-relayed information is vocally relayed over the
telephone to the dispatcher.

22. The computer system of claim 21, wherein the diagnostic tool is further
configured to provide to the emergency dispatch protocol an indication of a likelihood
that the patient has meningitis.

23. The computer system of claim 21, further comprising a determinant value
calculator stored on the memory to calculate a determinant value to prioritize an
emergency response, wherein the diagnostic tool is configured to provide to the
determinant value calculator a likelihood that the patient has meningitis.

24. The computer system of claim 21, further comprising a reporting module
stored on the memory to measure how well a dispatcher performs, wherein the
diagnostic tool is configured to provide to the reporting module a likelihood that the
patient has meningitis.

25. A non-transitory computer-readable storage medium including computer-
readable instructions that, when executed by a computing device, cause the
computing device to perform operations to assist a dispatcher when communicating
with a caller via telephone regarding a medical emergency of a patient, the
operations comprising:
providing on the computing device an emergency dispatch protocol to assist
the dispatcher, the protocol presenting a plurality of pre-scripted interrogatories for
the dispatcher to ask the caller to gather information regarding the emergency and
generate an emergency dispatch response by emergency responders;

initiating a diagnostic tool on the computing device, the diagnostic tool
configured to assist the dispatcher in guiding the caller to obtain information that can
be used by the diagnostic tool to diagnose whether the patient has meningitis; and

the diagnostic tool presenting to the dispatcher a user interface comprising
one or more questions for the dispatcher to vocally relay to the caller over the
telephone to guide the caller in identifying signs and symptoms that the patient has
meningitis and comprising one or more input components associated with the one or
more questions;

the diagnostic tool receiving dispatcher-entered input via the input fields of the
user interface, the dispatcher-entered input indicative of caller-relayed information
concerning the caller’s observations of the patient including signs and symptoms
that indicate whether the patient has meningitis, wherein the caller’s observations
are vocally relayed over the telephone to the dispatcher; and

the diagnostic tool determining the likelihood that the patient has meningitis
based on the dispatcher-entered input indicative of the caller-relayed information.
FIG. 1
PROQA for Medical

File View Spec Logs Options Tabs Additional Information Version About ProQA

14:18

What's the address of the emergency?
The phone number is:
The problem is:

With the patient now:
The number of hurt (sick) is:
The patient's age is:
The patient's gender is:
Is he awake (conscious)?
Is he breathing?
The Chief Complaint is?

Enter the most accurate location of the patient or incident and verify. Include whether this is a house, apartment, business, or intersection. Obtain the GPS coordinates if available and appropriate.

SUPERVISOR: O'NAE
1234: C.NAE-STD

FIG. 2
FIG. 3A
From Emergency Dispatch Protocol

Start

Provide Instruction

Provide Question

Present Input Component(s)

Receive Input

Determination

Stop

To Emergency Dispatch Protocol

FIG. 4