(54) Epígrafe: PROCESSO PARA A PREPARAÇÃO DE UM DERIVADO DE BENZIMIDAZOLE

(57) Resumo:
DESCRIÇÃO

"PROCESSO PARA A PREPARAÇÃO DE UM DERIVADO DE BENZIMIDAZOLE"

A invenção refere-se a um processo para a preparação do composto de fórmula 1

![Chemical Structure]

um produto intermediário valioso na síntese da substância activa farmacêutica etexilato de dabigatran.

Técnicas anteriores

Como se pode ver a partir do WO 2006/000353, o composto de fórmula 1 tem uma importância chave na síntese do etexilato.
de dabigatran, como um produto intermediário.

O objectivo da presente invenção é proporcionar um processo que permita uma síntese melhorada em grande escala industrial do composto de fórmula \(\text{1} \).

Descrição Pormenorizada Da Invenção

A presente invenção refere-se a um processo para a preparação em grande escala industrial do composto de fórmula

\[\text{1} \]

opcionalmente na forma dos seus sais de adição de ácido, de um modo preferido, na forma do seu sal do ácido para-toluenossulfónico,

caracterizado por, num primeiro passo, se fazer reagir uma diamina de fórmula \(\text{2} \)

\[\text{2} \]
por meio do ácido carboxílico 3

na presença de um reagente de condensação adequado, para formar um composto de fórmula 4

que é convertido, sem isolamento, no bromidrato de fórmula 4-Br

que é, finalmente, convertido na amidina de fórmula 1.

Para a reacção do composto de fórmula 2 para formar o composto de fórmula 4, é, de um modo preferido, adoptado o seguinte processo de acordo com a invenção.

O composto de fórmula 2 é, primeiro que tudo, dissolvido
num solvente adequado. Os solventes adequados de acordo com a invenção são, de um modo preferido, solventes selecionados do grupo compreendendo cloreto de metileno, dimetilformamida, benzeno, tolueno, clorobenzeno, tetra-hidrofurano, dioxano e as suas misturas, de que são preferidos dimetilformamida e tetra-hidrofurano. De acordo com a invenção o tetra-hidrofurano tem importância especial como um solvente neste ponto.

De um modo preferido, utiliza-se 0,5-1 L (litro), de um modo especialmente preferido, 0,65-0,85 L, de um modo mais preferido, 0,7-0,8 L do solvente acima mencionado por mole do composto de fórmula 2 utilizado.

Além da solução acima mencionada também é preparada outra solução que contém o ácido carboxílico de fórmula 3, bem como o reagente de condensação acima mencionado. Para isso, de acordo com a invenção, o reagente de condensação é, de um modo preferido, primeiro que tudo, dissolvido num solvente, que é selecionado, de um modo preferido, do grupo de solventes mencionado acima. De um modo preferido, utiliza-se o mesmo solvente que o utilizado para dissolver o composto de fórmula 2. O reagente de condensação é de um modo preferido selecionado entre N,N'-diciclo-hexilcarbodiimida, N,N'-carbonildiimidazole e carbonil-di-(1,2,4-triazole), enquanto que o N,N'-carbonildiimidazole e o carbonil-di-(1,2,4-triazole), de um modo preferido, o carbonil-di-(1,2,4-triazole), têm particular importância de acordo com a invenção.

De um modo preferido, utiliza-se 1-2 mol, de um modo particularmente preferido, 1-1,5 mol, de um modo mais
preferido 1,05-1,25 mol do reagente de condensação acima mencionado por mol do composto de fórmula 2 utilizado. De um modo preferido, utiliza-se 1-3 L, de um modo particularmente preferido, 1,5-2,5 L, de um modo mais preferido, 1,8-2,2 L do solvente acima referido, por mol do composto de fórmula 2 utilizado, para dissolver o reagente de condensação no solvente acima referido.

A solução do reagente de condensação assim preparada é agitada à temperatura ambiente ou aquecida com agitação a uma temperatura de cerca de 25-50 ºC, de um modo preferido, 30-40 ºC, de um modo particularmente preferido, 32-38 ºC e, depois, combinada com o composto de fórmula 3. A adição do composto de fórmula 3 tem lugar, de um modo preferido, em descontínuo ao longo de um período de 0,25 a 4 h (horas), de modo preferido, durante um período de 0,5 a 3 h, de um modo particularmente preferido, durante um período de 1 a 2 h. A adição do composto 3 é, de um modo preferido, realizada com a solução existente a uma temperatura constante.

De um modo preferido, utiliza-se 1-2 mol, de um modo particularmente preferido, 1-1,5 mol, de um modo mais preferido 1,05-1,15 mol do composto de fórmula 3 acima referido, por mol do composto de fórmula 2 adicionado.

Após a adição do composto de fórmula 3 a solução do reagente de condensação e 3 assim obtida é opcionalmente agitada durante mais um período de 0,25 a 4 h (horas), de um modo preferido, durante um período de 0,5 a 3 h, de um modo particularmente preferido, durante um período de 0,5 a 1 h. Durante este período de tempo a solução é mantida, de um modo preferido, numa das gamas de temperaturas acima referidas,
enquanto a temperatura é, de um modo particularmente preferido, mantida constante.

A solução assim obtida e então adicionada à solução do composto de fórmula 2 já preparada. De um modo preferido, a solução de composto 2 descrita acima é previamente aquecida com agitação a uma temperatura na gama desde cerca de 30-65 ºC, de um modo preferido, 40-60 ºC, de um modo particularmente preferido, 47-53 ºC.

A solução preparada de reagente de condensação e composto 3 é, de um modo preferido, doseada para a solução de composto 2 durante um período de 0,5-5 h, de um modo preferido 1-4 h, de um modo particularmente preferido, 2-3 h. Durante este período de tempo a temperatura da solução existente de composto 2 é, de um modo preferido, mantida constante.

Depois de terminada adição da solução preparada de 3 e reagente de condensação, opcionalmente, pode ser útil diluir mais a solução de reacção pela adição de solvente. Se for adicionado mais solvente, utiliza-se, de um modo preferido, um dos solventes acima referidos, sendo especialmente preferido utilizar o solvente que já foi utilizado para preparar a solução de composto 2.

Se a solução for mais diluída, utiliza-se de um modo preferido, 0,1-0,5 L, de um modo especialmente preferido, 0,2-0,3 L do solvente acima mencionado por mol do composto de fórmula 2 utilizado.

Depois de terminada a adição da solução preparada a partir de 3 e reagente de condensação e de ter sido adicionado
qualquer solvente adicional, a solução obtida é agitada durante mais um período de, pelo menos, 1 a 8 h (horas), de um modo preferido, pelo menos, 2 a 7 h, de um modo especialmente preferido, pelo menos, 3 a 6 h. A solução é mantida, de um modo preferido, dentro de uma das gamas de temperatura acima referidas, e de um modo especialmente preferido a temperatura é mantida constante.

Em seguida, quantidades grandes do solvente são opcionalmente removidas por destilação a pressão reduzida.

De um modo especialmente preferido, são eliminados 1-1,8 L, de um modo especialmente preferido, 1,2-1,7 L, de um modo mais preferido, 1,4-1,5 L do solvente acima mencionado por destilação, por mol de composto 2 utilizado.

A destilação do solvente é realizada, de um modo preferido, numa gama de temperaturas de cerca de 40-65 ºC, de um modo especialmente preferido, a 50-60 ºC. Se não for possível remover o solvente por destilação, à pressão normal, dentro desta gama de temperaturas devido à escolha do solvente, a pressão é reduzida até a destilação decorrer com sucesso dentro da gama de temperaturas especificada.

Opcionalmente, pode ser vantajoso arrastar quaisquer quantidades residuais do solvente originalmente utilizado que estão presentes no resíduo de destilação, por adição de outro solvente. Se, por exemplo, for utilizado tetra-hidrofurano como solvente para a reacção aqui descrita anteriormente, a utilização de acetato de n-butilo demonstrou ser vantajosa. Se se utilizar acetato de n-butilo nesta altura, é removido por destilação conjuntamente com o tetra-hidrofurano sob pressão
reduzida a uma temperatura de cerca de 50-85 °C. A destilação é realizada de tal modo que o tetra-hidrofurano utilizado anteriormente é praticamente quase totalmente removido e só o acetato de n-butílo permanece como solvente. Depois de a destilação estar completa a solução remanescente é combinada com ácido acético. De um modo preferido, nesta altura é utilizado ácido acético concentrado, particularmente ácido acético glacial (ácido acético a aproximadamente 99%).

De um modo preferido, utiliza-se 100-200 g (gramas), de um modo especialmente preferido 120-170 g, de um modo mais preferido, 130-145 g do ácido acético concentrado acima referido, por mol do composto de fórmula 2 utilizado.

Em seguida a mistura é aquecida com agitação a uma temperatura na gama desde cerca de 65-100 °C, de um modo preferido, 75-95 °C, de um modo especialmente preferido, 85-90 °C e agitada, pelo menos, durante um período de 0,5-5 h, de um modo preferido, 1-4 h, de um modo especialmente preferido, 2-3 h a temperatura constante.

Em seguida, a mistura é, de um modo preferido, levada a uma temperatura na gama desde cerca de 45-85 °C, de um modo preferido 55-80 °C, de um modo especialmente preferido, 65-75 °C e misturada com água para processamento subsequente. De um modo especialmente preferido, adiciona-se 0,5-2 L, de um modo especialmente preferido, 0,75-1,5 L, de um modo mais preferido, 0,9-1,1 L de água, por mol do composto de fórmula 2 utilizado. Opcionalmente, também é adicionada à solução de NaCl aquoso, além de água. Se também se adicionar NaCl utiliza-se, de um modo preferido, 20-80 g (gramas), de um modo especialmente preferido, 30-60 g, de um modo mais preferido,
40-50 g de NaCl, por mol do composto de fórmula 2 utilizado.

A mistura de fases, assim obtida, é muito bem misturada e a fase aquosa é separada utilizando métodos convencionais. Opcionalmente, a fase separada é novamente extraída com o solvente orgânico utilizado anteriormente. O solvente é removido das fases orgânicas por destilação a pressão reduzida.

A destilação do solvente é, de um modo preferido, realizada numa gama de temperaturas inferiores a 80 °C, de um modo preferido, a cerca de 60-80 °C, de um modo especialmente preferido, a 70-80 °C. Se não for possível remover o solvente por destilação a esta temperatura, sob pressão normal devido à escolha do solvente, a pressão é reduzida até que a destilação decorra, com sucesso, dentro da gama de temperaturas especificada.

O resíduo de destilação remanescente contém o composto de fórmula 4, que se faz, depois, reagir directamente, de acordo com a invenção, sem ser isolado, utilizando o processo descrito adiante, para se obter o composto de fórmula 4-Br.

O resíduo de destilação é combinado com um álcool, de um modo preferido, com etanol ou isopropanol, de um modo especialmente preferido, isopropanol e, opcionalmente, levemente aquecido.

De um modo preferido, adiciona-se 0,5-3 L, de um modo especialmente preferido, 1-2,5 L, de um modo mais preferido, 1,5-2 L do álcool acima mencionado por mol do composto de fórmula 2 utilizado.
Se a mistura resultante for aquecida, é selecionada uma temperatura, de um modo preferido, de cerca de 25-50 ºC, de um modo preferido, 30-40 ºC, de um modo especialmente preferido, 32-38 ºC.

Em seguida adiciona-se ácido bromídrico aquoso. É especialmente preferido utilizar ácido bromídrico aquoso concentrado. Por exemplo, pode utilizar-se ácido bromídrico aquoso a 48%. Adiciona-se ácido bromídrico suficiente a temperatura constante, com agitação, até o pH da mistura obtida ser inferior a 3, de um modo preferido, inferior a 2 e, de um modo especialmente preferido, está na gama de pH entre 0,6-1,3. Utilizando o ácido bromídrico a 48% aqui mencionado anteriormente a título de exemplo, pode adicionar-se 0,1-0,3 kg, de um modo preferido, 0,15-0,25 kg, de um modo especialmente preferido, 0,17-0,21 kg de ácido bromídrico (48%) por mol do composto de fórmula \(2 \) utilizado.

Depois de ter terminado a adição do ácido bromídrico, a mistura obtida é agitada durante mais um período de, pelo menos, 5 a 60 min (minutos), de um modo preferido, pelo menos, 10 a 45 min, de um modo especialmente preferido, pelo menos, 20 a 30 min. Durante este período de tempo a solução é mantida, de um modo preferido numa das gamas de temperaturas acima referidas, enquanto a temperatura é mantida, de um modo especialmente preferido, constante. Depois a mistura resultante é arrefecida, de um modo preferido, até uma temperatura na gama desde 0 a 20 ºC, de um modo preferido, 5 a 15 ºC, de um modo especialmente preferido, 7-13 ºC e agitada a esta temperatura durante um período adicional de pelo menos 0,5 a 2 h (horas), de um modo preferido, pelo menos, 0,75 a
1,5 h, de um modo especialmente preferido, pelo menos, 1 h.

A suspensão resultante de 4-Br em álcool é, depois, libertada do solvente por centrifugação e o resíduo remanescente é, opcionalmente, lavado com um dos álcoois acima referidos. O 4-Br obtido é, depois, seco em vácuo, a uma temperatura não superior a 30-65 °C, de um modo preferido, não superior a 50-60 °C.

A presente invenção refere-se ainda ao bromidrato de fórmula 4-Br

![Chemical Structure](image)

assim obtido como tal. Surpreendentemente verificou-se que este sal do composto de fórmula 4 é particularmente fácil de separar, o que torna significativamente mais simples isolar este produto intermediário durante reacções numa escala industrial. Por facilidade de separação significa-se, no âmbito da presente invenção, a aptidão para libertar do solvente o produto cristalino resultante por filtração, filtração com succção, centrifugação ou métodos de isolamento comparáveis. Um melhoramento nas qualidades de separação tem um efeito directo na produtividade do processo e é, por isso, de importância excepcional, particularmente quando as reacções são realizadas numa escala industrial. O produto, tendo melhores qualidades de separação, pode ser isolado mais rapidamente, lavado mais depressa e mais rapidamente e, assim,
também seco mais depressa.

O composto de fórmula 1 pode ser obtido a partir do composto 4-Br utilizando o processo seguinte.

O 4-Br, primeiro que tudo, é, de um modo preferido, adicionado a um solvente orgânico misturado com um ácido adequado. O ácido é, de um modo preferido, ácido clorídrico de acordo com a invenção e o solvente é, de um modo preferido, um álcool. De um modo especialmente preferido, utiliza-se isopropanol ou etanol, de um modo especialmente preferido, utiliza-se etanol. Demonstrou ser particularmente preferido de acordo com a invenção utilizar ácido clorídrico etanólico 5-12 molar, de um modo especialmente preferido, 9-11 molar. Se, tal como é particularmente preferido, de acordo com a invenção, se utiliza ácido clorídrico etanólico 10 molar, de um modo preferido, utiliza-se 0,4-1,5 kg, de um modo preferido 0,6-1,0 kg, de um modo especialmente preferido, 0,75-0,85 kg do ácido clorídrico etanólico 10 molar por mol do composto 4-Br utilizado.

O 4-Br é, de um modo preferido, adicionado ao álcool contendo ácido de acordo com a invenção a uma temperatura na gama desde cerca de 20-25 ºC, de um modo preferido, à temperatura ambiente (23 ºC), com agitação. De um modo preferido, de acordo com a invenção, o composto de fórmula 1 é preparado na forma de um sal de adição de ácido. De um modo especialmente preferido, o composto de fórmula 1 é preparado na forma do seu sal do ácido para-toluenossulfônico. Se o composto de fórmula 1 é para ser obtido como um sal de adição do ácido para-toluenossulfônico, mostrou-se ser vantajoso adicionar o ácido para-toluenossulfônico nesta fase.
Consequentemente, após a adição da solução de 4-Br ao álcool acimamencionadocontendo ácido, de um modo preferido, ácido clorídrico, também se adiciona ácido p-toluenossulfônico. O ácido para-toluenossulfônico é adicionado, de um modo preferido, na forma do seu hidrato.

Em alternativa ao processo descrito acima, todo o ácido para-toluenossulfônico pode ser adicionado, em primeiro lugar, antes do composto 4-Br ser adicionado ao álcool contendo ácido. De um modo preferido, pode adicionar-se 180-300 g (gramas), de um modo especialmente preferido, 200-300 g, de um modo mais preferido 245-255 g do ácido p-toluenossulfônico aquoso acima mencionado por mol do composto de fórmula 4-Br utilizado.

Depois de ter terminado a adição, a mistura é, de um modo preferido, ajustada com agitação, para uma temperatura na gama desde cerca de 23-40 °C, de um modo preferido 25-35 °C, de um modo especialmente preferido, 28-29 °C e agitada durante um período não superior a 12-36 h, de um modo preferido, não superior a 20-28 h, de um modo especialmente preferido, não superior a 23-25 h a temperatura constante.

Pode então opcionalmente ser aconselhável diluir mais a solução reaccional pela adição de solvente. Se se adicionar mais solvente, de um modo preferido, é utilizado um dos álcoois acima referidos, sendo particularmente preferido utilizar o álcool específico que já foi utilizado para preparar a solução do composto 4-Br. Consequentemente, aqui também é, de um modo preferido, utilizado etanol.

Se a solução for mais diluída, utiliza-se de um modo
preferido, 0,5-1,5 L, de um modo especialmente preferido 0,8-1,0 L do solvente acima referido, de um modo preferido álcool, de um modo especialmente preferido, etanol, por mol do composto de fórmula **4-Br** utilizado.

Em seguida a mistura é arrefecida com agitação a uma temperatura na gama desde cerca -10 a 15 ºC, de um modo preferido, -5 a +5 ºC, de um modo especialmente preferido, 1 a 3 ºC e combinada com solução aquosa de amoníaco. É particularmente preferido utilizar 20-30%, de um modo preferido, 20-25% de solução de amoníaco, sendo, de um modo preferido, utilizada solução aquosa de amoníaco a 25% de acordo com a invenção. Se se utilizar solução aquosa de amoníaco a 25%, de um modo preferido, utiliza-se 0,5-1,5 kg, de um modo especialmente preferido, 0,6-1,0 kg, de um modo mais preferido, 0,7-0,8 kg da solução aquosa de amoníaco a 25% acima mencionada por mol do composto de fórmula **4-Br** utilizado.

A solução aquosa de amoníaco é adicionada, de um modo preferido, de tal modo que a temperatura é mantida na gama desde cerca de 0-15 ºC, de um modo preferido a 0-10 ºC. De um modo especialmente preferido, a adição é controlada de modo que a temperatura permanece constante. O pH da solução aumenta, de um modo preferido, para uma gama de 9-10,5, de um modo preferido, para pH 9,3-10.

Depois de terminada a adição a mistura é, de um modo preferido, aquecida com agitação a uma temperatura na gama de cerca 20-30 ºC, de um modo preferido 22-27 ºC, de um modo especialmente preferido, cerca de 25 ºC e agitada durante mais um período de, pelo menos, 2-8 h, de um modo preferido pelo
menos 2,4-6 h, de um modo especialmente preferido, pelo menos, 3-5 h a temperatura constante.

Em seguida são opcionalmente removidas por destilação grandes quantidades do solvente a pressão reduzida. De um modo especialmente preferido, são eliminados 0,2-0,8 L, de um modo especialmente preferido 0,3-0,7 L, de um modo mais preferido, 0,4-0,5 L do solvente acima mencionado por destilação, por mol de composto 4-Br utilizado.

A destilação do solvente é realizada, de um modo preferido, numa gama de temperatura de cerca de 40-65 ºC, de um modo especialmente preferido, a 50-60 ºC. Se não for possível remover o solvente por destilação à pressão normal dentro desta gama de temperaturas, devido à escolha do solvente, a pressão é reduzida até a destilação ter lugar com êxito dentro da gama de temperaturas especificada.

Em seguida a mistura é misturada com água a temperatura constante (cerca de 50-60 ºC) para processamento adicional. De um modo especialmente preferido, adiciona-se 2-8 L, de um modo especialmente preferido 4-7 L, de um modo mais preferido 5-6 L de água por mol do composto 4-Br utilizado. Além da adição de água, também é adicionada solução aquosa de NaOH, de um modo preferido, a 30-60%, de um modo especialmente preferido, solução de NaOH a 40-50%. É particularmente preferido, de acordo com a invenção adicionar solução aquosa de NaOH a 50%.

Se se adicionar solução de NaOH a 50%, de um modo preferido, adiciona-se 50-200 mL, de um modo especialmente preferido, 70-150 mL, de um modo mais preferido, 90-110 mL de solução de NaOH a 50% por mol do composto 4-Br utilizado.
Depois de terminada a adição, a mistura é ajustada, de um modo preferido, para uma temperatura na gama desde de cerca de 40-70 ºC, de um modo preferido, 50-60 ºC, de um modo especialmente preferido, cerca de 55 ºC com agitação e agitada durante mais um período de, pelo menos, 0,5-1,5 h, de um modo preferido, pelo menos, 0,6-1,25 h, de um modo especialmente preferido, pelo menos, 0,75-1 h a temperatura constante.

A mistura é depois opcionalmente arrefecida a uma temperatura na gama de cerca de 0-30 ºC, de um modo preferido, 5-20 ºC, de um modo especialmente preferido, 10-15 ºC e agitada durante mais um período de, pelo menos, 0,5-2 h, de um modo preferido, pelo menos, 0,75-1,5 h, de um modo especialmente preferido, pelo menos, 1 h a temperatura constante.

Os cristais obtidos são separados, lavados com água e opcionalmente um solvente orgânico e, depois, secos em vácuo a uma temperatura de não mais do que 50-90 ºC, de um modo preferido, não mais do que 60-70 ºC.

Os Exemplos seguintes servem para ilustrar um processo de síntese realizado a título de exemplo. Pretendem unicamente ser exemplos de processos possíveis sem restringir a invenção ao seu conteúdo.

EXEMPLO 1 - Síntese em grande escala industrial do composto de fórmula 4-Br

Toma-se 88 kg de carbonil-di-(1,2,4-triazole) e combina-
se com 920 L de tetra-hidrofurano. O conteúdo do aparelho é aquecido a 35 °C com agitação. Em seguida adiciona-se 90 kg de composto 3 em porções a 35 °C dentro de 1 a 2 horas.

Coloca-se 160 kg de composto 2 num segundo reactor, depois adiciona-se 350 L de tetra-hidrofurano e a mistura é aquecida a 50 °C com agitação.

A solução de 3 é adicionada à solução de 2 em 2 a 3 horas a 47 °C-53 °C e a solução obtida é diluída com 115 L de tetra-hidrofurano.

Em seguida a mistura é agitada durante mais 4 horas a 47 °C-53 °C (de um modo preferido, 50 °C). Depois remove-se 670 L-695 L de tetra-hidrofurano por destilação em vácuo a 50 °C-60 °C. Deixa-se então que 235 L de acetato de n-butilo fluam para o resíduo. Depois disto, remove-se 600 L-630 L de uma mistura de acetato de butilo/THF em vácuo a 50 °C-85 °C. Durante a destilação são adicionados 700 L de acetato de butilo.

Deixa-se fluir para o resíduo 65 kg de ácido acético, o conteúdo é aquecido a 85 °C-90 °C e agitado durante, pelo menos, mais 2,5 h a esta temperatura. Em seguida a mistura é arrefecida a 65 °C-75 °C. Uma solução de 165 L de água e 20 kg de sal vulgar é adicionada ao conteúdo e a mistura é lavada com 300 L de água. Em seguida a temperatura é ajustada para 60 °C-70 °C e a mistura é agitada durante um mínimo de 15 min a esta temperatura. Para a separação de fases o agitador é parado e a mistura é deixada em repouso durante, pelo menos, 15 min. A fase aquosa é drenada para outro reactor que contém 120 L de acetato de n-butilo. A mistura é aquecida a
60 °C-70 °C com agitação e agitada durante, pelo menos, 10 min. Após a separação de fases a fase aquosa é retirada para o esgoto de resíduos químicos. As fases de acetato de butilo e 20 L de acetato de butilo para lavagem são combinadas. Remove-se deste conteúdo 590 L-620 L de acetato de n-butilo por destilação em vácuo a uma temperatura interna máxima de 80 °C. Deixa-se fluir 880 L de isopropanol para o resíduo da destilação e o conteúdo é ajustado para 32 °C-38 °C. Em seguida adiciona-se aproximadamente 90 kg de ácido bromídrico a 48% a 32 °C-38 °C até o valor do pH ser 0,6 a 1,3. A mistura é agitada durante um mínimo de 20 min a 32 °C-38 °C e depois arrefecida a 7 °C-13 °C e agitada a esta temperatura durante, pelo menos, uma hora. A suspensão resultante é centrifugada, lavada com um total de 840 L de isopropanol e seca em vácuo a um máximo de 55 °C.

O composto 4-HBr pode ser isolado utilizando qualquer centrifuga corrente disponível comercialmente.

EXEMPLO 2 - Síntese em grande escala industrial do composto de fórmula 1 (na forma do sal de adição do ácido para-toluenossulfónico)

330 kg de composto 4-Br e 147 kg de ácido p-toluenossulfónico (aquoso) são adicionados com agitação a 470 kg de ácido clorídrico etanólico 10 molar a 23 °C. Em seguida a mistura é aquecida a 28 °C-29 °C e agitada durante 23 h a esta temperatura. A mistura reaccional é diluída com
693 L de etanol e transferida para um segundo reactor. O conteúdo deste reactor é diluído com outros 536 L de etanol e arrefecido a 2 ºC. Adiciona-se 440 kg de solução de amoníaco a 25%, com a temperatura mantida a cerca de 10 ºC, até se obter um pH de 9,3 a 10, com arrefecimento adicional e agitação. O conteúdo do aparelho é aquecido a 25 ºC e agitado durante 4 horas a esta temperatura. Em seguida o conteúdo é aquecido a 50 a 60 ºC e 248 L-261 L de etanol são removidos por destilação em vácuo. Depois adiciona-se 1220 L de água a uma temperatura interna de 50 ºC-60 ºC. O conteúdo do aparelho é dividido em partes iguais (aproximadamente 1450 L) por dois reactores com o mesmo tamanho. O processamento é prosseguído em paralelo (simultaneamente) em ambos os aparelhos. Em cada caso adiciona-se uma solução de 950 L de água e 31 L de solução de hidróxido de sódio (50%). O conteúdo dos dois aparelhos é ajustado para uma temperatura de 50 a 60 ºC (de um modo preferido 55 ºC) e agitado durante 45 min. Depois dentro de 3 h a mistura é arrefecida a 10 ºC-15 ºC e agitada durante mais 60 min a esta temperatura.

As suspensões de cristais são separadas através de duas centrífugas. Em primeiro lugar o produto é lavado com água, a seguir com acetona e depois seco em vácuo a uma temperatura máxima de 70 ºC.

Rendimento: 314 kg-371 kg; ponto de fusão: 209-211 ºC.

Lisboa, 23 de Agosto de 2010
REIVINDICAÇÕES

1. Processo para a preparação do composto de fórmula

opcionalmente na forma dos seus sais de adição de ácido,

caracterizado por, num primeiro passo, se fazer reagir
uma diamina de fórmula 2

por meio do ácido carboxílico 3

na presença de um reagente de condensação adequado, para
formar um composto de fórmula 4
que é convertido, sem isolamento, no bromidrato de fórmula 4-Br,

que é, finalmente, convertido na amidina de fórmula 1.

2. Processo de acordo com a reivindicação 1, caracterizado por a reacção de 2 com 3 ser realizada num solvente que é seleccionado de cloreto de metileno, dimetilformamida, benzeno, tolueno, clorobenzeno, tetra-hidrofurano, dioxano e as suas misturas.

3. Processo de acordo com a reivindicação 1 ou 2, caracterizado por o reagente de condensação ser seleccionado de N,N'-diciclo-hexilcarbodiimida, N,N'-carbonildiimidazole e carbonil-di-(1,2,4-triazole).

4. Processo de acordo com qualquer das reivindicações 1 a 3, caracterizado por se adicionar ácido acético para a preparação do composto de fórmula 4.
5. Processo de acordo com qualquer das reivindicações 1 a 4, caracterizado por o composto de fórmula 4-Br ser obtido a partir do composto de fórmula 4 pela adição de ácido bromídrico aquoso.

6. Processo de acordo com qualquer das reivindicações 1 a 5 para a preparação do composto de fórmula 1, na forma do seu sal de adição de ácido com ácido p-toluenossulfônico, caracterizado por a conversão do composto de fórmula 4-Br na amidina de fórmula 1, na forma do seu sal de adição com ácido p-toluenossulfônico, ser realizada por adição do composto de fórmula 4-Br a álcool contendo ácido, com a adição de ácido p-toluenossulfônico e adição subsequente de solução de amoníaco.

7. Processo de acordo com a reivindicação 6, caracterizado por a quantidade total de ácido p-toluenossulfônico ser adicionada no início da reacção do composto de fórmula 4-Br com o álcool contendo ácido.

8. Processo de acordo com a reivindicação 6 ou 7, caracterizado por o álcool contendo ácido ser etanol contendo ácido clorídrico.
9. Composto de fórmula 4-Br

Lisboa, 23 de Agosto de 2010
RESUMO

"PROCESSO PARA A PREPARAÇÃO DE UM DERIVADO DE BENZIMIDAZOLE"

A invenção refere-se a um processo para a preparação do composto de fórmula 1, um produto intermediário valioso na síntese da substância activa farmacêutica etexilato de dabigatran.