DRIVING CIRCUIT FOR STACKED ORGANIC LIGHT EMITTING DEVICES

Inventors: Stephen R. Forrest; Paul Burrows.
both of Princeton, NJ.

Assignee: The Trustees of Princeton University

Appl. No.: 792,059
Filed: Feb. 3, 1997

References Cited
U.S. PATENT DOCUMENTS
4,356,429 10/1982 Tang
4,670,689 6/1987 Suzuki
4,908,603 3/1990 Yamane et al.
5,216,331 6/1993 Hosokawa et al.
5,505,985 4/1996 Nakamura et al.
5,529,853 6/1996 Hamada et al.

OTHER PUBLICATIONS

Primary Examiner—Robert Pascal
Assistant Examiner—David H. Vu
Attorney, Agent, or Firm—Kenyon & Kenyon

ABSTRACT

Arrangements for biasing the individual light emitting elements of a stacked organic light emitting device (SOLED). A circuit is provided for independently driving the individual OLEDs in a conventional SOLED having one electrode coupled to ground potential and one further electrode for each of the OLEDs in the stack. Additionally, new SOLED structures are described in which each OLED in the stack is provided with a ground reference. A SOLED combining upright and inverted OLEDs is also described.

19 Claims, 4 Drawing Sheets
FIG. 4
DRIVING CIRCUIT FOR STACKED ORGANIC LIGHT EMITTING DEVICES

FIELD OF THE INVENTION

The present invention relates to the field of light emitting devices, in particular, to stacked organic light emitting devices (SOLEDs) and to means for driving same.

BACKGROUND OF THE INVENTION

Organic light emitting devices (OLEDs) are light emitting devices which use organic electroluminescent (EL) materials excited by electric current to emit light. A plurality of OLEDs can be arranged in an array to form a display.

In color displays, it is necessary to arrange OLEDs which emit light of different colors, typically the primary colors blue, green and red, in close proximity to each other. In such an application, it is advantageous to arrange three OLEDs, each emitting light of one of the three primary colors, in a stack, thereby forming a true color pixel from which any color can be emitted. Such a structure is described in PCT International Application WO 96/19792.

In such a stacked structure, one electrode layer is provided at the bottom of the SOLED stack and a further electrode layer is provided between each of the OLEDs in the stack. Such a structure is described in PCT International Application WO 96/19792. In the bottom electrode layer is typically coupled to a ground reference and the intermediate and top electrode layers are coupled to either a positive or negative driving voltage.

With only one electrode layer being provided in the SOLED for coupling to a ground reference and with only one additional electrode layer being provided for each OLED in the stack, the problem arises of driving each of the OLEDs in the stack independently of each other. There is therefore a need for a means of driving such a configuration of stacked OLEDs or for alternative configurations of stacked OLEDs.

SUMMARY OF THE INVENTION

The present invention is directed to arrangements for independently driving individual OLEDs arranged in a stacked OLED structure, or SOLED.

For a conventional SOLED in which only one electrode is provided between each OLED in the stack, in which only one electrode is provided at the bottom of the stack and is not coupled to ground potential, the present invention provides a driving circuit which generates voltages for application to the electrodes arranged between the OLEDs in accordance with input control signals applied to the driving circuit. The brightness of the light emitted by each OLED of the SOLED is controlled by the driving circuit in accordance with the brightness of the light emitted by the corresponding OLED.

The present invention also provides embodiments of SOLED structures which allow direct control of the individual OLEDs in the stacked structure with no additional external circuitry.

In a first embodiment, each OLED is provided with a first electrode coupled to a ground reference and a second electrode coupled to either a positive or negative driving voltage. An insulating layer is provided between adjacent electrodes of two of the OLEDs in the stack.

In a further embodiment, each OLED in the stack is provided with a first electrode for coupling to a ground reference and a second electrode for coupling to a positive driving voltage. An insulating layer is provided between adjacent electrodes of two of the OLEDs in the stack. In addition, the middle OLED is formed with an inverted structure. In this embodiment, only driving voltages of the same polarity are required, thereby avoiding the need for a dual-polarity voltage source.

In a third embodiment, only one electrode layer is coupled to ground potential. Each OLED is directly controlled and no insulating layers are required. The middle OLED is formed with an inverted structure. Only voltages of the same polarity are required.

The circuit and SOLEDs of the present invention can be used in a wide variety of applications, including computer displays, informational displays in vehicles, television monitors, telephones, printers, illuminated signs, large-area screens and billboards.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary embodiment of a circuit for driving a conventional stacked OLED structure in accordance with the present invention.

FIG. 2-2A show a first and second embodiment of a stacked OLED structure in accordance with the present invention.

FIGS. 3-3A show third and fourth embodiments of a stacked OLED structure in accordance with the present invention.

FIG. 4 shows a fifth embodiment of a stacked OLED structure in accordance with the present invention.

DETAILED DESCRIPTION

FIG. 1 shows an exemplary embodiment of a circuit for driving a stacked OLED (SOLED) structure. The SOLED structure of FIG. 1 includes three OLEDs, each emitting one of a red, green and blue light, represented by arrows labeled R, G and B, respectively. For the purposes of the present invention, the actual colors emitted is irrelevant. The primary colors red, green and blue are preferred in the typical display applications utilizing SOLEDs so as to allow all possible color combinations. Furthermore, although a red OLED is shown stacked on a green OLED which in turn is stacked on a blue OLED, any order of stacking is possible.

The SOLED 40 can be fabricated as disclosed in U.S. patent applications Ser. Nos. 08/354.674 and 08/613.207, incorporated herein by reference in their entirety.

The circuit for driving the OLED stacked structure includes three drivers, 10, 20 and 30 which can be implemented, as shown, with operational amplifiers (op-amps). Each of the drivers 10, 20 and 30 has an input coupled to a terminal, B, G or R, respectively, to which it is applied a control signal indicative of the desired brightness of the light to be emitted by a corresponding one of the OLEDs in the stacked OLED structure.

The stacked OLED structure 40 is fabricated on a substrate which is composed of a substantially transparent material such as glass. The bottom layer of the stacked structure 40 is an electrode layer 47. In the exemplary embodiment of FIG. 1, the electrode layer 47 acts as an anode and is coupled to ground. A first OLED which emits blue light is arranged over the electrode layer 47. The first OLED comprises a layer 46b of organic material which acts as a hole transporting layer (HTL). The HTL 46b is deposited on the electrode layer 47. A further organic layer 46c on the substrate which is composed of a substantially transparent material such as glass. The bottom layer of the stacked structure 40 is an electrode layer 47. In the exemplary embodiment of FIG. 1, the electrode layer 47 acts as an anode and is coupled to ground. A first OLED which emits blue light is arranged over the electrode layer 47. The first OLED comprises a layer 46b of organic material which acts as a hole transporting layer (HTL). The HTL 46b is deposited on the electrode layer 47. A further organic layer 46c which acts as an electron transporting layer (ETL) as well as
an electroluminescent layer (EL) is deposited on the HTL
46h. The ETL and EL can alternatively be implemented as two
distinct layers. A semi-transparent electrode layer 45 is
deposited on the ETL/EL 46e.

A second OLED which emits green light is fabricated
over the first OLED. The second OLED, which is similar in
fabrication to the first OLED, comprises a HTL 44h which
is deposited on the electrode layer 45 and an ETL/EL 44e
which is deposited on the HTL 44h. A semi-transparent
electrode layer 43 is deposited on the ETL/EL 44e.

A third OLED which emits red light is fabricated over
the second OLED. The third OLED, which is similar in fabri-
cation to the first and second OLEDs, comprises a HTL 42h
which is deposited on the electrode layer 43 and an ETL/EL
42e which is deposited on the HTL 42h. An opaque or
semi-transparent electrode layer 41 is deposited on the
ETL/EL 42e.

The electrode 45, which lies between the first and second
OLEDs, is coupled to the output of the driver 10. The driver
10 generates a voltage VB which drives the first OLED. The
brightness of the blue light emitted by the first OLED is
controlled by the magnitude of the voltage Vp.

The electrode 43, which lies between the second and third
OLEDs, is coupled to the output of the driver 20. The driver
20 generates a voltage VG which in conjunction with the
voltage Vp determines the brightness of the green light
emitted by the second OLED. More specifically, the bright-
ess of the light emitted by the second OLED is a function
of the voltage applied across the second OLED. The voltage
applied across the second OLED is the voltage between the
electrodes 43 and 45, or V_{CG}Vp.

The electrode 41, which lies between the third OLED, is
coupled to the output of the driver 30. The driver 30
generates a voltage VR which in conjunction with the
voltage Vp determines the brightness of the red light emitted
by the third OLED. The brightness of the light emitted by the
third OLED is a function of the voltage applied across the
third OLED, namely, the voltage between the electrodes 41
and 43, or Vp-V_C.

In conjunction with resistors 11 and 12, the op-amp 10 is
configured so that the voltage V_C generated by the op-amp
10 is equal or proportionate to the voltage of the control
signal applied to the terminal B. The resistor 11 is coupled
between an inverting input of the op-amp 10 and ground and
the resistor 12 is coupled between the inverting input and the
output of the op-amp 10. The closed-loop gain of the op-amp
10 thus configured is determined by the values of the
resistors 11 and 12. More specifically:

V_C = (1+R₁₁/R₁₂)V(B),

where R₁₁ and R₁₂ are the values of the resistors 11 and 12,
respectively, and V(B) is the voltage of the input control
signal applied to terminal B. If resistor 12 is replaced by a
short circuit, then V_C=V(B), i.e., the brightness of the blue
OLED is determined by the voltage applied to the control
terminal B.

In conjunction with resistors 13, 21, 22 and 24, the
op-amp 20 can be configured so that the voltage V_C gener-
ated by the op-amp 20 can be made proportionate to the sum
of Vp and the voltage applied to the terminal G (V(G)). The
terminal G, to which the control signal for the green OLED
is applied, is coupled via the resistor 24 to a non-inverting
input of the op-amp 20. The output of the op-amp 10 is
coupled to the non-inverting input of the op-amp 20 via the
resistor 13. The resistor 21 is coupled between an inverting
input of the op-amp 20 and ground and the resistor 22 is
coupled between the inverting input and the output of the
op-amp 20. In this configuration, the driver 20 acts as a
summing amplifier. If the values of the resistors 13 and 24
are selected to be equal, then:

V_C = ((1+R₂₂/R₂₄)(V(G)+Vp).

Furthermore, if the values of the resistors 21 and 22 are
selected to be equal, then V_C=V(G)+Vp, in which case the
voltage applied across the green OLED, V_{CG}Vp, is equal
to V(G). In this case, the brightness of the green OLED is
controlled only by the voltage of the signal applied to the
terminal G.

The driver 30 is configured with resistors 23, 31, 32 and
33 to operate similarly to driver 20. If the values of resistors
23 and 33 are selected to be equal to each other and the
values of the resistors 31 and 32 are selected to be equal
to each other, then the voltage applied across the red OLED
is equal to V(R), the voltage of the control signal applied to
the terminal R. In this case, the brightness of the red OLED is
controlled only by the voltage applied to the terminal R.

As a result, the brightness of the light emitted by each of
the OLEDs in the stacked structure 40 can be controlled
independently of the brightness of the other OLEDs, thus
providing a transparent control of the individual OLEDs of
the SOLED from the corresponding input control signals.

It should be noted that if the nominal driving voltage for
an individual OLED in the stacked structure is Vd (typically
approximately 10 volts), the magnitude of the voltage V_R
applied to the electrode 41 can be as great as 3 Vd (30 volts).
As such, the driver 30 must be capable of developing an
output voltage of 3 Vd and thus must be powered with a
supply voltage of 3 Vd or greater.

Note that in the exemplary embodiment of FIG. 1. the
voltages V_P, V_C and V_R for driving the OLEDs are negative
in polarity. This is due to the ordering of the organic layers
of the individual OLEDs and the grounding of the bottom
electrode 47. It should be evident that the circuit of FIG. 1
is also applicable to SOLEDs which require positive driving
voltages (as in the case in which the ETL/EL and HTL of
each OLED are reversed). Moreover, the circuit of FIG. 1
can be readily adapted to operate with input control signals
of either positive or negative polarity.

FIG. 2 shows an embodiment of a stacked OLED struc-
ture 60 in which each of the OLEDs in the stack is provided
with a ground reference. In this embodiment, the individual
OLEDs in the stack can be controlled independently of each
other without additional external circuitry such as that of
FIG. 1. In this embodiment, the voltages V_P, V_C and V_R for
driving the respective OLEDs in the SOLED are represented
by voltage sources 51, 52 and 53, respectively.

The stacked OLED structure 60 of FIG. 2 is fabricated on
a substantially transparent substrate 70. The first lower
deposited on the substrate 70 is an electrode layer 61 which
acts as the anode for the blue OLED. The anode layer 61,
which is composed of indium tin oxide (ITO), receives the
to the voltage V_P which in this embodiment is positive, for
driving the blue OLED. The organic layers of the blue
OLED include an ETL/EL 62e and a HTL 62h which is
deposited over the anode layer 61. An electrode layer 63 is
deposited on the ETL/EL 62e. The electrode layer 63, which
can be formed by depositing a thin, semi-transparent layer of
Mg:Ag alloy followed by a layer of ITO, is connected to
ground potential.

A HTL 64h for the green OLED is deposited over the
electrode layer 63 and an ETL/EL 64e is deposited on the
An electrode layer 65, composed of ITO and a thin layer of Mg:Ag alloy is deposited on the HTL 64h. The electrode layer 65 receives the voltage V_p, which in this embodiment is negative, for driving the green OLED and acts as the cathode of the green OLED. It should be noted that the electrode layer 63, which acts as the cathode of the blue OLED also acts as the anode of the green OLED.

An insulating layer 66 is deposited over the cathode layer 65. The insulating layer can be composed of an insulating material such as SiO$_2$, SiN, or AlO$_x$ deposited by a variety of processes such as plasma enhanced chemical vapor deposition (PECVD), e-beam, etc. An electrode layer 67, which can be composed of ITO, is deposited over the insulating layer 66. The electrode layer 67, which acts as the anode of the red OLED, is connected to ground potential. A HTL 68h of the red OLED is deposited over the electrode layer 67 and an ETL/EL 86e is deposited over the HTL 68h. An electrode layer 69 which acts as the cathode of the red OLED and which can be composed of an Mg:Ag alloy, is deposited over the ETL/EL 68h. The electrode layer 69 receives the voltage V_p, which in this embodiment is negative, for driving the red OLED.

In the embodiment of FIG. 2, the electrode layer 67 is coupled to ground and the electrode layer 69 is coupled to a negative voltage. In the alternative, it is also possible to couple the electrode layer 69 to ground and to couple the electrode layer 67 to a positive voltage.

Furthermore, in the embodiment of FIG. 2, the order of deposition of the hole transporting layer and the electron transporting and electroluminescent layer is the same for all three of the OLEDs in the stack. Namely, in each case, the electron transporting and electroluminescent layer is deposited over the hole transporting layer. It should be evident that a reverse ordering is also possible, i.e., the hole transporting layer is deposited over the electron transporting and electroluminescent layer.

Moreover, in the embodiment of FIG. 2, the insulating layer 66 is arranged between electrode layers arranged between the middle and upper OLEDs. The embodiment of FIG. 2, however, can be readily modified so that the insulating layer is instead arranged between electrodes arranged between the lower and middle OLEDs. FIG. 2A shows such an embodiment.

FIG. 3 shows a third embodiment of a stacked OLED structure 80 in which each of the OLEDs in the stack is provided with a ground reference. In this embodiment, all of the OLED driving voltages VR, VG and VB, provided by the voltages sources 71, 72 and 73, respectively, are of the same polarity. In the exemplary embodiment of FIG. 3, the polarities of the driving voltages are positive, although it should be evident that the SOLED structure can be readily adapted for negative driving voltages.

The stacked OLED structure 80 of FIG. 3 is fabricated on a substrate 90. The first layer deposited on the substrate 90 is a layer 81 which acts as the anode for the blue OLED. The anode layer 81, which can be composed of ITO, receives the voltage V_p for driving the blue OLED. A HTL 82a for the blue OLED is deposited over the anode layer 81 and an ETL/EL 82e is deposited over the HTL 82a. An electrode layer 83 is deposited on the ETL/EL 82e. The electrode layer 83, which can be formed by depositing a thin layer of Mg:Ag alloy followed by a layer of ITO, is connected to ground potential and acts as a cathode for the blue OLED.

An ETL/EL 84c for the green OLED is deposited over the electrode layer 83 and a HTL 84h is deposited over the ETL/EL 84c. Note that the order of the ETL/EL and HTL of the green OLED is opposite to that of the underlying blue OLED. An electrode layer 85, which can be composed of ITO, is deposited on the HTL 84h and acts as the anode for the green OLED. The electrode layer 85 receives the voltage V_p for driving the green OLED. It should be noted that the electrode layer 83, which acts as the cathode for the blue OLED also acts as the cathode for the green OLED.

An insulating layer 86 is deposited over the electrode layer 85. The insulating layer can be composed of an insulating material such as SiO$_2$, SiN, or AlO$_x$ deposited by a variety of processes such as PECVD, e-beam, etc. A further electrode layer 87 is deposited over the insulating layer 86. The electrode layer 87, which acts as the anode for the red OLED, can be composed of ITO and is connected to the voltage VR for driving the red OLED. A HTL 88h of the red OLED is deposited over the electrode layer 87 and an ETL/EL 88e is deposited over the HTL 88h. Note that the order of the HTL and ETL/EL of the red OLED is the same as that of the blue OLED and the reverse of that of the green OLED. A cathode layer 89, which can be composed of an Mg:Ag alloy, is deposited over the ETL/EL 88e. The cathode layer 89 is coupled to ground potential.

It should be evident that, like the embodiment of FIG. 2, a reverse ordering of the HTL and ETL/EL of each layer is also possible with the embodiment of FIG. 3. Moreover, in the embodiment of FIG. 3, the insulating layer 86 is arranged between electrode layers arranged between the middle and upper OLEDs. The embodiment of FIG. 3, however, can be readily modified so that the insulating layer is instead arranged between electrodes arranged between the lower and middle OLEDs. FIG. 3A shows such an embodiment.

FIG. 4 shows yet another exemplary embodiment of a three-color stacked OLED structure in which only one electrode is tied to ground potential yet, when all OLEDs are on, does not require any voltages greater than that needed to drive one OLED (i.e., V_0).

As shown in FIG. 4, the SOLED is fabricated on a glass substrate 100. An electrode layer 101 is deposited on the substrate 100 as a 1500-4000 Å thick layer of ITO and acts as the anode for the first OLED, which in this embodiment emits blue light. A HTL 102 is deposited on the electrode 101 as a 500 Å thick layer of 4.4'-bis[(1-naphthyl)-N-phenylamino]biphenyl (α-NPD). An electroluminescent layer 103, composed of Alq$_3$O$_x$ and having a thickness of 10-100Å, is deposited over the HTL 102. An ETL 104 composed of tris-(8-hydroxyquinoline) aluminum (Alq$_3$) is deposited with a thickness of 200-800 Å on the electroluminescent layer 103. An electrode layer 105 is deposited on the ETL 104 and acts as the cathode of the blue OLED. The electrode 105 can be composed of an Mg:Ag alloy and can have a thickness of 50-200 Å. The electrode 105 is connected to ground potential. A voltage V_p provided by a voltage source 91 is applied across the electrodes 101 and 105 to drive the blue OLED.

The structure for the second OLED in the stack, which in this embodiment is a green light emitting OLED, is fabricated over the electrode 105. In this embodiment, however, the green OLED is formed in an inverted configuration. An ETL/EL 106, composed of Alq$_3$, is deposited on the electrode 105 to a thickness of 200-800 Å. A HTL 107 is deposited as a 100-1000 Å thick layer of NPD on the ETL/EL 106. A protection layer 108 is deposited on the HTL 107 and a cathode layer 109 composed of ITO is deposited with a thickness of 300-1000 Å on the protection layer 108. The protection layer 108 can be formed by the deposition of 3,4,9,10-perylenetetracarboxilic diimide (PTCDA), bis[1,2,5-thiadiazolo] pquinobis [1,3-dithiole]
The red OLED is fabricated over the ITO electrode layer 109 in an upright configuration. A NPD HTL 110 with a thickness of 1000-100 Å is deposited on the electrode layer 109 and an Alq3, ETL/EL 111 with a thickness of 200-800 Å is deposited on the HTL 110. A metallic electrode layer 112, composed for instance of a 500-2000 Å thick layer of Mg/Ca alloy, is arranged on the ETL/EL 111 and is capped off with a cap layer 113. The cap layer, which serves to protect the device from oxidation, can be a 500-2000 Å thick layer of silver. The electrode layer 112 acts as the cathode of the red OLED and the electrode layer 109 acts as the anode. To drive the red OLED, a voltage V_{an} provided by a voltage source 92, is applied across the electrode layers 109 and 112.

In the embodiment of FIG. 4, if the nominal driving voltage for each of the OLEDs in the stack is V_d, when all three OLEDs are driven full on with the voltage V_d, the voltage V_i will be V_d. If V_d will be 0 volts, V_i will be V_d and V_a will be V_d (since the OLEDs are in parallel). If, however, the middle (green) OLED is off while the bottom (blue) and top (red) OLEDs are full on, V_i will be V_d, V_a will be V_d and V_d will be 0 volts. If V_d will be 0 volts, V_a will be 0 volts and V_b will be 0 volts. If V_d will be 0 volts and V_a will be 0 volts, V_b will be 0 volts and V_d will be 0 volts. In this case, the voltage difference between V_a and V_b will be V_d-(V_d) or 2 V_d. This voltage difference, however, can be substantially reduced by keeping the voltage across the set OLED off (in this case the green OLED) at the voltage at which the OLED will not emit light. If the nominal full-on drive voltage of an OLED is V_d, the threshold voltage below which the OLED will not emit light is approximately 0.8 V_d. If the middle (green) OLED is driven with a voltage at or slightly below 0.8 V_d so as to keep the middle OLED off, while the top and bottom OLEDs are driven with voltages of V_d, then V_i will be V_d. If V_d will be 0 volts, V_a will be 0 volts, and V_b will be 0 volts. If V_d will be 0 volts, V_a will be 0 volts, and V_b will be 0 volts. In this case, the voltage difference between V_d and V_a will be V_d-$(0.2 V_d) or 1.2 V_d.

Although the thickness of each layer of the OLED of FIG. 4 can be within the preferred ranges of thicknesses specified above, the specific thicknesses of the various layers can be advantageously selected to exploit microcavity effects within the stacked structure. Microcavities between layers can be established within the stacked structure to provide filtering of the emitted light. The color of the light emitted by each OLED can thus be adjusted in accordance with the selection of layer thicknesses.

Although detailed compositions and thicknesses of the various layers in a SOLED of the present invention have been described above in connection with the embodiment of FIG. 4, it should be evident that such discussion is also applicable to the other embodiments disclosed herein.

The subject invention as disclosed herein may be used in conjunction with the subject matter of co-pending application, "DISPLAYS HAVING MESA PIXEL CONFIGURATION," U.S. patent application Ser. No. 08/794,505 filed on even date herewith, and being herein incorporated in its entirety by reference.

The subject invention as disclosed herein may be used in conjunction with the subject matter of co-pending applications, "Novel Materials for Multicolor LED's."
6. The circuit of claim 2, wherein the first, second and third drive voltages are positive.

7. The circuit of claim 2, wherein the first, second and third drive voltages are negative.

8. The circuit of claim 4, wherein the hole transporting layer is deposited over the electron transporting layer in each of the first, second and third sets of organic layers.

9. The circuit of claim 4, wherein the electron transporting layer is deposited over the hole transporting layer in each of the first, second and third sets of organic layers.

10. A display incorporating the circuit of claim 1.

11. A vehicle incorporating the circuit of claim 1.

12. A television incorporating the circuit of claim 1.

13. A computer incorporating the circuit of claim 1.

15. A screen incorporating the circuit of claim 1.

16. A sign incorporating the circuit of claim 1.

17. A telecommunications device incorporating the circuit of claim 1.

18. A telephone incorporating the circuit of claim 1.

19. A method for driving a stacked organic light emitting device (SOLED) which includes a first and a second light emitting device, the first light emitting device including a first electrode arranged on a substrate, a first set of organic layers arranged on the first electrode and a second electrode arranged on the first set of organic layers, the second light emitting device including a second set of organic layers arranged on the second electrode and a third electrode arranged on the second set of organic layers, wherein the first electrode is coupled to a reference potential, the method comprising the steps of:

 generating a first drive voltage in accordance with a first control signal and applying the first drive voltage to the second electrode so as to control a brightness of a light emitted by the first light emitting device; and

 generating a second drive voltage in accordance with a sum of a second control signal and the first drive voltage and applying the second drive voltage to the third electrode so as to control a brightness of a light emitted by the second light emitting device.