The present invention is chiefly applied to a corner connection block for connecting frames at each corner of an assembly container, such as an assembly cabinet, an assembly drawer, or an assembly box, etc. with a fixed thickness base, wherein two rods, paralleling to each other, formed beneath, to be inserted in holes formed on each end of a frame, thereby firmly connecting two adjacent frames.
CORNOR CONNECTION BLOCK FOR ASSEMBLY CONTAINER

BACKGROUND OF THE INVENTION

[0001] (a) Field of the Invention

[0002] The present invention relates to a corner connection block, in a form of an unit, for connecting frames of an assembly container, such as an assembly cabinet, an assembly drawer, an assembly box, or an assembly frame, etc and more particularly to utilize corner connection blocks to make fast and firmly connection of frames at each corner of assembly containers thereof.

[0003] (b) Description of the Prior Art

[0004] Before shipping, to save packaging space, an assembly container, such as an assembly cabinet, an assembly drawer, an assembly box, or an assembly frame, etc is usually in a disassembled form of frames and plates to facilitate packing into a (carton) box. By assembling frames and plates thereof according to drawings provided, the assembly container thereby formed.

[0005] A conventional assembly container is usually formed with holes on each frame or plate, to be connected by screws to fasten each corresponding frame or plate. Besides being complicated in screwing and assembling process, the screwing to assemble method may cause holes thereof damaged or enlarged excessively to the extent that a re-use is impossible.

SUMMARY OF THE INVENTION

[0006] The present invention is mainly applied to a corner connection block for connecting frames at each corner of an assembly container, such as an assembly cabinet, an assembly drawer, or an assembly box, etc, with two frames formed at each corner and a hole formed on each end of a frame, to be inserted by rods formed beneath a base of the corner connection block, wherein the base is with a fixed thickness and each rod formed paralleling to the other, thereby enabling a fast and firm connection of frames for a layer of the assembly container.

[0007] In addition, rods thereof can also be formed on the base, thereby an upper and a lower layer of an assembly container can be formed. Moreover, a hinge structure can be formed on a top of the base thereof, to be hinged with a shaft rod formed on an end of a shaft of a lid or a door.

[0008] To enable a further understanding of the said objectives and the technological methods of the invention herein, the brief description of the drawings below is followed by the detailed description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWING

[0009] FIG. 1 shows a perspective view of the present invention.

[0010] FIG. 2 shows an exploded elevational view of a first embodiment of the present invention.

[0011] FIG. 3 shows an exploded elevational view of a second embodiment of the present invention.

[0012] FIG. 4 shows an exploded elevational view of a third embodiment of the present invention.

[0013] FIG. 5 shows an exploded elevational view of a fourth embodiment of the present invention.

[0014] FIG. 6 shows an exploded elevational view of a fifth embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0015] Referring to FIGS. 1 and 2. An application, an assembly cabinet 10 (or an assembly drawer, or assembly box, or an assembly frame, etc), to be surrounded by weaving material of cloth or rattan, is formed by circular tube frames 11 on each corner, wherein a hole 12 formed on each end of a frame, to be inserted by a corner connection block 20 to form a connection with other frames.

[0016] Referring to FIGS. 2 and 3. The corner connection block 20 is formed by a base 21 having a fixed thickness, wherein two cylinder rods 22, paralleling to each other, formed beneath the base 21, to be inserted into holes 12 thereof to connect frames, thereby forming a layer of an assembly container. The corner connection block 20 can be formed with a flat surface to enhance appearance. Additionally, rods 22 thereof can also be formed on the base 21, each in align with rods formed beneath the base 21, thereby forming an upper and a lower layer of an assembly container.

[0017] Referring to FIG. 4. A hinge connector structure 25 formed on a top of the base 21 of the corner connection block 20, with a hole 26 thereof, to be inserted by a shaft rod 13 formed on a shaft 11 (or other equivalent structures) of a lid or a door, thereby enabling a lid or a door hinged at the corner connection block 20 to rotate round the shaft 11.

[0018] Referring to FIGS. 5 and 6. Tightening grooves 23 can be formed on an outer perimeter of the cylinder rod 22 along an axial or a radial direction to enhance fixing effect. Referring to FIG. 2. A reinforcing structure 24 can be formed on the connection of the rod 22 and the base 21 to enhance a structure strength of the rod 22.

[0019] It is of course to be understood that the embodiment described herein is merely illustrative of the principles of the invention and that a wide variety of modifications thereto may be effected by persons skilled in the art without departing from the spirit and scope of the invention as set forth in the following claims.

What is claimed is:

1. A corner connection block for connecting frames at each corner, comprising two frames formed at each corner and a hole formed on each end of a frame, to be inserted by rods formed beneath a base of the corner connection block, wherein the base is with a fixed thickness and each rod formed paralleling to the other, thereby enabling a firm connection of two adjacent frames.

2. The corner connection block as recited in claim 1, wherein rods can be of a cylinder type.

3. The corner connection block as recited in claim 1, wherein tightening grooves formed on the rod.
4. The corner connection block as recited in claim 3, wherein tightening grooves formed along an axial direction.

5. The corner connection block as recited in claim 3, wherein tightening grooves formed along a radial direction.

6. The corner connection block as recited in claim 1, wherein rods also formed on the base of the corner connection block.

7. The corner connection block as recited in claim 6, wherein each rod formed on the base in align with that formed beneath the base.

8. The corner connection block as recited in claim 1, wherein a hinge connector structure formed on a top of the base of the corner connection block, with a hole formed thereof.

9. The corner connection block as recited in claim 1, wherein a reinforcing structure formed on the connection of the rod and the base of the corner connection block.

* * * * *