

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-531796
(P2004-531796A)

(43) 公表日 平成16年10月14日(2004.10.14)

(51) Int.C1.⁷

GO6F 17/60

GO6K 17/00

// F24F 11/02

F 1

GO6F 17/60

GO6K 17/00

F24F 11/02

154

L

103D

テーマコード(参考)

3LO61

5B058

審査請求 未請求 予備審査請求 有 (全 47 頁)

(21) 出願番号 特願2002-568287 (P2002-568287)
 (86) (22) 出願日 平成13年7月12日 (2001.7.12)
 (85) 翻訳文提出日 平成15年8月20日 (2003.8.20)
 (86) 國際出願番号 PCT/US2001/021874
 (87) 國際公開番号 WO2002/069242
 (87) 國際公開日 平成14年9月6日 (2002.9.6)
 (31) 優先権主張番号 09/789,903
 (32) 優先日 平成13年2月21日 (2001.2.21)
 (33) 優先権主張国 米国(US)

(71) 出願人 500467390
 スリーエム イノベイティブ プロパティ
 ズ カンパニー
 アメリカ合衆国, ミネソタ 55133-
 3427, セント ポール, ピー. オー.
 ボックス 33427, スリーエム セン
 ター
 (74) 代理人 100099759
 弁理士 青木 篤
 (74) 代理人 100092624
 弁理士 鶴田 準一
 (74) 代理人 100102819
 弁理士 島田 哲郎
 (74) 代理人 100108383
 弁理士 下道 晶久

最終頁に続く

(54) 【発明の名称】法執行のための証拠品および所持品の追跡処理

(57) 【要約】

要約書なし。

【特許請求の範囲】**【請求項 1】**

非RFIDタグ付き証拠品収集物をRFIDタグ付き証拠品に変換する方法であって、
(a) 非RFIDタグを含む証拠品を提供するステップと、
(b) 前記非RFIDタグから情報を入手するステップと、
(c) 前記情報をプロセッサに入力するステップと、
(d) 前記情報をRFIDタグに書込むステップと、
(e) データベースレコードを前記RFIDタグと関連付けるステップと、を含む方法。
。

【請求項 2】

ステップ(b)および(c)が非RFIDタグ上のバーコードを走査するステップを含む、請求項1に記載の方法。
10

【請求項 3】

ステップ(b)が非RFIDタグから視覚によって情報を読み取るステップを含む、請求項1に記載の方法。
。

【請求項 4】

ステップ(c)がキーボードを用いて情報をタイプするステップを含む、請求項1に記載の方法。
。

【請求項 5】

ステップ(c)がタッチパネルディスプレイを用いるステップを含む、請求項1に記載の方法。
20

【請求項 6】

前記方法が、ステップ(d)の前に前記RFIDタグを前記証拠品の容器と関連付けるステップをさらに含む、請求項1に記載の方法。
。

【請求項 7】

前記方法が、前記RFIDタグ、ラベルおよび証拠品の容器の主表面から選択される表面上に情報を印刷するステップをさらに含む、請求項1に記載の方法。
。

【請求項 8】

前記方法が、前記証拠品に関連する情報を前記データベースレコードに入力するステップをさらに含む、請求項1に記載の方法。
30

【請求項 9】

非RFIDタグ付き証拠品収集物をRFIDタグ付き証拠品に変換する方法であって、
(a) 非RFIDタグを含む証拠品を提供するステップと、後に続く
(b) 前記非RFIDタグから情報を入手するステップと、後に続く
(c) 前記情報をプロセッサに入力するステップであって、順不同で以下の
(i) 前記情報をRFIDタグに書込むステップと、
(i i) データベースレコードを前記RFIDタグに関連付けるステップと、が続くステップと、を含む方法。
。

【請求項 10】

非RFIDタグ付き証拠品収集物をRFIDタグ付き証拠品に変換する方法であって、
(a) 非RFIDタグを含む証拠品を提供するステップと、後に続く
(b) 前記非RFIDタグから情報を入手するステップと、後に続く
(c) 前記情報をプロセッサに入力するステップであって、順不同で以下の
(i) 前記情報をRFIDタグに書込むステップと、
(i i) データベースレコードを前記RFIDタグに関連付けるステップと、
(i i i) 前記証拠品に関連する情報を前記データベースレコードに入力するステップと、が続くステップと、を含む方法。
。

【請求項 11】

非RFIDタグ付き証拠品収集物をRFIDタグ付き証拠品に変換する変換ステーションであって、
。

(a) 証拠品に関連する情報を入力できる情報受信システムと、
(b) R F I D タグを受領しタグプログラミングゾーンに送る R F I D タグ供給機構と、
(c) 前記プログラミングゾーンに近接するアンテナを備え、前記タグプログラミングゾーンに置かれた前記 R F I D タグに前記情報を書込むための R F I D ライタと、を含む変換ステーション。

【請求項 1 2】

前記変換ステーションが、前記 R F I D タグ供給機構内に置かれた R F I D タグの供給をさらに含む、請求項 1 1 に記載の変換ステーション。

【請求項 1 3】

前記変換ステーションが、プロセッサとデータベースとをさらに含み、前記プロセッサが前記 R F I D タグをデータベースレコードと関連付ける、請求項 1 2 に記載の変換ステーション。 10

【請求項 1 4】

前記データベースレコードが、前記証拠品についての情報を含む、請求項 1 1 に記載の変換ステーション。

【請求項 1 5】

証拠品を収集する方法であって、

(a) 証拠品を入手するステップと、
(b) 前記証拠品を容器に入れるステップであって、前記容器が、それと関連付けられる R F I D タグを有するステップと、
(c) 前記 R F I D タグをプログラミングして、事件識別子を含むようにするステップと、を含む方法。 20

【請求項 1 6】

前記 R F I D タグをまたプログラミングして、犯罪タイプを含むようにした、請求項 1 5 に記載の方法。

【請求項 1 7】

前記 R F I D タグをまたプログラミングし、被害者の氏名、容疑者の氏名、前記証拠品が入手された場所、前記証拠品を収集した人物の氏名、調査をする機関の名前、情報の説明、違反の日付、および前記証拠品が収集された日付の群から選択される少なくとも 1 つのタイプの情報を含むようにした、請求項 1 5 に記載の方法。 30

【請求項 1 8】

証拠品を収集する方法であって、

(a) 証拠品を入手するステップと、
(b) 前記証拠品を容器に入れるステップであって、前記容器が、それと関連付けられる R F I D タグを有するステップと、
(c) 前記 R F I D タグをプログラミングし、事件識別番号、犯罪タイプ、被害者の氏名、容疑者の氏名、証拠品が入手された場所、証拠品を収集した人物の氏名、調査を行う機関の名前、情報の説明、違反の日付、および証拠品が収集された日付からなる群から選択されるタイプの情報を含むようにするステップと、
(d) 事件識別番号、犯罪タイプ、被害者の氏名、容疑者の氏名、証拠品が入手された場所、証拠品を収集した人物の氏名、調査を行う機関の名前、情報の説明、違反の日付、および証拠品が収集された日付からなる群から選択される情報を、前記 R F I D タグと関連するデータベースレコードに入力するステップと、を含む方法。 40

【請求項 1 9】

R F I D タグを用いて証拠品にタグ付けする方法であって、

(a) それぞれがタグメモリに格納される独特のタグ識別子を有する R F I D タグを供給するステップと、
(b) 供給されたものから R F I D タグを選択するステップと、
(c) 前記タグ識別子を用いてデータベースレコードを前記選択された R F I D タグと関連付けるステップと、を含む方法。 50

【請求項 20】

前記方法が、前記証拠品に関連するデータベースレコードに情報を入力するステップをさらに含む、請求項19に記載の方法。

【請求項 21】

R F I D タグを用いて証拠品にタグ付けする方法であって、

(a) それそれがタグメモリに格納される独特のタグ識別子を有するR F I D タグを供給するステップと、

(b) 選択されたR F I D タグにR F I D リーダを用いて質問し、前記独特のタグ識別子を入手するステップと、

(c) 前記タグ識別子を用いてデータベースレコードを前記選択されたR F I D タグと関連付けるステップと、を含む方法。 10

【請求項 22】

前記方法が、前記証拠品に関連するデータベースレコードに情報を入力するステップをさらに含む、請求項21に記載の方法。

【請求項 23】

R F I D タグを用いて証拠品にタグ付けする方法であって、

(a) データベースの中で証拠品に関連するレコードの場所を発見するステップと、

(b) そのレコードから一定の情報を選択するステップと、

(c) 前記選択された情報でR F I D タグをプログラミングするステップと、を含む方法。 20

【請求項 24】

前記方法が、(d) データベースレコードをステップ(c)でプログラミングされた前記R F I D タグに関連付けるステップをさらに含む、請求項23に記載の方法。

【請求項 25】

前記方法が、(e) 前記証拠品に関連する情報を(d)の前記データベースレコードに入力するステップをさらに含む、請求項24に記載の方法。

【請求項 26】

R F I D タグを用いて証拠品をタグ付けする方法であって、一定の順序で以下に続く、

(a) 証拠品入手するステップと、次に

(b) 前記証拠品に関連する情報を前記証拠品に関連するR F I D タグに書込むステップと、次に 30

(c) データベースレコードを前記R F I D タグに関連付けるステップと、を含む方法。

【請求項 27】

証拠品が保管される空調制御環境のためのR F I D システムであって、

(a) それそれがR F I D タグと関連する証拠品と、

(b) 実質的に同時に1を超えるR F I D タグに書込むように適合させたR F I D ライタと、 40

(c) 前記環境を監視する空調監視システムと、を含み、

前記空調監視システムが環境に所定の空調状態を検知すると、前記R F I D ライタがその状態の指標でその環境で1を超えるR F I D タグにプログラミングするR F I D システム。

【請求項 28】

前記空調監視システムが前記環境の温度を監視する、請求項27に記載のR F I D システム。

【請求項 29】

前記空調監視システムが前記環境の湿度を監視する、請求項27に記載のR F I D システム。

【請求項 30】

前記システムがデータベースをさらに含み、前記所定の空調状態の指標がまた前記データベースに格納されている、請求項27に記載のR F I D システム。 50

【請求項 3 1】

前記 R F I D ライタをまた、ユーザの要求があった場合、環境状態の指標を複数の R F I D タグに実質的に同時にプログラミングするように適合させた、請求項 2 7 に記載の R F I D システム。

【請求項 3 2】

前記 R F I D ライタをまた、所定の時刻または時間間隔で、環境状態の指標を複数の R F I D タグに実質的に同時にプログラミングするように適合させた、請求項 2 7 に記載の R F I D システム。

【請求項 3 3】

空調制御環境を監視する方法であって、

(a) R F I D タグを少なくとも 1 つの物品と関連付けるステップと、
(b) 前記環境に R F I D ライタを提供するステップであって、前記 R F I D ライタが、1 を超える R F I D タグに実質的に同時に書込むように配置されるステップと、
(c) 前記環境の空調を監視し、前記環境に所定の空調状態が存在するかどうかを決定するステップと、
(d) 前記所定の空調状態が存在するときには、情報を 1 を超える R F I D タグに書込むステップと、を含む方法。

【請求項 3 4】

前記物品が証拠品である、請求項 3 3 に記載の方法。

【請求項 3 5】

ステップ (c) が前記環境の温度を監視するステップを含む、請求項 3 4 に記載の方法。

【請求項 3 6】

ステップ (c) が前記環境の湿度を監視するステップを含む、請求項 3 5 に記載の方法。

【請求項 3 7】

携帯式 R F I D 装置を用いる方法であって、

(a) それぞれが R F I D タグを有する証拠品または証拠品の組を記述した情報を、R F I D の質問以外の方法で前記装置に入力するステップと、
(b) 複数の証拠品に関連する複数の R F I D タグを走査し、前記一定の証拠品が存在するかどうかを決定するステップと、を含む方法。

【請求項 3 8】

前記方法が、(c) 前記一定の証拠品に関連する R F I D タグが質問されたとき時にユーザに示すステップをさらに含む、請求項 3 7 に記載の方法。

【請求項 3 9】

ステップ (a) で入力された情報が、ステップ (b) の R F I D タグのメモリに収納され、ステップ (b) の前記 R F I D タグから利用可能である、請求項 3 7 に記載の方法。

【請求項 4 0】

携帯式 R F I D 装置を用いる方法であって、

(a) 命令された一組の証拠品を記述するアルゴリズムを前記装置に入力するステップと、
(b) R F I D タグを有する複数の証拠品に質問し、それらのタグから情報を入手するステップと、

(c) 前記 R F I D タグから得た情報を用いて入手した物品の記述を、前記アルゴリズムと比較し、走査された物品がアルゴリズムの命令にあるかどうかを決定するステップと、を含む方法。

【請求項 4 1】

前記方法が、(d) 前記アルゴリズムの命令にない任意の証拠品をユーザに示すステップをさらに含む、請求項 4 0 に記載の方法。

【請求項 4 2】

前記アルゴリズムの命令が一連の命令された事件識別子である、請求項 4 0 に記載の方法。

10

20

30

40

50

【請求項 4 3】

前記アルゴリズムの命令が年代順である、請求項 4 0 に記載の方法。

【請求項 4 4】

携帯式 R F I D 装置を用いて、R F I D タグを備えた証拠品を場所と関連付ける方法であつて、

(a) 前記証拠品と関連する前記 R F I D タグに質問するステップと、

(b) 前記装置に情報を入力して前記場所を記述するステップと、

(c) データベースで前記証拠品を前記場所と関連付けるステップとを含む方法。

【請求項 4 5】

前記方法が、(d) 前記証拠品と前記場所との関連を確認し、ユーザに示すステップをさらに含む、請求項 4 4 に記載の方法。 10

【請求項 4 6】

前記場所が別個の R F I D タグを有し、ステップ(b)が前記場所と関連する前記 R F I D タグを走査するステップを含む、請求項 4 4 に記載の方法。

【請求項 4 7】

前記場所が犯罪現場である、請求項 4 4 に記載の方法。

【請求項 4 8】

前記場所が証拠品保管室の一部である、請求項 4 4 に記載の方法。

【請求項 4 9】

携帯式 R F I D 装置を用いて、R F I D タグを備えたある一定の証拠品を、それぞれがまた R F I D タグを備えた証拠品のグループと関連付ける方法であつて、 20

(a) 前記一定の証拠品に関連する前記 R F I D タグに質問するステップと、

(b) 前記グループ内の少なくとも 1 つの追加証拠品の前記 R F I D タグに質問するステップと、

(c) 前記一定の証拠品が前記証拠品グループと関連しているかどうかを決定するステップと、を含む方法。

【請求項 5 0】

前記方法がさらに、(d) ステップ(c)でなされた決定をユーザに示すステップを含む、請求項 4 9 に記載の方法。

【請求項 5 1】

それと関連する R F I D タグを有するある特定の証拠品を、同じくそれと関連する R F I D タグを備えた証拠品のグループの中から識別する方法であつて、

(a) 前記特定の証拠品を識別する情報を R F I D リーダに提供するステップと、

(b) 証拠品の前記グループに質問するステップと、

(c) 前記 R F I D リーダが前記特定の証拠品と関連する前記 R F I D タグに質問すると、信号を送るステップと、を含む方法。

【請求項 5 2】

ステップ(a)で提供される情報が、前記証拠品が関連する事件を識別する情報であり、ステップ(c)が、前記 R F I D リーダが前記事件のある特定の証拠品と関連する R F I D タグに質問すると、信号を送るステップを含む、請求項 5 1 に記載の方法。 40

【請求項 5 3】

ステップ(a)で提供される前記情報が日付を示す情報である、請求項 5 1 に記載の方法。

【請求項 5 4】

ステップ(a)で提供される前記情報がある特定の人物を示す、請求項 5 1 に記載の方法。

【請求項 5 5】

それぞれがそれと関連する R F I D タグを備えた証拠品のグループの場所を発見する方法であつて、

(a) 前記グループ内の前記各証拠品の識別情報を R F I D リーダに提供するステップと

50

(b) 前記グループ内の前記証拠品を含むと考えられる区域の物品に質問するステップと、

(c) 前記RFIDリーダが前記グループ内の証拠品と関連する前記RFIDタグに質問すると、それを示すステップと、

(d) 前記RFIDリーダにより質問された前記グループ内のRFIDタグ付き証拠品の数を示すステップと、を含む方法。

【請求項56】

前記グループ内の前記証拠品が全て単一の事件に関連する、請求項55に記載の方法。

【請求項57】

前記RFIDリーダが、前記グループ内で質問されなかった証拠品がどれほどの数なのかを示す、請求項55に記載の方法。

【請求項58】

携帯式RFIDリーダを用いて、証拠品のグループの中から、ある特定の証拠品の場所をどこで発見すべきかを決定する方法であって、

(a) 前記特定の証拠品を識別する情報を前記RFIDリーダに入力するステップと、

(b) 前記リーダを前記証拠品のグループの上方で通過させるステップと、

(c) 前記証拠品のグループ中から、どこで前記特定の証拠品を発見すべきかを検知するステップと、

(d) その場所をユーザに示すステップと、を含む方法。

【請求項59】

RFIDタグを備えた証拠品を探索する方法であって、

(a) データベースで、場所とその場所にあると思われる前記RFIDタグ付き証拠品のリストを提供するステップと、

(b) 前記データベースにリストされた少なくとも1つの場所で前記RFIDタグ付き証拠品に質問し、どの証拠品がその場所にあるかを決定するステップと、

(c) その場所にあると決定された前記証拠品とその場所にあると思われる前記証拠品とを比較するステップと、を含む方法。

【請求項60】

前記方法が、(d) その場所にあると思われるがその場所にない任意の証拠品をユーザに通知するステップをさらに含む、請求項59に記載の方法。

【請求項61】

前記方法が、(d) その場所にないと思われるがその場所にある任意の証拠品をユーザに通知するステップをさらに含む、請求項59に記載の方法。

【請求項62】

前記方法が、連続的に複数の場所で繰り返し実行される、請求項59に記載の方法。

【請求項63】

前記方法が、それぞれ1つの場所に置かれ、その場所の前記証拠品に質問するように適合された複数のアンテナと多重送信するステップを含む、請求項62に記載の方法。

【請求項64】

RFIDタグ付き証拠品を追跡する方法であって、

(a) RFIDライタをテスト装置と関連付けるステップと、

(b) 前記テスト装置を用いて前記証拠品をテストするステップと、

(c) 前記RFIDタグ付き証拠品に情報を書き込み、前記証拠品が前記テスト装置によりテストされたステップを示すステップと、を含む方法。

【請求項65】

ステップ(c)が、前記テストの日付および時刻を前記RFIDタグに書き込むステップを含む、請求項64に記載の方法。

【請求項66】

ステップ(c)が、前記テストを実施する人物を記述した情報を前記RFIDタグに書き込

10

20

30

40

50

むステップを含む、請求項 6 4 に記載の方法。

【請求項 6 7】

ステップ(c)が、前記テストの結果を記述した情報を前記 R F I D タグに書込むステップを含む、請求項 6 4 に記載の方法。

【請求項 6 8】

前記方法が、(d)前記テスト装置と関連のある人物を識別するステップと、(e)その人物を記述した情報を前記 R F I D タグに書込むステップと、をさらに含む、請求項 6 8 に記載の方法。

【請求項 6 9】

ステップ(d)が、ある人物に関する R F I D バッジに質問して、その人物を識別する 10 情報を入手するステップを含む、請求項 6 8 に記載の方法。

【請求項 7 0】

前記テスト装置が弾道学的特性をテストするためのものである、請求項 6 4 に記載の方法。

【請求項 7 1】

前記テスト装置が生物学的サンプルをテストするためのものである、請求項 6 4 に記載の方法。

【請求項 7 2】

前記証拠品が前記テスト装置によりテストされたことを示す情報がデータベースに提供される、請求項 6 4 に記載の方法。

【請求項 7 3】

(a)証拠品の少なくとも 1 つの判定可能な特徴をテストするテスト装置と、
(b)前記証拠品と関連する R F I D タグに情報をプログラミングする R F I D ライタと、の組合せ装置。

【請求項 7 4】

前記組合せ装置が、テストされた前記証拠品に関する情報を含むデータベースレコードを更新するために、プロセッサおよびデータベースをさらに含む、請求項 7 3 に記載の組合せ装置。

【請求項 7 5】

前記テスト装置が弾道学的特性のテスト装置であり、さらに R F I D ライタが、小火器に 30 関連する R F I D タグに情報をプログラミングするように適合された、請求項 7 3 に記載の組合せ装置。

【請求項 7 6】

前記装置が D N A テスト装置である、請求項 7 3 に記載の組合せ装置。

【請求項 7 7】

前記装置が薬物テスト装置である、請求項 7 3 に記載の組合せ装置。

【請求項 7 8】

証拠品の保管の流れを記録する R F I D システムであって、

(a) R F I D タグと関連する証拠品と、
(b)前記証拠品を保有する人物を記述する情報を受け取り、その情報を前記 R F I D タグに書込む R F I D ライタと、を含むシステム。

【請求項 7 9】

前記システムが、前記証拠品が通過できるポータルと関連する少なくとも 1 つの R F I D リーダをさらに含み、それにより前記 R F I D リーダは、前記 R F I D タグに質問して前記証拠品を識別するように適合され、前記 R F I D ライタが、前記ポータルの場所を識別する情報を前記 R F I D タグに書込むように適合された、請求項 7 8 に記載の R F I D システム。

【請求項 8 0】

ポータルに関連する前記 R F I D リーダが、ある人物に関する R F I D タグに質問する 50 ように適合され、前記 R F I D ライタが、前記人物を識別する情報を前記 R F I D タグに

書込むように適合された、請求項 7 9 に記載の R F I D システム。

【請求項 8 1】

前記システムがデータベースをさらに含み、前記データベースが、どの証拠品がどの個人によって保有される可能性があるかを示す情報を含むと共に、権限のある人物のみが、入手する権限を与えられた証拠品を入手するのを許可するように適合された、請求項 7 8 に記載の R F I D システム。

【請求項 8 2】

証拠品を第 1 の場所と第 2 の場所との間で移動する方法であって、

(a) R F I D タグ付き証拠品を収集するステップと、

(b) 前記 R F I D タグを読み込み、収集した前記証拠品のリストを作成するステップと、 10

(c) そのリストをデータベースに格納するステップと、を含む方法。

【請求項 8 3】

前記データベースが、携帯式データ記憶媒体に格納される、請求項 8 2 に記載の方法。

【請求項 8 4】

前記方法が、前記収集した証拠品および前記携帯式データ記憶媒体を前記第 1 の場所から前記第 2 の場所へ移動するステップをさらに含む、請求項 8 3 に記載の方法。

【請求項 8 5】

前記方法が、R F I D リーダを用いて前記移動証拠品と関連する前記 R F I D タグを読み込み、かつ前記移動証拠品を前記データベースの前記リストと比較するステップをさらに含む、請求項 8 4 に記載の方法。 20

【請求項 8 6】

前記方法が、前記データベースをあるコンピュータから第 2 のコンピュータへ移動するステップをさらに含む、請求項 8 0 に記載の方法。

【請求項 8 7】

前記移動がインターネットを媒体とする、請求項 8 6 に記載の方法。

【請求項 8 8】

前記方法が、(d) 前記データベースを複写して、前記第 1 の場所が前記第 2 の場所に移動される前記証拠品に関する情報を保有できるようにするステップをさらに含む、請求項 8 2 に記載の方法。 30

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、特に法執行時に用いる証拠品および所持品の追跡システムおよび方法に関する。 35

【背景技術】

【0002】

警察、拘置所、刑務所および他の政府機関は通常、武器、衣類、貨幣、薬物および書類のような証拠品および所持品を、その後の取調べおよび法的手続きを用いて使用するために収集したり、あるいは単にある人物の拘留中に保有したりする。証拠品および所持品は、取調べや手続きで価値を保つためには、偶然または故意のいたずら、盗難、取替えまたは紛失から守られなければならない。例えば、もし決定的な証拠品が失われるか、または裁判で証人が、証拠品およびそれが収集された時と場所からそれが法的に認証された時と場所までの管理の流れについて自信を持って確認できなかったりすると、罪を犯した容疑者が保釈されることになるかもしれない。これは、いろいろ明白な理由から望ましいことではない。 40

【0003】

現在の証拠品収集および保管はいろいろ異なった方法でなされている可能性があり、以下のものは一例である。警察官または捜査官がある場所で証拠品を収集し、次にそれをバッグまたは封筒に入れるだろう。当人は、そのバッグまたは封筒を密封した後、その上または用紙または他の関連する記録用紙に一定の情報を書き、後でその証拠品を明確に確認で 50

きるようになるだろう。その情報には、事件番号（もし分かるなら）、犯罪タイプ、被害者の氏名、容疑者の氏名、証拠品を収集した場所および他の確認のための情報を含むだろう。警察官または捜査官はまた、バッグ、封筒、用紙または記録用紙に署名するか、他の独特的の印を付けて、当人が後で明確に証拠品を確認できるようにするだろう。例えば拘留前に容疑者から所持品を収集するときも、所持品を同様にバッグに入れ、タグ付けするだろう。

【0004】

ひとたび証拠品および所持品が収集されると、それは、証拠品室またはファイル室のような主な保管場所に運ばれる。そこで証拠品の受入検査をすると、受け取った人物は、バッグまたは封筒の上に、もはや警察官がその証拠品を保有するのではなく、証拠品室が保有すると表示するだろう。これが管理の移転であり、関係者が証拠品の採用を求める場である多くの後の手続きで証明する必要のある管理の流れの一部または関連である。証拠品室内では、証拠品はファイル、封筒、箱または他の容器の中、または単に棚の上で保管されるだろう。その後証拠品をその置き場所から移すときはいつでも、移す人物が今その証拠品を保有することを示す新しい記入を、バッグ、封筒、用紙または記録文書にすることになる。裁判または他の手続きのために証拠品が必要とされるときには、その手続きで使用するため証拠品をもっていく資格のある人物へと検査して渡される。

10

【発明の開示】

【発明が解決しようとする課題】

【0005】

これおよび他の同様の証拠品管理システムは多くの問題に悩まされている可能性があり、その大きな問題として、管理の流れを追跡するシステムが、正確に保有を記録しようとする意思と能力のある人物に大きく依存していることがある。証拠品室では、特に、例えばある証拠品（銃のような）が類似の外見をした物品の大きなグループと一緒に保管されている場所では、その証拠品の場所を発見することも難しい可能性がある。これらおよび他の困難を考慮すると、今まで用いられてきたよりも良い証拠品管理システムを提供することが望ましい。

20

【課題を解決するための手段】

【0006】

本発明には、証拠品および所持品の入手、タグ付け、探索および他の取り扱い時におけるR F I D技術の使用法に関連する幾つかの態様がある。

30

【発明を実施するための最良の形態】

【0007】

本発明には、証拠品の保管、回収および追跡を長い間悩ませてきた問題に対する認識だけでなく、その分野に無線周波数識別（radio frequency identification）すなわち“R F I D”技術をここに述べる方法で適用することも含まれる。本発明の適用、方法、システムおよび構成要素について記載する前に、R F I D技術の簡潔な概観を提供する。

【0008】

I . R F I D技術

40

R F I Dタグは、図書館の書籍のような物品にタグ付けするためかなりの期間用いられてきた。R F I Dタグには通常、アンテナとアンテナに動作可能に接続された集積回路とが含まれる。適用例によっては電池搭載型R F I Dタグ（時にアクティブと呼ばれる）が好まれ、他の適用例では電池非搭載型（すなわちパッシブタグ）が好まれる。これらのタグは様々な特許および出版物で記述され、現在のところ、（タグ・アイティティエム（T A G - I T T M）という商品名で）テキサス州ダラスのテキサス・インスツルメンツ（T e x a s I n s t r u m e n t s (D a l l a s , T e x a s) ）、（アイ・コードティエム（I - C O D E T M）という商品名で）オランダ、AINHオーヴェンのフィリップス・セミコンダクターズ（P h i l i p s S e m i c o n d u c t o r s (E i n d h o v e n , N e t h e r l a n d s) ）および（インテリタグティエム（I N T E L L I T 50

AGTM) という商品名で) ワシントン州エヴェレットのインターメック・テクノロジーズ・コーポレーション (Intermec Technologies Corporation (Everett, Washington)) を始めとする会社によって販売されている。

【0009】

R F I D システムの他の構成要素は、リーダまたは質問機である。R F I D リーダは携帯式 (手持ちでも可) でも据え付け式でもよく、それにはアンテナおよび関連するリーダ / ライタハードウエアとソフトウエア、電源、プロセッサ (通常データベースとメモリを含む) 、ユーザインターフェース並びにここに記載する種類のアプリケーションを動かすソフトウエアとが含まれる。あるR F I D リーダが、コマンダ (Commander) 320 10 という商品名でテキサス州ダラスのテキサス・インスツルメンツから販売されている。R F I D リーダを作動させると、所定の周波数 (13.56 メガヘルツのような) で信号を送信し、次にその信号がリーダの質問範囲内のタグを作動させる。R F I D タグはそれぞれが受信する信号を変調することによって応答し、リーダはタグから戻ってきた変調された信号を受信する。これらの信号を通したデータのやり取りにより、R F I D リーダはR F I D タグから情報を得ることが可能となる。上述したR F I D タグと送受信可能なR F I D リーダは、英国マンチェスターのアイディ・システムズ・インク (ID Systems Inc. (Manchester U.K.)) から (ハンドスプリング (HANDSPRING) およびエム・アール・アール (MRR (mid-range-reader)) 20 という商品名で) 、ドイツ、ハルベルグモースのバルテック・エイジー (BALTTECH AG (Halbergmoos, Germany)) から (アイディ・エンジン (ID-ENGINE) という商品名で) 、ドイツ、ハイブルグ・ハルツハウゼンのファイグ・エレクトロニクス有限責任会社 (Feig Electronics GmbH (Weilburg-Waldhausen, Germany)) から (オービッド・アイ・スキャン (OBID I-SCAN) という商品名で) 入手できる。従来のほとんどのR F I D リーダにはまたプログラミングすなわち書き込み能力が備わっており、したがって読み込みと書き込みの両方 (質問とプログラミング) を単一の装置に組合せている。2つの機能の片方または両方が必要とされるアプリケーションには、組合せリーダ / ライタまたは別個のリーダ、ライタを用いてもよい。

【0010】

R F I D リーダの一部であるプロセッサまたはリーダを接続できるプロセッサもしくはデータベースには、質問されるR F I D タグをタグが貼付される物品に関連付ける情報を含んでもよい。したがって、もしR F I D タグが図書館の本に添付されると、リーダはそのタグからタグ識別番号を入手でき、それをリーダ自身のまたは他のデータベースにある同じ番号と照合し、ついで物品についての情報を決定できる。

【0011】

本発明のある部分は、犯罪性証拠品用R F I D 技術の特定の使用に関連する発明思想と同じ部分を形成するものであるが、読み手の利便のために以下に別個に記載する。また、証拠品に言及する場合、その言及は、容疑者が拘留されている期間のように、法執行機関が証拠としての目的ではなく保有する所持品を含むことがある。

【0012】

I I . 犯罪性証拠品および所持品のためのR F I D

A . 変換 本発明の一態様には、既存の証拠品収集物をR F I D タグ付き証拠品収集物に変換することを含む。既存のタグ付けシステムには、印刷されたバーコードタグ、ステッカ、紙ラベルまたは証拠品に直接もしくは証拠品を保管する容器に貼付される同様のものを含むだろう。本発明のこの態様においては、既存のタグ付き証拠品をR F I D タグ付き証拠品に変換する変換ステーションと方法が提供される。このようなシステムの1つが、本発明の譲受人に譲渡されたガーバー (Garber) らのPCT公開WO00/10122に図書館資料の文脈で記述されている。

【0013】

10

20

30

30

40

50

一実施形態においてこの方法には、非R F I Dタグを備えた証拠品を選択するステップと、そのタグから情報を入手する（例えば、もし情報がタグ上に単に印刷されているなら視覚により、またはもし情報がバーコードもしくは機械読み取り式フォーマットで提供されているなら走査することにより）ステップと、情報をプロセッサに入力する（例えば、キーボードまたはタッチパネルディスプレイにより）ステップと、情報をR F I Dタグに格納できるフォーマットに変換するステップと、情報をR F I Dタグにプログラミングする（わち書込む）ステップと、そのR F I Dタグに関連するデータベースの記録を作成または編集するステップと、を含む。したがって、既存の証拠品収集物を変換する変換ステーションには、入力サブシステム（キーボード、タッチパネル、バーコードスキャナ等のようないし）と、情報を受信し処理するプロセッサと、記録を作成、編集または削除するデータベースと、R F I Dライタと、タグを手に取る（おそらくこのようなタグを巻いたものから）ことができ、情報を書込めるようにタグをR F I Dライタ用アンテナの近くに置くことができ、次に、ユーザが剥がして証拠品または容器に貼付できる位置へとそれを持っていくことができるR F I Dタグ付けシステムとを含んでもよいし、または変換ステーションを上述のものに動作可能に接続してもよい。

10

20

【0014】
変換ステーションとその方法、および本発明一般の他の有用な態様として以下のものを含むことができる。R F I Dタグを、容器が作られた時または後で、最終的にユーザか他の誰かによって封筒、バッグまたは他の容器に入れててもよい。このタイプの密閉可能で不正開封防止機能付きのバッグは、トッドマン（Toddman）の米国特許第5,635,917号に開示されている。したがって、変換ステーションによってプログラミングされる（または以下で述べるように他のユーザによって使用される）R F I Dタグが、証拠品を入れることができる容器とすでに関連付けられているようにすることもできる。他の選択的な特徴として、変換ステーションにプリンタを備え、R F I Dタグ、R F I Dタグを含むラベルまたは容器の任意の適切な表面に情報を印刷できることがある。この情報は、バーコード、英数字記号または他の印刷された印の形態をとることが可能で、例えばファイルにR F I Dタグが備わっているときには有用であろう。情報をR F I Dタグおよび証拠品と関連するデータベースレコードに入力することも有用であろうし、後でその情報を探索ないしは使用してもよい。

30

【0015】
B. 証拠品収集 本発明の他の態様には、R F I D技術を用いた証拠品の収集とタグ付けがある。法の執行官は証拠品を収集し、それをトッドマン（Toddman）の米国特許第5,635,917号に開示されているもののようなR F I Dタグを備えた容器（密閉可能で不正開封防止機能付き容器でもよい）に入れててもよい。サンプルを以下に記述したが、タグをプログラミングして、1件以上の情報を含むようにしても、それらの情報をデータベースで提供してもよい。例えばもし、情報がデータベースで提供される場合には、タグに質問して十分な情報を得、対応するデータベース記入事項を識別し、それにより所望の情報を入手できるようにしてもよい。タグまたはデータベースに格納する情報には、以下に記載するタイプの情報を1件以上含むことができる。

40

- (1) 事件識別番号
- (2) 犯罪タイプ
- (3) 被害者の氏名
- (4) 容疑者の氏名
- (5) 証拠品を入手した場所
- (6) 証拠品を収集した人物の氏名
- (7) 調査を行う機関の名前
- (8) 所持品を所有する人物の氏名
- (9) 証拠品を所有していた人物の氏名
- (10) 情報の説明
- (11) 違反の日付

50

(12) 証拠品を収集した日付

(13) 所持品を所有者に返却または廃棄可能な日付

(14) 証拠品の状態(例えば、使用、不使用、廃棄予定)および/または

(15) 証拠品に関して得られた任意のテスト結果

【0016】

このような方法でなされる証拠品収集により、RFID技術を用いた一連の管理が開始される。

【0017】

C. 証拠品のタグ付け 証拠品は、以下の方法でタグ付けできる。タグ識別番号または英数字の続きのような、すでにメモリに記憶された独特の識別子を持ったタグを提供してもよい。ユーザはタグを入手し、それを証拠品に貼付し、次にデータベースに、特定のタグを証拠品に関連付ける記入事項を作成するか変更することができる。独特のタグ識別子により、同じ場所の2つのタグが同じタグ識別子を持つことが確実ないようにされる。タグ識別子は、例えば、RFIDリーダでタグに質問するか、またはもし情報がタグに印刷されていれば、それを目で読むことによりタグから入手できる。次に、上に列挙した種類の情報をデータベースに入力するかタグに格納するか、またはその両方を行い、後でその情報を容易に使用できるようにしてもよい。このタグ付けシステムは、とりわけタグか証拠品のどちらかを識別する追加情報を持ったユーザがタグをプログラミングする必要がないので、有用であり、ユーザに利用可能なタグのメモリスペースを節約できる。

【0018】

証拠品にタグ付けする他の方法として、特定の証拠品あるいはその分類に関連する情報の場所をデータベースで発見し、保管される追加証拠品にも適用可能な情報を選択し、その選択された情報をタグにプログラミング(書き込み)することがある。例えば、ある事件の50点目の証拠品では、その事件の1点以上の以前の証拠品に関連する電子記録の場所を発見し、50点目の証拠品用のRFIDタグに提供すべき一定の情報をその記録から識別し、次に50点目の証拠品に関連するRFIDタグにその情報を書き込むことにより、タグ付けしてもよい。50点目の証拠品には、容疑者の氏名、被害者の氏名、犯罪の日付および上に列挙したタイプの他の情報を始めとして、1点以上の以前の証拠品と共に一定の情報を含んでもよい。追加情報もタグに書き込み、その証拠品に特有の情報を提供してもよい。

【0019】

D. 証拠品の保管 血液のような証拠品には、時がたつにつれて劣化するものがあり、管理された条件下で保存しなければならない。本発明の他の態様として、このような証拠品にタグ付けし監視するRFIDタグの使用法がある。この点に関し、証拠品にはここに一般的に述べるようなRFIDタグを備え、冷蔵領域、乾燥領域、温暖領域等の空調制御された環境に置いてもよい。例えば、血液サンプルをバッグに入れ、そのバッグ(およびRFIDタグ)を温度が4.4(華氏40度)に維持された冷蔵庫に保管してもよい。空調監視システム(温度計、湿度を測定する湿度計、光の存在を測定する光センサのような)が環境に備えられ、プロセッサと協調して、空調が一定の許容しえる範囲内および範囲外にある時に確認できる。

【0020】

空調制御環境には、RFIDタグと通信できる1つ以上のRFIDリーダとRFIDライタを備えてもよい。もし空調監視システムが、空調がある所定の条件から逸脱したと表示するならば、RFIDライタ(あるいは組合せRFIDリーダ/ライタのライタ部分)は、その情報(変更不可にできる)と実質的に同時に、1を超えるRFIDタグにプログラミングできる。例えば、もし冷蔵庫の温度が0(華氏32度)以下に降下するならば、RFIDライタはRFIDタグにその状態を示すメッセージを書き込むことができる。同様に、他の環境条件がある所定の限度から逸脱するならば(例えば、過度または不十分な温度、湿度あるいは光)、それらの状態をRFIDタグに表示することができる。もしその情報が、変更が非常に困難か不可能な方法でRFIDタグに格納される場合、もしその情

10

20

30

40

50

報がなければ、そのことは後で法執行機関に役立つ可能性もあるし、逆にその情報があるならば、潜在的な被告人に役立つこともある。実際に環境状態をそれ自身で監視し、その状態の記録を提供する環境監視タグよりも、RFIDタグはずっと安価だという付加的利益が、このシステムにはある。他の実施形態においては、RFIDタグそれ自身に格納された情報の代わりにまたは追加的に、環境状態に関する情報を、特定の各RFIDタグと互いに関連するデータベースレコードに格納できる。これには、長い期間にわたり一定の証拠品の環境状態を追跡できるという追加的利益があり得る。というのも、追加的個別情報をデータベースに格納するほうが、現在入手できるRFIDタグで利用可能である限られたメモリ格納するよりも簡単にでき得るからである。他の実施形態においては、ユーザは要求があった場合、RFIDタグに情報をプログラミングしてもよいし、または所定の時刻または時間間隔で情報をRFIDタグにプログラミングするようにシステムを適合させてもよい。

10

【0021】

E. 証拠品の探索 現在の証拠品保管設備では、ユーザは、関心のある証拠品の場所を発見するのに、行き当たりばったりに保管された既存の証拠品を手で区分けする必要があるだろう。これは時間がかかるし、危険でさえあり、他の証拠品を紛失させるかもしれない。RFID技術を用いれば、手持ちのRFIDリーダまたは保管場所の中に置かれたり設置されたり、そばに置かれた恒久的RFIDリーダにより、RFIDタグ付き証拠品をより能率的に探索できる。この点で、ガーバー(Garber)らのPCT公開WO00/10122およびWO00/10144、並びにゴフ(Goff)らのWO00/10112で開示されているタイプのリーダおよびリーダシステムは有用であろう。本探索システムでは、証拠品の目視による点検とバーコードタグ付き証拠品のバーコード走査が要求される見通し内点検の必要性が除かれる。またこのシステムでは、現在使用されている種類のタグが判読しづらかったり、剥がれたり、紛失したりすることによる問題を最小限にし、またタグメモリを選択的に上書きできるので、情報が更新されるたびに新しいタグを作成する必要性を除く。

20

【0022】

証拠品を探索するために、所望の証拠品を記述した情報をRFID質問以外の方法でRFIDリーダに入力し、次にRFIDリーダを用いて有効範囲内のRFIDタグ付き物品に質問してもよい。例えば、ユーザは、ある種のユーザインターフェース(キーボード、タッチパネルディスプレイ等のような)またはコネクション(プロセッサおよびデータベースに接続するためのシリアルポートのような)を通じて事件識別番号をリーダに入力し、次にRFIDリーダでその有効範囲内の任意の証拠品に質問して、その事件に関連するRFIDタグ付き物品の場所を発見するようにしてもよい。あるいは、もし他の情報(上に列挙した種類の情報のような)が各RFIDタグまたはデータベース記入事項に格納されているならば、その情報を含むRFIDタグを備えた証拠品の場所も発見することができる。RFIDリーダに入力された記述に対応するRFIDタグが識別されてその場所を発見され、したがって対応する証拠品が発見される。例えば、もし処分日がRFIDタグに格納されているならば、ユーザは、探索日の前に処分日のある証拠品を全て探索することができる。次いで、このような証拠品を、任意の適切な保有ガイドラインに従って、証拠品保管区域から取り除いてもよいし、おそらく破棄してもよい。特定の証拠品(その事件のために収集された他の証拠品の間かまたは何か他の証拠品グループの間の)は、RFIDタグと質問機を用いて場所を発見してもよい。その結果、例えば血痕のついた手袋を探査している人物は、その証拠品に関連する情報(物品番号4、警察官××××、または01年1月1日以前の日付のような)をRFIDリーダに入力し、リーダが提供された情報に対応するRFIDタグ付き証拠品を探索できるようにする。RFIDリーダが探索している情報の場所は、RFIDタグそれ自身の中で、またはRFIDタグに関連するデータベースレコードの中で発見してもよい。RFIDタグそれ自身に探索する情報を備える利点として、RFIDリーダが、リーダのデータベースに依存したり、無線または他の接続手段でデータベースにアクセスできるようにする必要もなく、リアルタイムでRFIDタグ

30

40

50

付き証拠品の場所を発見し示すようにできる点がある。

【0023】

他の有用な探索システムとして、ある特定の事件の証拠品リストをリーダに呼び出し、次にそのリストから、探索を実施すべき1点以上の証拠品を選択することができる。特定の事件の証拠品リストは、RFIDリーダのメモリから、またはRFIDリーダに接続されている（例えば、ケーブルまたは無線接続のどちらか）データベースのどちらから入手してもよい。RFIDリーダのユーザインタフェースにより、ユーザはどの証拠品またはどの証拠品の分類を探索したいのかを、ユーザがハイライトしたり、照合したり、または別の方法で示すことができるようにもよる、次にリーダは、関心のある物品と関連する1つ以上のタグの場所を発見するまでRFIDタグに質問するだろう。

10

【0024】

他の実施形態においては、命令された一組の証拠品を記述したアルゴリズムをRFIDリーダに入力でき、次に複数の証拠品に質問して、質問された証拠品がアルゴリズムの命令にあるかどうかを決定できる。適切なアルゴリズムの命令の例として、事件識別子に基づくもの、あるいは年代順のもの（逆年代順を含む）が可能だろう。

【0025】

探索方法の他の特徴は、証拠品を場所と関連付けることである。証拠品と関連するRFIDタグに質問し、場所を記述する情報を提供し、次に両者をデータベースでお互いに関連付けるようにしてもよい。場所は、犯罪現場、部屋、または証拠品保管場所の一部とすることが可能であり、その場合には、別個のRFID場所タグに質問して場所を記述する情報を入手するようにしてもよい。

20

【0026】

他の探索方法として、ある証拠品に関連するRFIDタグに質問し、さらに証拠品グループ内の少なくとも1件の追加証拠品に関連するRFIDタグに質問して、この証拠品がこの証拠品グループに関連するかどうかを決定する方法がある。これは、例えば、誤って置かれた証拠品が、発見された場所近くの証拠品に属するのかどうかを決定するのに役立つだろう。本発明の他の実施形態と同様に、証拠品がそのグループに属するかどうかをユーザに示すことができる。

【0027】

あるグループ内で数件の証拠品の場所を発見するため、RFIDリーダにその証拠品を識別する情報を提供し、次にその証拠品を含むと考えられる区域または場所に質問するようにできる。リーダは、そのグループ内で当該証拠品に関連するRFIDタグに質問したときそれを示し、又質問した証拠品の数を示すことができる。これは例えば、単一の事件に関連する全ての証拠品の場所を発見するため、またはある特定の箱、棚等にある証拠品の在庫を確認するために役立つだろう。本発明の他の実施形態に関係するが、RFIDリーダのユーザインタフェースを媒体にして、または他の方法で、発見できなかった証拠品の数はどれくらいあるかも示すことができる。この棚卸機能により、ユーザが定期的な検査を実施できるようにしてもよいし、当該場所にあると思われたがなかった証拠品だけでなく、その場所にないと思われたがあった証拠品も示すこともできる。関心のある区域のいたるところに質問アンテナを配置することにより、また任意のものとして、質問信号を各アンテナに連続的に多重送信することにより、これまでに可能であったよりもずっと少ない時間で完全な棚卸を実施するようにしてもよい。

30

【0028】

F. 保管の流れ 本発明の他の態様として、証拠品の保管の流れを追跡することにおける使用がある。RFIDタグ付き証拠品をRFIDライタでプログラミングして、その証拠品を保有する人物を識別する情報を含ませることができる。プログラミングは手動で（自分の情報をRFID装置に入力する人物により）、または自動で（例えば、戸口や仕切り窓のようなポータル周辺のRFIDアンテナを用いて、人物のRFIDバッジを証拠品のRFIDタグと照合することにより）行ってもよい。質問機およびアンテナに関連するポータルはまた、例えば、証拠品保管区域の他の部分から隔離され、小火器や薬物を保管す

40

50

る防護室のような部屋または大きな部屋内のある区域への入口であってもよい。タグもしくはデータベースまたは両者は、現在証拠品を保有している人物を記述する情報を受信すると、そのメモリを点検し、その人物が当該証拠品を保有していたと表示されたなかの最後の人物と違っているかどうかを決定し、もし違っていれば、メモリもしくはデータベースのどちらかまたは両方が適切に更新され得る。他の実施形態においては、ある人物は登録できるか、さもなければ権限を得ることができ、証拠品を入手し、歩いてポータルを通り抜け、そして関連するポータルリーダに、当人（ある種のRFID識別タグを持っている）が証拠品を入手する、またはその特定の証拠品を入手する権限を与えられていると確認させることができる。ある人物を証拠品と照合する情報は、RFIDタグ、そのRFIDタグと関連するデータベース記入事項、または両方に格納することができる。もしメモリがRFIDタグに格納される場合には、もしその情報がひとたび書き込まれると（タグ上に書換え不可メモリ“WORM”（write once, read many）を用いて）変更できなければ、有用だろう。証拠品の保有権限を与えられた人物の所定のリストをデータベースに維持しても良く、そしてRFIDバッジを付けているが権限のない人物のごく近くでRFIDタグ付き証拠品を検知したRFIDリーダは、適切な人物または場所に通知信号を送るようにしてよい。

10

【0029】

G. 場所移動 証拠品の場所の追跡もまた有用だろう。これは、幾つかある方法のうちの1つを用いて実施してもよい。例えば、上述したタイプのポータルリーダを用いて、RFIDタグ付き証拠品が移動されたときに情報を入手し、タグ付き証拠品の新しい場所についてタグもしくはデータベース、または両者を更新できる。この情報はまた、保管場所それ自身に関連するリーダのような手持ち式リーダおよびノンポータルリーダを始めとする他のリーダによって入手してもよい。ゴフ（Goff）らのPCT公開WO00/10112は、この方法で用いられてある特定の場所の全てのタグに定期的にポーリングし、その場所で発見されたタグの、例えばデータベースを更新できる棚テープスタイル・リーダシステムをある実施形態で記載している。

20

【0030】

RFIDリーダまたは組合せリーダ／ライタを一定の場所または装置と関連付けることもまた有用であろう。その結果、ある一定の場所または装置が証拠品に関して用いられるたびに、その情報が記録される。例えば、もし銃がタグ付けされ、小火器試験所でテストされるならば、その装置と関連するRFIDライタはRFIDタグをプログラミングし（またはデータベースレコードを更新し）、例えば、小火器テストの日付、時刻および場所に関する情報、テストを実施する人物、テスト結果、およびテストに関連する他の同様の情報を示すことが可能であろう。これを他の試験所、または他の生物学的テスト（血液またはDNA等のような）のために行うこともできよう。テストを実施する人物は、保管の流れを目的としたポータルに関して述べた質問のように、バッジ等のRFID質問により識別が可能であろう。

30

【0031】

H. 証拠品収集物の移動 証拠品は第1の法執行機関によって収集維持され、続いて訴訟や陳述をさらに遂行するため第2の法執行機関へと移動されるかもしれない。例えば、州または地元の法執行機関が、殺人のような州犯罪に関連すると考えられる一定の証拠品を収集し、後でその犯罪は誘拐や組織的犯罪のような連邦犯罪だと決定するかもしれない。これらや他の状況において、証拠品収集物は、ある法執行機関から他の法執行機関へと移動されるかもしれない。本発明は、第1の法執行機関が上述の方法である特定の事件に関連する証拠品を探索し、その事件に関連するデータベースまたはデータベース記入事項をコンピュータフロッピディスク、CDまたはDVDのような携帯式データ記憶媒体に取り込み、証拠品と一緒にその携帯式データ記憶媒体を第2の法執行機関に送れるようにすることによって、このような移動を簡素化する。あるいは、データベースまたはデータベース記入事項を、ネットワーク、インターネットまたは他の適切な伝送手段により、当該二機関のコンピュータ間で伝送してもよい。第2の法執行機関は、次にそのデータベースを

40

50

自分のコンピュータシステムにロードし、RFIDリーダを用いて移動された証拠品収集物に質問して、全ての証拠品が適切に移動されたと確認するように選択してもよい。もし何かの理由で、データ記憶媒体だけを、例えば他の法執行機関または裁判所に移動することが有益ならば、そのようにすることも可能であろう。データベースの複写コピーを作成し、移動元が移動する証拠品の記録を保有できるようにすることも望ましいだろう。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
6 September 2002 (06.09.2002)

PCT

(10) International Publication Number
WO 02/069242 A2

(51) International Patent Classification: G06K 7/00. (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), DE (utility model), DK (utility model), DM, DZ, EC, EE (utility model), ES, FI (utility model), GB, GD, GH, GM, IR, IIR, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US01/21874

(22) International Filing Date: 12 July 2001 (12.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/789,903 21 February 2001 (21.02.2001) US

(71) Applicant: 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3M Center, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(72) Inventors: GRUNES, Mitchell, B.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). KAREL, Gerald, L.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). OLSON, Peter, L.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(74) Agents: OLSON, Peter, L. et al.; Office of Intellectual Property Counsel, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/069242 A2

(54) Title: EVIDENCE AND PROPERTY TRACKING FOR LAW ENFORCEMENT

(57) Abstract:

EVIDENCE AND PROPERTY TRACKING
FOR LAW ENFORCEMENTTechnical Field

5 The present invention relates to evidence and property tracking systems and methods for use particularly in law enforcement.

Background of the Invention

10 Police, jails, prisons and other government authorities typically collect evidence and property, such as weapons, clothing, money, drugs, and documents, for use in subsequent investigations and legal proceedings, or simply to hold while a person is detained. That evidence and property must be secured against unintentional or intentional tampering, theft, substitution or loss to preserve its value in those 15 investigations and proceedings. For example, if a critical piece of evidence is lost, or if a witness at a trial cannot positively identify the evidence and the chain of custody from the time and place where it was collected to the time and place where it was authenticated, then a suspect who committed a crime may be allowed to go free. This is undesirable for several obvious reasons.

20 Current evidence collection and storage may be done in several different ways, but what follows is one example. An officer or investigator may retrieve a piece of evidence at a certain location, and then place that evidence into a bag or envelope. After the person seals the bag or envelope, she may write certain information on it, or on a paper or other record associated with it, to enable the evidence to be positively identified at a later time. That information may include the case number (if known), 25 the type of crime, the victim's name or names, the suspect's name or names, the location where the evidence was retrieved, and other identifying information. The officer or investigator may also sign the bag, envelope, paper or record or make some other unique mark, to enable her to positively identify the evidence later. In the collection of property from a suspect prior to incarceration, for example, the property 30 may be similarly bagged and tagged.

Once the evidence or property has been collected, it is brought to a central storage location, such as an evidence room or a file room. There it may be checked in, and the person receiving the evidence may indicate on the bag or envelope that the

officer no longer possesses the evidence, but that it is in the possession of the evidence room. This is a transfer of custody; a part of (or link in) the chain of custody required to be proven in many later proceedings at which a party seeks to introduce the evidence. Within the evidence room, the evidence may be stored in a file, envelope, box or other container, or simply on a shelf. Whenever the evidence is subsequently removed from its location, the person removing it is supposed to make a new entry on the bag, envelope, paper, or record indicating that that person now possesses the evidence. When the evidence is needed for a trial or other proceeding, the evidence can then be checked out to a person who can bring it along for use in that proceeding.

10 This and other similar systems of evidence management can suffer from a number of problems, not the least of which is that the system for tracking the chain of custody relies to a great degree on people being willing and able to accurately document possession. It can also be difficult to locate evidence within an evidence room, particularly where, for example, one piece of evidence (such as a handgun) is stored with a large group of items that have a similar appearance. In view of these and other difficulties, it is desirable to provide a better evidence management system than has been used until now.

Summary of the Invention

20 The present invention has several aspects related to the use of RFID technology in obtaining, tagging, searching for, and otherwise handling evidence and property. As described in more detail below,

Detailed Description of the Invention

25 The present invention includes not only the recognition of certain problems that have long plagued the storage, retrieval and tracking of evidence, but also the application of radio frequency identification, or "RFID" technology to that field in the manner described herein. Before describing the applications, methods, systems, and components of the present invention, a short overview of RFID technology will be provided.

I. RFID Technology

RFID tags have been in use for some time to tag objects such as library books.

The RFID tag typically includes an antenna and an integrated circuit operatively connected to the antenna. For some applications, battery powered RFID tags (sometimes referred to as "active" tags) are preferred, and for other applications, unpowered (or "passive" tags) are preferred. These tags are described in various patents and publications, and are currently sold by companies including Texas Instruments of Dallas, Texas (under the designation "TAG-ITTM"), Philips Semiconductors of Eindhoven, Netherlands (under the designation I-CODETM), and

10 Intermec Technologies Corporation of Everett, Washington (under the designation INTELLITAGTM).

Another component of an RFID system is a reader or interrogator. The RFID reader may be portable (and even hand-held) or stationery, and it includes an antenna and associated reader/writer hardware and software, a power source, a processor (typically including a database or memory), a user interface, and software for running the applications of the kind described herein. One RFID reader is sold by Texas Instruments of Dallas, Texas under the designation Commander 320. The RFID reader, when activated, transmits signals at a predetermined frequency (such as 13.56 megahertz), which can then activate tags within the interrogation range of the reader.

15 The RFID tags respond by modulating the signals that they each receive, and the reader receives the modulated signals back from the tags. The interchange of data through these signals enables the RFID reader to obtain information from the RFID tags. RFID readers that are compatible with the RFID tags described above are available from ID Systems Inc. of Manchester, U.K. (under the designation HANDSPRING and MRR

20 (mid-range reader), BALTECH AG, of Hallbergmoos, Germany (under the designation ID-ENGINE), and Feig Electronics GmbH of Weilburg-Waldhausen, Germany (under the designation OBID I-SCAN). Most conventional RFID readers also have a programming or "writing" capability, and thus combine both reading and writing (interrogation and programming) into a single device. For applications where either or

25 both functions are required, combination reader/writers or separate readers and writers may be used.

A processor that is part of the RFID reader, or a processor or database to which the reader can be linked, may contain information correlating the interrogated RFID tag

to the item to which the tag is attached. Thus, if the RFID tag is attached to a library book, the reader may obtain a tag identification number from the tag, match it to the same number in its own or another database, and then be able to determine information about the item.

5 Although they form parts of the same inventive concepts related to specific uses of RFID technology for criminal evidence, portions of the invention will be separately described below for the convenience of the reader. Also, references to evidence may include property held by law enforcement authorities or the like for non-evidentiary purposes, such as while a suspect is incarcerated.

10

II. RFID for Criminal Evidence and Property

A. Conversion. One aspect of the present invention involves the conversion of existing tagged evidence collections to an RFID-tagged evidence collection. Existing tagging systems may include printed bar-code tags, stickers, paper labels, or other similar things that are attached either directly to the piece of evidence, or to the container in which the evidence is stored. In this aspect of the present invention, a conversion station and method is provided for converting the existing tagged evidence to RFID-tagged evidence. One such system is described in the context of library materials in PCT Publication WO 00/10122 (Garber et al.), which is assigned 15 to the assignee of the present invention.

In one embodiment, the method includes the steps of selecting a piece of evidence that bears a non-RFID tag, obtaining information from that tag (for example visually, if the information is simply printed on the tag, or by scanning if the information is provided in bar-code or machine-readable format), inputting the 20 information into a processor (for example, by a keyboard or a touch-panel display), converting the information into a format that can be stored on an RFID tag, programming or "writing" the information to an RFID tag, and creating or editing a database record associated with that RFID tag. The conversion station used to convert the existing evidence collection can thus include or be operatively connected to an 25 input subsystem (such as a keyboard, touch panel, bar-code scanner, or the like), a processor that receives and processes the information, a database in which records can be created, edited, or deleted, an RFID writer, and an RFID tag processing system that 30 can obtain a tag (perhaps from a roll of such tags), position it near an antenna for the

RFID writer so that information can be written to the tag, and then advance it to a position where it can be removed by the user and applied to the evidence or container.

Other useful aspects of the conversion station and method, and of the invention generally, may include the following. The RFID tag may be placed in an envelope, 5 bag, or other container either when the container is made (which may be referred to as "source marking" the container), or subsequently either by the eventual user or someone else. A closeable, tamper-evident bag of this type is disclosed in U.S. Patent No. 5,635,917 (Todman). Thus, the RFID tag programmed by the conversion station (or used by another user as described below) can already be associated with a container 10 into which the evidence can be inserted. Another optional feature is to provide a printer for the conversion station, so that information can be printed on any suitable surface of the RFID tag, or a label that includes the RFID tag, or the container. That information could be in the form of a bar code, alphanumeric symbols, or other printed indicia, and may be useful when files are provided with RFID tags, for example. It may also be 15 useful to enter information onto a database record that is associated with the RFID tag and the evidence, so that that information may be searched or otherwise used subsequently.

20 B. Evidence Collection. Another aspect of the present invention is the collection and tagging of evidence using RFID technology. Law enforcement officials may collect evidence and put it into a container (which may be a sealable, tamper-evident container) provided with an RFID tag, such as the one disclosed in U.S. Patent No. 5,635,917 (Todman). The tag may be programmed to include one or more pieces 25 of information, examples of which are described below, or those pieces of information may be provided in a database. If, for example, the information is provided in a database, then the tag may be interrogated to obtain enough information from the tag to enable the corresponding database entry to be identified and the desired information thereby obtained. Information to be stored on the tag or the database could include one or more of the following types of information:

- (1) a case identification number;
- 30 (2) the crime type;
- (3) a victim's name;
- (4) a suspect's name;
- (5) the location where the evidence was obtained;

(6) the name of the person who collected the evidence;
(7) the name of the agency handling the investigation;
(8) the name of the person who owns the property;
(9) the names of the persons who have been in possession of the evidence;
5 (10) a description of the information;
(11) the date of the offense;
(12) the date that the evidence was collected;
(13) the date that the property can be returned to the owner, or destroyed;
(14) the status of the evidence (for example, active, inactive, scheduled to be
10 discarded); and/or
(15) any test results obtained in regard to the evidence.

Evidence collection when done in this manner initiates the chain of custody using RFID technology.

C. Tagging of Evidence. Evidence may be tagged in the following manner.
15 An RFID tag may be provided that has a unique identifier, such as a tag identification number or alphanumeric string, already stored in memory. The user can obtain the tag, apply it to the evidence, and then create or modify an entry in a database that associates that specific tag with the evidence. The unique tag identifier assures that it is impossible that two tags in the same location would have the same tag identifier. The tag identifier can be obtained from the tag either by interrogating the tag with an RFID reader, or by reading it visually if the information is printed on the tag, for example. Information of the kind enumerated above may then be entered into the database, or stored on the tag, or both, to facilitate later use of that information. This tagging system is useful because, among other reasons, the tag does not have to be programmed
20 by the user with additional information identifying either the tag or the evidence, which can conserve space in the memory of the tag available to the user.

Another way to tag evidence is to locate information in a database related to a particular piece or class of evidence, select information that is also applicable to the additional evidence to be stored, and program (write) the selected information to the tag. For example, the fiftieth piece of evidence in a case may be tagged by locating the electronic records associated with one or more of the previous pieces of evidence in
25 that case, identifying certain information from those records to be provided on the RFID tag for the fiftieth piece of evidence, and then writing that information to an

RFID tag to be associated with the fiftieth piece of evidence. The fiftieth piece of evidence may have certain information in common with one or more of the previous pieces of evidence, including the name of a suspect, the name of a victim, the date of the crime, and other information of the type listed above. Additional information may

5 also be written to that tag, to provide information specific to that piece of evidence.

D. Storage of Evidence. Some evidence, such as blood, can degrade over time, and must be preserved under controlled conditions. Another aspect of the present invention is the use of RFID technology to tag and monitor such evidence. In that respect, evidence may be provided with an RFID tag as generally described herein, and

10 placed in a climate-controlled environment such as a refrigerated area, a dry area, a warm area, or the like. For example, a blood sample may be contained in a bag, and the bag (and RFID tag) stored in a refrigerator having a temperature maintained at 4.4 degrees C (40 degrees F). A climate monitoring system (such as a thermometer, a hygrometer to measure humidity, an optical sensor to measure the presence of light) is

15 provided in the environment, and can in coordination with a processor determine when the climate is within and outside of certain acceptable climatic ranges.

The climate-controlled environment may have one or more RFID readers and RFID writers that can communicate with the RFID tags. The RFID writer(s) (or the RFID writer portion of a combination RFID reader/writer) can program more than one

20 RFID tag substantially simultaneously with information (which may be made unalterable) if the climate monitoring system indicates that the climate has varied from certain predetermined conditions. For example, if the temperature in the refrigerator drops below 0 degrees C (32 degrees F), then the RFID writer can write a message to RFID tags indicating that condition. Similarly, if other environmental conditions vary

25 outside of certain predetermined limits (excessive or insufficient temperature, humidity, or light, for example), those conditions can be indicated on the RFID tags. If that information is stored on the RFID tags in a manner that is very difficult or impossible to alter, then the absence of that information could be useful to law enforcement authorities subsequently, or conversely the presence of that information could be useful

30 to potential defendants. This system has the added benefit that the RFID tags should be much less expensive than environmental monitoring tags that actually monitor environmental conditions themselves and provide a record of those conditions. In another embodiment, information concerning the environmental conditions could be

stored in a database record that is correlated to each specific RFID tag, instead of or in addition to information that is stored on the RFID tag itself. This could have the added benefit of tracking the environmental conditions for a given piece of evidence over time, because it may be easier to store additional pieces of information in a database than on the limited memory available on current RFID tags. In other embodiments, a user may program information to the RFID tags on demand, or the system may be adapted to program information to the RFID tags at predetermined times, or intervals of time.

5 E. Searching for Evidence. Current evidence storage facilities may require a user to manually sort through existing pieces of randomly stored evidence to locate the piece of evidence of interest. This is time consuming, and may even damage or cause the loss of other evidence. With the use of RFID technology, RFID-tagged evidence can be searched more efficiently, either by a handheld RFID reader, or by a permanent RFID reader located in, on, or near the storage locations. Readers and
10 reader systems of the type disclosed in PCT Publication WO 00/10122 (Garber et al.), WO 00/10144 (Garber et al.), and WO 00/10112 (Goff et al.) may be useful in that regard. This searching system eliminates the need for line-of-sight inspection, which is normally required for both visual inspection of evidence and bar-code scanning of bar-code tagged evidence. It also minimizes problems due to unreadable, removed, or lost
15 tags of the kind currently in use, and eliminates the need to create a new tag each time information is updated, because the tag memory can be selectively overwritten.

20 To search for evidence, a user may input information to an RFID reader describing the desired piece of evidence other than by RFID interrogation, and then use the RFID reader to interrogate the RFID-tagged items within the range of the reader.
25 For example, the user may enter a case identification number into a reader through some kind of user interface (such as a keyboard, touch-panel display, or the like) or connection (such as a serial port to connect with a processor and database), and then have the RFID reader interrogate all the evidence within its range to locate RFID
30 tagged items related to that case. Alternatively, if other information is stored on each RFID tag or in a database entry (such as the kinds of information enumerated above), then evidence having RFID tags that include that information can also be located. RFID tags that correspond to the description entered into the RFID reader can then be identified and located, and thus the corresponding piece(s) of evidence located. For

example, if a disposal date is stored on an RFID tag, then a user can search for all evidence having a disposal date prior to the day of the search. Such evidence may then be removed from the evidence storage area, and perhaps destroyed in keeping with any applicable retention guidelines. Specific evidence (either among the other evidence 5 collected for that case, or among some other group of pieces of evidence) may be located using RFID tags and interrogators, so that a person searching for, say, a bloody glove can input information related to that evidence (such as "item number 4," or "Officer XXXX," or "date before 1/1/01") into the RFID reader and enable it to search for RFID-tagged pieces of evidence corresponding to the information provided to the 10 reader. The information for which the RFID reader is searching may be located on the RFID tag itself, or in a database record associated with the RFID tag. A benefit to having the searched information on the RFID tag itself is that the RFID reader may locate and indicate the presence of the RFID-tagged piece of evidence in real time, without having to resort to a database on the reader or accessible to it by wireless or 15 other connection.

Another useful searching system is to call up on a reader a list of evidence from 20 a particular case, and then to select from that list one or more pieces of evidence for which a search should be conducted. The list of evidence from the particular case may be obtained either from the memory of the RFID reader, or from a database linked to the RFID reader (either by cable, or by wireless connection, for example). The user 25 interface of the RFID reader may permit the user to highlight, check off, or otherwise indicate which pieces of evidence or which class of evidence the user wishes to search for, and the reader would then interrogate RFID tags until it located one or more tags associated with the items of interest.

In another embodiment, an algorithm can be input into the RFID reader that 30 describes an ordered set of evidence, and then a plurality of pieces of evidence can be interrogated to determine whether the interrogated pieces of evidence are in the algorithm order. Examples of suitable algorithm orders could be ones based on case identifiers, or on chronological (including reverse-chronological) order.

Another feature of the searching method is to associate a piece of evidence with 35 a location. The RFID tag associated with a piece of evidence may be interrogated, information may be provided describing a location, and then the two may be associated with each other in a database. The location could be a crime scene, or a room or part of

an evidence storage location, in which case a separate RFID location tag may be interrogated to obtain the information describing the location.

Another searching method is to interrogate an RFID tag associated with a piece of evidence, to interrogate an RFID tag associated with at least one additional piece of evidence within a group of pieces of evidence, and to determine whether the piece of evidence is associated with the group of pieces of evidence. This may be useful, for example, in determining whether a misplaced piece of evidence belongs with the evidence near where it was found. As with other embodiments of the invention, an indication of whether or not the piece of evidence belongs with the group can be provided to a user.

To locate several pieces of evidence within a group, an RFID reader may be provided with information identifying the pieces of evidence, and then an area or location believed to contain the pieces of evidence can be interrogated. The reader can provide an indication when it interrogates the RFID tags associated with the pieces of evidence in the group, and can provide an indication of the number of such pieces that have been interrogated. This may be useful for locating all of the pieces of evidence related to a single case, for example, or for confirming the inventory of pieces of evidence in a particular bin, shelf, or the like. An indication of how many pieces of evidence were not located can also be provided, as with other embodiments of the present invention, either through a user interface on the RFID reader or otherwise. This inventory function may enable a user to conduct a periodic audit, and can indicate not only pieces of evidence that were expected to be at the location but were not, but also pieces of evidence that were not expected to be at the location but were. By positioning multiple interrogating antennae at locations throughout an area of interest, and optionally by multiplexing interrogation signals to each of the antennae successively, a complete inventory may be conducted in far less time than has heretofore been possible.

F. Chain of Custody. Another aspect of the present invention is its use in tracking the chain of custody of a piece of evidence. An RFID-tagged piece of evidence can be programmed by an RFID writer to include information that identifies each person to have possession of the evidence. The programming may be done manually (by a person entering his or her information into an RFID device), or automatically (by using, for example, an RFID antenna surrounding a portal such as a

WO 02/069242

PCT/US01/21874

-11-

doorway or pass-through window to match an RFID badge on a person with an RFID tag on a piece of evidence). The portals associated with an interrogator and antenna may also be, for example, entries to rooms or areas within a larger room, such as a secure room for holding firearms or drugs that may be segregated from the remainder 5 of an evidence storage area. The tag or the database or both, when receiving information describing a person who currently possesses the evidence, can check its or their memory to determine whether that person is different from the last person shown to have had possession of the evidence, and if so, the memory or database of either or both can be appropriately updated. In another embodiment, a person can register or 10 otherwise be authorized, obtain an item of evidence, walk through a portal, and have the associated portal reader verify that the person (who has an RFID identification tag of some type) is authorized to obtain evidence, or to obtain that specific piece of evidence. The information matching a person to the piece of evidence can be stored on the RFID tag, on a database entry associated with that RFID tag, or on both. If the 15 information is stored on the RFID tag, then it may be useful if that information cannot be altered once it has been written (using write once, read many ("WORM") memory on the tag). A predetermined list of people who are authorized to possess evidence may be maintained in a database, and RFID readers that detect RFID-tagged evidence in 20 proximity to an RFID-badged but unauthorized person may send a notification signal to an appropriate person or location.

G. Location Transfer. It may also be useful to track the location of a piece of evidence. That may be done in one of several manners. For example, portal readers of the type described above may be used to obtain information from RFID-tagged evidence as it is moved, and can update the tag, a database, or both as to the new 25 location of the tagged evidence. This information may also be obtained by other readers, including handheld readers and non-portal readers, such as those associated with the storage locations themselves. PCT Publication WO 00/10112 (Goff et al.) describes, in one embodiment, a shelf-tape-style reader system that could be used in this manner, to periodically poll all the tags in a specified location and to update a 30 database, for example, of the tags found at those locations.

It may also be useful to associate an RFID reader or a combination reader/writer with certain locations or equipment, so that each time that a certain location or piece of equipment is used in regard to a piece of evidence, that information is recorded. For

example, if a gun is tagged and then tested in a firearms laboratory, an RFID writer associated with that equipment could program the RFID tag (or update a database record) to indicate, for example, information concerning the date, time, and location of the firearms test, the person(s) conducting the test, test results, and other similar information related to the test. This could also be done for other laboratory or other tests, such as biological (such as blood or DNA) testing, and the like. The person(s) conducting the test could be identified by RFID interrogation of a badge or the like, as with the interrogation described with reference to portals for chain of custody purposes.

5 H. Transfers of Evidence Collections. Evidence may be collected and
10 maintained by a first law enforcement authority, and subsequently transferred to a second law enforcement authority for further prosecution of the lawsuit or matter. For example, a state or local law enforcement authority may collect certain evidence believed to be relevant to a state crime, such as murder, and later determine that the crime is a federal crime, such as kidnapping or racketeering. In those and other
15 situations, the evidence collection may be transferred from one law enforcement agency to another. The present invention simplifies such transfers by enabling the first law enforcement authority to search for evidence related to a specific case in the manners described above, download the database or database entries related to that case onto a portable data storage medium, such as a computer floppy disc, CD, or DVD, and
20 transfer the data storage medium along with the evidence to the second law enforcement authority. Alternatively, the database or database entries may be transmitted between the computers of the two authorities, either by network, the Internet, or another suitable means of transmission. The second law enforcement authority may then choose to load the database on its computer system, use an RFID
25 reader to interrogate the transferred evidence collection, and confirm that all the evidence has been appropriately transferred. If for some reason it is useful to transfer the data storage medium alone, for example to another law enforcement agency or court, then that could be done also. It may also be desirable to create duplicate copies of the database, to enable the transferring location to retain a record of the evidence
30 transferred.

We claim:

1. A method for converting a collection of non-RFID tagged pieces of evidence to RFID-tagged evidence, comprising the steps of:
 - 5 (a) providing a piece of evidence that includes a non-RFID tag;
 - (b) obtaining information from the non-RFID tag;
 - (c) inputting the information into a processor;
 - (d) writing the information onto an RFID tag; and
 - (e) associating a database record with that RFID tag.
- 10 2. The method of claim 1, wherein steps (b) and (c) comprise scanning a bar code on the non-RFID tag.
- 15 3. The method of claim 1, wherein step (b) comprises reading information from the non-RFID tag visually.
4. The method of claim 1, wherein step (c) comprises typing information using a keyboard.
- 20 5. The method of claim 1, wherein step (c) comprises using a touch-panel display.
6. The method of claim 1, wherein the method further includes the step of associating the RFID tag with a container for the piece of evidence prior to step (d).
- 25 7. The method of claim 1, wherein the method further includes the step of printing information on a surface selected from major surfaces of the RFID tag, a label, and a container for the evidence.
8. The method of claim 1, wherein the method further includes the step of entering information that relates to the piece of evidence into the database record.
- 30 9. A method for converting a collection of non-RFID tagged pieces of evidence to RFID-tagged evidence, comprising the steps of:

- (a) providing a piece of evidence that includes a non-RFID tag, followed by the step of
 - (b) obtaining information from the non-RFID tag, followed by the step of
 - (c) inputting the information into a processor, followed by the following steps in any order:
 - (i) writing the information onto an RFID tag; and
 - (ii) associating a database record with that RFID tag.

10. A method for converting a collection of non-RFID tagged pieces of evidence to RFID-tagged evidence, comprising the steps of:

- (a) providing a piece of evidence that includes a non-RFID tag, followed by the step of
 - (b) obtaining information from the non-RFID tag, followed by the step of
 - (c) inputting the information into a processor, followed by the following steps in any order:
 - (i) writing the information onto an RFID tag;
 - (ii) associating a database record with that RFID tag; and
 - (iii) entering information that relates to the piece of evidence into the database record.

20. 11. A conversion station for converting a collection of non-RFID tagged pieces of evidence to RFID-tagged pieces of evidence, comprising:

- (a) an information receiving system into which information related to a piece of evidence may be input;
- (b) an RFID tag feeding mechanism to receive and advance RFID tags to a tag programming zone; and
- (c) an RFID writer including an antenna adjacent the tag programming zone, for writing the information to the RFID tag positioned in the tag programming zone.

25. 12. The conversion station of claim 11, wherein the conversion station further includes a supply of RFID tags positioned within the RFID tag feeding mechanism.

30.

13. The conversion station of claim 12, wherein the conversion station further includes a processor and a database, and the processor associates the RFID tag with a database record.

5 14. The conversion station of claim 11, wherein the database record includes information about the piece of evidence.

15. A method of collecting evidence, comprising the steps of:

(a) obtaining a piece of evidence;
10 (b) placing the evidence into a container, the container having an RFID tag associated therewith; and
(c) programming the RFID tag to include a case identifier.

16. The method of claim 15, wherein the RFID tag is also programmed to include 15 the crime type.

17. The method of claim 15, wherein the RFID tag is also programmed to include at 20 least one type of information selected from the group of a victim's name, a suspect's name, the location where the evidence was obtained, the name of the person who collected the evidence, the name of the agency handling the investigation, a description of the information, the date of the offense, and the date that the evidence was collected.

18. A method of collecting evidence, comprising the steps of:

(a) obtaining a piece of evidence;
25 (b) placing the evidence into a container, the container having an RFID tag associated therewith;
(c) programming the RFID tag to include a type of information selected from the group consisting of the case identification number, the crime type, a victim's name, a suspect's name, the location where the evidence was obtained, the name of the person who collected the evidence, the name of the agency handling the investigation, a 30 description of the information, the date of the offense, and the date that the evidence was collected; and

(d) entering information into a database record associated with the RFID tag, the information selected from the group consisting of the case identification number, the crime type, a victim's name, a suspect's name, the location where the evidence was obtained, the name of the person who collected the evidence, the name of the agency 5 handling the investigation, a description of the information, the date of the offense, and the date that the evidence was collected.

19. A method for tagging a piece of evidence using an RFID tag, comprising the steps of:

10 (a) providing a supply of RFID tags, each tag having a unique tag identifier stored in the tag memory;

(b) selecting an RFID tag from the supply; and

(c) associating a database record with the selected RFID tag using the tag identifier.

15 20. The method of claim 19, wherein the method further comprises the step of entering information into the database record relating to the piece of evidence.

21. A method of tagging a piece of evidence using an RFID tag, comprising the steps of:

20 (a) providing a supply of RFID tags, each tag having a unique tag identifier stored in the tag memory;

(b) interrogating a selected RFID tag using an RFID reader to obtain the unique tag identifier; and

25 (c) associating a database record with the selected RFID tag using the tag identifier.

22. The method of claim 21, wherein the method further comprises the step of entering information into the database record relating to the piece of evidence.

30 23. A method of tagging a piece of evidence using an RFID tag, comprising the steps of:

(a) locating in a database a record related to a piece of evidence;

- (b) selecting certain information from that record; and
- (c) programming an RFID tag with the selected information.

24. The method of claim 23, wherein the method further comprises the step of (d) associating a database record with the RFID tag programmed in step (c).

5 25. The method of claim 24, wherein the method further comprises the step of (e) entering information related to the piece of evidence into the database record of (d).

10 26. A method for tagging a piece of evidence using an RFID tag, comprising the following steps in the specified order:

- (a) obtaining a piece of evidence, and then
- (b) writing information related to the piece of evidence to an RFID tag to be associated with the evidence; and then
- 15 (c) associating a database record with the RFID tag.

27. An RFID system for a climate-controlled environment in which evidence is stored, comprising:

- (a) pieces of evidence, each of which is associated with an RFID tag;
- (b) an RFID writer that is adapted to write to more than one RFID tag substantially simultaneously; and
- (c) a climate monitoring system for monitoring the environment; wherein when the climate monitoring system detects a predetermined climatic condition in the environment, the RFID writer programs more than one RFID tag in 25 that environment with an indication of that condition.

28. The RFID system of claim 27, wherein the climate monitoring system monitors the temperature in the environment.

30 29. The RFID system of claim 27, wherein the climate monitoring system monitors the humidity in the environment.

30. The RFID system of claim 27, wherein the system further includes a database, and the indication of the predetermined climatic condition is also stored in the database.

31. The RFID system of claim 27, wherein the RFID writer is also adapted to 5 program an indication of environmental conditions to multiple RFID tags substantially simultaneously on demand by a user.

32. The RFID system of claim 27, wherein the RFID writer is also adapted to 10 program an indication of environmental conditions to multiple RFID tags substantially simultaneously at predetermined times or intervals of time.

33. A method of monitoring a climate-controlled environment, comprising the steps of:

15 (a) associating an RFID tag with at least one item;
(b) providing an RFID writer in the environment, the RFID writer positioned to write to more than one RFID tag substantially simultaneously;
(c) monitoring the climate in the environment to determine whether a predetermined climatic condition is present in the environment; and
(d) writing information to more than one RFID tag when the predetermined 20 climatic condition is present.

34. The method of claim 33, wherein the item is a piece of evidence.

35. The method of claim 34, wherein step (c) comprises monitoring the temperature 25 in the environment.

36. The method of claim 35, wherein step (c) comprises monitoring the humidity in the environment.

30 37. A method of using a portable RFID device, comprising the steps of:
(a) inputting information to the device by other than RFID interrogation, the information describing a piece of evidence or class of evidence each having an RFID tag; and

(b) scanning RFID tags associated with a plurality of pieces of evidence to determine whether the certain piece or pieces of evidence are present.

38. The method of claim 37, wherein the method further comprises the step of (c) providing an indication to a user when RFID tag(s) associated with the certain piece(s) of evidence are interrogated.

39. The method of claim 37, wherein the information input in step (a) is contained within the memory of and available from the RFID tags of step (b).

10

40. A method of using a portable RFID device, comprising the steps of:

- (a) inputting an algorithm to the device that describes an ordered set of evidence;
- (b) interrogating a plurality of pieces of evidence having RFID tags to obtain information from those tags; and
- (c) comparing a description of the items obtained using the information obtained from the RFID tags to the algorithm to determine whether the scanned items are in the algorithm order.

20

41. The method of claim 40, wherein the method further comprises the step of:

- (d) providing an indication to a user of any piece of evidence that is not in the algorithm order.

25

42. The method of claim 40, wherein the algorithm order is an ordered series of case identifiers.

43. The method of claim 40, wherein the algorithm order is chronological.

44. A method of using a portable RFID device to associate a piece of evidence bearing an RFID tag with a location, comprising the steps of:

30

- (a) interrogating the RFID tag associated with the piece of evidence;
- (b) inputting information to the device to describe the location; and
- (c) associating the piece of evidence with the location in a database.

45. The method of claim 44, wherein the method further includes the step of (d) providing an indication to a user confirming the association of the piece of evidence with the location.

5 46. The method of claim 44, wherein the location has a separate RFID tag, and step (b) comprises scanning the RFID tag associated with that location.

47. The method of claim 44, wherein the location is a crime scene.

10 48. The method of claim 44, wherein the location is a part of an evidence storage room.

49. A method of using a portable RFID device to associate a certain piece of evidence bearing an RFID tag with a group of pieces of evidence each also bearing an 15 RFID tag, comprising the steps of:
(a) interrogating the RFID tag associated with the certain piece of evidence;
(b) interrogating the RFID tags of at least one additional piece of evidence within the group; and
(c) determining whether the certain piece of evidence is associated with the 20 group of pieces of evidence.

50. The method of claim 49, wherein the method further comprises the step of:
(d) providing an indication of the determination made in step (c) to the user.

25 51. A method of identifying a specific piece of evidence having an RFID tag associated therewith from among a group of pieces of evidence also having RFID tags associated therewith, comprising the steps of:
(a) providing an RFID reader with information identifying the specific piece of evidence;
(b) interrogating the group of pieces of evidence; and
(c) providing a signal when the RFID reader interrogates the RFID tag 30 associated with the specific piece of evidence.

52. The method of claim 51, wherein the information provided in step (a) is information identifying a case to which the evidence relates, and step (c) comprises providing a signal when the RFID reader interrogates an RFID tag associated with a specific piece of evidence from that case.

5

53. The method of claim 51, wherein the information provided in step (a) is information indicative of a date.

10

54. The method of claim 51, wherein the information provided in step (a) is indicative of a specific person.

55. A method for locating a group of pieces of evidence each having an RFID tag associated therewith, comprising the steps of:

15

- (a) providing an RFID reader with information identifying each of the pieces of evidence in the group;
- (b) interrogating items in an area believed to contain the pieces of evidence in the group;
- (c) providing an indication when the RFID reader interrogates the RFID tag associated with a piece of evidence in the group; and

20

- (d) providing an indication of the number of RFID-tagged pieces of evidence in the group that have been interrogated by the RFID reader.

56. The method of claim 55, wherein the pieces of evidence in the group all relate to a single case.

25

57. The method of claim 55, wherein the RFID reader provides an indication of how many pieces of evidence within the group have not been interrogated.

30

58. A method of using a portable RFID reader for determining where among a group of pieces of evidence a specific piece of evidence should be located, comprising the steps of:

- (a) inputting information to the RFID reader that identifies the specific piece of evidence;

- (b) passing the reader over the group of pieces of evidence;
- (c) detecting where among the group of pieces of evidence the specific piece of evidence should be located; and
- (d) providing an indication to the user of that location.

5

59. A method of searching for evidence bearing an RFID tag, comprising the steps of:

- (a) providing in a database a list of locations and the pieces of RFID-tagged evidence that are expected to be at those locations;
- (b) interrogating the RFID-tagged pieces of evidence at at least one location listed in the database to determine which pieces of evidence are at that location; and
- (c) comparing the evidence determined to be at that location with the pieces of evidence expected to be at that location.

10

60. The method of claim 59, wherein the method further comprises the step of (d) notifying a user of any piece(s) of evidence that are expected to be at the location, but are not at that location.

15

61. The method of claim 59, wherein the method further comprises the step of (d) notifying the user of any piece(s) of evidence that are not expected to be at the location, but are at that location.

20

62. The method of claim 59, wherein the method is performed repeatedly at successive locations.

25

63. The method of claim 62, wherein the method comprises the step of multiplexing plural antennae, each of which is positioned at a location and is adapted to interrogate the pieces of evidence at that location.

30

64. A method of tracking an RFID-tagged piece of evidence, comprising the steps of:

- (a) associating an RFID writer with a piece of testing equipment;
- (b) testing the piece of evidence using the testing equipment; and

(c) writing information to the RFID-tagged piece of evidence to indicate that the evidence was tested by the testing equipment.

65. The method of claim 64, wherein step (c) comprises writing the date and time of
5 the test to the RFID tag.

66. The method of claim 64, wherein step (c) comprises writing information
describing the person conducting the test to the RFID tag.

10 67. The method of claim 64, wherein step (c) comprises writing information
describing a result of the test to the RFID tag.

68. The method of claim 64, wherein the method further includes the steps of (d)
identifying a person associated with the test equipment; and (e) writing information
15 describing that person to the RFID tag.

69. The method of claim 68, wherein step (d) comprises interrogating an RFID
badge associated with a person to obtain information identifying the person.

20 70. The method of claim 64, wherein the testing equipment for testing ballistics.

71. The method of claim 64, wherein the testing equipment is for testing biological
samples.

25 72. The method of claim 64, wherein information is provided to a database to
indicate that the evidence was tested by the testing equipment.

73. In combination:
30 (a) a piece of testing equipment for testing at least one determinable
characteristic of a piece of evidence; and
(b) an RFID writer, for programming information to an RFID tag associated
with the piece of evidence.

74. The combination of claim 73, wherein the combination further includes a processor and database for updating a database record to include information relating to the piece of evidence tested.

5 75. The combination of claim 73, wherein the piece of equipment is ballistics testing equipment, and the RFID writer is adapted to program information to an RFID tag associated with a firearm.

10 76. The combination of claim 73, wherein the piece of equipment is DNA testing equipment.

77. The combination of claim 73, wherein the piece of equipment is drug testing equipment.

15 78. An RFID system for recording the chain of custody of a piece of evidence, comprising:
a) a piece of evidence associated with an RFID tag; and
b) an RFID writer that receives information describing a person who possesses the evidence and writes that information to the RFID tag.

20 79. The RFID system of claim 78, wherein the system further comprises at least one RFID reader associated with a portal through which the evidence can pass, whereby that RFID reader is adapted to interrogate the RFID tag to identify the piece of evidence, and the RFID writer is adapted to write information identifying the location of the portal to the RFID tag.

25 80. The RFID system of claim 79, wherein the RFID reader associated with a portal is adapted to interrogate an RFID tag associated with a person, and the RFID writer is adapted to write information identifying the person to the RFID tag.

30 81. The RFID system of claim 78, wherein the system further comprises a database, and the database contains information indicative of which pieces of evidence may be

possessed by which individuals, and is adapted to permit only authorized individuals to obtain the pieces of evidence that those individuals are authorized to obtain.

82. A method for transferring evidence between a first location and a second location, comprising the steps of:

- (a) collecting RFID-tagged pieces of evidence;
- (b) reading the RFID tags to create a list of the pieces of evidence collected; and
- (c) storing that list in a database.

83. The method of claim 82, wherein the database is stored on a portable data storage medium.

84. The method of claim 83, wherein the method further includes the step of transferring the collected evidence and the portable data storage medium from the first location to the second location.

85. The method of claim 84, wherein the method further includes using an RFID reader to read the RFID tags associated with the transferred evidence, and comparing the transferred evidence to the list in the database.

86. The method of claim 80, wherein the method further includes transferring the database from one computer to a second computer.

87. The method of claim 86, wherein the transfer is over the Internet.

88. The method of claim 82, wherein the method further comprises the step of (d) duplicating the database, to permit the first location to retain information regarding the evidence transferred to the second location.

PATENT COOPERATION TREATY

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT
(PCT Article 17(2)(a), Rules 13ter, 1(c) and Rule 39)

Applicant's or agent's file reference 56428W0003	IMPORTANT DECLARATION	Date of mailing (day/month/year) 31/01/2002
International application No. PCT/US 01/ 21874	International filing date (day/month/year) 12/07/2001	(Earliest) Priority date (day/month/year) 21/02/2001
International Patent Classification (IPC) or both national classification and IPC G06K7/00, G06K19/07, G06F17/30		
Applicant 3M INNOVATIVE PROPERTIES COMPANY		

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be established on the international application for the reasons indicated below.

1. The subject matter of the international application relates to:
 - a. scientific theories.
 - b. mathematical theories.
 - c. plant varieties.
 - d. animal varieties.
 - e. essentially biological processes for the production of plants and animals, other than microbiological processes and the products of such processes.
 - f. schemes, rules or methods of doing business.
 - g. schemes, rules or methods of performing purely mental acts.
 - h. schemes, rules or methods of playing games.
 - i. methods for treatment of the human body by surgery or therapy.
 - j. methods for treatment of the animal body by surgery or therapy.
 - k. diagnostic methods practised on the human or animal body.
 - l. mere presentations of information.
 - m. computer programs for which this International Searching Authority is not equipped to search prior art.
2. The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful search from being carried out:

the description the claims the drawings
3. The failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions prevents a meaningful search from being carried out:

the written form has not been furnished or does not comply with the standard.

the computer readable form has not been furnished or does not comply with the standard.
4. Further comments: See further information on separate sheet

Name and mailing address of the International Searching Authority European Patent Office, P.B. 5818 Patentlaan 2 NL-1000 ST, The Hague Tel. (+31-70) 340-3040, Tx. 31 851 epo nl Fax: (+31-70) 340-3016	Authorized officer Mustafa Corapci
---	--

Form PCT/ISA/203 (July 1998)

International Application No. PCT/US 01/21874

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 203

In view of the large number and also the wording of the claims presently on file, which render it difficult, if not impossible, to determine the matter for which protection is sought, the present application fails to comply with the clarity and/or conciseness requirements of Article 6 PCT (see also Rule 6.1(a) PCT) to such an extent that a meaningful search is impossible. Consequently, no search report can be established for the present application.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.5), should the problems which led to the Article 17(2) declaration be overcome.

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
6 September 2002 (06.09.2002)

PCT

(10) International Publication Number
WO 02/069242 A2(51) International Patent Classification⁵: G06K 7/00,
19/07, G06F 17/30

CII, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EL, ES, FI (utility model), FI, GB, GD, GL, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MR, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TI, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US01/21874

(22) International Filing Date: 12 July 2001 (12.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/789,903 21 February 2001 (21.02.2001) US

(71) Applicant: 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3M Center, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(72) Inventors: CRUNES, Mitchell, B.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). KAREL, Gerald, L.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). OLSON, Peter, L.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(74) Agents: OLSON, Peter, L. et al.; Office of Intellectual Property Counsel, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(81) Designated States (national): AI, AG, AI, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

(84) Designated States (regional): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with declaration under Article 17(2)(a); without abstract;
title not checked by the International Searching Authority

(48) Date of publication of this corrected version: 13 November 2003

(15) Information about Correction:
see PCT Gazette No. 46/2003 of 13 November 2003, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/069242 A2

(54) Title: EVIDENCE AND PROPERTY TRACKING FOR LAW ENFORCEMENT

(57) Abstract:

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,UZ,VN,YU,ZA,ZW

(74)代理人 100082898

弁理士 西山 雅也

(72)発明者 グラネス, ミッケル ピー.

アメリカ合衆国, ミネソタ 55133-3427, セント ポール, ピー. オー. ボックス 3
3427

(72)発明者 カレル, ジェラルド エル.

アメリカ合衆国, ミネソタ 55133-3427, セント ポール, ピー. オー. ボックス 3
3427

(72)発明者 オルソン, ピーター エル.

アメリカ合衆国, ミネソタ 55133-3427, セント ポール, ピー. オー. ボックス 3
3427

F ターム(参考) 3L061 BA07

5B058 CA17 KA02 KA04 YA20