

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2018/08/16
(87) Date publication PCT/PCT Publication Date: 2019/02/21
(85) Entrée phase nationale/National Entry: 2020/02/10
(86) N° demande PCT/PCT Application No.: GB 2018/052335
(87) N° publication PCT/PCT Publication No.: 2019/034887
(30) Priorité/Priority: 2017/08/16 (GB1713163.2)

(51) Cl.Int./Int.Cl. *A61K 39/12* (2006.01),
A61P 31/20 (2006.01)
(71) Demandeur/Applicant:
OXFORD UNIVERSITY INNOVATION LTD., GB
(72) Inventeurs/Inventors:
DORRELL, LUCY, GB;
BLIGHT, JOSHUA, GB;
REYES-SANDOVAL, ARTURO, GB
(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : VACCIN ANTI-VPH

(54) Title: HPV VACCINE

A.

Figure 1

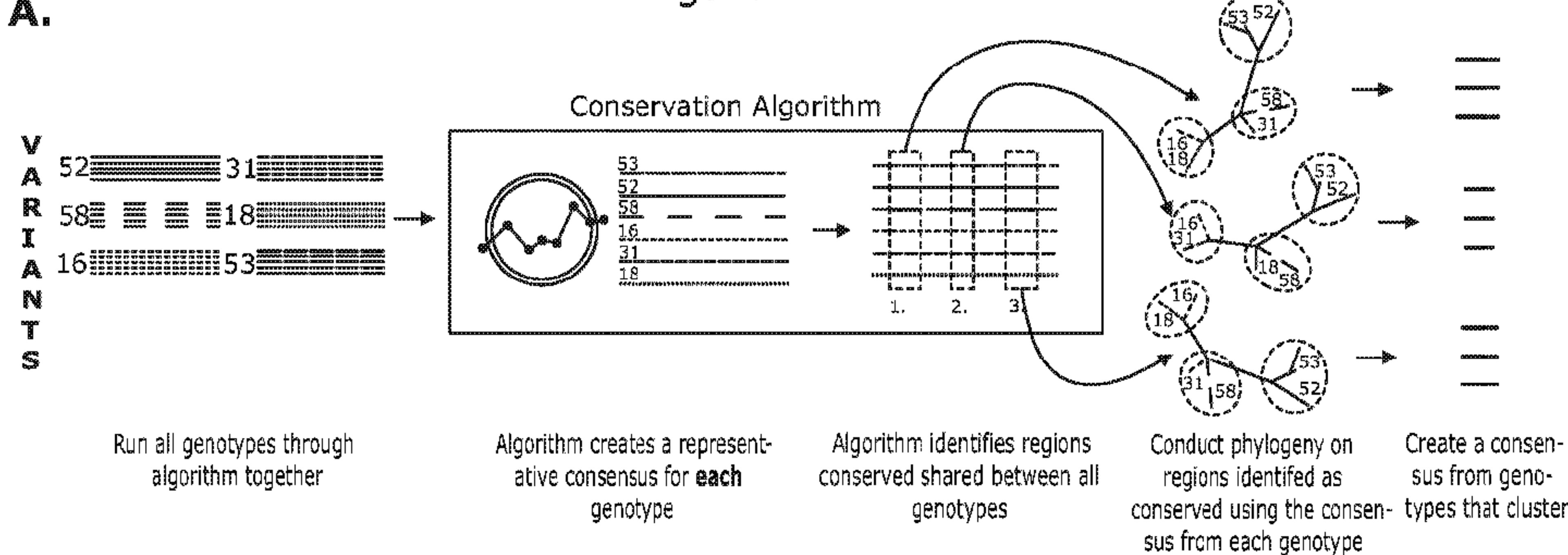
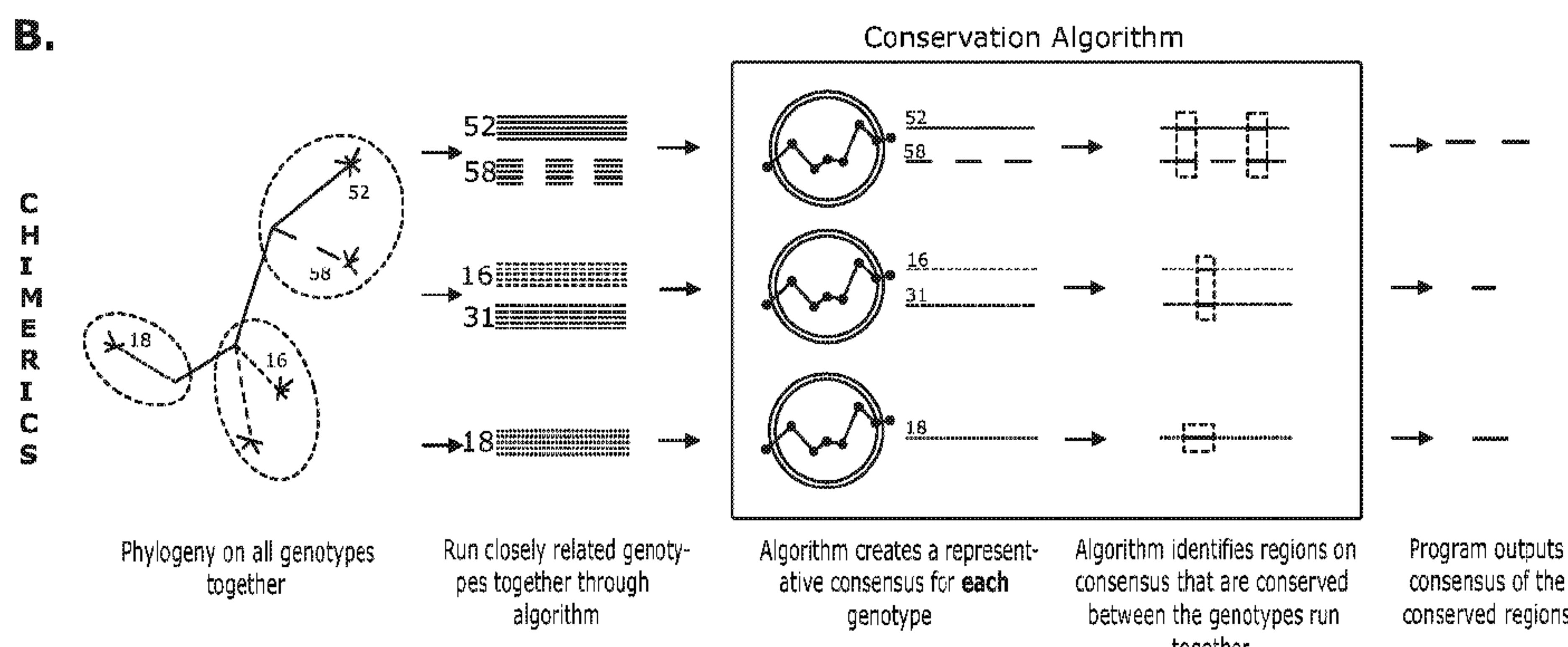



Figure 1 continued

B.

(57) Abrégé/Abstract:

The invention relates to a nucleic acid encoding a polypeptide comprising a plurality of conserved peptide sequences, or variants thereof, wherein the conserved sequences are conserved across one or more HPV genotypes 16, 18, 31, 52, 53, and 58; and wherein the polypeptide comprises a conserved peptide sequence of each of the HPV proteins E1, E2, E4, E5, E6, and E7; and associated vaccines, viral vectors, treatment and prophylaxis.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 February 2019 (21.02.2019)

(10) International Publication Number
WO 2019/034887 A1

(51) International Patent Classification:
A61K 39/12 (2006.01) A61P 31/20 (2006.01)

Old Road Campus, Headington, Oxford Oxfordshire OX3 7BN (GB).

(21) International Application Number:
PCT/GB2018/052335

(74) Agent: BARKER BRETELL LLP; Medina Chambers, Town Quay, Southampton Hampshire SO14 2AQ (GB).

(22) International Filing Date:
16 August 2018 (16.08.2018)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
1713163.2 16 August 2017 (16.08.2017) GB

(71) Applicant: OXFORD UNIVERSITY INNOVATION LTD. [GB/GB]; Buxton Court, 3 West Way, Oxford Oxfordshire OX2 0JB (GB).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(72) Inventors: DORRELL, Lucy; c/o Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford Oxfordshire OX3 7BN (GB). BLIGHT, Joshua; c/o Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford Oxfordshire OX3 7BN (GB). REYES-SANDOVAL, Arturo; c/o Nuffield Department of Medicine, University of Oxford,

(54) Title: HPV VACCINE

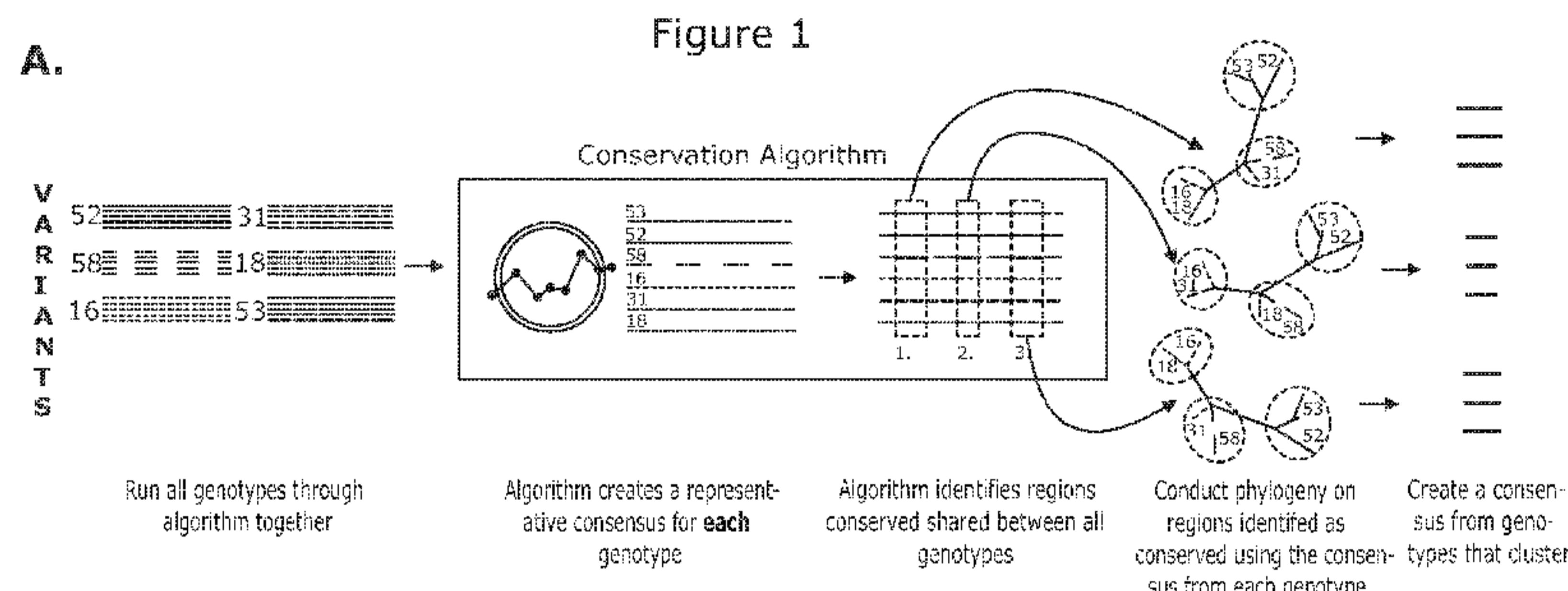
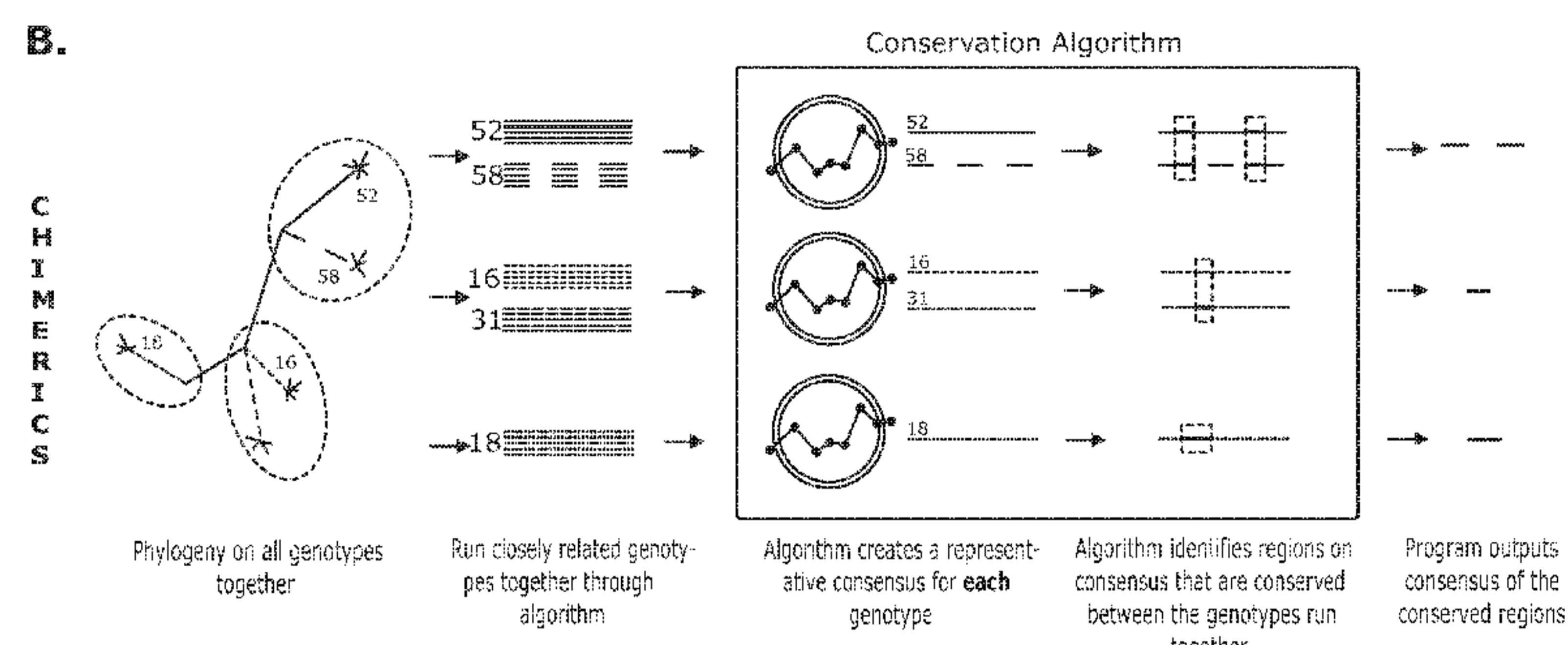



Figure 1 continued

(57) **Abstract:** The invention relates to a nucleic acid encoding a polypeptide comprising a plurality of conserved peptide sequences, or variants thereof, wherein the conserved sequences are conserved across one or more HPV genotypes 16, 18, 31, 52, 53, and 58; and wherein the polypeptide comprises a conserved peptide sequence of each of the HPV proteins E1, E2, E4, E5, E6, and E7; and associated vaccines, viral vectors, treatment and prophylaxis.

WO 2019/034887 A1

WO 2019/034887 A1

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *with sequence listing part of description (Rule 5.2(a))*

HPV VACCINE

This invention relates to viral-vectored vaccines for use in a vaccination against HPV infection.

5

Human papillomavirus infection is an infection by human papillomavirus (HPV). Most HPV infections cause no symptoms and resolve spontaneously. However, in some cases they persist and this can result in the development of warts or precancerous lesions. The precancerous lesions increase the risk of cancer of the 10 cervix, vulva, vagina, penis, anus, mouth, or throat.

There are approximately 0.5 million cases of HPV-attributable cervical cancer that occur annually worldwide, and over half of these are fatal. About 85% of cases occur in low/middle income countries where there is limited or no treatment available. 15 Women who have not received a prophylactic vaccine require 3-yearly screening to identify and treat cervical intra-epithelial neoplasia (CIN). Screening costs the UK National Health Service approximately £175 million annually.

Current therapy for CIN is ablation of abnormal cervical tissue by electrocautery or 20 surgery. There is no current therapy available that eliminates HPV viral infection. Women require multiple follow-up visits after treatment to ensure that there is no recurrence. Therapy is also associated with increased risk of pre-term birth.

HPV vaccines that have been developed for therapy of existing HPV infection include 25 Inovio - VGX-3100 (DNA encoding E6, E7) similarly Genexine (GX-188E); Janssen - Ad26/Ad35 +/-MVA encoding E2, E6, E7 fusion protein; Synthetic long peptides (E6, E7) and similar eg. PepCan, GTL001; Advaxis - ADXS-HPV; and *L. Monocytogenes* encoding E7. However, such developed vaccines have been targeted to HPV16 and 18 only, have safety concerns, and/or are low efficiency. For example, the net efficacy of 30 VGX-3100 was 18% in a phase IIb randomised controlled trial (48% in vaccine arm vs. 30% in placebo arm).

What is needed is a vaccine that is safe, easy to deliver and to have greater efficacy than the therapeutic vaccine candidates tested to date. Therefore, an aim of the present 35 invention is to provide an improved vaccine for HPV infection.

According to a first aspect of the invention, there is provided a nucleic acid encoding a polypeptide comprising a plurality of conserved peptide sequences, or variants thereof,

5 wherein the conserved sequences are conserved across one or more HPV genotypes 16, 18, 31, 52, 53, and 58; and

wherein the polypeptide comprises a conserved peptide sequence of each of the HPV proteins E1, E2, E4, E5, E6, and E7.

10 The invention advantageously provides a novel alternative and safer approach to vaccination whereby T cells can be induced to the relatively conserved antigens of the virion. The use of specially designed conserved viral segments from the non-structural proteins can provide protection against multiple important genotypes.

15 In one embodiment, the polypeptide is a fusion polypeptide. The polypeptide may not be a wild-type polypeptide. The polypeptide may be synthetic/artificial, for example, the polypeptide may not exist in nature. In one embodiment, the polypeptide may not comprise a complete gene sequence. The polypeptide may consist essentially of conserved peptide sequences. In another embodiment, the polypeptide may consist 20 essentially of conserved peptide sequences and a peptide adjuvant sequence. In another embodiment, the polypeptide may consist essentially of conserved peptide sequences and one or more linkers therebetween. In another embodiment, the polypeptide may consist essentially of conserved peptide sequences, a peptide adjuvant sequence and one or more linkers therebetween. In one embodiment, the 25 polypeptide is a recombinant polypeptide, such as a recombinant fusion polypeptide.

The term “fusion polypeptide” used herein is understood to mean a polypeptide comprising a combination of sequences derived from different gene products (for example different HPV proteins) or combinations of sequences from the same gene product (for example a single HPV protein), wherein the sequences are from distinct/separate regions of the wild-type gene product. For example the fusion polypeptide may comprise combinations of sequences which are normally separated by other sequence segments in wild-type, and the separating sequence(s) have been removed.

The term “conserved peptide sequence” or “conserved segment” used herein is defined as a sequence that is conserved in one or more genotypes, as defined below. Prior to assessment of conservation all available full-length sequences for HPV proteins E1, E2, E4, E5, E6 and E7 from genotypes 16, 18, 31, 52, 53 and 58 were collected from 5 the NCBI Protein database (accessed 2014) and used as input for the approach of the invention. All available sequences were used to ensure the selected conserved peptide sequences would equally represent the whole environmental population (See Table 1). Conserved peptide sequences were identified using the ‘variant’ approach (Figure 1A); all genotypes were aligned and sequences within each genotype weighted prior to 10 conservation assessment to ensure equal representation of genotype diversity and thus ensure the vaccine candidates were representative of the whole environmental population. Conservation within genotypes (intra-genotype conservation) was then assessed using a 15 amino acid sliding window, whereby for each window a conservation value was determined based on combining the amino acid prevalence 15 within the window and weighting value of each sequence to identify fragments conserved within each genotype, and a normalised intra-genotype consensus created for each window. ‘Normalised consensus’ meaning an amino acid sequence that represented the weighted set of genotype sequence, not the most common amino acid at each position. To be classed as conserved the window must have a conservation 20 value within the first quartile of all window conservation values for the protein. Subsequently, conserved intra-genotype windows at the same position across all genotypes were identified independent of the percentage identity of shared intra-genotype normalised consensus between genotypes (inter-genotype conservation). A phylogeny was then created of the resultant regions and tree ingroup sequences 25 combined to create an inter-genotype consensus with a high level of shared consensus identity. In this case ‘inter-genotype consensus’ refers to a consensus created using the normalised consensus created from each genotype. In some scenarios, a ‘modified variant’ was created where conserved intra-genotype windows at the same position across all proteins were identified which shared greater than 60% shared intra-genotype normalised consensus percentage identity between genotypes. 30

If the identified inter-serotype fragments from tree ingroups had a percentage identity less than 60%, the sequences were classed as “highly divergent”, in contrast to “less divergent” sequences used in the variant approach. For proteins highly divergent 35 between genotypes a ‘chimeric’ approach was used to identify conserved peptide

sequences (Figure 1B); a phylogeny was created and only genotype ingroups were aligned together and intra-genotype conserved assessed. Therefore, inter-genotype conservation was only assessed between ingroups and intra-serotype conserved windows with greater than 60% shared consensus identity across genotypes selected.

5 In some cases genotypes were run as ‘chimerics’ but inter-genotype conservation was not assessed (‘chimeric-variants’).

The plurality of conserved peptide sequences may comprise 10 or more conserved peptide sequences. In another embodiment, the plurality of conserved peptide sequences may comprise 15 or more conserved peptide sequences. In another embodiment, the plurality of conserved peptide sequences may comprise 20 or more conserved peptide sequences. In another embodiment, the plurality of conserved peptide sequences may comprise 25 or more conserved peptide sequences. In another embodiment, the plurality of conserved peptide sequences may comprise 30 or more conserved peptide sequences. The plurality of conserved sequences may comprise 35 or more conserved peptide sequences. In another embodiment, the plurality of conserved peptide sequences may comprise 40 or more conserved peptide sequences. The plurality of conserved peptide sequences may comprise 45 or more conserved peptide sequences. In another embodiment, the plurality of conserved peptide sequences may comprise 50 or more conserved peptide sequences. In another embodiment, the plurality of conserved peptide sequences may comprise 55 or more conserved peptide sequences. In one embodiment, the plurality of conserved peptide sequences consists of about 56 or more conserved peptide sequences. In one embodiment, the plurality of conserved peptide sequences consists of about 57 or more conserved peptide sequences. In one embodiment, the plurality of conserved peptide sequences consists of about 58 or more conserved peptide sequences. In one embodiment, the plurality of conserved peptide sequences consists of about 59 or more conserved peptide sequences. In one embodiment, the plurality of conserved peptide sequences consists of about 59 conserved peptide sequences.

30

The encoded polypeptide may comprise at least 3 different conserved peptide sequences of each of the HPV proteins E1, E2, E4, E5, E6, and E7. The encoded polypeptide may comprise at least 3 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 3 different conserved peptide sequences of HPV protein E2. The encoded polypeptide may comprise at least

3 different conserved peptide sequences of HPV protein E4. The encoded polypeptide may comprise at least 3 different conserved peptide sequences of HPV protein E5. The encoded polypeptide may comprise at least 3 different conserved peptide sequences of HPV protein E6. The encoded polypeptide may comprise at least 3 different conserved peptide sequences of HPV protein E7.

The encoded polypeptide may comprise at least 4 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 4 different conserved peptide sequences of HPV protein E2. The encoded polypeptide may comprise at least 4 different conserved peptide sequences of HPV protein E4. The encoded polypeptide may comprise at least 4 different conserved peptide sequences of HPV protein E6. The encoded polypeptide may comprise at least 4 different conserved peptide sequences of HPV protein E7.

15 The encoded polypeptide may comprise at least 5 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 5 different conserved peptide sequences of HPV protein E2. The encoded polypeptide may comprise at least 5 different conserved peptide sequences of HPV protein E4. The encoded polypeptide may comprise at least 5 different conserved peptide sequences of
20 HPV protein E6.

The encoded polypeptide may comprise at least 6 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 6 different conserved peptide sequences of HPV protein E2. The encoded polypeptide may comprise at least 6 different conserved peptide sequences of HPV protein E4. The encoded polypeptide may comprise at least 6 different conserved peptide sequences of HPV protein E6.

30 The encoded polypeptide may comprise at least 7 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 7 different conserved peptide sequences of HPV protein E2. The encoded polypeptide may comprise at least 7 different conserved peptide sequences of HPV protein E4. The encoded polypeptide may comprise at least 7 different conserved peptide sequences of HPV protein E6.

The encoded polypeptide may comprise at least 8 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 8 different conserved peptide sequences of HPV protein E2. The encoded polypeptide may comprise at least 8 different conserved peptide sequences of HPV protein E4. The 5 encoded polypeptide may comprise at least 8 different conserved peptide sequences of HPV protein E6.

The encoded polypeptide may comprise at least 9 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 9 10 different conserved peptide sequences of HPV protein E2. The encoded polypeptide may comprise at least 9 different conserved peptide sequences of HPV protein E4.

The encoded polypeptide may comprise at least 10 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 10 15 different conserved peptide sequences of HPV protein E2.

The encoded polypeptide may comprise at least 11 different conserved peptide sequences of HPV protein E1. The encoded polypeptide may comprise at least 11 different conserved peptide sequences of HPV protein E2.

20

The encoded polypeptide may comprise at least 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 different conserved peptide sequences of HPV protein E2.

25

The encoded polypeptide may comprise or consist of 11 or more different conserved peptide sequences of HPV protein E1, 24 or more different conserved peptide sequences of HPV protein E2, 9 or more different conserved peptide sequences of HPV protein E4, 3 or more different conserved peptide sequences of HPV protein E5, 8 or more different conserved peptide sequences of HPV protein E6, and 4 or more different conserved peptide sequences of HPV protein E7.

30

The plurality of conserved peptide sequences may be derived from distinct regions of sequence relative to each other (i.e. not-naturally concurrent). For example, reference to “different conserved peptide sequences” may comprise sequences that are derived from distinct regions of wild-type sequence relative to each other (i.e. not-naturally concurrent). For example, in the wild-type genotype the conserved sequences may be 35

separated in the wild-type genotypes by variable/non-conserved sequences. The plurality of conserved peptide sequences may not, or may not significantly, overlap with each other. Two or more, or all, of the plurality of conserved peptide sequences may be directly joined together in the polypeptide, for example not comprising any 5 non-conserved/variable residues therebetween. The polypeptide sequence may not be found in nature. The polypeptide may not comprise non-conserved sequences or residues. The conserved peptide sequences may not be distanced apart by more than 1, 2, 3, 4, or 5 residues in the polypeptide sequence, for example in embodiments where there are linker/junction residues between the conserved peptide sequences. 10 Alternatively, the conserved peptide sequences may not be distanced apart by more than 6, 7, 8, 9, or 10 residues in the polypeptide sequence, for example in embodiments where there are linker/junction residues between the conserved peptide sequences. The polypeptide may not comprise non-conserved sequences longer than 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids.

15

In one embodiment, linker residues may be provided between one or more, or all, conserved peptide sequences (e.g. providing junctions between the conserved peptide sequences in the polypeptide). The linker residues may comprise random amino acid sequences, or amino acids that have been selected to be non-immunogenic based on 20 epitope prediction computer programs or experiments in animal models. For example, a linker may not be considered if it is predicted or known to be an epitope (i.e. in order to avoid an immune response to epitopes, e.g. artificial epitopes, not found in HPV. The linker may be flexible. The linker may comprise or consist of K, G, P, A or S amino acid residues, or combinations thereof. In one embodiment, the linker may 25 comprise or consist of G and/or P amino acid residues. In one embodiment, the linker may comprise or consist of one or more alanine (A) amino acid residues. The linker residues may be between 1 and 10 amino acids in length. In another embodiment, the linker residues may be between 2 and 8 residues in length. In another embodiment, the linker residues may be between 1 and 6 residues in length. The conserved peptide 30 sequences may be distanced apart by between 1 and 10 residues in the polypeptide sequence, for example in embodiments where there are linker/junction residues between the conserved peptide sequences.

In one embodiment, the polypeptide may consist essentially of conserved peptide sequences and one or more linkers, optionally wherein the one or more linkers are disposed between adjacent conserved peptide sequence.

5 The conserved peptide sequences may be selected from any of the group comprising SEQ ID NOS: 1 to 59; variants thereof or combinations thereof. In another embodiment, the conserved peptide sequences may be selected from any of the group comprising SEQ ID NOS: 1 to 59; variants thereof or combinations thereof, in any order. In one embodiment, the conserved peptide sequences may consist of the group 10 comprising SEQ ID NOS: 1 to 59.

The polypeptide may comprise one or more conserved E1 sequence(s) selected from any one of SEQ ID NOS: 1-11; one or more conserved E2 sequence(s) selected from any one of SEQ ID NOS: 12-35; one or more conserved E4 sequence(s) selected from 15 any one of SEQ ID NOS: 36-44; one or more conserved E5 sequence(s) selected from any one of SEQ ID NOS: 45-47; one or more conserved E6 sequence(s) selected from any one of SEQ ID NOS: 48-55; and one or more conserved E7 sequence(s) selected from any one of SEQ ID NOS: 56-59.

20 The polypeptide may comprise two or more conserved E1 sequence(s) selected from any of SEQ ID NOS: 1-11; two or more conserved E2 sequence(s) selected from any of SEQ ID NOS: 12-35; two or more conserved E4 sequence(s) selected from any of SEQ ID NOS: 36-44; two or more conserved E5 sequence(s) selected from any of SEQ ID NOS: 45-47; two or more conserved E6 sequence(s) selected from any of SEQ ID 25 NOS: 48-55; and two or more conserved E7 sequence(s) selected from any of SEQ ID NOS: 56-59.

The polypeptide may comprise three or more conserved E1 sequence(s) selected from any of SEQ ID NOS: 1-11; three or more conserved E2 sequence(s) selected from any 30 of SEQ ID NOS: 12-35; three or more conserved E4 sequence(s) selected from any of SEQ ID NOS: 36-44; three or more conserved E5 sequence(s) selected from any of SEQ ID NOS: 45-47; three or more conserved E6 sequence(s) selected from any of SEQ ID NOS: 48-55; and three or more conserved E7 sequence(s) selected from any of SEQ ID NOS: 56-59.

The conserved sequences are conserved across one or more of HPV genotypes 16, 18, 31, 52, and 58. The conserved sequences are conserved across all of HPV genotypes 16, 18, 31, 52, and 58.

5 The polypeptide may comprise:

one or more conserved E1 sequence(s) selected from any one of SEQ ID NOS: 1-11, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E1 sequence;

10 one or more conserved E2 sequence(s) selected from any one of SEQ ID NOS: 12-35, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E2 sequence;

one or more conserved E4 sequence(s) selected from any one of SEQ ID NOS: 36-44, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E4 sequence;

15 one or more conserved E5 sequence(s) selected from any one of SEQ ID NOS: 45-47, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E5 sequence;

20 one or more conserved E6 sequence(s) selected from any one of SEQ ID NOS: 48-55, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E6 sequence; and

one or more conserved E7 sequence(s) selected from any one of SEQ ID NOS: 56-59, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E7 sequence.

25 The polypeptide may comprise:

one or more conserved E1 sequence(s) selected from any one of SEQ ID NOS: 1-11, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented by at least one conserved E1 sequence;

30 one or more conserved E2 sequence(s) selected from any one of SEQ ID NOS: 12-35, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented by at least one conserved E2 sequence;

one or more conserved E4 sequence(s) selected from any one of SEQ ID NOS: 36-44, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented by at least one conserved E4 sequence;

one or more conserved E5 sequence(s) selected from any one of SEQ ID NOS: 45-47, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented by at least one conserved E5 sequence;

5 one or more conserved E6 sequence(s) selected from any one of SEQ ID NOS: 48-55, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented by at least one conserved E6 sequence; and

one or more conserved E7 sequence(s) selected from any one of SEQ ID NOS: 56-59, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented by at least one conserved E7 sequence.

10

The polypeptide may comprise:

two or more conserved E1 sequence(s) selected from any of SEQ ID NOS: 1-11, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E1 sequences;

15 two or more conserved E2 sequence(s) selected from any of SEQ ID NOS: 12-35, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E2 sequences;

20 two or more conserved E4 sequence(s) selected from any of SEQ ID NOS: 36-44, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E4 sequences;

two or more conserved E5 sequence(s) selected from any of SEQ ID NOS: 45-47, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E5 sequences;

25 two or more conserved E6 sequence(s) selected from any of SEQ ID NOS: 48-55, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E6 sequences; and

two or more conserved E7 sequence(s) selected from any of SEQ ID NOS: 56-59, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E7 sequences.

30

The polypeptide may comprise:

two or more conserved E1 sequence(s) selected from any of SEQ ID NOS: 1-11, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E1 sequences;

two or more conserved E2 sequence(s) selected from any of SEQ ID NOs: 12-35, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E2 sequences;

5 two or more conserved E4 sequence(s) selected from any of SEQ ID NOs: 36-44, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E4 sequences;

two or more conserved E5 sequence(s) selected from any of SEQ ID NOs: 45-47, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E5 sequences;

10 two or more conserved E6 sequence(s) selected from any of SEQ ID NOs: 48-55, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E6 sequences; and

15 two or more conserved E7 sequence(s) selected from any of SEQ ID NOs: 56-59, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E7 sequences.

The polypeptide may comprise:

three or more conserved E1 sequence(s) selected from any of SEQ ID NOs: 1-11, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the 20 group of conserved E1 sequences;

three or more conserved E2 sequence(s) selected from any of SEQ ID NOs: 12-35, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E2 sequences;

25 three or more conserved E4 sequence(s) selected from any of SEQ ID NOs: 36-44, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E4 sequences;

three conserved E5 sequence(s) selected from SEQ ID NOs: 45-47, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E5 sequences;

30 three or more conserved E6 sequence(s) selected from any of SEQ ID NOs: 48-55, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E6 sequences; and

35 three or more conserved E7 sequence(s) selected from any of SEQ ID NOs: 56-59, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented in the group of conserved E7 sequences.

The polypeptide may comprise:

three or more conserved E1 sequence(s) selected from any of SEQ ID NOs: 1-11, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E1 sequences;

5 three or more conserved E2 sequence(s) selected from any of SEQ ID NOs: 12-35, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E2 sequences;

10 three or more conserved E4 sequence(s) selected from any of SEQ ID NOs: 36-44, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E4 sequences;

three conserved E5 sequence(s) selected from SEQ ID NOs: 45-47, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E5 sequences;

15 three or more conserved E6 sequence(s) selected from any of SEQ ID NOs: 48-55, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E6 sequences; and

three or more conserved E7 sequence(s) selected from any of SEQ ID NOs: 56-59, wherein each of the genotypes 16, 18, 31, 52, and 58 are represented in the group of conserved E7 sequences.

20

Reference to “each of the genotypes 16, 18, 31, 52, 53, and 58 are represented” or “each of the genotypes 16, 18, 31, 52, and 58 are represented” is intended to mean that each of the identified genotypes has been used to define at least one consensus sequence of a conserved peptide sequence. Therefore, a given group may comprise a

25 conserved peptide from each genotype, or a conserved peptide may be derived from a consensus of two or more genotypes. If sequence identities are sufficiently similar, all the genotypes 16, 18, 31, 52, 53, and 58 or 16, 18, 31, 52, and 58 could be represented by a single conserved peptide sequence, which may be a consensus of all the genotypes 16, 18, 31, 52, 53, and 58 or 16, 18, 31, 52, and 58 respectively. However,

30 due to differences in sequence identities, a single conserved peptide may not be able to represent a consensus sequence from all genotypes 16, 18, 31, 52, 53, and 58 or 16, 18, 31, 52, and 58 and instead two or more conserved peptide sequences are required to cover/represent all the genotypes 16, 18, 31, 52, 53, and 58 or 16, 18, 31, 52, and 58. For example (for illustrative purposes only), one conserved E6 peptide sequence 35 may represent E6 genotypes 16 and 18, another may represent E6 genotype 52, and a

third may represent E6 genotypes 53 and 58, such that all three conserved E6 peptide sequences in a group represent all E6 genotypes 16, 18, 31, 52, 53, and 58 or 16, 18, 31, 52, and 58.

5 The nucleic acid may comprise or consist of the sequence of SEQ ID NO: 60, or variants thereof. In another embodiment, the nucleic acid may comprise or consist of the sequence of SEQ ID NO: 60, or variants thereof, and without encoding the TPA lead sequence. In another embodiment, the nucleic acid may comprise or consist of the sequence of SEQ ID NO: 60, or variants thereof, with a different/alternative peptide 10 adjuvant encoded than the TPA lead sequence. In another embodiment, the nucleic acid may comprise or consist of the sequence of SEQ ID NO: 65, or variants thereof.

Variants of the nucleic acid may comprise or consist of a sequence having at least 80% identity with SEQ ID NO: 60 or 65. Alternatively, variants of the nucleic acid 15 may comprise or consist of a sequence having at least 85% identity with SEQ ID NO: 60 or 65. Variants of the nucleic acid may comprise or consist of a sequence having at least 90% identity with SEQ ID NO: 60 or 65. Variants of the nucleic acid may comprise or consist of a sequence having at least 95% identity with SEQ ID NO: 60 or 65. Variants of the nucleic acid may comprise or consist of a sequence having at least 98% identity with SEQ ID NO: 60 or 65. Variants of the nucleic acid may comprise or 20 consist of a sequence having at least 99% identity with SEQ ID NO: 60 or 65. The skilled person will understand that a variant of the nucleic acid may include redundant codon variants that encode the same peptide as SEQ ID NO: 60 or 65.

25 The nucleic acid may comprise or consist of the sequence of SEQ ID NO: 62, or variants thereof. In another embodiment, the nucleic acid may comprise or consist of the sequence of SEQ ID NO: 62, or variants thereof, and without encoding the TPA lead sequence. In another embodiment, the nucleic acid may comprise or consist of the sequence of SEQ ID NO: 62, or variants thereof, with a different/alternative peptide 30 adjuvant encoded than the TPA lead sequence.

Variants of the nucleic acid may comprise or consist of a sequence having at least 80% identity with SEQ ID NO: 62. Alternatively, variants of the nucleic acid may comprise or consist of a sequence having at least 85% identity with SEQ ID NO: 62. 35 Variants of the nucleic acid may comprise or consist of a sequence having at least

90% identity with SEQ ID NO: 62. Variants of the nucleic acid may comprise or consist of a sequence having at least 95% identity with SEQ ID NO: 62. Variants of the nucleic acid may comprise or consist of a sequence having at least 98% identity with SEQ ID NO: 62. Variants of the nucleic acid may comprise or consist of a sequence having at least 99% identity with SEQ ID NO: 62. Variants of the nucleic acid may comprise or consist of a sequence having at least 99.5% identity with SEQ ID NO: 62. Variants of the nucleic acid may comprise or consist of a sequence having at least 99.9% identity with SEQ ID NO: 62. The skilled person will understand that a variant of the nucleic acid may include redundant codon variants that encode the same viral vector and/or peptide as SEQ ID NO: 62.

The nucleic acid may comprise or consist of the sequence of SEQ ID NO: 71, 73 or 75, or variants thereof. In another embodiment, the nucleic acid may comprise or consist of the sequence of SEQ ID NO: 71, 73 or 75, or variants thereof, and without 15 encoding the TPA lead sequence. In another embodiment, the nucleic acid may comprise or consist of the sequence of SEQ ID NO: 71, 73 or 75, or variants thereof, with a different/alternative peptide adjuvant encoded than the TPA lead sequence.

Variants of the nucleic acid may comprise or consist of a sequence having at least 20 80% identity with SEQ ID NO: 71, 73 or 75. Alternatively, variants of the nucleic acid may comprise or consist of a sequence having at least 85% identity with SEQ ID NO: 71, 73 or 75. Variants of the nucleic acid may comprise or consist of a sequence having at least 90% identity with SEQ ID NO: 71, 73 or 75. Variants of the nucleic acid may comprise or consist of a sequence having at least 95% identity with SEQ ID 25 NO: 71, 73 or 75. Variants of the nucleic acid may comprise or consist of a sequence having at least 98% identity with SEQ ID NO: 71, 73 or 75. Variants of the nucleic acid may comprise or consist of a sequence having at least 99% identity with SEQ ID NO: 71, 73 or 75. Variants of the nucleic acid may comprise or consist of a sequence having at least 99.5% identity with SEQ ID NO: 71, 73 or 75. Variants of the nucleic acid may comprise or consist of a sequence having at least 99.9% identity with SEQ 30 ID NO: 71, 73 or 75. The skilled person will understand that a variant of the nucleic acid may include redundant codon variants that encode the same viral vector and/or peptide as SEQ ID NO: 71, 73 or 75.

The polypeptide may comprise or consist of the sequence of SEQ ID NO: 61, or variants thereof. In another embodiment, the polypeptide may comprise or consist of the sequence of SEQ ID NO: 61, or variants thereof, and without the TPA lead sequence. In another embodiment, the polypeptide may comprise or consist of the 5 sequence of SEQ ID NO: 61, or variants thereof, with a different/alternative peptide adjuvant than the TPA lead sequence. In another embodiment, the polypeptide may comprise or consist of the sequence of SEQ ID NO: 66, or variants thereof.

The polypeptide may comprise or consist of the sequence of SEQ ID NO: 72, 74 or 76, 10 or variants thereof. In another embodiment, the polypeptide may comprise or consist of the sequence of SEQ ID NO: 72, 74 or 76, or variants thereof, and without the TPA lead sequence. In another embodiment, the polypeptide may comprise or consist of the sequence of SEQ ID NO: 72, 74 or 76, or variants thereof, with a different/alternative peptide adjuvant than the TPA lead sequence. In another embodiment, the polypeptide 15 may comprise or consist of the sequence of SEQ ID NO: 72, 74 or 76, or variants thereof.

In one embodiment, the polypeptide may consist essentially of conserved peptide sequences and a peptide adjuvant. In one embodiment, the polypeptide may consist 20 essentially of conserved peptide sequences, one or more linkers, and a peptide adjuvant. The one or more linkers may be disposed between adjacent conserved peptide sequence. The peptide adjuvant may be N-terminal.

Variants of the polypeptide may comprise or consist of a sequence having at least 80% 25 identity with SEQ ID NO: 61, 66, 72, 74 or 76. Alternatively, variants of the polypeptide may comprise or consist of a sequence having at least 85% identity with SEQ ID NO: 61, 66, 72, 74 or 76. Variants of the polypeptide may comprise or consist of a sequence having at least 90% identity with SEQ ID NO: 61, 66, 72, 74 or 76. Variants of the polypeptide may comprise or consist of a sequence having at least 95% 30 identity with SEQ ID NO: 61, 66, 72, 74 or 76. Variants of the polypeptide may comprise or consist of a sequence having at least 98% identity with SEQ ID NO: 61, 66, 72, 74 or 76. Variants of the polypeptide may comprise or consist of a sequence having at least 99% identity with SEQ ID NO: 61, 66, 72, 74 or 76.

Variants of conserved peptide sequences may comprise or consist of a truncated sequence of the conserved peptide sequences. For example, any one or more of the sequences of SEQ ID NOs: 1 to 59, herein may be truncated and still provide immunogenicity in the polypeptide. The truncated sequence may comprise a sufficient 5 number of amino acids to form a recognisable epitope (e.g. at least the minimum number of residues for specific T cell recognition) from a sequence within any one of the sequences of SEQ ID NOs: 1 to 59. The truncated sequence may comprise at least 7 amino acids of the sequences of SEQ ID NOs: 1 to 59. Alternatively, the truncated sequence may comprise at least 8 amino acids of the sequences of SEQ ID NOs: 1 to 10 59. Alternatively, the truncated sequence may comprise at least 9, 10, 11 or 12 amino acids of the sequences of SEQ ID NOs: 1 to 59. Multiple truncated sequences may be provided within one of the conserved peptide sequences of SEQ ID NOs: 1 to 59.

In one embodiment, any one of the conserved peptide sequences of SEQ ID NOs: 1 to 15 59 may be varied, for example by residue substitution, addition or deletion. In another embodiment, some or all of the conserved peptide sequences of SEQ ID NOs: 1 to 59 may be varied, for example by residue substitution, addition or deletion. The variant conserved peptide sequences may still function to provide recognisable HPV epitopes. The skilled person will understand that natural variation exists in any given 20 population and that these variants may have some sequence variation with the consensus sequence, for example patient sequences provided in SEQ ID NOs: 1 to 59. Therefore, a variant conserved peptide sequence may have at least 70% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 74% sequence identity with any one of 25 SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 75% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 79% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 80% sequence identity with any 30 one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 82% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 83% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 85% sequence identity with any 35 one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide

sequence may have at least 88% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 90% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 92% sequence identity with 5 any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 95% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 98% sequence identity with any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 99% sequence identity with 10 any one of SEQ ID NOs: 1 to 59. In another embodiment, a variant conserved peptide sequence may have at least 99.5% sequence identity with any one of SEQ ID NOs: 1 to 59.

Reference to sequence “identity” used herein may refer to the percentage identity 15 between two aligned sequences using standard NCBI BLASTp parameters (<http://blast.ncbi.nlm.nih.gov>).

The conserved peptide sequences may vary in length, with the minimum length being defined as the minimum number of residues required to form a recognisable epitope. 20 Therefore, the conserved peptide sequence may be from about 7 to 250 amino acids in length, or more. For example, at least one conserved peptide sequence may be at least about 7 amino acids in length. In another embodiment, at least one conserved peptide sequence may be at least about 8 amino acids in length. In another embodiment, at least one conserved peptide sequence may be at least about 10 amino acids in length. 25 In another embodiment, at least one conserved peptide sequence may be at least about 15 amino acids in length. In another embodiment, at least one conserved peptide sequence may be at least about 20 amino acids in length. In another embodiment, at least one conserved peptide sequence may be at least about 30 amino acids in length. In one embodiment, at least one conserved peptide sequence may be between about 20 30 and about 220 amino acids in length. In one embodiment, at least one conserved peptide sequence may be no more than about 300 amino acids in length. In another embodiment, at least one conserved peptide sequence may be no more than about 250 amino acids in length. In another embodiment, at least one conserved peptide sequence may be no more than about 200 amino acids in length. In another 35 embodiment, at least one conserved peptide sequence may be no more than about 150

amino acids in length. In another embodiment, at least one conserved peptide sequence may be no more than about 100 amino acids in length. In another embodiment, at least one conserved peptide sequence may be no more than about 55 amino acids in length. In another embodiment, at least one conserved peptide 5 sequence may be no more than about 54 amino acids in length.

The conserved peptide sequences may be an average length of between about 15 and about 50 amino acids in a population of conserved peptide sequences.

10 In some embodiments of the invention, the polypeptide may further comprise a peptide adjuvant, such as a TPA (tissue plasminogen activator) sequence, or functional variants thereof. The TPA may comprise or consist of the sequence: MDAMKRGGLCCVLLCGAVFVSPSQEIHARFRR (SEQ ID NO: 63), or a functional variant thereof. In one embodiment, the peptide adjuvant may comprise a Shark 15 invariant chain, for example of the sequence SLLWGGGTVLAAMLIAGQVASSVVFLV (SEQ ID NO: 64), or a functional variant thereof. The peptide adjuvant may be N-terminal on the polypeptide of the invention. A functional variant of a peptide adjuvant may be a truncated or mutated peptide variant, which can still function as an adjuvant, for example a truncated or mutated 20 variant of the TPA or shark invariant chain, which still function as an adjuvant. The skilled person will appreciate that 1, 2, 3, 4, 5 or more amino acid residues may be substituted, added or removed without affecting function. For example, conservative 25 substitutions may be considered. In embodiments, where a peptide adjuvant is provided (or encoded as appropriate), there may additionally be provided a linker sequence provided (or encoded) between the peptide adjuvant and the first conserved peptide sequence. In embodiments without the peptide adjuvant, the first linker sequence may not be provided.

30 Combinations of nucleic acids may encode different polypeptides according to the invention may be provided as a vaccine. For example, a prime and/or boost vaccine formulation may comprise nucleic acid or viral vector encoding two or more polypeptides of the invention, which may be different relative to each other.

The nucleic acid may be used in a vaccine in combination with another therapeutically or prophylactically active ingredient. The nucleic acid may be used in a vaccine in combination with an adjuvant.

5 According to another aspect of the invention there is provided a composition comprising a plurality of different nucleic acids according to the invention, optionally wherein the composition is a pharmaceutically acceptable composition.

According to another aspect of the invention there is provided a polypeptide encoded
10 by the nucleic acid according to the invention herein.

In one embodiment the polypeptide is an isolated polypeptide. The polypeptide, nucleic acid encoding the polypeptide, or associated viral particle may be provided in a pharmaceutically acceptable carrier.

15 The nucleic acid may be a plasmid vector for vaccination. The nucleic acid may comprise viral vector sequences.

According to another aspect of the invention there is provided a viral vector
20 comprising the nucleic acid according to the invention herein.

The viral vector may comprise a virus. The viral vector may comprise an adenovirus, such as a human or simian adenovirus. The viral vector may comprise an adenovirus when used in a prime vaccine of a prime boost regime. The viral vector may comprise
25 ChAdOx1 (a group E simian adenovirus, like the AdCh63 vector used safely in malaria trials) or ChAdOx2 (as described in Morris *et al* 2016. Future Virol 11(9), pp. 649-659). The ChAdOx2 sequence may comprise or consist of the sequence described herein (e.g. SEQ ID NOs: 67+68). The viral vector may comprise AdCh63. The viral vector may comprise AdC3 or AdH6. The viral vector may be a human serotype. The
30 viral vector may comprise Modified Vaccinia Ankara (MVA). The viral vector may comprise F11 MVA (e.g. MVA with the nucleic acid construct insert at the F11 locus). The nucleic acid of the invention (the HPV vaccine construct insert) may be inserted at the TK locus of parental MVA virus under the control of the p7.5 promoter, for example through recombination with the p7.5 MVA shuttle plasmid (SEQ ID NO:
35 158). The nucleic acid may comprise the sequence of SEQ ID NO: 158 with the

nucleic acid vaccine construct insert as provided in SEQ ID NO: 158 (underlined), or with an alternative nucleic acid vaccine construct in accordance with the invention herein. In another embodiment, the nucleic acid of the invention (the HPV vaccine construct insert) may be inserted at the F11 locus of parental MVA virus under the 5 control of the F11 promoter, for example through recombination with the F11 shuttle plasmid (SEQ ID NO: 159). The nucleic acid may comprise the sequence of SEQ ID NO: 159 with the nucleic acid vaccine construct insert as provided in SEQ ID NO: 159 (underlined), or with an alternative nucleic acid vaccine construct in accordance with the invention herein. The MVA sequence may comprise or consist of the sequence 10 described herein (e.g. SEQ ID NOS: 69+70). The viral vector may comprise MVA when used as a vaccine boost in a prime boost regime. The viral vector may comprise Adeno-associated virus (AAV) or lentivirus. The viral vector may be an attenuated viral vector. The polypeptide sequence of the invention may be cloned into any suitable viral vector that is known to elicit good immune response. Suitable viral vectors 15 have been described in Dicks et al (Vaccine. 2015 Feb 25;33(9):1121-8. doi: 10.1016/j.vaccine.2015.01.042. Epub 2015 Jan 25), Antrobus et al (Mol Ther. 2014 Mar;22(3):668-74. doi: 10.1038/mt.2013.284. Epub 2013 Dec 30.), and (Warimwe et al. (Virol J. 2013 Dec 5;10:349. doi: 10.1186/1743-422X-10-349), which are incorporated herein by reference.

20

According to another aspect of the invention there is provided a composition comprising one or more of:

- the polypeptide according to the invention;
- the nucleic acid according to the invention; and
- 25 -the viral vector according to the invention.

The composition may be immunogenic, for example in a mammal, such as a human. The composition may comprise a pharmaceutically acceptable carrier. The composition may be a pharmaceutical composition comprising a pharmaceutically 30 acceptable carrier. The composition may be for use in the prophylaxis or treatment of HPV infection.

According to another aspect of the invention there is provided a method of treatment or prophylaxis of HPV infection comprising the administration of:

- 35 -the polypeptide according to the invention;

- the nucleic acid according to the invention;
- the composition according to the invention or
- the viral vector according to the invention.

5 The method of treatment or prophylaxis of HPV infection may be a method of vaccination.

According to another aspect of the invention there is provided an agent for use in the prophylaxis or treatment of HPV infection, the agent comprising or consisting of:

10 -the polypeptide according to the invention;

- the composition according to the invention;
- the nucleic acid according to the invention; or
- the viral vector according to the invention.

15 In one embodiment, the treatment or prophylaxis of HPV infection comprises the treatment or prophylaxis of an anogenital HPV-driven lesion, such as anal, vulval, vaginal, or penile intraepithelial neoplasia. Additionally or alternatively, the treatment or prophylaxis of HPV infection comprises the treatment or prophylaxis of an oropharyngeal lesion that is caused by HPV.

20 According to another aspect of the invention there is provided the polypeptide according to the invention; the composition according to the invention; the nucleic acid according to the invention; or the viral vector according to the invention; for use in, or as, a vaccine.

25 According to another aspect of the invention there is provided a vaccine comprising the nucleic acid of the invention; the polypeptide according to the invention; the composition according to the invention; or the viral vector according to the invention.

30 The vaccine may be a prime vaccine. The vaccine may be a boost vaccine. Where a boost vaccine is provided following a prime vaccine, the polypeptide may be different. For example, the polypeptide may comprise a re-ordered sequence of conserved peptide sequences. The conserved peptide sequences may be identical, but the order in which they are provided in the polypeptide may be changed. Therefore, the invention
35 herein provides any of the sequences/embodiments of the invention wherein the order

in which conserved peptide sequences are provided may be changed. Such embodiments may also include re-ordered or differed linker/junction sequences.

Advantageously, the re-ordering of the conserved peptide sequences of the 5 polypeptide between prime and boost vaccines can avoid the provision of “false” epitopes formed across junctions of one conserved peptide sequence with another conserved peptide sequence. i.e. the same junction may not occur in the re-ordered polypeptide.

10 According to another aspect of the invention, there is provided a nucleic acid or polypeptide according to the invention for use in, or as, a vaccine.

According to another aspect of the invention, there is provided a prime boost vaccination kit comprising

15 -a prime vaccination according to the invention;
-a boost vaccination according to the invention.

The prime and boost vaccinations may be different. The prime and boost vaccination may differ in the polypeptide sequence. The prime and boost vaccination may 20 comprise different viral vectors (i.e. from different virus families such as MVA vs adenovirus).

According to another aspect of the invention, there is provided a composition comprising a nucleic acid according to the invention herein, and a pharmaceutically 25 acceptable carrier.

The composition may not comprise wild-type HPV. The composition may not comprise full length HPV protein sequence. The viral vector or nucleic acid may not encode non-conserved protein/peptide sequence of HPV.

30

The use may be with a pharmaceutically acceptable carrier. Additionally or alternatively, the use may be with an adjuvant.

The term "immunogenic", when applied to the nucleic acid, polypeptide or composition of the present invention means capable of eliciting an immune response in a human or animal body. The immune response may be protective.

- 5 The term "protective" means prevention of a disease, a reduced risk of disease infection, transmission and/or progression, reduced severity of disease, a cure of a condition or disease, an alleviation of symptoms, or a reduction in severity of a disease or disease symptoms.
- 10 The term "prophylaxis" means prevention of or protective treatment for a disease. The prophylaxis may include a reduced risk of disease infection, transmission and/or progression, or reduced severity of disease.

15 The term "treatment", means a cure of a condition or disease, an alleviation of symptoms, or a reduction in severity of a disease or disease symptoms.

The skilled person will understand that optional features of one embodiment or aspect of the invention may be applicable, where appropriate, to other embodiments or aspects of the invention.

20 Embodiments of the invention will now be described in more detail, by way of example only, with reference to the accompanying drawings.

Figure 1 - Chimeric and Variant methods used to create HPV candidates.

25 **Figure 2 - Conserved regions with resultant variants below.**

Figure 3 - A) Regions identified as conserved in the two genotypes used to form chimerics. B) Conservation plot of Modified variant.

30 **Figure 4 - A) Regions identified as conserved in the two genotypes used to form chimerics. B) Conservation plot of variants**

35 **Figure 5 - Regions identified as conserved in the two genotypes used to form chimerics**

Figure 6 - Regions identified as conserved in the two genotypes used to form chimeric-variants

5 **Figure 7 - Regions identified as conserved in the two genotypes used to form chimeric**

10 **Figure 8 - High frequencies of vaccine-specific T cells are induced following prime boost vaccination.** IFN γ Elispot performed on PBMCs from C57BL/6 mice (six/group) primed intramuscularly with DNA-HPV, MVA-HPV or ChAdOx1-5GHPV3 and then boosted intramuscularly with a heterologous or homologous vaccine two weeks later. PBMCs were collected by tail vein bleed two weeks post prime and one and two weeks post boost.

15 **Figure 9 – Prime boost vaccination is capable of inducing responses to all antigens encoded in the immunogen.** PBMCs were collected at two weeks boost and used in an IFN γ Elispot with peptides spanning the entire immunogen sequence, pooled according to protein source. Peptides spanning the E2 region of the immunogen were split into two pools because of the large number of peptides and peptides for regions spanning E4 and E5 were combined into one pool.

20 **Figure 10 - Vaccine-specific CD8+ T cells can be detected at high frequencies six weeks after ChAdOx1-5GHPV3 prime MVA-5GHPV3 boost.** 10a IFN γ Elispot using PBMCs collected by tail vein bleed two, three, four and six weeks post boost (DM; DNA-5GHPV3 prime MVA-5GHPV3 boost, CM; ChAdOx1-5GHPV3 prime MVA-5GHPV3 boost). 10b ICS performed on PBMCs obtained one week and six weeks post ChAdOx1-5GHPV3 prime, MVA-5GHPV3 boost. PBMCs stimulated with E6 and E7 peptide pools. Measured IFN- γ , CD107, TNF- α and IL2.

25 **Figure 11 - HPV E6- and E7-specific CD8+ T cell responses are polyfunctional and have cytotoxic potential.** PBMCs from a tail vein bleed collected one week post ChAdOx1-5GHPV3 prime MVA-5GHPV3 boost were stimulated with immunodominant peptide pools E6 and E7 and sub pool 30 22

which is the dominant sub pool within E6. Responding CD8+ T cells predominantly express three functions (CD107, IFN γ and TNF α).

5 **Figure 12 - ChAdOx1-5GHPV3 prime MVA-5GHPV3 boost also primes HPV E6- and E7-specific CD4+ T cell responses that are still detectable six weeks post boost.** ICS performed on PBMCs obtained one week and six weeks post ChAdOx1-5GHPV3 prime, MVA-5GHPV3 boost. PBMCs stimulated with E6 and E7 peptide pools. Measured IFN- γ , CD107, TNF- α and IL2.

10 **Figure 13 - Most E6 and E7-specific CD4+ T cells express two functions.** PBMCs from a tail vein bleed collected one week post ChAdOx1-5GHPV3 prime MVA-5GHPV3 boost were stimulated with immunodominant peptide pools E6 and E7 and sub pool 22 which is the dominant sub pool within E6. Responding CD4+ T cells predominantly express two functions (Discounting 15 CD107+ monofunctional cells).

20 **Figure 14 - HPV E6- and E7-specific CD8+ T cells can be detected in the cervix.** ICS was performed on cervicovaginal lymphocytes isolated from mice two weeks post ChAdOx1-5GHPV3 prime MVA-5GHPV3 boost and stimulated with immunodominant peptide pools E6 and E7 and sub pool 22. Measured IFN- γ , CD107, TNF- α and IL2.

25 **Figure 15 – Cervicovaginal HPV E6- and E7-specific CD8+ T cell responses are polyfunctional.** Cervicovaginal lymphocytes collected one week post ChAdOx1-5GHPV3 prime MVA-5GHPV3 boost were stimulated with immunodominant peptide pools E6 and E7 and sub pool 22 which is the dominant sub pool within E6. Responding CD8+ T cells predominantly express three functions (CD107, IFN γ and TNF α).

30 **Figure 16 - Vaccine-induced E6 and E7-specific CD8+ and CD4+ T cells in the cervix are almost exclusively of effector phenotype.** Naïve: CD44- CD62L+. Antigen-experienced: Central memory - CD62L+, CD127+; Effector memory - CD62L-, CD127+; Effector - CD62L-, CD127-. Cervical lymphocytes from six mice pooled into three pairs, due to low lymphocyte numbers

Figure 17 - In contrast to cervix, vaccine-induced E6 and E7-specific CD8+ and CD4+ T cells in the spleen comprise effector and effector memory populations.

5

Figure 18 - Mice vaccinated with ChAdOx1-5GHPV3 prime, MVA-5GHPV3 boost show increased survival over control mice. Mice were inoculated with 5×10^4 TC-1 cells on day 0 and then primed on day 3 and boosted on day 17. Tumours were measured with digital callipers every two
10 days and mice culled when tumours reached 10mm in any one direction.

Figure 19 – Vaccination of outbred CD1 mice induces high frequency T cell responses. IFN γ Elispot performed on PBMCs from CD1 mice (ten/group) primed intramuscularly with DNA-5GHPV3, MVA-5GHPV3 or ChAdOx1-
15 5GHPV3 and then boosted intramuscularly with a heterologous or homologous vaccine two weeks later. PBMCs were collected by tail vein bleed two weeks post prime and two and three weeks post boost.

Figure 20 - T cell responses in vaccinated CD1 mice are directed across the entire immunogen. PBMCs were collected at two weeks boost and used in an IFN γ Elispot with peptides spanning the entire immunogen sequence, pooled according to protein source. Peptides spanning the E2 region of the immunogen were split into two pools because of the large number of peptides and peptides for regions spanning E4 and E5 were combined into one pool.
20
25

Figure 21 - Top panel: Peripheral blood mononuclear cells (PBMC) from 76 women aged 16-24 years were tested for recognition of peptides based on early proteins from high risk HPV (hrHPV) in ex vivo IFN- γ Elispot assays. ‘Insert’ is a pool of 15-mer peptides overlapping by 11 amino acid spanning the hrHPV transgene. ‘Reference’ peptides were pools of peptides based on early proteins from HPV16 and HPV52, which were combined as follows: E1/E2, E4/E5 and E6/E7. ‘FEC’ (flu, EBV and CMV) peptides and PHA (phytohaemagglutinin) were used as positive controls. The data shown are the spot-forming units (SFU) obtained from peptide-stimulated wells after subtraction of negative control values (mock-stimulated cells). The cut-off for a positive response was set at 25 SFU/million PBMC (derived from the mean of mock-
30
35

stimulated values from all donors + 2 standard deviations). Women were tested concurrently for hrHPV DNA on vaginal sampling: 26% tested positive. The data show that 9/76 women with current hrHPV infection or prior exposure recognised HPV sequences encoded in the transgene. Bottom panel: Responses to the insert pool were interrogated further in one responding donor by testing PBMC with subpools of the insert pool (left, SFU per million PBMC), followed by individual peptides within the pools (right, SFU per well), thus confirming the presence of a true HPV-specific response. SFU – spot-forming units reported as either per well, which contains 200,000 PBMC or per million PBMC).

10

15

Figure 22 - Subpool mapping in C57BL/6 mice (top panel) and CD1 mice (bottom panel) following ChAdOX1-5G-HPV3 prime MVA-5GHPV3 boost. Mice were culled two weeks post boost and splenocytes isolated. Splenocytes used in an IFN γ Elispot assay using subpools that cover the immunogen sequence. Subpools 21, 25 and 26 (for example) contain no HPV53 sequences and still get high magnitude responses, thus providing evidence that a sequence without the HPV53 segments would still be immunogenic.

HPV Immunogen Design

20

25

The HPV immunogen is composed of amino acid fragments conserved and geographically representative of the global HPV population at a protein level. Each fragment is created using a conservation algorithm which has been utilised to create either Chimeric or Variant based fragments. The choice being dependent on characteristics of each HPV protein used.

The core conservation algorithm uses a sliding window approach in combination with a normalisation method that accounts for collection bias to identify windows which are conserved both within (intra-genotype) and between (inter-genotype) genotypes.

30

Intra-genotype conserved windows are classed as windows with a conservation value less than one quartile of the sum of all window conservation values for the whole sequence. A normalised representative consensus sequence is created for each genotype during this process. Subsequently inter-genotype windows are identified as windows at the same position in each genotype which are conserved and have a shared consensus identity of > 60%.

A key challenge in creating sequences which represent all the selected genotypes for a region of each protein was that many genotypes showed unique phylogenetic clustering. There is a critical balance between the identification of regions conserved across genotypes and the level of shared % consensus identity between these regions. In many cases the inter-genotype diversity was so extreme that you sacrifice shared % consensus identity. Meaning some genotypes were so distinct from one another it was impossible to create a representative sequence. To solve this, raw sequences were inputted into the core algorithm in one of two ways (Fig 1). (i) Variants; Sequences for all genotypes are input into the algorithm and regions of inter-genotype conservation are identified independent of shared % consensus identity. A phylogeny was created from the resultant regions and ingroup sequences combined to create a consensus with a high level of shared consensus identity (Fig1b). (ii) Chimerics; in some instances the distance between genotypes is so significant that genotypes do not align suitably. Therefore, only genotype ingroups are inputted together into the algorithm, and regions conserved between ingroups with > 60% shared consensus identity are identified (Fig1a).

HPV Candidates

20

Candidate sequences were created for six HPV proteins (E1-2, E4-7) using input sequences collected from the NCBI protein database, aligned and manually audited to remove incomplete and poor quality sequences (Table 1).

Protein	Genotype					
	16	18	31	52	53	58
E1	126	49	24	27	15	53
E2	195	56	26	32	18	54
E4	161	48	24	24	14	52
E5	197	48	24	24	—	60
E6	1205	78	90	218	131	185
E7	566	70	85	193	114	199

25

Table 1 | Number of sequences used as input post audit.

E1 Candidate

Approach:	<i>Variants</i>	
Fragments:	1	E1_V1_52+58: DEDETAYDSGTDLIDFIDDS (SEQ ID NO: 1) E1_V1_31+16+18: DENENDSDTGEDMVDFIDN (SEQ ID NO: 2) E1_V1_53: DETDEESTESLDGFI DNS (SEQ ID NO: 3)
	2	Excluded
	3	E1_V3_31+53: AQLADSDSNACAFLK (SEQ ID NO: 4) E1_V3_52+58+18+16: AQLADVNSNAAFLK (SEQ ID NO: 5)
	4	E1_V4_16+31: NCILLYGAANTGKSLFGMSL (SEQ ID NO: 6) E1_V4_18+52+58: NCLVLCGPANTGKSYFGMSL (SEQ ID NO: 7) E1_V4_53: NCLVIYGPPNTGKSCFAMSL (SEQ ID NO: 8)
	5	E1_V5_16+31+52: WPYlhsrlvvftfpnPF (SEQ ID NO: 9) E1_V5_18+58: WPYlesritvfefpnAF (SEQ ID NO: 10) E1_V5_53: LRYLHSRIHVQLQFLNPF (SEQ ID NO: 11)

Identified 5 fragments within the E1 protein with windows conserved at the same position within their respective genotypes. Cladistics identified the most suitable 5 genotype combinations providing high level shared consensus identity (Fig 2).

E2 Candidate

Approach:	<i>Chimerics</i>
-----------	------------------

Fragments:	1 (16+31)	E2_C1-1_16+31 NO: 12) E2_C1-2_16+31 NO: 13) E2_C1-3_16+31 (SEQ ID NO: 14) E2_C1-4_16+31 NO: 15) E2_C1-5_16+31 NO: 16) E2_C1-6_16+31 NO: 17) E2_C1-7_16+31 NO: 18) E2_C1-8_16+31 E2_C1-9_16+31 E2_C1-10_16+31 E2_C1-11_16+31 E2_C1-12_16+31	NVCQDKILEHYENDSKD (SEQ ID ILEHYENDSKLCDHI (SEQ ID NO: CDHIDYWKHRLCAIMYKAR IRLECAIMYKAREMGFH (SEQ ID QFDGDICNTMHYTNW (SEQ ID NO: IYICEDAQCTVVEGQVD (SEQ ID KKWEVHAGGQVILCPES (SEQ ID GQRRIKRPRSE (SEQ ID NO: 19) NCHPNKLL (SEQ ID NO: 20) ILKCLRYRFKKHCKL (SEQ ID NO: SSTWHWTCHDGKHK (SEQ ID NO: WHTCHDGKHNAIVTLTY (SEQ ID NO: 23)
	2 (52+58)	E2_C1-1_52+58 YEADKNDNAQIEHWKLIRMECAIFYKAKELGIS (SEQ ID NO: 24) E2_C1-2_52+58 ICHQVVPLAASKAKACQAIELQLALEALNASPY (SEQ ID NO: 25) E2_C1-3_52+58 DEWTLQQTSLEMWLAEPQ (SEQ ID NO: 26) E2_C1-4_52+58 FKKHGITITVQYDNDKANTMDYTNWKEIY (SEQ ID NO: 27) E2_C1-5_52+58 VIVCPASIPSDEISTEEA (SEQ ID	

		NO: 28)
	3 (53+18)	E2_C1-1_53+18 DHIDYWKAIRQENAIIFFAAR (SEQ ID NO: 29) E2_C1-2_53+18 HQVVPALNICKAKACKAIE (SEQ ID NO: 30) E2_C1-3_53+18 WNTEPKHCFKKGGQHIEVWFD (SEQ ID NO: 31) E2_C1-4_53+18 YVAWDSVYYCGDDGWCKT (SEQ ID NO: 32) E2_C1-5_53+18 EAEKYGCKGTWEVHFG (SEQ ID NO: 33) E2_C1-6_53+18 NSIDCNDSMCSTFDDNVSATELVK (SEQ ID NO: 34)
Approach:	<i>Modified Variant</i>	
Fragments:	1	E2_FC1_All DHIDYWKLIRLECAIFYKAR (SEQ ID NO: 35)

Due to alignment inconsistencies three chimerics were created based on phylogeny (16 & 31, 52 & 58, 53 & 18) (Fig 3a). Additionally all genotypes were inputted into the algorithm in a similar fashion to creation of variants but the programs filter for only 5 selecting conserved windows from each genotype with a shared % consensus identity of greater than 60% was not disabled. This identified one fragment, referred to as 'modified variant' (Fig 3b).

E4 Candidate

10

Approach:	<i>Chimerics</i>	
Fragments	1 (16+31))	E4_C1-1_16+31 RRLSSDQDQSQ (SEQ ID NO: 36)
	2 (52+58))	E4_C1-1_52+58 LVTKYPLLKLLS (SEQ ID NO: 37)
	3 (53)	E4_C1-1_53

		RPPNMGVKAHGKCIWENKVFIVPTLCVPVPLDPTYP LLKLLT (SEQ ID NO: 38) E4_C1-2_53 TQTTTPENTSLVELRVTTPKSTVVIRLHL (SEQ ID NO: 39)
	4 (18)	E4_C1-1_18 TTRYPLSLLNSYSTPPHRIPAPCPWAPQRP (SEQ ID NO: 40)
Approach:	<i>Variants</i>	
Fragments :	1	E4_V1_16+31 PIPKPSPWAP (SEQ ID NO: 41) E4_V1_18 RIPAPCPWAP (SEQ ID NO: 42) E4_V1_52 PRPPHCPWVP (SEQ ID NO: 43) E4_V1_53 PPPPPRPWAP (SEQ ID NO: 44) E4_V1_58 Excluded

Four chimerics were created, two of the fragments are genotype specific (Fig 4a). Additionally, variant analysis identified one region (Fig 4b).

5 E5 Candidate

Approach:	<i>Chimerics</i>	
Fragments:	1 (16+31)	E5_C1_16_31 CFLLCFCVLLCVCLLIRPLLSVSTY (SEQ ID NO: 45)
	2 (52+58)	E5_C1_52+58 LRPLLLSISVYAQVLVLVLLWVSIGS (SEQ ID NO: 46)
	3 (18)	E5_C1_18 LLPSVCMCAYAWVLVFVYIVVITSPATA (SEQ ID NO: 47)

Three chimerics were created (Fig 5).

10 E6 Candidate

Approac h:	<i>Chimeric-Variants</i>
-----------------------	--------------------------

Fragments:	1 (16+18)	E6_CV1_16 IVYRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTLEQQY NKPLCDLLIRCIN (SEQ ID NO: 48) E6_CV1_18 VVYRDSIPHAACHKCIDFYSRIRELRHYSDSVYGDITLEKLTN TGLYNLLIRCLR (SEQ ID NO: 49)
	2 (53+31)	E6_CV2-1_53 VFCKKALTASEVYNFAYTDLRVVYRD (SEQ ID NO: 50) E6_CV2-2_53 SKVRKLRYYNCSVYVGASL (SEQ ID NO: 51) E6_CV2-1_31 VYCKGQLTETEVLDFAFTDLTIVYRD (SEQ ID NO: 52) E6_CV2-2_31 SKVSEFRWYRYSVYGTTL (SEQ ID NO: 53)
	3 (52_58)	E6_CV3-1_52+58 CVECKKTLQRSEVYD (SEQ ID NO: 54) E6_CV3-2_52+58 CQRPLCPQEKKRHVDLNKRFH (SEQ ID NO: 55)

The E6 protein showed very limited conservation across genotypes. Instead ingroups were processed to produce chimerics without the shared % consensus identity filter, but the conserved windows were not combined to produce a consensus, except for 5 genotypes 52 and 58. (Fig 6)

E7 Candidate

Approach:	<i>Chimerics</i>	
Fragments:	1 (16+31)	E7_C1_16+31 TLHEYMLDLQPETTDLYCYEQ (SEQ ID NO: 56)
	2 (52+58)	E7_C1_58_52 PETTDLHCYEQLGSSDEEDTGGLDG (SEQ ID NO: 57)
	3 (53+18)	Excluded
Approach:	<i>Chimeric-Variants</i>	
Fragments	1	E7_V1_53

:		DEDEDEVDHLQEQPQQARRDEQHPCYLIETQCCR CESLV (SEQ ID NO: 58) E7_V1_18 EENDEIDGVNHQHLPARRAEPQRHTMLCMCKCE ARI (SEQ ID NO: 59)
---	--	---

Chimerics were created for Genotypes 16 & 31 and 52 & 58 (Fig 7). Genotypes 53 and 18 are chimeric variants.

5 Summary of Vaccine Fragments with SEQ ID NOs.

SEQ ID NO:	Protein	Fragment
1	E1_V1_52+58	DEDETAYDSGTDLIDFIDDS
2	E1_V1_31+16+18	DENENDSDTGEDMVDFIDN
3	E1_V1_53	DETDEESTESLDGFGIDNS
4	E1_V3_31+53	AQLADSDSNACAFKL
5	E1_V3_52+58+18+16	AQLADVNSNAAFLK
6	E1_V4_16+31	NCILLYGAANTGKSLFGMSL
7	E1_V4_18+52+58	NCLVLCGPANTGKSYFGMSL
8	E1_V4_53	NCLVIYGPPNTGKSCFAMSL
9	E1_V5_16+31+52	WPYLHSRLVVFTFPNPF
10	E1_V5_18+58	WPYLESRITVFEFPNAF
11	E1_V5_53	LRYLHSRIHVQLQFLNPF
12	E2_C1-1_16+31	NVCQDKILEHYENDSKD
13	E2_C1-2_16+31	ILEHYENDSKLCDHI
14	E2_C1-3_16+31	CDHIDYWKHRLCAIMYKAR
15	E2_C1-4_16+31	IRLECAIMYKAREMGFH
16	E2_C1-5_16+31	QFDGDICNTMHYTNW
17	E2_C1-6_16+31	IYICEDAQCTVVEGQVD
18	E2_C1-7_16+31	KKWEVHAGGQVILCPES
19	E2_C1-8_16+31	GQRRIKPRSE
20	E2_C1-9_16+31	NCHPNKLL

21	E2_C1-10_16+31	ILKCLRYRFKKHCKL
22	E2_C1-11_16+31	SSTWHWTCHDGKHK
23	E2_C1-12_16+31	WHWTCHDGKHKNAIVTLTY
24	E2_C1-1_52+58	YEADKNDLNAQIEHWKLIRMECAIFYKAKELGIS
25	E2_C1-2_52+58	ICHQVVPPLAASKAKACQACIELQLALEALNASPY
26	E2_C1-3_52+58	DEWTLQQTSLEMWLAEPQ
27	E2_C1-4_52+58	FKKHGITITVQYDNDKANTMDYTNWKEIY
28	E2_C1-5_52+58	VIVCPASIPSDEISTEEA
29	E2_C1-1_53+18	DHIDYWKAIRQENAIFFAAR
30	E2_C1-2_53+18	HQVVPALNICKAKACKAIE
31	E2_C1-3_53+18	WNTEPKHCFKKGGQHIEVWFD
32	E2_C1-4_53+18	YVAWDSVYYCGDDGWCKT
33	E2_C1-5_53+18	EAEKYGCKGTWEVHFG
34	E2_C1-6_53+18	NSIDCNDSMCSTFDDNVSATELVK
35	E2_FC1_AII	DHIDYWKLIRLECAIFYKAR
36	E4_C1-1_16+31	RRLSSDQDQSQ
37	E4_C1-1_52+58	LVTKYPLLKLLS
38	E4_C1-1_53	RPPNMGVKAHGKCIWENKVFIVPTLCVPPLDPTYPLLKLLT
39	E4_C1-2_53	TQTTTPENTSLVELRVTPKSTVIRLHL
40	E4_C1-1_18	TTRYPLLSLLNSYSTPPHRIPAPCPWAPQRP
41	E4_V1_16+31	PIPKPSPWAP
42	E4_V1_18	RIPAPCPWAP
43	E4_V1_52	PRPPHCPWVP
44	E4_V1_53	PPPPPRPWAP
45	E5_C1_16_31	CFLLCFCVLLCVCLLIRPLLLSVSTY
46	E5_C1_52+58	LRPLLLSISVYAQVLVLVLLWVSIGS
47	E5_C1_18	LLPSVCMCAYAWVLVFVYIVVITSPATA
48	E6_CV1_16	IVYRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIR CIN
49	E6_CV1_18	VVYRDSIPHAACHKCIDFYSRIRELRHYSDSVYGDITLEKLTNTGLYNLLIR CLR
50	E6_CV2-1_53	VFCKKALTASEVYNFAYTDLRVVYRD
51	E6_CV2-2_53	SKVRKLRYYNCSVYGASL
52	E6_CV2-1_31	VYCKGQLTETEVLDFAFTDLTIVYRD
53	E6_CV2-2_31	SKVSEFRWYRYSVYGTTL

54	E6_CV3-1_52+58	CVECKKTLQRSEVYD
55	E6_CV3-2_52+58	CQRPLCPQEKKRHVDLNKRFH
56	E7_C1_16+31	TLHEYMLDLQPETTDLYCYEQ
57	E7_C1_58_52	PETTDLHCYEQLGDSSEEDTGLDG
58	E7_V1_53	DEDEDEVDHQLEQPQQARRDEQHPCYLIETQCCRCESLV
59	E7_V1_18	EENDEIDGVNHQHLPARRAEPQRHMLCMCKCEARI

HPV3 Nucleotide sequence (SEQ ID NO: 60)

5 From Start codon, starting with the TPA leading sequence encoded with an additional linker (TPA and linker are bold and underlined).

10 ATGGATGCTATGAAGAGGGCCTGTGCTGCGTGCTGCTGTGTGGCGC
CGTGTGTGTCAGGAAATCCACGCCGGTTAGAAGAGGCA
GCAAGCTGGCC GACGAGGACGAGACAGCCTACGACAGCGGACCGACCTG
ATCGACTTACATCGACGACAGCGACGAGAATGAGAACGACTCCGACACCGG
CGAGGACATGGTGGATTTATCGACAACGACGAAACCGACGAAGAGAGCA
CCGAGAGCGACCTGGACGGCTTATCGACAACCTCCGCCCAGCTGGCTGAC
15 AGCGACAGCAATGCCCTGCCCTTCTGAAGGCTCAGCTGGCAGACGTGAA
CAGCAACGCCGCTGCTTCTGAAGAACTGCATCCTGCTGTACGGCGCTG
CCAACACCGGCAAGAGCCTGTCGGCATGAGCCTGAACCTGCCTGGTGTG
TGGGCCAGCCAATACCGGAAAGTCCTACTTCGGCATGTCCCTGAATTG
TCTCGTGTACGGCCCACCTAACACACAGGCAAGTCCTGCTTGCATGT
20 CTCTGTGGCCCTACCTGCACAGCAGACTGGTGGTTACCTTCCCCAAC
CCCTTCTGCCCTACCTGGAAAGCCGGATCACCGTGTTCGAGTTCCCCAA
TGCCTTCTGAGATACTGCACCTCCGGATCCACGTGCTGCAGTTCTGA
ACCCCTAACGTGTGCCAGGACAAGATCCTGAAACACTACGAGAACGAC
AGCAAGGACATTCTGGAACATTATGAGAACATGATTCCAAGGACCTGTGCA
25 CCACATCTGCGATCACATCGACTACTGGAAGCACATCCGGCTGGAATGCG
CCATCATGTACAAGGCCGGATCAGACTGGAATGTGCTATTATGTATAAG
GCTCGCGAGATGGGCTTCCACCAAGTTGACCGACATCTGCAACACCAT
GCACTACACCAACTGGATCTATATCTGCGAGGACGCCAGTGCACCGTGG
TGGAGGCCAGGTGGACAAGAAATGGGAGGTGCACGCTGGGGCCAAGTG
30 ATCCTGTGTCCTGAGAGCGGCCAGCGGGGATCAAGAGGCCAGAACGGA
GAAC TGCCACCCAAACAAGCTGCTGATCCTGAAGTGCCTGCCGTACAGAT
TCAAGAACGACTGCAAGCTGAGCAGCACCTGGCACTGGACCTGCCACGAC
GGCAAGCACAAGTGGATTGGACATGTCACGATGGAAACACAAGAACGC
CATTGTGACCTGACCTACTACGAGGCCAGAACAGAACGACCTGAACGCC
35 AGATCGAGCACTGGAAACTGATCCGGATGGAATGTGCAATCTTCTATAAG
GCCAAAGAGCTGGGCATCAGCATCTGCCACAGGTGGTGCCTCCACTGGC
CGCCTCTAAAGCCAAGCCTGCCAGGCCATCGAAGTGCAGCTGCCCTGG
AAGCCCTGAATGCCAGGCCCTACGATGAGTGGACCTGCAAGCAGACCAGC
CTGGAAATGTGGCTGGCCAGCCCCAGTTAAGAACGACGGCATACCAT
40 CACCGTGCAGTACGACAATGACAAGGCCAATACCATGGATTACACAAATT
GGAAAGAAATCTACGTGATCGTGTGCCCCGCCAGCATCCCCCTCCGATGAG
ATCAGCACCGAGGAAGCCGACCACATTGATTATTGGAAAGCCATCAGGCA
GGAAAACGCCATCTTCTGCCGCCAGACACCAGGTGGTGCCTGGCCCTGA
ATATCTGCAAGGCCAAGGCCTGTAAAGCCATCGAGTGGAACACCGAGGCC
45 AAGCACTGCTTCAAGAACGGCGGCCAGCACATCGAACGTGTGGTGCAGTA
CGTGGCTGGACAGCGTGTACTACTGCGCGACGATGGCTGGTGCAGAAC
CCGAGGCCAGAACGTACGGCTGCAAGGGCACCTGGGAAGTGCATTGCGC

AACAGCATCGACTGCAACGACTCCATGTGCAGCACCTCGACGACAACGT
 GTCCGCCACCGAGCTCGTGAAGGACCATATCGACTATTGGAAGCTGATT
 GCCTGGAATGTGCCATTTTACAAGGCCAGACGGCGGCTGTCCAGCGAC
 CAGGATCAGTCTCAGCTCGTACCCAAGTACCCCGCTGAAGCTGCTGTC
 5 CAGACCCCCAACATGGCGTGAAGGCCACGGCAAGTGCATCTGGGAGA
 ACAAGGTGTTCATCGTCCCCACCCGTGCCCCGTGCCTCTGGATCCAACA
 TATCCTCTGCTGAAACTGCTGACCACCCAGACCACCCCCGAGAATAC
 CTCCCTGGTGGAACTGAGAGTGACCACCCCAAGAGCACAGTCGTGATCA
 GGCTGCACCTGACCAACCAGATACTGCTGTCAGTGTGAACAGCTAC
 10 AGCACCCCCCTCACCGGATCCCTGCTCCATGTCCTGGGCTCTCAGAG
 GCCCCCCATCCCTAACGCCTCTCCATGGGCCCTAGAATCCCTGCCCTT
 GCCCCTGGGCACCTCCTAGACCTCACACTGTCCATGGGTGCCCTCCA
 CCTCCTCCAAGACCTGGGCCCTTGCTTCTGCTGTGCTTTGTGTGCT
 GCTGTGCGTGTGCCTGCTGATCAGACCCCTGCTGAGTGTGTCCACCT
 15 ACCTGAGGCCTCTGCTGCTGTCTATCAGCGTGTACGCTCAGGTGCTGGT
 CTGGTGCTGCTGCTGGGTGTCCATCGGAAGCCTGCTGCCAGCGTGTG
 CATGTGTGCCTATGCCTGGGTGCTGGTGTACATCGTCGTGATTA
 CCAGCCCCGCCACCGCCATCGTGTACCGGGATGGCAATCCTACGCCGTG
 TGCGACAAGTGCCTGAAGTTCTACAGCAAGATCAGCGAGTACCGGCACTA
 20 CTGCTACAGCCTGTACGGCACCACCCCTGGAACAGCAGTACAACAAGCCCC
 TGTGCGATCTGCTGATTGGTGATCAACGTGGTACAGAGACTCCATC
 CCCACGCGCCTGCCACAAGTGTATCGACTTCTACTCCAGAATCAGAGA
 GCTGCGGCACTACAGCGACTCCGTGTACGGCGATAACCTGGAAAAGCTGA
 CCAACACTGGCCTGTACAACCTGCTGATTAGATGCCTGCAGGGTGTCTGC
 25 AAGAAGGCCCTGACAGCCAGCGAGGTGTACAACCTCGCCTACACCGATCT
 GCGGGTGGTATCGGCACAGCAAAGTGGAAAGCTGAGGTACTACA
 GCTCTGTGTATGGCGCCAGCCTGGTGTATTGCAAGGGACAGCTGACCGAG
 ACAGAGGTGCTGGATTTCGCCTCACAGACCTGACAATCGTGTATCGCGA
 CTCCAAGGTGTCCGAGTTCCGGTGGTACAGATATTCCGTGTATGGCACCA
 30 CACTGTGCGTGGATGCAAGAAAACCTGCAGAGATCTGAGGTGTACGAC
 TGCCAGCGGCCACTGTGTCCGCAGGAAAAGACACGTGGACCTGAA
 CAAGCGGTCCACACCCCTGCACGAGTACATGCTGGATCTGCAGCCGAGA
 CAACCGACCTGTACTGCTACGAGCAGCCTGAAACCACTGATCTGCACTGT
 TATGAGCAGCTGGGAGACAGCTCCGATGAAGAGGACACTGGCGGCTGG
 35 TGGGGACGAGGATGAGGACGAAGTGGACCATCTGCAGGAACAGCCCCAGC
 AGGCTAGACGGGACGAACAGCACCCCTGCTATCTGATCGAGACACAGTGC
 TGCAGATGCGAATCTCTGGTGGAAAGAGAACGACGAGATCGACGGCGTGAA
 CCACCAAGCATCTGCCGCTAGAAGGGCGAGCCTCAGAGACACACCATGC
 TGTGTATGTGCTGCAAGTGCAGGGCCAGAATGCCGGCTCTGGACCTGGC
 40 GCCTCTGGCAAGCCTATCCCCAATCCACTGCTGGCCTGGACTCCACCCG
 GACCTGATAA

HPV3 Nucleotide sequence without encoding a peptide adjuvant/TPA (SEQ ID NO: 65)

45 GACGAGGACGAGACAGCCTACGACAGCGGCACCGACCTG
 ATCGACTTCATCGACGACAGCGACGAGAATGAGAACGACTCCGACACCGG
 CGAGGACATGGTGGATTCATCGACAACGACGAAACCGACGAAGAGAGCA
 CCGAGAGCGACCTGGACGGCTTATCGACAACCTCCGCCCAGCTGGCTGAC
 50 AGCGACAGCAATGCCCTGCCCTCTGAAGGCTCAGCTGGCAGACGTGAA
 CAGCAACGCCGCTGCTTTCTGAAGAAACTGCATCCTGCTGTACGGCGCTG
 CCAACACCGGCAAGAGCCTGTTGGCATGAGCCTGAACACTGCCTGGTGTG
 TGGGGCCCAGCCAATACCGGAAAGTCCTACTTCGGCATGTCCTGAATTG
 TCTCGTGTACGGCCCACCTAACACAGGCAAGTCCTGCTTTGCCATGT
 55 CTCTGTGGCCTACCTGCACAGCAGACTGGTGGTTACCTCCCCAAC
 CCCTTCTGGCCTACCTGGAAAGCCGGATCACCGTGTTCGAGTTCCCCAA
 TGCCTTCTGAGATACCTGCACTCCGGATCCACGTGCTGCAGTTCTGA

ACCCCTTCAACGTGTGCCAGGACAAGATCCTGGAACACTACGAGAACGAC
 AGCAAGGACATTCTGGAACATTATGAGAATGATTCCAAGGACCTGTGC
 CCACATCTGCGATCACATCGACTACTGGAAGCACATCCGGCTGGAATGCG
 CCATCATGTACAAGGCCGGATCAGACTGGAATGTGCTATTATGTATAAG
 5 GCTCGCGAGATGGGCTTCCACCAGTTGACGGCGACATCTGCAACACCAT
 GCACTACACCAACTGGATCTATATCTGCGAGGACGCCAGTGCACCGTGG
 TGGAAAGGCCAGGTGGACAAGAAATGGGAGGTGCACGCTGGCGGCCAAGTG
 ATCCTGTGTCCTGAGAGCGGCCAGCGCGGATCAAGAGGCCAGAAGCGA
 GAACTGCCACCCAAACAAGCTGCTGATCCTGAAGTGCCTGCGGTACAGAT
 10 TCAAGAAGCACTGCAAGCTGAGCAGCACCTGGCACTGGACCTGCCACGAC
 GGCAAGCACAAGTGGCATTGGACATGTCACGATGGAAACACAAGAACGC
 CATTGTGACCTGACCTACTACGAGGCCAGAAGAACGACCTGAACGCC
 AGATCGAGCACTGGAAACTGATCCGGATGGAATGTGCAATCTTCTATAAG
 GCCAAAGAGCTGGCATCAGCATGCCACCAAGGTGGTGCCTCCACTGGC
 15 CGCCTCTAAAGCAAAGCCTGCCAGGCCATCGAAGTGCAGCTGGCCCTGG
 AAGCCCTGAATGCCAGCCCTACGATGAGTGGACCTGCAGCAGACCAGC
 CTGGAAATGTGGCTGGCGAGCCCCAGTTAAGAACGACGGCATCACC
 CACCGTGCAGTACGACAATGACAAGGCCAATACCATGGATTACACAAATT
 GGAAAGAAATCTACGTGATCGTGTGCCCCGCCAGCATCCCTCCGATGAG
 20 ATCAGCACCGAGGAAGCCGACCACATTGATTATTGAAAGCCATCAGGCA
 GGAAAACGCCATCTTCTCGCCGCCAGACACCAGGTGGTGCCTGCC
 ATATCTGCAAGGCCAAGGCCTGTAAAGCCATCGAGTGGAACACCGAGGCC
 AAGCACTGCTTCAAGAAGGGCGGCCAGCACATCGAAGTGTGGTCA
 CGTGGCCTGGGACAGCGTGTACTACTGCGCGACGATGGCTGGTGC
 25 CAGGAGGCCAGAAGTACGGCTGCAAGGGCACCTGGGAAGTGCATT
 AACAGCATCGACTGCAACGACTCCATGTGCAGCACCTCGACGACA
 GTCCGCCACCGAGCTCGTAAGGACCATATCGACTATTGAAAGCTGATTC
 GCCTGGAATGTGCCATTTTACAAGGCCAGACGGCTGTCCAGCGAC
 CAGGATCAGTCTCAGCTCGTACCAAGTACCCCTGCTGAAGCTG
 30 CAGACCCCCAACATGGCGTGAAGGCCACGGCAAGTGCATCTGG
 ACAAGGTGTTACCGTGCCTGCCACCCGTGCCCCGTGCCTCTGG
 TATCCTCTGCTGAAACTGCTGACCAACCCAGACCACCCAGAGAATAC
 CTCCCTGGGAACTGAGAGTGACCAACCCAGAGACAGTCGTGATCA
 GGCTGCACCTGACCAACCGAGATACCAACTGCTGTCAGTG
 35 AGCACCCCCCTCACGGATCCCTGCTCCATGTCCTGGCTCCTCAGAG
 GCCCCCCATCCCTAACGCTTCTCCATGGGCCCTAGAATCCCTGCC
 CCTGCCACCTCCTAGACCTCACACTGTCCATGGGTGCC
 CCTCCCTCCAAGACCTGGGCCCTGCTTCTGCTGTGCTTGTG
 GCTGTGCGTGTGCCTGCTGATCAGACCCCTGCTGCTGAGTGT
 40 ACCTGAGGCCTTGCTGCTGTCTATCAGCGTGTACGCTCAGGTG
 CTGGTGCTGCTGCTGGGTGTCATCGGAAGCCTGCTGCCAGCGTGTG
 CATGTGTGCCTATGCCTGGGTGCTGGTGTACATCGTCGTGATTA
 CCAGCCCCGCCACCGCCATCGTGTACCGGGATGGCAATCCT
 TGCGACAAGTGCCTGAAGTTCTACAGCAAGATCAGCGAGTAC
 45 CTGCTACAGCCTGTACGGCACCACCTGGAACAGCAGTACA
 TGTGCGATCTGCTGATTGGTGCATCAACGTGGTGTACAGAGACT
 CCCACGCCCTGCCACAAGTGTATCGACTTCTACTCCAGAATCAG
 GCTGCGGCACTACAGCGACTCCGTGTACGGCGATA
 CCAACACTGGCTGTACAACCTGCTGATTAGATGCCT
 50 AAGAAGGCCCTGACAGCCAGCGAGGTGTACA
 ACTTCGCCTACACCGATCT
 GCGGGTGGTGTATCGGGACAGCAAAGTGC
 GCGGAAGCTGAGGTACTACA
 GCTCTGTGTATGGGCCAGCCTGGTATTGCA
 AGGGACAGCTGACCGAG
 ACAGAGGTGCTGGATT
 TCGCCTTACAGAC
 GACAATCGTGTATCGCGA
 CTCCAAGGTGTCC
 GAGTTCCGGTGGTACAGA
 GATATTCCGTGTATGGC
 ACCA
 55 CACTGTGCGTGG
 GAATGCAAGAAA
 ACCCTGCAGAG
 ATCTGAGGTGTAC
 GAC
 TGCCAGGCCACT
 GTGTCCGCAG
 GAAAAGAAA
 AGACACGTGG
 ACTGAA
 CAAGCGGTTCC
 ACACCC
 CTGCAC
 GAGTAC
 GCTGG
 GATCTGC
 GAG
 CAG
 CCCGAGA
 CA
 ACCGAC
 CTGTACT
 GCTAC
 GAG
 CAG
 CAGCCTG
 GAA
 ACC
 ACTGAT
 CTGC
 ACTGT

5 TATGAGCAGCTGGGAGACAGCTCCGATGAAGAGGACACTGGCGGCCTGGA
 TGGGGACGAGGATGAGGACGAAGTGGACCATCTGCAGGAACAGCCCCAGC
 AGGCTAGACGGGACGAACAGCACCCCTGCTATCTGATCGAGACACAGTGC
 TGCAGATGCGAATCTCTGGTGGAAAGAGAACGACGAGATCGACGGCGTGAA
 CCACCAGCATCTGCCCGCTAGAAGGGCGAGCCTCAGAGACACACCATGC
 TGTGTATGTGCTGCAAGTGCAGGGCCAGAATGCCGGCTCTGGACCTGGC
 GCCTCTGGCAAGCCTATCCCCAATCCACTGCTGGGCCTGGACTCCACCCG
 GACCTGATAA

10 **HPV3 polypeptide sequence (SEQ ID NO: 61)**

From Start codon, starting with the TPA leading sequence.

15 **MDAMKRLCCVLLLCGAVFVSPSQEIHARFRR**GSKLADEDETAYDSGTDL
 IDFIDDSDENENDSDTGEDMVDFIDNDETDEESTESDLDGFIDNSAQLAD
 SDSNACAFKAQLADVNSNAAFLKNCILLYGAANTGKSLFGMSLNCLVL
 CGPANTGKSYFGMSLNCLVIYGPNTGKSCFAMSILWPYLHSRLVVFTFPN
 PFWPYLESRITVFEFPNAFLRYLHSRIHVQLQFLNPFNVCQDKILEHYEND
 20 SKDILEHYENDSKLCDHICDHIDYWKHIRLECAIMYKARI RLECAIMYK
 AREMGFHQFDGDICNTMHYTNIYICEDAQCTVVEGQVDKKWEVHAGGQV
 ILCPESGQRRIKPRSENCHPNKLILKCLRYRFKKHCKLSSTWHWTCHD
 GKHKWHWTCHDGKHKNIAVTLYYEADKNDLNAQIEHWKLIRMECAIFYK
 AKELGISICHQVVPPLAASKAKACQAIELQLALEALNASPYDEWTLQQTS
 25 LEMWLAEPQFKKHGITAIVQYDNDKANTMDYTWNKEIYVIVCPASIPSDE
 ISTEEDHIDYWKAIRQENAIFFAARHQVVPALNICKAKACKAI EWNT
 KHCFKKGGQHIEWFDYVAWDSVYYCGDDGWCKTEAEKYGCKGTWEVHFG
 NSIDCNDSMCSTFDDNVSATELVKDHDYWKLIRLECAIFYKARRLSSD
 30 QDQSQLVTKYPLLKLLSRPPNMGVKAHGKCIWENKVFIVPTLCPVPLDPT
 YPLLKLLTTQTTPENTSLVELRVTPKSTVIRLHLTRYPLSLLNSY
 STPPHRI PAPCPWAPQRPIP KPKSPWAPRIPAPCPWAPP RPPHCPWVPPP
 PPPRPWAPCFLLCFCVLLCVCLLIRPLLSVSTYLRPLLSISVYAQVLV
 LVLLLWVSIGSLLPSVCMCAYAWLVFVYIVVITS PATAIVYRDGNPYAV
 CDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINVYRDSI
 35 PHAAC HKC IDFY SRI RELRHYS DSVYGDTLEKLTNTGLYNLLIRCLRVFC
 KKALTASEVYNFAYTDLRVYRDSKVRKLRYYNC SVY GASLVYCKGQLT
 TEVLDFAFTDLTIVYRDSKVSEFRWYRYSVYGTTL CVECKTLQRSEVYD
 CQRPLCPQEKKRHDV DNLKRFHTLHEYMLD LQPETTDLYC EQPETDLHC
 YEQLGDSSDEEDTGGLDGED EDEV DHLQEQPQQARRDEQHPCYLIETQC
 40 CRCESLVEENDEIDGVNHQHLPARRAEPQRHTMLCM CCKCEARIAGSGPG
 ASGKPIPNPLLGLDSTRT**

HPV3 polypeptide sequence without the TPA/peptide adjuvant sequence (SEQ ID NO: 66)

45 DEDETAYDSGTDL
 IDFIDDSDENENDSDTGEDMVDFIDNDETDEESTESDLDGFIDNSAQLAD
 SDSNACAFKAQLADVNSNAAFLKNCILLYGAANTGKSLFGMSLNCLVL
 CGPANTGKSYFGMSLNCLVIYGPNTGKSCFAMSILWPYLHSRLVVFTFPN
 PFWPYLESRITVFEFPNAFLRYLHSRIHVQLQFLNPFNVCQDKILEHYEND
 50 SKDILEHYENDSKLCDHICDHIDYWKHIRLECAIMYKARI RLECAIMYK
 AREMGFHQFDGDICNTMHYTNIYICEDAQCTVVEGQVDKKWEVHAGGQV
 ILCPESGQRRIKPRSENCHPNKLILKCLRYRFKKHCKLSSTWHWTCHD
 GKHKWHWTCHDGKHKNIAVTLYYEADKNDLNAQIEHWKLIRMECAIFYK
 AKELGISICHQVVPPLAASKAKACQAIELQLALEALNASPYDEWTLQQTS
 55 LEMWLAEPQFKKHGITAIVQYDNDKANTMDYTWNKEIYVIVCPASIPSDE
 ISTEEDHIDYWKAIRQENAIFFAARHQVVPALNICKAKACKAI EWNT

5 KHCFKKGGQHIEWF DYVAWDSVYYCGDDGWCKTEAEKYGCKGTWEVHFG
 NSIDCNDNSMCSTFDDNVSATELVKD HIDYWKLIRLECAIFYKARRRLSSD
 QDQSQLVTKYPLLKLLSRRPNMGVKAHGKCIWENKVFIVPTLCPVPLDPT
 YPLLKLLTTQTTPENTSLVELRVTPKSTVVI RLHLLTRYPLLSLLNSY
 10 STPPHRI PAPCPWAPQRPIP KPSWAPRIPAPCPWAPP RPHCPWVPPP
 PPPRPWAPCFLLCFCVLLCVCLLIRPLLLSVSTYLRPLLLSISVYAQVLV
 LVLLLWVSIGSLLPSVCMCAYAWVLVFVYIVVITS PATAIVYRDGNPYAV
 CDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINVVYRDSI
 PHAAC HKC1DFYSRIREL RHYSDSVYGD TLEKLTNTGLYNLLIRCLRVFC
 KKALTASEVYNFAYTDLRVVYRDSKVRKL RYYNC SVY GASLVYCKGQLTE
 TEVLDFAFTDLTIVYRDSKVSEFRWYRYSVYGTTL CVECKTLQ RSEVYD
 CQRPLCPQEKKR HVDLNKR FHTLHEYMLD LQ PETTDLYC YEQ PETDLHC
 YEQLGDSSDEEDT GGLD GDEDE D EVDH LQEQPQQARRD E QHPC YLIETQC
 CRCESLVEENDEIDGVNHQHLPARRAEPQRHTMLCM CCKCEARIAGSGPG
 15 ASGKPIPNPLLGLDSTRT**

Viral vector sequence ChAdOx1 with immunogen coding sequence insert.

20 Start and end codons of the immunogen coding sequence insert are underlined. Lead TPA
 sequence and linker is in bold.
 (SEQ ID NO: 62)
 25 GTTTAAACGCGGCCAGGCCTACCCACTAGTCAATTGGGAGGATCGAAACGGCAGATCGCAA
 AAAACAGTACATACAGAAGGAGACATGAACATGAACATCAAAAAAATTGTAAAACAAGCCACAGT
 TCTGACTTTACGACTGCACTTCTGGCAGGAGGAGCGACTCAAGCCTCGCAAAGAAAATAACC
 AAAAAGCATACAAAGAACGTACGGCGTCTCATATTACACGCCATGATATGCTGCAGATCCCT
 30 AAACAGCAGCAAAACG a AAAATACCAAGTGCCTCAATTGATCAATCAACGATTAAAATATTGA
 GTCTGCAAAGGACTTGATGTGTGGACAGCTGGCGCTGCAAACGCTGACGGAACAGTAGCTG
 AATACAACGGCTATCACGTTGTGTTGCTCTTGGGGAGCCGAAAGACGCTGATGACACATCA
 ATCTACATGTTTATCAAAAGGTGGCGACA ACTCAATCGACAGCTGGAAAACGCGCCGTGT
 CTTTAAAGACAGCGATAAGTTGACGCCAACGATCCGATCCTGAAAGATCAGACGCAAGAATGGT
 35 CCGGTTCTGCAACCTTACATCTGACGGAAAATCCGTTATTCTACACTGACTATTCCGGTAAA
 CATTACGGCAAACAAAGCCTGACAACAGCGCAGGTAAATGTGTCAAATCTGATGACACACTCAA
 AATCAACGGAGTGGAAAGATCACAAACGATTTTGACGGAGACGGAAAACATATCAGAACGTT
 AGCAGTTATCGATGAAGGCAATTATACATCCGGCGACAACC ATACGCTGAGAGACCCCTCACTAC
 GTTGAAGACAAAGGCCATAAATACCTTGTATTGAAAGCCAACACGGGAACAGAAAACGGATACCA
 40 AGCGAAGAATCTTATTTAACAAAGCGTACTACGGCGGGCACGAACCTCTCGTAAAGAAA
 GCCAGAAGCTTCAGCAGAGCGCTAAAAACGCGATGCTGAGTTAGCGAACGGGCCCTCGGTATC
 ATAGAGTTAAATAATGATTACACATTGAAAAAGTAATGAAGCCGCTGATCACTCAAACACGGT
 AACTGATGAAATCGAGCGCGAATGTTCAAAATGAACGGCAAATGGTACTTGTCACTGATT
 CACCGGGTTCAAAATGACGATCGATGGTATTA ACTCAAACGATATTACATGCTTGGTTATGTA
 45 TCAAAC TTTAACCGGCCCTACAAGCCGCTGAACAAACAGGGCTTGTGCTGCAAATGGGTCT
 TGATCCAAACGATGTGACATTCACTTACTCTCACTCGCAGTGGCGAACGCCAAAGGCAACATG
 TGGTTATCACAAGCTACATGACAAACAGAGGCTTCTCGAGGATAAAAGGCAACATTGCGCCA

AGCTTCTTAATGAACATCAAAGGCAATAAAACATCCGTTGTCAAAACAGCATCCTGGAGCAAGG
 ACAGCTGACAGTCAACTAATAACAGCAAAAGaAAATGCCGATACTTCATTGGCATTTCCTTA
 TTTCTCAACAAGATGGTGAATTGACTAGTGGTAGATCCACAGGACGGGTGTGGTCGCCATGATC
 GCGTAGTCGATAGTGGCTCCAAGTAGCGAAGCGAGCAGGACTGGCGGGCAAAGCGGTCGGA
 5 CAGTGCTCCGAGAACGGGTGCGCATAGAAATTGCATCAACGCATATAGCGCTAGCAGCACGCCAT
 AGTGAUTGGCGATGCTGTCGAATGGACGATATCCGCAAGAGGCCGGCAGTACCGCATAACC
 AAGCCTATGCCTACAGCATCCAGGGTACGGTGCCGAGGATGACGATGAGCGCATTGTTAGATT
 CATAACACGGTGCCTGACTGCGTTAGCAATTAACTGTGATAAACTACCGCATTAAAGCTTATCGA
 TGATAAGCTGTCAAACATGAGAATTGATCCGAAACCTTAATATAACTTCGTATAATGTATGCTA
 10 TACGAAGTTATTAGGTCCCTCGACTATAGGGTACCGTCGACAGCAGCACACTGCATCGGATGC
 AGCCCGGTTAACGTGCCGGCACGGCCTGGTAACCAGGTATTTGTCCACATAACCGTGCACAA
 ATGTTGTGGATAAGCAGGACACAGCAGCAATCCACAGCAGGATACAACCGCACACCGAGGTTAC
 TCCGTTCTACAGGTTACGACGACATGTCAATACTGCCCTGACAGGCATTGATGGAATCGTAGT
 CTCACGCTGATAGTCTGATCGACAATAACAAGTGGGACCGTGGTCCAGACCGATAATCAGACCGA
 15 CRAYACGAGTGGAYCGTGGTCCAGACTAATAATCAGACCGACGATACGAGTGGGACCGTGGTYCCAGWCTRATWATCAGACCGAC
 GATACRAGTGGRACMGTGGKCCCAGASAKAATAWTCAGRCCgAGWTAYGcWKTCKGGCCTGTAAC
 AAAGGACATTAAGTAAAGACAGATAMRMGTgRGACTaaaCGTGGTCCAGTCTGATTATCAGAC
 CGACGATACGAGTGGGACCGTGGTCCAGACTAATAATCAGACCGACGATACGAGTGGGACCGTG
 20 GTCCCAGACTAATAATCAGACCGACGATACGAGTGGGACCGTGGTCCAGTCTGATTATCAGACC
 GACGATACAAGTGGAACAGTGGGCCCAGAGAGAATATTCAAGGCCAGTTATGCTTCTGGCCTGTA
 ACAAAGGACATTAAGTAAAGACAGATAAACGTAGACTAAACGTGGTCGCATCAGGGTGTGGCT
 TTTCAAGTTCTTAAGAATGGCCTCAATTCTCTATACACTCAGTTGGAACACGAGACCTGTCC
 AGGTTAAGCACCATTATGCCCTTATACAATACTGTGCTCCAGGAGCAAACGTGATGTCGTGA
 25 GCTTAAACTAGTTCTGATGCAGATGACGTTTAAGCACAGAAGTTAAAGAGGTGATAACTTCTT
 CAGCTTCAAATATCACCCAGCTTTCTGCTCATGAAGGTTAGATGCCCTGCTGCTTAAGTAAT
 TCCTCTTATCTGAAAGGCTTTGAAGTGCATCACCTGACCGGGCAGATAGTTCACCGGGGTG
 AGAAAAAAAGAGCAACAACTGATTAGGCAATTGGCGGTGTTGATACAGCAGGTAATAATCTTAC
 GTGAAATATTTCGGCATCAGCCAGCGCAGAAATATTCCAGCAAATTCTGCAATCGGCTT
 30 GCATAACGCTGACCACGTTCATCAGCACTTGTGGGCGATAATCGTTACCCAACTGGATAATGC
 AGCCATCTGCTCATCATCCAGCTGCCAACAGAACACGATAATCACTTCGGTAAGTGCAGCAG
 CTTTACGACGGCGACTCCATGGCAATTCTATGACACCAGATACTCTCGACCGAACGCCGGT
 GTCTGTTGACCAAGTCAGTAGAAAAGAAGGGATGAGATCATCCAGTGCCTCAGTAAGCAGCTC
 CTGGTCACGTTCATACCTGACCATAACCGAGAGGTCTCTAACACTATCACCCGGAGCAGT
 35 CAAGAGTAAACTCACATCCGACCACATACAGGCAAAGTAATGGCATTACCGCGAGCCATTACT
 CCTACCGCGCAATTAAACGAATCCACCATCGGGCAGCTGGTGTGATAACGAAGTATCTTCAAC
 CGGTTGAGTATTGAGCGTATGTTGGAATAACAGGCGCACGCTTCATTATCTAATCTCCAGCG
 TGGTTAATCAGACGATCGAAAATTCTGAGACAGGTTCCAAATAGAAAGAGCATTCTCC
 AGGCACCAGTTGAAGAGCGTTGATCAATGCCCTGTTCAAAACAGTTCTCATCCGGATCTGACCT

TTACCAACTTCATCCGTTACGTACAACATTTAGAACCATGCTTCCCCAGGCATCCGAAT
 TTGCTCCTCCATCCACGGGACTGAGAGCCATTACTATTGCTGTATTGGTAAGCAAAATACGTA
 CATCAGGCTCGAACCCCTTAAGATCAACGTTCTGAGCAGATCACGAAGCATATCGAAAAACTGC
 AGTGCAGGGAGGTGTAGTCAAACAACTCAGCAGGCGTGGAACAAATCAGCACATCAGCAGCACATAC
 5 GACATTAATCGTGCCGATAACCAGGTTAGGCGCGCTGTCAATAACTATGACATCATAGTCATGAG
 CAACAGTTCAATGCCAGTCGGAGCATCAGGTGTGGATCGGTGGCAGTTACCTTCATCAAAT
 TTGCCCATTAACTCAGTTCAATACGGTGCAGAGCCAGACAGGAAGGAATAATGTCAAGCCCCGG
 CCAGCAAGTGGGCTTTATTGCATAAGTGACATCGCCTTCCCAAGATAGAAAGGCAGGAGAG
 TGTCTTCTGCATGAATATGAAGATCTGGTACCCATCCGTGATAACATTGAGGCTGTTCCCTGGGG
 10 TCGTTACCTTCCACGAGCAAAACACGTAGCCCCTCAGAGCCAGATCCTGAGCAAGATGAACAGA
 AACTGAGGTTTGTAAACGCCACCTTATGGCAGCAACCCGATCACCGTGGAAATACGTCTT
 CAGCACGTGCAATCGCGTACCAAACACATCACGCATATGATTAATTGTTCAATTGTATAACCA
 ACACGTTGCTCAACCGTCCTCGAATTCCATATCCGGTGCCTAGTCGCCCTGCTTCTCGGC
 ATCTCTGATAGCCTGAGAAGAAACCCAACTAAATCCGCTGTTCACCTATTCTCCAGCGCCGGG
 15 TTATTTCTCGCTTCCGGCTGTCATCATTAAACTGTGCAATGGCGATAGCCTCGTCATTCA
 TGACCAGCGTTATGCACTGGTTAAGTGTTCATGAGTTCATTCTGAACATCCTTAATCATT
 GCTTGCCTTTTATTAAATCTGCAATTACTGCAAAGCAACAAACAAATCGCAAAGTCATC
 AAAAACCGCAAAGTTGTTAAAATAAGAGCAACACTACAAAGGAGATAAGAAGAGCACATACC
 TCAGTCACTTATTACTAGCGCTGCCGCAGCCGTGTAACCGAGCATAGCGAGCGAAGTGGCG
 20 AGGAAGCAAAGAAGAACTGTTCTGTCAGATAGCTCTTACGCTAGCGCAAGAAGAAATATCCACC
 GTGGGAAAAACTCCAGGTAGAGGTACACACCGGATAGCCAATTAGAGTAATAAAACTGTGATAA
 TCAACCCTCATCAATGATGACGAACTAACCCCGATATCAGGTACATGACGAAGGGAAAGAGAA
 GGAAATCAAATGTGACAAACTGCCCTCAAATTGGCTTCTTAAATTACAGTTCAAAAGTAT
 GAGAAAATCCATGCAGGCTGAAGGAAACAGCAAACACTGTGACAAATTACCCCTCAGTAGGTCA
 25 GAAATGTGACGAACCACCCCAAATCTGTGACAGATAACCCCTCAGACTATCCTGTCATGGAA
 GTGATATCGCGGAAGGAAATACGATATGAGTCGTCTGGCGGCCTTCTTTCTCAATGTATGA
 GAGGCATGGAGTTCTGCTGTTGATCTCATTAACACAGACCTGCAGGAAGCGGGCGGCGGAAGT
 CAGGCATACGCTGGTAACTTGAGGCAGCTGGTAACGCTCTATGATCCAGTCGATTTCAGAGAG
 ACGATGCCTGAGCCATCCGGCTACGATACTGACACAGGGATTGTTAAACCGCATGGCATAACGG
 30 ATTGGTGATTCTTTGTTCACTAAGCCAAACTGCGTAAACCGTTCTGTAACCCGATAAAGA
 AGGAAATGAGATATGGGTTGATATGTACACTGTAAAGCCCTCTGGATGGACTGTGCGCACGTTG
 ATAAACCAAGGAAAGATTCATAGCCTTTCATGCCGGATCCTCTTCAGGGCGATAAAAAC
 CACTCCTCCCCGCAAACCTTCAATGCCTGCCGTATATCCTTACTGGCTTCCGAGAGGTCA
 ATCCGAATATTCAGCATATTAGCAACATGGATCTCGCAGATACCGTCATGTTCTGTAGGGTG
 35 CCATCAGATTCTGATCTGGTCAACGAACAGATAACGCATACGTTTGATCCCAGGGAGAGACT
 ATATGCCGCCTCAGTGAGGTCGTTGACTGGACGATTGCGGGCTATTTACGTTCTGTGAT
 TGATAACCGCTGTTCCGCCATGACAGATCCATGTGAAGTGTGACAAGTTTAGATTGTCACAC
 TAAATAAAAAGAGTCATAAGCAGGGATAACTTGTGAAAAAACAGCTTCTGAGGGCAATT
 TGTCACAGGGTTAAGGGCAATTGTCACAGACAGGACTGTCATTGAGGGTGATTGTCACACTG

AAAGGGCAATTGTACAACACCTCTAGAACAGCATGGATAAAGGCCTACAAGGCCTCTA
 AAAAAGAAGATCTAAAAACTATAAAAAATAATTATAAAAATATCCCCGTGGATAAGTGGATAA
 CCCCAAGGAAGTTTTtCAGGCATCGTGTGAAGCAGAATATATAAGTGCTGTTCCCTGGTGCT
 TCCTCGCTCACTCGAGGGCTTCGCCCTGTCGCTCAACTGCAGCAGCAGCAGCAGCAGCAGCAG
 5 ACAGACCACATCATGGTTCTGTGTTCATAGGTTGTTCTGTCCATTGCTGACATAATCCGCTCCA
 CTTCAACGTAACACCGCACGAAGATTCTATTGTTCTGAAGGCATATTCAAATGTTTCGTTA
 CCGCTTGCAGGCATCATGACAGAACACTACTTCCTATAAACGCTACACAGGCTCTGAGATTAAT
 AATGCAGGATCTCTACGATAATGGGAGATTTCGGACTGTTGTTCTCAGTGGATAACA
 GCCAGCTCTCTGTTAACAGACAAAAACAGCATATCCACTCAGTCCACATTCCATATAAAGG
 10 CCAAGGCATTATTCTCAGGATAATTGTTTCAGCATCGCAACCGCATCAGACTCCGGCATCGCAA
 ACTGCACCCGGTGCCGGCAGCCACATCCAGCGAAAAACCTCGTGTAGACTCCGGTGAAC
 ATGGACTTATGTCCCATTAGGCTTGCAGAACTTCAGCGGTATACCGGCATACAGCATGTGCAT
 CGCATAAGGAATGGCGAACGTATGTGGTGTGACCGGAACAGAGAACGTACACCGTCAGCAGCAG
 CGGCGGCAACCGCCTCCCCAATCCAGGTCTGACCGTTCTGTCGTCACCTCCAGATCCGCGCT
 15 TTCTCTGTCCTCCTGTGCGACGGTTACGCCGCTCCATGAGCTTATCGCGAATAAACCTGTGA
 CGGAAGATCACTCGCAGAATAAAATCCTGGTGTCCCTGTTGATACCGGGAAAGCCCTGGGCC
 AACTTTGGCGAAAATGAGACGTTGATCGGCACGTAAGAGGTTCCAACTTTACCCATAATGAAAT
 AAGATCACTACCGGGCGTATTTGAGTTATCGAGATTTCAGGAGCTAAGGAAGCTAAAATGG
 AGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTGAG
 20 GCATTCAGTCAGTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCTTTT
 AAAGACCGTAAAGAAAAATAAGCACAAGTTTATCCGGCCTTATTCACATTGCCCCGCTGA
 TGAATGCTCATCCGGAGTTCCGTATGGCAATGAAAGACGGTGAGCTGGTATGGGATAGTGT
 CACCCCTGTTACACCGTTCCATGAGCAAACGAACTGAAACGTTTACGCTCTGGAGTGAATACCA
 CGACGATTCCGGCAGTTCTACACATATTGCAAGATGTGGCGTTACGGTAAAGAACCTGG
 25 CCTATTCCCTAAAGGGTTATTGAGAATATGTTTCTCAGCCAATCCCTGGTGAGTT
 ACCAGTTTGTAAACGTGGCCAATATGGACAACCTCTCGCCCCCGTTTACCATGGCAA
 ATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTAGGTTCATGCGTT
 ATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGG
 GCGTAATTTTAAGGCAGTTAGGTGCCCTAAACGCCTGGTGTACGCGTGAATAAGTGA
 30 TAATAAGCGGATGAATGGCAGAAATTGATGATAAGCTGTCAAACATGAGAATTGGCGACGGCG
 CGCCAAAGCTTGCATGCCTGCAGCCGCGAACCTGGCAAATCGGTTACGGTGAAGTAATAATG
 GATGCCCTGCGTAAGCGGGCACATTCTACCTCTCCGCACCCGACATAGATAAAACT
 TCGTATAGTATACATTACGAAGTTCTAGTAGACTTAATCGCGTTAAACCCATCATCAATA
 ATATACTCAAACCTTTGTGCGCGTTAATATGCAAATGAGGCCTTGAATTGGGAAGGGAGGA
 35 AGGTGATTGCCGAGAGAAGGGCGACCGTTAGGGCGGGCGAGTGACGTTTGATGACGTGACC
 GCGAGGGAGGAGCCAGTTGCAAGTTCTCGTGGAAAAGTGACGTCAAACGAGGTGTGGTTGAAC
 ACGGAAATACTCAATTCCCGCTCTGACAGGAAATGAGGTGTTCTAGGCAGGATGCAAGT
 GAAAACGGGCCATTTCGCGCGAAAAGTGAAATGAGGAAGTGAAATCTGAGTAATTGCGCTTA
 TGACAGGGAGGAGTATTGCCGAGGGCGAGTAGACTTGACCGATTACGTGGGGTTCGATTA

CCGTGTTCACCTAAATTCCCGTACGGTGTCAAAGTCCGGTACGGTACAGC
 TGATGCCAGGGTATTAAACCTGCGCTCTCCAGTCAAGAGGCCACTCTGAGTGCCAGCGAGAA
 GAGTTTCTCCTCCCGCGAGTCAGATCTACACTTGAAGGCGATCGCTAGCGACATCGATC
 ACAAGTTGTACAAAAAAGCAGGCTCCACCATGGAACCAATTCAgTCGAGCCTTCACTCATTA
 5 GATGCATGTCGTTACATAACTACGGTAAATGGCCCGCCTGGCTGACCGCCAAACGACCCCCGCC
 CATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCATTGACGTCAA
 TGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTAC
 GCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTTAT
 GGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTT
 10 TGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCCAT
 TGACGTCAATGGGAGTTGTTGGCACCAAAATCAACGGACTTCCAAATGTCGTAACAACCT
 CCGCCCCATTGACGCAAATGGCGGTAGGCAGTACGGTGGGAGGTCTATATAAGCAGAGCTCTC
 CCTATCAGTGATAGAGATCTCCCTATCAGTGATAGAGATCGTCGACGAGCTCGTTAGTGAACCG
 TCAGATCGCCTGGAGACGCCATCCACGCTGTTGACCTCCATAGAAGACACCGGGACCGATCCA
 15 GCCTCCGGTTAAGCTcGgtacCGCTAGCCGCCACC**ATGGATGCTATGAAGAGGGGCCTGT**
GCTGCGTGCTGCTGTGTGGCGCCGTGTTGTGTC**CCCCAGCCAGGAAATCCACGCCGGTTCA**
AGAAGAGGCAGCAAGCTGGCCGACGAGGACGAGACAGCCTACGACAGCGGACCGACCTGATCGA
 CTTCATCGACAGCGACGAGAATGAGAACGACTCCGACACCGGGAGGGACATGGTGGATTCA
 TCGACAACGACGAAACCGACGAAGAGAGCACCGAGAGCGACCTGGACGGCTTATGACAACCTCC
 20 GCCCAGCTGGCTGACAGCGACAGCAATGCCTGCGCCTCCTGAAGGCTCAGCTGGCAGACGTGAA
 CAGCAACGCCGCTGCTTTCTGAAGAACTGCATCCTGCTGTACGGCGCTGCCAACACCGGCAAGA
 GCCTGTTGGCATGAGCCTGAAGTGTCTCGTGTACTACGGCCCACCTAACACAGGCAAGTCCTGCTTGC
 TTCGGCATGTCCTGAATTGTCTCGTGTACTACGGCCCACCTAACACAGGCAAGTCCTGCTTGC
 CATGTCCTGTGGCCCTACCTGCACAGCAGACTGGTGGTGTACCTCCCCAACCCCTTCTGGC
 25 CTTACCTGGAAAGCCGGATCACCGTGGTCAAGTCCCAATGCCTTCTGAGATACTGCACTCC
 CGGATCCACGTGCTGCAGTTCTGAACCCCTAACGTGTGCCAGGACAAGATCCTGGAACACTA
 CGAGAACGACAGCAAGGACATTCTGGAACATTATGAGAATGATTCCAAGGACCTGTGCGACCACA
 TCTGCGATCACATCGACTACTGGAAGCACATCCGGCTGGAATGCGCCATCATGTACAAGGCCCGG
 ATCAGACTGGAATGTGCTATTATGTATAAGGCTCGCGAGATGGCTCCACCAGTCGACGGCGA
 30 CATCTGCAACACCATGCACTACACCAACTGGATCTATCTGCGAGGACGCCAGTGCACCGTGG
 TGGAAAGGCCAGGTGGACAAGAAATGGGAGGTGCACGCTGGCGGCCAGTGTACCTGTGCTGAG
 AGCGGCCAGCGGGATCAAGAGGCCAGAAGCGAGAACTGCCACCCAAACAAGCTGCTGATCCT
 GAAGTGCCTGCGGTACAGATTCAAGAACGACTGCAAGCTGAGCAGCACCTGGACTGGACCTGCC
 ACGACGGCAAGCACAAGTGGCATTGGACATGTCACGATGGAAACACAAGAACGCCATTGTGACC
 35 CTGACCTACTACGAGGCCGACAAGAACGACCTGAACGCCAGATCGAGCACTGGAAACTGATCCG
 GATGGAATGTGCAATCTTCTATAAGGCCAAAGAGAGCTGGCATCAGCATCTGCCACCAGGTGGTGC
 CTCCACTGGCCGCCTCTAAAGCCAAGCCTGCCAGGCCATCGAACTGCAGCTGGCCCTGGAAGCC
 CTGAATGCCAGCCCTACGATGAGTGGACCCCTGCAGCAGACCAGCCTGGAATGTGGCTGGCCGA
 GCCCCAGTTAAGAACGACGGCATCACCATCACCGTGCAGTACGACAATGACAAGGCCAATACCA

TGGATTACACAAATTGGAAAGAAATCTACGTGATCGTGTGCCCGCCAGCATCCCCTCCGATGAG
 ATCAGCACCGAGGAAGCCGACCACATTGATTATTGGAAAGCCATCAGGCAGGAAAACGCCATCTT
 CTTCGCCGCCAGACACCAGGTGGTGCCGCCCTGAATATCTGCAAGGCCAAGGCCTGTAAAGCCA
 TCGAGTGGAACACCGAGGCCAAGCAGCTCAAGAAGGGCGGCCAGCACATCGAAGTGTGGTTC
 5 GACTACGTGGCCTGGGACAGCGTGTACTACTGCGGCGACGATGGCTGGTCAAGACCGAGGCCA
 GAAGTACGGCTGCAAGGGCACCTGGGAAGTGCATTCGGAACAGCATCGACTGCAACGACTCCA
 TGTGCAGCACCTCGACGACAACGTGTCCGCCACCGAGCTCGTAAGGACCATATCGACTATTGG
 AAGCTGATTGCGCTGGAATGTGCCATTTTACAAGGCCAGACGGCGGTGTCCAGCGACCAGGA
 TCAGTCTCAGCTCGTACCAAGTACCCCCCTGCTGAAGCTGCTGTCCAGACCCCCAACATGGCG
 10 TGAAGGCCACGGCAAGTGCATCTGGGAGAACAAAGGTGTTCATCGTCCCCACCCGTGCCCCGTG
 CCTCTGGATCCAACATATCCTCTGCTGAAACTGCTGACCACCCAGACCACCCCCGAGAATAC
 CTCCCTGGTGGAACTGAGAGTGACCACCCCCAAGAGCACAGTCGTGATCAGGCTGCACCTGACCA
 CCAGATAACCACTGCTGTCACTGCTGAACAGCTACAGCACCCCCCTACCGGATCCCTGCTCCA
 TGTCCCTGGGCTCCTCAGAGGCCCCCATCCCTAACGCTTCTCCATGGGCCCTAGAATCCCTGC
 15 CCCTTGCCCTGGCACCTCCTAGACCTCCACACTGTCCATGGGTGCCCTCCACCTCCCTCAA
 GACCTTGGGCCCCCTGCTCCTGCTGTGCTTTGTGTGCTGTGCTGTGCTGATCAGA
 CCCCTGCTGCTGAGTGTGTCACCTACCTGAGGCCTCTGCTGTCTATCAGCGTGTACGCTCA
 GGTGCTGGTGTGGTGCTGCTGTGGTGTCCATCGGAAGCCTGCTGCCAGCGTGTGCATGT
 GTGCCTATGCCTGGGTGCTGGTGTACATCGCTGATTACAGCCCCGCCACCGCCATC
 20 GTGTACCGGGATGGCAATCCTACGCCGTGTGCGACAAGTGCCTGAAGTTCTACAGCAAGATCAG
 CGAGTACCGGCACTACTGCTACAGCCTGTACGGCACCCCTGGAACAGCAGTACAACAAGCCCC
 TGTGCGATCTGCTGATTGGTGCTCAACGTGGTGTACAGAGACTCCATCCCCACGCCCTGC
 CACAAGTGTATCGACTTCTACTCCAGAACATCAGAGAGCTGCCACTACAGCAGTCCGTGTACGG
 CGATAACCTGGAAAAGCTGACCAACACTGGCCTGTACAACCTGCTGATTAGATGCCTGCCGGTGT
 25 TCTGCAAGAAGGCCCTGACAGCCAGCGAGGTGTACAACCTCGCCTACACCGATCTGCCGGTGGT
 TATCGGGACAGCAAAGTGCAGAACAGCTGAGGTACTACAACCTGCTCTGTATGGGCCAGCCTGGT
 GTATTGCAAGGGACAGCTGACCGAGACAGAGGTGCTGGATTCGCCTTCACAGACCTGACAATCG
 TGTATCGCGACTCCAAGGTGTCCGAGTTCCGGTGGTACAGATATTCCGTGTGGCACCAACTG
 TGCCTGGGAATGCAAGAAAACCTGCAGAGATCTGAGGTGTACGACTGCCAGCGCCACTGTGTCC
 30 GCAGGAAAAGAAAAGACACGTGGACCTGAACAAGCGGTTCCACACCCTGCACGAGTACATGCTGG
 ATCTGCAGCCCGAGACAACCGACCTGTACTGCTACGAGCAGCCTGAAACACCACGTGATCTGCACTGT
 TATGAGCAGCTGGAGACAGCTCCGATGAAGAGGACACTGGCGGCCTGGATGGGACGAGGATGA
 GGACGAAGTGGACCCTGCAGGAACAGCCCCAGCAGGCTAGACGGACGAACAGCACCTTGCT
 ATCTGATCGAGACACAGTGTGCAAGTGCAGATGCGAATCTCTGGTGGAAAGAGAACGACGAGATCGACGGC
 35 GTGAACCACCAAGCATCTGCCGCTAGAAGGGCGAGCCTCAGAGACACACCACGCTGTGTATGTG
 CTGCAAGTGCAGGCCAGAATGCCGGCTCTGGACCTGGCGCCTGGCAAGCCTATCCCCAATC
 CACTGCTGGGCCTGGACTCCACCCGGACCTGATAAGCggccgctcgagcatgcatttagggcc
 ctattctatagtgtcacctaaatgctagagctcgctgatcagcctcgactgtgcctttagttgc
 cagccatctgttgcctccctccccgtgccttgcaccctggaaagggtgccactcccactgt

ccttcctaataaaatgaggaaattgcattgtctgagtaggtgtcattctattctgggg
 gtgggtggggcaggacagcaaggggaggattggaaagacaatagcaggcatgctggggatgcg
 gtggctctatggctctgaggcgaaagaaccagctgggctcgagggggatcgatccgtcG
 AGATATCTAGACCCAGCTTCTGTACAAAGTGGTATCGATTGACAGATCGCGATCGCAGTGA
 5 GTAGTGTCTGGGGGGAGGACCTGCATGAGGCCAGAATGACTGAAATCTGTGCTTCTG
 TGTGTCAGCATCATGAGCGGAAGCGGCTCCTTGAGGGAGGGTATTCCAGCCTTATCTGACG
 GGGCGTCTCCCCTCCTGGCGGGAGTGCAGAATGTGATGGGATCCACGGTGGACGGCCGGCC
 CGTGCAGCCCGGAACCTCTCAACCCCTGACCTATGCAACCCCTGAGCTCTCGCGACGCAG
 CTGCCGCCAGCTGCTGCATCCGCCAGCGCCGTGCGCGGAATGCCATGGCGCCGGCTAC
 10 TACGGCACTCTGGTGGCCAACTCGAGTCCACCAATAATCCGCCAGCCTGAACGAGGAGAAGCT
 GCTGCTGCTGATGGCCCAGCTTGAGGCCTTGACCCAGCGCCTGGCGAGCTGACCCAGCAGGTGG
 CTCAGCTGCAGGAGCAGACGCCGGCGTTGCCACGGTGAATCAAATAAAATGAATCAA
 TAAATAAACGGAGACGGTTGTTGATTTAACACAGAGTCTGAATCTTATTGATTTCGCGCG
 CGGTAGGCCCTGGACCACCGGTCTCGATCATTGAGCACCCGGTGGATCTTCCAGGACCCGGTA
 15 GAGGTGGCTTGGATGTTGAGGTACATGGCATGAGCCGTCCGGGTGGAGGTAGCTCCATT
 GCAGGGCCTCGTGCTCGGGGTGGTGTAAATCACCCAGTCATAGCAGGGCGCAGGGCGTGG
 TGTTGCACAATATCTTGAGGAGGAGACTGATGCCACGGCAGCCCTTGGTAGGTGTTAC
 AAATCTGTTGAGCTGGGAGGGATGCATGCCGGAGATGAGGTGCATCTGGCCTGGATCTTGA
 GATTGGCGATGTTACGCCAGATCCGCCTGGGTTATGTTGAGGACACCAGCACGGT
 20 TATCCGGTGCACTTGGGAATTATCATGCAACTTGGAAAGGAAGGCGTGAAGAATTGGCGAC
 GCCCTTGTGTCGCCAGGTTCCATGCACTCATCCATGATGGCAATGGCCGTGGCG
 CGGCCTGGCAAAGACGTTCGGGGTGGACACACATCATAGTTGTGGCCTGGTAGGTG
 TAGGCCATTAAATGAATTGGGGCGAGGGTGGACTGGGGACAAAGGTACCCCTGATCCC
 GGGCGTAGTTCCCTCACAGATCTGCATCTCCAGGCTTGAGCTCAGAGGGGGATCATGT
 25 CCACCTGCAGGGCGATAAACACGGTTCCGGGGGGAGATGAGCTGGCCGAAGCAAG
 TTCCGGAGCAGCTGGACTTGCCGCAGCGGTGGGCCGTAAATGACCCGATGACGGCTGCAG
 GTGGTAGTTGAGGGAGAGACAGCTGCCGTCCCGGAGGAGGGGCCACCTCGTTCATCATCT
 CGCGCACGTGCATGTTCTCGCGCACAGATTCCAGGCTTGAGCTCAGAGGGGGATCATGT
 TCCTGGAGCGAGGCGAAGTTCAGCGGCTTGAGTCCGTCGGCCATGGCATTGGAGAGGGT
 30 CTGTTGCAAGAGTTCCAAGCGGTCCAGAGCTCGGTGATGTGCTCTACGGCATCTCGATCCAGCA
 GACCTCCTCGTTCGCGGGTTGGGACGACTGCCGGAGTAGGGCACAGACGATGGCGTCCAGCG
 CAGCCAGGGTCCGGCTTCCAGGGCGCAGCGTCCGCGTCAAGGGTGGTCTCCGTACGGTGAAG
 GGGTGCAGGGCTGGCGCTGGCGAGGGTGCCTCAGGCTCATCCGGCTGGTCAGAAACCG
 CTCCCGATGGCGCCCTGCGCGTCCAGGTAGCAATTGACCATGAGTTCGTAGTTGAGCGCCT
 35 CGGCCGTGGCCTTGGCGGGAGCTTACGGAAAGTCTGCCCGCAGGCAGGAGGAG
 GACTTGAGGGCGTAGAGCTGGGGCGAGGAAGACGGAATGGGGCGTAGGCGTCCGCGCCGCA
 GTGGCGCAGACGGTCTCGCACTCCACGAGCCAGGTGAGGTGGCTGGTCAGGGTCAAAACCA
 GTTTCCCGCCGTTCTTTGATGCGTTCTTACCTTGGTCTCCATGAGCTCGTGTCCCCGCTGG
 GTGACAAAGAGGCTGTCCGTGTCCCCGTAGACCGACTTATGGCCGGTCTCGAGCGGTGTGCC

GCGGTCTCCTCGTAGAGGAACCCGCCACTCCGAGACGAAAGGCCGGTCCAGGCCAGCACGA
 AGGAGGCCACGTGGACGGGTAGCGGTGTTGTCCACCAGCGGGTCCACTTTCCAGGGTATGC
 AAACACATGTCCCCCTCGTCCACATCCAGGAAGGTGATTGGCTGTAAGTGTAGGCCACGTGACC
 GGGGTCCCGGCCGGGGGTATAAAAGGGGGCGGCCCTGCTCGTCCACTGTCTCCGGAT
 5 CGCTGTCCAGGAGCGCCAGCTGTTGGGTAGGTATTCCCTCTCGAAGGCAGGCATGACCTCGGCA
 CTCAGGTTGTCAGTTCTAGAAACGAGGAGGATTGATATTGACGGTGCCAGCGAGATGCCTT
 CAAGAGCCCCTCGTCCATCTGGTCAGAAAAGACGATTTTTGTTGTCAGCTGGTGGCGAAGG
 AGCCGTAGAGGGCGTTGGAAAGGAGCTGGCGATGGAGCGATGGTCTGGTTTTtCCTtGTG
 GCGCGCTCCTGGCCCGATGTTGAGCTGCACGTACTCGCGGCCACGCACCTCCATTGGGAA
 10 GACGGTGGTCATCTCGTCGGCACGATTCTGACCTGCCAACCTCGATTATGCAGGGTATGAGGT
 CCACACTGGTGGCCACCTCGCCCGCAGGGCTCGTTGGTCCAGCAGAGGCAGGCCCTGCGC
 GAGCAGAAGGGGGCAGAGGGTCCAGCATGACCTCGTCGGGGGTGGCATCGATGGTAAAGAT
 GCCGGGCAGGAGATCGGGTCGAAGTAGCTGATGGAAGTGGCCAGATCGTCCAGGGAAAGCTGCC
 ATTGCGCACGGCCAGCGCGCTCGTAGGGACTGAGGGCGTGCCTCAGGGCATGGGTGGTG
 15 AGCGCGGAGGCGTACATGCCAGATGTCGTAGACGTAGAGGGCTCTCGAGGATGCCGATGTA
 GGTGGGTAGCAGCGCCCCCGCGATGCTGGCGCGACGTAGTCATACAGCTCGTGCAGGGCG
 CGAGGAGCCCCGGGCCAGGTTGGTGCAGCTGGCTTTCGGCGCGTAGACGATCTGGCGAAAG
 ATGGCATGCGAGTTGGAGGAGATGGTGGCCTTGGAAAGATGTTGAAGTGGCGTGGGGAGGCC
 GACCGAGTCGCGGATGAAGTGGCGTAGGAGTCTGCAGTTGGCGACGAGCTGGCGGTGACGA
 20 GGACGTCCAGAGCGCAGTAGTCGAGGGCTCCTGGATGATGTCATACTTGAGCTGCCCTTTGT
 TTCCACAGCTCGCGTTGAGAAGGAACCTTCGCGGTCTCCAGTACTCTCGAGGGGAAACCC
 GTCCTGATCTGCACGGTAAGAGCCTAGCATGTAGAACTGGTGACGGCCTTGTAGGCGCAGCAGC
 CCTTCTCACGGGAGGGCGTAGGCCCTGGCGCCCTGGCGCAGGGAGGTGTGCGTAGGGCGAAG
 GTGTCCTGACCATGACCTTGAGGAACGGTGGCTGAAATCGATATCGTCGAGCCCCCTGCTC
 25 CCAGAGCTGGAAGTCCGTGCGCTTCTGTAGGCGGGTTGGCAAAGCGAAAGTAACATCGTTGA
 AAAGGATCTGCCCGCGGGCATAAAAGTTGCGAGTGATGCGAAAGGCTGGGCACCTCGGCC
 CGGTTGTTGATGACCTGGCGGGCGAGCACGATCTCGTCAAACCGTTGATGTTGTGGCCCACGAT
 GTAGAGTTCCACGAATCGCGGGCGGCCCTGACGTGGGAGCTTGTAGCTCCTCGTAGGTGA
 GCTCGTGGGTCGCTGAGACCGTGCTGCTCGAGCGCCAGTCGGCGAGATGGGGTTGGCGCG
 30 AGGAAGGAAGTCCAGAGATCCACGCCAGGGCGGGTTGCAGACGGTCCCGTACTGACGGAACTG
 CTGCCCGACGGCCATTTTGGGGGTGACGCAGTAGAAGGTGCGGGGCCCCGTGCCAGCGGT
 CCCATTGAGCTGGAGGGCGAGATCGAGGGCGAGCTCGACGAGGCAGGTCCCGTGGAGAGTT
 ATGACCAGCATGAAGGGGACGAGCTGCTGCCAGGGACCCATCCAGGTGAGGTTCCACATC
 GTAGGTGAGGAAGAGCCTTCGGTGCAGGGATGCGAGCCGATGGGAAGAAACTGGATTCCTGCC
 35 ACCAATTGGAGGAATGGCTGTTGATGTGAGGAAAGTAGAAATGCCGACGGCGGCCGAACACTCG
 TGCTTGTGTTATAACAAGCGGCCACAGTGCTCGCAACGCTGCACGGATGCACGTGCTGCACGAG
 CTGTACCTGAGTTCTTGACGAGGAATTCAAGTGGAGTGGAGTCGTGGCGCTGCATCTCGT
 GCTGTACTACGTGCGGGTGGTGGCGGCCCTGGCCCTTCTGCCTCGATGGGGTCATGCTGACGAGC
 CGCGCGGGAGGCAGGTCCAGACCTCGCGCGAGCGGGTCGGAGAGCGAGGACGAGGGCGCG

GCCGGAGCTGTCCAGGGTCTGAGACGCTGCGGAGTCAGGTCACTGGGCAGCGGCCGCGCG
 TGACTTGCAGGAGTTTCCAGGGCGCGGGAGGTCCAGATGGTACTTGTATCTCCACCGCG
 TTGGTGGCGACGTCGATGGCTTGCAGGGTCCCCTGGGTGTGACCACCGTCCCCGTT
 CTTCTGGCGGCTGGGCGACGGGGCGGTGCCTCTTCCATGGTTAGAAGCGGCCGAGGACG
 5 CGCGCCGGCGGCAGAGGCGGCTCGGGGCCGGAGGCAGGGCGGCAGGGCACGTCGGCGCCGC
 GCGCGGGTAGGTTCTGGTACTGCGCCGGAGAAGACTGGCGTGAGCGACGACGACGGTTGACG
 TCCTGGATCTGACGCCTCTGGTGAAGGCCACGGACCCGTGAGTTGAACCTGAAAGAGAGTT
 GACAGAATCAATCTCGGTATCGTTGACGGCGGCCTGCCAGGATCTTGCACGTCGCCGAGT
 TGTCTGGTAGGCGATCTCGGTATGAACTGCTCGATCTCCTCCTGAAGGTCTCCGCGACCG
 10 GCGCGCTCCACGGTGGCCGCGAGGTCGTTGGAGATGCGGCCATGAGCTGCAGAACGGCGTT
 GCCCGCCTCGTCCAGACGCGGCTGTAGACCACGACGCCCTGGGATCGCGGGCGCATGACCA
 CCTGGCGAGGTTGAGCTCACGTGGCGGTGAAGACCGCGTAGTTGCAGAGGCCTGGTAGAGG
 TAGTTGAGCGTGGTGGCGATGTGCTCGGTGACGAAGAAATACATGATCCAGCGCGGAGCG
 CTCGCTGACGTCGCCAGCGCCTCCAAGCGTTCCATGGCCTCGTAAAAGTCCACGGCGAAGTT
 15 AAAACTGGGAGTTGCGCGCCGAGACGGTCAACTCCTCCAGAACGACGGATGAGCTCGCGATG
 GTGGCGCGCACCTCGCGCTCGAAGGCCCCGGAGTTCCACTTCCCTTCTCCTCCTC
 CACTAACATCTCTTACTTCCTCAGGCGGTGGTGGCGGGGAGGGGCCTGCGTCGCC
 GGCGGCGCACGGCAGACGGTCGATGAAGCGCTCGATGGCTCGCCGCCGGCGCATGGTC
 TCGGTGACGGCGCGCCGTCCTCGCGGGGCCGAGCGTGAAGACGCCGCCATCTCAGGTG
 20 GCCGGGGGGTCCCCGTTGGCAGGGAGAGGGCGCTGACGATGCATCTTATCAATTGCCCGTAG
 GGACTCCCGCAAGGACCTGAGCGTCTCGAGATCCACGGATCTGAAAACCGTTAACGAAGGCT
 TCGAGCCAGTCGAGTCGAAGGTAGGCTGAGCACGGTTCTGCCGGTCATGTTGGGAGC
 GGGCGGGCGATGCTGCTGGTGAAGTTGAAATAGGCCTGAGACGGGAGGGTGGCGA
 GGAGCACCAGGTCTTGGCCCGGCTGCTGGATGCGCAGACGGTCGCCATGCCAGGC
 25 TCCTGACACCTGCCAGGTCTTGAGTAGTCCTGCATGAGCGCTCCACGGCACCTCCTC
 GCCCGCGGCCGTGCATGCGCGTGAAGCCGAAGCCGCGCTGGGCTGGACGAGCGCCAGGT
 CGACGACGCCCTCGCGAGGATGCCCTGCTGGATCTGGTGAGGGTGGCTGGAAAGTC
 TCGACGAAGCGGTGGTAGGCTCCGGTGGTGAAGGAGCAGTTGCCATGACGGACCAGT
 GACGGTCTGGTGGCCGGACGCACGAGCTCGTGGTACTTGAGGCAGTAGGC
 30 AGATGTAGTCGTTGCAGGTGCGCACCAAGGTACTGGTAGCCATGAGGAAGTGC
 CGGTAGAGCGGCCATCGCTCGTGGCGGGGGCGCCGGCGAGGTCCCTCGAGCATGG
 GTAGCCGTAGATGTACCTGGACATCCAGGTGATGCCGGCGGTGGTGGAGGC
 CGCGGACGCGGTTCCAGATGTTGCGCAGCGGAGGAAGTAGTCATGGTGG
 GTGAGGCAGCGCAGTCGTTGCTATACGGCAAAACGAAAGCGGT
 35 CGTGGCCTGGAGGCTAACGAAACGGTTGGCTGCGCGTGTACCCGGTCAATCT
 GCTGGAGCCGAGCTAACGTTGACTGGCACTCCGTCTCGACCCAAGCCTGC
 GGACCAACCCTCCA
 GGATACGGAGGCAGGGTCGTTGCAACTTTTGAGGCGGAAATGAAACTAG
 AAGCGGCCACCGCGATGGCTCGCTGCCGTAGTCTGGAGAAGAACG
 GTGCCCCGGTTGAGGCCGGATTCCGCGGCTAACGAGGGCGTGGCTGCC
 GTGGCTCGTTCCA

AGACCCCATA GCCAGCCGACTTCTCCAGTTACGGAGCGAGCCCCCTTTGTTTGT
 5 GCCAGATGCATCCCGTACTGCGGCAGATGCGCCCCCACCACCCTCCACCGCAACAA
 CCTCCACAGCCGGCGCTTCTGCCCGCCCCAGCAGCAGCAGCAACTCCAGCCACGACC
 GGCGCCGTGAGCGGGGCTGGACAGACTCTCAGTATGATCACCTGGCCTGGAAAGAGGG
 10 GGCTGGCGGCCTGGGGCGTCGTCGCCGGAGCAGCAGCACCCGCGGTGCAGATGAAA
 CGCGAGGCCTACGTGCCAAGCAGAACCTGTTCAGAGACAGGAGCGGAGGGAGCG
 GCGCGCCCGGTTCCACGCGGGCGGAGCTGCGCGCGCTGGACCGAAAGAGGG
 15 GGGACGAGGATTCGAGGCAGCAGCTGACGGGATCAGCCCCGCGCGCACGTGGCG
 GCCAACCTGGTCACGGCGTACGAGCAGACCGTGAAGGAGGGAGAGCAACT
 20 CAACCACGTGCGCACCCGATCGCGCGAGGAGGTGACCGCTGGCCTGATGCAC
 TGCTGGAGGCCATCGTGCAGAACCCACCAGCAAGCCGCTGACGGCGAGCTGTT
 CAGCATAGTCGGGACAACGAGGCAGCTCAGGGAGGCGCTGCTGAATAT
 25 CACCGAGCCCAGGGCTGACCTGGTGAACATTCTGCAGAGCATCGTGGTG
 CAGGAGCGCGGGCTGCCGCTGTCCGAGCTGGAGCTGGAGCTGGAGG
 30 AGGAGGGCGAGTACCTGGAAGACTGATGGCGCGACCGTATTTGCTAGAT
 CCTCCTGATCCCGCATGCGAGCGACGATCTGGGGGTGTACCGAAC
 TGAGCGCCAGCAGGCCGGCGAGCTGAGCGACCAGGAGCTGATGCAC
 35 ACCGGGGCCGGGACCGAGGGGAGAGCTACTTGACATGGCGGGACCTGC
 CACTGGCAGGCCAGGGCTTGGAGGCAGGCGTCCCGTACATAGAAGAG
 CGAGGAGGTCTGGCCATCGTAACCGCAGCTGGTGGAGAAC
 GGCCTGGGTACAACCGCGCTGCTGGAGCGCGTGGCCCGCTACA
 40 AACAGCACCAACGTGCAGACCAA
 CCTGGACCGCATGGTGACCGACGTGCGCGAGGCCGTGGCC
 CAGCGCGAGCGGGTCCACCGAGCCTGGAGG
 45 GGCCAGGAGGACTACACCAACTTCATCAGCGCCCTGCGCCTGATGGT
 GACCGAGGTGCCCCAGAGCGAGGTGAGG
 50 CGAGGTGTACAGTCCGGCCGGACTACTCTTCCAGACCAGTCGCC
 AGGGCTTGAGGAGGTGAGG
 55 ACCTGAGCCAGGCAGTTCAAGAACTTGCAAGGGCCTGTGGGGCG
 GCGACGGTGTGAGCCTGCTGACGCCAACTCGCGCCTGCTGCT
 60 GGACAGCGGAGCATCAACCGCAACTCGTACCTGGCTAC
 TCGGCCAGGCGACGTGGAGCAGACCTAC
 CAGGAGCAGCCGGCAATCTGGAAGCCAC
 65 CCTGAACCTGGCTGAGGAGGTGAGGAGGTGAGG
 70 CCCGCCAGTACACGCTCAGCGCCGAGGAGGAGCG
 GCCTGTTCTGATGCAGGAGGGGCCAC
 75 CAGCGCCGCGCTCGACATGACCGCG
 GAGCCCAGCATGTACGCCAGCAAC
 80 CGCCGGCTTCAATAACTGATGGACTACT
 GGCGCCATGAACTCTGACTATT
 CACCAACGCCATCCTGAAT
 85 CCCACTGGCTCCGCCGCCGG
 GGTTCTACACGGCGAGTACGACATGCC
 GACCCAAATGACGGGTTCTGTGG
 GACATGTGGAC

AGCAGCGTGTCTCCCCCGACC GG GTGCTAACGAGCGCCCTTGTGGAAGAAGGAAGGCAGCGA
 CCGACGCCGTCTCGCGCTGTCCGGCGAGGGTGCTGCCGCGGGTGCCGAGGCCA
 GTCCTTCCGAGCTTGCCTCTCGCTAACAGTATT CGCAGCAGCGAGCTGGCAGGATCACG
 CGCCCGCTTGCTGGCGAGGAGGTACTTGAATGACTCGCTGTTGAGACCCGAGCGGGAGAA
 5 GAACTTCCCCAATAACGGGATAGAGAGCCTGGTGGACAAGATGAGCCGCTGGAAGACGTATGCGC
 AGGAGCACAGGGACGATCCGTGCAGGGGCCACGAGCCGGCAGCGCCGCCGTAAACGCCGG
 TGGCACGACAGGCAGCGGGACTGATGTGGACGATGAGGATTCCGCCGACGACAGCGTGT
 GGACTTGGGTGGAGTGGTAACCGTTCGCTCACCTGCGCCCGCATCGGCGCATGATGTAAG
 AGAAACGAAAATAATGATACTCACCAAGGCCATGGCGACCAGCGTGCCTCGTTCTCTG
 10 TTGTTGTATCTAGTATGATGAGGCGTGCCTACCCGGAGGGCCTCCTCCCTCGTACGAGAGCGTG
 ATGCAGCAGGCGATGGCGGCGCGCGATGCAGCCCCGCTGGAGGCTCCTACGTGCCCG
 GCGGTACCTGGCGCCTACGGAGGGCGGAACAGCATTGTTACTCGGAGCTGGCACCCCTGTACG
 ATACCACCCGGTTGTACCTGGTGGACAACAAGTCGGCGACATCGCCTCGCTGAACCTACCA
 GACCAACAGCAACTCCTGACCACCGTGGTCAGAACAAATGACTTCACCCCCACGGAGGCCAGCAC
 15 CCAGACCATCAACTTGACGAGCGCTCGCGGTGGCGGTAGCTGAAAACCATCATGCACACCA
 ACATGCCAACGTGAACGAGTTATGTACAGCAACAAGTTCAAGGCGGGTGTGGCTCCCGC
 AAGACCCCCAACGGGTGACAGTGACAGATGGTAGTCAGGATATCTTGGAGTATGAATGGGTGGA
 GTTGAGCTGCCGAAGGCAACTTCTCGGTGACCATGACCTGATGAACAAACGCCATCA
 TCGACAATTACTGGCGGTGGCGGGCAGAACGGGTCTGGAGAGCGATATCGCGTGAAGTTC
 20 GACACTAGGAACCTCAGGCTGGCTGGACCCGTGACCGAGCTGGTCATGCCGGGTGTACAC
 CAACGAGGCCTCCACCCGATATTGTCTGCTGCCGGCTGCCGGTGGACTTCACCGAGAGCC
 GCCTCAGCAACCTGCTGGCATTGCAAGAGGCAGCCCTCCAGGAGGGCTTCAGATCATGTAC
 GAGGATCTGGAGGGGGCAACATCCCCGCGCTCTGGATGTCGACGCCTATGAGAAAAGCAAGGA
 GGAGAGCGCCGCCGCGACTGCACTGAGCTGACCCGCTCTACCGAGGTAGGGCGATAATT
 25 TTGCCAGCCCTGCAGCAGTGGCAGCGGGCGAGGGGGCTGAAACCGAAAGTAAGATAGTCATT
 CCGGTGGAGAAGGATAGCAAGGACAGGAGCTAACACGTGCTGCCGGACAAGATAAACACCGCCTA
 CCGCAGCTGGTACCTGGCTACAACATGGCAGCCCGAGAAGGGCGTGCCTGGACGCTGC
 TCACCACTCGGACGTACCTGCACCGTGGAGCAAGTCTACTGGTCGCTGCCGACATGATGCAA
 GACCCGGTCACCTCCGCTCCACCGTCAAGTTAGCAACTACCCGGTGGTGGCGCCGAGCTCCT
 30 GCCCGTCTACTCCAAGAGCTTCTCAACGAGCAGGCCGTACTCGCAGCAGCTGCGCGCCTCA
 CCTCGCTACGCACGTCTCAACCGCTCCCCGAGAACAGATCCTCGTCCGCCGCCGCC
 ACCATTACCACCGTCAGTAAAACGTTCTGCTCACAGATCACGGACCCCTGCCGCTGCGCAG
 CAGTATCCGGGGAGTCCAGCGGTGACCGTTACTGACGCCAGACGCCACCTGCCCTACGTCT
 ACAAGGCCCTGGCATAGTCGCGCCGCGTCTCGAGCCGACCTCTAAAAAAATGTCCATT
 35 CTCATCTCGCCCAGTAATAACACCGGTTGGGCCTGCGCGCCAGCAAGATGTACGGAGGCC
 TCGCCAACGCTCCACGCAACACCCGTGCGCGTGCAGGGCACTTCCCGCTCCCTGGGGCGCC
 TCAAGGGCCGCGTGCAGGTCGCGCAGCACCGTCGACGACGTGATCGACCAGGTGGTGGCGACGCG
 CGCAACTACACCCCGCCGCCGCCGTCTCCACCGTGGACGCCGTACGACAGCGTGGTGG
 CGACCGCGCCGGTACGCCCGCCAAGAGGCCGGCGCATGCCGGCAGCGACCCGGAGCA

CCCCCGCCATGCGCGCGCGAGCCTTGCTGCGCAGGCCAGGCACGGACGCAGGGCCATG
 CTCAGGGCGGCCAGACGCGCGCTTCAGGCGCCAGCGCCGGCAGGACCCGGAGACGCGCGGCCAC
 GGCGGCGGCAGCGGCCATGCCAGCATGTCCCAGCGGGCAGGGAACGTGTACTGGGTGCGCG
 ACGCCGCCACCGGTGTGCGGTGCCCAGCGCACCCGCCCCCTCGCACTTGAAGATGTTCACTT
 5 CGCGATGTTGATGTGTCCCAGCGGGGAGGAGGATGTCCAAGCGCAAATTCAAGGAAGAGATGCTC
 CAGGTGATCGCGCCTGAGATCTACGGCCCCGCGGTGGTGAAGGAGGAAAGAAAGCCCCGCAAAT
 CAAGCGGGTCAAAAGGACAAAAGGAAGAAGATGACGATCTGGTGGAGTTGTGCGCGAGTTCG
 CCCCCCGGCGCGGTGCAGTGGCGCGGGCGGAAAGTGCACCCGGTGCTGAGACCCGGCACCA
 GTGGTCTTCACGCCCGCGAGCGCTCCGGCAGCGCTTCCAAGCGCTCCTACGACGAGGTGTACGG
 10 GGACGAGGACATCCTCGAGCAGGCGGCCAGCGCCTGGCGAGTTGCTTACGGCAAGCGCAGCC
 GCCCGCCCTGAAGGAAGAGGCGGTGTCCATCCCGCTGGACCACGGCAACCCACGCCAGCCTC
 AAGCCCCTGACCGTGCAGCAGGTGCTGCCAGCGCAGCGCCGCCGGGGTTCAAGCGCGAGGG
 CGAGGATCTGTACCCACCATGCAGCTGATGGTGCCAAGCGCCAGAAGCTGGAAGACGTGCTGG
 AGACCATGAAGGTGGACCCGGACGTGCAGCCGAGGTCAAGGTGCGGCCATCAAGCAGGTGGCC
 15 CGGGGCCTGGCGTGCAGACCGTGGACATCAAGATCCCCACGGAGCCATGGAAACGCAGACCGA
 GCCCATGATCAAGCCCAGCACCAGCACCATGGAGGTGCAGACGGATCCCTGGATGCCATCGGCTC
 CTAGCCGAAGACCCCGCGCAAGTACGGCGGCCAGCCTGCTGATGCCAACTACGCGCTGCAT
 CCTTCCATCATCCCCACGCCGGCTACCGCGGCACGCCGCTTCTACCGCGGTATACAACCAGCCG
 CCGCCGAAGACCACCACCGCCGCCGCGTGCACAGCCGCTGCATCTACCCCTGCCGCC
 20 TGGTGGAGAGGTGTACCGCCGCCGGCGCGCCTCTGACCTACCGCGCGCGCTACCAACCG
 AGCATGCCATTAAACTTTCGCCTGCTTGCAGATGGCCCTCACATGCCGCCTCCGCGTTCCA
 TTACGGGCTACCGAGGAAGAAAACCGCGCCGTAGAAGGCTGGGGGGAACGGGATGCGTCGCCAC
 CACCATCGCGGGCGCGCCATCAGCAAGCGTTGGGGgAGGCTTCCTGCCCGCGCTGATCCC
 CATCATGCCCGGGCGATCGGGCGATCCCCGGATTGCTTCCGTGGGGTGCAGGCCTCTCAGC
 25 GCCACTGAGACACTGGAAAACATCTTGTAAATAACCAATGGACTCTGACGCTCCTGGCCTGTG
 ATGTGTTTCGTAGACAGATGGAAGACATCAATTTCGCTCCCTGGCTCCGCGACACGGCACCG
 GCCGTTCATGGCACCTGGAGCGACATCGGCACCAGCCAATGAAACGGGGCGCCTCAATTGGA
 GCAGTCTCTGGAGCGGGCTTAAGAATTTCGGGTCCACGCTAAACCTATGGCAGCAAGGCGTGG
 AACAGCACACAGGGCAGGGCTGAGGGATAAGCTGAAAGAGCAGAACCTCCAGCAGAAGGTGG
 30 CGATGGGCTCGCCTCGGCATCAACGGGTGGACCTGGCCAACCAGGCCGTGCAGCGGCAGA
 TCAACAGCCGCCTGGACCCGGTGCGCCCGCCGGCTCCGTGGAGATGCCGCAGGTGGAGGAGGAG
 CTGCCTCCCTGGACAAGCGGGCGAGAAGCGACCCGCCCGACGCCGGAGGAGACGCTGCTGAC
 GCACACGGACGAGCCGCCCGTACGAGGGAGGCGGTGAAACTGGGTCTGCCACCACGCC
 TCGGCCCTGGCCACCGGGGTGCTGAAACCGAAAGTAATAAGCCCGACCCCTGGACTTGCCT
 35 CCTCCCGCTTCCGCCCTCTACAGTGGCTAAGCCCTGCCGCCGTGGCCGTGGCCCGCGCG
 ACCCGGGGGCTCCGCCCGCCCTCATGCGAACTGGCAGAGCACTCTGAACAGCATCGTGGGTCTGG
 GAGTGCAGAGTGTGAAGCGCCGCCGTGCTATTAAACCTACCGTAGCGCTTAACCTGCTTGTCTG
 TGTGTGTATGTATTATGTCGCCGTGTCCGCCAGAAGGAGGAGTGAAGAGGCGCGTCCGAGTT
 GCAAGATGCCACCCATCGATGCTGCCAGTGGCGTACATGCACATGCCGGACAGGACGCT

TCGGAGTACCTGAGTCCGGGTCTGGTGCAGTTGCCCGGCCACAGACACCTACTTCAGTCTGGG
 GAACAAGTTAGGAACCCCACGGTGGCGCCACGCACGATGTGACCACCGACCGCAGCCAGCGC
 TGACGCTGCGCTTCTGGTGCCTGGACCGCGAGGACAACACCTACTCGTACAAAGTGCCTACACG
 CTGGCCGTGGCGACAACCGCGTGGACATGCCAGCACCTACTTGACATCCGGCGTGCT
 5 GGATCGGGGCCCTAGCTCAAACCCACTCCGGCACCGCCTACAAACAGCCTGGCTCCAAAGGGAG
 CGCCCAATTCCAGCCAGTGGAGCaAAAAAAGGCAGGCAATGGTGACACTATGGAAACACACACA
 TTTGGTGTGGCCCCAATGGCGGTGAGAATATTACAATCGACGGATTACAAATTGGAACGTGACGC
 TACAGCTGATCAGGATAAACCAATTATGCTGACAAACATTCCAGCCTGAACCTCAAGTAGGAG
 AAGAAAATTGGCAAGAAACTGAAAGCTTTATGGCGGTAGGGCTCTAAAAAGACACAAAGCATG
 10 AACCTTGCTATGGCTCCTATGCTAGACCCACCAATGTAAGGGAGGTCAAGCTAAACCTAAAGT
 TGGAGCTGATGGAGTTCTACCAAAGAATTGACATAGACCTGGCTTCTTGATACTCCGGTG
 GCACAGTGAATGGACAAGATGAGTATAAAGCAGACATTGTCATGTATACCGAAAACACGTATCTG
 GAAACTCCAGACACGCATGTGGTATACAAACCAGGCAAGGATGATGCAAGTCTGAAATTACCT
 GGTTCAGCAGTCCATGCCAATAGACCCAATATTGGGTTAGAGACAACCTTATTGGCTCA
 15 TGTATTACAACAGTACTGGCAATATGGGGTGCTGGCTGGTCAGGCCTCACAGCTGAATGCTGTG
 GTCGACTTGCAAGACAGAACACCCGAGCTGTCATACCAGCTTGTGACTCTTGGGTGACAG
 AACCCGGTATTCAGTATGTGGATCAGCGGTGGACAGTTATGATCCTGATGTGCGCATTATTG
 AAAACCATGGTGTGGAAGACGAACCTCCAACTATTGCTCCCCCTGGATGGCTGGCAACTAAT
 GCCGCTTACCAAGGTGTGAAAGTAAAAATGGTAACGATGGTATGTTGAGAGCGAATGGAAAA
 20 TGATGATACTGTCGCAGCTCGAAATCAATTATGCAAGGGCAACATTGGCATGGAAATTAAACC
 TCCAAGCCAACCTGTGGAGAAGTTCTACTCGAACGTGGCCCTGTACCTGCCGACTCTAC
 AAGTACACGCCAGCCAACATCACCCCTGCCACCAACACCAACTTATGATTACATGAACGGGAG
 AGTGGTGCCTCCCTCGCTGGACGCCTACATCAACATCGGGCGCGTGGCGCTGGACCCCA
 TGGACAACGTCAATCCCTCAACCACCGCAACGCGGGCTGCGTACCGCTCCATGCTCCTG
 25 GGCAACGGCGCTACGTGCCCTCACATCCAGGTGCCAGAAATTTCGCCATCAAGAGCCT
 CCTGCTCCTGCCGGGTCTACACCTACGAGTGGAACTTCCGCAAGGACGTCAACATGATCCTGC
 AGAGCTCCCTCGCAACGACCTGCGCACGGACGGGCTCCATCTCCTCACAGCATCAACCTC
 TACGCCACCTTCTTCCCGATGGCGACAACACGGCCTCCAGCTCGAGGCCATGCTGCGAACGA
 CACCAACGACCAGTCCTCAACGACTACCTCTCGCGGCCAACATGCTTACCCATCCGGCCA
 30 ACGCCACCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGCGCCTCCGGCTGGTCTTC
 ACGCGCCTCAAGACCAAGGAGACGCCCTCGCTGGCTCCGGTTCGACCCCTACTCGTCTACTC
 GGGCTCCATCCCCTACCTCGACGGCACCTCTACCTCAACCACACCTCAAGAAGGTCTCCATCA
 CCTTCGACTCCTCCGTACGCTGGCCGGCAACGACCGGCTCTGACGCCAACGAGTTGAAATC
 AAGCGCACCGTCACGGCGAGGGATAAACGTGGCCAGTGCAACATGACCAAGGACTGGTCT
 35 GGTCCAGATGCTGGCCCACATACAACATCGGCTACCAGGGCTTCTACGTGCCAGGGCTACAAGG
 ACCGCATGTACTCCTTCTCGCAACTTCCAGGCCATGAGCCGCCAGGTGGTGGACGAGGTCAAC
 TACAAGGACTACCAGGCCGTACCCCTGGCCTACCAGCACAACAACCTGGGCTCGTGGCTACCT
 CGCGCCACCATGCGCCAGGGCCAGCCACTACCCGTACCCGCTCATGGCAAGA
 GCGCCGTACCCAGCGTCACCCAGAAAAAGTTCTGCGACAGGGTATGTGGCGCATCCCTTC

TCCAGCAACTTCATGTCCATGGCGCGCTCACCGACCTCGGCCAGAACATGCTCTATGCCAACTC
 CGCCCACGCGCTAGACATGAATTGAGTCGACCCATGGATGAGTCCACCCCTCTATGTTG
 TCTTCGAAGTCTCGACGTCGTCCGAGTGCACCAGCCCCACCGCGCGTCATCGAGGCCGTCTAC
 CTGCGCACCCCTCTGGCCGGTAACGCCACCACCTAAATTGCTACTTGCATGATGGCTGAGCC
 5 CACAGGCTCCGGCGAGCAGGAGCTCAGGGCCATCATCCGCGACCTGGGCTGCGGGCCCTACTTCC
 TGGGCACCTTCGATAAGCGCTTCCCAGGGATTCATGGCCCCGACAAGCTGGCCTGCGCCATCGTC
 AACACGGCCGGCGAGACCGGGGGCGAGCACTGGCTGGCCTCGCCTGGAACCCGCGCTCGAA
 CACCTGCTACCTCTCGACCCCTCAGGGTTCTCGGACGAGCGCCTCAAGCAGATCTACCAGTTG
 AGTACGAGGGCCTGCTGCCGTAGCGCCCTGGCCACCGAGGACCGCTCGTCACCCTGGAAAAG
 10 TCCACCCAGACCGTGCAGGGTCCGCGCTCGGCCCTGCGGCTCTTGCTGCTGCATGTTCTGCA
 CGCCTTCGTGCACTGGCCCACCGCCCCATGGACAAGAACCCACCATGAACTGCTGACGGGGG
 TGCCCAACGGCATGCTCCAGTCGCCCCAGGTGGAACCCACCGCTGCCGCAACCAGGAGGGCGCTC
 TACCGCTTCCTCAACTCCCACCTCCGCCTACTTCGCTCCCACCGCGCGCATCGAGAACGCCAC
 CGCCTTCGACCGCATGAACAATCAAGACATGTAACCGTGTGTATGTTAAAATATCTTTAA
 15 TAAACAGCACTTAATGTTACACATGCATCTGAGATGATTTATTTAGAAATCGAAAGGGTTCT
 GCCGGGTCTCGGCATGGCCCGGGCAGGGACACGTTGCGGAACTGGTACTTGGCCAGGCCACTTG
 AACTCGGGGATCAGCAGTTGGCAGCAGGGTGTGCGGGGAAGGAGTCGGTCCACAGCTCCGCGT
 CAGCTGCAGGGCGCCAGCAGGTGGCGCGGGAGATCTTGAAATCGCAGTTGGACCCCGCTTCT
 GCGCGCAGAGAGTTGCGGTACACGGGTTGCAGCACTGGAACACCATCAGGGCCGGTGCTTCACG
 20 CTCGCCAGCACGCCGCGTCGGTATGCTCTCCACGTCGAGGTCTCGGCCTGGCGTTGCCATCCGAA
 GGGGGTCATCTGCAGGTCTGCCTCCATGGTGGCAGCAGCAGGGCTTGTGGTTGCAATCGC
 AGTGCAGGGGATCAGCATCATCTGGCCTGGTGGCGTTCATCCCCGGTACATGGCCTTCATG
 AAAGCCTCCAATTGCCTGAACGCCTGCTGGCCTGGCTCCCTGGTGAAGAACCCCGCAGGA
 CTTGCTAGAGAACTGGTGGCACAGCCGCATCGCAGCAGCAGCGCGCTCGTTGG
 25 CCAGCTGCACCAACGCTGCGCCCCAGCGGTTCTGGTGATCTGGCCGGTCTGGGTTCTCCTTC
 AGCGCGCTGCCGTTCTCGCTGCCACATCCATCTCGATCATGTCCTCTGGATCATGGT
 GGTCCCGTGCAGGCACCGCAGTTGCCCTCGGCCTCGGTGCACCCGTGCAGCCACAGCGCGCACC
 CGGTGCACCTCCAGTTCTGTGGCGATCTGGAATGCGCGTGCACGAACCTGCAAGGAAGCGG
 CCCATCATGGCGTCAGGGTCTTGTGCTAGTGAAGGTCAACGGGATGCCGCGTGCCTCGTT
 30 GATGTACAGGTGGCAGATGCGCGGTACACCTGCCCTGCTGGGCATCAGTTGGAAGTTGGCTT
 TCAGGGTGGCTCCACGCGGTAGCGGTCCATCAGCATAGTCATGATTCCATGCCCTCTCCAG
 GCCGAGACGATGGCAGGCTCATAGGGTTCTCACCATCATCTTAGCACTAGCAGCCGGCCAG
 GGGTCGCTCTCATCCAGGGTCTCAAAGCTCCGCTGCCGTTCTCGGTGATCCGCACCGGGG
 GGTAGCTGAAGCCCACGGCGCCAGCTCCTCGGCCTGTCTTCGTCCTCGCTGTGGCTG
 35 ACGTCCTGCATGACCACATGCTTGGTCTTGCAGGGTTCTTGGCGAGTGGCGCGGAGA
 TGCTTGTGGCGAGGGGGAGCGCGAGTTCTCGCTACCACTACTATCTTCCCTTGGTCCG
 AGGCCACGCGGGCGGTAGGTATGTCTTCCGGGGCAGAGGGCGAGGGCGACGGGCTCTGCCGCC
 CGACTTGGCGGATGGCTGGCAGAGCCCCTCCGCGTTGGGGTGCCTCCCGCGCTCTGA
 CTGACTTCCCTCCGCGGCCATTGTGTTCTCCTAGGGAGGAACAACAAGCATGGAGACTCAGC

CATGCCAACCTGCCATCTGCCCCACCGCCGGCAGCAGAAGCAGCAGCAGAATGAAAGC
 TTAACCGCCCCGCCGCCAGCCCCGCCTCCGACGCAGCCGGTCCCAGACATGCAAGAGATGGA
 GGAATCCATCGAGATTGACCTGGGCTATGTGACGCCCGGGAGCATGAGGAGGAGCTGGCAGTGC
 GCTTCAATCGTCAAGCCAGGAAGATAAAGAACAGCCAGAGCAGGAAGCAGAGAACGAGCAGAGT
 5 CAGGCTGGGCTCGAGCATGGCGACTACCTCCACCTGAGCAGGGAGGAGCAGCGCTCATCAAGCA
 TCTGGCCCAGGCCACCATCGTCAAGGACGCGCTGCTCGACCGCACCGAGGTGCCCTCAGCG
 TGGAGGAGCTCAGCCGCCTACGAGCTAACCTCTTCGCGCGCGTGCCCCCAAGCGCCAG
 CCCAACGGCACCTGCGAGCCAACCCCCGCCTCAACTTACCCGGTCTCGCGGTGCCGAGGC
 CCTGGCACCTACCACATCTTTCAAGAACCAAAAGATCCCCGTCTCCTGCCGCCAACCGCA
 10 CCCCGCCGACGCCCTCTCAACCTGGGCTCCGGCCCGCTACCTGATATCGCCTCCTGGAA
 GAGGTTCCAAGATCTCGAGGGCTGGCAGCGACGAGACTCGGGCCGGAACGCTCTGCAAGG
 AGAAGGAGGAGGAGGAGCATGAGCACCACAGGCCCTGGTCGAGTTGGAAGGGGACAACGCGGGC
 TGGCGGTGCTCAAACGCACGGTCAGCTGACCCATTCGCGCTACCCGGCTCTGAACCTGCCCC
 AAAGTCATGAGCGCGGTATGGACCAGGTGCTCATCAAGCGCGCTGCCCATCTCGAGGACGA
 15 GGGCATGCAAGACTCCGAGGAGGGCAAGCCCCTGGTCAGCGACGAGCAGCTGGCCGGTGGCTGG
 GTCCTAATGCTACCCCTCAAAGTTGGAAGAGCGGCGCAAGCTCATGATGGCGTGGCTGGTG
 ACCGTGGAGCTGGAGTGCCTGCGCCGTTCTCGCCACGCGGAGACCGTGCAGGTCAGGA
 GAACCTGCACTACCTCTTCAGGCACGGGTTCGTGCAGGCCAGGCCTGCAAGATCTCAAACGTGGAGC
 TGACCAACCTGGTCTCCTACATGGCATCTTGACAGAACCGCCTGGGCAGAACGTGCTGCAC
 20 ACCACCCCTGCGCGGGGAGGCCCGCCGCACTACATCCGCACTGCGTCTACCTTACCTCTGCCA
 CACCTGGCAGACGGCATGGCGTGGCAGCAGTGTGGAGGAGCAGAACCTGAAAGAGCT
 GCAAGCTCCTGCAAAAGAACCTCAAGGGCTGTGGACCGGGTCTGACGAGCGGACCACCGCTCG
 GACCTGGCCGACCTCATCTTCCCCGAGCGCCTCAGGCTGACGCTGCGCAACGCCCTGCCGACTT
 TATGAGCCAAGCATGTTGCAAAACTTCGCTCTTCATCCTCGAACGCTCCGGAATCCTGCCG
 25 CCACCTGCTCCGCGCTGCCCTCGGACTTCGTGCCGCTGACCTCCGCGAGTGCCCCCGCCGCTG
 TGGAGCCACTGCTACCTGCTGCGCCTGGCCAACCTACCTGGCTACCAACTCGGACGTGATCGAGGA
 CGTCAGCGCGAGGGCCTGCTCGAGTGCCACTGCCGCTGCAACCTCTGCACGCCGACCGCTCCC
 TGGCCTGCAACCCCCAGCTGCTGAGCGAGACCCAGATCATGGCACCTCGAGTTGCAAGGGCCC
 AGCGAGGGCGAGGGAGCCAAGGGGGTCTGAAACTCACCCGGGCTGTGGACCTGGCCTACTT
 30 GCGCAAGTTCGTCCCCGAGGATTACCATCCCTCGAGATCAGGTTCTACGAGGACCAATCCCAGC
 CGCCCAAGGCCGAGCTGTCGGCCTCGTACACCCAGGGGCGATCCTGGCCAATTGCAAGCC
 ATCCAGAAATCCCAGCAAGAATTCTTGCTGAAAAAGGGCGGGGTCTACCTCGACCCCCAGAC
 CGGTGAGGAGCTAACCCGGCTTCCCCCAGGATGCCCGAGGAAACAAGAAGCTGAAAGTGGAG
 CTGCCGCCGTGGAGGATTGGAGGAAGACTGGGAGAACAGCAGTCAGGCAGAGGAGATGGAGGA
 35 AGACTGGACAGCACTCAGGCAGAGGAGGACAGCCTGCAAGACAGTCTGGAGGAAGACGGAGGAG
 AGGCAGAGGAGGAGGTGGAAGAAGCAGCCGCCAGACCGTGTGCTCGGCGGGGAGAACAGCA
 AGCAGCACGGATACCATCTCCGCTCCGGTCCGGCTCCGCTCGGCCAACAGTAGATGGACGA
 GACCGGGCGATTCCCGAACCCCCACCACCCAGACCGTAAGAAGGAGCAGGCAGGGATAAGTCCT
 GGCGGGGGCACAAAAGCCATCGTCTCGCTTGCAAGGCCTGCCGGGGCAACATCTCCTCACC

CGCGCTACCTGCTCTCCACCGCGGGGTGAACCTCCCCGCAACATCTGCATTACTACCGTCA
 CCTCCACAGCCCCTACTACTTCCAAGAAGAGGCAGCAGCAGCAGaAAAAGACCAGAAAACCAGCT
 AGAAAATCCACAGCGCGGCAGCGGCAGGTGGACTGAGGATCGCGCGAACGAGCCGGCGCAGAC
 CGGGAGCTGAGGAACCGGATCTTCCCACCCTATGCCATCTCCAGCAGAGTCGGGGCAGG
 5 AGCAGGAACTGAAAGTCAAGAACCGTTCTCGCGCTCGCTCACCGCAGTTGTCTGTATCACAAG
 AGCGAAGACCAACTCAGCGCACTCTCGAGGACGCCGAGGCTCTTCAACAAGTACTGCGCGCT
 CACTCTTAAAGAGTAGCCCGGCCAGTCGAGAAAAGGCAGGAAATTACGTACCTGTGC
 CCTTCGCCCTAGCCGCCTCCACCCAGCACGCCATGAGCAAAGAGATTCCCACGCCTACATGTG
 GAGCTACCAGCCCCAGATGGGCCTGGCCGCCGCCAGGACTACTCCACCCGCATGAATT
 10 GGCTCAGCGCCGGGCCCCGATGATCTCACGGGTGAATGACATCCGCCCCACCGAAACCAGATA
 CTCCTAGAACAGTCAGCGCTCACCGCCACGCCCGCAATCACCTCAATCCGCGTAATTGGCCCGC
 CGCCCTGGTGTACCAGGAAATTCCCCAGCCCACGACCGTACTACTTCCGGAGACGCCAGGCCG
 AAGTCCAGCTGACTAACTCAGGTGTCCAGCTGGGGCGGCCACCCCTGTGTCGTACCGCCCC
 GCTCAGGGTATAAGCGGCTGGTATCCGGGCAGAGGCACACAGCTAACGACGAGGTGGTGAG
 15 CTCTCGCTGGTCTGCGACCTGACGGAGTCTTCAAACTCGCCGGATGGGAGATCTTCTTCA
 CGCCTCGTCAGGCGGTCTGACTTGGAGAGTTCGTCCTCGCAGCCCCGCTGGCGGCATCGC
 ACTCTCCAGTTCGTGGAGGAGTTCACTCCCTCGGTCTACTCAACCCCTCTCCGGCTCCCCGG
 CCACTACCCGGACGAGTTCACTCCGAACCTTGACGCCATCAGCGAGTCGGTGGACGGCTACGATT
 GATTAATTAACTAAACCCCTTACCCCTTACCCCTCCAGTAAAATAAGATTAAAATGATT
 20 GAATTGATCAATAAGAACACTTACTTGAAATCTGAAACCAGGTCTGTCCATGTTCTGTC
 AGCAGCACTCACTCCCTCTTCCAACTCTGGTACTGCAGGCCGGCTGCAAACCTCCT
 CCACACTCTGAAGGGGATGTCAAATTCCCTGTCCTCAATCTCATTATCTTCTATCAGA
 TGTCCAAAAGCGCGCGCGGGTGGATGATGGCTTCGACCCGTGTACCCCTACGATGCAGACAAAC
 GCACCGACTGTGCCCTCATCAACCCCTCCGTCTTCAGATGGATTCCAAGAAAAGCCCCT
 25 GGGGTGTTGTCCTGCGACTGGCCGACCCGTACCCACCAAGAATGGGCTGTACCCCTCAAGC
 TGGGGAGGGGGTGGACCTCGACGACTCGGAAAACATCTCCAAAATGCCACCAAGGCCACT
 GCCCCTCTCAGTATTCCAACGGCACCATTCCCTAACATGGCTGCCCTTTACAACAACAA
 TGGAACGTTAAGTCTCAATGTTCTACACCATTAGCAGTATTCCCACTTAACACTTAGGTA
 TCAGTCTTGAAACGGTCTCAAACCTTAATAAGTTGCTGACTGTACAGTTAACTCATCCTCTT
 30 ACATTCAAGCTCAAATAGCATCACAGTAAAACAGACAAAGGACTCTATATTCTAGTGGAAA
 CAGAGGGCTTGAGGCTAACATAAGCCTAAAAGAGGACTGATTTGATGGTAATGCTATTGCAA
 CATACTTGGAAAGTGGTTAGACTATGGATCCTATGATAGCGATGGAAAACAAGACCCATCATC
 ACCAAAATTGGAGCAGGTTGAATTGATGCTAATAATGCCATGGCTGTGAAGCTAGGCACAGG
 TTTAAGTTGACTCTGCCGGTGCCTAACAGCTGGAAACAAAGAGGATGACAAGCTAACACTT
 35 GGACTACACCTGACCCAAGCCCTAATTGTCAATTACTTCAGACAGAGATGCCAAATTACCTA
 TGTCTTACAAATGCGGTAGTCATAACTAGGCAGTGTGCAGTAGCTGCTGTTACTGTAGGTT
 AGCACTAAATCCAATTAAATGACACAGTAAAAGGCCATAGTATTCCCTAGATTGACTCTGACG
 GTGTGCTCATGTCAAACCTCATCAATGGTAGGTGATTACTGGAACTTTAGGGAGGACAGACC
 CAAAGTGTGGCCTATACAAATGCTGTGGATTGATGCCAATCTAGGTGCATATCCTAAAACCCA

AAGCAAAACACCAAAAAATAGTATAGTAAGTCAGGTATTTAAATGGAGAAACTACTATGCCAA
 TGACACTGACAATAACTTCAATGGCACTGATGAAAAAGACACAACACCTGTGAGCACTTACTCC
 ATGACTTTACATGGCAGTGGACTGGAGACTATAAGGACAAGAATATTACCTTGCTACCAACTC
 CTTTACTTCTCCTACATGGCCAAGAATAAACCTGCATGCCAACCCATTGTTCCCACCACTA
 5 TGGAAAACCTCTGAAGCAGAAAAAATAAGTTCAAGTGTGTTATTGATTCAACAGTTTCTcaca
 gaacccttagtattcaacacctgccacccctcccaacacacagagtacacagtccttctccccgg
 ctggccttaaaaagcatcatatcatggtaacagacatattcttaggttatattccacacgg
 ttcctgtcgagccaaacgctcatcagtgatattaataactccccggcagctcacttaagttca
 tgcgtgtccagctgctgagccacaggctgctccaacttgcgggtcttaacggggcgaa
 10 ggagaagtccacgcctacatggggtagagtcataatcgtgcattcaggatagggcggtgg
 cagcagcgcgcaataaactgctgccgcgcgcgcgcgcgcgcgcgcgcgcgcgcgc
 tctcctcagcgatgattcgaccggccgcagcataaggcgcctgtcctccggcacagcagcgc
 accctgatctcactaaatcagcacagtaactgcagcacagcaccacaatattgttcaaaatccc
 acagtgcaggcgctgtatccaaagctcatggcgaccacagaaccacgtggccatcatacc
 15 acaagcgcaggtagattaagtggcgaccctcataaacacgcgtggacataacattac
 ggcattgttaattcaccacccctccggtaccatataaacctctgattaaacatggcgccatccac
 caccatcctaaaccagctggccaaacccctgcccggctataactgcaggaaaccggactgg
 aacaatgacagtggagagccaggactcgtaaccatggatcatcatgcgtcatgatata
 ttggcacaacacaggcacacgtgcataacttcctcaggattacaagctcctccggcttag
 20 catatcccaggaaacaaccattcctgaatcagcgtaaatcccacactgcaggaaagac
 cgtactcactcgatgtcaagttacattcggcagcagcggatgatcctccagtgat
 gtagcgcgggttctgtctaaaaggaggtagacgatccctactgtacggagtgcgc
 ccgagatcgtgttgcgttagtgcataatggAACGCCGGAGCTGAGTCTGAG
 25 cggatcgatccggatcgatccggatcgatccggatcgatccggatcgatccggat
 gtagtagttgtatccactctcaaagcatccaggcgccccctggcttcgggttatgt
 aaactccttcatgcgcgcgtccctgataacatccaccaccgcagaataagcc
 acaccacatcgatcgatccggatcgatccggatcgatccggatcgatccggat
 CCTTATTCCAAACGGTCTCGGAGCACTCAAAATGCAGGTCCGGAGGTGGCAC
 30 CTCTCGCCCCACTGTGTTGGAAAATAACAGCCAGGTCAAAGGTGACACGGTCT
 CGAGATGTTCCACGGTGGCTTCTTCCAGCCTTG
 AATGATTGTTCTGAGGTAAATCCAAGCCAGCCATGATAAAAAGCTCGCGAG
 CGC
 CCTCCACCGGCATTCTTAAGCACACCCCTCATAATTCCAAGAGATTCTG
 GCCTGGTTCACCTGCA
 GCAGATTAACAATGGGAATATCAAATCTGCCGCGATCCCTAAGCT
 CCTCCCTCAACAA
 35 TGTATGTAATCTTCATATCATCTCCGAAATTAGCCATAGGGCCGCCAGGA
 ATAAGAGCAGG
 GCAAGCCACATTACAGATAAAGCGAAGTCCTCCCCAGTG
 WGCA
 TTGC
 ATGCC
 AAATGTAAGATTGAAAT
 AAGCATGCTGGCTAGACCCTGTGATATCTCCAGATAACTGGACAG
 AAAATCAGGCAAGCA
 ATT
 TTAAGAAAATCAACAAAAGAAAAGTCGTCCAGGTGCAGGTTAG
 AGCCTCAGGA
 AACGATGGA
 ATAAGTGCAAGGAGTGCGTTCCAGCATGGTTAGTGTTTTGG
 GATCTGTAGA
 AACAAAAATA

AACATGCAATATTAAACCATGCTAGCCTGGCGAACAGGTGGTAAATCACTCTTCAGCACCAG
 GCAGGGCTACGGGTCTCCGGCGACCCCTCGTAGAAGCTGTCGCCATGATTGAAAAGCATCACCG
 AGAGACCTTCCCAGGTGGCCGGCATGGATGATTGAGAAGAAGCATACTCCGGAACATTGGCA
 TCCGTGAGTGAAAAAAaGCGACCTATAAAGCCTGGGGCACTACAATGCTCAATCTCAATTCCAG
 5 CAAAGCCACCCATGCGGATGGAGCACAAATTGGCAGGTGCGTAAAAATGTAATTACTCCCCT
 CCTGCACAGGCAGCAAAGCCCCGCTCCCTCCAGAAACACATACAAAGCCTAGCGTCCATAGCT
 TACCGAGCACGGCAGGCGCAAGAGTCAGAGAAAAGGCTGAGCTCTAACCTGACTGCCGCTCCTG
 TGCTCAATATATAGCCCTAACCTACACTGACGTAAAGGCCAAAGTCTAAAATACCGCCAAAAT
 GACACACACGCCAGCACAGCCCAGAAACCGGTGACACACTCAAAAAATACGTGCGCTTCCTC
 10 AAACGCCAAACCGCGTCATTCCGGTTCCCACGCTACGTACCGCTCAGCGACTTCAAATT
 CCGTCGACCGTTAAAACGTCACTCGCCCCGCCCTAACGGTCGCCCTCTCTCGGCCAATCACC
 TTCCTCCCTCCAAATTCAAACGCCTCATTTGCATATTAACGCGCACAAAAGTTGAGGTATA
 TATTGAAATGATG

15 **ChAdOx2 sequence (SEQ ID NO: 67 + 68)**

The ChAdOx2 sequence 5' to the immunogen cassette is provided as SEQ ID NO: 67 and the ChAdOx2 sequence 3' to the immunogen cassette is provided as SEQ ID NO: 68.

20 **MVA sequence (SEQ ID NO: 69 + 70)**

The MVA sequence 5' to the immunogen cassette is provided as SEQ ID NO: 69 and the MVA sequence 3' to the immunogen cassette is provided as SEQ ID NO: 70.

MVA vaccines have been made using two different shuttle plasmids:

25

1. P7.5 shuttle plasmid. HPV insert with upstream and downstream flanks that are homologous to regions of the TK locus in parental MVA virus. Insert under control of p7.5 promoter.

30

2. F11 shuttle plasmid. HPV insert with upstream and downstream flanks that are homologous to regions of the F11 locus in parental MVA virus. Insert under control of F11 promoter.

35 Chicken embryo fibroblast cells are then infected with MVA parental virus and transfected with either p7.5 or F11 MVA shuttle plasmids to allow homologous recombination with the MVA genome. So you get parental MVA with the gene of

interest inserted into the MVA genome at either the TK locus (p7.5 shuttle plasmid) or F11 locus (F11 shuttle plasmid). Resulting in two versions of the MVA vaccine.

P7.5 shuttle plasmid (SEQ ID NO: 158) (insert underlined)

5

agcgcccaatacgcaaaccgcctcccgcggtggccgattcattaatgcagctggcacgacaggttccgactgga
 aagcgggcagtgagcgcaacgcaattaatgtgagttagctactcattaggcacccaggcttacacttatgctccggct
 cgtatgtgttggatttgagcggataacaattcacacaggaaacagctatgaccatgattacgccaagcttgcattgcA
 TCTGGAAACGGGCATCTCCATTAAAGACTAGAtGCCACGGGTTAAAATACT
 10 AATCATGACATTGTAGAGCGTAATTACTTAGTAAATCCGCCGTACTAGGTT
 CATTCCCTCGTTGGATCTCACATCAGAAATTAAAATAATCTTAGAAGGA
 TGCAGTTTTGATGGATCGTAGATATTCCCTCATCAACGAACCGAGTCAC
 TAGAGTCACATCACGCAATCCATTAAAATAGGATCATGATGGCGGCCGTCA
 ATTAGCATCCATTGATGATCACTCCTAAATTATAGAAATGATCTCTCAAATA
 15 ACGTATATGTGTACCGGGAGCAGATCCTATATACACTACGGTGGCACCATCTA
 ATATACCGTGTGCTGTAACTTACTAAGAAAAATAATTCTCTAGTAATAGT
 TTTAACTGTCCTGATACGGtAGTTTTGCGACCTCATTGCACTTCTGGTT
 CGTAATCTAACTCATTATCAATTCCCTAAAATACATAAACGGTTATCTAAC
 GACACAACATCCATTAAAGTATTATATTAAAATTAAATCAATGTTATT
 20 AGTTTTTAGATAAAAAATATAATATTATGAGTCGATGTAACACTTCTACAC
 ACCGATTGATAATCATTACCTCCTATTATCTCTATCTCGGTTCCCTCACCC
 AATCGTTAGAAAAGGAAGCCTCCTAAAGCATTACACACACAGCAGTTAG
 TTTTACCAACCATTTCAGATAATGGAATAAGATTCAAAATATTAAACGGTT
 TACGTTGAAATGTCCCCTCGAGTGCAGGCTACTATAACTATTTCCTCGTTG
 25 CCaTACAGATCCTACGTACTCGAGCGGCCGCTTATCAGGTCCGGTGGAGTCC
 AGGCCAGCAGTGGATTGGGGATAGGCTGCCAGAGGCCAGGTCCAGAGC
CGCGATTCTGGCCTCGCACTGCAGCACATACACAGCATGGTGTCTCTGA
GGCTCGGCCCTCTAGCGGGCAGATGCTGGTGGTCACGCCGTCATCTCGTC
GTTCTCTCCACCAGAGATTGCATCTGCAGCACTGTGTCTCGATCAGATAGC
 30 AAGGGTGCTGTTCGTCCCGTCTAGCCTGCTGGGCTGTTCTGCAGATGGTCC
ACTTCGTCCATCCTCGTCCCCATCCAGGCCAGTGTCCCTTCATCGGAG
CTGTCTCCAGCTGCTCATAACAGTGCAGATCAGTGGTTCAGGCTGCTCGTA
GCAGTACAGGTCGGTTGTCTCGGGCTGCAGATCCAGCATGTACTCGTCAGGG
TGTGGAACCGCTTGTTCAGGTCCACGTGTCTTCTTCAGGGACACAGTG
 35 GCCGCTGGCAGTCGTACACCTCAGATCTCTGCAGGGTTCTGCATTCCACG

CACAGTGTGGTGCATACACGGAATATCTGTACCACCGGAACCTCGGACACCTT
 GGAGTCGCGATACACGATTGTCAGGTCTGTGAAGGGCAAATCCAGCACCTCT
 GTCTCGGTCAAGCTGTCCCTTGCAATACACCAACCAGGCTGGCGCCATACACAGAGCA
 GTTGTAGTACCTCAGCTCCGACTTGCTGTCCCATAACACCACCCGAGAT
 5 CGGTGTAGGCGAAGTTGTACACCTCGCTGGCTGTCAAGGGCCTTCTGCAGAAC
 ACCCGCAGGCATCTAATCAGCAGGTTGTACAGGCCAGTGTGGTCAGCTTTTC
 CAGGGTATGCCGTACACGGAGTCGCTGTAGTGCCGCAGCTCTGATTCTGG
 AGTAGAAGTCGATACTTGTGGCAGGCAGCGTGGGGATGGAGTCTCTGTA
 CACCACGTTGATGCACCGAATCAGCAGATCGCACAGGGGCTTGTACTGCT
 10 GTTCCAGGGTGGTGCCTACAGGCTGTAGCAGTAGTGCCGGTACTCGCTGATC
 TTGCTGTAGAACTTCAGGCACCTGTCGCACACGGCGTAAGGATTGCCATCCCG
 GTACACGATGGCGGTGGCGGGCTGGTAATCACGACGATGTACACGAACACC
 AGCACCCAGGCATAGGCACACATGCACACGCTGGCAGCAGGCTTCCGATGG
 ACACCCACAGCAGCAGCACAGCACCAGCACCTGAGCGTACACGCTGATAGA
 15 CAGCAGCAGAGGCCTCAGGTAGGTGGACACACTCAGCAGCAGGGTCTGATC
 AGCAGGCACACGCACAGCAGCACACAAAAGCACAGCAGGAAGCAAGGGGCC
 CAAGGTCTTGGAGGAGGTGGAGGGGGCACCCATGGACAGTGTGGAGGTCTAG
 GAGGTGCCAGGGCAAGGGCAGGGATTCTAGGGGCCATGGAGAAGGCTT
 AGGGATGGGGGGCCTCTGAGGAGGCCAAGGACATGGAGCAGGGATCCGGTG
 20 AGGGGGGGTGCTGTAGCTGTCAGCAGTGACAGCAGTGGTATCTGGTGGTC
 AGGTGCAGCCTGATCACGACTGTGCTCTGGGGTGGTCACTCTCAGTTCCAC
 CAGGGAGGTATTCTGGGGGTGGTGGTCTGGGTGGTCAGCAGTTCAGCAGA
 GGATATGTTGGATCCAGAGGCACGGGCACAGGGTGGCACGATGAACACCT
 TGTTCTCCCAGATGCACCTGCCGTGGCCTTCACGCCATGTTGGGGGTCTG
 25 GACAGCAGCTCAGCAGGGTACTTGGTCACGAGCTGAGACTGATCCTGGT
 CGCTGGACAGCCCGCTGGCCTTGTAAAAAAATGGCACATTCCAGGGGAAT
 CAGCTCCAATAGTCGATATGGCCTTCACGAGCTGGTGGCGGACACGTTGT
 CGTCGAAGGTGCTGCACATGGAGTCGTTGCAGTCGATGCTGTTGCCAAATGC
 ACTTCCCAGGTGCCCTGCAGCGTACTTCTGGCCTCGGTCTTGCACCGCC
 30 ATCGTCGCCGCAGTAGTACACGCTGCCCAGGCCACGTAGTCGAACCACACTT
 CGATGTGCTGGCCGCCCTTCTTGAAGCAGTGCTGGCTCGGTGTTCCACTCG
 ATGGCTTACAGGCCTGGCCTTGCAGATATTCAAGGGCGGGCACCACTGGTG
 TCTGGCGGCGAAGAAGATGGCGTTTCCCTGCCTGATGGCTTCCAATAATCAA
 TGTGGTGGCTTCCTCGGTGCTGATCTCATCGGAGGGATGCTGGCGGGCAC
 35 ACGATCACGTAGATTCTTCCAATTGTGTAATCCATGGTATTGGCCTGTCA

TTGTCGTACTGCACGGTATGGTATGCCGTCTTAAACTGGGCTCGC
 CAGCCACATTCCAGGCTGGTCTGCTGCAGGGTCCACTCATCGTAGGGCTGG
CATTCAGGGCTTCCAGGGCAGCTGCAGTCAGTTGATGGCCTGGCAGGCTTGGCT
TTAGAGGCGGCCAGTGGAGGCACCACCTGGTGGCAGATGCTGATGCCAGCT
 5 CTTTGGCCTATAGAAGATTGCACATTCCATCCGGATCAGTTCCAGTGCTCG
ATCTGGCGTTAGGTCGTTCTGTCGGCCTCGTAGTAGGTCAGGGTCACAAT
GGCGTTCTGTGTTCCCATCGTACATGTCCAATGCCACTTGTGCTGCCGTC
GTGGCAGGTCCAGTGCCAGGTGCTCAGCTGCAGTGCTTGAATCTGT
ACCGCAGGCACCTCAGGATCAGCAGCTGTTGGGTGGCAGTTCTCGCTCTG
 10 GGCCTCTTGATCCGCCGCTGGCCGCTCTCAGGACACAGGATCAGTGCCGCC
AGCGTGCACCTCCCATTCTGTCACCTGGCCTCCACCACGGTGCAGTGGG
CGTCCTCGCAGATATAGATCCAGTTGGTAGTGATGGTGTGCAGATGTCG
CCGTCGAACCTGGTGAAGCCCATCTCGCGAGCCTTACATAATAGCACATT
CAGTCTGATCCGGGCCTGTACATGATGGCGCATTCCAGCCGGATGTGCTTCC
 15 AGTAGTCGATGTGATCGCAGATGTGGTCGACAGGTCTTGAATCATTCTCA
TAATGTTCCAGAATGTCCTTGCTGTCGTTCTCGTAGTGTTCCAGGATCTTGTCC
TGGCACACGTTGAAGGGTTTCAGAAACTGCAGCACGTGGATCCGGAGTGCA
GGTATCTCAGAAAGGCATTGGGAACTCGAACACGGTGAATCCGGCTTCCAG
GTAAGGCCAGAAGGGTTGGGAAGGTAAACACACCAGTCTGCTGTGCAGG
 20 TAGGGCCACAGAGACATGGCAAAGCAGGACTTGCCTGTGTTAGGTGGCCGT
AGATCACGAGACAATTCAAGGGACATGCCGAAGTAGGACTTCCGGTATTGGC
TGGGCCGCACAGCACCAAGCAGTCAGGCTCATGCCAACAGGCTTGCCTGCG
GTGTTGGCAGCGCCGTACAGCAGGATGCAGTTCTCAGAAAAGCAGCGCGT
TGCTGTTACGTCTGCCAGCTGAGCCTTCAGGAAGGCGCAGGCATTGCTGTG
 25 CTGTCAGCCAGCTGGCGGAGTTGTCGATAAAAGCCGTCCAGGTCGCTCGGT
GCTCTCTCGTCGGTTCGTCGTTGTCGATGAAATCCACCATGTCCTCGCCGGT
GTCGGAGTCGTTCTCATTCTCGCTGTCGATGAAGTCGATCAGGTGG
TGCCGCTGTCGTAGGCTGTCTCGCCTCGTGGCCAGCTGCTGCCTCTGA
ACCGGGCGTGGATTCCCTGGCTGGGACACAAACACGGGCCACACAGCAG
 30 CAGCACGCAGCACAGGCCCTCTCATAGCATCCATGGTGGCGGCGCGCTA
GCAGTACCGatctagatGGGGATCCGTCACtGTTCTTATGATTCTACTCCTTAC
GTGCAATAAATTAGAATATATTCTACTTTACGAGAAATTAAATTATTGTATT
TATTATTATGGGTGAAAAACTTACTATAAAAAGCGGGTGGTTGGAATTAG
TGATCAGTTATGTATATCGCAACTACCGGgCATATGGCTATCGACATCGAGA
 35 ACATTACCCACATGATAAGAGATTGTATCAGTTCGTAGTCTGAGTATTGGT

ATTACTATATAGTATA TagatGTCGACCTGcaggGcACGAAGTTCCCTATACTTTCT
AGAGAATAGGAACCTCGCAGCCAAGCTGGAATTcaTCCACTTGGATAAGAAA
TCTGCATGATAAATATATTGATATCCTACCAACCTATTAAAGTACCATTATCTA
ATAGCAATAAGATAGATAAACAAATGTTTTGATGAAGTTATTACGTGGATA
5 AATATATATCTTCAGGAAAAGGGTATTATGTTACCAGATGATATAAGAGAACT
CAGAGATGCTATTATTCCCTTAACTAGTTACGTCTCTTAGGTACTTATTTGAT
ACGTTACAAGTAAAAAACTATCAAATATAAATGGAATCTGATTCTAATATAGC
GATTGAAGAAGgaTCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGT
TCACCGGGGTGGTGCCCACCTGGTCGAGCTGGACGGCGACGTAAACGGCCA
10 CAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTG
ACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCGTGCCCTGGCCCACCC
CGTGACCACCCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCGACCACA
TGAAGCAGCACGACTTCAAGTCCGCCATGCCGAAGGCTACGTCCAGGA
GCGCACCATCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTG
15 AAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACT
TCAAGGAGGACGGCAACATCCTGGGGCACAGCTGGAGTACAACACTACAACAG
CCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAAC
TTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCACT
ACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCCGACAACCA
20 CTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCAACGAGAACAGCGCGAT
CACATGGCCTGCTGGAGTTCGTGAACGCCGCCGGATCACTCTGGCATGGA
CGAGCTGTACAAGTAAAGCGGccgcaagtccctatactttctagagaataggaacTTCAACAAAT
GTCTGGAAAGAACTGTCCTCATCGATAACCTATCACGGAGAAATCTGTAATTG
ATTCCAAGAcATCACATAGTTAGTTGCTTCCAATGCTTCAAAATTATTCTTAT
25 CATGCGTCCATAGTCCCGTTCCGTATCTATTATCGTTAGAATATTATAGTCA
CGCATTATATTGAGCTATTGATAACGTCTAACCGTCTAATTCTGTAC
TTTACCTGAAAACATGGGGCCGATTATCAACTGAATATGTCGCCGTTCATG
ATGACAATAAGAATTATTGTTCACTTATTGACTTAAATATCCATC
ACGTTAGAAAATGCGATATcGCGACGAGGATCTATGTATCTAACAGGATCTAT
30 TGCGGTGGTAGCTAGAGctGATTCTTTGAATCGCATCAAACAAATCACAAA
GTCGAACAAATATCCTTATTAAGTTGACCCCTCCATCTGTAACAATAGGGA
CCTTGTAAACAGTTTTAAAATCTTGAAGTCTGTGAATTGTCAATTGTC
TGTATTCCCTCTGAAAGAGATTCTACAAACGACCCACGGCTCTAATTATT
TTGATTGGATCAATAATAACAGAAAGTCTAGATATTGAGTGATTGCAAT
35 ATATCAGATAATGAAGATTCTACATCTGACTAGCCAAATACTAAAAATGA

ATCATCATCTCGAAGAACATCGTTAAGAGATACTGGTTGTATCCATTATga
gctcgcaaagcttggcactggccgtcgtttacaacgtcgactggaaaaccctggcgttacccaacttaatcgccctgc
agcacatcccccttcgcccagctggcgtaatagcgaagaggcccgcaccgatgcgcctccaaacagttgcgcagcctgaa
tggcgaaatggcgccctgatgcggattttctccttacgcatctgtcggtatttcacaccgcatatggtcacttcagtaatac
5 tgctctgatgccgcatagttaagccagccccacaccgccaacaccgctgacgcgcctgacgggctgtctcccg
gcatccgcttacagacaagctgtgaccgtctccggagctgcattgtcagaggtttaccgtcatcaccgaaacgcgcga
gacgaaaggcctcgatacgcctattttatagttaatgtcatgataataatggttcttagacgtcaggtggcactttcgg
gaaaaatgtgcgccaaccctattgtttattttctaaatacattcaaataatgtatccgctcatgagacaataaccctgataaaat
10 gcttcaataatattgaaaaaggaaagagtatgagtattcaacattccgtgtgcgccttattcccttttgcggcatttgcctcct
gttttgctcaccagaaacgctggtaaagatccttggagtttcgccccgaagaacgtttcaatgatgagcactttaaagttctgatgtgg
atctcaacagcgtaagatccttggagtttcgccccgaagaacgtttcaatgatgagcactttaaagttctgatgtgg
cgccgtattatccgtattgacgccggcaagagcaactcggtcgccgcatacactattcagaatgacttggtgact
caccagtacagaaaagcatttacggatggcatgacagtaagagaattatgcagtgtccataaccatgagtgataacac
tgcggccaacttacttgcacaacgatcgaggaggaccgaaggagctaaccgttttgcacaacatggggatcatgtaact
15 gccttgcgttggaaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatcctgttagcaatggca
acaacgttgcgcaaactattaacttgcgaactacttactctagttccggcaacaattaatagactggatggaggcgataaa
agttgcaggaccacttgcgtcgccctccggctggctggattgtataatctggagccgggtgagcgtgggtctc
gccccgtattgcagcactggggccagatggtaagccctccgtatcgtagttatctacacgacggggagtcaggcaactat
ggatgaacgaaatagacagatcgctgagataggcctcactgattaagcattggtaactgtcagaccaagttactcatata
20 acttttagattgattaaaacttcatttttaattttaaaaggatcttaggtgaagatcctttgataatctcatgacccaaatcccttaac
gtgagtttcgttccacttgagcgtcagaccggtagaaaagatcaaaggatcttcttggatccttttgcgtaatctgc
tgcttgcacaaaaaccaccgcaccggctaccagcggtggttgcggatcaagagctaccaacttttccgaaggtaact
ggctcagcagagcgcagataccatactgttctctagtgtagccgttaggcaccactcaagaactctgttagcacc
gcctacatacctcgctgtcaatcctgttaccagtggtcgccagtggtcgataagtctgtcttaccgggtggactcaag
25 acgatagttaccggataaggcgcagcggcggctgaacgggggttcgtcacacagccagcttggagcgaacgacc
tacaccgaactgagataacctacagcgtgagctatgagaaagcgccacgcttccgaaggagaaaggcggacaggtatcc
ggtaagcggcagggtcggaacaggagagcgcacgaggagctccaggggaaacgcctggatctttatagtcgtcg
ggttcgccacctctgacttgagcgtcgattttgtatgcgtcaggggggcggagcctatggaaaaacgcgcagcaacgc
ggcctttacggttcctggcctttgctggcctttgctcacatgttctctgcgttatccctgattctgtggataaccgtatta
30 ccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgtcagtgagcgcaggaaagcggaag
a

F11-HPV shuttle plasmid (SEQ ID NO: 159) (vaccine construct insert is underlined)

AGCGCCCAATACGCAAACCGCCTCTCCCGCGCGTGGCCGATTCAATTAGCAGCTGGCACGAC
 AGGTTTCCGACTGGAAAGCGGGCAGTGAGCGAACGCAATTAAATGTGAGTTAGCTCACTCATT
 GGCACCCCAGGCTTACACTTATGCTTCCGGCTCGTATGTTGTGGAATTGTGAGCGGATAAC
 AATTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTATTAGGTGACACTATAGAATA
 5 CTCAAGCTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGG
 AATTGCCCTTgtaatctattcgatataccgttgctaacagtatactggccaaataactgtggat
 ggaaaatctataataatacattaatcatccgatggtgcttagggttatttggatggatgcgtat
 aaattttcttgcggttatcttacaagactattgttattcattgggttagcaaaccagagagccg
 accattcgatttaataaaaaatcagatgctaaacgcaattctaaatcggtcaaagaatcta
 10 tggcatcctgaaatccttgcggattcgagacacaatcaggagcgtagaagtttaatg
 agtccatgttaggatgtttcggtttctagaatagaagacatgttcttaacttagtgcattatag
 agtatccgagaataactggaatgggatgttattatcctaccaacgatataccttcttattatcg
 aatcatctatctgtctagattatattatagtaaataatcaggaatccaacaaatatcgatcaaa
 tctgttctcgatatcattttcaaaacaataccctgcaggacgtcccaactacgttaaaaatgg
 15 tacaaaaggaaagttatatacgcggtgtgtaaagttaccgtacctaactacgaccatattccag
 tagtttacatcgatgatgacaataactaccaccttattacagtattgacgtccgtcgatattgaa
 actgctatcagagcaggatattcgatagtcgaatttagggcttacaatggataataatattcc
 agaacttaaaaacggttactggatagttcaagatgattatgacttgaacgcagttacaacaa
 ataatttatttggAACAGCTCATAGAAACGAGCTTAACTTAACAACCTAGTATAATTGTTGTT
 20 tatacatttgcattagttattgccgagcattcattactcaattatggaaaccatagatccggt
 gtatatatctcagttcagttataaagaattatacggttagtgcattttataaagatattgaat
 ccatgagtcaaatggtaaaattataaaaaatgtaaaaacaatattttatcggtttgttac
 actATGGATGCTATGAAGAGGGCCTGTGCTGCGTGCTGCTGTGTCGGCGCGTGTGTC
CCCCAGCCAGGAAATCCACGCCCGTTCAGAAGAGGCAGCAAGCTGGCCGACGAGGACGAGACAG
 25 CCTACGACAGCGGCACCGACCTGATCGACTTCATCGACGACAGCGACGAGAATGAGAACGACTCC
GACACCGGGAGGACATGGTGGATTTCATCGACAACGACGAAACCGACGAAGAGAGCACCGAGAG
CGACCTGGACGGTTATCGACAACCTCCGCCAGCTGGCTGACAGCGACAGCAATGCCTGCGCCT
TCCTGAAGGCTCAGCTGGCAGACGTGAACAGCAACGCCGCTGCTTTCTGAAGAACTGCATCCTG
CTGTACGGCGCTGCCAACACCGGCAAGAGGCCTGTCGGCATGAGCCTGAACCTGCCTGGTGTG
 30 CGGCCAGCCAATACCGGAAAGTCCTACTTCGGCATGTCCCTGAATTGTCTCGTACAGGCC
CACCTAACACAGGCAAGTCCTGCTTGCATGTCTGTGGCCCTACCTGCACAGCAGACTGGTG
GTGTTACCTTCCCCAACCCCTCTGGCCTTACCTGGAAAGCCGGATCACCGTGTGAGTTCCC
CAATGCCTTCTGAGATACTGCACCTCCGGATCCACGTGCTGCAGTTCTGAACCCCTAACG
TGTGCCAGGACAAGATCCTGGAACACTACGAGAACGACAGCAAGGACATTCTGGAACATTATGAG
 35 AATGATTCCAAGGACCTGTGCGACCACATCTGCGATCACATCGACTACTGGAAGCACATCCGGCT
GGAATGCGCCATCATGTACAAGGCCGGATCAGACTGGAATGTGCTATTATGTATAAGGCTCGCG
AGATGGGCTTCCACCAGTTCGACGGCGACATCTGCAACACCATGCACTACACCAACTGGATCTAT
ATCTGCGAGGACGCCAGTGCACCGTGGTGGAAAGGCCAGGTGGACAAGAAATGGGAGGTGCACGC
TGGCGGCCAAGTGATCCTGTGTCCTGAGAGCGGCCAGCGGGATCAAGAGGCCAGAAGCGAGA

ACTGCCACCCAAACAAGCTGCTGATCCTGAAGTGCCTGCGGTACAGATTCAAGAAGCACTGCAAG
 CTGAGCAGCACCTGGCACTGGACCTGCCACGACGGCAAGCACAAGTGGCATTGGACATGTCACGA
 TGGGAAACACAAGAACGCCATTGTGACCCCTGACCTACTACGAGGCCGACAAGAACGACCTGAACG
 CCCAGATCGAGCACTGGAAACTGATCCGGATGGAATGTCAATCTTCTATAAGGCCAAAGAGCTG
 5 GGCATCAGCATCTGCCACCAGGTGGTGCCTCCACTGGCCGCCTCTAAAGCAAAGCCTGCCAGGC
 CATCGAACTGCAGCTGCCCTGGAAGCCCTGAATGCCAGCCCCTACGATGAGTGGACCCCTGCAGC
 AGACCAGCCTGGAATGTGGCTGGCGAGCCCCAGTTAAGAACGCACGGCATCACCACCGTG
 CAGTACGACAATGACAAGGCCAATACCATGGATTACACAAATTGGAAGAAATCTACGTGATCGT
 GTGCCCGCCAGCATCCCTCCGATGAGATCAGCACCGAGGAAGCCGACCACATTGATTATTGGA
 10 AAGCCATCAGGCAGGAAAACGCCATCTTCTTCGCCAGACACCCAGGTGGTGCCTGCCCTGAAT
 ATCTGCAAGGCCAAGGCCTGTAAAGCCATCGAGTGGAACACCGAGCCAAAGCACTGCTTCAAGAA
 GGGCGGCCAGCACATCGAAGTGTGGTCACTACGTGGCTGGACAGCGTGTACTACTGCCGG
 ACGATGGCTGGTGCAAGACCGAGGCCGAGAAGTACGGCTGCAAGGGCACCTGGGAAGTGCATTTC
 GGCAACAGCATCGACTGCAACGACTCCATGTGCAGCACCTCGACGACAACGTGTCGCCACCGA
 15 GCTCGTGAAGGACCATATCGACTATTGGAAGCTGATTGCCCTGGAATGTGCCATTAAAGG
 CCAGACGGGGCTGTCCAGCGACCAGGATCAGTCTCAGCTCGTACCAAGTACCCCTGCTGAAG
 CTGCTGTCCAGACCCCCAACATGGCGTGAAGGCCACGGCAAGTGCATCTGGAGAACAGGT
 GTTCATCGTGCCTGCCACCCCTGTGCCCTGCCTGGATCCAACATATCCTCTGCTGAAACTGCTGA
 CCACCCAGACCACCAACCCCGAGAATACCTCCCTGGTGGAACTGAGAGTGACCACCCCAAGAGC
 20 ACAGTCGTGATCAGGCTGCACCTGACCACCAAGATAACCACTGCTGTCACTGCTGAACAGCTACAG
 CACCCCCCTCACCGGATCCCTGCTCCATGTCCTGGCTCCTCAGAGGCCACCCATCCCTAAAGC
 CTTCTCCATGGGCCCTAGAATCCCTGCCCTTGCCCTGGCACCTCCTAGACCTCCACACTGT
 CCATGGGTGCCCTCCACCTCCAAGACCTGGCCCTTGCTGCTGTGCTGTGCTTTGTGT
 GCTGCTGTGCGTGTGCCTGCTGATCAGACCCCTGCTGCTGAGTGTGTCACCTACCTGAGGCCTC
 25 TGCTGCTGTCTATCAGCGTGTACGCTCAGGTGCTGGTGGTGTGCTGCTGTGCTGTGGGTGTCATC
 GGAAGCCTGCTGCCAGCGTGTGCATGTGTGCCTATGCCTGGTGCTGGTGTACATCGT
 CGTGATTACCAGCCCCGCCACCGCCATCGTGTACCGGGATGGCAATCCTACGCCGTGCGACA
 AGTGCCTGAAGTTCTACAGCAAGATCAGCGAGTACCGGCACACTGCTACAGCCTGTACGGCACC
 ACCCTGGAACAGCAGTACAACAAGCCCTGTGCATCTGCTGATTGGTGCATCAACGTGGTGT
 30 CAGAGACTCCATCCCCACGCCCTGCCACAAAGTGTATCGACTTCACTCCAGAAATCAGAGAGC
 TGCGGCACTACAGCGACTCCGTGTACGGGATAACCTGGAAAAGCTGACCAACACTGGCTGTAC
 AACCTGCTGATTAGATGCCTGCGGGTGTCTGCAAGAAGGCCCTGACAGCCAGCGAGGTGTACAA
 CTTCGCCTACACCGATCTGCGGGTGGTGTATCGGGACAGCAAAGTGCAGGAAAGCTGAGGTACTACA
 ACTGCTCTGTATGGCGCCAGCCTGGTGTATTGCAAGGGACAGCTGACCGAGACAGAGGTGCTG
 35 GATTTCGCCTTCACAGACCTGACAATCGTGTATCGCGACTCCAAGGTGTCCGAGTTCCGGTGGTA
 CAGATATTCCGTGTATGGCACCAACTGTGCGTGGAAATGCAAGAAAACCTGCAGAGATCTGAGG
 TGTACGACTGCCAGCGGCCACTGTGTCCGCAGGAAAAGAAAAGACACGTGGACCTGAACAAGCGG
 TTCCACACCCCTGCACGAGTACATGCTGGATCTGCAGCCCGAGACAACCGACCTGTACTGCTACGA
 GCAGCCTGAAACCACTGATCTGCACTGTTATGAGCAGCTGGAGACAGCTCCGATGAAGAGGACA

CTGGCGGCCTGGATGGGGACGAGGATGAGGACGAAGTGGACCATCTGCAGGAACAGCCCCAGCAG
 GCTAGACGGGACGAACAGCACCCCTGCTATCTGATCGAGACACAGTGCTGCAGATGCGAATCTCT
 GGTGGAAGAGAACGACGAGATCGACGGCGTAACCACCAGCATCTGCCGCTAGAAGGGCCGAGC
CTCAGAGACACACCATGCTGTATGTGCTGCAAGTGCAGGCCAGAATGCCGGtaattttta
 5 taaccgagttctgcattattgttaattcgatgctggcaccatcaaagaatcacttctaaaagat
 atcaatatacacacatacaaataattactaccctattgaatgagacagccaaggatcaagttat
 aaaatctctggtagataaagaagatactgatattgtgaataatttcattaccaaagaaattaaaa
 acagagacaaaatagttaatagttgtcttatcaaacctggactttcggtttgtaaattgggct
 Ttttgtacaataatgggtgttgcattgattcatcccattacaaatggatgtctccccata
 10 gattatcagatactgttatatttaggagactgtttgtatttaacaatataatgtcccaattagat
 ttacacaaaattgggctccatcagtttagattgttaatttttaagaattttaaaggaaac
 actactaaagatagaagagaatgattacattatccctttccaacaaaaggataaacat
 tttatcctataaacgacgattttatcacatctacaggaggatatggatagttcaagata
 gataactatgttagaaaatttgcattcgaggccacaaaattatataatgtcccatggaaactacggc
 15 ggagttcacagtacccaaatttctatacacaacatctaaaggagatgaaaaaaaaattatcgtgt
 gtgcgtggccatggattaaactataaattttacatctgtataaacgtgttctt
 catatgttgcattattgatacaaactatggatggtcaggaactatcattgagatattttctaa
 agtttttaaggcgttaacgagagaaaggacagtatcaaattcgtgaaattactatcccact
 tttatccggcagttattaaacagtaatattatgttataactatttacccatgttcaactt
 20 ttcgaacatgaaaagagaactaactacgaatacgaacaaagaggaaatattataattttccctagc
 actgtattcggcagataaagttagataccgagctagctatcaaattaggattttatcttggtac
 aatacataaagtttatctttacagatggctctgttatacattaaattacgaaactaccatgc
 tgcgacaacttttacacgcagatcttaacccgataatcttactttgattccatgaacc
 aataataattcatctaaaggataaaaagttttatgaacgtattaaatcggcattaaacg
 25 actttgactttccaagAAGGGCGAATTCTGCAGATATCCATCACACTGGCggccgCTTACTTG
 TACAGCTCGCCATGCCGAGAGTGATCCCGGCGGTCACGAACCTCAGCAGGACCATGTGATC
 GCGCTTCTCGTTGGGTCTTGCTCAGGGCGACTGGTGCTCAGGTAGTGGTGTGCGGCAGCA
 GCACGGGGCGTCGCCGATGGGGTGTCTGCTGGTAGTGGTGGCGAGCTGCACGCTGCCGTCC
 TCGATGTTGGCGATCTGAAGTTCACCTGATGCCGTTCTCTGCTGTGGCCATGATATA
 30 GACGTTGTGGCTGTTGTAGTTGACTCCAGCTTGCCCTCAGGATGTTGCCGTCCCTGAAGT
 CGATGCCCTCAGCTCGATGCCGTTACCAGGGTaTCGCCCTCGAACCTCACCTCGCGCGGGTC
 TTGTAGTTGCCGTGTCCTGAAGAAGATGGTGCCTGGACGTAGCCTTGGCATGGCGA
 CTTGAAGAAGTCGTGCTGCTCATGTGGTGGGTAGCGGCTGAAGCACTGCACGCCGTAGGTCA
 GGGTGGTCACGAGGGTcGCCAGGGCACGGCAGCTGCCGGTGGCAGATGAACCTCAGGGTC
 35 AGCTTGCCTAGGTGGCATGCCCTGCCCTGCCGGACACGCTGAACCTGTGGCGTTACGTC
 GCCGTCCAGCTCGACCAGGATGGGCACCACCCGGTaAACAGCTCCTGCCCTGCTCACCATgt
 tttaaactTTATATTCCAAAAAAATAAAATTCAATTGTTgtttaaacgttGTACGGCAGT
 TTAAGGTTACACCTATAAAAGAGAGAGGCCGTTATCGTCTGTTGTGGATGTACAGAGTGTATT
 ATTGACACGCCGGCGACGGATGGTGAATCCCCCTGCCAGTGCACGTCTGCTCAGATAAAGT

CTCCCGTGAACCTTACCCGGTGGTGCATATCGGGGATGAAAGCTGGCGATGATGACCACCGATA
 TGGCCAGTGTGCCGGTCTCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGAC
 ATCAAAAACGCCATTAACCTGATGTTCTGGGAATATAATGTCAAGGCATGAGATTATCAAAAAG
 GATCTTCACCTAGATCCTTTCACGTAGAAAGCCAGTCCGCAGAACCGGTGCTGACCCGGATGA
 5 ATGTCAGCTACTGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGC
 AGTGGGCTTACATGGCGATAGCTAGACTGGCGGTTTATGGACAGCAAGCGAACCGGAATTGCC
 AGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTCTGCCGC
 CAAGGATCTGATGGCGCAGGGATCAAGCTCTGATCAAGAGACAGGATGAGGATCGTTCGCATG
 ATTGAACACAAGATGGATTGCACGCAGGTTCTCCGGCGCTGGGTGGAGAGGCTATTGGCTATGA
 10 CTGGGCACAAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGCGCC
 CGGTTCTTTGTCAAGACCGACCTGTCCGGTGCCTGAATGAAGTCAAGACGAGGCAGCGCGG
 CTATCGTGGCTGCCACGACGGCGTTCTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGG
 AAGGGACTGGCTGCTATTGGCGAAGTGCCGGGCAGGATCTCTGTCATCTCACCTGCTCCTG
 CCGAGAAAGTATCCATCATGGCTGATGCAATGCCGGCTGCATACGCTTGATCCGGTACCTGC
 15 CCATTGACCAACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGT
 CGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGGCCAGCCGAACTGTTGCCAGGCTCA
 AGGCGAGCATGCCGACGGCGAGGATCTCGTGTGACCCATGGCGATGCCCTGCCGAATATC
 ATGGTGGAAAATGCCGCTTTCTGGATTGACTCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTA
 TCAGGACATAGCGTTGGCTACCGTGATATTGCTGAAGAGCTTGGCGGAATGGCTGACCGCT
 20 TCCTCGTGTCTTACGGTATGCCGCTCCGATTGCGAGCGATCGCCTCTATCGCCTTGTGAC
 GAGTTCTCTGAATTATTAACGCTTACAATTCTGATGCGGTATTTCTCCTACGCATCTGTG
 CGGTATTCACACCGCATACAGGTGGCACTTTGGGGAAATGTGCGCGGAACCCCTATTGTT
 ATTGTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCTGATAATGCTTCAAT
 AATAGCACGTGAGGAGGGCCACCATGCCAAGTTGACCGAGCTGCCGTGCTCACCGCGCG
 25 GACGTCGCCGGAGCGGTCGAGTTCTGGACCGACGGCTGGTTCTCCGGACTCGTGGAGGA
 CGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCCTGTTCATCGCGGTCCAGGACCGAGTGG
 TGCCGGACAACACCCCTGCCCTGGGTGTGGTGCAGGCCCTGGACGAGCTGTACGCCGAGTGGTC
 GAGGTCGTGTCCACGAACCTCCGGACGCCCTCCGGGCCATGACCGAGATCGCGAGCAGCC
 GTGGGGCGGGAGTCGCCCTGCGACCCGGCAACTGCGTGCACCTCGTGGCCGAGGAGC
 30 AGGACTGACACGTGCTAAACTTCATTTAATTAAAAGGATCTAGGTGAAGATCCTTTGAT
 AATCTCATGACCAAAATCCCTAACGTGAGTTCTGTTCCACTGAGCGTCAGACCCGTAGAAAA
 GATCAAAGGATCTTCTTGAGATCCTTTCTGCGCGTAATCTGCTGCTGCAAACAAAAAAAC
 CACCGCTACCGCGGTGGTTGTTGCCGGATCAAGAGCTACCAACTCTTCCGAAGGTAAC
 GGCTTCAGCAGAGCGCAGATAACAAACTGTCCTCTAGTGTAGCCGTAGTTAGGCCACCACTT
 35 CAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCGAGTGGCTGCTGCCA
 GTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG
 TCGGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTGGAGCGAACGACCTACACCGAACTGAG
 ATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTCCGAAGGGAGAAAGGCGGACAGGTATC
 CGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTCCAGGGGGAAACGCCCTGGTAT

CTTTATAGTCCTGTCGGTTTCGCCACCTCTGACTTGAGCGTCGATTTGTGATGCTCGTCAGG
 GGGCGGAGCCTATGGAAAAACGCCAGCAACGCCCTTTACGGTCTGGCTTTGCTGGC
 CTTTGCTCACATGTTCTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTT
 GAGTGAGCTGATACCGCTGCCGCAGCCAACGACCGAGCGAGCGAGTCAGTGAGCGAGGAAGC
 5 GGAAG

**HPV2-randomised nucleotide sequence (segments are in a randomised order)
 (includes tPA leading sequence and HindIII cloning linker, underlined) (SEQ ID
 NO: 71)**

10

ATGGATGCTATGAAGAGGGCCTGTGCTGCGTGCTGCTGTGGCGCCGT
CTTGTGTCCCC
CAGCCAGGAAATCCACGCCCGTT
CAGAAGAGGCAGCAAGCTGGCTGCTCAGCTGGCCACAGCG
ACAGCAATGCCTGCGCCTT
CTGAAGCTGAGATACTGCACAGCCGGATCCACGTGCTGCAGTT
CTGAACCCCTTCACCTGCACGAGTACATGCTGGACCTGCAGCCCAGAACACCGACCTGTACTG
 15 CTACGAGCAGGACGAGGATGAGGACGAGGTGGACCATCTGCAGGAACAGCCCCAGCAGGCCAGAA
GGGATGAGCAGCACCCCTGCTACCTGATCGAGACACAGTGCTGCAGATGCGAGAGCCTGGTGGCC
CAGCTGGCTGACGTGAACCTAACGCCGCAGCCTT
CTGAAGAACAGCATCGACTGCAACGACAG
CATGTGCAGCACCTCGACGACAACGTGTCCGCCACCGAGCTCGTGAAGAGAACCTGCCCTT
GCCCCCTGGGCCCCCTGAGGAAAATGACGAGATCGACGGCGTGAACCACCAAGCATCTGCCGCTAGA
 20 AGGGCCGAGCCTCAGAGACACACCATGCTGTGCATGTGCTGCAAGTGCGAGGCCGGATCTGCTT
CCTGCTGTGCTTTGTGTGCTGCTGTGCGTGTGCCTGCTGATCAGACCCCTGCTGCTGAGTGTGT
CCACCTACTGCCAGCGGCCGCTGTGCTCAGGAAAAGAACGGCACGTGGACCTGAACAAAGCGG
TTCCACATCTACATCTGCAGGACGCCAGTGACCGTGGTGAAGGCGAGGTGGACAGCAAGGT
GTCCGAGTTCCGGTGGTACAGATAACAGCGTGTACGGCACCACCTGGGCCAGCGGAGAACATCAAGA
 25 GGCCCGAGATCCGAGGGTGTACTGCAAGGGACAGCTGACCGAGACAGAGGTGCTGGACTTCGCCTTC
ACCGACCTGACCATCGTGTACCGGGACATCCGGCTGGAATGCCCATCATGTACAAGGCCAGAGA
GATGGGCTTCCACGACCACATCGACTACTGGAAGCTGATTAGACTGGAATGTGCTATCTTCTACA
AAGCCCGGATCCTGAAGTGCCTGCGGTACAGATTCAAGAACAGCACTGCAAGCTGTACGTGGCTGG
GACTCCGTGTACTACTGCCGACGATGGCTGGTGAAGACCGAGCTCACCTGGCACTGGACATG
 30 CCACGACGGCAAGCACAAGAACGTGTGCCAGGACAAGATCCTGGAACACTACGAGAACGGACTCCA
AGGACGACGAGGACGAGACAGCCTACGACAGCGGCCACCGATCTGATCGACTTCATCGACGATAGC
AACTGCCACCCCAACAAGCTGCTGCCAGACTGAGCAGCGACCAGCAGTCTCAGAGGCC
CAACATGGGAGTGAAGGCCACGGCAAGTGCATCTGGAGAACAGGTGTTCATCGTCCCCACCC
TGTGCCCGTGCCTCTGGATCCAACATACCCCTGCTGAAGCTGCTGACCCCCGAAACCCACAGAT
 35 CTGCACTGTTATGAGCAGCTGGCGACTCCTCCGACGAAGAGGATAACAGGCAGGCCCTGGATGGCTA
CGAGGCCGACAAGAACGACCTGAACGCCAGATCGAGCACTGGAAACTGATCCGGATGGAATGTG
CAATTCTATAAGGCCAAAGAGCTGGGATCAGCGACGAGAACAGCAGCGATACCGC
GAGGACATGGTGGATTTCATCGACAATGAGGCCGAGAAGTACGGCTGCAAGGGCACCTGGAGGT

GCACTTCGGCTTAAGAACGACGGCATCACCATCACCGTGCAGTACGACAACGACAAGGCCAACA
 CCATGGACTACACCAACTGGAAAGAGATCTACCCCCCTCCCCCCCCACGGCCTGGCTCCTCCA
 ATTCCCTAAGCCCTCTCCATGGGCCCTCAGTCGACGGCGACATCTGCAATACCATGCACTATAAC
 CAATTGGGTGGTGTACAGAGACAGCATCCCCACGCCGCTGCCACAAGTGTATCGACTTCTACA
 5 GCAGAATCAGAGAGCTGCAGGCAGTACAGCGACTCTGTGTACGGCGATACCCCTGGAAAAGCTGACC
 AACACCGGCCTGTACAATCTGCTGATCCGGTGCCTGAGGCTCGTGACCAAGTATCCTCTGCTGAA
 ACTGCTGTCCAAGTGCATCCTGTACGGCGCTGCCAATACCGCAAGAGCCTGTCGGCATGAGCC
 TGAGCAAAGTGCAGGAAAGCTGAGGTACTACAAGTGTACGACGACGAAACCGACGAGGAAAGCACCGAGAG
 10 CGACCTGGACGGCTCATCGATAACAGCGTGATCGTGTGCCCTCCATCCCTCCGATGAGA
 TCTCTACCGAGGAAGCCCCAGACCCCTCACTGTCCTGGTGCAGTGTCAAGAAGGCC
 CTGACCGCCTCTGAGGTGTACAATTTCGCTATACCGACCTGCGGTGGTGTAGGGACATTCT
 GGAACATTATGAGAATGATAGCAAGGACCTGTGCGATCACATCAACTGCCTCGTGATCTACGGCC
 CTCCTAACACCGGCAAGTCCTGCTCGCCATGTCCCTGTGGAACACCGAGGCCAAGCACTGCTTC
 15 AAGAAGGGCGGCCAGCACATCGAAGTGTGGTCGATATTGTGTACAGGGACGGCAACCCTACGC
 CGTGTGCGACAAGTGCCTGAAGTTCTACTCCAAGATCAGCGAGTACCGCCACTACTGCTACTCCC
 TGTATGGCACAACACTGGAACAGCAGTACAACAAGCCCTGTGCGACCTGCTGATTGCTGCATC
 AACACCACCAAGATAACCTCTGCTGTCCTGCTGAACAGCTACAGCACCCCCCTCATCGGATTCC
 CGCCCCATGCCATGGCTCCACAGAGGCCTACCCAGACCACCCCCGAGAATACCTCCCTGG
 20 TGGAACTGAGAGTGACCACCCCAAGAGCACAGTCGTGATCAGGCTGCACCTGTGGCCCTACCTG
 CACTCCAGACTGGTGGTGTTCACCTCCCCAACCCCTTCACCAGGTGGTGCCTGCCCTGAATAT
 CTGCAAGGCCAAGGCCTGCAAAGCCATCGAGAAGAAATGGGAAGTGCACGCTGGCGGCCAAGTGA
 TCCTGTGTCCTGAGAGCCTGCGGCCTCTGCTGCTGTCCATTAGCGTGTACGCCAGGTGCTGGTG
 CTGGTGTGCTGCTGTGGTGTCCATCGCAGCAACTGTCTGGTGTGCGGCCCTGCCAACAC
 25 AGGGAAAGAGTTACTTCGGCATGTCCTCTGATCTGCCATCAGGTGGTGCCTCCACTGGCCGCTCTA
 AGGCTAAAGCCTGTCAGGCCATCGAACTGCAGCTGGCCCTGGAAGCCCTGAATGCCAGCCCTAT
 GATCACATTGATTACTGGAAAGCCATCCGGCAGGAAAATGCCATCTTCTGCCGCCAGATGGCA
 TTGGACCTGTACGATGGAAAACACAAGAATGCCATTGTGACCTGACCTACCTGCTGCCAGCG
 TGTGTATGTGCGCCTACGCTGGTGGTGTGGTGTACATCGTCGTGATTACCAGCCCCGCC
 30 ACCGCCGATGAGTGGACACTGCAGCAGACAAGCCTGGAAATGTGGCTGGCGAGCCCCAGTGTGA
 CCATATCGATTATTGGAAACACATCCGCCTGGAATGTGCTATTATGTATAAGGCCGGTGGCCTT
 ACCTGGAAAGCAGAACCGTGTTCGAGTCCCCAATGCCTCGCCGGCTGGACCTGGCGCCTCT
 GGAAAACCCATCCCCAATCCACTGCTGGCCTGGACTCCACCCGGACC

35 **HPV2-randomised sequence polypeptide (includes tPA leading sequence and HindIII cloning linker, underlined) (SEQ ID NO: 72)**

MDAMKRLCCVLLCGAVFVSPSQEIHARFRRGSKLAAQLADSDSNACAFKLRLYLSRIHVLQF
 LNPFTLHEYMLDLQPETTDLYCYEQDEDEDEVDHLQEQQQARRDEQHPCYLIETQCCRCESLVA
 QLADVNSNAAFLKNSIDCNDSMCSTFDDNVSATELVKRIPAPCPWAPEENDEIDGVNHQHLPAR
 RAEQRHTMLCMCKCEARICFLLFCVLLCVCLLIRPLLSVSTYCQRPLCPQEKKRHVDLNKR
 5 FHIYICEDAQCTVVEGQVDSKVSEFRWYRYSVYGTTLGQRRIKRPRSEVYCKGQLTETEVLDFAF
 TDLTIVYRDIRLECAIMYKAREMGFHDHIDYWKLIRLECAIFYKARILKCLRYRFKKHCKLYVAW
 DSVYYCGDDGWCKTSSTWHTCHDGKHKNCQDKILEHYENDSKDDEDETAYDGTDLIDFIDDS
 NCHPNKLLRRLSSDQDQSQRPPNMGVKAHGKCIWENKVFIVPTLCVPVLDPTYPLKLTPETTD
 LHCYEQLGDSSEEDTGGLDGYEADKNDLNAQIEHWKLIRMECAIFYKAKELGISDENENDSDTG
 10 EDMVDFIDNEAEKYGCKGTWEVHFGFKHGITITVQYDNDKANTMDYTNWKEIYPPPPRWPAPP
 IPKPSPWAPQFDGDICNTMHYTNWVYRDSIPHAACHKCIDFYSRIRELRHYSDSVYGDITLEKLT
 NTGLYNLLIRCLRLVTKYPLLKLLSNCILYGAANTGKSLFGMSLSKVRKLRYYNSVYGAAC
 CKKTLQRSEVYDDETDEESTESLDGFIIDNSVIVCPASIPSDEISTEEAPRPPHCPWVPVFCKKA
 LTASEVYNFAYTDLRVVYRDILEHYENDSKLCDHINCLVIYGPNTGKSCFAMSLWNTEPKHCF
 15 KKGGQHIEVWFIDIVYRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTITLEQQYNKPLCDLLIRCI
 NTTRYPLSLLNSYSTPPHRIPAPCPWAPQRPTQTTTPENTSLVELRVTPKSTVVIIRLHLWPYL
 HSRLVVFTFPNPFHQVVPALNICKAKACKAIEKKWEVHAGGQVILCPESLRPLLLSISVYAQVLV
 LVLLWVSIGNSNCLVLCGPANTGKSYFGMSLICHQVVPPLAASKAKACQAIELQALEALNASPY
 DHIDYWKAIRQENAIFFAARWHWTCHDGKHKNAIVTLYLLPSVCMCAYAWVLVFVYIVVITS
 20 TADEWTLQQTSLMWLAEPQCDHIDYWKHRLCAIMYKARWPYLESRTVFEFPNAFAGSGPGAS
 GKPIPNPLLGLDSTRT**

HPV53del nucleotide sequence (segments from HPV53 have been removed) (includes tPA leading sequence and HindIII cloning linker, underlined) (SEQ ID NO: 73)

25 ATGGATGCTATGAAGCGAGGACTGTGCTGCGTGCTGCTGTGTGGCGCTGTGTTGTCCCCTAGCC
 AAGAGATCCACGCCAGATTGACAGACGGGGCAGCAAACTGGCCGACGAGGATGAGACAGCCTACGACTCTGG
 CACCGACCTGATCGACTTCATCGACGACAGCGACGAGAACGAGAAATGACAGCGACACCAGGAGACATG
 30 GTGGATTTATCGACAATGCCAGCTGGCGACTCCGACTCTAATGCCGTGCCCTTCTGAAGGCTCAGC
 TGGCTGACGTGAACAGCAATGCCGCCCTTCTGAAGAACTGCATCCTGCTGTACGGCGCTGCCAACAC
 AGGCAAGAGCCTGTTGGCATGAGCCTGAACTGCCTGGTGTGCGGACCTGCCAATACCGGAAAGC
 TACTTCGGCATGTCCTGTGGCTTACCTGCACAGCAGACTGGTGGTTACATTCCCCAATCCTTCT
 GGCCCTACCTGGAAAGCCGGATCACCGTGGTCAAGCTCCCAACGCCCTAACGTGTGCCAGGACAAGAT
 35 CCTGGAACACTATGAGAACGACAGCAAGGACATCCTGAGCACTACGAAACGACTCCAAGGACCTGTGC
 GACCACATCTCGCATCACATCGACTACTGGAAGCAGACATCCGGCTGGAATGCGCCATCATGTACAAGGCC
 GGATCAGACTGGAATGTGCTATTATGTATAAGGCTCGAGATGGCTTCCACCAAGTTCGACGGCGACAT
 CTGCAACACCATGCACTACACCAACTGGATCTATCTGCGAGGACGCCAGTGCACCGTGGTGGAAAGGA
 CAGGTGGACAAGAAATGGGAAGTGCACGCTGGCGCCAAGTGATTCTGTGCTGAGAGCGGCCAGCGGA
 40 GAATCAAGAGGCCAGATCCGAGAACTGTCACCCACAAGCTGCTGATCCTGAAGTGCCTGCGGTACAG
 ATTCAAGAACGACTGCAAGCTGAGCAGCACCTGGCACTGGACATGCCACGATGGCAAGCACAAGTGGCAT
 TGGACCTGTCAGCACGGAAACACAAGAACGCCATCGTACCTGACACTACGAGGCCAGAACAG
 ACCTGAACGCCAGATTGAGCACTGGAAACTGATCCGGATGGAATGTGCAATCTCTATAAGGCCAAGA
 GCTGGGGATCAGCATGCCACCAAGGTGGTGCCTCCACTGGCTGCCTCTAAAGCCAAGCCTGTCAGGCC
 45 ATCGAACTGCAGCTGGCCCTGGAAAGCCCTGAACGCTAGCCCTACGATGAGTGGACCCCTGCAGCAGACCA
 GCCTGGAAATGTGGCTGGCCGAGCCTCAGTTAAGAACGACGGCATCACCACCAACCGTGCAGTACGACAA
 CGACAAGGCCAATACCATGGATTACACGAATTGGAAAGAAATCTACGTGATCGTGTGCCCCGCCAGCATT

CCCTCCGATGAGATCTCTACCGAGGAAGCCGACCACATTGATTATTGGAAGGCCATCCGGCAAGAGAATG
 CCATCTTCTTCGCCGCCAGACATCAGGTGGTCCCCGCTCTGAATATCTGCAAGGCCAAGGCCTGCAAAGC
 CATCGAGTGGAACACCGAGCCTAAGCACTGCTCAAGAAAGGCCAGCACATCGAAGTTGGTTCGAC
 TACGTGGCCTGGGACAGCGTGTACTACTGCGGAGATGATGGCTGGTGCAGACCGAGGCCAGAACGTACG
 5 GCTGTAAAGGCACCTGGGAAGTCCACTCGGCAACAGCATCGACTGCAACGATAGCATGTGCAGCACCT
 CGACGACAACGTGTCCGCCACAGAGCTGGTCAAGGACCATATAGACTATTGGAAGCTGATCAGGCTTGAG
 TGCGCCATTCTACAAGGCCAGACGGCGCTGTCCAGCGACCAGGATCAATCTCAGCTCGTACCAAGT
 ATCCCCTGCTGAAGCTGCTGTACCCAGACCACACCTGAGAACACACAAGCTGGTGGAACTGAGAGT
 GACCACACCTAAGAGCACCCTCGTGTACCGCTGCACCTGACCACAAGATAACCTCTGCTGAGCCTGCTG
 10 AACAGCTACAGCACCCCTCCACACAGGATCCCCGCTCCATGTCCTGGGCTCCTCAGAGGCCCTCCTATT
 CTAAGCCTTCTCCATGGGCTCCTAGAATCCCCGCACCTTGTCCATGGGCACCACCAAGACCTCCACATT
 CCCTGGGTGCCCTGTTCTGCTGTGCTTTGCGTGCCTGTGCGTGTGCTGATCAGACCTCTG
 CTGCTGAGCGTGTCCACCTACCTAGACCACTGCTCCTGTCCATCTCCGTGTACGCACAGGTGCTGGTGC
 TGGTCCTGCTTCTGTGGGTGTCATCGGAAGCCTGCTGCCTAGCGTGTGCATGTGTGCCTATGCTTGGG
 15 GCTCGTGTTCGTGTACATCGTGGTCATCACAAGCCCCGCCACAGCCATCGTGTACAGAGATGGCAATCCC
 TACGCCGTGTGCGACAAGTGCCTGAAGTTCTACAGCAAGATCAGCGAGTACCGGCACTACTGCTACAGCC
 TGTACGGCACCACACTGGAACAGCAGTACAACAAGCCCCTGTGCGATCTGCTGATTGGTGCATCAACGT
 GGTGTACCGGGACAGCATTCTCACGCCGCTGCCACAAGTGCATCGACTTCTACTCCAGAACAGAGAG
 CTGCGGCACTACAGCGACTCTGTGTACGGCGACACCCCTGGAAAAGCTGACCAACACCGGCCTGTACAACC
 20 TGCTGATTAGATGCCTGCGGGTGTACTGCAAGGGACAGCTGACAGAGACAGAGGTGCTGGACTTCGCC
 CACCGATCTGACAATCGTGTATGGGATAGCAAGGTGTCGAGTTCCGGTGGTACAGATATAGCGTGTAC
 GGAACAACCCTGTGCGTCGAGTGCAAGAAAACCCTGCAGAGAACGAGGTGTACGACTGCCAGAGGCCAC
 TGTGCCCTCAAGAGAAGAACGGCACGTGGACCTGAACAAGCGGTTCACACCCCTGCACGAGTACATGCT
 GGACCTGCAGCCTGAGACAAACGACCTGTACTGCTACGAGCAGCCCACAGATCTGCACTGTTAT
 25 GAGCAGCTGGCGACAGCAGCGACGAAGAGGATACAGGGGACTGGACGGCGAGGAAAACGACGAAATTG
 ACGGCGTGAACCACCAGCATCTCCCCGCCAGAAGGGCTGAACCTCAGAGACACACCAGCTGTGTATGTG
 CTGCAAGTGCAGGCCAGAATCGCCTGATGA

30 **HPV53del polypeptide sequence (includes tPA leading sequence and HindIII cloning linker, underlined) (SEQ ID NO:74)**

MDAMKRLCCVLLCGAVFVSPSQEIHARFRRGSKLADEDETAYDSTGDLIDFIDDSDENENDSDTGEDM
 VDFIDNAQLADSDSNACAFLKAQLADVNSAAAFLKNCILLYGAANTGKSLFGMSLNCLVLCGPANTGKS
 YFGMSLWPYIHSRLVVF^TFPNPFWPYLESRITVFEFPNAFNVCQDKILEHYENDSKDILEHYENDSKDLC
 35 DHICDHIDYWKHIRLECAIMYKARILECAIMYKAREMGFHQFDGDICNTMHYTNWIYICEDAQCTVVEG
 QVDKKWEVHAGGQVILCPESGQRRIKRPRSENCHPNKLLILKCLRYRFKKHCKLSSTWHWTCHDGKHKWH
 WTCHDGKHNAIVTLYYEADKNDLNAQIEHWKLIRMECAIFYKAKELGISICHQVVPPLAASKAKACQA
 IELQLALEALNASPYDEWTLQOTSLEMWLAEPQFKKHG^ITITVQYDNDKANTMDYNWKEIYVIVCPASI
 PSDEI STEEADHIDYWKAI RQENAI FFAARHQVVPALNICKAKACKAI EWNTEPKHCFFKKGGQHIEVWFD
 40 YVAWDSSVYYCGDDGWCKTEAEKYGCKGTWEVHFGNSIDCNDMSCTFDDNVSATELVKDHIDYWKLIRLE
 CAIFYKARRRLSSDQDQSQLVTKYPLLKLLSTQTTPENTSLVELRVTPKSTVVI^RLHLLTRYPLSLL
 NSYSTPPHRI PAPCPWAPQRPIP^KPSPWAPRIPAPCPWAPP^RPHCPWVPC^FLLCFCVLLCVCLLIRPL
 LLSVSTYLRPLLSISVYAQVLVLVLLWVSIGSLLPSVC^MCAYAWVLVFVYIVVITSPATAIVYRDGNP
 YAVCDKCLKFYSKISEYRH^CYSLYGTTLEQ^QYNKPLCDLLIRCINVVYRDSI^PHAACKC^ID^FYSRIRE
 45 LRHYSDSVYGD^TLEKLTNTGLYNLLIRCLRVYCKGQLTE^EVLDFAFTDLTIVYRDSKVSEFRWYRYSVY
 GTTLCVECKKTLQRSEVYDCQRPLCPQEKKRHD^LNKRFHTLHEYMLD^LQPETTDLYC^YQPETTDLHCY
 EQLGDSSDEEDTGGLDGEENDEIDGVNHQHLPARRAEPQRHTMLCMCKCEARIA**

50 **HPV3-linkers nucleotide sequence (includes tPA leading sequence and HindIII cloning linker, underlined) (SEQ ID NO: 75)**

55 ATGGATGCTATGAAGAGGGCCTGTGCTGCGTGTGCTGTGTGGGCCGT^{TTTGTG}CCCCAGCC
 AGGAAATCCACGCCGGTT^CAGAAGAGGCCAGCAAGCTGGCCACGAGGCCAGAACGCTACGACAGCGG
 CACCGACCTGATCGACTTCATCGACGATAGCGCCGCTGCCGACGAGAATGAGAACGACAGCGATACCGGC
 GAGGACATGGTGGATT^TCATCGACAACGCTGCCGCCAGCAAACCGACGAAAGAGGCCAGGAGAGCGACC

TGGACGGCTTATCGACAACAGCGCAGCCGCCAGCTGGCTGACAGCGACTCTAATGCCTGCGCCTCCCT
 GAAGGCCGCTGCTCAGCTGGCAGACGTGAACAGCAATGCCGCCGTTTCTGAAGGCTGCCGCCAACTGC
 ATCCTGCTGTACGGCGCTGCCAACACCGGCAAGAGCCTGTTGGCATGTCTGGCCAGGCCAACTGCC
 TGGTGTGCGGACCTGCCAATACTGGCAAAGCTACTTCGGCATGAGCCTGGCAGGCCAAATTGTCT
 5 CGTGATCTACGGCCCTCTAATACCGGCAAGTCCTGCTTGCATGAGTCTGGCGCTGCCTGGCCCTAC
 CTGCACTCTAGACTGGTGGTGTACCTTCCCCAACCCCTCGCTGCCGTTGGCTTACCTGGAAAGCC
 GGATCACCGTGTTCGAGTTCCCCAATGCCCTCGCCGAGCCCTGAGATACTGCACAGCAGAACCTAC
 GCTGCAGTTCTGAACCCCTTGCCGCCAAACGTGTGCCAGGACAAGATCCTGGAACACTACGAGAAC
 GACTCCAAGGATGCCGCTGCCATTCTGAACATTATGAGAATGAGAATAGCAAGGACCTGTGCGACCACATTG
 10 CTGCCGCTGCGATCACATCGACTACTGGAAGCACATCCGGCTGGAATGCGCCATCATGTACAAGGCCAG
 AGCCGCCGCTATCAGACTGGAATGTGCTATTATGTATAAGGCTCGCAGATGGGCTTCCACGCTGCTGCC
 CAGTCGACGGCGACATCTGCAACACCATGCACTACACCAACTGGGCTGCCCTATCTACATCTGCGAGG
 ACGCCCAGTGCACCGTGGTGGAAAGGACAGGTGGACGCCGCTGCTAAGAAATGGGAGGTGCACGCTGGCGG
 CCAAGTGATCCTGTGTCAGAGTCTGCTGCCAGGCCAGCGGAGAACATCAAGAGGCCTAGAAGCGAGGC
 15 GCCGCTAACTGCCACCCAAACAAACTGCTGGCTGCTGCCATCCTGAAGTGCCTGCGGTACAGATTCAAGA
 AGCACTGCAAACACTGGCTGCAGCTAGCAGCACCTGGCACTGGACCTGTACGACGGCAAGCACAAAGGCC
 CGCATGGCATTGGACATGCCACGATGGAAAACACAAGAACGCCATCGTACCGCTATGCAGGCC
 TACGAGGCCACAAGAACGACCTGAACGCCAGATCGAGCAGTGGAAAGCTGATCAGGATGGAATGTGCAA
 TCTTCTATAAGGCCAAAGAGCTGGCATCAGCGCTGCCAATCTGCCACCAGGTGGCTCCACTGGC
 20 CGCCTCTAAAGCCAAGCCTGCCAGGCCATCGAACTGCACTGGCCCTGGAAGGCCCTGAATGCCAGGCC
 TATGCCGAGCCGATGAGTGGACCCCTGCAGCAGACCAGCCTGGAAATGTGGCTGGCCAACCTCAGGCC
 CAGCTTTAAGAACGACGGCATCACCACCGTGCAGTACGACAACGACAAGGCCAACATACCATGGATT
 CACCAATTGAAAGAGATCTACGCCAGCTGTGATCGTGTGCCCGCCAGCATCCCTAGCGACGAGATC
 AGCACAGAGGAAGCAGCCGCCACCACATCGATTATTGAAAGCCATCAGACAGGAAACGCCATCTTCT
 25 TCGCCGCTAGAGCCGCTGCCACCAGGTGGCCAGCCCTGAATATCTGCAAGGCCAACGGCTGTAAAGC
 CATCGAAGCCGCTGCTGGAACACCGAGCCAAAGCACTGCTTCAAGAAGGGCCAGCACATCGAAGTG
 TGGTCGACGCTGCAGCCTACGTGGCCTGGACAGCGTGTACTACTGTGGCGACGGCTGGTGCAGA
 CCGCCGCTGCAGAGGCCAGAGTATGGCTGCAAGGGCACCTGGGAAGTGCATTGCGCAGCTGCC
 30 CTCCATCGACTGCAACGACAGCATGTGCAGCACCTCGACGACAACGTGTCCGCCACCGAGCTCGTGAAA
 GCTGCCGCTGACCATATTGATTACTGAAACTGATTGCGCTTGAATGCGCTATTTCTACAAAGCCAGGG
 CCGCAGCACGGCGCTGCTCAGATCAGGATCAGAGCCAGGCTGCTGCACTCGTGACCAAGTACCC
 GCTGAAGCTGCTGAGCGCCGAGCAAGACCCCCAACATGGGAGTGAAGGCCACGGCAAGTGCATCTGG
 GAGAACAAAGGTGTTCATCGTGCCTGCCACCCCTGTGCCCCGTGCCTCTGGATCCAACATATCCT
 TGCTGAAAC
 35 TGCTGACCGCTGCCGCCACCCAGACCACACACCTGAGAATACCTCCCTGGTGGAACTGAGAGTGACCAC
 CCCAAGAGCACAGTCGTGATCAGGCTGCACCTGGCTGCCGAACCACCAAGATACCTCTGCTGCC
 CTGAACAGCTACAGCACCCCCCTCATCGATCCCTGCCCTGTGCTTGGCTCTCAGAGGCC
 CTGCACCTATCCCTAACGCTTCTCCATGGGCCCTGCCGAGCTAGAATCCCAGCTCCATGTCC
 ACCAGCTGCTGCCAGACCTCCTCATTGCCCTGGGTGCCAGCAGCCGCTCCACCTCCT
 CCTGGGCCAGCCGCTTGTGCTGCTGTGCTGTGCTGCTGCTGCTGATCA
 40 GACCCCTGCTGAGTGTGTCACCTACGCAGCTGCTCTGCCACTGCTGCTGTCCATCTGTGTA
 CGCACAGGTGCTGGTGTGGCTGCTGCTGCTGGGTGTCATCGGATCTGCCGAGCACTGCTGCC
 GTGTGCATGTGTCCTATGCCTGGGTGCTGGTGTACATCGTGTGATTACCAGCCCCGCCACCG
 CAGCCGAATCGTGTACAGGGACGGCAACCCCTACGCCGTGCGACAAGTGCCTGAAGTTCTACAGCAA
 GATCAGCGAGTACGCCACTACTGCTACAGCCTGTACGGCACCACCTGGAACAGCAGTACAACAAGCCC
 45 CTGTGCGATCTGCTGATCCGGTGCATCAACGCAGCCGCTGTGGTGTACAGAGACAGCATCCC
 ACCAGGCCAACAGTGTACTCTACTCCGGATCAGAGAGCTGAGACACTACTCC
 CGATACCCCTGGAAAAGCTGACCAATACCGGCCGTACAACCTGCTGATTAGATGCCTGCC
 GTGTTCTGCAAGAAAGCCCTGACCGCCAGCGAGGTGTACAACCTCGC
 ACCGGATGCTGCCCTCCAAAGTGCAGCTGCCGTTACTACAAC
 50 GGCAGCTGCCGTGATTGCAAGGGACAGCTGACCGAGACAGAGGTGCTGGATTTC
 ACCATCGTGTAGAGATGCAGCTGCTAGCAAGGTGTCGAGTTCCGGTGGTACAGATATAGCGTGTACG
 GAACAAACACTGGCAGCAGCTGCGTGGAAATGCAAGAAAACACTGCAGCGGAGCGAAGTGTAC
 AGCTGCCAGAGGCCGCTGTGCTCCTCAGGAAAAGAAAAGACACCGTGGAC
 GCAGCTACCCCTGCACGAGTACATGCTGGACCTGCAGCCGAGACAACCG
 55 CAGCTGCACCCGAAACCACAGATCTGCACTGTTATGAGCAGCTGGGAGACAGC
 CGCGGACTGGATGCTGCCGCTGGGATGAGGACGAGGATGAGGTGGACC
 CAGGCCAGAAGGGATGAGCAGCACCCCTGCTATCTGATCGAGACACAGT
 GCTGCAAGATGCGAGAGCAGCTCCGATGAAGAGGACAC
 TGGCCGCTGCTGAGGAAAACGACGAGATCGACGGCGTGAACC
 ACCAGCATCTGCCGCTAGAAGGGCCGA

GCCTCAGAGACACACCAGCTGTATGTGCAAGTGCAGGCCGGATGCCGGATCTGGACCTGGC
GCTAGCGAAAGCCCATCCCCATCCACTGCTGGCCTGGACTCCACCCGGACCTGATAA

**HPV3-linkers polypeptide sequence (includes tPA leading sequence and HindIII cloning linker,
underlined) (SEQ ID NO: 76)**

5 MDAMKRLCCVLLCGAVFVSPSQEIHARFRRGSKLADEETAYDSGTDLIDFIDSAADENENSDTG
EDMVDFIDNAAADETDEESTESDLDGFIDNSAAAQLADSDSNACAFLKAAQLADVNSAAAFLKAAANC
10 ILLYGAANTGKSLFGMSLAAAANCLVICGPANTGKSYFGMSLAAAANCLVIYGPPNTGKSCFAMSLAAWPY
LHSRLVVFTFPNPFAAAWPYLESRITVFEFPNAFAAARLYLSRIHVLQFLNFAAAANVCQDKILEHYEN
DSKAAAILEHYENDSDKLCDHIAAACDHIDYWKHIRLECAIMYKAAAIRLECAIMYKAREMGFHAAA
QFDGDICNTMHYTNWAAAIYICEDAQCTVVEGQVDAAAKKWEVHAGQVILCPEAAGQRRIKRPRSEA
AANCHPNKLAAAILKCLRYRFKKKCLAAASSTWWTCHDGKHAAAWHWTCHDGKHKNAIVTLTYAA
15 YEADKNDLNQIEHWKLIRMECAIFYKAKELGISAAAICQVVPPLAASKAKQAIELQLALEALNASP
YAAADEWTLQQTSELMWLAEPQAAAFKKHGITITVQYDNDKANTMDYTNWKEIYAAAVICPASIPSDEI
STEEEAADHIDYWKAIRQENAIFFARAAAHQVVPALNICKACAKCAKEAAWNTEPKHCFKGGQHIEV
WFDAAAYVAWDSVYYCDDGWCKTAAAAEKYGCKGTWEVHFGAANSIDCNDSMCSTFDDNVSATELVK
AAADHIDYWKLIRLECAIFYKARAARRLSDQDQSQAAALVTKYPLLKLSAAARPPNMGVKAHGKCIW
20 ENKVFIVPTLCPVPLDPTPYPLLKLTAAATQTTPENTSLVELRVTTPKSTVVIRLHLAAAATTRPLLS
LNSYSTPPHRIPAPCPWAPQRPAAAPIPKPSPWAAARIPAPCPWAAAPRPHCPWVPAAAPPPPPR
PWAPAAACFLLCFCVLCVCLIRPLLSVSTYAAALRPLLLSISVYQVLVLVLWVSIGSAAALLPS
VCMCAYWVLVFVYIVVITSPAAAIVYRDGNPYAVCDKCLFYSKISEYRHCSLYGTLEQQYNKPS
LCDLIRCINAAAVVRDSIPHAACHKCIDFYSRIRELRHSVGDTLEKLTNTGLYNLIRCLRAA
25 VFCKKKALTASEVYNFATDLRVVRDAASKVRKLYYNCSVGASLAAAVCKQLTEEVLDFATDL
TIVYRDAASKVSEFRWYRSVYGTTLAAACVECKTLQRSEVYDAACQRPLCPQEKRHVDLNKRFH
AATLHEYMDLQPETDLYCYEQAAAPETDLHCYEQLGDSDEEDTGGLDAAGDEDEDEVDHLQEQPQS
QARRDEQHPCYLIETQCCRCESLVAAEENDEIDGVNHQHLPARREPQRHTMCCCKCEARIAGSGPG
ASGKPIPNPLGLDSTRT**

CLAIMS

1. A nucleic acid encoding a polypeptide comprising a plurality of conserved peptide sequences, or variants thereof,

5 wherein the conserved sequences are conserved across one or more HPV genotypes 16, 18, 31, 52, 53, and 58; and

wherein the polypeptide comprises a conserved peptide sequence of each of the HPV proteins E1, E2, E4, E5, E6, and E7.

10

2. The nucleic acid according to claim 1, wherein the polypeptide is a fusion polypeptide.

15 3. The nucleic acid according to claim 1 or claim 2, wherein the polypeptide does not comprise a complete gene sequence.

4. The nucleic acid according to any preceding claim, wherein the polypeptide consists essentially of conserved peptide sequences, a peptide adjuvant sequence and one or more linkers therebetween.

20

5. The nucleic acid according to any preceding claim, wherein the plurality of conserved peptide sequences comprises 10 or more conserved peptide sequences.

25 6. The nucleic acid according to any preceding claim, wherein the plurality of conserved peptide sequences comprises 40 or more conserved peptide sequences.

7. The nucleic acid according to any preceding claim, wherein the encoded polypeptide comprises at least 3 different conserved peptide sequences of each of the HPV proteins E1, E2, E4, E5, E6, and E7.

30

8. The nucleic acid according to any preceding claim, wherein the plurality of conserved peptide sequences are derived from distinct regions of sequence relative to each other and are not naturally concurrent in wild type.

35

9. The nucleic acid according to any preceding claim, wherein linker residues are provided between one or more, or all, conserved peptide sequences.

10. The nucleic acid according to claim 9, wherein the linker comprises or consists of
5 K, G, P or S amino acid residues, or combinations thereof.

11. The nucleic acid according to any preceding claim, wherein the conserved peptide sequences are selected from any of the group comprising SEQ ID NOS: 1 to 59; variants thereof or combinations thereof, in any order.

10

12. The nucleic acid according to any preceding claim, wherein the polypeptide comprises one or more conserved E1 sequence(s) selected from any one of SEQ ID NOS: 1-11; one or more conserved E2 sequence(s) selected from any one of SEQ ID NOS: 12-35; one or more conserved E4 sequence(s) selected from any one of SEQ ID NOS: 36-44; one or more conserved E5 sequence(s) selected from any one of SEQ ID NOS: 45-47; one or more conserved E6 sequence(s) selected from any one of SEQ ID NOS: 48-55; and one or more conserved E7 sequence(s) selected from any one of SEQ ID NOS: 56-59.

20 13. The nucleic acid according to any preceding claim, wherein the polypeptide comprises:

one or more conserved E1 sequence(s) selected from any one of SEQ ID NOS: 1-11, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E1 sequence;

25 one or more conserved E2 sequence(s) selected from any one of SEQ ID NOS: 12-35, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E2 sequence;

one or more conserved E4 sequence(s) selected from any one of SEQ ID NOS: 36-44, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at 30 least one conserved E4 sequence;

one or more conserved E5 sequence(s) selected from any one of SEQ ID NOS: 45-47, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E5 sequence;

one or more conserved E6 sequence(s) selected from any one of SEQ ID NOS: 48-55, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E6 sequence; and

5 one or more conserved E7 sequence(s) selected from any one of SEQ ID NOS: 56-59, wherein each of the genotypes 16, 18, 31, 52, 53, and 58 are represented by at least one conserved E7 sequence.

14. The nucleic acid according to any preceding claim, wherein the polypeptide comprises:

10 one or more conserved E1 sequence(s) selected from any one of SEQ ID NOS: 1-11, wherein each of the genotypes 16, 18, 31, 52 and 58 are represented by at least one conserved E1 sequence;

15 one or more conserved E2 sequence(s) selected from any one of SEQ ID NOS: 12-35, wherein each of the genotypes 16, 18, 31, 52 and 58 are represented by at least one conserved E2 sequence;

one or more conserved E4 sequence(s) selected from any one of SEQ ID NOS: 36-44, wherein each of the genotypes 16, 18, 31, 52 and 58 are represented by at least one conserved E4 sequence;

20 one or more conserved E5 sequence(s) selected from any one of SEQ ID NOS: 45-47, wherein each of the genotypes 16, 18, 31, 52 and 58 are represented by at least one conserved E5 sequence;

one or more conserved E6 sequence(s) selected from any one of SEQ ID NOS: 48-55, wherein each of the genotypes 16, 18, 31, 52 and 58 are represented by at least one conserved E6 sequence; and

25 one or more conserved E7 sequence(s) selected from any one of SEQ ID NOS: 56-59, wherein each of the genotypes 16, 18, 31, 52 and 58 are represented by at least one conserved E7 sequence.

15. The nucleic acid according to any preceding claim, wherein the nucleic acid 30 comprises or consists of the sequence of SEQ ID NO: 60, or variants thereof; or

the nucleic acid comprises or consists of the sequence of SEQ ID NO: 60, or variants thereof, and without encoding the TPA lead sequence; or

35 the nucleic acid comprises or consists of the sequence of SEQ ID NO: 60, or variants thereof, with a different/alternative peptide adjuvant encoded than the TPA lead sequence; or

the nucleic acid comprises or consists of the sequence of SEQ ID NO: 65, or variants thereof.

16. The nucleic acid according to any preceding claim, wherein the nucleic acid
5 comprises or consists of the sequence of SEQ ID NO: 62, or variants thereof; or

the nucleic acid comprises or consists of the sequence of SEQ ID NO: 62, or variants thereof, and without encoding the TPA lead sequence; or

10 the nucleic acid comprises or consists of the sequence of SEQ ID NO: 62, or variants thereof, with a different/alternative peptide adjuvant encoded than the TPA lead sequence.

17. The nucleic acid according to any preceding claim, wherein the nucleic acid comprises or consists of the sequence of SEQ ID NO: 71, 73 or 75, or variants thereof; or

15 the nucleic acid comprises or consists of the sequence of SEQ ID NO: 71, 73 or 75, or variants thereof, and without encoding the TPA lead sequence; or

the nucleic acid comprises or consists of the sequence of SEQ ID NO: 71, 73 or 75, or variants thereof, with a different/alternative peptide adjuvant encoded than the TPA lead sequence.

20 71, 73 or 75,

18. The nucleic acid according to any preceding claim, wherein the polypeptide comprises or consists of the sequence of SEQ ID NO: 61, or variants thereof.

25 the polypeptide comprises or consists of the sequence of SEQ ID NO: 61, or variants thereof, and without the TPA lead sequence; or

the polypeptide comprises or consists of the sequence of SEQ ID NO: 61, or variants thereof, with a different/alternative peptide adjuvant than the TPA lead sequence; or

30 the polypeptide comprises or consists of the sequence of SEQ ID NO: 66, or variants thereof.

19. The nucleic acid according to any preceding claim, wherein the polypeptide comprises or consists of the sequence of SEQ ID NO: 72, 74 or 76, or variants thereof.

35 the polypeptide comprises or consists of the sequence of SEQ ID NO: 72, 74 or 76, or variants thereof, and without the TPA lead sequence; or

the polypeptide comprises or consists of the sequence of SEQ ID NO: 72, 74 or 76, or variants thereof, with a different/alternative peptide adjuvant than the TPA lead sequence; or

5 the polypeptide comprises or consists of the sequence of SEQ ID NO: 72, 74 or 76, or variants thereof.

20. The nucleic acid according to any preceding claim, wherein the conserved peptide sequences are from about 7 to 250 amino acids in length, or more.

10 21. The nucleic acid according to any preceding claim, wherein the polypeptide further comprises a peptide adjuvant.

22. The nucleic acid according to any preceding claim, wherein the nucleic acid is a plasmid vector for vaccination.

15

23. The nucleic acid according to any preceding claim, wherein the nucleic acid comprises viral vector sequence.

24. A vaccine comprising a nucleic acid according to any preceding claim.

20

25. The vaccine according to claim 24, comprising combinations of different nucleic acids encoding different polypeptides according to any of claims 1-20.

26. The vaccine according to claim 24 or 25, further comprising another 25 therapeutically or prophylactically active ingredient.

27. The vaccine according to any one of claims 24-26, further comprising an adjuvant.

28. A composition comprising a plurality of different nucleic acids according to any 30 one of claims 1-23, optionally wherein the composition is a pharmaceutically acceptable composition.

29. A polypeptide encoded by the nucleic acid according to any one of claims 1-23.

35 30. A viral vector comprising the nucleic acid according to any one of claims 1-23.

31. The viral vector according to claim 30, wherein the virus is adenovirus.
32. A composition comprising one or more of:
 - 5 -the nucleic acid according to any one of claims 1-23
 - the polypeptide according to claim 29; and/or
 - the viral vector according claim 30 or 31.
33. The composition according to claim 32, wherein the composition is immunogenic
10 in a mammal.
34. The composition according to claim 32 or 33, further comprising a pharmaceutically acceptable carrier.
- 15 35. The nucleic acid according to any one of claims 1-23; the vaccine according to any one of claims 24-27; the polypeptide according to claim 29; the viral vector according claim 30 or 31; or the composition according to any one of claims 28, or 32-34, for use in the prophylaxis or treatment of HPV infection.
- 20 36. A method of treatment or prophylaxis of HPV infection comprising the administration of the nucleic acid according to any one of claims 1-23; the vaccine according to any one of claims 24-27; the polypeptide according to claim 29; the viral vector according claim 30 or 31; or the composition according to any one of claims 28, or 32-34.
- 25 37. An agent for use in the prophylaxis or treatment of HPV infection, the agent comprising or consisting of the nucleic acid according to any one of claims 1-23; the polypeptide according to claim 29; the viral vector according claim 30 or 31.
- 30 38. A prime boost vaccination kit comprising:
 - a prime vaccination comprising the nucleic acid according to any one of claims 1-23; the vaccine according to any one of claims 24-27; the polypeptide according to claim 29; the viral vector according claim 27 or 28; or the composition according to any one of claims 28, or 32-34; and

-a boost vaccination comprising a nucleic acid according to any one of claims 1-23; the vaccine according to any one of claims 24-27; the polypeptide according to claim 26; the viral vector according claim 30 or 31; or the composition according to any one of claims 28, or 32-34.

5

39. The prime boost vaccination kit according to claim 38, wherein the prime and boost vaccination are different.

40. The prime boost vaccination kit according to claim 39, wherein the prime and
10 boost vaccination differ in the encoded polypeptide sequence and/or comprise different viral vectors.

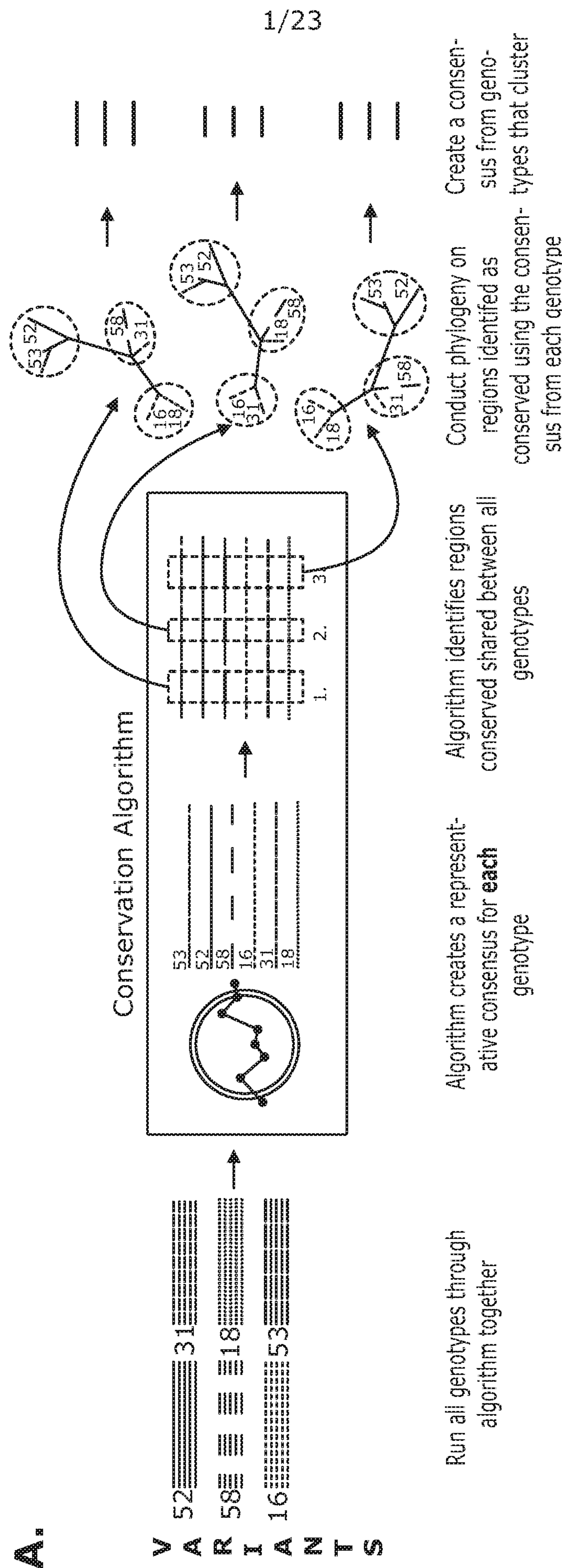
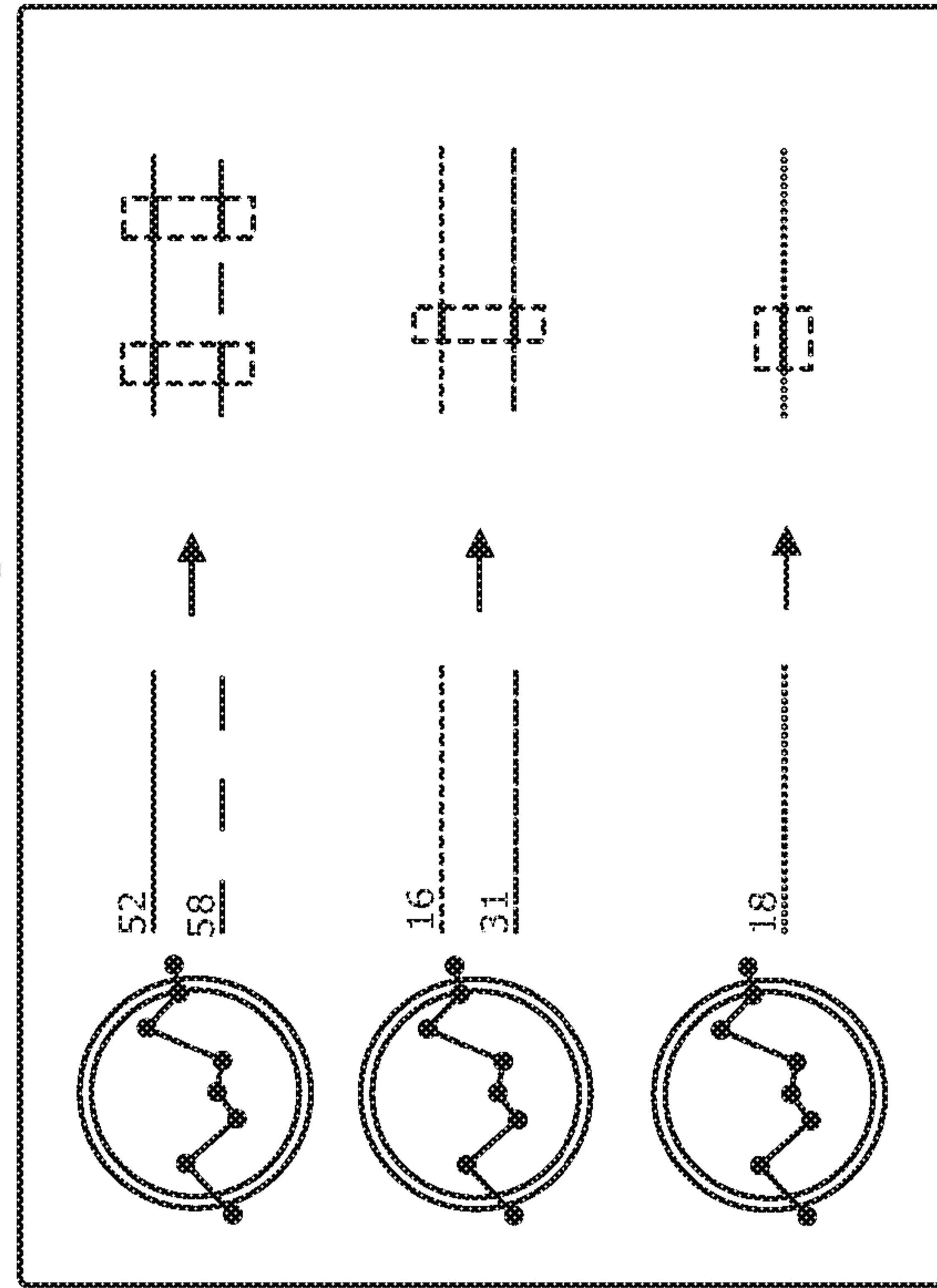



Figure 1

2/23

Conservation Algorithm

Phylogeny on all genotypes together

Run closely related genotypes together through algorithm

Algorithm creates a representative consensus for each genotype

Algorithm identifies regions on consensus that are conserved between the genotypes run together

Program outputs consensus of the conserved regions

B.

C H T Σ W R H C S

Figure 1 continued

3/23

Conserved Region 1		Conserved Region 2		Conserved Region 3		Conserved Region 4	
Consensus Identity		1.16	50	1	10	20	50
		2.18		NCIILJYGAANTGKSLEFGMSL		NPYLNHSRLVVTTPNPF	
		3.31		NCIILJYGAANTGKSLEFGMSL		NPYLNHSRLVVTTPNPF	
		4.52		NCIILJYGAANTGKSLEFGMSL		NPYLNHSRLVVTTPNPF	
		5.53		NCIILJYGAANTGKSLEFGMSL		NPYLNHSRLVVTTPNPF	
		6.58		NCIILJYGAANTGKSLEFGMSL		NPYLNHSRLVVTTPNPF	
DEDEXAXDSDGTDLIXFIDS		AQLADDSNACAFLK		NPYLNHSRLVVTTPNPF		NPYLNHSRLVVTTPNPF	
DEDENXSDTGEDMVDFIDN		AQLADDSNACAFLK		NPYLNHSRLVVTTPNPF		NPYLNHSRLVVTTPNPF	
DEDENXSDTGEDMVDFIDN		AQLADDSNACAFLK		NPYLNHSRLVVTTPNPF		NPYLNHSRLVVTTPNPF	
DEDENXSDTGEDMVDFIDN		AQLADDSNACAFLK		NPYLNHSRLVVTTPNPF		NPYLNHSRLVVTTPNPF	
31+53		52+58		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK		31+16+18		52+58+18+16	
DENENXSDTGEDMVDFIDN		AQLADDSNACAFLK					

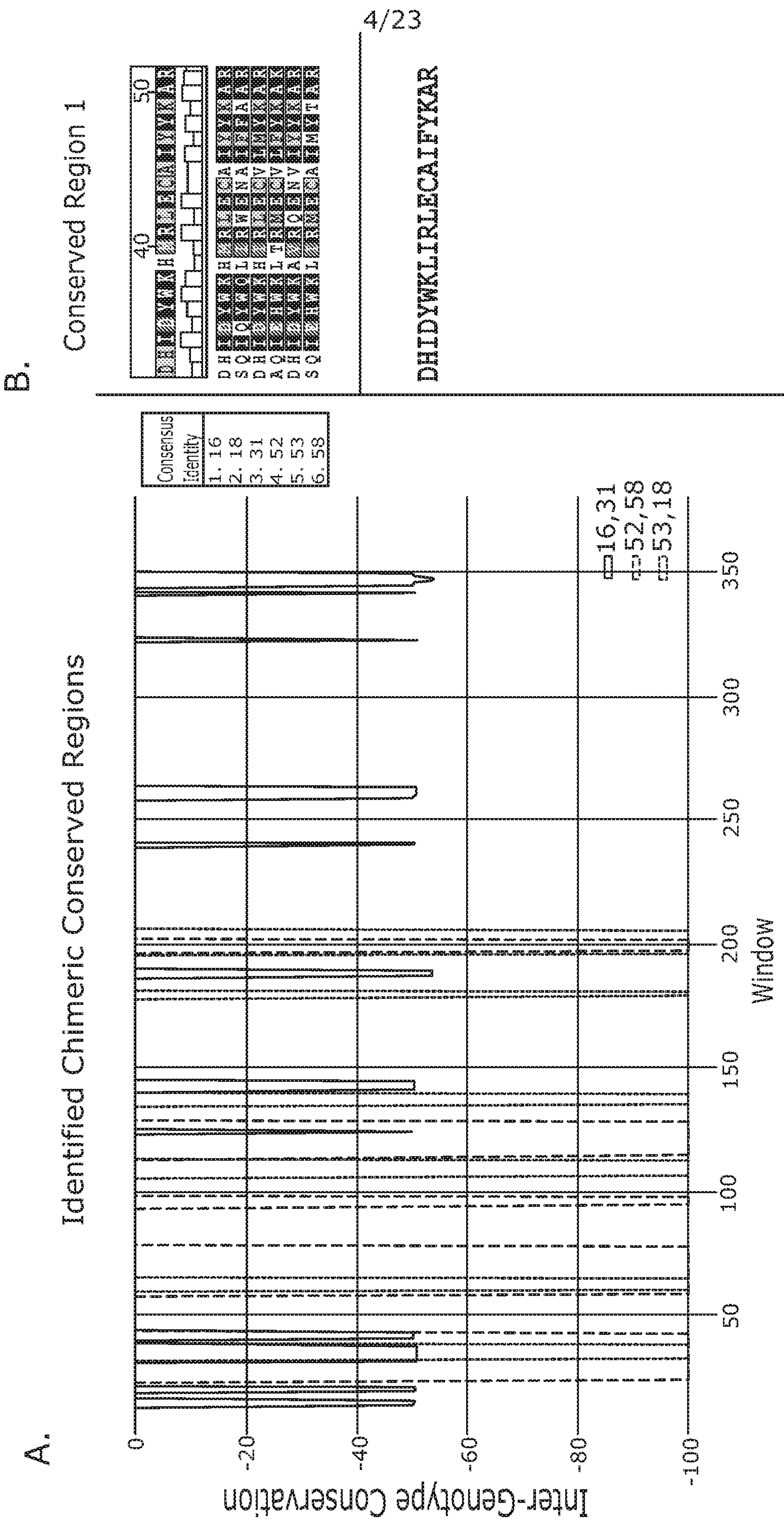


Figure 3

5/23

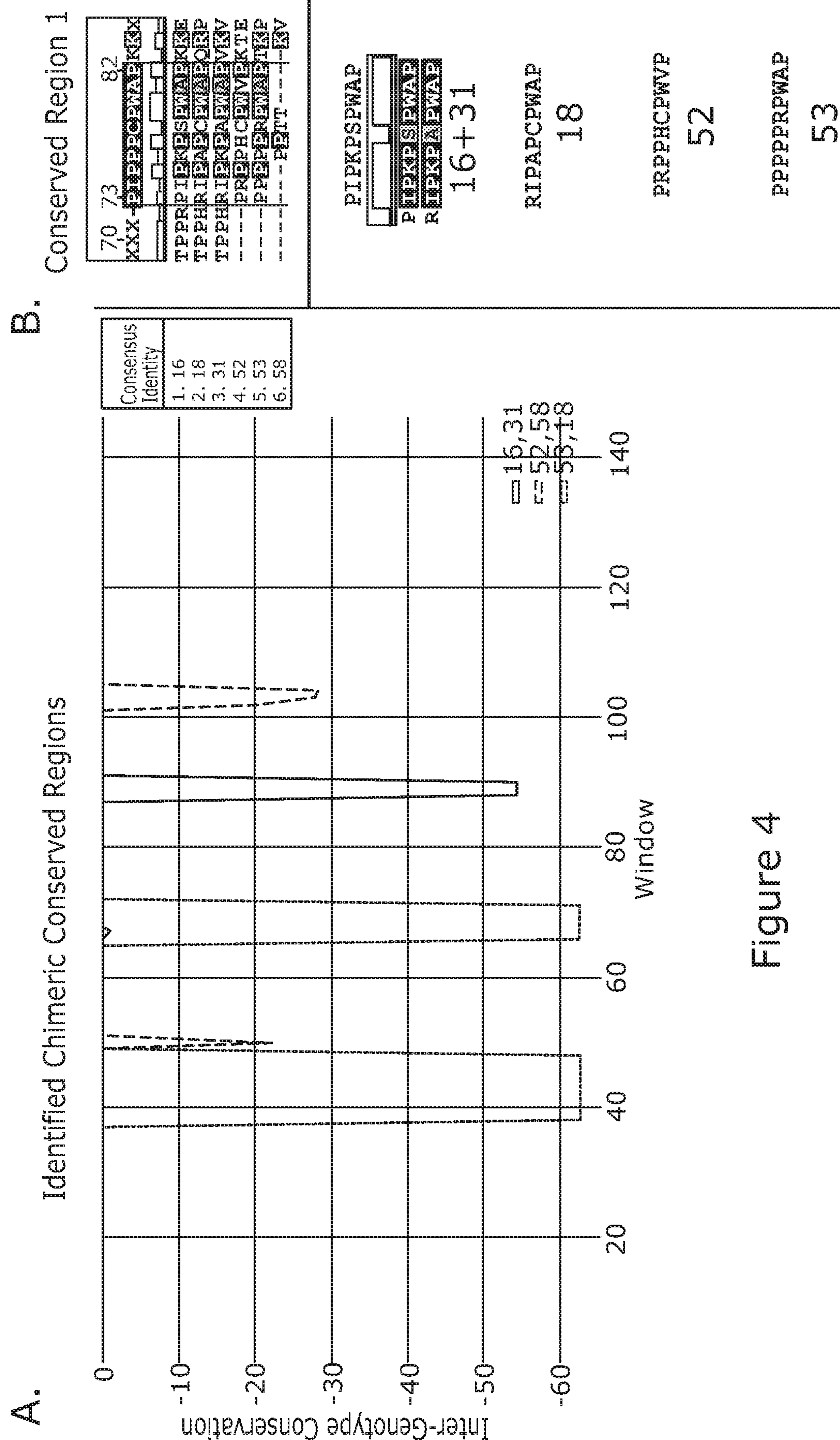


Figure 4

6/23

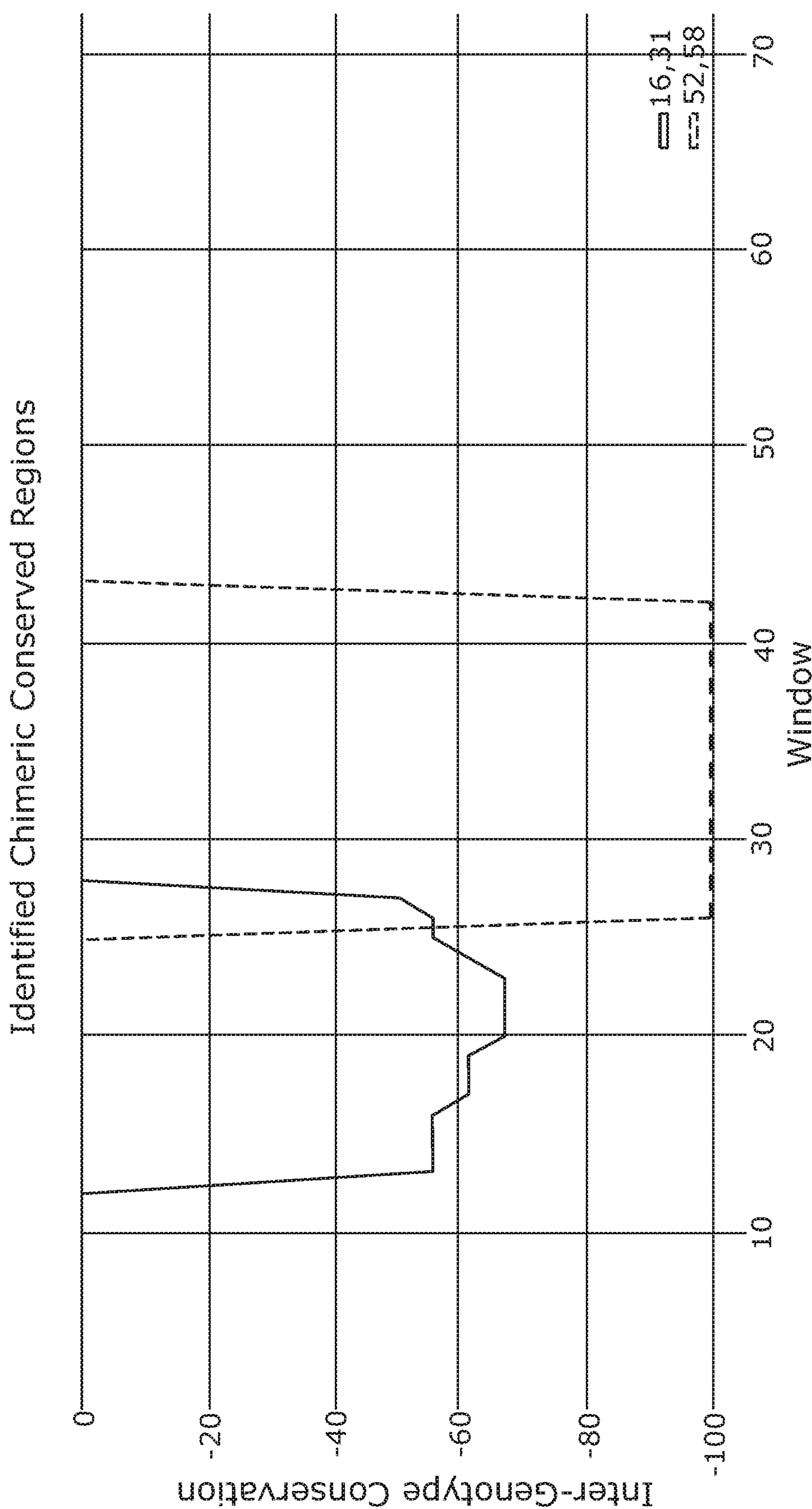


Figure 5

7/23

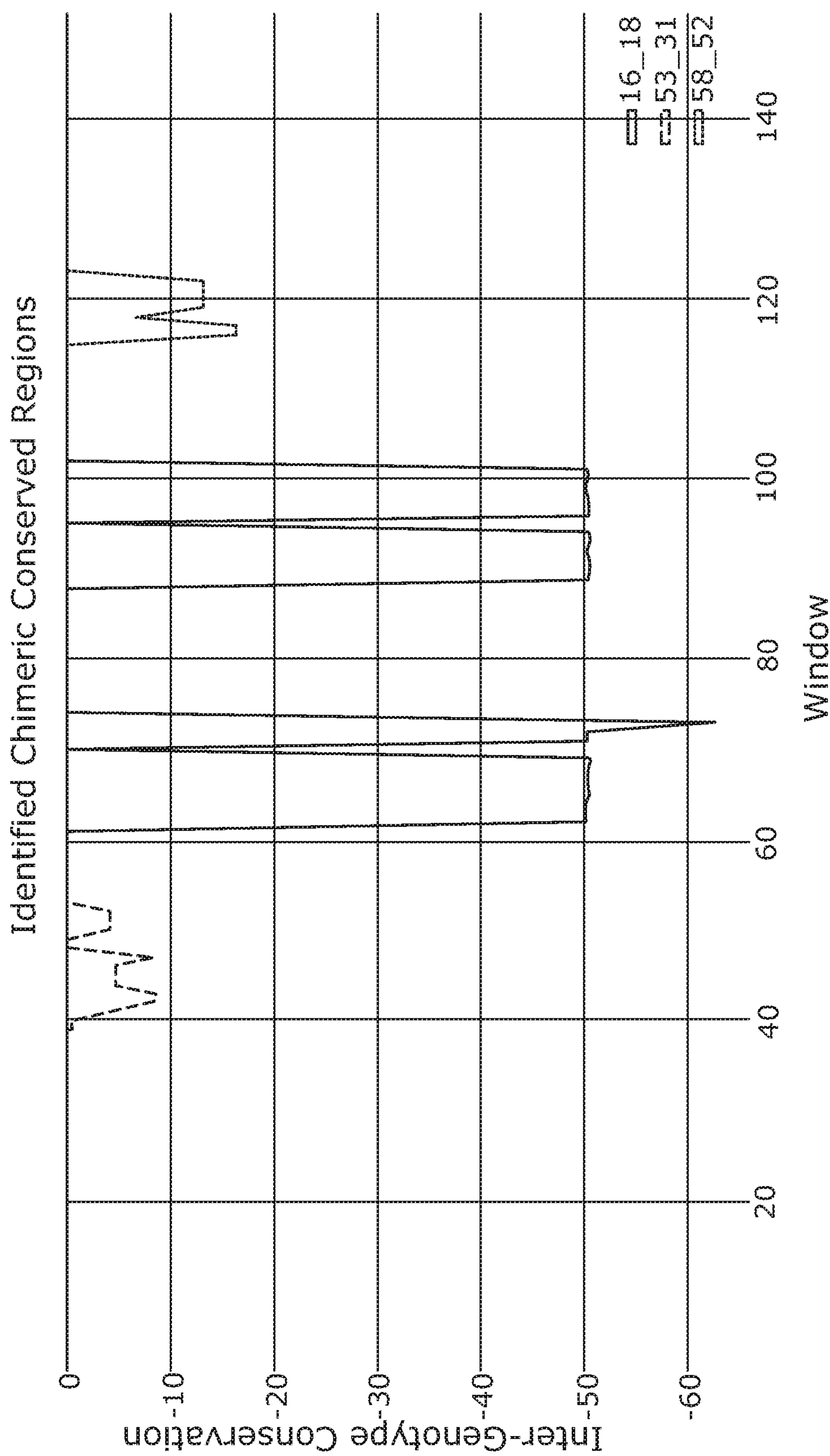


Figure 6

8/23

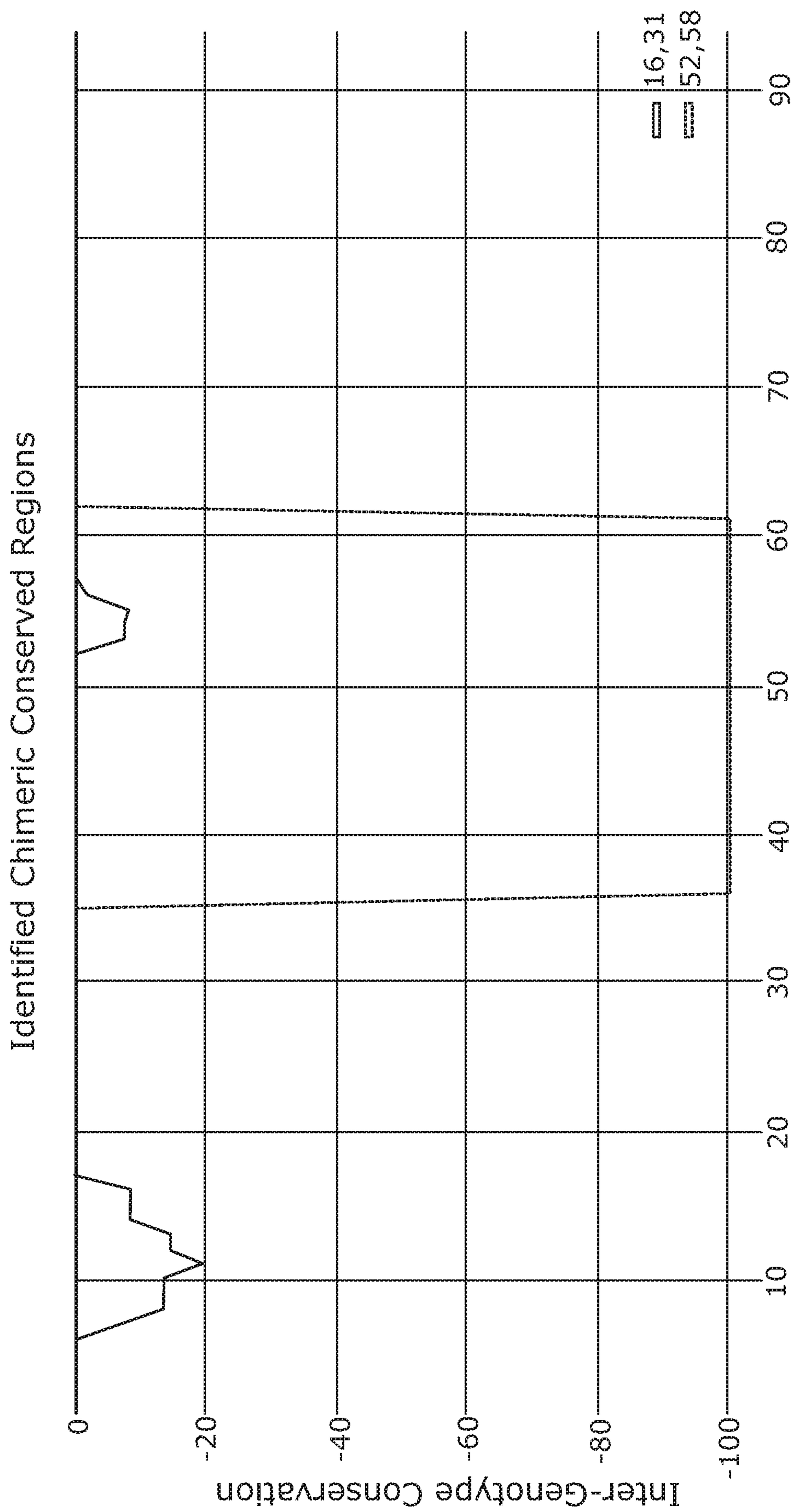


Figure 7

9/23

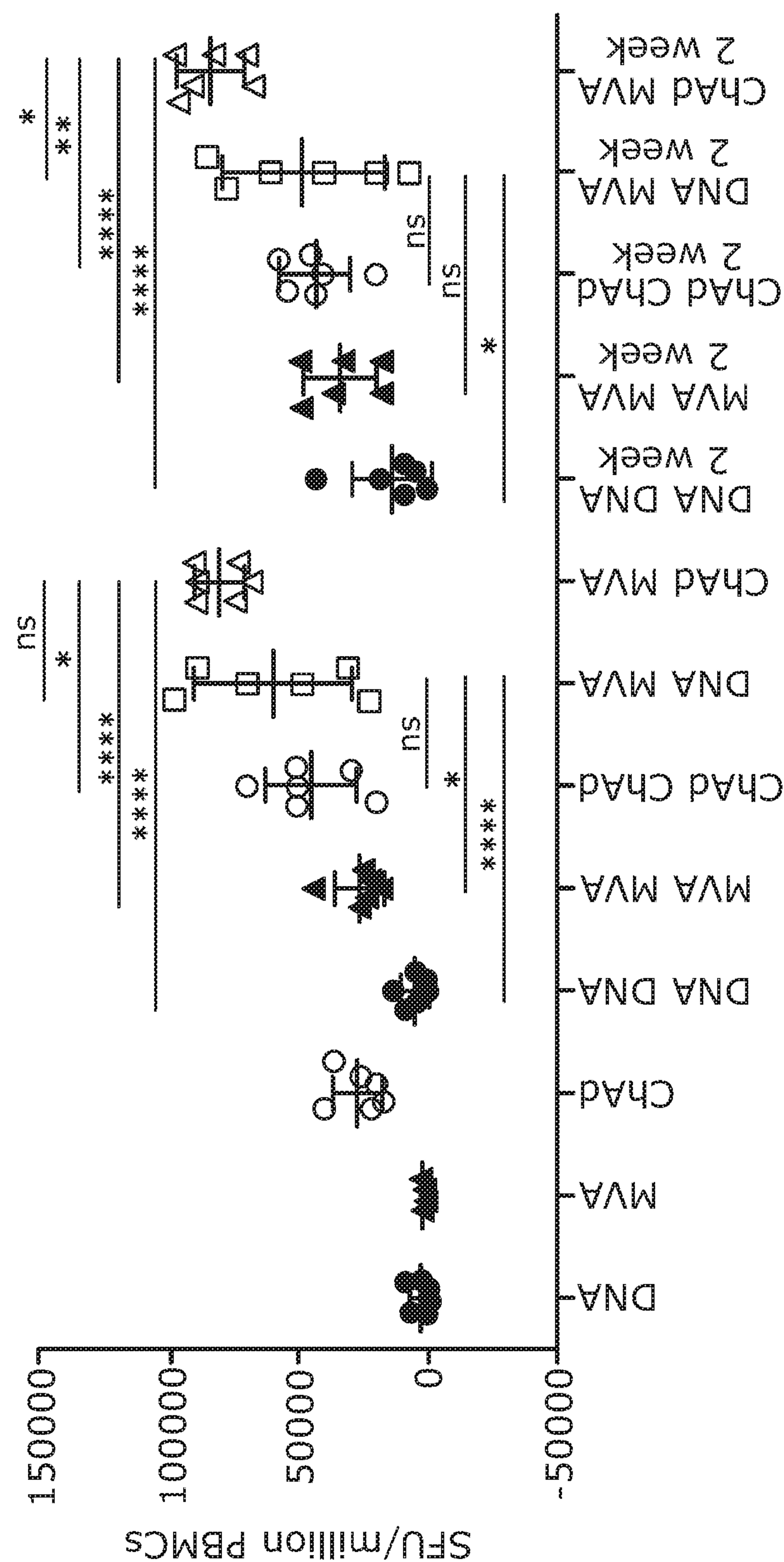


Figure 8

10/23

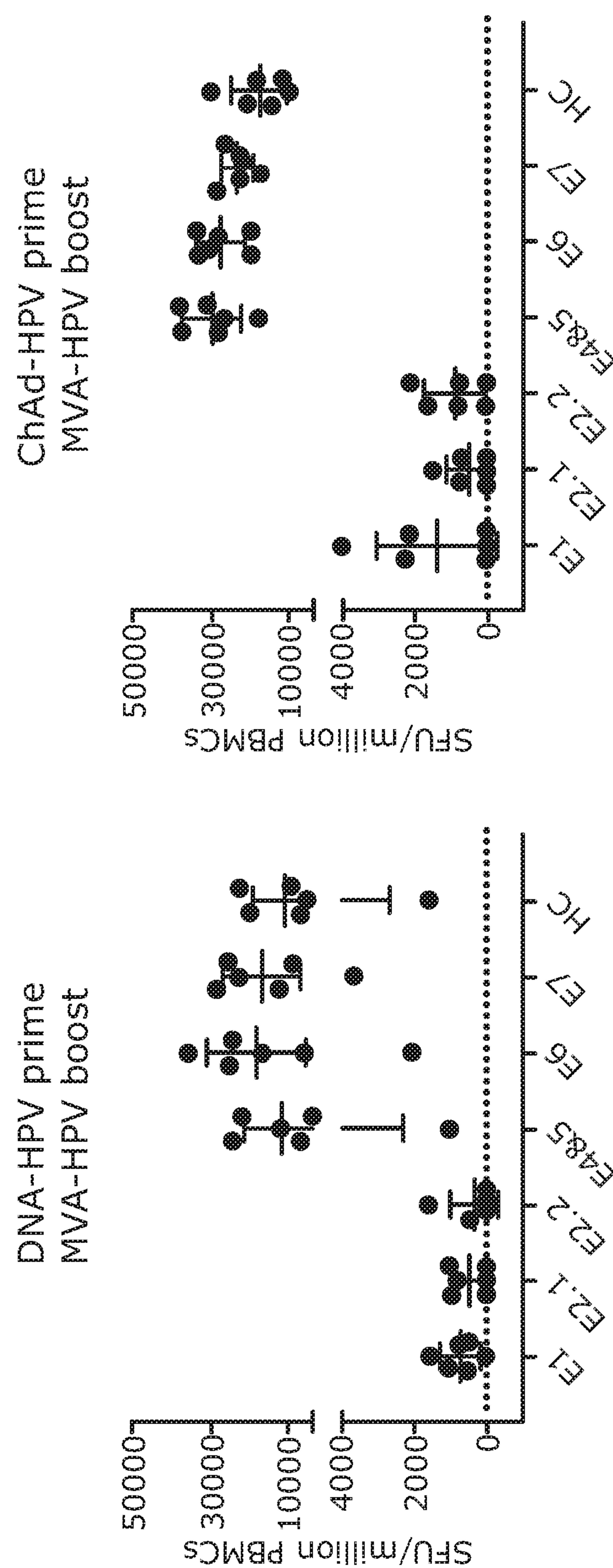


Figure 9

11/23

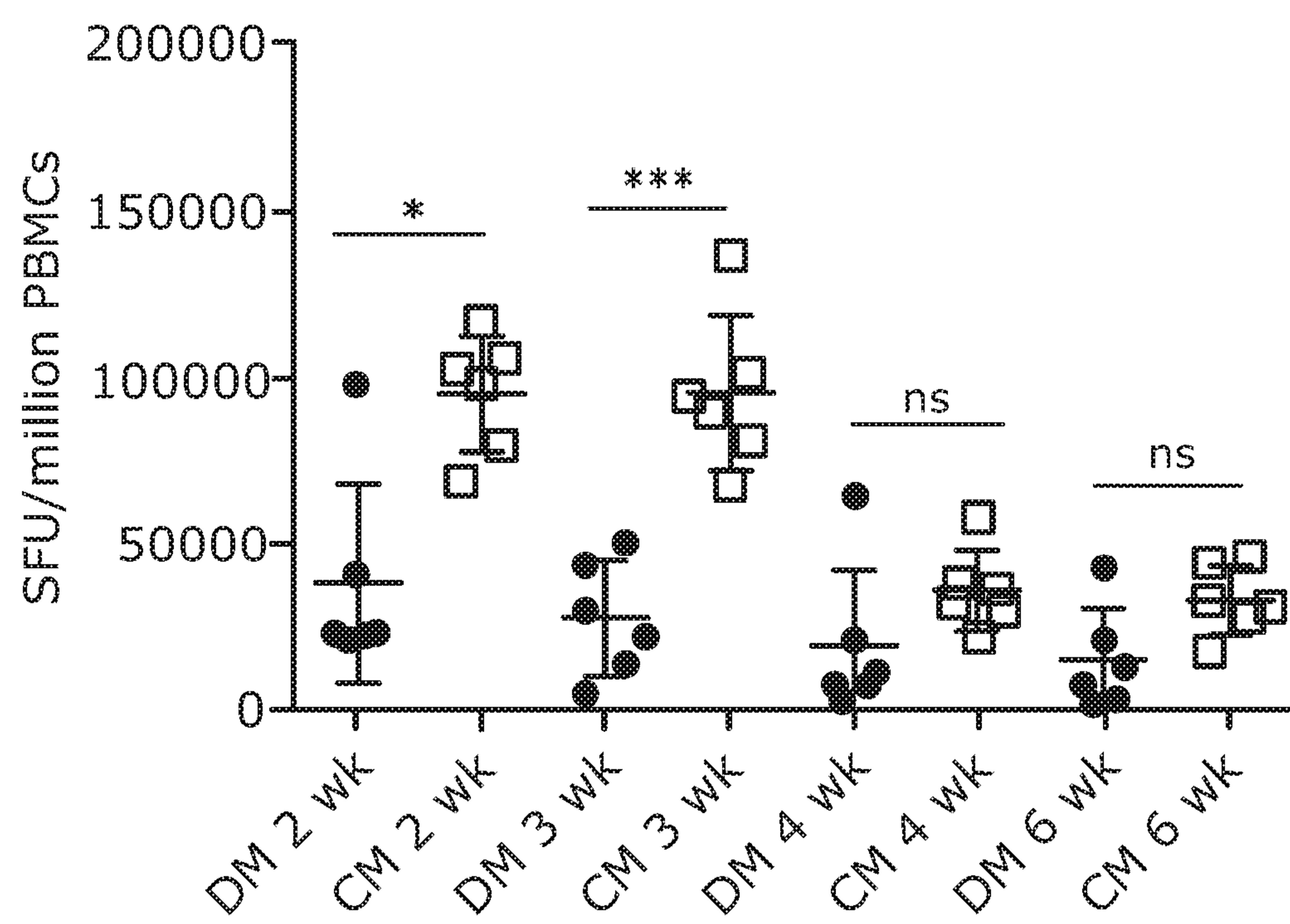


Figure 10A

12/23

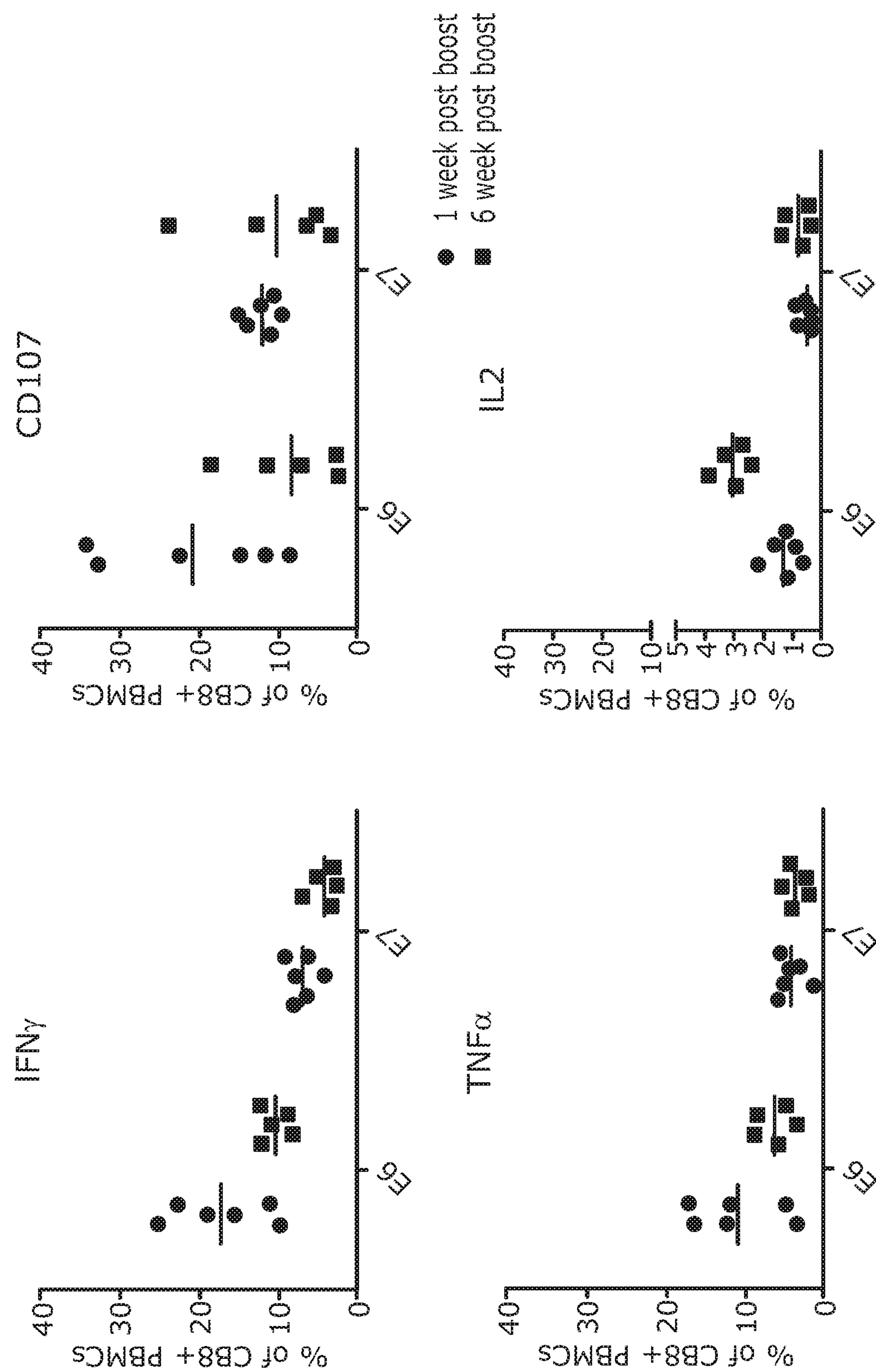


Figure 10B

13/23

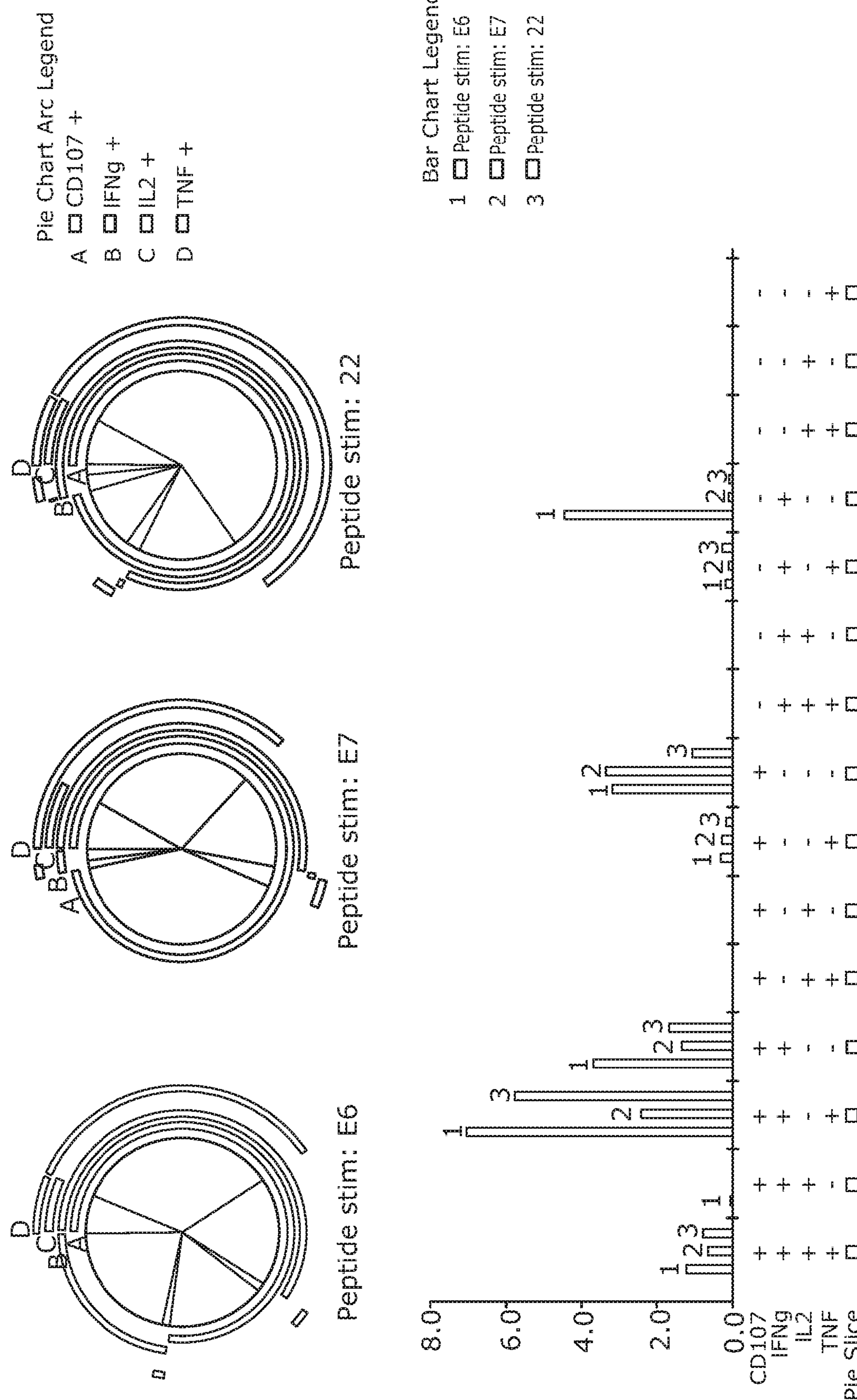


Figure 11

14/23

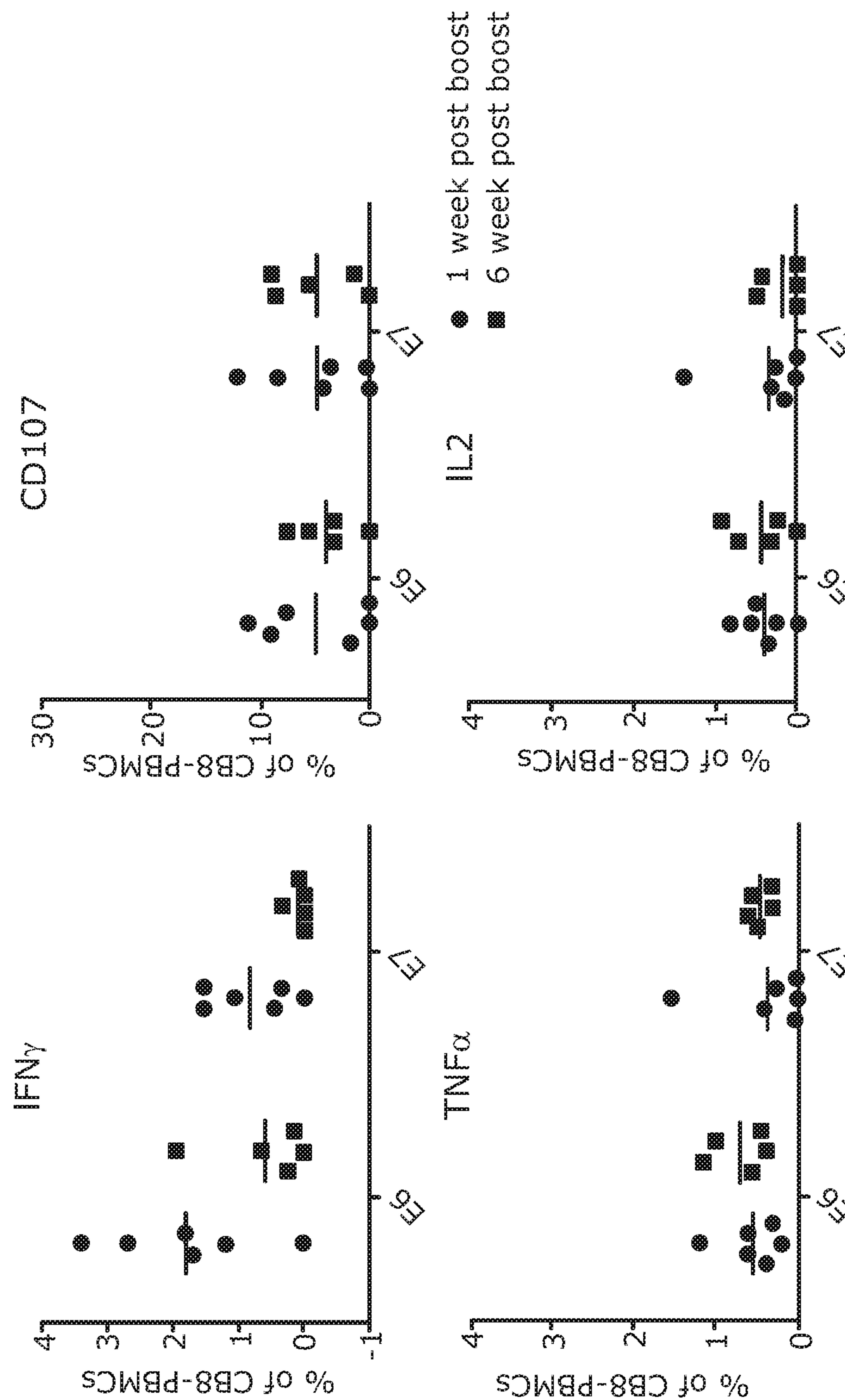


Figure 12

15/23

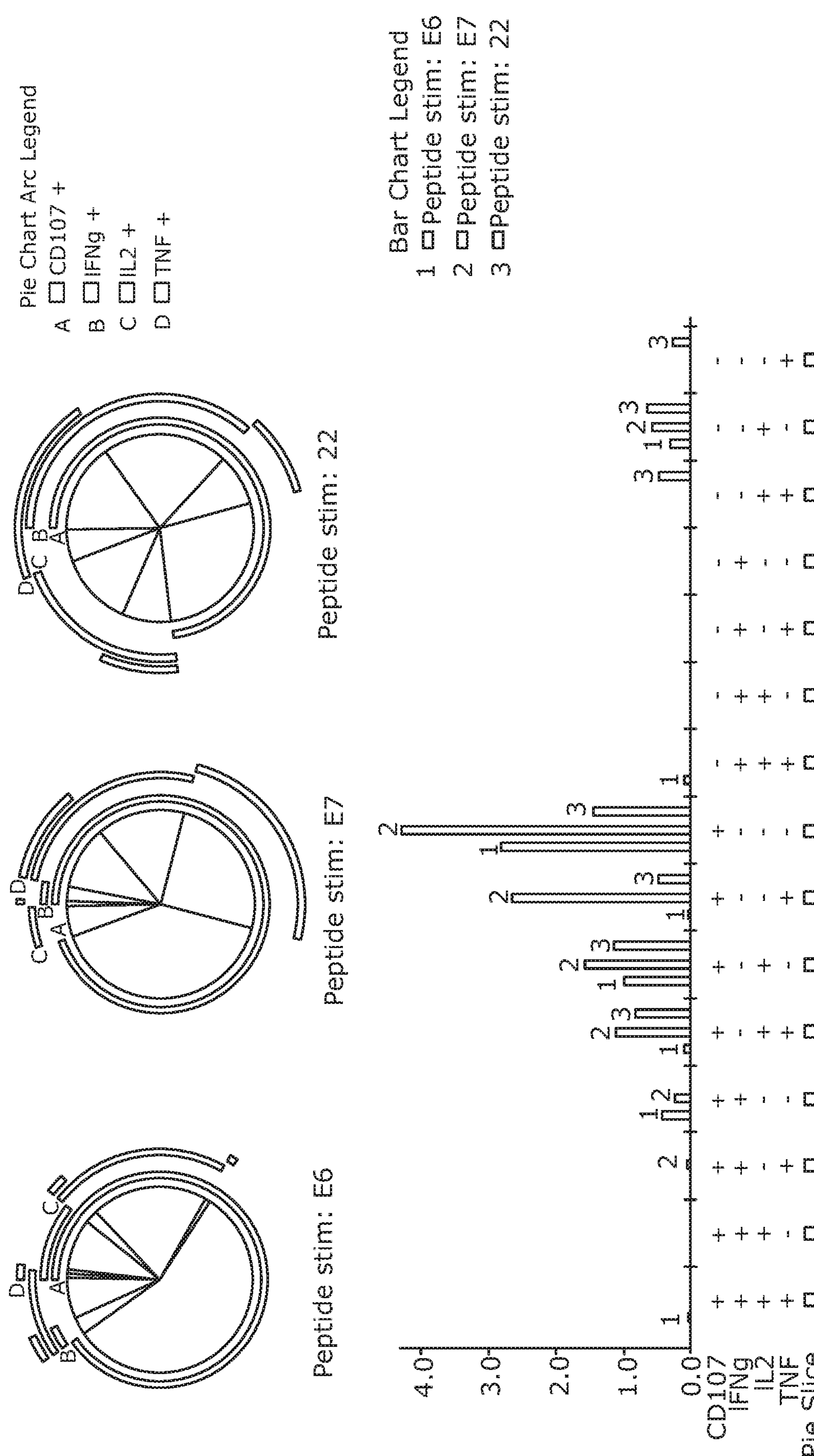


Figure 13

16/23

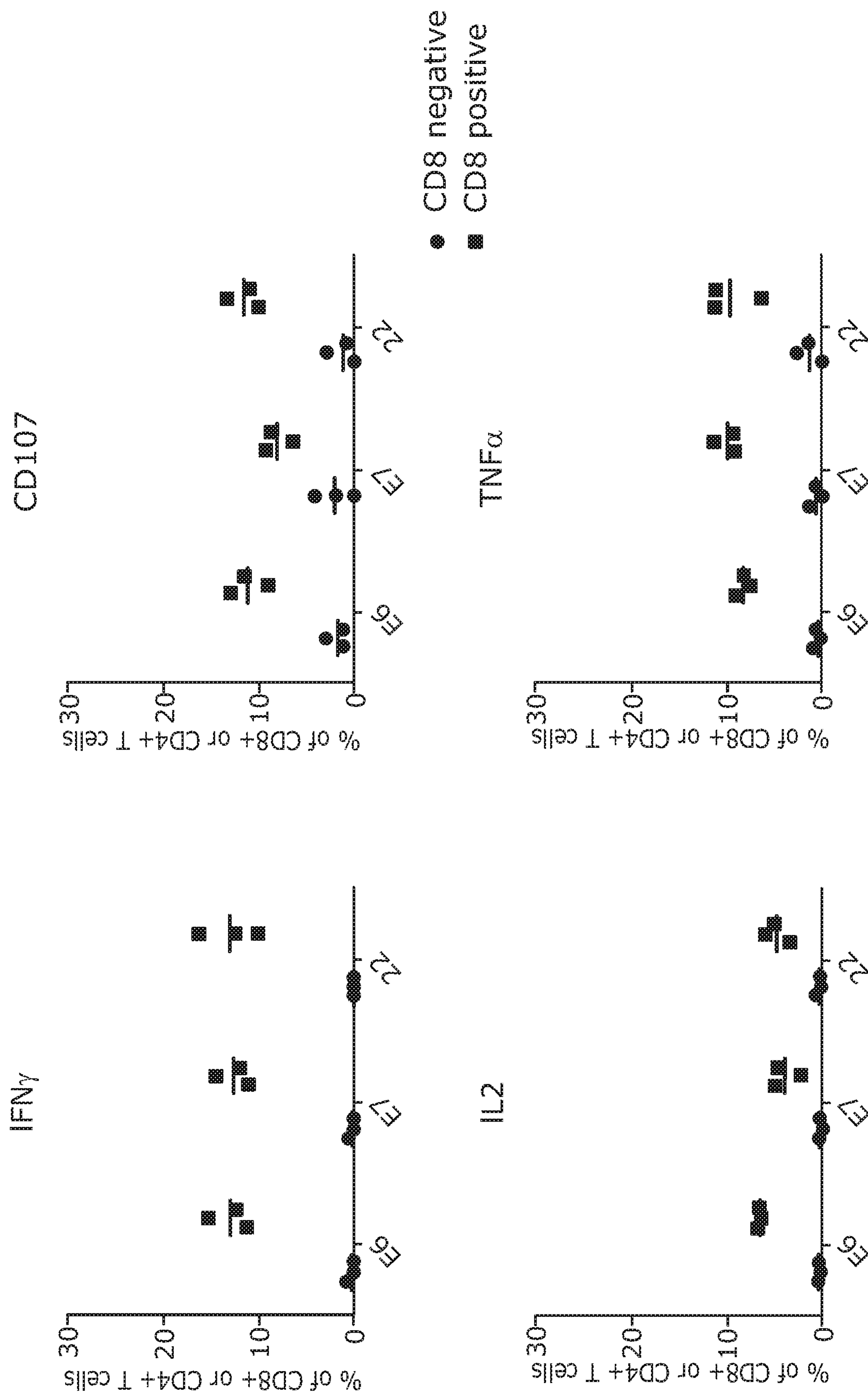


Figure 14

17/23

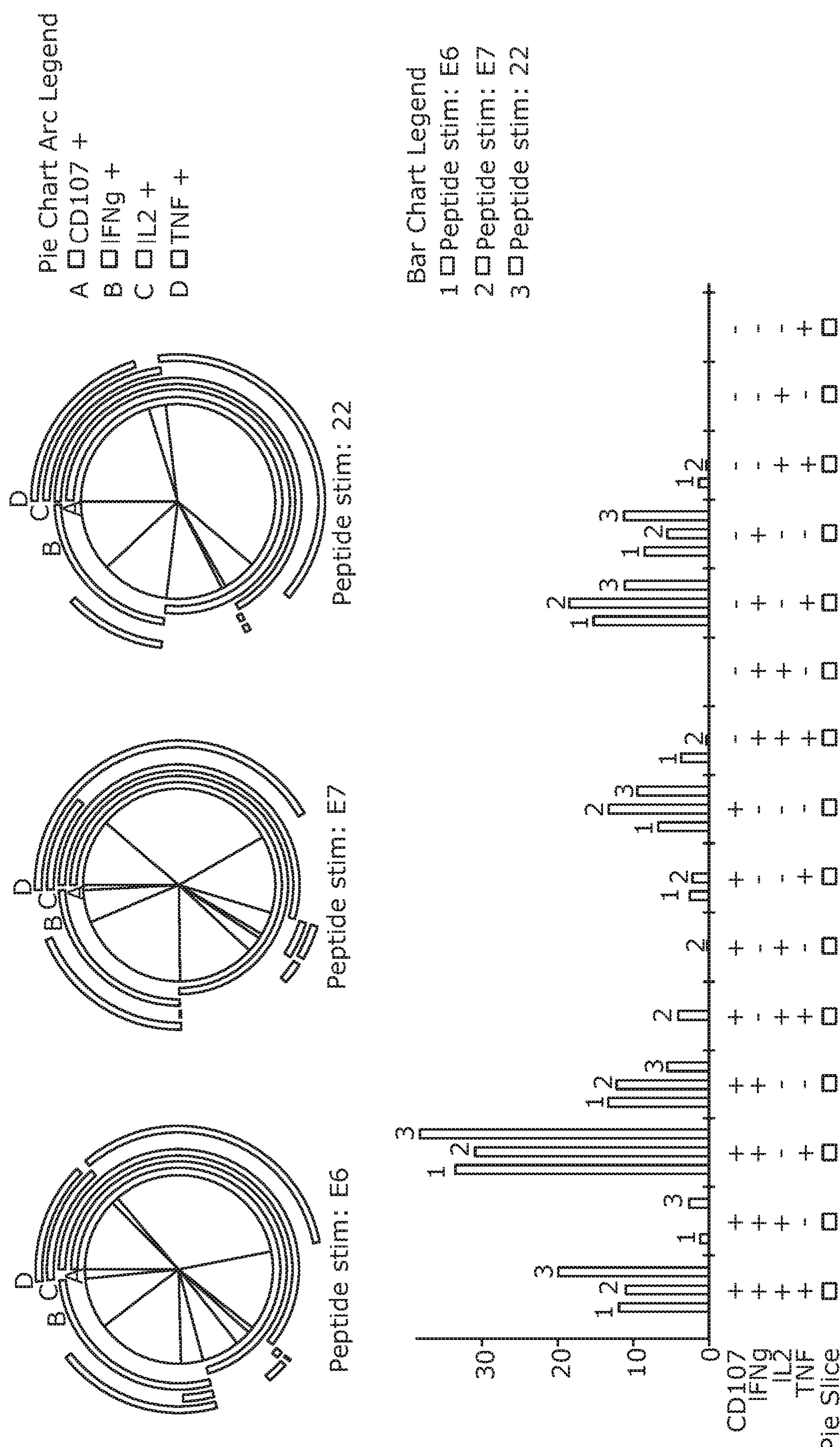


Figure 15

18/23

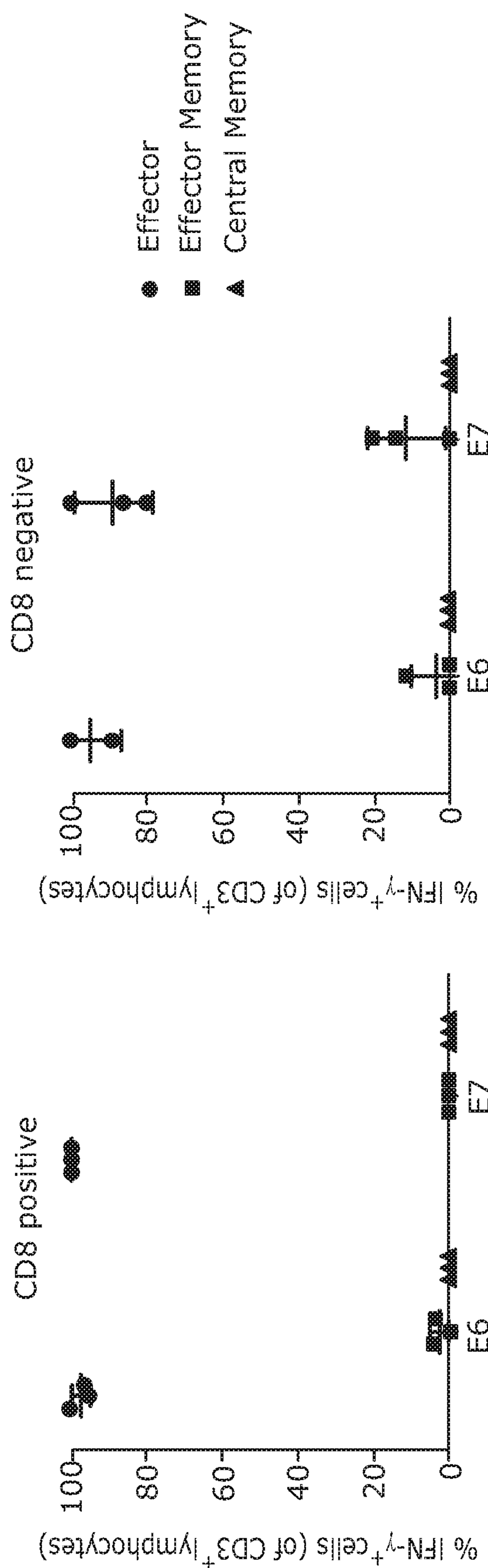


Figure 16

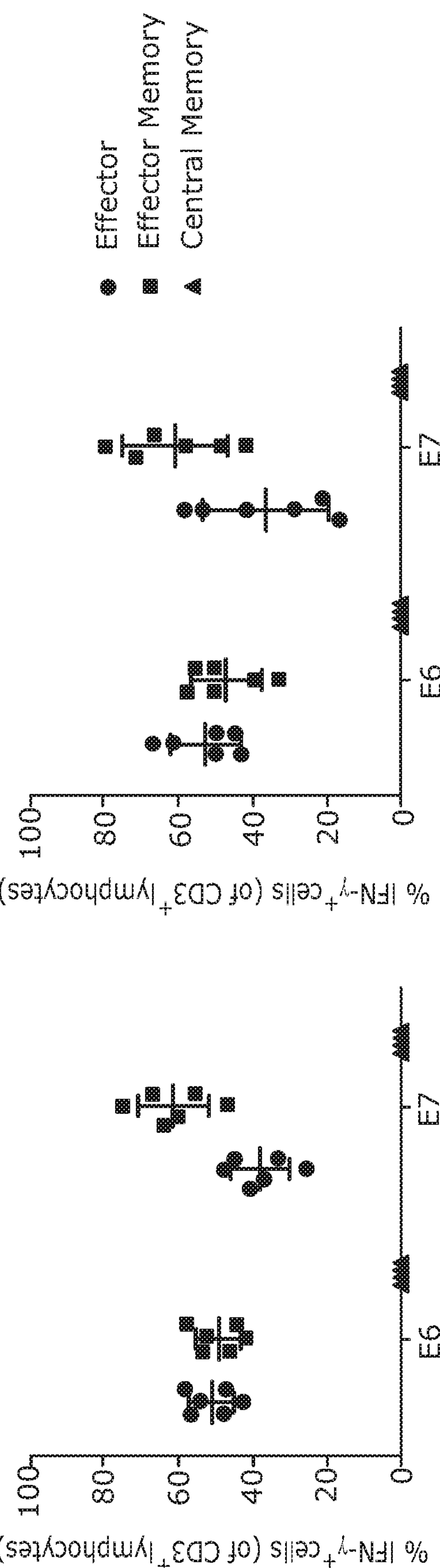


Figure 17

19/23

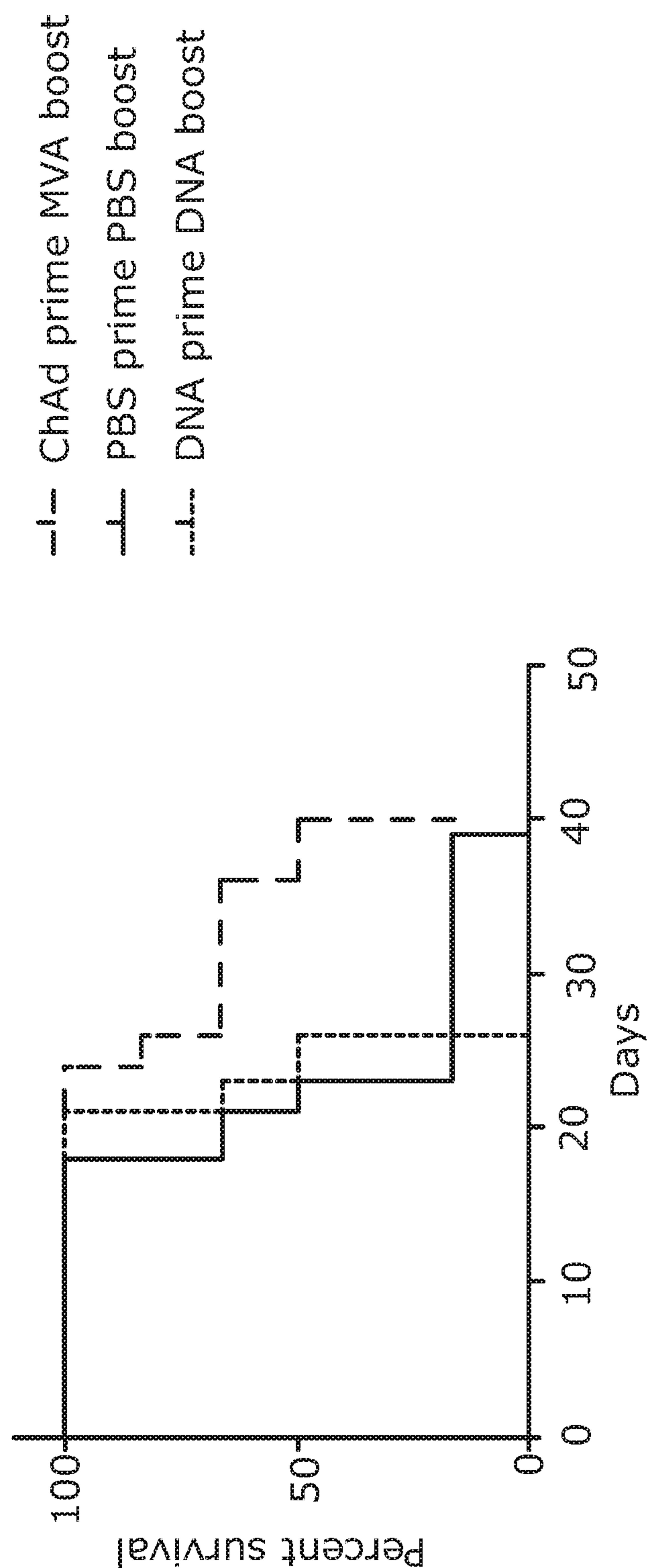


Figure 18

Median survival

PBS prime PBS boost: 22 days
 DNA prime DNA boost: 24.5 days
 ChAd Prime MVA boost: 38 days

$p=0.02$ (Log-rank(Mantel-Cox) test)

20/23

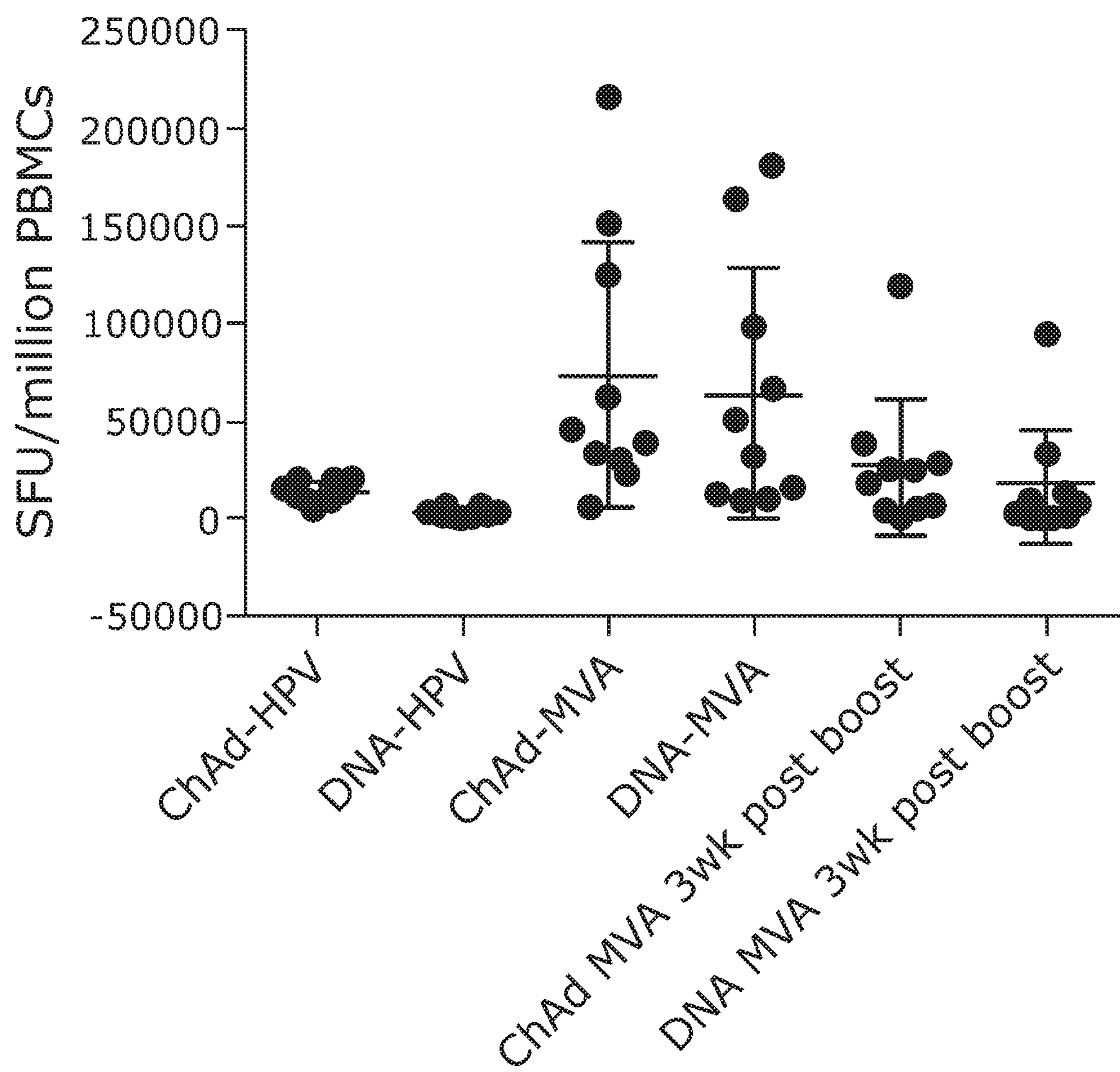
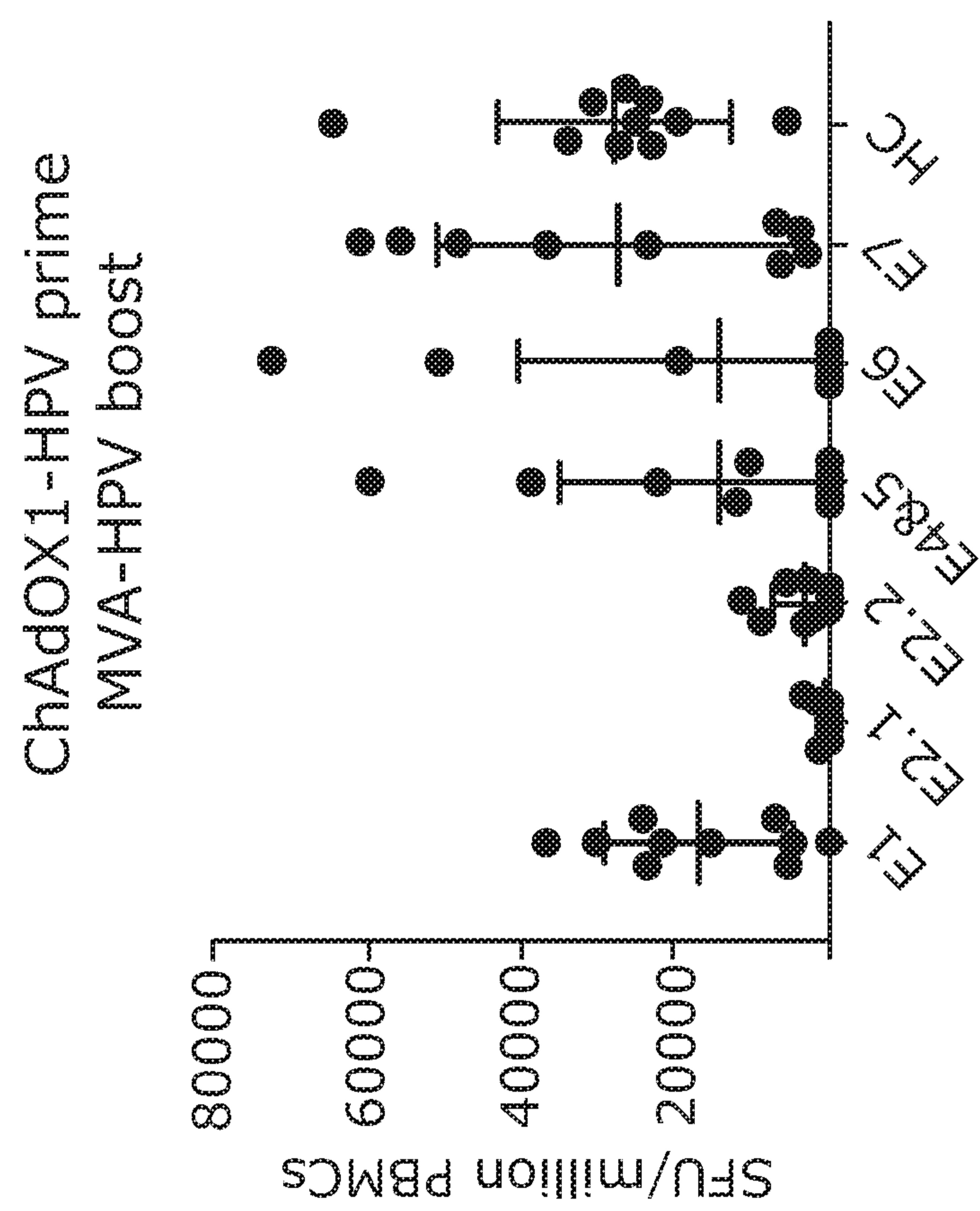



Figure 19

21/23

22/23

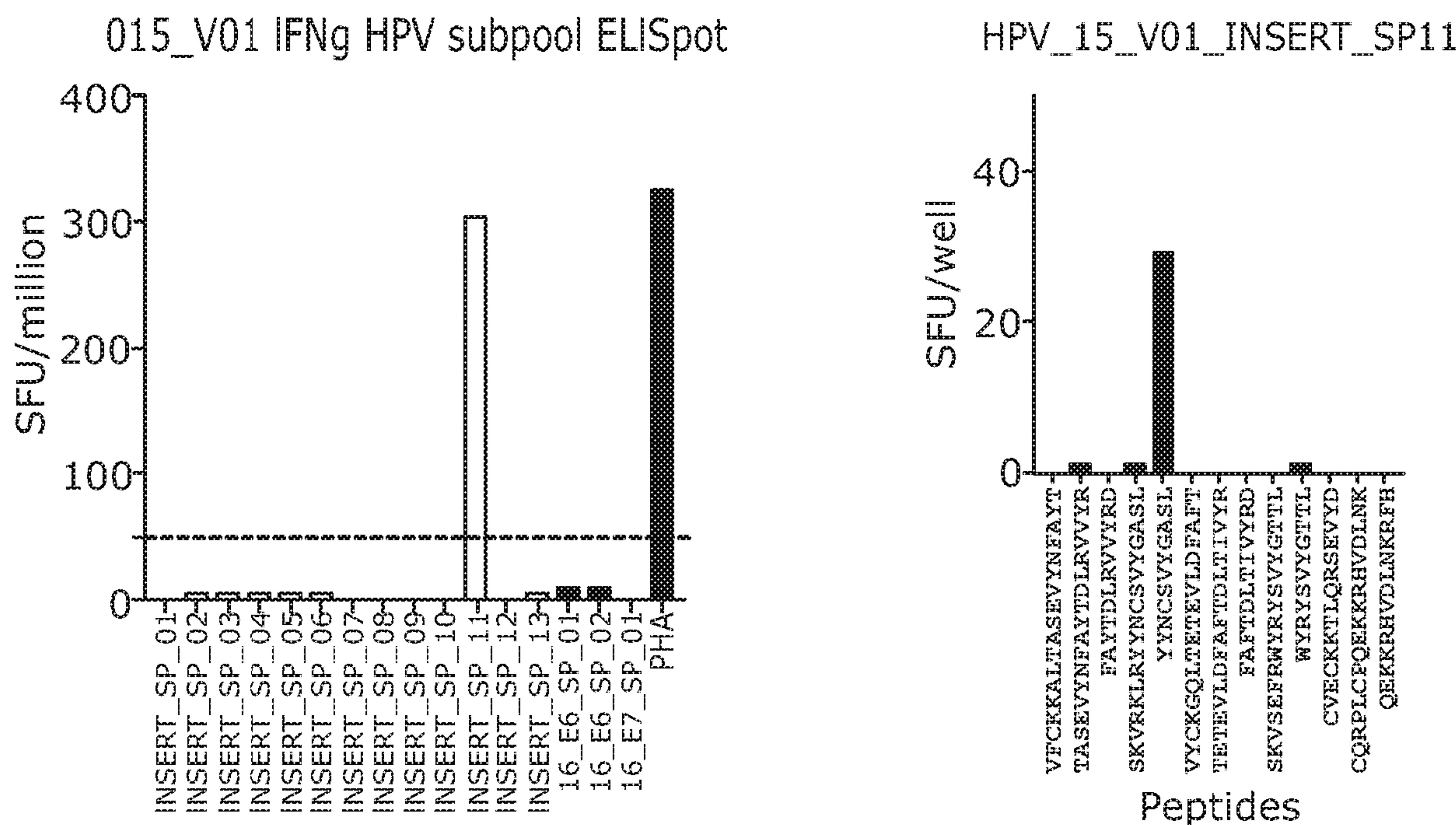
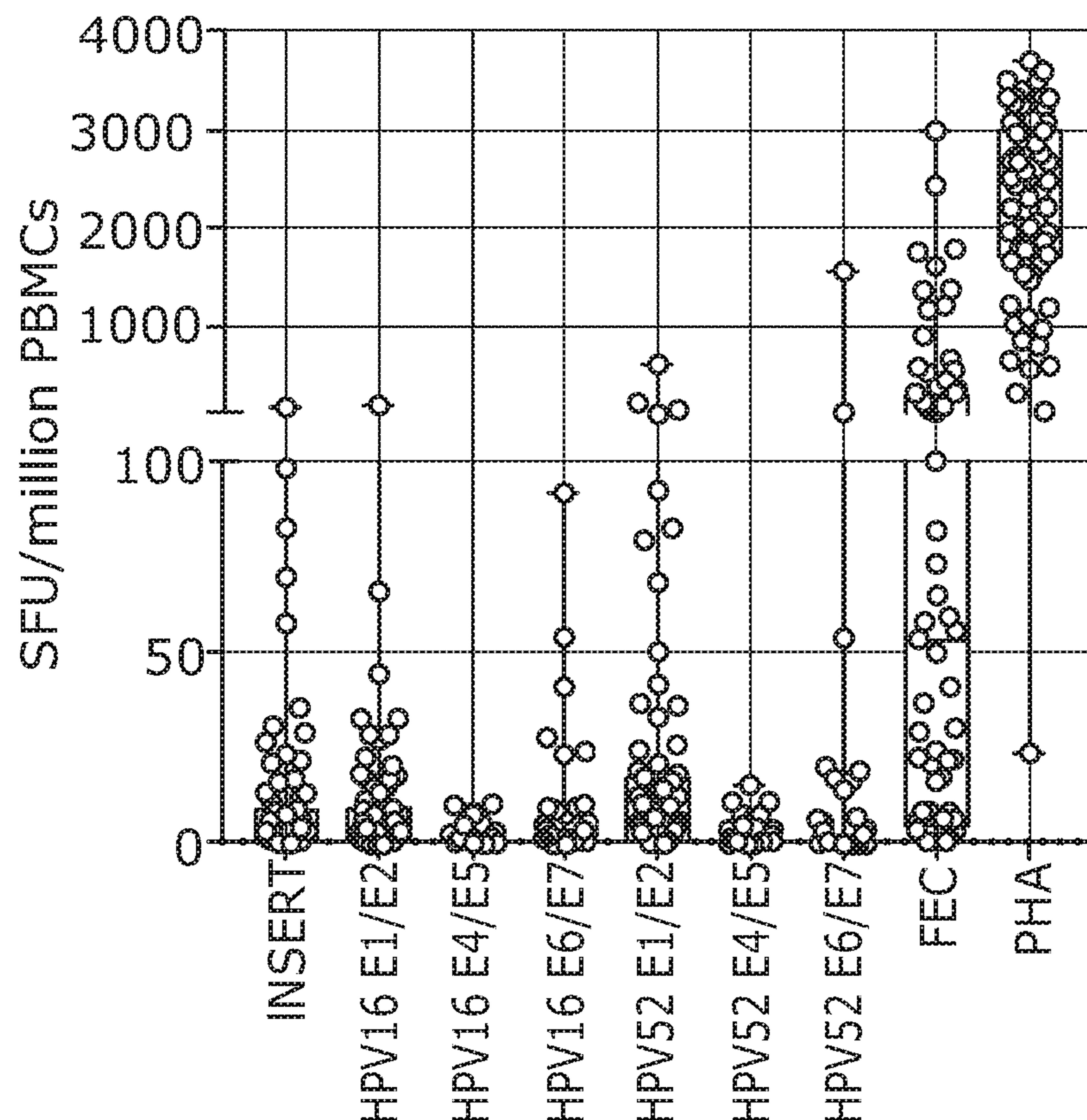



Figure 21

23/23

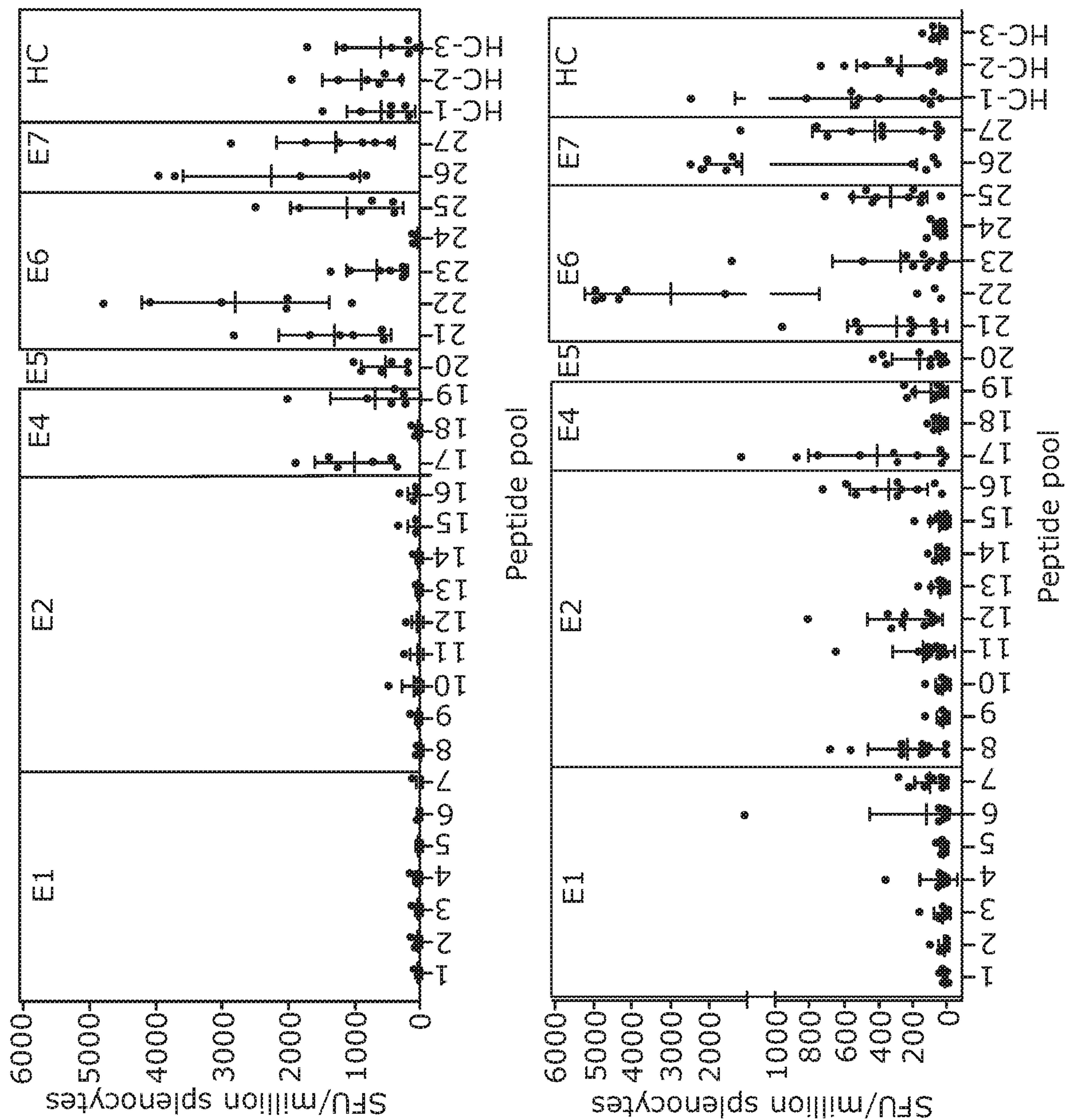


Figure 22

Figure 1

A.

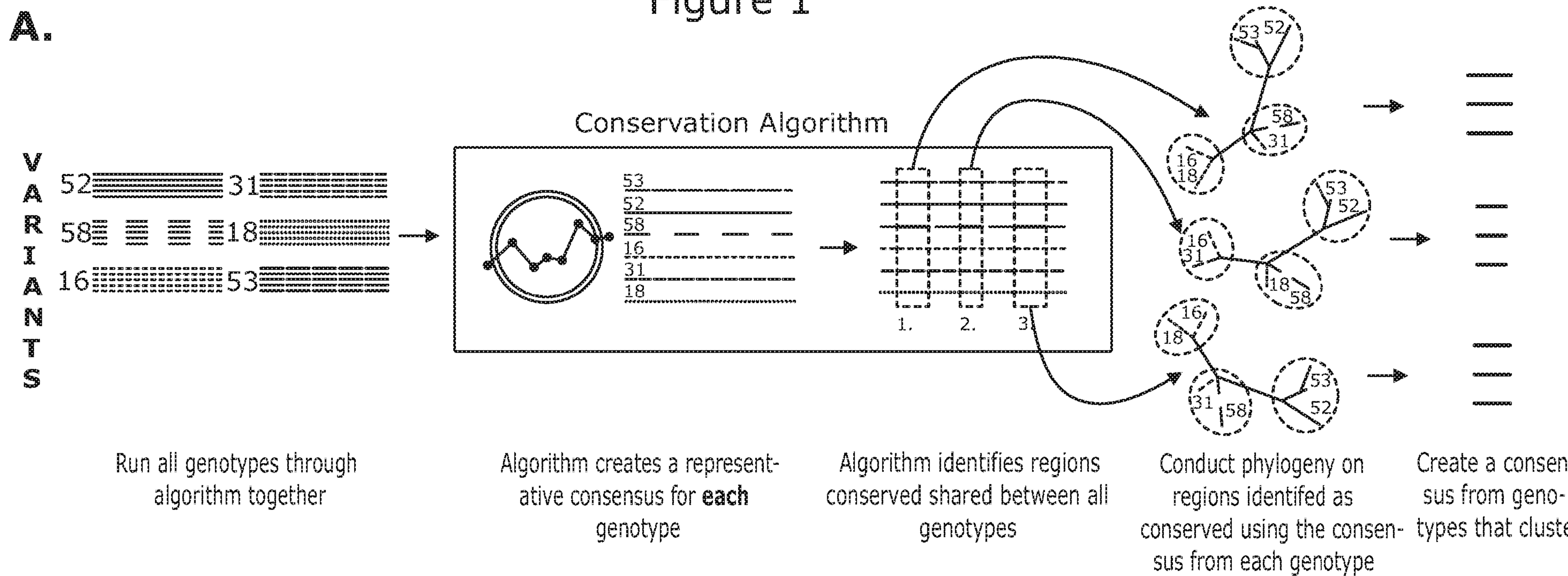
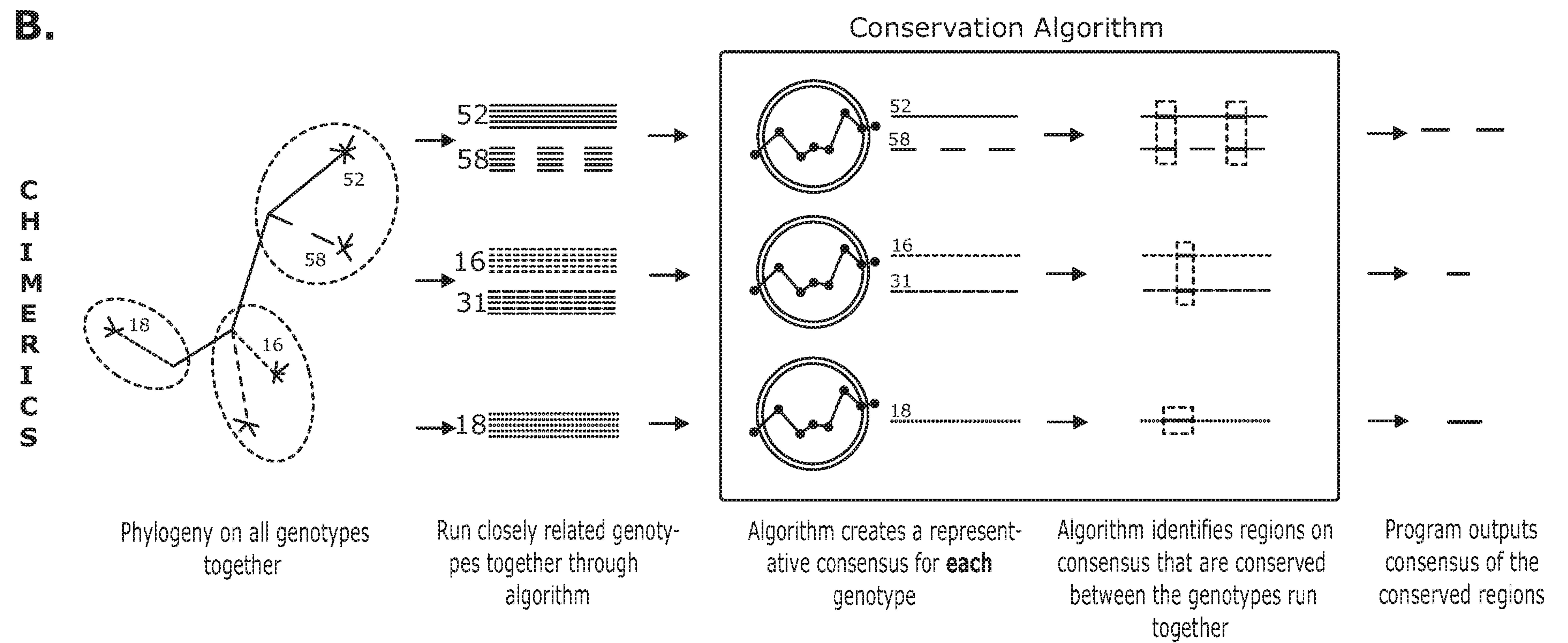



Figure 1 continued

B.

