
(12) STANDARD PATENT (11) Application No. AU 2014366097 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Resource processing method, operating system, and device

(51) International Patent Classification(s)
G06F 9/50 (2006.01)

(21) Application No: 2014366097 (22) Date of Filing: 2014.12.17

(87) WIPO No: W015/090197

(30) Priority Data

(31) Number (32) Date (33) Country
201310695461.0 2013.12.17 CN

(43) Publication Date: 2015.06.25
(44) Accepted Journal Date: 2017.01.12

(71) Applicant(s)
Huawei Technologies Co., Ltd.

(72) Inventor(s)
Lu, Gang;Zhan, Jianfeng;Gao, Yunwei;Tan, Chongkang;Xue, Dongliang

(74) Agent / Attorney
Watermark Intellectual Property Pty Ltd, L 1 109 Burwood Rd, Hawthorn, VIC, 3122

(56) Related Art
CN 101169731 A
US 7797512 B1

(12) ,fi*1 N*iPfitJ i

(10)
(43)E~# WO 2015/090197 A1 2015 * 6,T] 25 H (25.06.2015) W IPO I P T W T

(51) 4#4 * &9I*W ang); ILP 1-4 J M tl 4 Pt- n* 6 ,
G06F 9/50 (2006.01) Beijing 100190 (CN)o

(21) MWEY" : PCT/CN2014/094053 (81) (14 HA, -5 * --- " T)9fAjn N * N

(22) 0 Y F: 2014 T 12 A9 17 H (17.12.2014) tP): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG,
BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR,

(25) $4*c: CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, Fl, GB,
GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS,

(26) 1P*I : JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU,

(30) {Eg LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ,
201 12 A 17 H (17.12.2013) CN NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA,

201310695461.0 2013 1RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST,
(71) iK *AJh *4PR4M k (HUAWEI TECHNO- SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,

LOGIES CO., LTD.) [CN/CN]; F VC, VN, ZA, ZM, ZW0

Ix it] EFi}&n, Guangdong 518129 (84) gg g g ,_ T__ n tt
(CN)o 4f): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA,

(72) A CA: MAN (LU, Gang); Th 1-L, tT4M * t' RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), rkA (AM, AZ,

tif4 qF Pth 6 , Beijing 100190 (CN)0 *1JJ$ BY, KG, KZ, RU, TJ, TM), RUIII' (AL, AT, BE, BG, CH,

(ZHAN, Jianfeng); T d N1I J 0-v M Z*h t1P P CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE,

- N 6 , Beijing 100190 (CN) 0 (GAO, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO,

Yunwei); +: %1- J IL M * , t4 EX 1: T t4 P q 6 RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)O iBeijing 100190 (CN) o(TAN,

Chongkang); + NP
6 , Beijing 100190 (CN) o (XUE, Dongli

(54) Title: RESOURCE PROCESSING METHOD, OPERATING SYSTEM, AND DEVICE

201 The management operating system allocates the physical
- resource collection for exclusive use by the load operating

systems, builds the boot image foreach load operating system,
I an configures for each load operating system the mapping

Srelations ofthe at least some virtual memory addresses to the
physical memory addresses that are required for the execution of

- J&IA - ~ the boot image
202 The management operating system determines in the

processor cores allocated to the first load operating system the
booting processor core for booting the first load operating system

chr ti ste , m oe management operating system instructs the booting
ageorechlad a in , c uprreossorscorare to read the mapping relations ofth at least some

vdIrea me addresses to the ph ysical inry add r essthe o
s lare pro-established by the management operating system and

to rrge 2 require for the execution ofthe boot image ofrthe first load
operating system, and, instructs the booting processorcore to

Sxecute
the boot i ge built in advance for the first load operating

- system

-~(57) Abstract: Provided in embodiments of the present are a resource processing method, an operating system, and a device. The
-~method is applicable in a multikemnel operating system, where the multikemnel operating system comprises, running on a host ma

Schine, a management operating system, multiple load operating systems, and a physical resource poo1. The method comprises: a
-~management operating system allocates physical resource collections for exclusive use by load operating systems, builds a boot im

__age for each load operating system, configures for each load operating system mapping relations of at least some virtual memory ad
dresses to physical memory addresses that are required for execution of the boot image, determines in processor cores allocated to a
first load operating system a booting processor core for booting the first load operating system, instructs the booting processor core

I>to read the mapping relations of the at least some virtual memory addresses to the physical memory addresses that are required for
ONexecution of the boot image of the first load operating system, and, instructs the booting processing core to execute the boot image
built in advance for the first load operating system.

P. Mt44tMn' *L-vFliT t t+kt)htJftk

PFM

W O 20 15/090 197 A 1|lII |III ||1lII lI ||I |||||||||||||1|1 |II|I|||I|I|I|||I||I|I|||||||||||I|

& |9]J 4.17 Vjff)j:

4.17(iii))

RESOURCE PROCESSING METHOD, OPERATING SYSTEM,

AND DEVICE

TECHNICAL FIELD

Embodiments of the present invention relate to communications technologies, and in

5 particular, to a resource processing method, an operating system, and a device.

BACKGROUND

Currently, processors have entered an age of multi-core processors, and most multi-core

processors support a virtualization technology. In a multi-core processor, multiple processor

cores are integrated into one chip, thereby making parallel execution possible. Moreover, one

0 physical computer can be converted to multiple virtual computers by using the virtualization

technology. Therefore, with a multi-core processor and the virtualization technology

combined, multiple operating systems can run on one physical computer simultaneously.

In an existing heterogeneous multi-core operating system architecture, one management

operating system and multiple load operating systems run on one physical computer (host

15 machine). The management operating system is configured to provide an execution

environment for various application programs and the multiple load operating systems. The

load operating systems are configured to provide an execution environment for various

application programs. The management operating system provides physical resources

corresponding to the execution environment for the load operating systems by using a

20 hypervisor (Hypervisor), where the physical resources mainly include a processor core, a

physical memory, an external device, and the like. Each load operating system uses one or

more processor cores in an exclusive manner, and shares a physical memory, an external

device, and the like with another load operating system in a time division multiplexing

manner.

Because multiple load operating systems share a physical memory, an external device, and the

like in a time division multiplexing manner, when there are a relatively large quantity of load

operating systems, a delay is caused for running of the load operating systems, thereby

reducing overall performance of the load operating systems.

5 SUMMARY

Embodiments of the present invention provide a resource processing method, an operating

system, and a device, so as to improve overall performance of a load operating system.

According to a first aspect, an embodiment of the present invention provides a resource

processing method, where the method is applied to a multi-core operating system, the

0 multi-core operating system includes a management operating system and multiple load

operating systems that run on a host machine and includes a physical resource pool, the

physical resource pool includes processor cores and a physical memory that are of the host

machine, and the method includes:

allocating, by the management operating system to each load operating system, a

5 physical resource set exclusively used by each load operating system, constructing a startup

mirror for each load operating system, and setting, for each load operating system, a mapping

relationship that is from a virtual memory address to a physical memory address and that is

required for executing the startup mirror, where each physical resource set includes some of

the processor cores of the host machine and a part of the physical memory of the host

20 machine;

determining, by the management operating system and in processor cores allocated

to a first load operating system, a startup processor core that starts up the first load operating

system, where the first load operating system is any one of the load operating systems;

instructing, by the management operating system, the startup processor core to

25 read a mapping relationship that is from a virtual memory address to a physical memory

address and that is required for executing a startup mirror of the first load operating system

and is pre-constructed by the management operating system, so as to enable the startup

processor core to access, in a process of executing the startup mirror and according to the

2

mapping relationship, the physical memory address; and instructing the startup processor core

to execute the startup mirror pre-constructed for the first load operating system, where the

startup mirror includes a startup parameter of the first load operating system, the startup

parameter includes identifiers of the processor cores allocated to the first load operating

5 system and an identifier of the physical memory address allocated to the first load operating

system.

With reference to the first aspect, in a first possible implementation manner of the first aspect,

the instructing, by the management operating system, the startup processor core to read a

mapping relationship that is from a virtual memory address to a physical memory address and

0 that is required for executing a startup mirror of the first load operating system and is

pre-constructed by the management operating system, and the instructing the startup

processor core to execute the startup mirror pre-constructed for the first load operating system

include:

sending, by the management operating system, an inter-core interrupt message to

5 the startup processor core, where the inter-core interrupt message instructs the startup

processor core to execute an initialization program that is configured to initialize the startup

processor core and that is corresponding to the first load operating system; and

instructing, by the management operating system by instructing the startup

processor core to execute the initialization program corresponding to the first load operating

4O system, the startup processor core to read, from the initialization program, the mapping

relationship that is from the virtual memory address to the physical memory address and that

is required for executing the startup mirror of the first load operating system; and instructing

the startup processor core to jump, after running of the initialization program ends, to the

location that is of the startup mirror and is in the physical memory, so as to execute the startup

25 mirror of the first load operating system.

With reference to the first possible implementation manner of the first aspect, in a second

possible implementation manner of the first aspect, before the setting, by the management

operating system for each load operating system, a mapping relationship that is from a virtual

memory address to a physical memory address and that is required for executing the startup

30 mirror, the method further includes:

3

presetting, by the management operating system for the first load operating system,

an initialization program that is configured to initialize the first load operating system, and

presetting, in the initialization program, the location that is of the startup mirror of the first

load operating system and that is in the physical memory address; and

5 the setting, by the management operating system for each load operating system, a

mapping relationship that is from a virtual memory address to a physical memory address and

that is required for executing the startup mirror includes:

setting, by the management operating system for the first load operating system

and in the initialization program, the mapping relationship that is from the virtual memory

0 address to the physical memory address and that is required for executing the startup mirror.

With reference to the first aspect, in a third possible implementation manner of the first aspect,

before the determining, by the management operating system and in processor cores allocated

to a first load operating system, a startup processor core that starts up the first load operating

system, the method further includes:

5 acquiring, by the management operating system, available processor cores of a

second load operating system, where the second load operating system is a logged-out load

operating system, other than the first load operating system, in the multiple load operating

systems, the available processor cores include a processor core that has been started up, and a

physical resource set of the first load operating system includes the available processor cores;

4O and

the determining, by the management operating system and in processor cores

allocated to a first load operating system, a startup processor core that starts up the first load

operating system includes:

when the physical resource set of the first load operating system includes the

25 available processor cores, determining, by the management operating system and in the

available processor cores, the startup processor core that starts up the first load operating

system.

With reference to the third possible implementation manner of the first aspect, in a fourth

possible implementation manner of the first aspect, after the determining, by the management

30 operating system and in the available processor cores, the startup processor core that starts up

4

the first load operating system, the method further includes:

presetting, by the management operating system for the first load operating system,

a daemon on the startup processor core, and presetting, in the daemon, a location that is of the

startup mirror of the first load operating system and that is in the physical memory address;

5 and

the setting, by the management operating system for each load operating system, a

mapping relationship that is from a virtual memory address to a physical memory address and

that is required for executing the startup mirror includes:

setting, by the management operating system for the first load operating system

0 and in the daemon, the mapping relationship that is from the virtual memory address to the

physical memory address and that is required for executing the startup mirror.

With reference to the fourth possible implementation manner of the first aspect, in a fifth

possible implementation manner of the first aspect, the instructing, by the management

operating system, the startup processor core to read a mapping relationship that is from a

5 virtual memory address to a physical memory address and that is required for executing a

startup mirror of the first load operating system and is pre-constructed by the management

operating system, and the instructing the startup processor core to execute the startup mirror

pre-constructed for the first load operating system include:

sending, by the management operating system, an inter-core interrupt message to

4O the daemon running on the startup processor core, where the inter-core interrupt message

instructs the startup processor core to read, from the daemon, the mapping relationship that is

from the virtual memory address to the physical memory address and that is required for

executing the startup mirror and is pre-constructed by the management operating system for

the first load operating system; and the location that is of the startup mirror corresponding to

25 the first load operating system, that is in the physical memory address, and that is preset in the

daemon by the management operating system instructs the startup processor core to jump to

the location that is in the physical memory address and in which the startup mirror is located,

so as to execute the startup mirror of the first load operating system.

With reference to the first aspect, or any possible implementation manner of the first to the

30 fifth possible implementation manners of the first aspect, in a sixth possible implementation

5

manner of the first aspect, the allocating, by the management operating system to each load

operating system, a physical resource set exclusively used by each load operating system

includes:

performing, by the management operating system according to a quantity of the

5 load operating systems, first-time division on available physical resources that are in the

physical resource pool and that are corresponding to identifiers of physical resources in a list

of the available physical resources in the resource pool, to obtain multiple physical resource

sets, where a quantity of the physical resource sets equals the quantity of the load operating

systems, and determining, by the management operating system, a correspondence between

0 each load operating system and each physical resource set; and

allocating, by the management operating system to each load operating system

according to the correspondence, the physical resource set exclusively used by each load

operating system.

With reference to the sixth possible implementation manner of the first aspect, in a seventh

5 possible implementation manner of the first aspect, each physical resource set further includes

some external devices of the host machine; and

the startup parameter further includes an identifier of an external device allocated

to the first load operating system and a device description information table corresponding to

the external device.

4O With reference to the seventh possible implementation manner of the first aspect, in an eighth

possible implementation manner of the first aspect, after the instructing, by the management

operating system, the startup processor core to execute the startup mirror pre-constructed for

the first load operating system, the method further includes:

monitoring, by the management operating system, running of the first load

25 operating system;

when utilization of a physical resource allocated to the first load operating system

is less than a first preset threshold, determining that a physical resource needs to be reduced

for the first load operating system, and determining a type identifier of the physical resource

that needs to be reduced, where the type identifier of the physical resource is used to

30 distinguish whether the physical resource is a processor core resource, a physical memory

6

resource, or an external device resource; and

performing, by the management operating system according to the type identifier

of the physical resource that needs to be reduced, second-time division on the available

physical resources that are in the physical resource pool and that are corresponding to the

5 identifiers of the physical resources in the list of the available physical resources in the

resource pool, and reducing the physical resource of the first load operating system, where the

reduced physical resource is a physical resource corresponding to the type identifier of the

physical resource that needs to be reduced.

With reference to the seventh possible implementation manner of the first aspect, in a ninth

0 possible implementation manner of the first aspect, after the instructing, by the management

operating system, the startup processor core to execute the startup mirror pre-constructed for

the first load operating system, the method further includes:

monitoring, by the management operating system, running of the first load

operating system;

5 when utilization of a physical resource allocated to the first load operating system

is greater than a second preset threshold, determining that a physical resource needs to be

added for the first load operating system, and determining a type identifier of the physical

resource that needs to be added, where the type identifier of the physical resource is used to

distinguish whether the physical resource that needs to be added is a processor core resource,

4O a physical memory resource, or an external device resource; and

performing, by the management operating system according to the type identifier

of the physical resource that needs to be added, second-time division on the available physical

resources that are in the physical resource pool and that are corresponding to the identifiers of

the physical resources in the list of the available physical resources in the resource pool, and

25 adding the physical resource of the first load operating system, where the added physical

resource is a physical resource corresponding to the type identifier of the physical resource

that needs to be added.

According to a second aspect, an embodiment of the present invention provides a resource

processing method, where the method is applied to a multi-core operating system, the

30 multi-core operating system includes a management operating system and multiple load

7

operating systems that run on a host machine and includes a physical resource pool, the

physical resource pool includes processor cores and a physical memory that are of the host

machine, each load operating system exclusively uses a physical resource set allocated by the

management operating system, and each physical resource set includes some of the processor

5 cores of the host machine and a part of the physical memory of the host machine; the

management operating system pre-constructs a startup mirror for each load operating system,

and sets, for each load operating system, a mapping relationship that is from a virtual memory

address to a physical memory address and that is required for executing the startup mirror;

and the method includes:

0 reading, by a startup processor core of a first load operating system, a mapping

relationship that is from a virtual memory address to a physical memory address and that is

required for executing a startup mirror of the first load operating system, where the mapping

relationship is used to enable the startup processor core of the first load operating system to

access the physical memory address, and the first load operating system is any load operating

5 system in the multi-core operating system;

jumping, by the startup processor core of the first load operating system according

to an instruction that is set by the management operating system and that is for executing a

startup mirror jump, to a location that is of the startup mirror corresponding to the first load

operating system and that is in the physical memory address, and executing, according to the

4O mapping relationship, the startup mirror corresponding to the first load operating system;

acquiring, by the startup processor core of the first load operating system and in a

process of executing the startup mirror of the first load operating system, a startup parameter

of the first load operating system from the startup mirror of the first load operating system,

where the startup parameter includes identifiers of processor cores allocated to the first load

25 operating system and an identifier of the physical memory address allocated to the first load

operating system; and

determining, by the first load operating system according to the identifiers of the

processor cores and the identifier of the physical memory address of the first load operating

system, a physical resource set that is allocated by the management operating system to the

30 first load operating system and that is exclusively used by the first load operating system.

8

With reference to the second aspect, in a first possible implementation manner of the second

aspect, the reading, by a startup processor core of a first load operating system, a mapping

relationship that is from a virtual memory address to a physical memory address and that is

required for executing a startup mirror of the first load operating system includes:

5 receiving, by the startup processor core of the first load operating system, an

inter-core interrupt message sent by the management operating system, where the startup

processor core executes, according to an instruction of the inter-core interrupt message, an

initialization program that is configured to initialize the startup processor core and that is

corresponding to the first load operating system; and

0 executing, by the startup processor core of the first load operating system, the

initialization program, and reading, from the initialization program, the mapping relationship

that is from the virtual memory address to the physical memory address and that is required

for executing the startup mirror and is pre-constructed by the management operating system

for the first load operating system; and

5 the jumping, by the startup processor core of the first load operating system

according to an instruction that is set by the management operating system and that is for

executing a startup mirror jump, to a location that is of the startup mirror corresponding to the

first load operating system and that is in the physical memory address includes:

executing, by the startup processor core of the first load operating system, the

4O initialization program, reading, from the initialization program, a jump instruction that is

preset in the initialization program by the management operating system, and jumping to the

location that is of the startup mirror corresponding to the first load operating system and that

is in the physical memory address.

With reference to the second aspect, in a second possible implementation manner of the

25 second aspect, the startup processor core of the first load operating system is a processor core

that has been started up and that is determined by the management operating system, a

daemon runs on the startup processor core of the first load operating system, the daemon is

preset by the management operating system for the first load operating system, the location

that is of the startup mirror corresponding to the first load operating system and that is in the

30 physical memory address and the mapping relationship that is from the virtual memory

9

address to the physical memory address and that is required for executing the startup mirror

are set in the daemon;

the reading, by a startup processor core of a first load operating system, a mapping

relationship that is from a virtual memory address to a physical memory address and that is

5 required for executing a startup mirror of the first load operating system includes:

receiving, by the daemon running on the startup processor core of the first load

operating system, an inter-core interrupt message sent by the management operating system,

and reading, by the startup processor core according to an instruction of the inter-core

interrupt message and from the daemon, the mapping relationship that is from the virtual

0 memory address to the physical memory address and that is required for executing the startup

mirror and is pre-constructed by the management operating system for the first load operating

system; and

the jumping, by the startup processor core of the first load operating system

according to an instruction that is set by the management operating system and that is for

5 executing a startup mirror jump, to a location that is of the startup mirror corresponding to the

first load operating system and that is in the physical memory address includes:

reading, by the startup processor core of the first load operating system, a jump

instruction that is preset in the daemon by the management operating system, and jumping to

the location that is of the startup mirror corresponding to the first load operating system and

4O that is in the physical memory address.

With reference to the second aspect, or the first or the second possible implementation

manner of the second aspect, in a third possible implementation manner of the second aspect,

each physical resource set further includes some external devices of the host machine; and

the startup parameter further includes an identifier of an external device allocated

25 by the management operating system to the first load operating system and a device

description information table corresponding to the external device.

According to a third aspect, an embodiment of the present invention provides a management

operating system, where the management operating system is applied to a multi-core

operating system, the multi-core operating system includes the management operating system

30 and multiple load operating systems that run on a host machine and includes a physical

10

resource pool, the physical resource pool includes processor cores and a physical memory that

are of the host machine, and the management operating system includes:

a resource allocating module, configured to allocate, to each load operating system,

a physical resource set exclusively used by each load operating system, where each physical

5 resource set includes some of the processor cores of the host machine and a part of the

physical memory of the host machine;

a mapping relationship setting module, configured to: construct a startup mirror for

each load operating system, and set, for each load operating system, a mapping relationship

that is from a virtual memory address to a physical memory address and that is required for

0 executing the startup mirror;

a startup processor core determining module, configured to determine, in processor

cores allocated to a first load operating system, a startup processor core that starts up the first

load operating system, where the first load operating system is any one of the load operating

systems;

5 an instructing module, configured to instruct the startup processor core to read a

mapping relationship that is from a virtual memory address to a physical memory address and

that is required for executing a startup mirror of the first load operating system and is

pre-constructed by the mapping relationship setting module, so as to enable the startup

processor core to access, in a process of executing the startup mirror and according to the

4O mapping relationship, the physical memory address; and instruct the startup processor core to

execute the startup mirror pre-constructed for the first load operating system, where the

startup mirror includes a startup parameter of the first load operating system, the startup

parameter includes identifiers of the processor cores allocated to the first load operating

system and an identifier of the physical memory address allocated to the first load operating

25 system.

With reference to the third aspect, in a first possible implementation manner of the third

aspect, the instructing module is specifically configured to:

send an inter-core interrupt message to the startup processor core, where the

inter-core interrupt message instructs the startup processor core to execute an initialization

30 program that is configured to initialize the startup processor core and that is corresponding to

11

the first load operating system; and

instruct, by instructing the startup processor core to execute the initialization

program corresponding to the first load operating system, the startup processor core to read,

from the initialization program, the mapping relationship that is from the virtual memory

5 address to the physical memory address and that is required for executing the startup mirror of

the first load operating system; and instruct the startup processor core to jump, after running

of the initialization program ends, to the location that is of the startup mirror and is in the

physical memory, so as to execute the startup mirror of the first load operating system.

With reference to the first possible implementation manner of the third aspect, in a second

0 possible implementation manner of the third aspect, the management operating system further

includes:

an initialization program configuring module, configured to: before the mapping

relationship setting module sets, for each load operating system, the mapping relationship that

is from the virtual memory address to the physical memory address and that is required for

5 executing the startup mirror, preset, for the first load operating system, an initialization

program that is configured to initialize the first load operating system, and preset, in the

initialization program, the location that is of the startup mirror of the first load operating

system and that is in the physical memory address; and

the mapping relationship setting module is specifically configured to set, in the

4O initialization program and for the first load operating system, the mapping relationship that is

from the virtual memory address to the physical memory address and that is required for

executing the startup mirror.

With reference to the third aspect, in a third possible implementation manner of the third

aspect, the management operating system further includes:

25 an available-processor-core acquiring module, configured to acquire available

processor cores of a second load operating system before the startup processor core

determining module determines, in the processor cores allocated to the first load operating

system, the startup processor core that starts up the first load operating system, where the

second load operating system is a logged-out load operating system, other than the first load

30 operating system, in the multiple load operating systems, the available processor cores include

12

a processor core that has been started up, and a physical resource set of the first load operating

system includes the available processor cores; and

the startup processor core determining module is specifically configured to: when

the physical resource set of the first load operating system includes the available processor

5 cores, determine, in the available processor cores, the startup processor core that starts up the

first load operating system.

With reference to the third possible implementation manner of the third aspect, in a fourth

possible implementation manner of the third aspect, the management operating system further

includes:

0 a daemon configuring module, configured to preset, for the first load operating

system, a daemon on the startup processor core after the startup processor core determining

module determines, in the available processor cores, the startup processor core that starts up

the first load operating system, and preset, in the daemon, a location that is of the startup

mirror of the first load operating system and that is in the physical memory address; and

5 the mapping relationship setting module is specifically configured to set, for the

first load operating system and in the daemon, the mapping relationship that is from the

virtual memory address to the physical memory address and that is required for executing the

startup mirror.

With reference to the fourth possible implementation manner of the third aspect, in a fifth

4O possible implementation manner of the third aspect, the instructing module is specifically

configured to: send an inter-core interrupt message to the daemon running on the startup

processor core, where the inter-core interrupt message instructs the startup processor core to

read, from the daemon, the mapping relationship that is from the virtual memory address to

the physical memory address and that is required for executing the startup mirror and is

25 pre-constructed by the management operating system for the first load operating system; and

the location that is of the startup mirror corresponding to the first load operating system, that

is in the physical memory address, and that is preset in the daemon by the daemon

configuring module instructs the startup processor core to jump to the location that is in the

physical memory address and in which the startup mirror is located, so as to execute the

30 startup mirror of the first load operating system.

13

With reference to the third aspect, or any possible implementation manner of the first to the

fifth possible implementation manners of the third aspect, in a sixth possible implementation

manner of the third aspect, the resource allocating module is specifically configured to:

perform, according to a quantity of the load operating systems, first-time division

5 on available physical resources that are in the physical resource pool and that are

corresponding to identifiers of physical resources in a list of the available physical resources

in the resource pool, to obtain multiple physical resource sets, where a quantity of the

physical resource sets equals the quantity of the load operating systems, and the management

operating system determines a correspondence between each load operating system and each

0 physical resource set; and

allocate, to each load operating system according to the correspondence, the

physical resource set exclusively used by each load operating system.

With reference to the sixth possible implementation manner of the third aspect, in a seventh

possible implementation manner of the third aspect, each physical resource set further

5 includes some external devices of the host machine; and

the startup parameter further includes an identifier of an external device allocated

to the first load operating system and a device description information table corresponding to

the external device.

With reference to the seventh possible implementation manner of the third aspect, in an eighth

4O possible implementation manner of the third aspect, the management operating system further

includes:

a first monitoring module, configured to monitor, after the instructing module

instructs the startup processor core to execute the startup mirror pre-constructed for the first

load operating system, running of the first load operating system; and

25 a first resource managing module, configured to determine that a physical resource

needs to be reduced for the first load operating system if a monitoring result of the first

monitoring module is that utilization of a physical resource allocated to the first load

operating system is less than a first preset threshold, and determine a type identifier of the

physical resource that needs to be reduced, where the type identifier of the physical resource

30 is used to distinguish whether the physical resource is a processor core resource, a physical

14

memory resource, or an external device resource; and

the resource allocating module is further configured to perform, according to the

type identifier of the physical resource that needs to be reduced, second-time division on the

available physical resources that are in the physical resource pool and that are corresponding

5 to the identifiers of the physical resources in the list of the available physical resources in the

resource pool, and reduce the physical resource of the first load operating system, where the

reduced physical resource is a physical resource corresponding to the type identifier of the

physical resource that needs to be reduced.

With reference to the seventh possible implementation manner of the third aspect, in a ninth

0 possible implementation manner of the third aspect, the management operating system further

includes:

a second monitoring module, configured to monitor, after the instructing module

instructs the startup processor core to execute the startup mirror pre-constructed for the first

load operating system, running of the first load operating system; and

5 a second resource managing module, configured to determine that a physical

resource needs to be added for the first load operating system if a monitoring result of the

second monitoring module is that utilization of a physical resource allocated to the first load

operating system is greater than a second preset threshold, and determine a type identifier of

the physical resource that needs to be added, where the type identifier of the physical resource

4O is used to distinguish whether the physical resource that needs to be added is a processor core

resource, a physical memory resource, or an external device resource; and

the resource allocating module is further configured to perform, according to the

type identifier of the physical resource that needs to be added, second-time division on the

available physical resources that are in the physical resource pool and that are corresponding

25 to the identifiers of the physical resources in the list of the available physical resources in the

resource pool, and add the physical resource of the first load operating system, where the

added physical resource is a physical resource corresponding to the type identifier of the

physical resource that needs to be added.

With reference to the seventh possible implementation manner of the third aspect, in a tenth

30 possible implementation manner of the third aspect, the management operating system further

15

includes:

a first receiving module, configured to receive, after the instructing module

instructs the startup processor core to execute the startup mirror pre-constructed for the first

load operating system, a resource reducing request message sent by the first load operating

5 system, where the resource reducing request message includes a type identifier of a physical

resource that needs to be reduced, and the type identifier of the physical resource is used to

distinguish whether the physical resource is a processor core resource, a physical memory

resource, or an external device resource; and

the resource allocating module is further configured to perform, according to the

0 type identifier, of the physical resource that needs to be reduced, in the resource reducing

request message, second-time division on the available physical resources that are in the

physical resource pool and that are corresponding to the identifiers of the physical resources

in the list of the available physical resources in the resource pool, and reduce the physical

resource of the first load operating system, where the reduced physical resource is a physical

5 resource corresponding to the type identifier of the physical resource that needs to be reduced.

According to a fourth aspect, an embodiment of the present invention provides a load

operating system, where the load operating system is applied to a multi-core operating system,

the multi-core operating system includes a management operating system and multiple load

operating systems that run on a host machine and includes a physical resource pool, the

4O physical resource pool includes processor cores and a physical memory that are of the host

machine, each load operating system exclusively uses a physical resource set allocated by the

management operating system, and each physical resource set includes some of the processor

cores of the host machine and a part of the physical memory of the host machine; the

management operating system pre-constructs a startup mirror for each load operating system,

25 and sets, for each load operating system, a mapping relationship that is from a virtual memory

address to a physical memory address and that is required for executing the startup mirror;

and the load operating system includes:

a mapping relationship acquiring module, configured to read a mapping

relationship that is from a virtual memory address to a physical memory address and that is

30 required for executing a startup mirror of a first load operating system, where the mapping

16

relationship is used to enable a startup processor core of the first load operating system to

access the physical memory address, and the first load operating system is any load operating

system in the multi-core operating system;

an instruction executing module, configured to jump, according to an instruction

5 that is set by the management operating system and that is for executing a startup mirror jump,

to a location that is of the startup mirror corresponding to the first load operating system and

that is in the physical memory address, and execute, according to the mapping relationship,

the startup mirror corresponding to the first load operating system;

a startup parameter acquiring module, configured to acquire, in a process of

0 executing the startup mirror of the first load operating system by the instruction executing

module, a startup parameter of the first load operating system from the startup mirror of the

first load operating system, where the startup parameter includes identifiers of processor cores

allocated to the first load operating system and an identifier of the physical memory address

allocated to the first load operating system; and

5 a physical resource set acquiring module, configured to determine, according to

the identifiers of the processor cores and the identifier of the physical memory address of the

first load operating system, a physical resource set that is allocated by the management

operating system to the first load operating system and that is exclusively used by the first

load operating system.

4O With reference to the fourth aspect, in a first possible implementation manner of the fourth

aspect, the mapping relationship acquiring module is specifically configured to:

receive an inter-core interrupt message sent by the management operating system,

where the startup processor core executes, according to an instruction of the inter-core

interrupt message, an initialization program that is configured to initialize the startup

25 processor core and that is corresponding to the first load operating system; and

execute the initialization program, and read, from the initialization program, the

mapping relationship that is from the virtual memory address to the physical memory address

and that is required for executing the startup mirror and is pre-constructed by the management

operating system for the first load operating system; and

30 the instruction executing module is specifically configured to: execute the

17

initialization program, read, from the initialization program, a jump instruction that is preset

in the initialization program by the management operating system, and jump to the location

that is of the startup mirror corresponding to the first load operating system and that is in the

physical memory address.

5 With reference to the fourth aspect, in a second possible implementation manner of the fourth

aspect, the startup processor core of the first load operating system is a processor core that has

been started up and that is determined by the management operating system, a daemon runs

on the startup processor core of the first load operating system, the daemon is preset by the

management operating system for the first load operating system, the location that is of the

0 startup mirror corresponding to the first load operating system and that is in the physical

memory address and the mapping relationship that is from the virtual memory address to the

physical memory address and that is required for executing the startup mirror are set in the

daemon;

the mapping relationship acquiring module is specifically configured to read, from

5 the daemon and according to an instruction of an inter-core interrupt message after the

daemon running on the startup processor core receives the inter-core interrupt message sent

by the management operating system, the mapping relationship that is from the virtual

memory address to the physical memory address and that is required for executing the startup

mirror and is pre-constructed by the management operating system for the first load operating

4O system; and

the instruction executing module is specifically configured to: read a jump

instruction that is preset in the daemon by the management operating system, and jump to the

location that is of the startup mirror corresponding to the first load operating system and that

is in the physical memory address.

25 With reference to the fourth aspect, or the first or the second possible implementation manner

of the fourth aspect, in a third possible implementation manner of the fourth aspect, each

physical resource set further includes some external devices of the host machine; and

the startup parameter further includes an identifier of an external device allocated

by the management operating system to the first load operating system and a device

30 description information table corresponding to the external device.

18

According to a fifth aspect, an embodiment of the present invention provides a multi-core

operating system, including:

the management operating system running on a host machine described in the third

aspect;

5 the multiple load operating systems described in the fourth aspect; and

a physical resource pool, where the physical resource pool includes processor

cores, a physical memory, and an external device that are of the host machine.

According to a sixth aspect, an embodiment of the present invention provides a host machine,

including a processor and a memory, where the memory stores an execution instruction, and

0 when the host machine runs, the processor communicates with the memory, and the processor

executes the execution instruction, so as to enable the host machine to execute the resource

processing method described in the first aspect, or any possible implementation manner of the

first to the ninth possible implementation manners of the first aspect.

According to a seventh aspect, an embodiment of the present invention provides a host

5 machine. The host machine includes a physical resource pool and includes a management

operating system and multiple load operating systems that run on the host machine. The

physical resource pool includes processor cores and a physical memory that are of the host

machine. The management operating system includes:

a resource allocating module, configured to allocate, to a first load operating system, a

4O physical resource set exclusively used by the first load operating system, where the physical

resource set comprises some of the processor cores and a part of the physical memory that are

of the host machine, and the first load operating system is any load operating system in the

multiple load operating systems;

a startup processor core determining module, configured to determine, in processor cores

25 allocated to the first load operating system, a startup processor core that starts up the first load

operating system; and

an instructing module, configured to instruct the startup processor core to read a mapping

relationship that is from a virtual memory address to a physical memory address and that is

required for executing a startup mirror of the first load operating system and is

30 pre-constructed by the management operating system, and configured to instruct the startup

19

processor core to execute the startup mirror pre-constructed for the first load operating system,

so as to start up the first load operating system, where the physical memory address comprises

a location of the startup mirror corresponding to the first load operating system, the startup

mirror comprises a startup parameter of the first load operating system, and the startup

5 parameter comprises identifiers of the processor cores allocated to the first load operating

system and an identifier of the physical memory address allocated to the first load operating

system; and

the first load operating system includes:

a mapping relationship acquiring module, configured to read the mapping relationship

0 that is from the virtual memory address to the physical memory address and that is required

for executing the startup mirror of the first load operating system, where the mapping

relationship is used to enable the startup processor core of the first load operating system to

access the physical memory address;

an instruction executing module, configured to jump, according to an instruction that is

5 set by the management operating system and that is for executing a startup mirror jump, to the

location that is of the startup mirror corresponding to the first load operating system and that

is in the physical memory address, and execute, according to the mapping relationship, the

startup mirror corresponding to the first load operating system;

a startup parameter acquiring module, configured to acquire, in a process of executing

4O the startup mirror of the first load operating system, the startup parameter of the first load

operating system from the startup mirror of the first load operating system; and

a physical resource set acquiring module, configured to determine, according to the

identifiers of the processor cores and the identifier of the physical memory address of the first

load operating system, the physical resource set that is allocated by the management operating

25 system to the first load operating system and that is exclusively used by the first load

operating system.

With reference to the seventh aspect, in a first possible implementation manner of the seventh

aspect, the management operating system further includes:

a mapping relationship setting module, configured to: construct the startup mirror for the

30 first load operating system, and set, for the first load operating system, the mapping

20

relationship that is from the virtual memory address to the physical memory address and that

is required for executing the startup mirror.

With reference to the seventh aspect, or the first possible implementation manner of the

seventh aspect, in a second possible implementation manner of the seventh aspect, the

5 instructing module is specifically configured to:

send an inter-core interrupt message to the startup processor core, where the inter-core

interrupt message instructs the startup processor core to execute an initialization program that

is configured to initialize the startup processor core and that is corresponding to the first load

operating system;

0 instruct, by instructing the startup processor core to execute the initialization program

corresponding to the first load operating system, the startup processor core to read, from the

initialization program, the mapping relationship that is from the virtual memory address to the

physical memory address and that is required for executing the startup mirror of the first load

operating system; and

5 instruct the startup processor core to jump, after running of the initialization program

ends, to the location that is of the startup mirror and is in the physical memory, so as to

execute the startup mirror of the first load operating system;

the mapping relationship acquiring module is specifically configured to:

receive the inter-core interrupt message sent by the management operating system, where

4O the inter-core interrupt message is used to instruct the startup processor core to execute the

initialization program that is configured to initialize the startup processor core and that is

corresponding to the first load operating system; and

execute the initialization program, and read, from the initialization program, the mapping

relationship that is from the virtual memory address to the physical memory address and that

25 is required for executing the startup mirror and is pre-constructed by the management

operating system for the first load operating system; and

the instruction executing module is specifically configured to: execute the initialization

program, read, from the initialization program, a jump instruction that is preset in the

initialization program by the management operating system, and jump to the location that is

30 of the startup mirror corresponding to the first load operating system and that is in the

21

physical memory address.

With reference to the seventh aspect, or the first possible implementation manner of the

seventh aspect, in a third possible implementation manner of the seventh aspect, the

management operating system further includes:

5 an available-processor-core acquiring module, configured to acquire available processor

cores of a second load operating system before the startup processor core that starts up the

first load operating system is determined in the processor cores allocated to the first load

operating system, where the second load operating system is a logged-out load operating

system, other than the first load operating system, in the multiple load operating systems, the

0 available processor cores comprise a processor core that has been started up; and

the startup processor core determining module is specifically configured to: when the

physical resource set of the first load operating system comprises the available processor

cores, determine, in the available processor cores, the startup processor core that starts up the

first load operating system.

5 With reference to the seventh aspect, or the first possible implementation manner of the

seventh aspect, in a fourth possible implementation manner of the seventh aspect, the

instruction executing module is further configured to execute, by using the processor cores

allocated to the first load operating system, a privileged instruction delivered by the

management operating system.

4O With reference to the seventh aspect, in a fifth possible implementation manner of the seventh

aspect, the management operating system further includes:

a first monitoring module, configured to monitor running of the first load operating

system after the startup processor core is instructed to execute the startup mirror

pre-constructed for the first load operating system; and

25 the resource allocating module is further configured to: when utilization of a physical

resource allocated to the first load operating system is less than a first preset threshold,

determine a type identifier of a physical resource that needs to be reduced for the first load

operating system, and reduce the physical resource of the first load operating system

according to the type identifier of the physical resource that needs to be reduced; or

30 when utilization of a physical resource allocated to the first load operating system is

22

greater than a second preset threshold, determine a type identifier of a physical resource that

needs to be added for the first load operating system, and add the physical resource of the first

load operating system according to the type identifier of the physical resource that needs to be

added, where

5 the type identifier of the physical resource is used to distinguish whether the physical

resource is a processor core resource or a physical memory resource.

With reference to the seventh aspect, in a sixth possible implementation manner of the

seventh aspect, the first load operating system further includes:

a first monitoring module, configured to monitor a physical resource of the first load

0 operating system; and

a first sending module, configured to: if the first load operating system determines that

utilization of the physical resource allocated by the management operating system to the first

load operating system is less than a first preset threshold, send a resource reducing request

message to the management operating system, where the resource reducing request message

5 comprises a type identifier of a physical resource that needs to be reduced, and the type

identifier of the physical resource is used to distinguish whether the physical resource is a

processor core resource or a physical memory resource; and

the management operating system further comprises:

a first receiving module, configured to receive the resource reducing request message

4O sent by the first load operating system; and

the resource allocating module is further configured to reduce the physical resource of

the first load operating system according to the type identifier of the physical resource that

needs to be reduced.

With reference to the seventh aspect, in a seventh possible implementation manner of the

25 seventh aspect, the first load operating system further includes:

a second monitoring module, configured to monitor a physical resource of the first load

operating system; and

a second sending module, configured to: when the first load operating system determines

that utilization of the physical resource allocated by the management operating system to the

30 first load operating system is greater than a second preset threshold, send a resource adding

23

request message to the management operating system, where the resource adding request

message comprises a type identifier of a physical resource that needs to be added, and the

type identifier of the physical resource is used to distinguish whether the physical resource is

a processor core resource or a physical memory resource; and

5 the management operating system further comprises:

a second receiving module, configured to receive the resource adding request message

sent by the first load operating system; and

the resource allocating module is further configured to add the physical resource of the

first load operating system according to the type identifier of the physical resource that needs

0 to be added.

With reference to the fifth or the seventh possible implementation manner of the seventh

aspect, in the eighth possible implementation manner of the seventh aspect, the resource

allocating module is specifically configured to:

mark a processor core, which needs to be added for the first load operating system, as a

5 physical resource that belongs to the first load operating system, and send a resource adding

message to the first load operating system, where the resource adding message comprises an

identifier of the processor core that needs to be added; and

send a jump instruction to the added processor core, where the jump instruction is used

to instruct the added processor core to execute a kernel program of the first load operating

4O system, and the kernel program comprises all mapping relationships that are from virtual

memory addresses to physical memory addresses and that are required for executing the first

load operating system; and

the physical resource set acquiring module is further specifically configured to:

determine, according to the identifier of the processor core that needs to be added, the

25 processor core added by the management operating system for the first load operating system;

and

receive, by using the added processor core of the first load operating system, the jump

instruction sent by the management operating system, execute the kernel program of the first

load operating system according to the jump instruction, and read, from the kernel program,

30 all the mapping relationships that are from the virtual memory addresses to the physical

24

memory addresses and that are required for executing the first load operating system.

With reference to the fifth or the seventh possible implementation manner of the seventh

aspect, in the ninth possible implementation manner of the seventh aspect, if the physical

resource that needs to be added is a physical memory resource,

5 the resource allocating module is specifically configured to: mark a physical memory

address, which needs to be added for the first load operating system, as a physical resource

that belongs to the first load operating system, and send a resource adding message to the first

load operating system, where the resource adding message comprises an identifier of the

physical memory address that needs to be added; and

0 the physical resource set acquiring module is specifically configured to: receive the

resource adding message sent by the management operating system, and determine, according

to the identifier of the physical memory address that needs to be added, the physical memory

address added by the management operating system for the first load operating system.

With reference to the fifth or the sixth possible implementation manner of the seventh aspect,

5 in the tenth possible implementation manner of the seventh aspect, if the physical resource

that needs to be reduced is a processor core or a physical memory resource,

the physical resource set acquiring module is specifically configured to: receive a

resource reducing message sent by the management operating system, and release the

physical resource according to the identifier, carried by the resource reducing message, of the

4O physical resource that needs to be released; and

the resource allocating module is specifically configured to acquire the identifier of the

physical resource released by the first load operating system, and add the identifier of the

released physical resource to a list of available physical resources in the resource pool.

25

The embodiments of the present invention provide a resource processing method, an

operating system and a device. According to the method, a management operating system

allocates, to each load operating system, a physical resource set exclusively used by each load

operating system, constructs a startup mirror for each load operating system, and sets, for

5 each load operating system, a mapping relationship that is from a virtual memory address to a

physical memory address and that is required for executing the startup mirror; the

management operating system determines, in processor cores allocated to a first load

operating system, a startup processor core that starts up the first load operating system; the

management operating system instructs the startup processor core to read a mapping

0 relationship that is from a virtual memory address to a physical memory address and that is

required for executing a startup mirror of the first load operating system, so as to enable the

startup processor core to access the physical memory address according to the mapping

relationship, instructs the startup processor core to execute the startup mirror pre-constructed

for the first load operating system, where the startup mirror includes a startup parameter of the

5 first load operating system, and the startup parameter includes identifiers of the processor

cores allocated to the first load operating system and an identifier of the physical memory

address allocated to the first load operating system; the management operating system writes

the startup parameter into the startup mirror, so as to allocate, to a load operating system, a

physical resource exclusively used by the load operating system, without requiring

4O involvement of a hypervisor, thereby simplifying a process of allocating the physical resource

by the management operating system to the load operating system. Further, each load

operating system can exclusively use a physical resource, so as to construct an independent

page table, running clock, runtime environment, and the like on the physical resource

exclusively used by each load operating system, thereby improving overall performance of

25 the load operating systems.

BRIEF DESCRIPTION OF DRAWINGS

To describe the technical solutions in the embodiments of the present invention or in the prior

art more clearly, the following briefly introduces the accompanying drawings required for

describing the embodiments or the prior art. Apparently, the accompanying drawings in the

following description show some embodiments of the present invention, and persons of

ordinary skill in the art may still derive other drawings from these accompanying drawings

without creative efforts.

5 FIG. 1 is a schematic diagram of an architecture of a multi-core operating system according to

the present invention;

FIG. 2 is a schematic flowchart of Embodiment 1 of a resource processing method according

to the present invention;

FIG. 3 is a schematic flowchart of Embodiment 2 of a resource processing method according

0 to the present invention;

FIG. 4 is a schematic flowchart of Embodiment 3 of a resource processing method according

to the present invention;

FIG. 5 is a schematic flowchart of Embodiment 4 of a resource processing method according

to the present invention;

5 FIG. 6 is a schematic flowchart of Embodiment 5 of a resource processing method according

to the present invention;

FIG. 7 is a schematic flowchart of Embodiment 6 of a resource processing method according

to the present invention;

FIG. 8A is a schematic flowchart for adding a processor core for a first load operating system

4O according to the present invention;

FIG. 8B is a schematic flowchart for releasing a processor core by a first load operating

system according to the present invention;

FIG. 9A is a schematic flowchart for adding a physical memory address for a first load

operating system according to the present invention;

25 FIG. 9B is a schematic flowchart for releasing a physical memory address by a first load

operating system according to the present invention;

FIG. 10A is a schematic flowchart for adding an external device for a first load operating

system according to the present invention;

FIG. 10B is a schematic flowchart for reducing an external device for a first load operating

30 system according to the present invention;

FIG. 11 is a schematic structural diagram of Embodiment 1 of a management operating

system according to the present invention;

FIG. 12 is a schematic structural diagram of Embodiment 2 of a management operating

system according to the present invention;

5 FIG. 13 is a schematic structural diagram of Embodiment 3 of a management operating

system according to the present invention;

FIG. 14 is a schematic structural diagram of Embodiment 1 of a load operating system

according to the present invention;

FIG. 15 is a schematic structural diagram of Embodiment 2 of a load operating system

0 according to the present invention;

FIG. 16 is a schematic diagram of an architecture of a multi-core system on a heterogeneous

platform; and

FIG. 17 is a schematic structural diagram of Embodiment 1 of a host machine according to

the present invention.

5 DESCRIPTION OF EMBODIMENTS

To make the objectives, technical solutions, and advantages of the embodiments of the present

invention clearer, the following clearly and completely describes the technical solutions in the

embodiments of the present invention with reference to the accompanying drawings in the

embodiments of the present invention. Apparently, the described embodiments are some but

20 not all of the embodiments of the present invention. All other embodiments obtained by

persons of ordinary skill in the art based on the embodiments of the present invention without

creative efforts shall fall within the protection scope of the present invention.

FIG. 1 is a schematic diagram of an architecture of a multi-core operating system according to

the present invention. As shown in FIG. 1, the multi-core operating system provided in this

25 embodiment includes a management operating system and multiple load operating systems

that run on a host machine and includes a physical resource pool. The host machine is an

actual physical node, and the management operating system manages the multiple load

operating systems, which mainly includes allocating, to the multiple load operating systems,

physical resources exclusively used by the multiple load operating systems, and being

responsible for startup and logout of the load operating systems. The multiple load operating

systems include a load operating system that has not been started up and a load operating

system that is running. In particular, after a load operating system is started up, the load

5 operating system may exclusively use a physical resource allocated by the management

operating system, and access the physical resource; the load operating system constructs an

independent page table, an independent clock, an independent runtime library, and the like on

the physical resource exclusively used by the load operating system, without requesting help

from a hypervisor; the load operating system uses the independent page table, the independent

0 clock, the independent runtime library, and the like, so that the management operating system

and the load operating system share system buses, including an address bus, a data bus, and a

control bus. Communication between the management operating system and a load operating

system and communication between a load operating system and another load operating

system are implemented by an internal communication mechanism (an inter-instance

5 communication module). The management operating system and each load operating system

have an independent page table separately, each load operating system uses an independent

physical resource, and the management operating system performs management but is not

involved in access, communication, or the like that is performed by a load operating system

on a physical resource. The physical resource pool includes processor cores and a physical

4O memory that are of the host machine; optionally, the physical resource pool further includes

an external device such as a network adapter array.

FIG. 2 is a schematic flowchart of Embodiment 1 of a resource processing method according

to the present invention. An execution body of this embodiment is a management operating

system that runs on a host machine, where the management operating system may be

25 specifically the management operating system shown in the embodiment in FIG. 1. As shown

in FIG. 2, the resource processing method provided in this embodiment includes:

Step 201: The management operating system allocates, to each load operating system, a

physical resource set exclusively used by each load operating system, constructs a startup

mirror for each load operating system, and sets, for each load operating system, a mapping

30 relationship that is from a virtual memory address to a physical memory address and that is

required for executing the startup mirror.

Each physical resource set includes some of the processor cores of the host machine and a

part of the physical memory of the host machine.

Step 202: The management operating system determines, in processor cores allocated to a

5 first load operating system, a startup processor core that starts up the first load operating

system.

The first load operating system is any one of the load operating systems.

Step 203: The management operating system instructs the startup processor core to read a

mapping relationship that is from a virtual memory address to a physical memory address and

0 that is required for executing a startup mirror of the first load operating system and is

pre-constructed by the management operating system, and instructs the startup processor core

to execute the startup mirror pre-constructed for the first load operating system.

The startup mirror includes a startup parameter of the first load operating system, and the

startup parameter includes identifiers of the processor cores allocated to the first load

5 operating system and an identifier of the physical memory address allocated to the first load

operating system.

An application scenario of this embodiment may be that shown in the embodiment in FIG. 1,

and no detail is repeatedly described herein in this embodiment. In this embodiment, the

resource processing method provided in this embodiment is described in detail by using a

40 management operating system as an execution body. The management operating system may

be specifically the management operating system shown in FIG. 1.

In a specific implementation process, in step 201, that the management operating system

allocates, to each load operating system, a physical resource set exclusively used by each load

operating system may be implemented in the following manner:

25 The management operating system determines available physical resources that are in the

physical resource pool and that are corresponding to identifiers of physical resources in a list

of the available physical resources in the resource pool. Specifically, the management

operating system maintains the list of the available physical resources in the resource pool,

where identifiers of all available physical resources in the physical resource pool are recorded

30 in the list. The available physical resources are physical resources that are not currently used

by the management operating system or the load operating systems. The management

operating system performs, according to a quantity of the load operating systems, first-time

division on the available physical resources in the physical resource pool, to obtain multiple

physical resource sets, where a quantity of the physical resource sets equals the quantity of the

5 load operating systems; the management operating system determines a correspondence

between each load operating system and each physical resource set, and allocates, to each

load operating system and according to the correspondence, a physical resource set

exclusively used by each load operating system. Each physical resource set includes some of

the processor cores of the host machine and a part of the physical memory of the host

0 machine.

Optionally, the management operating system may further allocate, to a load operating system,

an external device exclusively used by the load operating system, and the physical resource

set further includes an external device of the host machine. The external device may be a

network adapter or a magnetic disk, or the like.

5 A specific embodiment is used as an example. Still refer to FIG. 1. In FIG. 1, a black area in

the physical resource pool is a physical resource that is being used, and a physical resource,

other than the black area, is an available physical resource. There are two load operating

systems, which are referred to as a first load operating system and a second load operating

system. The management operating system performs the first-time division on the available

4O physical resources, and obtains two physical resource sets. In a specific implementation

process, the management operating system performs physical division on the physical

resources, and the division may be performed in the following manner:

Processor core: A processor core is used as a minimum functional unit for the division, or a

processor may be used as a unit. For a heterogeneous platform, a heterogeneous processor

25 core and a coprocessor core may also be classified as global computing resources.

Physical memory: A continuous or discontinuous segment of a physical memory is used as a

unit for the division, and a specific size of a memory block may be a size of a signal block or

a size of a hybrid block.

With respect to an external device, the division may mainly be performed in the following

30 manner:

Network: A physical network adapter is used as a unit for the division. When a physical

network adapter is not sufficient, a physical network adapter having a multi-array function or

supporting server virtualization (for example, Single-Root 1/0 Virtualization, SR-IOV for

short) is used, and is divided according to an array or a virtual function (Virtual Function, VF

5 for short). Only when neither a physical network adapter nor an independent physical function

of the network adapter is sufficient, it may be considered to share a physical network adapter

and provide multiple virtual network adapters for an operating system instance, in a manner

of virtualizing front and back ends of the network adapter.

Magnetic disk: A physical magnetic disk is used as a unit for the division. When a physical

0 magnetic disk is not sufficient, a magnetic disk that may support an SR-IOV technology in the

future may be divided by using a disk virtualization function. A single physical magnetic disk

is shared in a manner of logically partitioning the magnetic disk, and finally technologies such

a network file system (Network File System, NFS for short) and a random access memory

disk (RAM) may be used to replace a function of a conventional disk file system.

5 Terminal: Because using of a terminal device (a monitor or a keyboard), a serial port, or the

like consumes no resource, in a premise that system performance is not affected, multiple sets

of device resources such as serial ports and terminals may be obtained by virtualization in a

hardware abstraction layer virtualization manner, to meet an upper-layer need.

With respect to the resource division, in this embodiment, it is ensured that the processor

4O cores and the physical memory are divided in physical space, and a physical unit division

manner is also used on a peripheral, but an alternative solution in which time division

multiplexing is performed when physical division is inadequate is also supported.

The management operating system constructs, according to types of an operating system

instance running on the first load operating system and an operating system instance running

25 on the second load operating system, correspondences between the physical resource sets and

the load operating systems. When the management operating system needs, according to the

type of the operating system instance running on the first load operating system, more

physical resources, the management operating system allocates, to the first load operating

system, a physical resource corresponding to a shadow area; correspondingly, the

30 management operating system allocates, to the second load operating system, a physical

resource corresponding to a white area.

After the management operating system allocates, to each load operating system, a physical

resource exclusively used by each load operating system, the management operating system

pre-constructs, for each load operating system, a startup mirror used to start up each load

5 operating system. The startup mirror refers to a program that configures hardware required for

core running and constructs a data structure required for the core running, for a load operating

system when the hardware and the core data structure that are required for running of the load

operating system have not been configured or have not been sufficiently prepared. The startup

mirror is specifically implemented in a manner of a program so that a startup processor core

0 can update a status of the startup processor core, where the program that is configured for the

load operating system after the hardware and the core data structure have been prepared and

that starts up each core service and loads each core module, so as to finally start up the load

operating system.

Further, the management operating system further sets, for each load operating system, the

5 mapping relationship that is from the virtual memory address to the physical memory address

and that is required for executing a respective startup mirror of each load operating system.

Persons skilled in the art can understand that, the mapping relationship that is from the virtual

memory address to the physical memory address and that is required for executing the startup

mirror and involved in this embodiment specifically refer to a mapping relationship that is

4O from the virtual memory address in virtual memory addresses corresponding to the startup

mirror to the physical memory address, and the management operating system may

implement the mapping relationship in a manner of a page table.

In a specific implementation process, a startup processor core of a load operating system first

acquires a mapping relationship that is from a virtual memory address to a physical memory

25 address and that is required for executing a startup mirror and are set by the management

operating system for the load operating system, and the load operating system may directly

access the physical memory address according to the mapping relationship and does not need

to perform address translation. After the startup mirror of the load operating system has been

started up, the startup mirror is configured to start up the load operating system. In a running

30 process, the startup mirror directly accesses the physical memory address according to the

mapping relationship that is from the virtual memory address to the physical memory address

and that is corresponding to the startup mirror. Persons skilled in the art can understand that,

the management operating system may set, for the startup mirror, some mapping relationships

that are from virtual memory addresses to physical memory addresses, or may set, for the

5 startup mirror, all mapping relationships that are from virtual memory addresses to physical

memory addresses. When the management operating system sets, for the startup mirror, some

mapping relationships that are from the virtual memory addresses to the physical memory

addresses, and when the startup processor core that has been allocated to the load operating

system is in a process of executing startup of the startup mirror, the startup processor core

0 may set all the mapping relationships that are from the virtual memory addresses to the

physical memory addresses and that are required for executing the startup mirror. After the

load operating system has been started up, the load operating system sets all mapping

relationships that are from virtual memory addresses to physical memory addresses and that

are required for executing the load operating system.

5 In step 202, that the management operating system determines, in processor cores allocated to

a first load operating system, a startup processor core includes the following possible

implementation manners: the management operating system determines the startup processor

core according to a preset policy; the management operating system randomly chooses, in the

processor cores allocated to the first load operating system, one processor core as the startup

40 processor core; the management operating system acquires a user instruction, and determines

the startup processor core according to the user instruction. This embodiment imposes no

special limitation on a specific implementation process of determining the startup processor

core by the management operating system.

In step 203, the management operating system instructs the startup processor core to read the

25 mapping relationship that is from the virtual memory address to the physical memory address

and that is required for executing the startup mirror of the first load operating system.

Specifically, the startup processor core may directly access the physical memory address by

reading the mapping relationship and does not need to perform an address translation process.

Further, in step 203, the management operating system further instructs the startup processor

30 core to execute the startup mirror pre-constructed by the management operating system for the

first load operating system. Because the startup mirror includes the startup parameter of the

first load operating system, the startup processor core reads, in the process of executing the

startup mirror, the startup parameter from the startup mirror, where the startup parameter

includes the identifiers of the processor cores allocated to the first load operating system and

5 the identifier of the physical memory address allocated to the first load operating system, so

that the first load operating system acquires, according to the startup parameter, a physical

resource set allocated by the management operating system to the first load operating system.

Running of the startup mirror is for starting up the load operating system. The running of the

startup mirror equals a startup process of the first load operating system.

0 Optionally, when the physical resource set includes some external devices of the host machine,

the startup parameter further includes an identifier of an external device allocated to the first

load operating system and a device description information table corresponding to the

external device. The device description information table includes configuration information

of the external device, for example, configuration of a physical memory address of the

5 external address, and a mapping relationship from a virtual memory address to the physical

memory address. This embodiment imposes no special limitation on specific content included

in the device description information table.

According to the resource processing method provided in this embodiment, a management

operating system allocates, to each load operating system, a physical resource set exclusively

4O used by each load operating system, constructs a startup mirror for each load operating system,

and sets, for each load operating system, a mapping relationship that is from a virtual memory

address to a physical memory address and that is required for executing the startup mirror; the

management operating system determines, in processor cores allocated to a first load

operating system, a startup processor core that starts up the first load operating system; the

25 management operating system instructs the startup processor core to read a mapping

relationship that is from a virtual memory address to a physical memory address and that is

required for executing a startup mirror of the first load operating system, so as to enable the

startup processor core to access the physical memory address according to the mapping

relationship, instructs the startup processor core to execute the startup mirror pre-constructed

30 for the first load operating system, where the startup mirror includes a startup parameter of the

first load operating system, and the startup parameter includes identifiers of the processor

cores allocated to the first load operating system and an identifier of the physical memory

address allocated to the first load operating system; the management operating system writes

the startup parameter into the startup mirror, so as to allocate, to a load operating system, a

5 physical resource exclusively used by the load operating system, without requiring

involvement of a hypervisor, thereby simplifying a process of allocating the physical resource

by the management operating system to the load operating system. Further, each load

operating system can exclusively use a physical resource, so as to construct an independent

page table, clock, runtime environment, and the like on the physical resource exclusively used

0 by each load operating system, thereby improving overall performance of the load operating

systems.

The following uses several specific embodiments to describe in detail the technical solutions

of the method embodiment shown in FIG. 2.

A specific embodiment may be that shown in FIG. 3. FIG. 3 is a schematic flowchart of

5 Embodiment 2 of a resource processing method according to the present invention. As shown

in FIG. 3, the resource processing method provided in this embodiment of the present

invention includes:

Step 301: The management operating system allocates, to each load operating system, a

physical resource set exclusively used by each load operating system, and constructs a startup

4O mirror for each load operating system.

Each physical resource set includes some of the processor cores of the host machine and a

part of the physical memory of the host machine.

Step 302: The management operating system presets, for the first load operating system, an

initialization program that is configured to initialize the first load operating system, and

25 presets, in the initialization program, a location that is of the startup mirror corresponding to

the first load operating system and that is in the physical memory address.

Step 303: The management operating system sets, for the first load operating system and in

the initialization program, the mapping relationship that is from the virtual memory address to

the physical memory address and that is required for executing the startup mirror.

30 Step 304: The management operating system sends an inter-core interrupt message to the

startup processor core.

The inter-core interrupt message instructs the startup processor core to execute the

initialization program that is configured to initialize the startup processor core and that is

corresponding to the first load operating system.

5 Step 305: The management operating system instructs, by instructing the startup processor

core to execute the initialization program corresponding to the first load operating system, the

startup processor core to read, from the initialization program, the mapping relationship that is

from the virtual memory address to the physical memory address and that is required for

executing the startup mirror of the first load operating system, and instructs the startup

0 processor core to jump, after running of the initialization program ends, to the location that is

of the startup mirror and is in the physical memory, so as to execute the startup mirror of the

first load operating system.

The startup mirror includes the startup parameter of the first load operating system, and the

startup parameter includes the identifiers of the processor cores allocated to the first load

5 operating system and the identifier of the physical memory address allocated to the first load

operating system.

In step 301, a process in which the management operating system allocates, to each load

operating system, the physical resource set exclusively used by each load operating system

and constructs the startup mirror for each load operating system is similar to that in step 201,

40 and no detail is repeatedly described herein in this embodiment.

In step 302, the management operating system presets, for the first load operating system, the

initialization program that is configured to initialize the first load operating system, and

presets, in the initialization program, the location that is of the startup mirror corresponding to

the first load operating system and that is in the physical memory address.

25 Persons skilled in the art can understand that, the management operating system presets, for

each load operating system, an initialization program corresponding to each load operating

system, and presets, in the initialization program, a location that is of the startup mirror

corresponding to each load operating system and that is in the physical memory address.

Persons skilled in the art can understand that, a location that is of a startup mirror

30 corresponding to each load operating system and that is in the virtual memory address may

also be preset in the initialization program, and the startup processor core may acquire,

according to the mapping relationship that is from the virtual memory address to the physical

memory address, the location that is in the physical memory address and in which the startup

mirror is located.

5 In step 303, the management operating system sets, for the first load operating system and in

the initialization program, the mapping relationship that is from the virtual memory address to

the physical memory address and that is required for executing the startup mirror.

In step 304, the management operating system sends the inter-core interrupt message to the

startup processor core, where the inter-core interrupt message instructs the startup processor

0 core to execute the initialization program that is configured to initialize the startup processor

core and that is corresponding to the first load operating system.

Persons skilled in the art can understand that, a value is transferred by the inter-core interrupt

message and may be referred to as an interrupt vector, and both the value corresponding to the

inter-core interrupt message and an execution process corresponding to the value are agreed

5 on by the management operating system and the first load operating system in advance. When

the management operating system sends the inter-core interrupt message to the startup

processor core, the inter-core interrupt message instructs the startup processor core to execute

the initialization program that is configured to initialize the startup processor core and that is

corresponding to the first load operating system.

40 After receiving the inter-core interrupt message, the startup processor core of the first load

operating system searches for the initialization program in a preset fixed physical memory,

runs the initialization program, and completes initialization of the startup processor core,

where the initialization of the startup processor core is a startup process of the startup

processor core. In a running process of the initialization program, the startup processor core

25 reads, from the running initialization program, the location that is of the startup mirror

corresponding to the first load operating system, that is in the physical memory address, and

that is preset by the management operating system for the first load operating system, so as to

start up the startup mirror.

In step 305, the management operating system instructs the startup processor core to execute

30 the initialization program corresponding to the first load operating system; in a process of

executing the initialization program, the startup processor core reads the mapping relationship

that is from the virtual memory address to the physical memory address and that is required

for executing the startup mirror of the first load operating system.

That the management operating system instructs the startup processor core to jump, after

5 running of the initialization program ends, to a location that is in the physical memory and

in which the startup mirror is located, so as to execute the startup mirror of the first load

operating system is implemented in the following manner:

A last instruction of the initialization program is used to instruct the startup processor core to

jump to the startup mirror. When running the last instruction of the initialization program, the

0 startup processor core jumps to the startup mirror to execute the startup mirror, where the

startup mirror includes the startup parameter of the first load operating system, and the startup

parameter includes the identifiers of the processor cores allocated to the first load operating

system and the identifier of the physical memory address allocated to the first load operating

system.

5 The first load operating system determines, according to the identifiers of the processor cores

allocated to the first load operating system and the identifier of the physical memory address

allocated to the first load operating system, the physical resource set that is allocated by the

management operating system to the first load operating system and that is exclusively used

by the first load operating system.

4O According to the resource processing method provided in this embodiment, a management

operating system pre-constructs an initialization program for a load operating system, presets,

in the initialization program and for the load operating system, a location that is of a startup

mirror corresponding to a first load operating system and that is in a physical memory address,

and presets, in the initialization program and for the first load operating system, a mapping

25 relationship that is from a virtual memory address to a physical memory address and that is

required for executing the startup mirror; a startup processor core of the load operating system

executes the initialization program, reads a startup parameter from the startup mirror, acquires

a physical resource set according to the startup parameter, and completes a startup process of

the load operating system. The management operating system allocates, to a load operating

30 system, a physical resource exclusively used by the load operating system, without requiring

involvement of a hypervisor, thereby simplifying a process of allocating the physical resource

by the management operating system to the load operating system; further, each load

operating system can exclusively use a physical resource, thereby improving overall

performance of the load operating systems.

5 Another specific embodiment may be that shown in FIG. 4. FIG. 4 is a schematic flowchart of

Embodiment 3 of a resource processing method according to the present invention. As shown

in FIG. 4, the resource processing method provided in this embodiment of the present

invention includes:

Step 401: The management operating system acquires available processor cores of a second

0 load operating system.

The second load operating system is a logged-out load operating system, other than the first

load operating system, in the multiple load operating systems, the available processor cores

include a processor core that has been started up, and a physical resource set of the first load

operating system includes the available processor cores.

5 Step 402: When a physical resource set of the first load operating system includes the

available processor cores, the management operating system determines, in the available

processor cores, the startup processor core that starts up the first load operating system.

Step 403: The management operating system presets, for the first load operating system, a

daemon on the startup processor core, and presets, in the daemon, a location that is of the

40 startup mirror corresponding to the first load operating system and that is in the physical

memory address.

Step 404: The management operating system sets, for the first load operating system and in

the daemon, the mapping relationship that is from the virtual memory address to the physical

memory address and that is required for executing the startup mirror.

25 Step 405: The management operating system sends an inter-core interrupt message to the

daemon running on the startup processor core, where the location that is of the startup mirror

corresponding to the first load operating system, that is in the physical memory address, and

that is preset in the daemon by the management operating system instructs the startup

processor core to jump to the location that is in the physical memory address and in which the

30 startup mirror is located, so as to execute the startup mirror of the first load operating system.

The inter-core interrupt message instructs the startup processor core to read, from the daemon,

the mapping relationship that is from the virtual memory address to the physical memory

address and that is required for executing the startup mirror and is pre-constructed by the

management operating system for the first load operating system.

5 In step 401, that the management operating system acquires available processor cores of a

second load operating system may include the following possible implementation manners:

the management operating system forcibly makes the second load operating system log out in

a running process of the second load operating system; the management operating system

makes the second load operating system log out after running of the second load operating

0 system ends; the second load operating system automatically logs out after running ends.

After the second load operating system logs out, the management operating system acquires

the available processor cores of the second load operating system, where the available

processor cores include a startup processor core of the second load operating system and

another processor core that runs another application program.

5 Persons skilled in the art can understand that, the physical resource set of the first load

operating system may include the available processor cores, or may not include the available

processor cores.

In particular, in this embodiment, the second load operating system is made to log out, but the

startup processor core of the second load operating system has run the initialization program;

40 the management operating system may use the startup processor core of the second load

operating system as the startup processor core of the first load operating system. When the

startup processor core of the second load operating system acts as the startup processor core

of the first load operating system, it is not required to run the initialization program again to

complete an initialization process; however, when an processor core, which is in the available

25 processor cores and runs another application program, acts as the startup processor core, it is

still required to run the initialization program to complete initialization.

In step 402, when the physical resource set of the first load operating system includes the

available processor cores, the management operating system determines, in the available

processor cores, the startup processor core that starts up the first load operating system.

30 Persons skilled in the art can understand that, when the physical resource set of the first load

operating system includes the available processor cores, the management operating system

may determine, in the available processor cores, the startup processor core of the first load

operating system, or may determine the startup processor core in other processor cores in the

physical resource set.

5 When the management operating system determines the startup processor core in the available

processor cores, the following manners may be used for implementation: the management

operating system determines the startup processor core in the available processor cores

according to a preset policy; the management operating system randomly selects, from the

available processor cores, one processor core as the startup processor core; the management

0 operating system acquires a user instruction, and determines the startup processor core in the

available processor cores according to the user instruction.

In step 403, the management operating system sets, for the first load operating system, the

daemon on the startup processor core; after the setting is complete, the daemon runs all the

time on the startup processor core that has been started up, and waits for various system

5 commands sent by the management operating system. The daemon is preset by the

management operating system for the first load operating system. The management operating

system further presets, in the daemon, the location that is of the startup mirror corresponding

to the first load operating system and that is in the physical memory address.

Further, in step 404, the management operating system presets, in the daemon, the mapping

40 relationship that is from the virtual memory address to the physical memory address and that

is required for executing the startup mirror of the first load operating system.

In step 405, the management operating system sends the inter-core interrupt message to the

daemon running on the startup processor core, and an instruction corresponding to the

inter-core interrupt message is agreed on by the management operating system and the first

25 load operating system in advance. After the daemon running on the startup processor core

receives the inter-core interrupt message sent by the management operating system, the

startup processor core reads, from the daemon, the mapping relationship that is from the

virtual memory address to the physical memory address and that is required for executing the

startup mirror and is pre-constructed by the management operating system for the first load

30 operating system; in a process of executing the startup mirror by the startup processor core,

the startup processor core accesses the physical memory address according to the mapping

relationship.

The management operating system instructs the startup processor core to jump to the location

that is in the physical memory address and in which the startup mirror is located, so as to

5 execute the startup mirror of the first load operating system, where a jump command is set in

the daemon, so that the startup processor core acquires, from the daemon, the location that is

of the startup mirror corresponding to the first load operating system and that is in the

physical memory address, and jumps to the location that is in the physical memory address

and in which the startup mirror is located, so as to execute the startup mirror of the first load

0 operating system.

According to the resource processing method provided in this embodiment, a management

operating system sets a jump command in a daemon, so that a startup processor core acquires,

from the daemon, a location that is of a startup mirror corresponding to a first load operating

system and that is in a physical memory address, and jumps to the location that is in the

5 physical memory address and in which the startup mirror is located, so as to execute the

startup mirror of the first load operating system and acquire a startup parameter from the

startup mirror. The management operating system allocates, to a load operating system, a

physical resource exclusively used by the load operating system, without requiring

involvement of a hypervisor, thereby simplifying a process of allocating the physical resource

4O by the management operating system to load operating system; further, each load operating

system can exclusively use a physical resource, thereby improving overall performance of the

load operating systems.

FIG. 5 is a schematic flowchart of Embodiment 4 of a resource processing method according

to the present invention. The resource processing method in this embodiment is applied to a

25 multi-core operating system, the multi-core operating system includes a management

operating system and multiple load operating systems that run on a host machine and includes

a physical resource pool, the physical resource pool includes processor cores and a physical

memory that are of the host machine, each load operating system exclusively uses a physical

resource set allocated by the management operating system, and each physical resource set

30 includes some of the processor cores of the host machine and a part of the physical memory

of the host machine; the management operating system pre-constructs a startup mirror for

each load operating system, and sets, for each load operating system, a mapping relationship

that is from a virtual memory address to a physical memory address and that is required for

executing the startup mirror. An execution body of this embodiment is any load operating

5 system in the multiple load operating systems. For ease of description, in this embodiment,

the execution body is referred to as a first load operating system. As shown in FIG. 5, the

resource processing method provided in this embodiment includes:

Step 501: A startup processor core of the first load operating system reads a mapping

relationship that is from a virtual memory address to a physical memory address and that is

0 required for executing a startup mirror of the first load operating system.

The mapping relationship is used to enable the startup processor core of the first load

operating system to access the physical memory address, and the first load operating system is

any load operating system in the multi-core operating system.

Step 502: The startup processor core of the first load operating system jumps, according to an

5 instruction that is set by the management operating system and that is for executing a startup

mirror jump, to a location that is of the startup mirror corresponding to the first load operating

system and that is in the physical memory address, and executes, according to the mapping

relationship, the startup mirror corresponding to the first load operating system.

Step 503: The startup processor core of the first load operating system acquires, in a process

40 of executing the startup mirror of the first load operating system, a startup parameter of the

first load operating system from the startup mirror of the first load operating system.

The startup parameter includes identifiers of processor cores allocated to the first load

operating system and an identifier of the physical memory address allocated to the first load

operating system.

25 Step 504: The first load operating system determines, according to identifiers of the processor

cores and an identifier of the physical memory address of the first load operating system, a

physical resource set that is allocated by the management operating system to the first load

operating system and that is exclusively used by the first load operating system.

An application scenario of this embodiment may be that shown in the embodiment in FIG. 1,

30 and no detail is repeatedly described herein in this embodiment. In this embodiment, the

resource processing method provided in this embodiment is described in detail by using the

first load operating system as the execution body. The first load operating system may be

specifically any load operating system in the load operating systems shown in FIG. 1.

In step 501, after the management operating system determines the startup processor core for

5 the first load operating system, the startup processor core of the first load operating system

first acquires the mapping relationship that is from the virtual memory address to the physical

memory address and that is required for executing the startup mirror and is set by the

management operating system for the first load operating system, and the first load operating

system may directly access the physical memory address according to the mapping

0 relationship and does not need to perform address translation.

In step 502, the startup processor core of the first load operating system receives the

instruction that is preset by the management operating system for the first load operating

system and that is for executing the startup mirror jump, the first load operating system jumps,

according to the instruction that is set by the management operating system and that is for

5 executing the startup mirror jump, to the location that is of the startup mirror corresponding to

the first load operating system and that is in the physical memory address; when the startup

processor core of the first load operating system executes the startup mirror, the first load

operating system directly accesses the physical memory address according to the mapping

relationship that is from the virtual memory address to the physical memory address and that

40 is corresponding to the startup mirror, so as to complete a startup process of the startup

mirror.

In step 503, the startup processor core of the first load operating system acquires, in a process

of executing the startup mirror of the first load operating system, the startup parameter of the

first load operating system from the startup mirror of the first load operating system, where

25 the startup parameter includes the identifiers of the processor cores allocated by the

management operating system to the first load operating system and the identifier of the

physical memory address allocated by the management operating system to the first load

operating system.

Optionally, when the physical resource set includes some external devices of the host machine,

30 the startup parameter further includes an identifier of an external device allocated by the

management operating system to the first load operating system and a device description

information table corresponding to the external device. The device description information

table includes configuration information of the external device, for example, configuration of

a physical memory address of the external address, and a mapping relationship from a virtual

5 memory address to the physical memory address. This embodiment imposes no special

limitation on specific content included in the device description information table.

In step 504, the first load operating system may determine, according to the identifiers of the

processor cores and the identifier of the physical memory address of the first load operating

system, the physical resource set that is allocated by the management operating system to the

0 first load operating system and that is exclusively used by the first load operating system, and

the first load operating system may construct an independent page table, clock, runtime

environment, and the like on a physical resource that is exclusively used by the first load

operating system.

Persons skilled in the art can understand that, an objective of executing the startup mirror by

5 the first load operating system is to start up the first load operating system; after running of

the startup mirror ends, startup of the first load operating system is complete, and the first

load operating system enters a running stage.

According to the resource processing method provided in this embodiment of the present

invention, a startup processor core of a first load operating system reads a mapping

4O relationship that is from a virtual memory address to a physical memory address and that is

required for executing a startup mirror of the first load operating system, jumps, according to

an instruction that is set by a management operating system and that is for executing a startup

mirror jump, to a location that is of the startup mirror corresponding to the first load operating

system and that is in the physical memory address, executes, according to the mapping

25 relationship, the startup mirror corresponding to the first load operating system, and acquires,

in a process of executing the startup mirror of the first load operating system, a startup

parameter of the first load operating system from the startup mirror of the first load operating

system, where the startup parameter includes identifiers of processor cores allocated to the

first load operating system and an identifier of the physical memory address allocated to the

30 first load operating system. The first load operating system determines, according to the

identifiers of the processor cores and the identifier of the physical memory address of the first

load operating system, a physical resource set that is allocated by the management operating

system to the first load operating system and that is exclusively used by the first load

operating system. The first load operating system reads the startup parameter from the startup

5 mirror, so as to acquire the physical resource set that is allocated by the management

operating system to the first load operating system and that is exclusively used by the load

operating system, without requiring involvement of a hypervisor, thereby simplifying a

process of allocating a physical resource by the management operating system to the load

operating system. Further, each load operating system can exclusively use a physical resource,

0 so as to construct an independent page table, clock, runtime environment, and the like on the

physical resource exclusively used by each load operating system, thereby improving overall

performance of the load operating systems.

The following uses several specific embodiments to describe in detail the technical solutions

of the method embodiment shown in FIG. 5.

5 A specific embodiment may be that shown in FIG. 6. FIG. 6 is a schematic flowchart of

Embodiment 5 of a resource processing method according to the present invention. As shown

in FIG. 6, the resource processing method provided in this embodiment of the present

invention includes:

Step 601: The startup processor core of the first load operating system receives an inter-core

4O interrupt message sent by the management operating system, where the startup processor core

executes, according to an instruction of the inter-core interrupt message, an initialization

program that is configured to initialize the startup processor core and that is corresponding to

the first load operating system.

Step 602: The startup processor core of the first load operating system executes the

25 initialization program, reads, from the initialization program, the mapping relationship that is

from the virtual memory address to the physical memory address and that is required for

executing the startup mirror and is pre-constructed by the management operating system for

the first load operating system, reads a jump instruction that is preset in the initialization

program by the management operating system, jumps to the location that is of the startup

30 mirror corresponding to the first load operating system and that is in the physical memory

address, and executes, according to the mapping relationship, the startup mirror corresponding

to the first load operating system.

Step 603: The startup processor core of the first load operating system acquires, in a process

of executing the startup mirror of the first load operating system, the startup parameter of the

5 first load operating system from the startup mirror of the first load operating system.

The startup parameter includes the identifiers of the processor cores allocated to the first load

operating system and the identifier of the physical memory address allocated to the first load

operating system.

Step 604: The first load operating system determines, according to the identifiers of the

0 processor cores and the identifier of the physical memory address of the first load operating

system, the physical resource set that is allocated by the management operating system to the

first load operating system and that is exclusively used by the first load operating system.

In this embodiment, step 603 is similar to step 503 and step 604 is similar to step 504, and no

detail is repeatedly described herein in this embodiment.

5 In step 601, the startup processor core of the first load operating system receives the inter-core

interrupt message sent by the management operating system, where the startup processor core

executes, according to the instruction of the inter-core interrupt message, the initialization

program that is configured to initialize the startup processor core and that is corresponding to

the first load operating system.

40 Specifically, a value is transferred by the inter-core interrupt message and may be referred to

as an interrupt vector, and both the value corresponding to the inter-core interrupt message

and an execution process corresponding to the value are agreed on by the management

operating system and the first load operating system in advance. The management operating

system sends the inter-core interrupt message to the startup processor core of the first load

25 operating system, and the inter-core interrupt message instructs the startup processor core to

execute the initialization program that is configured to initialize the startup processor core and

that is corresponding to the first load operating system.

After receiving the inter-core interrupt message sent by the management operating system, the

startup processor core of the first load operating system searches for the initialization program

30 in a preset fixed physical memory, and runs the initialization program to complete

initialization of the startup processor core, and the initialization of the startup processor core

is a startup process of the startup processor core.

In step 602, the startup processor core of the first load operating system reads, in the process

of executing the initialization program and from the initialization program, the mapping

5 relationship that is from the virtual memory address to the physical memory address and that

is required for executing the startup mirror and is pre-constructed by the management

operating system for the first load operating system; after the startup processor core of the

first load operating system reads the mapping relationship, in a subsequent process of

executing the startup mirror, the startup processor core of the first load operating system may

0 directly access the physical memory address according to the mapping relationship and does

not need to perform address translation.

Further, a last instruction of the initialization program is used to instruct the startup processor

core to jump to the startup mirror and may be construed as a jump instruction. The startup

processor core of the first load operating system reads, from the initialization program, the

5 jump instruction that is preset in the initialization program by the management operating

system, jumps to the location that is of the startup mirror corresponding to the first load

operating system and that is in the physical memory address, and directly accesses the

physical memory address according to the mapping relationship, so as to execute the startup

mirror corresponding to the first load operating system.

40 According to the resource processing method provided in this embodiment of the present

invention, a first load operating system reads, from an initialization program, a mapping

relationship that is from a virtual memory address to a physical memory address and that is

required for executing a startup mirror and is pre-constructed by a management operating

system for the first load operating system, reads a jump instruction that is preset in the

25 initialization program by the management operating system, jumps to a location that is of the

startup mirror corresponding to the first load operating system and that is in the physical

memory address, executes, according to the mapping relationship, the startup mirror

corresponding to the first load operating system, reads a startup parameter from the startup

mirror, acquires a physical resource set according to the startup parameter, and completes a

30 startup process of the first load operating system. The management operating system allocates,

to a load operating system, a physical resource exclusively used by the load operating system,

without requiring involvement of a hypervisor, thereby simplifying a process of allocating the

physical resource by the management operating system to load operating system; further, each

load operating system can exclusively use a physical resource, thereby improving overall

5 performance of the load operating systems.

Another specific embodiment is as follows: In this embodiment, the startup processor core of

the first load operating system is a processor core that has been started up and that is

determined by the management operating system, a daemon runs on the startup processor core

of the first load operating system, the daemon is preset by the management operating system

0 for the first load operating system, the location that is of the startup mirror corresponding to

the first load operating system and that is in the physical memory address and the mapping

relationship that is from the virtual memory address to the physical memory address and that

is required for executing the startup mirror are set in the daemon. FIG. 7 is a schematic

flowchart of Embodiment 6 of a resource processing method according to the present

5 invention. As shown in FIG. 7, the resource processing method provided in this embodiment

of the present invention includes:

Step 701: The daemon running on the startup processor core of the first load operating system

receives an inter-core interrupt message sent by the management operating system, and the

startup processor core reads, from the daemon according to an instruction of the inter-core

4O interrupt message, the mapping relationship that is from the virtual memory address to the

physical memory address and that is required for executing the startup mirror and is

pre-constructed by the management operating system for the first load operating system.

Step 702: The startup processor core of the first load operating system reads a jump

instruction that is preset in the daemon by the management operating system, jumps to the

25 location that is of the startup mirror corresponding to the first load operating system and that

is in the physical memory address, and executes, according to the mapping relationship, the

startup mirror corresponding to the first load operating system.

Step 703: The startup processor core of the first load operating system acquires, in a process

of executing the startup mirror of the first load operating system, the startup parameter of the

30 first load operating system from the startup mirror of the first load operating system.

The startup parameter includes the identifiers of the processor cores allocated to the first load

operating system and the identifier of the physical memory address allocated to the first load

operating system.

Step 704: The first load operating system determines, according to the identifiers of the

5 processor cores and the identifier of the physical memory address of the first load operating

system, the physical resource set that is allocated by the management operating system to the

first load operating system and that is exclusively used by the first load operating system.

A difference between this embodiment and the embodiment in FIG. 6 lies in that the startup

processor core in this embodiment is a processor core that has been started up, that is, an

0 initialization process does not need to be performed on the startup processor core. Step 703 in

this embodiment is similar to step 503 in the embodiment in FIG. 5 and step 704 is similar to

step 504 in the embodiment in FIG. 5, and no detail is repeated described herein in this

embodiment. In a specific implementation process, the management operating system presets,

for the first load operating system, the daemon on the startup processor core; after the setting

5 is complete, the daemon runs all the time on the startup processor core that has been started

up.

In step 701, the management operating system sends the inter-core interrupt message to the

daemon running on the startup processor core, and an instruction corresponding to the

inter-core interrupt message is agreed on by the management operating system and the first

40 load operating system in advance. After the daemon running on the startup processor core of

the first load operating system receives the inter-core interrupt message sent by the

management operating system, the startup processor core reads, from the daemon, the

mapping relationship that is from the virtual memory address to the physical memory address

and that is of the startup mirror and is pre-constructed by the management operating system

25 for the first load operating system; in a process of executing the startup mirror by the startup

processor core, the startup processor core accesses the physical memory address according to

the mapping relationship.

In step 702, the startup processor core of the first load operating system reads the jump

instruction that is preset in the daemon by the management operating system, jumps to the

30 location that is of the startup mirror corresponding to the first load operating system and that

is in the physical memory address, and executes, according to the mapping relationship, the

startup mirror corresponding to the first load operating system.

According to the resource processing method provided in this embodiment, a startup

processor core of a first load operating system acquires, from a preset daemon, a location that

5 is of a startup mirror corresponding to the first load operating system and that is in a physical

memory address, jumps to the location that is in the physical memory address and in which

the startup mirror is located, so as to execute the startup mirror of the first load operating

system and acquire a startup parameter from the startup mirror. A management operating

system allocates, to a load operating system, a physical resource exclusively used by the load

0 operating system, without requiring involvement of a hypervisor, thereby simplifying a

process of allocating the physical resource by the management operating system to the load

operating system; further, each load operating system can exclusively use a physical resource,

thereby improving overall performance of the load operating systems.

Based on the embodiments in FIG. 5 to FIG. 7, the startup processor core executes the startup

5 mirror and completes the startup of the first load operating system. After the first load

operating system has been started up, the first load operating system constructs all mapping

relationships that are from virtual memory addresses to physical memory addresses and that

are required for executing the first load operating system; the processor core of the first load

operating system converts, according to the mapping relationships, the virtual memory

4O addresses to the physical memory addresses, and directly accesses the physical memory

addresses.

Further, in a running process of the first load operating system, the first load operating system

may execute, by using a processor core allocated to the first load operating system, a

privileged instruction delivered by the management operating system. In a specific

25 implementation process, the processor core that executes the privileged instruction may be the

startup processor core, or may be another processor core other than the startup processor core,

as long as the processor core that executes the privileged instruction is a processor core

allocated by the management operating system to the first load operating system. The

privileged instruction is applied to an operating system and generally is not directly provided

30 for a user. The privileged instruction is mainly used for resource allocation and management,

including detecting a user access right, creating and switching a task, and the like.

In this embodiment, the first load operating system directly executes the privileged instruction,

without a step of translating or performing hypercall (hypercall) on a privileged operation in a

virtualization technology. Specifically, the management operating system may deliver a

5 privileged instruction, which does not affect a normal running status of the host machine, to

the first load operating system for the first load operating system to perform execution.

The embodiments in FIG. 2 to FIG. 7 describe in detail the process of allocating a physical

resource by the management operating system to the first load operating system, and further

describe in detail how the first load operating system executes the startup mirror to complete

0 the startup process of the first load operating system.

In the running process of the first load operating system, the physical resource of the first load

operating system further needs to be dynamically adjusted. In a specific implementation

process, there are two possible implementation manners for dynamically adjusting the first

load operating system.

5 One possible implementation manner is that the management operating system monitors

running of the first load operating system and adjusts the physical resource of the first load

operating system, which specifically includes two possible situations.

In one possible situation: the management operating system monitors the running of the first

load operating system; and

40 when utilization of a physical resource allocated to the first load operating system

is less than a first preset threshold, determines that a physical resource needs to be reduced for

the first load operating system, and determines a type identifier of the physical resource that

needs to be reduced, where the type identifier of the physical resource is used to distinguish

whether the physical resource is a processor core resource, a physical memory resource, or an

25 external device resource; and

the management operating system performs, according to the type identifier of the

physical resource that needs to be reduced, second-time division on the available physical

resources that are in the physical resource pool and that are corresponding to the identifiers of

the physical resources in the list of the available physical resources in the resource pool, and

30 reduces the physical resource of the first load operating system, where the reduced physical

resource is a physical resource corresponding to the type identifier of the physical resource

that needs to be reduced.

In the other possible situation: the management operating system monitors the running of the

first load operating system; and

5 when utilization of a physical resource allocated to the first load operating system

is greater than a second preset threshold, determines that a physical resource needs to be

added for the first load operating system, and determines a type identifier of the physical

resource that needs to be added, where the type identifier of the physical resource is used to

distinguish whether the physical resource that needs to be added is a processor core resource,

0 a physical memory resource, or an external device resource; and

the management operating system performs, according to the type identifier of the

physical resource that needs to be added, second-time division on the available physical

resources that are in the physical resource pool and that are corresponding to the identifiers of

the physical resources in the list of the available physical resources in the resource pool, and

5 adds the physical resource of the first load operating system, where the added physical

resource is a physical resource corresponding to the type identifier of the physical resource

that needs to be added.

Specifically, in this embodiment, the physical resources allocated by the management

operating system to the first load operating system include a processor core resource, a

4O physical memory resource, and an external device resource. The management operating

system monitors, in the running process of the first load operating system, utilization of the

physical resources that have been allocated to the first load operating system, that is, monitors

the utilization of the processor core resource, the physical memory resource, and the external

device resource.

25 When the management operating system determines that utilization of a physical resource

allocated to the first load operating system is less than the first preset threshold, it indicates

that the management operating system allocates too many physical resources to the first load

operating system when allocating, to the first load operating system, the physical resource set

that is exclusively used by the first load operating system; in this case, the management

30 operating system determines that a physical resource needs to be reduced for the first load

operating system. Because there are three types of physical resources, the management

operating system determines, according to utilization of each physical resource, a type

identifier of the physical resource that needs to be reduced, and then the management

operating system performs, according to the type identifier of the physical resource that needs

5 to be reduced, the second-time division on the available physical resources that are in the

physical resource pool and that are corresponding to the identifiers of the physical resources

in the list of the available physical resources in the resource pool, and reduces the physical

resource of the first load operating system. In a specific implementation process, the

management operating system may perform, according to utilization of a physical resource of

0 the first load operating system and utilization of a physical resource of another load operating

system, the second-time division on the available physical resources, so as to reduce the

physical resource of the first load operating system. The reduced physical resource is a

physical resource corresponding to the type identifier of the physical resource that needs to be

reduced.

5 When the management operating system determines that utilization of a physical resource

allocated to the first load operating system is greater than the second preset threshold, it

indicates that the management operating system allocates too few physical resources to the

first load operating system when allocating, to the first load operating system, the physical

resource set that is exclusively used by the first load operating system; in this case, the

4O management operating system determines that a physical resource needs to be added for the

first load operating system. Because there are three types of physical resources, the

management operating system determines, according to utilization of each physical resource,

a type identifier of the physical resource that needs to be added, and then the management

operating system performs, according to the type identifier of the physical resource that needs

25 to be added, the second-time division on the available physical resources in the physical

resource pool, and adds the physical resource of the first load operating system. In a specific

implementation process, the management operating system may perform, according to

utilization of a physical resource of the first load operating system and utilization of a

physical resource of another load operating system, the second-time division on the available

30 physical resources, so as to add the physical resource of the first load operating system. The

added physical resource is a physical resource corresponding to the type identifier of the

physical resource that needs to be added.

The other possible implementation manner is that: the first load operating system monitors a

use status of a physical resource of the first load operating system, so that the management

5 operating system adjusts the physical resource of the first load operating system. Two

possible situations may be specifically included:

In one possible situation: the first load operating system monitors a physical resource of the

first load operating system; and

if the first load operating system determines that utilization of a physical resource

0 allocated by the management operating system to the first load operating system is less than a

first preset threshold, the first load operating system sends a resource reducing request

message to the management operating system, where the resource reducing request message

includes a type identifier of a physical resource that needs to be reduced, and the type

identifier of the physical resource is used to distinguish whether the physical resource that

5 needs to be reduced is a processor core resource, a physical memory resource, or an external

device resource.

In the other possible situation: the first load operating system monitors a physical resource of

the first load operating system; and

if the first load operating system determines that utilization of a physical resource

4O allocated by the management operating system to the first load operating system is greater

than a second preset threshold, the first load operating system sends a resource adding request

message to the management operating system, where the resource adding request message

includes a type identifier of a physical resource that needs to be added, and the type identifier

of the physical resource is used to distinguish whether the physical resource that needs to be

25 added is a processor core resource or a physical memory resource.

Specifically, in this embodiment, the first load operating system determines that the physical

resources allocated by the management operating system to the first load operating system

include a processor core resource, a physical memory resource, and an external device

resource. The first load operating system monitors, in the running process, utilization of the

30 physical resources that have been allocated by the management operating system to the first

load operating system, that is, monitors the utilization of the processor core resource, the

physical memory resource, and the external device resource.

When the first load operating system determines that utilization of a physical resource

allocated to the first load operating system is less than the first preset threshold, it indicates

5 that the management operating system allocates too many physical resources to the first load

operating system when allocating, to the first load operating system, the physical resource set

exclusively used by the first load operating system; in this case, the first load operating

system determines that a physical resource needs to be reduced for the first load operating

system, and sends a resource reducing request message to the management operating system.

0 Because there are three types of physical resources, the first load operating system determines,

according to utilization of each physical resource, a type identifier of the physical resource

that needs to be reduced. Therefore, the resource reducing request message includes the type

identifier of the physical resource that needs to be reduced, where the type identifier of the

physical resource is used to distinguish whether the physical resource that needs to be reduced

5 is a processor core resource, a physical memory resource, or an external device resource.

When the first load operating system determines that utilization of a physical resource

allocated to the first load operating system is greater than the second preset threshold, it

indicates that the management operating system allocates too few physical resources to the

first load operating system when allocating, to the first load operating system, the physical

4O resource set exclusively used by the first load operating system; in this case, the first load

operating system determines that a physical resource needs to be added for the first load

operating system, and sends a resource adding request message to the management operating

system. Because there are three types of physical resources, the first load operating system

determines, according to utilization of each physical resource, a type identifier of the physical

25 resource that needs to be added. Therefore, the resource adding request message includes the

type identifier of the physical resource that needs to be added, where the type identifier of the

physical resource is used to distinguish whether the physical resource that needs to be added

is a processor core resource, a physical memory resource, or an external device resource.

The foregoing two possible implementation manners separately describe, from perspectives of

30 the management operating system and the first load operating system, that a physical resource

of the first load operating system needs to be added or reduced. The following describes in

detail, according to a type of a physical resource, adding or reduction of each physical

resource.

FIG. 8A is a schematic flowchart for adding a processor core for the first load operating

5 system when the physical resource is a processor core according to the present invention. FIG.

8B is a schematic flowchart for releasing a processor core by the first load operating system

according to the present invention.

As shown in FIG. 8A, adding the processor core for the first load operating system includes

the following steps:

0 Step 8101: The management operating system marks the processor core, which needs to be

added for the first load operating system, as a physical resource that belongs to the first load

operating system, and sends a resource adding message to the first load operating system.

The resource adding message includes an identifier of the processor core that needs to be

added.

5 Specifically, the management operating system marks the processor core, which needs to be

added for the first load operating system, as the physical resource that belongs to the first load

operating system, where the added processor core is not used as an available physical

resource in the physical resource pool, and the management operating system and the first

load operating system monitor utilization of the added processor core.

40 Step 8102: The first load operating system receives the resource adding message sent by the

management operating system, where the resource adding message includes an identifier of

the processor core that needs to be added.

Step 8103: The first load operating system determines, according to the identifier of the

processor core that needs to be added, the processor core added by the management operating

25 system for the first load operating system.

Step 8104: The management operating system sends a jump instruction to the added processor

core.

The jump instruction is used to instruct the added processor core to execute a kernel program

of the first load operating system, and instruct the added processor core to read, from the

30 kernel program, all mapping relationships that are from virtual memory addresses to physical

memory addresses and that are required for executing the first load operating system.

The management operating system sets, for the first load operating system, the kernel

program in a preset fixed physical memory, and the management operating system and the

first load operating system agree in advance on that the first load operating system may write,

5 into the kernel program, all the mapping relationships that are from the virtual memory

addresses to the physical memory addresses and that are required for executing the first load

operating system. Persons skilled in the art can understand that the kernel program may

further include other information required for running the added processor core, on which this

embodiment imposes no special limitation.

0 Step 8105: The added processor core of the first load operating system receives the jump

instruction sent by the management operating system, executes a kernel program of the first

load operating system according to the jump instruction, and reads, from the kernel program,

all mapping relationships that are from virtual memory addresses to physical memory

addresses and that are required for executing the first load operating system.

5 As shown in FIG. 8B, releasing the processor core by the first load operating system includes

the following steps:

Step 8201: The management operating system sends a resource reducing message to the first

load operating system.

The resource reducing message includes an identifier of the processor core that needs to be

40 released.

Step 8202: The first load operating system receives the resource reducing message sent by the

management operating system, where the resource reducing message includes an identifier of

the processor core that needs to be released.

Step 8203: The first load operating system determines, according to the identifier of the

25 processor core that needs to be released, the processor core that needs to be released by the

first load operating system.

Step 8204: The first load operating system releases the processor core, where the released

processor core is a processor core corresponding to the identifier of the processor core that

needs to be released.

30 That the first load operating system releases the processor core refers to that the first load

operating system no longer uses the processor core.

Step 8205: The management operating system acquires the identifier of the processor core

released by the first load operating system, and adds the identifier of the released processor

core to a list of available physical resources in the resource pool, where the released processor

5 core is a processor core corresponding to the identifier of the processor core that needs to be

reduced.

FIG. 9A is a schematic flowchart for adding a physical memory address for the first load

operating system when the physical resource is a physical memory resource according to the

present invention. FIG. 9B is a schematic flowchart for releasing a physical memory address

0 by the first load operating system according to the present invention.

As shown in FIG. 9A, adding the physical memory address for the first load operating system

includes the following steps:

Step 9101: The management operating system marks the physical memory address, which

needs to be added for the first load operating system, as a physical resource that belongs to the

5 first load operating system, and sends a resource adding message to the first load operating

system.

The resource adding message includes an identifier of the physical memory address that needs

to be added.

The management operating system marks the physical memory address, which needs to be

40 added for the first load operating system, as the physical resource that belongs to the first load

operating system, where the added physical memory address is not used as an available

physical resource in the physical resource pool, and the management operating system and the

first load operating system monitor utilization of the added physical memory address; the first

load operating system further constructs a mapping relationship that is from a virtual memory

25 address to the added physical memory address.

Step 9102: The first load operating system receives the resource adding message sent by the

management operating system, where the resource adding message includes an identifier of

the physical memory address that needs to be added.

Step 9103: The first load operating system determines, according to the identifier of the

30 physical memory address that needs to be added, the physical memory address added by the

management operating system for the first load operating system.

As shown in FIG. 9B, releasing the physical memory address by the first load operating

system includes the following steps:

Step 9201: The management operating system sends a resource reducing message to the first

5 load operating system.

The resource reducing message includes an identifier of the physical memory address that

needs to be released.

Step 9202: The first load operating system receives the resource reducing message sent by the

management operating system, where the resource reducing message includes an identifier of

0 the physical memory address that needs to be released.

Step 9203: The first load operating system determines, according to the identifier of the

physical memory address that needs to be released, the physical memory address that needs to

be released by the first load operating system.

Step 9204: The first load operating system releases the physical memory address, where the

5 released physical memory address is a physical memory address corresponding to the

identifier of the physical memory address that needs to be released.

Step 9205: The management operating system acquires the identifier of the physical memory

address released by the first load operating system, and adds the identifier of the released

physical memory address to a list of available physical resources in the resource pool, where

40 the released physical memory address is a physical memory address corresponding to the

identifier of the physical memory address that needs to be released.

FIG. 10A is a schematic flowchart for adding an external device for the first load operating

system when the physical resource is an external device resource according to the present

invention. FIG. 10B is a schematic flowchart for reducing an external device for the first load

25 operating system according to the present invention.

As shown in FIG. 10A, adding the external device for the first load operating system includes

the following steps:

Step 10101: The management operating system marks the external device, which needs to be

added for the first load operating system, as a physical resource that belongs to the first load

30 operating system, and sends a hot-insertion message to the first load operating system.

The hot-insertion message is used to instruct the first load operating system to acquire an

identifier of the external device that needs to be added and a device description information

table corresponding to the added external device.

Specifically, the management operating system marks the external device, which needs to be

5 added for the first load operating system, as the physical resource that belongs to the first load

operating system, where the added external device is not used as an available physical

resource in the physical resource pool, and the management operating system and the first

load operating system monitor utilization of the added external device.

That the hot-insertion message is used to instruct the first load operating system to acquire an

0 identifier of the external device that needs to be added and a device description information

table corresponding to the added external device includes two possible implementation

manners:

In one possible implementation manner: the management operating system sends the

hot-insertion message to the first load operating system, where the hot-insertion message

5 includes the identifier of the external device that needs to be added and the device description

information table corresponding to the added external device.

In the other possible implementation manner: the management operating system sends a

hot-insertion instruction message to the first load operating system, where the hot-insertion

instruction message is used to instruct the first load operating system to read, from a preset

4O fixed physical memory, the identifier of the external device that needs to be added and the

device description information table corresponding to the added external device.

Step 10102: The first load operating system receives the hot-insertion message sent by the

management operating system.

Step 10103: The first load operating system executes, according to an identifier of the

25 external device that needs to be added and a device description information table

corresponding to the added external device, a hot-insertion operation on an external device

corresponding to the identifier of the external device that needs to be added.

As shown in FIG. 10B, reducing the external device for the first load operating system

includes the following steps:

30 Step 10201: The management operating system sends a hot-removal message to the first load

operating system.

The hot-removal message includes an identifier of the external device that needs to be

reduced.

Step 10202: The first load operating system receives the hot-removal message sent by the

5 management operating system, where the hot-removal message includes an identifier of the

external device that needs to be reduced.

Step 10203: The first load operating system performs, according to the identifier of the

external device that needs to be reduced, a hot-removal operation on an external device

corresponding to the identifier of the external device that needs to be reduced.

0 Step 10204: The management operating system acquires the identifier of the external device

that is reduced for the first load operating system, adds the identifier of the reduced external

device to a list of available physical resources in the resource pool, where the reduced

external device is the external device corresponding to the identifier of the external device

that needs to be reduced.

5 In the embodiments of the present invention, dynamic adjustment of a physical resource is

implemented in the foregoing manners, so that not only a first load operating system can

exclusively use a physical resource, but also utilization of a physical resource is improved by

adding or reducing a physical resource of the first load operating system.

FIG. 11 is a schematic structural diagram of Embodiment 1 of a management operating

40 system according to the present invention. The management operating system in this

embodiment is applied to the multi-core operating system shown in FIG. 1, where the

multi-core operating system includes the management operating system and multiple load

operating systems that run on a host machine and includes a physical resource pool, and the

physical resource pool includes processor cores and a physical memory that are of the host

25 machine. As shown in FIG. 11, the management operating system 110 provided in this

embodiment includes a resource allocating module 1101, a mapping relationship setting

module 1102, a startup processor core determining module 1103, and an instructing module

1104.

The resource allocating module 1101 is configured to allocate, to each load operating system,

30 a physical resource set exclusively used by each load operating system, where each physical

resource set includes some of the processor cores of the host machine and a part of the

physical memory of the host machine.

The mapping relationship setting module 1102 is configured to: construct a startup mirror for

each load operating system, and set, for each load operating system, a mapping relationship

5 that is from a virtual memory address to a physical memory address and that is required for

executing the startup mirror.

The startup processor core determining module 1103 is configured to determine, in processor

cores allocated to a first load operating system, a startup processor core that starts up the first

load operating system, where the first load operating system is any one of the load operating

0 systems.

The instructing module 1104 is configured to instruct the startup processor core to read a

mapping relationship that is from a virtual memory address to a physical memory address and

that is required for executing a startup mirror of the first load operating system and is

pre-constructed by the mapping relationship setting module, so as to enable the startup

5 processor core to access, in a process of executing the startup mirror and according to the

mapping relationship, the physical memory address; and instruct the startup processor core to

execute the startup mirror pre-constructed for the first load operating system, where the

startup mirror includes a startup parameter of the first load operating system, the startup

parameter includes identifiers of the processor cores allocated to the first load operating

40 system and an identifier of the physical memory address allocated to the first load operating

system.

The management operating system provided in this embodiment may execute the technical

solutions of the foregoing resource processing method embodiments, and has a similar

implementation principle and technical effect, and no detail is repeatedly described herein in

25 this embodiment.

FIG. 12 is a schematic structural diagram of Embodiment 2 of a management operating

system according to the present invention. This embodiment is implemented based on the

embodiment in FIG. 11, and is specifically as follows:

Optionally, the instructing module 1104 is specifically configured to:

30 send an inter-core interrupt message to the startup processor core, where the

inter-core interrupt message instructs the startup processor core to execute an initialization

program that is configured to initialize the startup processor core and that is corresponding to

the first load operating system; and

instruct, by instructing the startup processor core to execute the initialization

5 program corresponding to the first load operating system, the startup processor core to read,

from the initialization program, the mapping relationship that is from the virtual memory

address to the physical memory address and that is required for executing the startup mirror of

the first load operating system; and instruct the startup processor core to jump, after running

of the initialization program ends, to the location that is of the startup mirror and is in the

0 physical memory, so as to execute the startup mirror of the first load operating system.

Optionally, the management operating system further includes an initialization program

configuring module 1105, configured to: before the mapping relationship setting module sets,

for each load operating system, the mapping relationship that is from the virtual memory

address to the physical memory address and that is required for executing the startup mirror,

5 preset, for the first load operating system, an initialization program that is configured to

initialize the first load operating system, and preset, in the initialization program, the location

that is of the startup mirror of the first load operating system and that is in the physical

memory address.

The mapping relationship setting module 1102 is specifically configured to set, in the

40 initialization program and for the first load operating system, the mapping relationship that is

from the virtual memory address to the physical memory address and that is required for

executing the startup mirror.

The management operating system provided in this embodiment may execute the technical

solutions of the foregoing resource processing method embodiments, and has a similar

25 implementation principle and technical effect, and no detail is repeatedly described herein in

this embodiment.

FIG. 13 is a schematic structural diagram of Embodiment 3 of a management operating

system according to the present invention. This embodiment is implemented based on the

embodiment in FIG. 11, and is specifically as follows:

30 Optionally, the management operating system further includes an available-processor-core

acquiring module 1106, configured to acquire available processor cores of a second load

operating system before the startup processor core determining module determines, in the

processor cores allocated to the first load operating system, the startup processor core that

starts up the first load operating system, where the second load operating system is a

5 logged-out load operating system, other than the first load operating system, in the multiple

load operating systems, the available processor cores include a processor core that has been

started up, and a physical resource set of the first load operating system includes the available

processor cores.

The startup processor core determining module 1103 is specifically configured to: when the

0 physical resource set of the first load operating system includes the available processor cores,

determine, in the available processor cores, the startup processor core that starts up the first

load operating system.

Optionally, the management operating system further includes a daemon configuring module

1107, configured to preset, for the first load operating system, a daemon on the startup

5 processor core after the startup processor core determining module determines, in the

available processor cores, the startup processor core that starts up the first load operating

system, and preset, in the daemon, a location that is of the startup mirror of the first load

operating system and that is in the physical memory address.

The mapping relationship setting module 1102 is specifically configured to set, for the first

40 load operating system and in the daemon, the mapping relationship that is from the virtual

memory address to the physical memory address and that is required for executing the startup

mirror.

Optionally, the instructing module 1104 is specifically configured to: send an inter-core

interrupt message to the daemon running on the startup processor core, where the inter-core

25 interrupt message instructs the startup processor core to read, from the daemon, the mapping

relationship that is from the virtual memory address to the physical memory address and that

is required for executing the startup mirror and is pre-constructed by the management

operating system for the first load operating system; and the location that is of the startup

mirror corresponding to the first load operating system, that is in the physical memory address,

30 and that is preset in the daemon by the daemon configuring module instructs the startup

processor core to jump to the location that is in the physical memory address and in which the

startup mirror is located, so as to execute the startup mirror of the first load operating system.

The management operating system provided in this embodiment may execute the technical

solutions of the foregoing resource processing method embodiments, and has a similar

5 implementation principle and technical effect, and no detail is repeatedly described herein in

this embodiment.

Based on the embodiments in FIG. 12 and FIG. 13, the resource allocating module is

specifically configured to:

perform, according to a quantity of the load operating systems, first-time division

0 on available physical resources that are in the physical resource pool and that are

corresponding to identifiers of physical resources in a list of the available physical resources

in the resource pool, to obtain multiple physical resource sets, where a quantity of the

physical resource sets equals the quantity of the load operating systems, and the management

operating system determines a correspondence between each load operating system and each

5 physical resource set; and

allocate, to each load operating system according to the correspondence, the

physical resource set exclusively used by each load operating system.

Optionally, each physical resource set further includes some external devices of the host

machine.

4O The startup parameter further includes an identifier of an external device allocated to the first

load operating system and a device description information table corresponding to the

external device.

Based on the embodiments in FIG. 12 and FIG. 13, when the management operating system

monitors running of the first load operating system, a structure of the management operating

25 system includes two possible implementation manners.

One possible implementation manner is that the management operating system further

includes:

a first monitoring module, configured to monitor, after the instructing module

instructs the startup processor core to execute the startup mirror pre-constructed for the first

30 load operating system, running of the first load operating system; and

a first resource managing module, configured to determine that a physical resource

needs to be reduced for the first load operating system if a monitoring result of the first

monitoring module is that utilization of a physical resource allocated to the first load

operating system is less than a first preset threshold, and determine a type identifier of the

5 physical resource that needs to be reduced, where the type identifier of the physical resource

is used to distinguish whether the physical resource is a processor core resource, a physical

memory resource, or an external device resource.

The resource allocating module is further configured to perform, according to the type

identifier of the physical resource that needs to be reduced, second-time division on the

0 available physical resources that are in the physical resource pool and that are corresponding

to the identifiers of the physical resources in the list of the available physical resources in the

resource pool, and reduce the physical resource of the first load operating system, where the

reduced physical resource is a physical resource corresponding to the type identifier of the

physical resource that needs to be reduced.

5 The other possible implementation manner is that the management operating system further

includes:

a second monitoring module, configured to monitor, after the instructing module

instructs the startup processor core to execute the startup mirror pre-constructed for the first

load operating system, running of the first load operating system; and

40 a second resource managing module, configured to determine that a physical

resource needs to be added for the first load operating system if a monitoring result of the

second monitoring module is that utilization of a physical resource allocated to the first load

operating system is greater than a second preset threshold, and determine a type identifier of

the physical resource that needs to be added, where the type identifier of the physical resource

25 is used to distinguish whether the physical resource that needs to be added is a processor core

resource, a physical memory resource, or an external device resource.

The resource allocating module is further configured to perform, according to the type

identifier of the physical resource that needs to be added, second-time division on the

available physical resources that are in the physical resource pool and that are corresponding

30 to the identifiers of the physical resources in the list of the available physical resources in the

resource pool, and add the physical resource of the first load operating system, where the

added physical resource is a physical resource corresponding to the type identifier of the

physical resource that needs to be added.

Based on the embodiments in FIG. 12 and FIG. 13, when the management operating system

5 monitors running of the first load operating system, a structure of the management operating

system includes two possible implementation manners.

One possible implementation manner is that the management operating system further

includes:

a first receiving module, configured to receive, after the instructing module

0 instructs the startup processor core to execute the startup mirror pre-constructed for the first

load operating system, a resource reducing request message sent by the first load operating

system, where the resource reducing request message includes a type identifier of a physical

resource that needs to be reduced, and the type identifier of the physical resource is used to

distinguish whether the physical resource is a processor core resource, a physical memory

5 resource, or an external device resource.

The resource allocating module is further configured to perform, according to the type

identifier, of the physical resource that needs to be reduced, in the resource reducing request

message, second-time division on the available physical resources that are in the physical

resource pool and that are corresponding to the identifiers of the physical resources in the list

4O of the available physical resources in the resource pool, and reduce the physical resource of

the first load operating system, where the reduced physical resource is a physical resource

corresponding to the type identifier of the physical resource that needs to be reduced.

The other possible implementation manner is that the management operating system further

includes:

25 a second receiving module, configured to receive, after the instructing module

instructs the startup processor core to execute the startup mirror pre-constructed for the first

load operating system, a resource adding request message sent by the first load operating

system, where the resource adding request message includes a type identifier of a physical

resource that needs to be added, and the type identifier of the physical resource is used to

30 distinguish whether the physical resource is a processor core resource, a physical memory

resource, or an external device resource.

The resource allocating module is further configured to perform, according to the type

identifier, of the physical resource that needs to be added, in the resource adding request

message, second-time division on the available physical resources that are in the physical

5 resource pool and that are corresponding to the identifiers of the physical resources in the list

of the available physical resources in the resource pool, and add the physical resource of the

first load operating system, where the added physical resource is a physical resource

corresponding to the type identifier of the physical resource that needs to be added.

Based on the foregoing embodiments, if the physical resource that needs to be added is a

0 processor core, the resource allocating module is further specifically configured to:

mark the processor core, which needs to be added for the first load operating

system, as a physical resource that belongs to the first load operating system, and send a

resource adding message to the first load operating system, where the resource adding

message includes an identifier of the processor core that needs to be added; and

5 send a jump instruction to the added processor core, where the jump instruction is

used to instruct the added processor core to execute a kernel program of the first load

operating system, and instruct the added processor core to read, from the kernel program, all

mapping relationships that are from virtual memory addresses to physical memory addresses

and that are required for executing the first load operating system.

4O Based on the foregoing embodiments, if the physical resource that needs to be reduced is a

processor core, the resource allocating module is further specifically configured to:

send a resource reducing message to the first load operating system, where the

resource reducing message includes an identifier of the processor core that needs to be

released; and

25 acquire the identifier of the processor core released by the first load operating

system, and add the identifier of the released processor core to the list of the available

physical resources in the resource pool, where the released processor core is a processor core

corresponding to the identifier of the processor core that needs to be reduced.

Based on the foregoing embodiments, if the physical resource that needs to be added is a

30 physical memory resource, the resource allocating module is further specifically configured to:

mark a physical memory address, which needs to be added for the first load operating system,

as a physical resource that belongs to the first load operating system, and send a resource

adding message to the first load operating system, where the resource adding message

includes an identifier of the physical memory address that needs to be added.

5 Based on the foregoing embodiments, if the physical resource that needs to be reduced is a

physical memory resource, the resource allocating module is further specifically configured to:

send a resource reducing message to the first load operating system, where the resource

reducing message includes an identifier of a physical memory address that needs to be

released; and

0 acquire an identifier of the physical memory address released by the first load

operating system, and add the identifier of the released physical memory address to the list of

the available physical resources in the resource pool, where the released physical memory

address is a physical memory address corresponding to the identifier of the physical memory

address that needs to be released.

5 Based on the foregoing embodiments, if the physical resource that needs to be added is an

external device resource, the resource allocating module is further specifically configured to:

mark an external device, which needs to be added for the first load operating system, as a

physical resource that belongs to the first load operating system, and send a hot-insertion

message to the first load operating system, where the hot-insertion message is used to instruct

4O the first load operating system to acquire an identifier of the external device that needs to be

added and a device description information table corresponding to the added external device.

Based on the foregoing embodiments, if the physical resource that needs to be reduced is an

external device resource, the resource allocating module is further specifically configured to:

send a hot-removal message to the first load operating system, where the hot-removal

25 message includes an identifier of an external device that needs to be reduced; and

acquire the identifier of the external device reduced for the first load operating

system, and add the identifier of the reduced external device to the list of the available

physical resources in the resource pool, where the reduced external device is an external

device corresponding to the identifier of the external device that needs to be reduced.

30 The management operating system provided in this embodiment may execute the technical

solutions of the foregoing resource processing method embodiments, and has a similar

implementation principle and technical effect, and no detail is repeatedly described herein in

this embodiment.

Based on the embodiments in FIG. 11 to FIG. 13, the management operating system may

5 further include another module required for running, for example:

an inter-instance communication module, configured to implement bottom-layer

communication between the management operating system and another load operating system,

where notification and response are generally performed not by using a network but in an

inter-processor interrupt manner;

0 a resource runtime assisting module, where because of a limitation of a hardware

function, when an interrupt of an external device cannot be directly routed to a load operating

system, the resource runtime assisting module of the management operating system may

forward the interrupt, and help to implement normal response to the interrupt; or when the

hardware function fully supports automatic routing of an interrupt and free configuration of

5 direct memory access (Direct Memory Access, DMA for short), that is, when an interrupt of

an external device is directly routed to a load operating system, the resource runtime assisting

module may be canceled;

a terminal service module: configured to prepare a virtual terminal device for a

Light OS that needs a terminal (a keyboard, a mouse, or a graphics card), ensure

4O communication efficiency by using a mechanism such as memory sharing, and provide

support in running; and

an application managing module, configured to virtualize a user-oriented

management interface of a system, make it easy for a user to manage a complicated

application, and develop an appropriate application scheduling policy.

25 FIG. 14 is a schematic structural diagram of Embodiment 1 of a load operating system

according to the present invention. The load operating system provided in this embodiment is

applied to the multi-core operating system shown in FIG. 1, where the multi-core operating

system includes a management operating system and multiple load operating systems that run

on a host machine and includes a physical resource pool, the physical resource pool includes

30 processor cores and a physical memory that are of the host machine, each load operating

system exclusively uses a physical resource set allocated by the management operating

system, and each physical resource set includes some of the processor cores of the host

machine and a part of the physical memory of the host machine; the management operating

system pre-constructs a startup mirror for each load operating system, and sets, for each load

5 operating system, a mapping relationship that is from a virtual memory address to a physical

memory address and that is required for executing the startup mirror; and the load operating

system 140 includes a mapping relationship acquiring module 1401, an instruction executing

module 1402, a startup parameter acquiring module 1403, and a physical resource set

acquiring module 1404.

0 The mapping relationship acquiring module 1401 is configured to read a mapping relationship

that is from a virtual memory address to a physical memory address and that is required for

executing a startup mirror of a first load operating system, where the mapping relationship is

used to enable a startup processor core of the first load operating system to access the physical

memory address, and the first load operating system is any load operating system in the

5 multi-core operating system.

The instruction executing module 1402 is configured to jump, according to an instruction that

is set by the management operating system and that is for executing a startup mirror jump, to

a location that is of the startup mirror corresponding to the first load operating system and that

is in the physical memory address, and execute, according to the mapping relationship, the

40 startup mirror corresponding to the first load operating system.

The startup parameter acquiring module 1403 is configured to acquire, in a process of

executing the startup mirror of the first load operating system by the instruction executing

module, a startup parameter of the first load operating system from the startup mirror of the

first load operating system, where the startup parameter includes identifiers of processor cores

25 allocated to the first load operating system and an identifier of the physical memory address

allocated to the first load operating system.

The physical resource set acquiring module 1404 is configured to determine, according to the

identifiers of the processor cores and the identifier of the physical memory address of the first

load operating system, a physical resource set that is allocated by the management operating

30 system to the first load operating system and that is exclusively used by the first load

operating system.

The load operating system provided in this embodiment may execute the technical solutions

of the foregoing resource processing method embodiments, and has a similar implementation

principle and technical effect, and no detail is repeatedly described herein in this embodiment.

5 FIG. 15 is a schematic structural diagram of Embodiment 2 of a load operating system

according to the present invention. This embodiment is implemented based on the

embodiment in FIG. 14, and is specifically as follows:

Optionally, the mapping relationship acquiring module 1401 is specifically configured to:

receive an inter-core interrupt message sent by the management operating system,

0 where the startup processor core executes, according to an instruction of the inter-core

interrupt message, an initialization program that is configured to initialize the startup

processor core and that is corresponding to the first load operating system; and

execute the initialization program, and read, from the initialization program, the

mapping relationship that is from the virtual memory address to the physical memory address

5 and that is required for executing the startup mirror and is pre-constructed by the management

operating system for the first load operating system.

The instruction executing module 1402 is specifically configured to: execute the initialization

program, read, from the initialization program, a jump instruction that is preset in the

initialization program by the management operating system, and jump to the location that is

40 of the startup mirror corresponding to the first load operating system and that is in the

physical memory address.

Optionally, the startup processor core of the first load operating system is a processor core

that has been started up and that is determined by the management operating system, a

daemon runs on the startup processor core of the first load operating system, the daemon is

25 preset by the management operating system for the first load operating system, the location

that is of the startup mirror corresponding to the first load operating system and that is in the

physical memory address and the mapping relationship that is from the virtual memory

address to the physical memory address and that is required for executing the startup mirror

are set in the daemon.

30 Optionally, the mapping relationship acquiring module 1401 is specifically configured to read,

from the daemon and according to an instruction of an inter-core interrupt message after the

daemon running on the startup processor core receives the inter-core interrupt message sent

by the management operating system, the mapping relationship that is from the virtual

memory address to the physical memory address and that is required for executing the startup

5 mirror and is pre-constructed by the management operating system for the first load operating

system.

The instruction executing module 1402 is specifically configured to: read a jump instruction

that is preset in the daemon by the management operating system, and jump to the location

that is of the startup mirror corresponding to the first load operating system and that is in the

0 physical memory address.

Optionally, each physical resource set further includes some external devices of the host

machine; and

the startup parameter further includes an identifier of an external device allocated

by the management operating system to the first load operating system and a device

5 description information table corresponding to the external device.

Optionally, the load operating system further includes a mapping relationship constructing

module 1405, configured to construct, after the physical resource set acquiring module

determines the physical resource set that is allocated by the management operating system to

the first load operating system and that is exclusively used by the first load operating system,

40 all mapping relationships that are from virtual memory addresses to physical memory

addresses and that are required for executing the first load operating system; and

access the physical memory address according to all the mapping relationships that

are from the virtual memory addresses to the physical memory addresses and that are required

for executing the first load operating system.

25 Optionally, the instruction executing module 1402 is further configured to: after the physical

resource set acquiring module determines the physical resource set that is allocated by the

management operating system to the first load operating system and that is exclusively used

by the first load operating system, execute, by using the processor cores allocated to the first

load operating system, a privileged instruction delivered by the management operating

30 system.

The load operating system provided in this embodiment may execute the technical solutions

of the foregoing resource processing method embodiments, and has a similar implementation

principle and technical effect, and no detail is repeatedly described herein in this embodiment.

Based on the embodiment in FIG. 15, the first load operating system monitors a physical

5 resource of the first load operating system, and implements dynamic resource adjustment;

optionally, the load operating system further includes:

a first monitoring module, configured to monitor a physical resource of the first

load operating system after the physical resource set acquiring module determines the

physical resource set that is allocated by the management operating system to the first load

0 operating system and that is exclusively used by the first load operating system; and

a first sending module, configured to send a resource reducing request message to

the management operating system if a monitoring result of the first monitoring module is that

utilization of the physical resource allocated by the management operating system to the first

load operating system is less than a first preset threshold, where the resource reducing request

5 message includes a type identifier of a physical resource that needs to be reduced, and the

type identifier of the physical resource is used to distinguish whether the physical resource

that needs to be reduced is a processor core resource, a physical memory resource, or an

external device resource.

Optionally, the load operating system further includes:

40 a second monitoring module, configured to monitor a physical resource of the first

load operating system after the physical resource set acquiring module determines the

physical resource set that is allocated by the management operating system to the first load

operating system and that is exclusively used by the first load operating system; and

a second sending module, configured to send a resource adding request message to

25 the management operating system if a monitoring result of the first monitoring module is that

utilization of the physical resource allocated by the management operating system to the first

load operating system is greater than a second preset threshold, where the resource adding

request message includes a type identifier of a physical resource that needs to be added, and

the type identifier of the physical resource is used to distinguish whether the physical resource

30 that needs to be added is a processor core resource or a physical memory resource.

Optionally, if the physical resource that needs to be added is a processor core, the physical

resource set acquiring module is further specifically configured to: after the second sending

module sends the resource adding request message to the management operating system,

receive a resource adding message sent by the management operating system,

5 where the resource adding message includes an identifier of the processor core that needs to

be added; and

determine, according to the identifier of the processor core that needs to be added,

the processor core added by the management operating system for the first load operating

system; and

0 when the added processor core of the first load operating system receives a jump

instruction sent by the management operating system, execute a kernel program of the first

load operating system according to the jump instruction, and read, from the kernel program,

all mapping relationships that are from virtual memory addresses to physical memory

addresses and that are required for executing the first load operating system, where the first

5 load operating system presets, in the kernel program, all the mapping relationships that are

from the virtual memory addresses to the physical memory addresses and that are required for

executing the first load operating system.

Optionally, if the physical resource that needs to be reduced is a processor core, the physical

resource set acquiring module is further specifically configured to: after the first sending

4O module sends the resource reducing request message to the management operating system,

receive a resource reducing message sent by the management operating system,

where the resource reducing message includes an identifier of the processor core that needs to

be released;

determine, according to the identifier of the processor core that needs to be

25 released, the processor core that needs to be released by the first load operating system; and

release the processor core, where the released processor core is a processor core

corresponding to the identifier of the processor core that needs to be reduced.

Optionally, if the physical resource that needs to be added is a physical memory resource, the

physical resource set acquiring module is further specifically configured to: after the second

30 sending module sends the resource adding request message to the management operating

system,

receive a resource adding message sent by the management operating system,

where the resource adding message includes an identifier of a physical memory address that

needs to be added; and

5 determine, according to the identifier of the physical memory address that needs to

be added, the physical memory address added by the management operating system for the

first load operating system.

Optionally, if the physical resource that needs to be reduced is a physical memory resource,

the physical resource set acquiring module is further specifically configured to: after the first

0 sending module sends the resource reducing request message to the management operating

system,

receive a resource reducing message sent by the management operating system,

where the resource reducing message includes an identifier of a physical memory address that

needs to be released;

5 determine, according to the identifier of the physical memory address that needs to

be released, the physical memory address that needs to be released by the first load operating

system, and

release the physical memory address, where the released physical memory address

is a physical memory address corresponding to the identifier of the physical memory address

4O that needs to be released.

Optionally, if the physical resource that needs to be added is an external device resource, the

physical resource set acquiring module is further specifically configured to: after the second

sending module sends the resource adding request message to the management operating

system,

25 receive a hot-insertion message sent by the management operating system, where

the hot-insertion message is used to instruct the first load operating system to acquire an

identifier of an external device that needs to be added and a device description information

table corresponding to the added external device;

execute, according to the identifier of the external device that needs to be added

30 and the device description information table corresponding to the added external device, a

hot-insertion operation on the external device corresponding to the identifier of the external

device that needs to be added.

Optionally, if the physical resource that needs to be reduced is a physical memory resource,

the physical resource set acquiring module is further specifically configured to: after the first

5 sending module sends the resource reducing request message to the management operating

system,

receive a hot-removal message sent by the management operating system, where

the hot-removal message includes an identifier of an external device that needs to be reduced;

execute, according to the identifier of the external device that needs to be reduced,

0 a hot-removal operation on the external device corresponding to the identifier of the external

device that needs to be reduced.

The load operating system provided in this embodiment may execute the technical solutions

of the foregoing resource processing method embodiments, and has a similar implementation

principle and technical effect, and no detail is repeatedly described herein in this embodiment.

5 Based on the embodiments in FIG. 14 and FIG. 15, the load operating system may further

include another module required for running, for example:

an inter-instance communication module, configured to perform fast

communication that is in the host machine and that is between the load operating system and

the management operating system or another load operating system;

40 a virtual terminal, where by using a terminal virtualization service provided by the

management operating system, the load operating system may be directly operated by a user

in a terminal manner; and

an application managing module, configured to receive an application deployed by

the management operating system or by another application, and run and manage execution of

25 the application.

FIG. 16 is a schematic diagram of an architecture of a multi-core system on a heterogeneous

platform. As shown in FIG. 16, in this embodiment of a virtualization system according to the

present invention, on a heterogeneous node, there are processors such as a data processing

unit (Data Processing Unit, DPU for short), a Xeon (Xeon) processor, and a general purpose

30 graphic processing unit (General Purpose Graphic Processing Unit, GPGPU for short). Each

processor includes multiple processor cores, and heterogeneous processors are interconnected

by using a PCI-E bus and are combined in a non-uniform memory access (Non-uniform

Memory Access, NUMA for short) manner. On the heterogeneous platform, there are also

resources such as a physical memory, a disk array, and a network adapter array, which are

5 connected by using devices such as a front side bus, an input/output control center, and a PCI

bus.

In this embodiment, a management operating system and some load operating systems run on

a processor core corresponding to the Xeon processor, and another customized load operating

system runs on a processor core corresponding to another processor, for example, a GPGPU is

0 suitable to run a computing task with a high degree of parallelism, and a DPU is suitable to

run a data processing service. Therefore, load operating systems are separately customized for

the GPGPU and the DPU according to a service type of each processor, for example, a load

operating system customized for the GPGPU includes only a runtime library support for a

basic matrix operation, and mainly supports languages such as computer unified device

5 architecture (Compute Unified Device Architecture, CUDA for short); and a load operating

system customized for the DPU includes only a package support for data processing, mainly

supports applications such as a distributed system infrastructure (for example, Hadoop), and

excludes other computing components.

The management operating system may further manage a memory (for example, DRAM)

4O connected by a PCI-E switch, start up, according to a configuration file designated by an

administrator, multiple load operating systems that are on the DPU, and send a task to a load

operating system by using an application management program. Optionally, for a data

processing application, because a requirement of the application on a quantity of processes

and threads is not high, when multiple cores optimize a data channel processing capability,

25 support for data structures such as concurrent threads and processes may be reduced, thereby

reducing space or performance overheads, and improving performance.

FIG. 17 is a schematic structural diagram of Embodiment 1 of a host machine according to

the present invention. As shown in FIG. 17, a host machine 170 provided in this embodiment

includes a processor 1701 and a memory 1702, where the memory 1702 stores an execution

30 instruction, and when the host machine 170 runs, the processor 1701 communicates with the

memory 1702, and the processor 1701 executes the execution instruction that is in the

memory 1702, to enable the host machine 170 to execute an operation of the technical

solutions of the foregoing resource processing methods.

The host machine in this embodiment may be configured to execute the technical solutions of

5 the foregoing virtual machine system management method embodiment according to the

present invention, and has a similar implementation principle and technical effect, and no

detail is repeatedly described herein.

In the several embodiments provided in the present application, it should be understood that

the disclosed system and method may be implemented in other manners. For example, the

0 described system embodiment is merely exemplary. For example, the module division is

merely logical function division and may be other division in actual implementation. For

example, a plurality of modules or components may be combined or integrated into another

system, or some features may be ignored or not performed. In addition, the displayed or

discussed mutual couplings or direct couplings or communication connections may be

5 implemented through some interfaces. The indirect couplings or communication connections

between the modules may be implemented in electronic, mechanical, or other forms.

Persons of ordinary skill in the art can understand that all or some of the steps of the method

embodiments may be implemented by a program instructing relevant hardware. The program

may be stored in a computer-readable storage medium. When the program runs, the steps of

40 the method embodiments are performed. The foregoing storage medium includes: any

medium that can store program code, such as a ROM, a RAM, a magnetic disc, or an optical

disc.

Finally, it should be noted that the foregoing embodiments are merely intended for describing

the technical solutions of the present invention, but not for limiting the present invention.

25 Although the present invention is described in detail with reference to the foregoing

embodiments, persons of ordinary skill in the art should understand that they may still make

modifications to the technical solutions described in the foregoing embodiments or make

equivalent replacements to some or all technical features thereof, without departing from the

scope of the technical solutions of the embodiments of the present invention.

CLAIMS

1. A resource processing method, wherein the method is applied to a multi-core

operating system, the multi-core operating system includes a management operating system

5 and multiple load operating systems that run on a host machine, the host machine includes a

physical resource pool, the physical resource pool includes processor cores and a physical

memory that are of the host machine, and the method includes:

determining, by the management operating system and in processor cores allocated to a

first load operating system, a startup processor core that starts up the first load operating

0 system, wherein the first load operating system is any load operating system in the multiple

load operating systems, the management operating system pre-allocates, to the first load

operating system, a physical resource set exclusively used by the first load operating system,

and the physical resource set includes some of the processor cores and a part of the physical

memory that are of the host machine;

5 instructing, by the management operating system, the startup processor core to read a

mapping relationship that is from a virtual memory address to a physical memory address and

that is required for executing a startup mirror of the first load operating system and is

pre-constructed by the management operating system, wherein the physical memory address

includes a location of the startup mirror corresponding to the first load operating system; and

20 instructing, by the management operating system, the startup processor core to execute

the startup mirror pre-constructed for the first load operating system, so as to start up the first

load operating system, wherein the startup mirror includes a startup parameter of the first load

operating system, and the startup parameter includes identifiers of the processor cores

allocated to the first load operating system and an identifier of the physical memory address

25 allocated to the first load operating system.

2. The method according to claim 1, wherein the method further includes:

constructing, by the management operating system, the startup mirror for the first load

operating system; and

82

setting, by the management operating system for the first load operating system, the

mapping relationship that is from the virtual memory address to the physical memory address

and that is required for executing the startup mirror.

3. The method according to claim 1 or 2, wherein the instructing, by the management

5 operating system, the startup processor core to read a mapping relationship that is from a

virtual memory address to a physical memory address and that is required for executing a

startup mirror of the first load operating system and is pre-constructed by the management

operating system includes:

sending, by the management operating system, an inter-core interrupt message to the

0 startup processor core, wherein the inter-core interrupt message instructs the startup processor

core to execute an initialization program that is configured to initialize the startup processor

core and that is corresponding to the first load operating system; and

instructing, by the management operating system by instructing the startup processor

core to execute the initialization program corresponding to the first load operating system, the

5 startup processor core to read, from the initialization program, the mapping relationship that is

from the virtual memory address to the physical memory address and that is required for

executing the startup mirror of the first load operating system; and

the instructing, by the management operating system, the startup processor core to

execute the startup mirror pre-constructed for the first load operating system includes:

40 instructing, by the management operating system, the startup processor core to jump,

after running of the initialization program ends, to the location that is of the startup mirror and

is in the physical memory, so as to execute the startup mirror of the first load operating

system.

4. The method according to claim 1 or 2, wherein before the determining, by the

25 management operating system and in processor cores allocated to a first load operating

system, a startup processor core that starts up the first load operating system, the method

further includes:

acquiring, by the management operating system, available processor cores of a second

load operating system, wherein the second load operating system is a logged-out load

30 operating system, other than the first load operating system, in the multiple load operating

83

systems, the available processor cores include a processor core that has been started up; and

the determining, by the management operating system and in processor cores allocated to

a first load operating system, a startup processor core that starts up the first load operating

system includes:

5 when the physical resource set of the first load operating system includes the available

processor cores, determining, by the management operating system and in the available

processor cores, the startup processor core that starts up the first load operating system.

5. The method according to claim 1, wherein after the instructing, by the management

operating system, the startup processor core to execute the startup mirror pre-constructed for

0 the first load operating system, the method further includes:

monitoring, by the management operating system, running of the first load operating

system; and

when utilization of a physical resource allocated to the first load operating system is less

than a first preset threshold, determining, by the management operating system, a type

5 identifier of a physical resource that needs to be reduced for the first load operating system,

and reducing the physical resource of the first load operating system according to the type

identifier of the physical resource that needs to be reduced; or

when utilization of a physical resource allocated to the first load operating system is

greater than a second preset threshold, determining, by the management operating system, a

4O type identifier of a physical resource that needs to be added for the first load operating system,

and adding the physical resource of the first load operating system according to the type

identifier of the physical resource that needs to be added, wherein

the type identifier of the physical resource is used to distinguish whether the physical

resource is a processor core resource or a physical memory resource.

25 6. The method according to claim 1, wherein

the physical resource set further includes some external devices of the host machine; the

startup parameter further includes an identifier of an external device allocated to the first load

operating system and a device description information table corresponding to the external

device; and

30 after the instructing, by the management operating system, the startup processor core to

84

execute the startup mirror pre-constructed for the first load operating system, the method

further includes:

receiving, by the management operating system, a resource reducing request message

sent by the first load operating system, wherein the resource reducing request message

5 includes a type identifier of a physical resource that needs to be reduced, and the type

identifier of the physical resource is used to distinguish whether the physical resource is a

processor core resource, a physical memory resource, or an external device resource; and

reducing, by the management operating system, the physical resource of the first load

operating system according to the type identifier of the physical resource that needs to be

0 reduced.

7. The method according to claim 1, wherein the physical resource set further includes

some external devices of the host machine; the startup parameter further includes an identifier

of an external device allocated to the first load operating system and a device description

information table corresponding to the external device; and

5 after the instructing, by the management operating system, the startup processor core to

execute the startup mirror pre-constructed for the first load operating system, the method

further includes:

receiving, by the management operating system, a resource adding request message sent

by the first load operating system, wherein the resource adding request message includes a

4O type identifier of a physical resource that needs to be added, and the type identifier of the

physical resource is used to distinguish whether the physical resource is a processor core

resource, a physical memory resource, or an external device resource; and

adding, by the management operating system, the physical resource of the first load

operating system according to the type identifier of the physical resource that needs to be

25 added.

8. The method according to claim 5 or 7, wherein if the physical resource that needs to

be added is a processor core, the adding, by the management operating system, the physical

resource of the first load operating system includes:

marking, by the management operating system, the processor core, which needs to be

30 added for the first load operating system, as a physical resource that belongs to the first load

85

operating system, and sending a resource adding message to the first load operating system,

wherein the resource adding message includes an identifier of the processor core that needs to

be added; and

sending, by the management operating system, a jump instruction to the added processor

5 core, wherein the jump instruction is used to instruct the added processor core to execute a

kernel program of the first load operating system, and the kernel program includes all

mapping relationships that are from virtual memory addresses to physical memory addresses

and that are required for executing the first load operating system.

9. The method according to claim 5 or 6, wherein if the physical resource that needs to

0 be reduced includes a processor core or a physical memory resource, the reducing, by the

management operating system, the physical resource of the first load operating system

according to the type identifier of the physical resource that needs to be reduced includes:

sending, by the management operating system, a resource reducing message to the first

load operating system, wherein the resource reducing message includes an identifier of the

5 physical resource that needs to be released; and

acquiring, by the management operating system, the identifier of the physical resource

released by the first load operating system, and adding the identifier of the released physical

resource to a list of available physical resources in the resource pool.

10. The method according to claim 5 or 7, wherein if the physical resource that needs to

4O be added is a physical memory resource, the adding, by the management operating system,

the physical resource of the first load operating system includes:

marking, by the management operating system, a physical memory address, which needs

to be added for the first load operating system, as a physical resource that belongs to the first

load operating system, and sending a resource adding message to the first load operating

25 system, wherein the resource adding message includes an identifier of the physical memory

address that needs to be added.

11. A resource processing method, wherein the method is applied to a multi-core

operating system, the multi-core operating system includes a management operating system

and multiple load operating systems that run on a host machine, the host machine includes a

30 physical resource pool, the physical resource pool includes processor cores and a physical

86

memory that are of the host machine, each load operating system exclusively uses a physical

resource set allocated by the management operating system, each physical resource set

includes some of the processor cores of the host machine and a part of the physical memory

of the host machine, and the management operating system pre-constructs a startup mirror for

5 each load operating system, and sets, for each load operating system, a mapping relationship

that is from a virtual memory address to a physical memory address and that is required for

executing the startup mirror, and the method includes:

reading, by a startup processor core of a first load operating system, a mapping

relationship that is from a virtual memory address to a physical memory address and that is

0 required for executing a startup mirror of the first load operating system, wherein the mapping

relationship is used to enable the startup processor core of the first load operating system to

access the physical memory address, and the first load operating system is any load operating

system in the multiple load operating systems;

jumping, by the startup processor core of the first load operating system according to an

5 instruction that is set by the management operating system and that is for executing a startup

mirror jump, to a location that is of the startup mirror corresponding to the first load operating

system and that is in the physical memory address, and executing, according to the mapping

relationship, the startup mirror corresponding to the first load operating system;

acquiring, by the startup processor core of the first load operating system and in a

4O process of executing the startup mirror of the first load operating system, a startup parameter

of the first load operating system from the startup mirror of the first load operating system,

wherein the startup parameter includes identifiers of processor cores allocated to the first load

operating system and an identifier of the physical memory address allocated to the first load

operating system; and

25 determining, by the first load operating system according to the identifiers of the

processor cores and the identifier of the physical memory address of the first load operating

system, a physical resource set that is allocated by the management operating system to the

first load operating system and that is exclusively used by the first load operating system.

12. The resource processing method according to claim 11, wherein the reading, by a

30 startup processor core of a first load operating system, a mapping relationship that is from a

87

virtual memory address to a physical memory address and that is required for executing a

startup mirror of the first load operating system includes:

receiving, by the startup processor core of the first load operating system, an inter-core

interrupt message sent by the management operating system, wherein the inter-core interrupt

5 message is used to instruct the startup processor core to execute an initialization program that

is configured to initialize the startup processor core and that is corresponding to the first load

operating system; and

executing, by the startup processor core of the first load operating system, the

initialization program, and reading, from the initialization program, the mapping relationship

0 that is from the virtual memory address to the physical memory address and that is required

for executing the startup mirror and is pre-constructed by the management operating system

for the first load operating system; and

the jumping, by the startup processor core of the first load operating system according to

an instruction that is set by the management operating system and that is for executing a

5 startup mirror jump, to a location that is of the startup mirror corresponding to the first load

operating system and that is in the physical memory address includes:

executing, by the startup processor core of the first load operating system, the

initialization program, reading, from the initialization program, a jump instruction that is

preset in the initialization program by the management operating system, and jumping to the

4O location that is of the startup mirror corresponding to the first load operating system and that

is in the physical memory address.

13. The method according to claim 11, wherein after the determining, by the first load

operating system, a physical resource set that is allocated by the management operating

system to the first load operating system and that is exclusively used by the first load

25 operating system, the method further includes:

constructing, by the first load operating system, all mapping relationships that are from

virtual memory addresses to physical memory addresses and that are required for executing

the first load operating system;

accessing, by the processor cores of the first load operating system, the physical memory

30 address according to all the mapping relationships that are from the virtual memory addresses

88

to the physical memory addresses and that are required for executing the first load operating

system.

14. The method according to claim 11, wherein after the determining, by the first load

operating system, a physical resource set that is allocated by the management operating

5 system to the first load operating system and that is exclusively used by the first load

operating system, the method further includes:

executing, by the first load operating system by using the processor cores allocated to the

first load operating system, a privileged instruction delivered by the management operating

system.

0 15. The method according to claim 11, wherein after the determining, by the first load

operating system, a physical resource set that is allocated by the management operating

system to the first load operating system and that is exclusively used by the first load

operating system, the method further includes:

monitoring, by the first load operating system, a physical resource of the first load

5 operating system; and

if the first load operating system determines that utilization of the physical resource

allocated by the management operating system to the first load operating system is less than a

first preset threshold, sending, by the first load operating system, a resource reducing request

message to the management operating system, wherein the resource reducing request message

4O includes a type identifier of a physical resource that needs to be reduced; or

if the first load operating system determines that utilization of the physical resource

allocated by the management operating system to the first load operating system is greater

than a second preset threshold, sending, by the first load operating system, a resource adding

request message to the management operating system, wherein the resource adding request

25 message includes a type identifier of a physical resource that needs to be added, wherein

the type identifier of the physical resource is used to distinguish whether the physical

resource is a processor core resource or a physical memory resource.

16. The method according to claim 15, wherein if the physical resource that needs to be

added is a processor core, after the sending, by the first load operating system, a resource

30 adding request message to the management operating system, the method further includes:

89

receiving, by the first load operating system, a resource adding message sent by the

management operating system, wherein the resource adding message includes an identifier of

the processor core that needs to be added;

determining, by the first load operating system according to the identifier of the

5 processor core that needs to be added, the processor core added by the management operating

system for the first load operating system; and

receiving, by the added processor core of the first load operating system, a jump

instruction sent by the management operating system, executing a kernel program of the first

load operating system according to the jump instruction, and reading, from the kernel

0 program, all mapping relationships that are from virtual memory addresses to physical

memory addresses and that are required for executing the first load operating system, wherein

the first load operating system presets, in the kernel program, all the mapping relationships

that are from the virtual memory addresses to the physical memory addresses and that are

required for executing the first load operating system.

5 17. The method according to claim 15, wherein if the physical resource that needs to be

reduced is a processor core or a physical memory resource, after the sending, by the first load

operating system, a resource reducing request message to the management operating system,

the method further includes:

receiving, by the first load operating system, a resource reducing message sent by the

4O management operating system, wherein the resource reducing message includes an identifier

of the physical resource that needs to be released; and

releasing, by the first load operating system, the physical resource according to the

identifier of the physical resource that needs to be released.

18. The method according to claim 15, wherein if the physical resource that needs to be

25 added is a physical memory resource, after the sending, by the first load operating system, a

resource adding request message to the management operating system, the method further

includes:

receiving, by the first load operating system, a resource adding message sent by the

management operating system, wherein the resource adding message includes an identifier of

30 a physical memory address that needs to be added; and

90

determining, by the first load operating system according to the identifier of the physical

memory address that needs to be added, the physical memory address added by the

management operating system for the first load operating system.

19. A host machine, wherein the host machine is configured to run a management

5 operating system and multiple load operating systems, the multiple load operating systems

include a first load operating system, the host machine includes a physical resource pool, the

physical resource pool includes processor cores and a physical memory that are of the host

machine, and when the host machine runs, the management operating system is configured to:

determine, in processor cores allocated to the first load operating system, a startup

0 processor core that starts up the first load operating system, wherein the first load operating

system is any load operating system in the multiple load operating systems, the management

operating system allocates, to the first load operating system, a physical resource set

exclusively used by the first load operating system, and the physical resource set includes

some of the processor cores and a part of the physical memory that are of the host machine;

5 instruct the startup processor core to read a mapping relationship that is from a virtual

memory address to a physical memory address and that is required for executing a startup

mirror of the first load operating system and is pre-constructed by the management operating

system, wherein the physical memory address includes a location of the startup mirror

corresponding to the first load operating system; and

40 instruct the startup processor core to execute the startup mirror pre-constructed for the

first load operating system, so as to start up the first load operating system, wherein the

startup mirror includes a startup parameter of the first load operating system, and the startup

parameter includes identifiers of the processor cores allocated to the first load operating

system and an identifier of the physical memory address allocated to the first load operating

25 system; and

the first load operating system is configured to:

read the mapping relationship that is from the virtual memory address to the physical

memory address and that is required for executing the startup mirror of the first load operating

system, wherein the mapping relationship is used to enable the startup processor core of the

30 first load operating system to access the physical memory address;

91

jump, according to an instruction that is set by the management operating system and

that is for executing a startup mirror jump, to the location that is of the startup mirror

corresponding to the first load operating system and that is in the physical memory address,

and execute, according to the mapping relationship, the startup mirror corresponding to the

5 first load operating system;

acquire, in a process of executing the startup mirror of the first load operating system,

the startup parameter of the first load operating system from the startup mirror of the first load

operating system; and

determine, according to the identifiers of the processor cores and the identifier of the

0 physical memory address of the first load operating system, the physical resource set that is

allocated by the management operating system to the first load operating system and that is

exclusively used by the first load operating system.

20. The host machine according to claim 19, wherein the management operating system

is further configured to:

5 construct the startup mirror for the first load operating system; and

set, for the first load operating system, the mapping relationship that is from the virtual

memory address to the physical memory address and that is required for executing the startup

mirror.

21. The host machine according to claim 19 or 20, wherein the management operating

40 system is specifically configured to:

send an inter-core interrupt message to the startup processor core, wherein the inter-core

interrupt message instructs the startup processor core to execute an initialization program that

is configured to initialize the startup processor core and that is corresponding to the first load

operating system;

25 instruct, by instructing the startup processor core to execute the initialization program

corresponding to the first load operating system, the startup processor core to read, from the

initialization program, the mapping relationship that is from the virtual memory address to the

physical memory address and that is required for executing the startup mirror of the first load

operating system; and

30 instruct the startup processor core to jump, after running of the initialization program

92

ends, to the location that is of the startup mirror and is in the physical memory, so as to

execute the startup mirror of the first load operating system; and

the first load operating system is specifically configured to:

receive the inter-core interrupt message sent by the management operating system,

5 wherein the inter-core interrupt message is used to instruct the startup processor core to

execute the initialization program that is configured to initialize the startup processor core and

that is corresponding to the first load operating system; and

execute the initialization program, and read, from the initialization program, the mapping

relationship that is from the virtual memory address to the physical memory address and that

0 is required for executing the startup mirror and is pre-constructed by the management

operating system for the first load operating system; and

execute the initialization program, read, from the initialization program, a jump

instruction that is preset in the initialization program by the management operating system,

and jump to the location that is of the startup mirror corresponding to the first load operating

5 system and that is in the physical memory address.

22. The host machine according to claim 19 or 20, wherein the management operating

system is further configured to:

acquire available processor cores of a second load operating system before determining,

in the processor cores allocated to the first load operating system, the startup processor core

40 that starts up the first load operating system, wherein the second load operating system is a

logged-out load operating system, other than the first load operating system, in the multiple

load operating systems, the available processor cores include a processor core that has been

started up; and

when the physical resource set of the first load operating system includes the available

25 processor cores, determine, in the available processor cores, the startup processor core that

starts up the first load operating system.

23. The host machine according to claim 19 or 20, wherein the first load operating

system is further configured to:

after determining the physical resource set that is allocated by the management operating

30 system to the first load operating system and that is exclusively used by the first load

93

operating system, construct all mapping relationships that are from virtual memory addresses

to physical memory addresses and that are required for executing the first load operating

system; and

access the physical memory address according to all the mapping relationships that are

5 from the virtual memory addresses to the physical memory addresses and that are required for

executing the first load operating system.

24. The host machine according to claim 19 or 20, wherein the first load operating

system is further configured to:

execute, by using the processor cores allocated to the first load operating system, a

0 privileged instruction delivered by the management operating system.

25. The host machine according to claim 19, wherein the management operating system

is further configured to:

monitor running of the first load operating system after instructing the startup processor

core to execute the startup mirror pre-constructed for the first load operating system; and

5 when utilization of a physical resource allocated to the first load operating system is less

than a first preset threshold, determine a type identifier of a physical resource that needs to be

reduced for the first load operating system, and reduce the physical resource of the first load

operating system according to the type identifier of the physical resource that needs to be

reduced; or

40 when utilization of a physical resource allocated to the first load operating system is

greater than a second preset threshold, determine a type identifier of a physical resource that

needs to be added for the first load operating system, and add the physical resource of the first

load operating system according to the type identifier of the physical resource that needs to be

added, wherein

25 the type identifier of the physical resource is used to distinguish whether the physical

resource is a processor core resource or a physical memory resource.

26. The host machine according to claim 19, wherein the first load operating system is

further configured to:

monitor a physical resource of the first load operating system; and

30 if the first load operating system determines that utilization of the physical resource

94

allocated by the management operating system to the first load operating system is less than a

first preset threshold, send a resource reducing request message to the management operating

system, wherein the resource reducing request message includes a type identifier of a physical

resource that needs to be reduced, and the type identifier of the physical resource is used to

5 distinguish whether the physical resource is a processor core resource or a physical memory

resource; and

the management operating system is further configured to:

receive the resource reducing request message sent by the first load operating system;

and

0 reduce the physical resource of the first load operating system according to the type

identifier of the physical resource that needs to be reduced.

27. The host machine according to claim 19, wherein:

the first load operating system is further configured to:

monitor a physical resource of the first load operating system; and

5 when the first load operating system determines that utilization of the physical resource

allocated by the management operating system to the first load operating system is greater

than a second preset threshold, send a resource adding request message to the management

operating system, wherein the resource adding request message includes a type identifier of a

physical resource that needs to be added, and the type identifier of the physical resource is

4O used to distinguish whether the physical resource is a processor core resource or a physical

memory resource; and

the management operating system is further configured to:

receive the resource adding request message sent by the first load operating system; and

add the physical resource of the first load operating system according to the type

25 identifier of the physical resource that needs to be added.

28. The host machine according to claim 25 or 27, wherein if the physical resource that

needs to be added is a processor core, the management operating system is specifically

configured to:

mark the processor core, which needs to be added for the first load operating system, as a

30 physical resource that belongs to the first load operating system, and send a resource adding

95

message to the first load operating system, wherein the resource adding message includes an

identifier of the processor core that needs to be added; and

send a jump instruction to the added processor core, wherein the jump instruction is used

to instruct the added processor core to execute a kernel program of the first load operating

5 system, and the kernel program includes all mapping relationships that are from virtual

memory addresses to physical memory addresses and that are required for executing the first

load operating system; and

the first load operating system is specifically configured to:

receive the resource adding message sent by the management operating system;

0 determine, according to the identifier of the processor core that needs to be added, the

processor core added by the management operating system for the first load operating system;

and

receive, by using the added processor core of the first load operating system, the jump

instruction sent by the management operating system, execute the kernel program of the first

5 load operating system according to the jump instruction, and read, from the kernel program,

all the mapping relationships that are from the virtual memory addresses to the physical

memory addresses and that are required for executing the first load operating system.

29. The host machine according to claim 25 or 27, wherein if the physical resource that

needs to be added is a physical memory resource, the management operating system is

4O specifically configured to:

mark a physical memory address, which needs to be added for the first load operating

system, as a physical resource that belongs to the first load operating system, and send a

resource adding message to the first load operating system, wherein the resource adding

message includes an identifier of the physical memory address that needs to be added; and

25 the first load operating system is specifically configured to:

receive the resource adding message sent by the management operating system; and

determine, according to the identifier of the physical memory address that needs to be

added, the physical memory address added by the management operating system for the first

load operating system.

30 30. The host machine according to claim 25 or 26, wherein if the physical resource that

96

needs to be reduced is a processor core or a physical memory resource,

the management operating system is specifically configured to: send a resource reducing

message to the first load operating system, wherein the resource reducing message includes an

identifier of the physical resource that needs to be released;

5 the first load operating system is specifically configured to: receive the resource reducing

message sent by the management operating system, and release the physical resource

according to the identifier of the physical resource that needs to be released; and

the management operating system acquires the identifier of the physical resource

released by the first load operating system, and adds the identifier of the released physical

0 resource to a list of available physical resources in the resource pool.

97

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

