(54) 发明名称
太阳能电池单元及其制造方法

(57) 摘要
具备：第1_导电类型的半导体基板(2)，在一面侧具有扩散有第2_导电类型的杂质元素的杂质扩散层(3)；受光面侧电极(5)，与所述杂质扩散层(3)电连接地形成于所述半导体基板(2)的一面侧，以及背面侧电极(7)，形成于所述半导体基板(2)的另一面侧。在包所述杂质扩散层(3)的所述半导体基板(2)的一面侧中的形成了所述受光面侧电极(5)的受光面侧电极形成区域，具备具有四角锥形状的第1_凸部的第1凹凸构造，在包括所述杂质扩散层(3)的所述半导体基板(2)的一面侧中的未形成所述受光面侧电极(5)的区域，具备具有比所述第1凸部大四角锥形状的第2凸部的第2凹凸构造。
1. 一种太阳能电池单元，其特征在于，具备：

第1导电类型的半导体基板，在一侧面具有扩散有第2导电类型的杂质元素的杂质扩散层；

受光面侧电极，与所述杂质扩散层电连接地形成于所述半导体基板的一侧面；以及

背面侧电极，形成于所述半导体基板的另一侧面。

在包括所述杂质扩散层的所述半导体基板的一侧面的形成了所述受光面侧电极的受光面侧电极形成区域，具备具有四角锥形状的第1凸部的第1凹凸构造，

在包括所述杂质扩散层的所述半导体基板的一面侧中的未形成所述受光面侧电极的区域，具备具有比所述第1凸部大的四角锥形状的第2凸部的第2凹凸构造。

2. 根据权利要求1所述的太阳能电池单元，其特征在于，

在所述第1凸部中，形成所述四角锥形状的底面的最大正方形的一边的长度是2μm~12μm的范围。

在所述第2凸部中，形成所述四角锥形状的底面的最大正方形的一边的长度是12μm~22μm的范围。

3. 根据权利要求1或者2所述的太阳能电池单元，其特征在于，

所述第1凹凸构造中包含的所述第1凸部中的6成以上的所述第1凹部中的形成所述四角锥形状的底面的最大正方形的一边的长度是2μm~12μm的范围。

所述第2凹凸构造中包含的所述第2凸部中的6成以上的所述第2凸部中的形成所述四角锥形状的底面的最大正方形的一边的长度是12μm~22μm的范围。

4. 根据权利要求1~3中的任意一项所述的太阳能电池单元，其特征在于，

所述半导体基板是硅基板。

5. 一种太阳能电池单元的制造方法，该太阳能电池单元在半导体基板的一面侧具有受光面侧电极，其特征在于，包括：

第1工序，对所述半导体基板的一面侧实施各向异性蚀刻，在所述半导体基板的一面侧形成具有四角锥形状的第1凸部的第1凹凸构造；

第2工序，对所述半导体基板的一面侧中的所述受光面侧电极的形成区域进一步实施各向异性蚀刻，在所述半导体基板的所述受光面侧电极的形成区域形成具有比所述第1凸部的第2凸部的第2凹凸构造；

第3工序，在所述半导体基板的一面侧实施第2导电类型的杂质扩散而形成杂质扩散层；

第4工序，在所述半导体基板的一面侧中的形成了所述第2凹凸构造的区域，形成与所述杂质扩散层电连接的所述受光面侧电极；以及

第5工序，在所述半导体基板的另一侧面形成背面侧电极。

6. 根据权利要求5所述的太阳能电池单元的制造方法，其特征在于，

在所述第1凸部中，形成所述四角锥形状的底面的最大正方形的一边的长度是2μm~12μm的范围。

在所述第2凸部中，形成所述四角锥形状的底面的最大正方形的一边的长度是12μm~22μm的范围。

7. 根据权利要求5或者6所述的太阳能电池单元的制造方法，其特征在于，
所述第 1 凹凸构造中包含的所述第 1 凸部中的 6 成以上的所述第 1 凸部中的形成所述四角锥形状的底面的大致正方形的一边的长度是 2 μ m~12 μ m 的范围。

所述第 2 凹凸构造中包含的所述第 2 凸部中的 6 成以上的所述第 2 凸部中的形成所述四角锥形状的底面的大致正方形的一边的长度是 12 μ m~22 μ m 的范围。

8. 根据权利要求 5~7 中的任意一项所述的太阳能电池单元的制造方法，其特征在于，所述半导体基板是硅基板；
通过使用碱性溶液来进行各向异性蚀刻，形成所述第 1 凹凸构造以及第 2 凹凸构造。
太阳能电池单元及其制造方法

技术领域
[0001] 本发明涉及太阳能电池单元及其制造方法，特别涉及实现高效化的太阳能电池单元及其制造方法。

背景技术
[0002] 以往，堆积型太阳能电池单元一般通过以下那样的方法来制作。首先，例如作为第1导电类型的基板准备p型硅基板。然后，对于在硅基板中从铸造铸锭切割时发生的硅表面的损伤层，例如利用p 20wt%的苛性钠、碳酸苛性钠来去除10 μm~20 μm厚。之后，利用在同样的碱性低浓度液中添加了IPA（异丙醇）的溶液来进行各向异性蚀刻，并以使硅(111)面露出的方式形成纹理。另外，在纹理的形成中，无需一定通过湿处理进行，例如还能够通过干蚀刻来形成（例如，参照专利文献1）。

[0003] 接下来，作为扩散处理，在例如三氯氧磷（POCl₃）、氮、氧的混合气体气氛下，例如以800℃~900℃，对p型硅基板处理几十分钟，在表面前面均匀地形成n型层作为第2导电类型的杂质层。通过将均匀地形成在硅表面的n型层的薄层电阻设为30~80 Ω/□左右，从而得到良好的太阳能电池电气特性。之后，将基板浸渍到氢氟酸水溶液，对在扩散处理中沉积在表面的玻璃质（PSG）进行蚀刻去除。

[0004] 接下来，去除形成在基板的背面等不需要的区域中的n型层。为了保护形成在基板的受光面侧的n型层，通过网板印刷法在基板的受光面侧附着高分子抗蚀剂膏并使其干燥之后，例如在20wt%氢氧化钾溶液中将基板浸渍几分钟，从而去除n型层。之后，用有机溶剂来去除抗蚀剂。作为去除该基板的背面等的n型层的其他方法，还有在工序的最后通过激光、干蚀刻进行端面分离的方法。

[0005] 接下来，作为以防止反射为目的的绝缘膜（防反射膜），在n型层的表面，以一样的厚度，形成氧化硅膜、氧化铝膜等绝缘膜。在作为防反射膜形成氧化硅膜的情况下，例如通过等离子体CVD法，以硅烷（SiH₄）气体以及氨（NH₃）气体为原材料，在300℃以上、减压下的条件下进行成膜形成。防反射膜的折射率是2.0~2.2左右，最佳的膜厚是70nm~90nm左右。另外，应注意这样形成的防反射膜是绝缘体，仅仅是在其上形成表面电极，则不会作为太阳能电池发挥作用。

[0006] 接下来，使用栅电极形成用以及汇流电极形成用的掩模，在防反射膜上，通过网版印刷法，按照栅电极以及汇流电极的形状涂敷作为表面侧电极的银膏并使其干燥。

[0007] 接下来，在基板的背面，通过网版印刷法，分别按照背面铝电极的形状以及背面银汇流电极的形状涂敷作为背面铝电极的背面铝电极膏，以及作为背面银汇流电极的背面银膏并使其干燥。

[0008] 接下来，将涂敷在硅基板的表背面的电极膏同时以在600℃~900℃左右烧烧几分钟。由此，在防反射膜上作为表面侧电极形成栅电极以及汇流电极，在硅基板的背面作为背面侧电极形成背面铝电极以及背面银汇流电极。在此，在硅基板的背面侧，通过包含在银膏中的玻璃材料而防反射膜熔融的期间，银材料与硅接触并在凝固。由此，确保表面侧电极与
硅基板（n 型层）的导通。这样的工艺被称为穿火（fire through）法。另外，背侧铝电极膏在与背侧基板的背面反应，背面铝电极的正下方形成 p+ 层。

为了提高如上述方式形成的堆积型太阳能电池单元的效率，重要的是基板的受光面侧的表面的凹凸形状、即纹理的形状的最佳化。以往，关于该凹凸形状，将针对一个参数成为最佳的形状应用于单元的整面。例如，在专利文献 1 中，公开了如下方案：在通过干蚀刻形成凹凸形状的情况下，将射入到太阳能电池的入射光的反射率作为参数而使凹凸形状最化。这是因为，通过选择入射光的反射率得的参数条件，由此作为太阳能电池的电气特性之一的短路电流密度会提高。另外，关于纹理的形成方法，例如在专利文献 2 中公开了实施多阶段的干蚀刻的方法。另外，该形成方法的目的在于在单元的整面得到均匀的凹凸形状。

专利文献 1：日本特开 2005-150614 号公报
专利文献 2：日本特开 2003-197940 号公报

发明内容

但是，通过本发明者的研究知道：在单元的整面采用了短路电流密度变高时的纹理构造的堆积型太阳能电池中，太阳能电池的其他电气特性未必呈现良好的特性。

本发明是鉴于上述问题而完整的，其目的在于得到一种电气特性的平衡良好且光电变换效率优良的太阳能电池单元及其制造方法。

为了解决上述课题并达成目的，本发明涉及的太能电池单元的特征在于：具备：第1 导电类型的半导体基板，在一面侧具有扩散有第 2 导电类型的杂质元素的杂质扩散层；受光面侧电极，与所述杂质扩散层电连接地形成于所述半导体基板的一面侧；以及背面侧电极，形成于所述半导体基板的另一面侧，在包括所述杂质扩散层的所述半导体基板的一面侧中的形成了所述受光面侧电极的受光面侧电极形成区域，具备具有四角锥形状的第1 凸部的第1 凸面构造，在包括所述杂质扩散层的所述半导体基板的一面侧中的所述受光面侧电极的区域，具备具有尺寸的四角锥形状的第 2 凸部的第 2 凸面构造。

根据本发明，起到如下效果：能够得到电气特性的平衡良好且光电变换效率优良的太阳能电池单元。

附图说明

图 1-1 是示出形成构成纹理构造的四角锥的底面的正方形的一边的长度与短路电流密度的关系的特性图。

图 1-2 是示出形成构成纹理构造的四角锥的底面的正方形的一边的长度与曲线因子的关系的特性图。

图 1-3 是示出形成构成纹理构造的四角锥的底面的正方形的一边的长度与光电变换效率的关系的特性图。

图 2-1 是从受光面侧观察了本发明的实施方式的太阳能电池单元的俯视图。

图 2-2 是从与受光面相反一侧（背面）观察了本发明的实施方式的太阳能电池单元的仰视图。
具体实施方式

0036 以下，根据附图，详细说明本发明的太阳能电池单元及其制造方法的实施方式。另外，本发明不限于以下的描述，能够在不脱离本发明的要旨的范围内适宜变更。另外，在以下所示的附图中，为易于理解，各部件的缩尺有时与实际不同。在各附图之间也同样。

0037 实施方式

0038 形成在堆积型太阳能电池单元的纹理构造本来的目的在于抑制光反射，将阳光尽可能多地引进基板内。因此，认为纹理构造对短路电流密度这样的电气特性起较大作用。
因此，在纹理的形状的最佳化中，一般是选择使入射光的反射率尽可能降低那样的形状。

[0039] 但是，根据本发明者的研究知道了，在单元的整面采用了具有提高短路电流密度的效果的纹理构造的堆积型太阳能电池中，其他电气特性未必呈现良好的特性。即，知道了，具有提高短路电流密度的效果的纹理构造未必具有提高其他电气特性的效果，根据电气特性的种类，对特性提高有效的纹理构造。

[0040] 图1-1～图1-3是示出形成四角锥的底面的正方形的一边的长度与太阳能电池单元的电气特性的关系的特性图，其中，所述四角锥是构成通过碱性系的湿蚀刻形成在单晶硅太阳能电池单元的基板表面的纹理构造的四角锥。图1-1是示出形成纹理构造的四角锥的底面的正方形的一边的长度与短路电流密度 [mA/cm²] 的关系的特性图。图1-2是示出形成纹理构造的四角锥的底面的正方形的一边的长度与曲线因子 [%] 的关系的特性图。图1-3是示出形成纹理构造的四角锥的底面的正方形的一边的长度与光电变换效率的关系的特性图。图1-1～图1-3是改变形成四角锥的底面的正方形的一边的长度而形成多个通过使用了碱性系溶液的湿蚀刻在单晶硅基板的受光侧的表面作为纹理构造形成了四角锥的单晶硅太阳能电池单元并对其特性进行测定而得到的结果。另外，关于形成四角锥的表面的正方形的一边的长度，在制造的特地上，未必能在面内一律形成同一规格的构造，所以在此采用了占据整体的 6 成以上的长度。另外，在本发明中，四角锥意味着底面的形状是大致正方形的正四角锥。

[0041] 通过比较图1-1和图1-2可知，形成构成纹理构造的四角锥的底面的正方形的一边的长度，与短路电流密度以及曲线因子的关系呈现相关关系相逆的趋势。即，如从图1-1可知，短路电流密度有随着形成构成纹理构造的四角锥的底面的正方形的一边的长度变长而降低的趋势。即，从提高短路电流密度的观点来看，形成四角锥的底面的正方形的一边的长度优选较短。但是，在形成四角锥的底面的正方形的一边的长度过短的情况下，短路电流密度会降低。这是因为，在从铸造铸造切割了硅基板时发生的硅表面的损伤层会残留。因此，由以上内容，从提高短路电流密度的观点来看，优选将形成构成纹理构造的四角锥的底面的正方形的一边的长度设为 2 μm ～12 μm 的范围。

[0042] 另一方面，如从图1-2可知，曲线因子有随着形成构成纹理构造的四角锥的底面的正方形的一边的长度变长而增加的趋势。即，从提高曲线因子的观点来看，形成四角锥的底面的正方形的一边的长度优选较长。但是，在形成四角锥的底面的正方形的一边的长度过长的情况下，曲线因子会降低。这是因为，由于基板表面的凹凸变得过大，所以在其上形成的受光面侧电极会断线。因此，由以上内容，从提高曲线因子的观点来看，优选将形成构成纹理构造的四角锥的底面的正方形的一边的长度设为 12 μm ～22 μm 的范围。

[0043] 其结果，在单元的整面采用了形成四角锥的底面的正方形的一边的长度均匀的纹理构造的情况下，由于无法最大限度地利用各个电气特性中的形成四角锥的底面的正方形的一边的长度的最佳值，所以如图1-3所示，单元光电变换效率在短路电流密度与曲线因子的最佳值的中间点附近具有最佳值，其中，单元光电变换效率是短路电流密度与曲线因子与开路电压（在此未示出）之积。

[0044] 因此，在本发明中，关于形成在太阳能电池单元的受光面侧的基板表面的纹理构造，在与短路电流密度的提高相关性高的受光区域（在太阳能电池单元的受光面侧中除了受光面侧电极的区域以外的区域且实际上接受光的区域）中，为了提高短路电流密度
来提高光电变换效率，将形成构成纹理构造的四角锥的底面的正方形的一边的长度设为 2 μm~12 μm 的范围。另外，在太阳能电池单元的受光侧中作为不受到光的区域的受光侧面电极的下部区域中，为了提高曲面因子来提高光电变换效率，将形成构成纹理构造的四角锥的底面的正方形的一边的长度设为 12 μm~22 μm 的范围。这样，在本发明中，将形成构成纹理构造的四角锥的底面的正方形的一边的长度采用为规定纹理构造的基准。

[0045] 由此，能够针对短路电流密度以及曲面因子的光电变换效率分别采用良好的条件，使短路电流密度以及曲面因子都会平衡良好地提高，从而能够实现光电变换效率优良的太阳能电池单元。

[0046] 图 2 - 1 图 2 - 4 是用于说明本发明的实施方式的太阳能电池单元 1 的结构的图。图 2 - 1 是从受光面侧观察的太阳能电池单元 1 的侧视图。图 2 - 2 是从与受光面相反一侧(背面)观察的太阳能电池单元 1 的俯视图。图 2 - 3 是太阳能电池单元 1 的主要部分剖面图，是图 2 - 1 的 A - A 方向上的主要部分剖面图。图 2 - 4 是示出形成在太阳能电池单元 1 的半导体基板的表面的纹理构造的立体图。太阳能电池单元 1 是使用于住宅等的硅太阳能电池。

[0047] 在本实施方式的太阳能电池单元 1 中，在 p 型单晶硅构成的半导体基板 2 的受光面侧通过磷扩散而形成 n 型杂质扩散层 3，形成了具有 pn 结的半导体基板 11，并且在 n 型杂质扩散层 3 上形成了由氮化硅膜(SiN 膜)构成的反射膜 4。另外，作为半导体基板 2，不限于 p 型单晶硅基板，也可以使用 p 型多晶硅基板、n 型多晶硅基板、n 型单晶硅基板。

[0048] 另外，在半导体基板 11 (n 型杂质扩散层 3) 的受光面侧的表面，作为纹理构造形成了具有图 2 - 4 所示那样的纹理(四角锥)的微小凹凸形状。纹理构造成为在受光面中增加吸收来自外部的光的面积，并抑制受光面中的反射率而封住光的构造。

[0049] 此外，在本实施方式的太阳能电池单元 1 中，在半导体光的短路电流密度的提高相比空性的受光区域(在太阳能电池单元的受光面侧中除了受光面侧电极的区域以外的区域且实际上受光的区域)中，形成构成纹理构造的四角锥的底面的正方形的一边的长度 L 被设为 2 μm~12 μm 的范围。通过受光区域的纹理构造满足这样的条件，从而进一步降低入射到半导体基板 11 的光的反射率而作为太阳能电池的电气特性之一的短路电流密度的提高作出贡献，能够提高光电变换效率。

[0050] 另外，在太阳能电池单元的受光面侧中作为不受到光的区域的受光面侧电极的下部区域中，形成构成纹理构造的四角锥的底面的正方形的一边的长度 L 被设为 12 μm~22 μm 的范围。通过受光面侧电极的下部区域的纹理构造满足这样的条件，从而对曲面因子的提高作出贡献，能够提高光电变换效率。

[0051] 于是，通过如上那样在受光区域和受光面侧电极的下部区域中，使形成构成纹理构造的四角锥的底面的正方形的一边的长度 L 不同，由此能够针对短路电流密度以及曲面因子分别采用良好的条件，使短路电流密度以及曲面因子都会平衡良好地提高，从而能够实现光电变换效率优良的太阳能电池单元。

[0052] 反射膜 4 是由氧化硅膜(SiO 2 膜)、氧化钛膜(TiO 2 膜)或氧化铝膜(TiO 2 膜)等以防反射为目的的绝缘膜构成。另外，在半导体基板 11 的受光面侧，排列设置了多个长条形的表面银栅电极 5，与该表面银栅电极 5 导通的表面银栅流电极 6 被设置成与该表面银栅电极 5 大致正交，分别在最底部电连接于 n 型杂质扩散层 3。表面银栅电极 5 以及表面银栅
流电极6由银材料构成。
[0053] 表面银栅电极5具有例如100μm~200μm左右的宽度并且按照2mm左右的间隔大致平行地配置，对在半导体基板11的内部发电的电进行集电。另外，表面银栅流电极6例如具有1mm~3mm左右的宽度，并且针对每个太阳能电池单元配置了2条~4条，将由表面银栅电极5集电的电取出到外部。于是，由表面银栅电极5和表面银栅流电极6构成了作为第1电极的受光面侧电极12。受光面侧电极12由于会遮挡入射到半导体基板11的阳光，所以从发电效率提高的观点来看，优选尽可能减小面积，一般是配置为图1～1所示那样的梳型的表面银栅电极5和条状的表面银栅流电极6。

[0054] 硅太阳能电池单元的受光面侧电极的电极材料通常使用银膏，例如添加了铅硼玻璃。该玻璃是熔块状，例如由铅(Pb)5°30wt%、硼(B)5°10wt%、硅(Si)5°15wt%、氧(O)30°60wt%的组成构成，进而，有时还混合几wt%左右的锌(Zn)、镉(Cd)等。这样的铅硼玻璃在在几百℃（例如800℃）的加热下融化并在此时对硅进行侵蚀的性质。另外，一般情况下，在晶体硅太阳能电池单元的制造方法中，使用了如下方法：利用该玻璃熔块的特性，得到硅基板与银膏的接触。

[0055] 另一方面，在半导体基板11的背面（与受光面相反一侧的面），整体上设置了由铝材料构成的背面铝电极7，而且在与表面银栅流电极6大致相同的方向上延伸设置由银材料构成的背面银电极8。于是，由背面铝电极7和背面银电极8构成了作为第2电极的背面侧电极13。另外，背面铝电极7还期待通过了半导体基板11的长波长光反射而再利用于发电的BSR（Back Surface Reflection,背表面反射器）效果。

[0056] 从低成本以及性能提高的观点来看，普遍作为上述那样的受光面侧电极12的材料而使用银，作为背面侧电极的材料，使用铝，并且根据需要在一部分区域中使用以银为主成分的材料。

[0057] 另外，在半导体基板11的背面（与受光面相反一侧的面）侧的表层部分，形成了包含高浓度杂质的p+层（BSF（Back Surface Field,背表面场））。p+层（BSF）是为了得到BSF效果而设置的，为了避免p+层（半导体基板2）中的电子消减而利用带构造的电场提高p+层（半导体基板2）电子浓度。

[0058] 在这样构成的太阳能电池单元1中，如果阳光从太阳能电池单元1的受光面侧照射到半导体基板11的pn结面（半导体基板2与n型杂质扩散层3的接合面），则生成空穴和电子。由于pn结部的电场，所产生的电子朝向n型杂质扩散层3移动，空穴朝向p+层9移动。由此，在n型杂质扩散层3中电子变得过剩，在p+层9中空穴变得过剩，其结果，发生光电效应。该光电效应是在对pn结进行正向偏置的朝向上产生，与n型杂质扩散层3连接的受光面侧电极12成为正极，与p+层9连接的背面铝电极7成为正极，电流流向未图示的外部电路。

[0059] 在如上那样构成的本实施方式的太阳能电池单元1中，将以往太阳能电池单元的整面一样的纹理形状针对受光面侧电极12的下部区域和受光区域进行了最佳化，所以能够使太阳能电池单元1的光电变换效率高效化。

[0060] 即，在太阳能电池单元1中，在受光区域和受光面侧电极的下部区域中，使形成构成纹理构造的四角锥的底面的正方形的一边的长度L不同。在与短路电流密度的提高相关性高的受光区域中，将形成构成纹理构造的四角锥的底面的正方形的一边的长度L设
为2μm~12μm的范围。在太阳能电池单元的受光面侧中作为不接受光的区域的受光面侧电极的下部区域内，将形成构成纹理构造的四角手的底面的正方形的一边的长度L设为12μm~22μm的范围。由此，能够针对短路电流密度以及曲线因子分别采用良好的条件，使短路电流密度以及曲线因子都可平衡良好地提高，从而能够实现光电变换效率优良的太阳能电池单元。

[0061] 另外，在上述中，以作为半导体基材使用了单片硅基材的硅太阳能电池为例子进行了说明。但本发明作为半导体基材即使使用硅以外的物质的基材、进而由单晶以外的结晶构成的基材，只要能够形成四角手的纹理构造，就能够得到与上述同样的效果。

[0062] 以下，根据附图，说明本实施方式的太阳能电池单元1的制造方法。图3是用于说明本实施方式的太阳能电池单元1的制造工序的一个例子的流程图。图4-1、图4-10是用于说明本实施方式的太阳能电池单元1的制造工序的一个例子的剖面图。图4-1、图4-10是与图2-3对应的主要部分剖面图。

[0063] 首先，作为半导体基材2，准备例如几百μm厚的p型单晶硅基材（图4-1）。用线锯来切割将熔融的硅冷却固化而成的铸锭从而制造p型单晶硅基材，所以在表面残留切割时的损伤。因此，将p型单晶硅基材浸在酸或者加热后的碱性溶液，例如氢氧化钾水溶液中对表面进行蚀刻，从而去除在切出硅基材时发生的存在于p型单晶硅基材的表面附近的损伤区域。例如，利用几%、20wt%的苛性钠、碳酸苛性钠，将表面去除10μm~20μm厚。另外，半导体基材2所使用的p型硅基材可以是单晶、多晶中的任意一种，但在此以电阻率是0.1Ω·cm~5Ω·cm且(100)面方位的p型单晶硅基材为例子进行说明。

[0064] 去除损伤之后，利用在同样的碱性低浓度液，例如几wt%的苛性钠、碳酸苛性钠等碱性系的液体中添加IPA（异丙醇）等促进各向异性蚀刻的添加剂而得到的溶液来进行各向异性蚀刻，以使硅（111）面露出的方式在p型单晶硅基材的受光面侧的表面形成微小凹凸（四角手），作为第1的纹理构造形成纹理构造2a（步骤S10、图4-2）。此时，预先设定好处理时间，以使形成构成纹理构造2a的四角手底面的正方形的一边的长度L成为2μm~12μm的范围，例如成为5μm左右。

[0065] 通过在p型单晶硅基材的受光面侧设置这样的纹理构造，从而使能够太阳能电池单元1的表面侧产生光的多重反射，使入射到太阳能电池单元1的光高效地吸收到半导体基板11的内部，能够实有效地降低反射率而提高变化效率。在利用碱性溶液进行损伤层的去除以及纹理构造的形成的情况下，有时将碱性溶液的浓度调整为与各自目的对应的浓度并进行连续处理。另外，在将p型单晶硅基材浸渍到了上述溶液的情况下，在p型单晶硅基板的背面（与受光面侧相反一侧的面）也会形成纹理构造。

[0066] 接下来，在半导体基板2的受光面侧的表面，作为对碱性低浓度溶液具有蚀刻耐受性的掩模膜21，例如形成氧化硅膜（图4-3）。然后，在掩模膜21中，去除半导体基板2的受光面侧的表面中的与受光面侧电极12的形成区域对应的区域而形成开口21a（图4-4）。关于对掩模膜21进行开口的方法，能够在照相制版、激光照射等公知的方法中选择最佳的技术。另外，在图4-4中，示出了在掩模膜21中在与表面银栅电极5的形成区域对应的区域形成了开口21a的状态。

[0067] 接下来，再次，利用在几wt%左右的碱性低浓度液中添加IPA（异丙醇）等促进各向异性蚀刻的添加剂而得到的溶液来进行各向异性蚀刻。由此，在半导体基板2的受光面
侧中掩模膜 21 被开口的部分再次被蚀刻，从而在受光面侧电极 12 的形成区域形成具有比
纹理构造 2a 大的凹凸 (四角锥) 形状的作为第 2 纹理构造的纹理构造 2b (步骤 S20, 图 4 —
5)。此外，需规定好处理时间，以使形成构成纹理构造 2b 的四角锥的底面的正方形的一
边的长度 L 成为 12 μm~22 μm 的范围，例如成为 15 μm 左右。另外，在该蚀刻时使用的酸性
溶液、IPA 的浓度也可以与在形成纹理构造 2a 时使用的浓度不同。

接下来，例如利用氢氟酸溶液等去除掩模膜 21 的氯化硅膜 (图 4 — 6)。通过实施上述 2 阶段的蚀刻处理，在半导体基板 2 的受光面侧中成为受光区域的区域形成了如下
纹理构造 2a : 形成构成凹凸形状的四角锥的底面的正方形的一边的长度 L 成为例如 5 μm
左右。另外，在半导体基板 2 的受光面侧中形成受光面侧电极 12 的区域形成了如下纹理构
造 2b : 形成构成凹凸形状的四角锥的底面的正方形的一边的长度 L 比纹理构造 2a 长，例
如成为 15 μm 左右。另外，在半导体基板 2 的背面侧的表面整面形成了纹理构造 2b。

接下来，在半导体基板 2 中形成 pn 结 (步骤 S30, 图 4 — 7)。即，使磷 (P) 等 VII 族
硅元素在半导体基板 2 中扩散等而形成几百 nm 厚的 n 型杂质扩散层 3。在此，对在表面形成
了纹理构造的 p 型单晶硅基板，通过热扩散来使三氯氧磷 (POCl3) 扩散而形成 pn 结。由此，
得到由作为第 1 导电类型层的 p 型单晶硅而构成的半导体基板 2。形成在该半导体基板 2
的受光面侧的作为第 2 导电类型层的 n 型杂质扩散层 3 构成了 pn 结的半导体基板 11。

在该扩散工序中，使 p 型单晶硅基板如在三氯氧磷 (POCl3) 气体、氢气、氧气的混合
气气氛中通过气相扩散法例如以 800 ℃~900 ℃的高温热扩散几十分钟，从而均匀地形
成磷 (P) 扩散在 p 型单晶硅基板的表面层的 n 型杂质扩散层 3。形成在半导体基板 2 的表
面的 n 型杂质扩散层 3 的薄膜电阻的范围是 30 Ω/□~80 Ω/□左右的情况下，得到良好的
太阳能电池的电气特性。

在此，在刚刚形成了 n 型杂质扩散层 3 之后的表面形成有在扩散处理中沉积在表
面的玻璃质 (磷硅酸玻璃，PSG :Phospho — SilicateGlass) 层，所以使用氢氟酸溶液等来去
除该磷玻璃层。

另外，虽然省略了图中的记载，但 n 型杂质扩散层 3 形成于半导体基板 2 的整面。
因此，为了去除形成在半导体基板 2 的背面等的 n 型杂质扩散层 3 的影响，仅在半导体基板
2 的受光面侧留下 n 型杂质扩散层 3，而去除其他以外的区域的 n 型杂质扩散层 3。

例如，为了保护半导体基板 2 的受光面侧的 n 型杂质扩散层 3，在半导体基板 2 的
受光面侧通过网格印刷涂敷高分子抗蚀剂膏并使其干燥。然后，将半导体基板 2 在例如
20wt% 氢氧化钾溶液中浸渍几分钟，去除形成在半导体基板 2 的受光面侧以外的表面的 n 型
杂质扩散层 3。之后，利用有机溶剂去除高分子抗蚀剂。由此，能够仅在半导体基板 2 的
受光面侧留下 n 型杂质扩散层 3。另外，为了为了去除半导体基板 2 的背面等的 n 型杂质扩
散层 3 的影响而进行的其他方法，有时还在工序的最后通过激光、干蚀刻进行端面分离。另
外，也可以预先仅在半导体基板 2 的受光面侧形成 n 型杂质扩散层 3。

接下来，为了改善光电变换效率，在 p 型单晶硅基板的受光面侧的一面以一样的
厚度形成反反射膜 4 (步骤 S40, 图 4 — 8)。将反反射膜 4 的膜厚以及折射率设定为最能抑
制光反射的值。在反反射膜 4 的形成中，例如使用等离子体 CVD 法，将硅烷 (SiH4) 气体和氨
(NH3) 气体的混合气体制作原材料，以 300 ℃以上、减压下的条件，作为反反射膜 4 形成化硅
膜。折射率例如是 2.0~2.2 左右，最佳的反反射膜厚例如是 70nm~90nm。另外，作为反反
射膜 4,也可以层叠折射率不同的 2 层以上的膜。另外,在防反射膜 4 的形成方法中,除了等离子体 CVD 法以外,也可以使用蒸镀法、热 CVD 法等。另外,应注意这样形成的防反射膜 4 是绝缘体,仅是在其上形成受光面侧电极 12,则不会作为太阳能电池单元发挥作用。[0075]接下来,通过网板印刷形成电极。首先,制作受光面侧电极 12 (焊烧前)。即,在作为 p 型单晶硅基板的受光面的防反射膜 4 上,通过网板印刷,按照表面银栅电极 5 和表面银汇流电极 6 的形状涂敷了包含玻璃熔块的作为电极材料膏的银膏 12a 之后,使银膏干燥 (步骤 S50、图 4 9)。

[0076]接下来,在 p 型单晶硅基板的背面侧,通过网板印刷,按照背面铝电极 7 的形状涂覆作为电极材料膏的铝膏 7a,进而按照背面银电极 8 的形状涂敷作为电极材料膏的铝膏并使其干燥 (步骤 S60、图 4 9)。另外,在图中,仅示出了铝膏 7a,省略了银膏的记载。

[0077]之后,通过例如以 600℃～900℃对半导体基板 11 的表面以及背面的电极膏同时进行焙烧,在半导体基板 11 的表侧由于银膏 12a 中包含的玻璃材料而防反射膜 4 熔融期间银材料与硅接触并再凝固。由此,得到作为受光面侧电极 12 的表面银栅电极 5 以及表面银汇流电极 6,确保受光面侧电极 12 与半导体基板 11 的硅的导通 (步骤 S70、图 4 10)。这样的工艺被称为穿火法。

[0078]另外,铝膏 7a 也与半导体基板 11 的硅反应而得到背面铝电极 7,并且在背面铝电极 7 的正下方形成 p+ 层 9。另外,银膏的锌材料与硅接触并再凝固而得到背面银电极 8(图 4 10)。另外,在图中仅示出了表面银栅电极 5 以及背面铝电极 7,省略了表面银汇流电极 6 以及背面银电极 8 的记载。

[0079]另外,通过在图 4 2 的工序后和图 4 5 的工序后分别实施扩散工序,从而能够期待提高效率。关于该情况的薄层电阻,优选在图 4 2 的工序后的扩散中,以 100 Ω/□～70 Ω/□左右为目标进行扩散,在图 4 5 的工序后的扩散中,以比其高倍数的 60 Ω/□～40 Ω/□为目标进行扩散。

[0080]在以上那样的本实施方式的太阳能电极单元的制造方法中,将以往太阳能电池单元的整面一样的纹理形状针对受光面侧电极 12 的下部区域和受光区域进行了最佳化,所以能够使太阳能电池单元 1 的光电变换效率高效化。

[0081]即,在太阳能电池单元 1 中,在利用碱性系的湿蚀刻的纹理 (四角锥) 制造工序中,在受光区域和受光面侧电极的下部区域中,使形成构成纹理构造的四角锥的底面的正方形的一边的长度 L 不同。在与短路电流密度的提高相关性高的受光区域中,将形成构成纹理构造的四角锥的底面的正方形的一边的长度 L 设为 2 μ m 12 μ m 的范围。在太阳能电池单元的受光面侧中作为不接受光的区域的受光面侧电极的下部区域中,形成构成纹理构造的四角锥的底面的正方形的一边的长度 L 设为 12 μ m 22 μ m 的范围。能够针对短路电流密度以及曲线因子分别采用良好的条件,使短路电流密度以及曲线因子均平衡良好地提高,从而能够制作光电变换效率优良的太阳能电池单元。

[0082]另外,在上述中,以制作作为半导体基板使用了单晶硅基板的硅太阳能电池的情况为例进行了说明,但本发明即使在作为半导体基板使用了硅以外的物质的基板,进而由单晶以外的结构构成的基板的情况下,只要能够形成四角锥的纹理构造,就能够与上述同样地得到效果。

[0083]产业上的可利用性
如以上那样，本发明的太阳能电池单元及其制造方法对电气特性的平衡良好且光电变换效率优良的太阳能电池单元的实现是有效的。
图1-1

图1-2
图 1-3
图 2-1
图 2-2
图 3

在基板的受光面侧形成第 1 纹理构造

在基板的受光面侧电极的形成区域形成第 2 纹理构造

形成 PN 结

形成防反射膜

印刷受光面侧电极（银膏）并使其干燥

印刷背面电极（铝/银膏）并使其干燥

焙烧

结束