METHOD OF DETERMINING THE OPTIMAL WAVELENGTH FOR INSPECTING OPHTHALMIC LENSES

Abstract: Methods for inspecting ophthalmic lenses with different wavelengths of radiation are disclosed herein.
METHOD OF DETERMINING THE OPTIMAL WAVELENGTH FOR INSPECTING OPHTHALMIC LENSES

Field of the Invention

This invention relates to the inspection of ophthalmic lenses, particularly hydrogel contact lenses for missing material defects.

Background of the Invention

Ophthalmic lenses, such as hydrogel contact lenses are formed, inspected, and packaged on manufacturing lines with minimal human intervention. During these processes, certain defects to those lenses occur and one common defect is missing material in a formed lens. Whether such missing material is the entire thickness of a contact lens, or just a portion of its thickness, lenses with such defects should be removed from the product that ultimately reaches end users.

There are inspection methods, which find holes in ophthalmic lenses. However, given the variety of different types of contact lens materials that are on the market, lens makers often must inspect such lenses using radiation of different wavelengths. This is particularly true if one is looking for a missing material defect which is not a complete hole, such as a depression in the lens material. Typically the process of finding radiation of an optimal wavelength is a trial and error process. This trial and error method wastes a great deal of time and materials, and does not guarantee an optimal wavelength selection. Therefore, it is desirable to determine the optimal wavelength of radiation for the inspection of such missing material defects without a trial and error process. This desire is met by the foregoing invention.

Description of the Figures

Fig. 1 Plot of % transmission over several thickness at several wavelengths.

Fig. 2 Plot of theoretical Beer's Law calculation over the experimental data of Fig 1.

Fig. 3 Plot of Contrast over several wavelengths.
Detailed Description of the Invention

This invention provides a method of determining the wavelength of radiation which may be used to automatically inspect an ophthalmic lens of a maximum thickness for missing material of an amount between about zero and about a certain thickness, comprising

(a) measuring the % transmittance of radiation of several different wavelengths through ophthalmic lenses of several different known thicknesses;

(b) calculating the k value for each wavelength of the several different wavelengths and confirming that transmission of light through the ophthalmic lenses follows Beers' Law

(c) subtracting the % transmittance at said certain thickness from the % transmittance in the absence of an ophthalmic lens at said several different wavelengths to give first contrast values

(d) subtracting the % transmittance at said maximum thickness from the % transmittance at said certain lens thickness at said several different wavelengths to give second contrast values

(e) comparing the first contrast values with the second contrast values at each wavelength and selecting the lowest contrast values at each wavelength and the plotting such lowest contrast values against wavelength

(f) selecting the wavelength from the plot of step (e) at the highest peak for inspection of missing material defects.

As used herein the term "ophthalmic lens" refers to soft contact lenses, such as hydrogels which are made from monomers, macromers or prepolymer. Examples of such ophthalmic lenses include but are not limited to lenses made from the following generic formulations acofilcon A, alofilcon A, alphafilcon A, amifilcon A, astifilcon A, atalafilcon A, balafilcon A, bisfilcon A, bufilcon A, comfilcon, crofilcon A, cyclofilcon A, darfilcon A, deltafilcon A,

The term thickness refers to the measurement of the ophthalmic lens from its front surface to its opposing back surface. A typical hydrogel contact lens has a thickness of about 60 pm to about 600 pm. For purposes of this invention, the thickness of the finished product is the "maximum thickness". In the methods of the invention radiation is transmitted through hydrogel contact lenses having a thickness of from about 200 pm to about 600 pm, preferably about 85μm to about 209 μm.

The term "certain thickness" refers to the depth of a missing material defect which does not go through the entire maximum thickness of the ophthalmic lens. For example for an ophthalmic lens having a maximum thickness of about 350 pm, a certain thickness is any number from about 300 μm to about 50 pm. Preferably certain thickness is selected from the group consisting of 30 pm, 40 pm, 50 pm, and 60 pm.

As used herein, the term "% transmittance" means the amount of radiation which reaches a spectrometer after its transmission through either a cuvette, an ophthalmic lens and a solution, or a cuvette and solution. In either case the non-limiting examples of solutions are deionized water and saline solution, preferably saline solution.

In the method, the transmitted radiation may have wavelengths in the visible, ultraviolet, or infrared radiation. Visible radiation has wavelengths from about 390nm to about 700 nm, ultraviolet radiation has wavelengths from
about 10 nm to about 390 nm, and infrared radiation has wavelengths from about 700 nm to about 3000 nm. It is preferred that radiation in the range of about 340 nm to about 550 nm is transmitted through the ophthalmic lenses.

As used herein the term "contrast value" means the difference in transmission between the two different thickness of lens material.

As used herein the "k" value is the constant found in the theoretical relationship known as Beer's Law. Beer's Law relates the percent of transmission of radiation through a material ("%T") to the thickness of the material ("t") and a constant ("k") (%T = 10^(-kt)). Each wavelength has a particular k which may be calculated by known methods, such as regression fitting.

The wavelengths found by this method may be used in a number of inspection techniques. Non-limiting examples of such techniques are disclosed in the following patents US Patents 6,882,411, 6,577,387, 6,246,062; 6,154,274; 5,995,213; 5,943,436; 5,828,446; 5,812,254; 5,805,276; 5,748,300; 5,745,230; 5,687,541; 5,675,962; 5,649,410; 5,640,464; 5,578,331; 5,568,715; 5,443,152; 5,528,357; and 5,500,732; all of which are incorporated herein in their entireties by reference.

Example

Ten etafilcon A hydrogel lenses having center thicknesses from 93 pm to 252 μm were prepared. Each sample was placed in a cuvette having internal dimensions of 18.5 mm wide x 5.1 mm wide x 21.2 high (without a cap) which holds approximately 1650 mL of liquid with a cap. Light of wavelengths from 340 nm to 420 nm was shown through the lens/cuvette/saline solution and the percent transmission was obtained using a Perkin Elmer UV/VIS Lambda 18 spectrometer. The percent transmission versus wavelength for every lens thickness is plotted in Fig. 1. Fig. 2 overlays the theoretical calculation over the experimental data of Fig. 1 and illustrates that this material behaves in accordance with Beer's Law.

For each wavelength the % transmittance for a cuvette/saline solution/lens having a thickness of 50 pm was subtracted from % transmittance for a cuvette/saline solution to give a first contrast value. For each wavelength the % transmittance for a cuvette/saline solution/lens having a thickness of 350 pm was subtracted from % transmittance for a
cuvette/saline solution//lens having a thickness of 300 \(\mu \text{m} \) to give a second contrast value. The first and the second contrast values were compared at each wavelength and the lower of the two values was plotted against wavelength in Fig. 3. This figure shows that the highest peak occurs at around 375 nm, therefore, the best wavelength to determine a missing material defect of about 50 \(\mu \text{m} \) is 375 nm.
We claim:

1. A method of determining the wavelength of radiation which may be used to automatically inspect an ophthalmic lens of a maximum thickness for missing material of an amount between about zero and about a certain thickness, comprising
 (a) measuring the % transmittance of radiation of several different wavelengths through ophthalmic lenses of several different known thicknesses;
 (b) calculating the k value for each wavelength of the several different wavelengths and confirming that transmission of light through the ophthalmic lenses follows Beers’ Law
 (c) subtracting the % transmittance at said certain thickness from the % transmittance in the absence of an ophthalmic lens at said several different wavelengths to give first contrast values
 (d) subtracting the % transmittance at said maximum thickness from the % transmittance at said certain lens thickness at said several different wavelengths to give second contrast values
 (e) comparing the first contrast values with the second contrast values at each wavelength and selecting the lowest contrast values at each wavelength and the plotting such lowest contrast values against wavelength
 (f) selecting the wavelength from the plot of step (e) at the highest peak for inspection of missing material defects.

2. The method of claim 1 wherein the maximum thickness is about 60 µm to about 400 µm.

3. The method of claim 1 wherein the maximum thickness is about 85 µm and about 209 µm.
4. The method of claim 1 wherein said certain thickness is a number from about 20 μm to about 100 μm.

5. The method of claim 1 wherein said certain thickness is a number selected from the group consisting of 30 μm, 40 μm, 50 μm, and 60 μm.

6. The method of claim 1 wherein said radiation of several different wavelengths are from about 340 nm to about 430 nm.

7. The method of claim 1 wherein said radiation of several different wavelengths are from about 340 nm to about 550 nm.

8. The method of claim 1 wherein said ophthalmic lenses are selected from the group consisting of etafilcon A, nelfilcon A, hilafilcon, polymacon, comfilcon, galyfilcon, senofilcon, and narafilcon.
INTERNATIONAL SEARCH REPORT

PCT/US2012/042277

A. CLASSIFICATION OF SUBJECT MATTER

INV. G01M11/02 G01N21/59
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G01M G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2006/275596 AI (PAYNE J D [US] ET AL) PAYNE J DONALD [US] ET AL) 7 December 2006 (2006-12-07) paragraph [0065]; figures 1, 2, 5, 7, 8</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"A" document member of the same patent family

Date of the actual completion of the international search
24 September 2012

Date of mailing of the international search report
05/10/2012

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer
Mihai Vasilie
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 2004189981 A1</td>
<td>30-09-2004</td>
</tr>
<tr>
<td>US 2006275596 A1</td>
<td>07-12-2006</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>