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TRACKING USER MOVEMENTS TO CONTROL A SKELETON MODEL IN A
COMPUTER SYSTEM

RELATED APPLICATIONS

[0001] The present application claims priority to U.S. Pat. App. Ser. No.
15/973,137, filed May 7, 2018 and entitled “Tracking User Movemenis to Conirol a
Skeleton Model in a Computer System,” and U.S. Pat. App. Ser. No. 15/996,389,
filed Jun. 1, 2018 and entitled *"Motion Predictions of Overlapping Kinematic Chains
of a Skeleton Model used to Control a Computer System”, the entire disclosures of
which applications are hereby incorporated herein by reference.

[0002] The present application relates to U.8. Pat. App. Ser. No. 15/868,745, filed
Jan. 11, 2018 and entitled “Correction of Accumulated Errors in Inertial
Measurement Units Attached to a User,” U.S. Pat. App. Ser. No. 15/864,860, filed
Jan. 8, 2018 and entitled “Tracking Torso Leaning to Generate inputs for Computer
Systems,” .S, Pal. App. Ser. No. 15/847,669, filed Dec. 18, 2017 and entitled
“‘Calibration of Inertial Measuremaeant Units Aftached {o Arms of a User and to a Head
Mounted Device,” U.8. Pat. App. Ser. No. 15/817 646, filed Nov. 20, 2017 and
entitled "Calibration of Inertial Measurement Units Attached to Arms of a User to
Generate Inputs for Computer Systems,” U.S. Pat. App. Ser. No. 15/813,813, filed
Nov. 15, 2017 and entitied “Tracking Torso Orientation to Generate inputs for
Computer Systems,” U.S. Pat. App. Ser. No. 15/792,285, filed Oct. 24, 2017 and
entitled “Tracking Finger Movements to Generate Inputs for Computer Systems,”
U.S. Pat. App. Ser. No. 15/787 555, filed Oct. 18, 2017 and entitled “Tracking Arm
Movements to Generate Inputs for Computer Systems,” and U.S. Pat. App. Ser. No.
15/492,915, filed Apr. 20, 2017 and entitled “Devices for Controlling Computers
based on Motions and Positions of Hands.” The entire disclosures of the

above-referenced related applications are hereby incorporated herein by reference.

FIELD OF THE TECHNOLOGY

[0003] At least a portion of the present disclosure relates to computer input

devices in general and more particularly but not limited {0 input devices for virtual
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reality and/or augmented/mixed reality applications implemented using computing
devices, such as mobile phones, smart watches, similar mobile devices, and/or other

devices.

BACKGROUND

[0004] U.S Pal App. Pub. No. 2014/0028547 discloses a user control device
having a combined inertial sensor {0 detect the movements of the device for pointing
and selecting within a real or virtual three-dimensional space.

[0008] U.S. Pat App. Pub. No. 2015/0277559 discloses a finger-ring-mountad
touchscreen having a wireless transceiver that wirelessly transmits commands
generated from events on the touchscreen.

[0006] U.S. Pat App. Pub. No. 2015/0358543 discloses a motion capture device
that has a plurality of inertial measurement units to measure the motion parameters
of fingers and a palm of a user.

[0007] U.S Pat App. Pub. No. 2007/0050597 discloses a game controller having
an acceleration sensor and a gyro sensor. U8, Pat. No. D772,986 discloses the
ornamental design for a wireless game controller.

[0008] Chinese Pat. App. Pub. No. 103226398 discloses data gloves that use
micro-inertial sensor network technologies, where each micro-inertial sensor is an
attitude and heading reference system, having a tri-axial micro-slectromechanical
system (MEMS) micro-gyroscope, a tri-axial micro-acceleration sensor and a tri-axial
geomagnetic sensor which are packaged in a circuit board.  U.S. Pat. App. Pub. No.
2014/0313022 and U.S. Pat. App. Pub. No. 2012/0025845 disclose other data
gloves.

[0009] U.S Pat App. Pub. No. 2016/0085310 discloses techniques to track hand
or body pose from image data in which a best candidate pose from a pool of
candidate poses is selected as the current tracked pose.

[0010] U.S Pal App. Pub. No. 2017/0344829 discloses an action detection
scheme using a recurrent neural network (RNN) where joint iocations are applied to
the recurrent neural network (RNN) {o determine an action label representing the
action of an entity depicted in a frame of a video.

00111 The disclosures of the above discussed patent documents are hereby

incorporated herein by reference.
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BRIEF DESCRIPTION OF THE DRAWINGS

0012] The embodiments are illustrated by way of example and not limitation in
the figures of the accompanying drawings in which like references indicate similar
elements.

[0013] FIG. 1 illustrates a system {0 track user movements according to one
embodiment.

[0014] FIG. 2 lllustrates a system to control computer operations according to one
embodiment.

[0018] FIG. 3 illusirates a skeleton mode! that can be controlied by tracking user
movements according (o one embodiment.

[0016] FIGS. 4 and 5 show methods to train a recurrent neural network (RNN)
and use the RNN io predict movement measurements of one tracking system based
on movement measurements of another tracking systerm according to one
embodiment.

[0017] FIGS. 8 and 7 show methods to train a recurrent neural network (RNN)
and use the RNN o predict movement measurements of omitted tracking devices
based on remaining fracking devices according to one embodiment.

[0018] FIGS. 8 and 9 show a method to track user movements using an artificial
neural network {ANN) according to one embodiment.

[0019] FIG. 10 illustrates the use of a bidirectional long short-term memory
(BLSTM) network to combine the resulis from different artificial neural networks
according to one embodiment.

10020] FIG. 11 illustrates another technique to combine the results from different
artificial neural networks for kinematic chains that have overlapping portions
according to one embodiment.

[0021] FIG. 12 shows a method to train multiple artificial neural networks for
multiple kinematic chains that have overlapping portions according to one
embodiment.

[0022] FIG. 13 shows a method to predict motion measurements of an
overiapping portion of multiple kinematic chains that are module using separate
artificial neural networks according to one embodiment.

[0023] FIG. 14 shows a method to use a skeleton model having multiple artificial

neural networks for multiple kinematic chains according to one embodiment.
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DETAILED DESCRIPTION

[0024] The following description and drawings are illustrative and are notto be
construed as limiting.  Numerous specific details are described to provide a
thorough understanding.  However, in certain instances, well known or conventional
details are not described to avoid obscuring the description.  References to one or
an embodiment in the present disclosure are not necessarily references o the same
embodiment: and, such references mean at least one.

[0025] Al least some embodiments disclosed herein allow the tracking of a
reduced number of portions of a user using micro-electromechanical system (MEMS)
inertial measurement units (IMUs) and using an artificial neural network to control a
skeleton model in a computer system having more than the reduced number of
portions connected via joints, where each portion may be considered as rigid and
movable relative other portions through rotation at the joints.

[0026] A kinematic chain is an assembly of rigid parts connected by joints. A
skeleton model of a user, or a portion of the user, can be constructad as a set of rigid
parts connected by joints in a way corresponding to the bones of the user, or groups
of bones, that can be considered as rigid parts.

[0027] For example, the head, the torso, the left and right upper arms, the left and
right forearms, the palms, phalange bones of fingers, metacarpal bones of thumbs,
upper legs, lower legs, and feet can be considerad as rigid parts that are connectad
via various joints, such as the neck, shoulders, elbows, wrist, and finger joints.
[0028] A skeleton model of a user can be constructed based on rigid models of
body parts of the user paris and the corresponding joints; and the relative positions
and/or orientations of the rigid parts collectively represent the pose of the user and/or
the skeleton model.  The skeleton model of the user can be used o control the
presentation of an avatar of the user, {0 identify the gesture inputs of the user, and/or
to make a virtual realty or augmented reality presentation of the user.

[0029] FIG. 1 illustrates a system {0 track user movements according to one
embodiment.

10030] FIG. 1 illustrates various parts of a user, such as the torso (101) of the
user, the head (107} of the user, the upper arms (103 and 105) of the user, the
forearms (112 and 114) of the user, and the hands (106 and 108) of the user.

[0031] In an application illustrated in FIG, 1, the hands (1086 and 108) of the user
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are considered rigid parts movable around the wrists of the user.  Inother
applications, the palms and finger bones of the user can be further tracked for their
movements relative to finger joints (e.¢., to determine the hand gestures of the user
made using relative positions among fingers of a hand and the palm of the hand).
[0032] InFIG. 1, the user wears several sensor devices (111, 113, 115, 117 and
119} that track the orientations of parts of the user that are considered, or recognized
as, rigid in an application.

[0033] In an application illustrated in FIG. 1, rigid parts of the user are movable
relative 1o the torso (101) of the user and relative to each other.  Examples of the
rigid parts include the head (107}, the upper arms (103 and 105}, the forearms (112
and 114), and the hands (106 and 108). The joinis, such as neck, shoulder, elbow,
and/or wrist, connect the rigid parts of the user to form one or more kinematic chains.
The kinematic chains can be modeled in a computing device {(141) to control the
application.

[0034] To track the relative positions/orientations of rigid parts in a kinematic
chain, a tracking device can be atiached to each individual rigid part in the kinematic
chain to measure iis orientation.

[0035]  In general, the position and/or orientation of a rigid part in a reference
system (100) can be tracked using one of many systems known in the field. Some
of the systems may use one or more cameras to fake images of a rigid part marked
using optical markers and analyze the images to compute the position and/or
orientation of the part.  Some of the systems may track the rigid part based on
signals transmitted from, or received at, a tracking device attached to the rigid part,
such as radio frequency signals, infrared signals, ultrasound signals. The signals
may correspond to signals received in the tracking device, and/or signals emitted
from the tracking device. Some of the systems may use inertial measurement units
(IMUs) to track the position and/or orientation of the tracking device.

[0036] InFIG. 1, the sensor devices (111, 113, 115, 117 and 119) are used to
track some of the rigid parts (e.q., 107, 103, 105, 106, 108) in the one or more
kinematic chains, but sensor davices are omitted from other ngid parts (101, 112,
114} in the one or more kinematic chains to reduce the number of sensor devices
used and/or 1o improve user axpenence for wearing the reduced number of sensor
devices.

[0037] The computing device (141) has a prediction mode! {141} trained to
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generate predicted measurements of parts (101, 112, 114, 107, 103, 105, 106,
and/or 108) of the user based on the measurements of the sensor devices (111, 113,
115, 117 and 119).

10038 For example, the prediction model (141) can be implemented using an
artificial neural network in the computing device (141) {o predict the measurements
of the crientations of the rigid parts (101, 112, 114} that have omitted sensor
devices, based on the measurements of the orientations rigid parts (107, 103, 105,
108, 108) that have the attached sensor devices (111, 113, 115, 117 and 119).
[0039] Further, the artificial neural network can be trained (o predict the
measurements of the orientations of the rigid parts (107, 103, 105, 106, 108} that
would be measured by another system (e.q., an optical tracking system), based on
the measurement of the altached sensor devices (111, 113, 115, 117 and 119} that
measure orientations using a different technique (e.g., IMUs).

(00407 The sensordevices (111, 113, 115, 117, 119) communicate their
movement measurements to the computing device (141), which computes or
predicts the orientation of the rigid parts (107, 103, 105, 106, 108, 101, 112, 114) by
applying the measurements obtained from the attached sensor devices (111, 113,
115, 117 and 119) as inputs {o an artificial neural network trained in a way as further
discussed below.

[0041] In some implementations, each of the sensor devices (111, 113, 115, 117
and 119) communicates its measurements directly {0 the computing device (141) in
a way independent from the operations of other sensor devices.

[0042] Alternative, one of the sensor devices (111, 113, 115, 117 and 119) may
function as a base unit that receives measurements from one or more other sensor
devices and transmit the bundled and/or combined measurements to the computing
device {(141). In some instances, the artificial neural network is implementad in the
base unit and used to generate the predicted measurements that are communicated
to the computing device (141).

[0043] Preferably, wireless connections made via a personal area wireless
network (e.g., Bluetooth connectlions), or a local area wireless network {e.g., Wi-Fi
connections) are used io facilitate the communication from the sensor devices {111,
113, 115, 117 and 119) to the computing device (141).

[0044] Aliernatively, wired conneclions can be used to facilitate the

communication among some of the sensor devices (111, 113, 115, 117 and 119)
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and/or with the computing device (141).

[0045] For example, a hand module {117 or 119) altached to or held in a
corresponding hand (106 or 108) of the user may receive the motion measurements
of a corresponding arm module (115 or 113) and transmit the motion measurements
of the corresponding hand (106 or 108) and the corresponding upper arm (105 or
103} to the computing device (141).

[0046] The hand (106), the forearm (114), and the upper arm (105) can be
considered a kinematic chain, for which an artificial neural network can be trained to
predict the orientation measurements generated by an optical track system, based
on the sensor inputs from the sensor devices (117 and 115) that are attached to the
hand (106) and the upper arm (105}, without a corresponding device on the forearm
{(114).

10047 Optionally or in combination, the hand module (e.g., 117) may combine its
measurements with the measurements of the corresponding arm module (115) to
compute the orientation of the forearm connecied between the hand (106) and the
upper arm (105}, in a way as disclosed in U.S. Pat. App. Ser. No. 15/787,555, filed
Oct. 18, 2017 and entitled “Tracking Arm Movements to Generate Inputs for
Computer Systems”, the entire disclosure of which is hereby incorporated herein by
reference.

[0048] For example, the hand modules (117 and 119} and the arm modules (115
and 113) can be each respectively implemented via a base unit {or a game
coniroller} and an arm/shoulder module discussed in U.S. Pat. App. Pub. No.
15/492,915, filed Apr. 20, 2017 and entitled “Devices for Controlling Computers
based on Motions and Positions of Hands”, the entire disclosure of which application
is hereby incorporated herein by reference.

(00491 In some implemeniations, the head module (111) is configured as a base
unit that receives the motion measurements from the hand modules (117 and 119)
and the arm modules (115 and 113) and bundles the measurement data for
transmission o the computing device (141).  In some instances, the computing
device (141) is implementad as part of the head module (111).  The head module
(111} may further determine the orientation of the torso (101) from the orientation of
the arm modules (115 and 113) and/or the orientation of the head module (111),
using an artificial neural network trained for a corresponding kinematic chain, which

includes the upper arms (103 and 105), the torso {101}, and/or the head (107).

-
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[00507 For the determination of the orientation of the torso (101), the hand
moduies (117 and 118) are optional in the system illustrated in FIG. 1.

[0051] Further, in some instances the head module (111) is not used in the
fracking of the orientation of the torso {(101) of the user.

[0052]  Typically, the measurements of the sensor davices (111, 113, 115, 117
and 119) are calibrated for alignment with a common reference system, such as a
coordinate system (100).

[0053]  After the calibration, the hands, arms (105, 103), the head (107) and the
torso (101) of the user may move relative to each other and relative to the coordinale
system (100). The measurements of the sensor devices (111, 113, 115, 117 and
119) provide orientations of the hands (106 and 108}, the upper arms (105, 103},
and the head (107) of the user relative 1o the coordinate system (100).  The
computing device (141) computes, estimates, or predicts the current orientation of
the torso (101} and/or the forearms (112 and 114) from the current orientations of the
upper arms (105, 103), the current orientation the head (107) of the user, and/or the
current orientation of the hands (106 and 108) of the user and their orientation
history using the prediction model (118).

[0054] Optionally or in combination, the computing device {141} may further
compute the orientations of the forearms from the crientations of the hands (1086 and
108) and upper arms {105 and 103}, e.g., using a technique disclosed in U.S. Pat.
App. Ser. No. 15/787,555, filed Oct. 18, 2017 and entitled “Tracking Arm Movements
to Generate Inputs for Computer Systems”, the entire disclosure of which is hereby
incorporated herein by reference.

[00585] Al least some embodiments disclosed herein allow the determination or
astimation of the orientation of the torso (101) and/or the forearms (112 and 114)
from the orientations of the upper arms (105 and 103), the orientation of the head
(107}, and/or the orientation of the hands (106 and 108) without the need for
additional sensor modules being attached to the torso {(101) and the forearms (112
and 114).

[0086] FIG. 2 illustrates a system to control computer operations according to one
embodiment. For example, the system of FiG. 2 can be implemenied via attaching
the arm modules (115 and 113} to the upper arms (105 and 103) respectively, the
head module (111) to the head (107) and/or hand modules (117 and 119), in a way
Hustrated in FIG. 1.
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[0087] In FIG. 2, the head module (111) and the arm module {(113) have
micro-electromechanical system (MEMS) inertial measurement units (IMUs) (121
and 131) that measure motion parameters and detaermine orientations of the head
(107} and the upper arm (103).

[0058] Similarly, the hand modules (117 and 119) can also have IMUs. In some
applications, the hand modules (117 and 119) measure the orientation of the hands
(106 and 108) and the movements of fingers are not separately tracked.  In other
applications, the hand modules (117 and 119) have separate IMUs for the
measurement of the orientations of the palms of the hands (106 and 108), as well as
the orientations of at least some phalange bones of at least some fingers on the
hands (106 and 108). Examples of hand modules can be found in U.8. Pat. App.
Ser. No. 15/792,255, filed Oct. 24, 2017 and entitled “Tracking Finger Movements {o
Generate Inputs for Computer Systems,” the entire disclosure of which is hereby
incorporated herein by reference.

100597 Each of the IMUs (131 and 121) has a collection of sensor components
that enable the determination of the movement, position and/or orientation of the
respective IMU along a number of axes. Examples of the components are: a
MEMS accelerometer that measures the projection of acceleration (the difference
betweean the true acceleration of an object and the gravitational acceleration); a
MEMS gyroscope that measures angular velocities; and a magnetometer that
measures the magnitude and direction of a magnetic field at a certain point in space.
in some embodiments, the IMUs use a combination of sensors in three and two axes
(e.q., without a magnetometer).

(00607 The computing device (141) has a prediction mode! (116} and a motion
processor {145). The measurements of the IMUs (e.g., 131, 121) from the head
module (111}, arm modules {(e.g., 113 and 115}, and/or hand modules (e.g., 117 and
119) are used in the prediction module {116} to generate predicted measurements of
at least some of the parts that do not have attached sensor modules, such as the
torso (101), and forearms {112 and 114). The predicied measurements and/or the
measurements of the IMUs {e.g., 131, 121) are used in the motion processor (145).
[0061] The motion processor (145) has a skeleton model (143) of the user {e.g.,
Hlustrated FIG. 3).  The motion processor (145) controls the movements of the parts
of the skeleton model (143) according to the movements/orientations of the

corresponding parts of the user.  For example, the orientations of the hands (106
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and 108}, the forearms (112 and 114), the upper arms (103 and 105), the torso
(101), the head (107), as measured by the IMUs of the hand modules (117 and 119},
the arm modules (113 and 118), the head module (111} sensor modules and/or
predicted by the prediction model (116) based on the IMU measurements are used
to set the onientations of the corresponding parts of the skeleton model (143).

[0062] Since the torso (101) does not have a separately atiached sensor module,
the movements/orientation of the torso (101) is predicted using the prediction model
(118) using the sensor measurements from sensor modules on a kinematic chain
that includes the torso {(101).  For example, the prediction model (116) can be
trained with the motion pattern of a kinematic chain that includes the head (107), the
torso (101}, and the upper arms (103 and 105) and can be used to predict the
orientation of the torso (101) based on the motion history of the head (107), the torso
(101}, and the upper arms (103 and 105) and the current orientations of the head
(107}, and the upper arms (103 and 105).

10063] Similarly, since a forearm (112 or 114) does not have a separately
attached sensor module, the movements/orientation of the forearm (112 or 114) is
predicted using the prediction model (1186) using the sensor measurements from
sensor modules on a kinematic chain that includes the forearm (112 or 114).  For
example, the prediction model (116) can be trained with the motion pattern of a
kinematic chain that includes the hand (106}, the forearm (114), and the upper arm
(105) and can be used to predict the orientation of the forearm (114) based on the
motion history of the hand (106), the forearm (114), the upper arm (105) and the
current orientations of the hand (106}, and the upper arm (105).

[0064] The skeleton model (143) is controlled by the motion processor (145) to
generate inputs for an application (147) running in the computing device (141).  For
example, the skeleton model (143) can be used to control the movement of an
avatar/model of the arms (112, 114, 105 and 103), the hands {106 and 108}, the
head (107), and the torso (101) of the user of the computing device (141) in a video
game, a virtual reality, a mixed reality, or augmented reality, eic.

[0065] Preferably, the arm module (113) has a microcontrolier {139) to process
the sensor signals from the IMU (131) of the arm module (113} and a communication
moduie (133) to transmit the motion/orientation parameters of the arm module (113)
to the computing device (141).  Similarly, the head module (111) has a

microcontrolier (129} to process the sensor signals from the IMU (121) of the head

10
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module (111) and a communication module (123) to transmit the motion/orientation
parameters of the head module (111) to the computing device (141).

[0066] Optionally, the arm module {113) and the head module (111) have LED
indicators (137 and 127) respectively to indicate the operating status of the modules
(113 and 111).

[0067] Optionally, the arm module (113) has a haptic actuator (138) respectively
to provide haplic feedback to the user.

[0068] Optionally, the head module (111) has a display device (127} and/or
buttons and other input devices (125), such as a touch sensor, a microphone, a
camera, ofc.

[0069] In some implementations, the head module {(111) is replaced with a
module that is similar to the arm module (113) and that is attached {o the head (107}
via a strap or is secured to a head mount display device.

00707  In some applications, the hand module (119} can be implemented with a
moduie that is similar to the arm module (113) and attached o the hand via holding
or via a strap.  Optionally, the hand module (118) has buttons and other input
devices, such as a touch sensor, a joystick, etc.

[0071] For example, the handheld modules disclosed in U.S. Pat. App. Ser. No.
15/792,255 filed Oct. 24, 2017 and entitled “Tracking Finger Movements {0
Generate Inputs for Computer Systems”, U.S. Pat. App. Ser. No. 15/787 555, filed
QGct. 18, 2017 and entitled “Tracking Arm Movements to Generate Inputs for
Computer Systems”, and/or U.S. Pat. App. Ser. No. 15/492,915, filed Apr. 20, 2017
and entitled “Deviceas for Controlling Computers based on Motions and Positions of
Hands” can be used to implement the hand modules (117 and 119}, the entire
disclosures of which applications are hereby incorporated herein by reference.
[0072] When a hand module (e.g., 117 or 119) tracks the orientations of the paim
and a selected set of phalange bones, the motion pattern of a kinematic chain of the
hand captured in the predictive mode (118) can be used in the prediction model
{(116) to predict the orientations of other phalange bones that do not wear sensor
devices.

[0073] FIG. 2 shows a hand module {119) and an arm module (113) as examples.
in general, an application for the tracking of the orientation of the torso (101) typically
uses two arm modules (113 and 115) as illustrated in FIG. 1. The head module

{(111) can be used optionally to further improve the tracking of the orientation of the
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torso (101}, Hand modules (117 and 119) can be further used {o provide additional
inputs and/or for the prediction/caiculation of the orientations of the forearms (112
and 114) of the user.

100741 Typically, an IMU (e.g., 131 or 121) in a module (e.g., 113 or 111)
generates acceleration data from accelerometers, angular velocity data from
gyrometers/ gyroscopes, and/or orientation data from magnetometers. The
microcontroliers (139 and 129) perform preprocessing tasks, such as filtering the
sensor data {(e.g., blocking sensors that are not used in a specific application),
applying calibration data (e.q., to correct the average accumulated error computed
by the computing device (141)), transforming motion/position/orientation data in
three axes into a quaternion, and packaging the preprocessed resulis into data
packets (e.g., using a data compression technique) for transmitting to the host
computing device (141) with a reduced bandwidih requirement and/or
communication time.

10075] Each of the microcontrollers (129, 139) may include a memory storing
instructions conitroliing the operations of the respective microcontroller (129 or 139)
to perform primary processing of the sensor data from the IMU (121, 131} and
control the operations of the communication module (123, 133), and/or other
components, such as the LED indicator (137}, the haptic actuator (138), buttons and
other input devices (125), the display device (127), etc.

[0078] The computing device (141) may include one or more microprocassors
and a memory storing instructions to implement the motion processor (145). The
motion processor (145) may also be implemented via hardware, such as
Application-Specific Integrated Circuit (ASIC) or Field-Programmable Gate Array
(FPGA).

(00771 In some instances, one of the modules (111, 113, 115, 117, and/or 119} is
configured as a primary input device; and the other module is configured as a
secondary input device that is connected to the computing device (141) via the
primary input device. A secondary input device may use the microprocessor of its
connected primary input device to perform some of the preprocessing tasks. A
module that communicates directly to the computing device (141) is consider a
primary input device, even when the module does not have a secondary input device
that is connected to the computing device via the primary input device.

[0078] In some instances, the computing device (141) specifies the types of input
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data requested, and the conditions and/or frequency of the input data; and the
moduies (111, 113, 115, 117, and/or 119) report the requested input data under the
conditions and/or according to the frequency specified by the computing device
(141).  Different reporting frequencies can be specified for different types of input
data (e.g., accelerometer measuremeants, gyroscope/gyrometer measurements,
magnetometer measurements, position, orientation, velocity).

(00791  In general, the computing device (141) may be a data processing system,
such as a mobile phone, a deskiop computer, a laptop computer, a head mount
virtual reality display, a personal medial player, a tablet computer, elc.

(00807 FIG. 3 illustrates a skeleton model! that can be controlied by tracking user
movements according to one embodiment.  For example, the skeleton model of
FIG. 3 can be usead in the motion processor (145) of FIG. 2.

[0081] The skeleton model illusirated in FIG. 3 includes a torso (232) and left and
right upper arms {203 and 205) that can move relative to the torso (232) via the
shouider joints (234 and 241). The skeleton model may further include the
forearms (215 and 233), hands (206 and 208), neck, head (207), legs and feet. In
some instances, a hand (206) includes a palm connected to phalange bones (e.g.,
245) of fingers, and metacarpal bones of thumbs via joints (e.¢g., 244).

[0082] The positions/orientations of the rigid parts of the skeleton model
Hustrated in FIG. 3 are controlled by the measured orientations of the corresponding
parts of the user illustrated in FIG. 1. For example, the orientation of the head (207}
of the skeleton model is configured according o the orientation of the head (107) of
the user as measurad using the head module (111); the orientation of the upper arm
(205} of the skeleton model is configured according to the orientation of the upper
arm (105) of the user as measured using the arm module {(115); and the orientation
of the hand (208) of the skeleton model is configured according to the orientation of
the hand (106) of the user as measured using the hand module (117); efc.

[0083] The prediction model (118) can have multiple artificial neural networks
trained for different motion patterns of different kinematic chains.

[0084] For example, a clavicle kinematic chain can include the upper arms (203
and 205), the torso (232) represented by the clavicle (231), and optionally the head
(2073, connected by shoulder joints (241 and 234) and the naeck.  The clavicle
kinematic chain can be used o predict the orientation of the torso {(232) based on the

motion history of the clavicle kinematic chain and the current orieniations of the

13



WO 2020/009715 PCT/US2018/052092

upper arms (203 and 205), and the head (207).
[0085] For example, a forearm kinematic chain can include the upper arm (205)
the forearm (215}, and the hand (208) connected by the elbow joint (242) and the

wrist joint {243).  The forearm kinematic chain can be used to predict the orientation

7

of the forearm (215) based on the motion history of the forearm kinematic chain and
the current orientations of the upper arm (205), and the hand (208).

[0088] For example, a hand kinematic chain can include the paim of the hand
(208), phalange bones (245) of fingers on the hand (208), and metacarpal bones of
the thumb on the hand (206) connected by joints in the hand (206). The hand
kinematic chain can be used o predict the orientation of the phalange bones and
metacarpal bones based on the motion history of the hand kinematic chain and the
current orientations of the palm, and a subset of the phalange bones and metacarpal
bones tracked using IMUs in a hand module {e.g., 117 or 119).

[0087] For example, a torso kinematic chain may include clavicle kinematic chain
and further include forearms and/or hands and legs. For example, a leg kinematic
chain may include a fool, a lower leg, and an upper leg.

[0088] An artificial neural network of the prediction model (118) can be frained
LsSing a supervised machine learning technique to predict the orientation of a part in
a kinematic chain based on the orientations of other parts in the kinematic chain
such that the part having the predicted orientation does not have {0 wear a separaie
sensor device to track ils orientation.

[0089] Further, an artificial neural network of the prediction model (116) can be
trained using a supervised machine leaming technique o predict the orientations of
parts in a kinematic chain that can be measured using one tracking technigue based
on the orientations of parts in the kinematic chain that are measured using ancther
fracking technique.

[0090] For example, the tracking system as illustrated in FIG. 2 measures the
orientations of the modules (111, 113, ..., 119) using IMUs (e.g., 111, 113, ...). The
inertial-based sensors offer good user experiences, have less restrictions on the use
of the sensors, and can be implementad in a computational efficient way. Howaeaver,
the inertial-based sensors may be less accurate than certain tracking methods in
some situations, and can have drift errors and/or accumulated errors through time
integration.

[0091] For example, an optical tracking system can use one or more cameras {o
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track the positions and/or orientations of optical markers that are in the fields of view
of the cameras. When the optical markers are within the fields of view of the
cameras, the images captured by the cameras can be usad {o compute the positions
and/or orientations of oplical markers and thus the orientations of parts that are
marked using the optical markers. However, the optical tracking system may not be
as user friendly as the inertial-based tracking system and can be more expensive to
deploy.  Further, when an optical marker is out of the fields of view of cameras, the
positions and/or orientations of optical marker cannot be determined by the optical
fracking system.

[0092]  An artificial neural network of the prediction model (1186) can be trained 1o
predict the measurements produced by the optical tracking system based on the
measurements produced by the inertial-basead tracking system. Thus, the drift
errors andf/or accumulated errors in inertial-based measurements can be reduced
and/or suppressed, which reduces the need for re-calibration of the inertial-based
tracking system.

[0093] FIG. 4 shows a method to train a recurrent neural network {(RNN) (307},
For example, the method of FIG. 4 can be used to generate the prediction mode!
(116) of FIG. 1 and/or FIG. 2.

[0094] In FIG. 4, human motions (303) are tracked/measured using two tracking
systems (301 and 302). For example, the inertial-based system of Fi3. 2 can be
used as the tracking system A (301); and an optical tracking system can be used as
the tracking system B (302).

(0095 For example, a person can wear the sensor devices (111, 113, 115, 117
and 119) that contains the IMUs {e.g., 121, 131, ... ) for the inertial-based system.
To train the recurrent neural network (RNN) (307), optical markers can be attached
to the person for the optical tracking system (e.g., 302).

[0096] Optionally, the optical markers can be integrated on the sensor devices
(111, 113, 115, 117 and 119) to track the motions (303) for the training of the
prediction model {116) that includes the recurrent neural network (RNN) (307).
(00871 Optionally, additional optical markers are attached to certain paris of the
user that do not wear the sensor devices that contain IMUs. For example, the
forearms (112 and 114) and the torso (101) of the user, as illustrated in FIG. 1 do not
have attached IMUs for the measurements of their orientations via the inertial-based

system {(e.g., 301); however, the forearms (112 and 114) and the torso (101) of the
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user can have optical markers to measure their orientations using the optical tracking
system {e.g., 302).

[0098] In general, the optical tracking system (e.g., 302) can be replaced with
another fracking system that makes the orientation measuremenits based on infrared
signals, ultrasound signals, radio frequency identification tag (RFID) signal, etc.
Further, a combination of tracking systems can be used as the tracking system B
(302} to obtain the most accurate measurements B (306} of the human motions
(303). The tracking system B (302) is used to measure the orientations of at least
some of the parts of the person not measurad by the tracking system A (301) and
optionally the parts of the person that are measured by the tracking system A (301).
[0099] After the person wears the sensor modules and optical markers for the
tracking system A (301) and the tracking system B (302}, the person may perform a
plurality of sequences of actions that involve various motion paiterns of the kinematic
chains.

101001 The sequences can start from a common calibration pose, such as a pose
as illustrated in FIG. 1. Other examples of calibration poses can be found in U.S.
Pat. App. Ser. No. 15/847 669, filed Dec. 19, 2017 and entitied "Calibration of inertial
Measurement Units Altached to Arms of a User and to a Head Mounted Device,”
.S, Pat. App. Ser. No. 15/817,646, filed Nov. 20, 2017 and entitled "Calibration of
inertial Measurement Units Attached to Arms of a User to Generate Inputs for
Computer Systems,” the entire disclosuras of which applications are hereby
incorporated herein by reference.

[0101]  The positions and/or orientations of the parts of the person, such as the
head (107), the arms (103, 105, 112, 114) and hands (106 and 108}, and torso
(101}, can be measured/tracked using the tracking systems A and B (301 and 302}
concurrently {o generate measurements A and B (305 and 306) respectively.

[0102]  The recurrent neural network (RNN) (307) can be trained, using a
supervised machine learning technique, to predict the measurements B (308)
generated by the fracking system B (302) (e.g., an optical tracking system, another
tracking system, or a combination of tracking systems) based on the measurement A
(305) generated by the tracking system A (301) {e.g., an inertial-based system as
Hlustrated in FIG. 2).  The supervised machine learning technique adjusts the
parameters in the recurrent neural network (RNN) (307) to minimize the difference

between the actual measurements B (308) and the predictions made using the
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measurements A (305) as input to the recurrent neural network (RNN) (307). The
recurrent neural network (RNN) (307} having the adjusted parameters provide a
RNN model (309) that can be used as the prediction mode! (116) in FIG. 1 and/or
FiG. 2.

(01031  The recurrent neural network (RNN) (307) may include a network of Long
Short-Term Memory (LSTM) units to selectively remember histories of states based
on which predictions are made.

[0104] The sequences of actions performed by the person performing the human
motions (303) can be sampled at a predetermined time interval to oblain the
measurements (305 and 306) for the training of the recurrent neural network (RNN)
{(307).

[0108] In some instances, some sequences of actions are repeated muitiple timeas
and/or at different speeds; and scaling of the time measurement and/or double
exponential smoothing can be applied to input parameters 1o align the datasets of
the sequences and/or to normalize the time scale.

[0108]  After the RNN model (309) is trained to have the capability to predict the
measurements B (306) generated using the tracking system B (302), it is no longer
necessary {0 use the tracking system B (302).  For example, the RNN model (309)
can be developed in a manufacturing facility and/or a developer’s facility.  Users of
sensor modules (e.q., 111, 113, ..., 119) do not need to wear optical markers or
other devices that are used in the tracking system B (302), as illustrated in FIG. §.
[0107] FIG. 5 shows a method to use the RNN {o predict movement
measurements of one tracking system based on movement measurements of
another tracking system according to one embodiment.

[0108] InFIG. 8, a tracking system A (301) (e.qg., the inertial-based system
Hustrated in FIG. 2) is used to track user motions (304) of a user without tracking
system B (302) {e.g., an optical tracking system). The measurements A (315) of
the user maotions (304) measured using the tracking system A (301) (e.g., the
inertial-based system illustrated in FIG. 2) are used in the RNN model (309) to
generate the predictions (316) of measurements B that would be generated by the
fracking system B (302). The predictions (316) of measurements B can be provided
to the motion processor (145) to control the skeleton model (143) (e.q., as llustrated
in FIG. 3), as if the tracking system B (302) were used to obtain the measurements.
[0109] For example, an RNN model (309) having LSTM units can be trained to
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predict the orientation measurements generated by an optical tracking system for a
kinematic chain using orientation measurements of part of the kinematic chain
generated by the sensor modulas having the IMUs,

[0110] For example, sensors modules (113 and 119) are attached to the upper
arm (103) and the hand (119) in a forearm kinematlic chain using measurements
generated from the IMUs (e.g., 131) in the sensor modules (113 and 119). The
RNN model (309) predicts, from the IMU measurements for a sequence of the user
motions (304), the orientation measurements that would be generated by an optical
fracking system not only for the forearm (112) in the forearm kinematic chain but aiso
for the upper arm {103) and the hand (108). The predicted onientation
measurements are used in the motion processor (145) to configure the
corresponding forearm kinematic chain of the skeleton (143}, including the forearm
(233), the upper arm (203) and the hand (208).

0111] In some instances, it is not necessary 1o use a tracking system
implemented using one technigue (e.g., optical tracking system) to calibrate the
measurements of a tracking system implementad using ancther technigue {e.g.,
inertial-based tracking system). The prediction model (116) can be trained to
predict the orientations of parts that have missing sensor modules without using
multiple fraining technologies, as illustrated in FIG. 6.

10112] FIG. 6 shows a method to train a recurrent neural network (RNN) (337) io
predict the measurements of missing sensor modules.

[0113]  In FIG. 6, human motions (303) of a person wearing both tracking devices
A (331 and tracking devices B {332) are measured. For example, the tracking
devices A (331) correspond to the head module (111), arm modules (113 and 115)
and hand modules (117 and 119) as illustrated in FIG. 1 and/or FIG. 2. In FIG. 1,
sensor modules are missing from the forearms (112 and 114) and the torso (101).
[0114]  Toirain a recurrent neural network (RNN) (337) to predict the
measurements of the missing sensor modulas, the method of FIG. 8 uses the
tracking devices B (332) that are additional IMU modules attached the forearms (112
and 114) and the torso (101).  The additional IMU modules can be similar to the
arm module {113) and attached to the forearms (112 and 114) and the torso (101}
via armband, strap and/or other ways o attach the module {o the respective
locations on the person that performs the human motion.

[0115] A supervised machine learmning technigue can be applied o the recurrent
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neural network (RNN) (337) using the measurements A (335) generated by the
tracking devices A (331) to predict the measurements B (336) generated by the
tracking devices B (333).  The supervised machine learming adjusts the parameters
of the recurrent neural network (RNN) (337} to minimize the differences between the
measurements B (338) and their predictions made by applying the measurements A
(335) as input to the recurrent neural network (RNN) (337).  The recurrent neural
network (RNN) (337) and its trained parameters provide the RNN model {(339) that
can be used (o make the prediction of the measurements of the tracking devices B
(332). Thus, when the RNN model (338) is used, the tracking devices B (332) can
be omitied, as illustrated in FIG. 7.

[0116] FIG. 7 shows a method to use the RNN trained using the method of FIG. 6
to predict movement measurements of missing sensor modules based on movement
measurements of attached sensor modules according to one embodiment.

01171  InFIG. 7, tracking devices A (331) (e.g., 111, 113, 115, 117 and 119 in
FIG. 1 and/or FIG. 2) are used to track user motions (304) of a user without tracking
devices B (332). The measurements A (345} of the user motions (304) measured
using the tracking devices A (331) (e.g., 111, 113, 115, 117 and 119) are used as
input {o the RNN model (339) to generate the predictions (3486) of measurements B
that wouid be generated by the tracking devices B (332) f the tracking devices B
(332) were used. The measurements A (345) and the predictions (348) of
measurements B can be provided o the motion processor (145) to control the
skeleton model {143) (e.qg., as illustrated in FiG. 3), as if both the tracking devices A
(331} and the tracking devices B (332} were usad.

[0118] For example, an RNN model (339) having LSTM units can be trained to
predict the orientation measurements generated by sensor modules having IMUs for
one or more parts of a kinematic chain using orientation measurements of the
remaining parts of the kinematic chain generated by the sensor modules having the
IMUs such that the sensor modules having IMUs can be omitted for the one or more
parts of a kinematic chain.

[0119] For example, sensors modules {113 and 119) are attached to the upper
arm (103} and the hand (119) in a forearm kinematic chain using measurements
generated from the IMUs {e.g., 131) in the sensor modules (113 and 119). The
RNN model (339) predicts, from the IMU measurements for a sequence of the user

motions (304), the orientation measurements that would be generated by a sensor
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module having an IMU {e.g., similar to the arm module (113)) if such a sensor
moduie were attached to the forearm (112) in the forearm kinematic chain.  The
predicted orientation measuraments (346) for the forearm (112) and the
measurements for the upper arm {(103) and the hand (119) are used together in the
motion processor (145) to configure the corresponding forearm kinematic chain of
the skeleton (143), including the forearm (233), the upper arm (203) and the hand
(208).

[0120] Since the prediction (348) can be obtained from the use of the sensor
moduies (113 and 119) without actually using a sensor module to track the
orientation of the forearm (112), the user performing the user motions (304) does not
have to wear the additional sensor module on the forearm (112).  Thus, the user
axperience is improved, and the cost of the tracking system for the user is reduced.
[0121] FIG. 8 shows a method to train an artificial neural network to predict
orientation measurements.

10122] The method of FIG. 8 includes attaching (401) tracking devices o at least
one kinematic chain of a person, including first fracking devices that are separated
by second fracking devices on one or more Kinematic chains.

[0123] For example, the first tracking devices are an arm module {(115) on an
upper arm (105) and a hand module {(117) on a hand (108); and the one or more
second tracking devices include a tracking device on a forearm (114) on a forearm
kinematic chain that includes the upper arm (105), the forearm {114}, and the hand
(106) connected via the elbow joint and the wrist joint.  The tracking device on the
forearm {114} separates the arm module (118) and the hand module (117) on the
forearm Kinematic chain.  The arm module (115) and the hand module (117) include
IMUs to track their orientations in an inertial-based tracking system and can have
optical markers to separately measure their orientations using an optical tracking
system. The tracking device on the forearm (114) can be an optical marker used to
measure its orientation in the optical tracking system and can optionally include an
IMU to track its orientation in the inertial-based tracking system. When the tracking
device on the forearm (114) enables tracking in both the inertial-based tracking
system and the optical tracking system, the tracking device on the forearm (114) can
be implemented in a same way as the arm module (115).

10124] The method of FIG. 8 further includes performing (403) a plurality of

sequences of actions (303) involving the least one kKinematic chain.  The sequences
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of actions (303) start from a common calibration pose {e.q., as lustrated in FIG. 1 or
another pose). The actions can be designed to simulate typical actions in an
application (147), such as a virtual reality game, an augmented reality application,
etc.

[0128] The method of FIG. 8 further includes: recording (403) orientations of the
first and second tracking devices in the sequences, where orientations of the first
tracking devices are tracked using both a first system (301) (e.q., an inertial-based
fracking system) and a second system (302) (e.g., an optical tracking system) and
orientations of the one or more second tracking devices are tracked using the
second system (302).  Optionally, the orientations of the one or more second
tracking devices can also be tracked using the first system (301} {(e.g., the
inertial-based tracking system) and used in situations where the second system
(302} is incapable of measuring the orientation of the one or more second tracking
devices. For example, when in a certain position, the optical marker on the forearm
(114} is out of the field of view of a tracking camera of the optical tracking system,
the orientation determined from the IMU attached {o the forearm (114) can be used
to generate an orientation measurement of the forearm (114).  For example, when
the optical marker is visible before and/or after the obscured position in an action
sequence, the orientation measurements of the forearm (114) obtained from the IMU
measurements of the forearm (114) can be calibrated via the measurements from
the optical tracking system to calculate an orientation of the forearm at the obscured
position with an improved accuracy that is substantially the same as the
measurement from the optical tracking system.

[0126] The method of FIG. 8 further includes: fraining (407) an artificial neural
network (e.g., 307) o predict the orientations of the first and second tracking devices
measured by the second system (302) (e.g., an optical tracking system) based on
the orientations of the first tracking devices measured by the first system (301) {e.g.,
an inertial-based tracking system).

[0127]  In some instances, different kinematic chains are separated trained using
separate artificial neural networks.  The trained networks can be usead separately for
the individual kinematic chains for improved computational efficiency.  Alternatively,
an artificial neural network can be trained for the kinematic model of the entire
skeleton (143) for universal applications.

[0128] The trained artificial neural network can be re-trained using a
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reinforcement learning technigue to improve its prediction accuracy in some motion
sCenarios.

[0129] FIG. 9 shows a method to track user movements using the artificial neural
network trained using the method of FIG. 8.

(01301 The method of FIG. 9 includes: attaching (411) tracking devices {o at lsast
one kinematic chain of a user, including first tracking devices but no second tracking
devices on paris that separate the first track devices in one or more kinematic
chains; performing (413) a sequence of actions (304) involving the least one
kKinematic chain, starting from a calibration pose; generating (415) orientation
measurements of the first tracking devices in the sequence using a first system (301}
but not a second system (302); applying (417) the orientation measuremenis to an
artificial neural network, previously trained (e.g., using the method of FIG. 8) to
predict the orientations of the at least one kinematic chain as measured by the
second system (302) based on measurements of the first tracking devices tracked by
the first system (301); and generating (419) predicted corientation measurements of
the at least one kinematic chain from applying the orientation measurements {o the
artificial neural network.

[0131] For example, a computing system includes: a piurality of sensor modules
{e.q., 111, 113, 115, 117, and/or 119) and a computing device (141). Each of the
sensor modules has an inertial measurement unit {e.g., 121 or 113) and is aitached
to a portion (e.g., 107, 113, 115, 1086, or 108} of the user to generate motion data
identifying a sequence of orientations of the respective portion of the user. The
inertial measurement unit includes a micro-electromechanical system (MEMS)
gyroscope and may further include a magnetometer and a MEMS accelerometer.
The computing device provides the sequences of orientations measured by the
sensor modules as input to an artificial neural network (e.g., 116), obtains at least an
orientation measurement of a part of the user as cutput from the artificial neural
network (e.g., 118), uses the orientation measurement oblained from the artificial
neural network 1o configure or set the orientation of a rigid part in a kinematic chain
of a skeleton model (143) representative of the user, and controls an application
(147} according to the state of the skeleton model (143).

[0132] For example, the artificial neural network can be a recurrent neural
network previously frained to make predictions matching with orientation

measurements generated using an optical tracking system. The recurrent neural
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network contains Long Short-Term Memory (LSTM) units to remember a set of state
histories derived from the input seguences of orientations to predict the current
orientations of the kinematic chain.

[0133] Since the artificial neural network can predict the orientation
measurements generated using an optical tracking technigue, the part of the user
(and other parts of the user) is not tracked using optical tracking.

[0134] For example, the orientations of the part of the user is tracked using one of
the plurality of sensor modules; and the artificial neural network is used (o improve
the IMU-based measurements to remove drift error and/or accumulated error.
[0138] For example, the orientations of the part of the user is not even tracked
using a sensor module containing an inertial measurement unit, since its orientation
can be predicted using applying orientation measurements of other parts of the user
in the kinematic chain as input to the artificial neural network.

[0136] For example, the plurality of sensor modules (e.g., 111, 113, 115, 117,
andfor 119) tracks portions (e.g., 107, 103, 105, 106, and/or 108) of the user
correspond o a subset of rigid parts (e.g., 207, 203, 205, 2086 and/or 208) in the
kinematic chain of the skeleton model (143); and the rigid part {(e.g., 215, 223, or
232) corresponding to the part (e.g., 114, 114, or 101} of the user that is not tracked
separates, in the kinematic chain, the subset of rigid parts {e.g., 207, 203, 205, 206
and/or 208).

[0137] For example, the artificial neural network is trained to predict orientation
measurements generated using a separate tracking system; and the artificial neural
network provides, as output, predicted orientation measurements to be generated by
the separate tracking system for the portions {e.g., 107, 103, 105, 1086, and/or 108)
of the user to which the plurality of sensor modules (e.g., 111, 113, 115, 117, and/or
119) are attached.

[0138] For example, o train the artificial neural network, a set of sensor modules
are attached {o a person who performs a plurality of sequence of motions to
generate first orientation measurements and second orientation measurements from
the set of sensor modules. A supervised machine learning technique is used {o
irain the artificial neural network to predict the second orientation measurements
based on the first orientation measurements.

10139] For example, the first orientation measurements are measured using a first

technigue; the second orientation measurements are measured using a second
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technigue; and the artificial neural network is trained to predict the measurements
made using the second technigue (e.g., optical tracking) based on the
measurements generated using the first technique (e.q., IMU-based fracking).
10140] For example, when the artificial neural network is found to have inaccurate
predictions in some scenarios, the artificial neural network can be further trained
using a reinforcement learming technique, based on further measurements made in
connection with such scenarios.

[0141] In some instances, the second orientation measurements identify
orientations of the plurality of sensor modules; and the first orientation
measurements identify orientations of a subset of the plurality of sensor modules
such that measurements of the subset of sensor modules made using one fracking
technique {(e.g., IMU-based tracking) can be used with the artificial neural network 1o
predict the orientation measuremenis of the entire set of sensor modules made using
another tracking technigue (&.g., optical tracking).

10142] In other instances, the first orientation measurements identify orientations
of a first subset of the plurality of sensor modules; and the second orientation
measurements identify orientations of a second subset of the plurality of sensor
modules, such that the measurement from one subset of the sensor devices can be
used to predict the measurements made by another subset of the sensor devices.
10143] The skeleton model (143) can include muitipie ANN models. Each of the
ANN models is trained to predict, using measurements obtained using a tracking
system A (301) {e.g., an IMU-based sysiem, such as that illusirated in FIG. 2), the
motion measurements of parts of a kinematic chain that would have been measured
using a tracking system B (302) {e.g., an optical tracking system). However, when
two ANN models are used to predict the motion measurements of two kinematic
chains that have an overlapping portion, the ANN models can generate different
predictions for the same overlapping portion.

[0144] For example, a forearm ANN model can be used to predict the
motion/orientation measurements of a forearm chain that coniains the hand (106),
the forearm (114) and the upper arm (105). A clavicle ANN model can be used o
predict the motion/orientation measurements of a clavicle chain that contains the left
upper arm (105}, the torso (101}, and the night upper arm (103) {and optionally the
head (107)).

[0145] Using the forearm ANN model, the upper arm (105) is predicted to have an
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oriertation, which is in general different from the orientation of the upper arm (105)
predicted using the clavicle ANN model.

[0148] To use both the forearm ANN model and the clavicie ANN model, a further
ANN can be used to consider the discrepancy generated by the forearm ANN model
and the clavicle ANN model and predict an orientation of the upper arm (105}, ina
way similar to that discussed below in connection with FIG. 10.

[0147] FIG. 10 illustrates the use of a bidirectional long short-term memory
(BLSTM) network to combine the results from different artificial neural networks
according to one embodiment.

[0148] InFIG. 10, a set of devices (A, ..., C, ..., E) are used to generate their
orientation measurements at time instances 1, 2, ..., t, where the time instances are
sequentially number for identification.  The adjacent time instances can have a
fixed, predetermined time interval, or variable time intervals that are dependent on
the speed of motion.

10149] In FIG. 10, two RNN models (511 and 513) are used for the prediction of
motion measurements, such as the orientations of parts of a user and/or the
corresponding rigid parts of a skeleton mode! (143) representing the user in a virtual
reality application, or an augmented reality application. One RNN model (511) is
trained for the prediction of motion measurements of kinematic chain X {e.g., a
forearm Kinematic chain); and another RNN model (513} is trained for the prediction
of motion measurements of kinematic chain Y (&.¢., a clavicle kinematic chamn). For
example, a forearm kinematic chain is tracked using the hand module {(117) and the
arm maodule {113) to generate input measurements of their orientations for a
corresponding RNN model (2.g., 511); and a clavicle kinematic chain is tracked
using the arm modules (113 and 115) and optionally the head module (111) to
generate input measurements of their orientations for another corresponding RNN
model (e.g., 513). The tracking of the forearm kinematic chain and the tracking of
the clavicle kinematic chain can be performed using two sets of sensor devices {(e.q.,
M5 and 117, and 113, 115, and 111) that share a common sensor device, such as
the arm module {(115).  The forearm kinematic chain and the clavicle kinematic
chain share a common part (.q., the upper arm (105)), which orientation of which is
measured using the common sensor device C, such as the arm module {115).
101501 From the seguences of orientation measurements (501, ..., 505) from the

devices (e.g., 117 and 115) for kinematic chain X (&.g., the forearm kinematic chain)
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at time instances 1, 2, ..., {, the RNN model! (511) generates g portion of the
predicted measurements (515) that includes the predicted orientations (517) of the
commaon sensor device C {e.g., arm module (115)) at time instances -1 and t+1.
The device C (e.g., arm module (115)) also be used to generate inputs (505) to the
kinematic chain Y {&.q., the clavicle kinematic chain).

[01581] In one implementation, the devices (A, ..., C, and E) provide orientation
measurements (501, ..., 505, ..., 509) at each of the time instances 1, 2, ..., L

When the measurements at time instance tis provided to the RNN models (511 and
513), the RNN models (511 and 513) generate the predicted measurements (517
and 519) of the shared device C at a time instance before tat t-1 and at a time
instance after t at t+1.  The RNN models (511 and 513) can optionally updale a
prediction of a measurement at a time instance -1 when input measurements at time
instance t that is afier the time instance -1 becomes available.

[0182] For example, when the sequences of input measurements are provided as
input to the RNN models (511 and 513) for time instances 1, 2, ..., 1-2, the RNN
modeis (511 and 513) can generate the predicted measurements of the shared
device C at a time instance before the last instance -2 at -3 and a time instance
after the last instance -2 at t-1.  After the input measurements for time instances t-1
and t are further added to the RNN models (511 and 513), the RNN model (511 and
513) can optionally update the prediction for the measurement at the time instance
-1 using the input measuraments at time instances -1 and t.

[0153] Alternatively, the predicted measurements of the past time instances are
stored and used as inputs to the BLETM network (521).  For example, the predicted
orientation measurements of device C at the time instance t-1 is generated based on
the sequences of input measurements at time instances 1, 2, ..., -2, which is stored
and used in the BLETM network (521) when the sequences of input measurements
at time instances 1, 2, ..., t allows the RNN model (511 and 513) to generate the
predicted crientation measurements of device C at the time instance t+1.

[0154] From the sequences of orientation measurements (505, ..., 509) from the
devices (e.g., 115, 111 and 113) for kinematic chain Y (&.¢., the clavicle kinematic
chain) at time instances 1, 2, ..., {, the RNN model (513) generates a portion of the
predicted measurements (519), including the predicted orientations {§17) of the
device C (e.g., arm module (115)) al time instances t-1 and t+1.

[01585] Since the device C (e.g., arm module (115)) is in both the kinematic chain
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X {e.g., the forearm kinematic chain) and the kinematic chain Y (&.¢g., the clavicle
kinematic chain), different predicted measurements (515 and 519) are generated for
the device C (e.g., arm module {(115)) at time instances -1 and t+1.  The different
predictions at times t-1 and t+1 are provided as input to a bidirectional long
short-term memory (BLSTM) network (521} to generate a predicted orientation of
device C (e.g., arm module {115}) at the time instance t.

[01586] The bidirectional long short-term memory (BLSTM) network (521) can be
frained using a supervised machine leaming technique.

(04577 For example, the tracking system A (301) (e.g., an IMU-based fracking
system} can be used {0 generate input measurement A (305}, including input
measurements for the kinematic chain X {(e.g., the forearm kinematic chain) and
input measurements for the kinematic chain Y {(e.g., the clavicle kinematic chain).
The tracking system B (302) (e.g., an optical tracking sysiem) can be used o
generate desired measurement B (306) includes desired measurements for the
kinematic chain X {(e.g., the forearm kinematic chain) and desired measurements for
the kinematic chain Y (&.g., the clavicle kinematic chain). The RNN modeis (511
and 513) are separated trained to predict the desired measurements B (306) from
the input measurements A (305).  Further, the outputs of the RNN models (511 and
513) are used as inputs to the BLSTM network (521), which is further frained to
predict the desired measurement of the device C as in the measurements B (306)
generated by the tracking system B (302).

[01588] InFIG. 10, the BLSTM network (521) does not use the predicted
orientation measurements of device C at time instance t, predicted from the RNN
models (511 and 513), in generating the predicted orientation (523) of device C at
time instance L.

(015891  In other implementations, the BLSTM network (521) may receive further
inputs, such as the orientation measured by device C at time instance {, the
orientation(s) measured by device C before the time instance t, and/or orientations
measured by other devices in the kinematic chains X and Y at the time instance t
and/or other time instances.

[0160] FIG. 10 illustrates an example of combining two kinematic chains. The
system can be exiended to combining more than two kinematic chains.  For
example, the left forearm kinematic chain can be tracked using sensing devices

(119, 113); the right forearm kinematic chain can be tracked using sensing devices
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(117 and 115}, and the clavicle kinematic chain can be tracked using sensing
devices (113, 115, and optionally 111).  The left forearm kinematic chain and the
clavicle kinematic chain share a common part (103) that is tracked using a common
device (113); and the right forearm kinematic chain and the clavicle kinematic chain
share a common part (105) that is tracked using a commaon device (115).  RNN
models for the left forearm kinematic chain and the clavicle kinematic chain can
generate different predicted orientation measurements for their shared device (113)
and part (103); and RNN models for the right forearm kinematic chain and the
clavicle kinematic chain can generate different predicted orientation measurements
for their shared device (115) and part (105).  Two BLSTM networks (e.g., 521) can
be used, one to combine the different predictions for the shared device (113} in the
left forearm kinematic chain and the clavicle kinematic chain, and the other to
combine the different predictions for the shared device (115) in the right forearm
kinematic chain and the clavicle kinematic chain.  The BLSTM networks (e.g., 521}
respectively generate predicted orientations of the shared devices (113 and 115).
[0161]  Alternatively, a single BLSTM network {(e.g., 521) can be used to combine
the different predictions for the shared device {(113) in the left forearm kinematic
chain and the clavicle kinematic chain and the different predictions for the shared
device (115) in the right forearm Kinematic chain and the clavicle kinematic chain to
generale predicted orientations of the shared devices (113 and 115) respectively.
[0162] FIG. 10 illustrates an example of combining kinematic chains using a
BLSTM network {(521).  In general, other artificial neural networks and/or recurrent
neural networks can aiso be used.

[0163] FIG. 11 illusirates another technique o combine the results from different
artificial neural networks for kinematic chains that have overlapping portions
according to one embodiment.

[0164] InFIG. 11, the devices (A, ..., C, ..., E) generate input orientation
measurements (501, ..., 505, ..., 509) for the RNN maodels (512 and 514) of different
kinematic chains X and Y in a way similar to that discussed in FIG. 10.

[0165] In FIG. 11, the predicted orientations (535) include the orientations (537
and 539) predicted for device C at the time instance t, where the device C is shared
in the kinematic chains X and Y. An average (531) of the different predictions (537
and 539) from the RNN models (512 and 514) for the different kinematic chains (X

and Y) is computed as the predicted orientation (533) of device C at time instance L.
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[0166] Preferably, to reduce the differences between the different predictions
(537 and 539) made for the same device C, the RNN models (512 and 514) are
adjiusted when both the RNN models (512 and 514) are used. The adjustiments are
made to the RNN models (512 and 514) to make the predictions (537 and 539) close
to the input orientation measurement generated by the device C at the time instance
.

[0167] For example, the forget rate of the RNN models (512 and 514) applied {o
the input measurements (505) generated by device C can be decreased to make the
predicted orientations of device C close to the orientation measured by device C.
[0168] For example, the forget rate of the RNN models (512 and 514) applied to
the input measurements (e.g., 501 and 509) generated by devices other than device
C can be increased to make the predicted orientations of device C close to the
orientation measured by device C.

(0169 For example, the weights of the RNN models (512 and 514) applied to the
input measurements (505) generated by device C can be increased to make the
predicted orientations of device C close {o the orientation measured by device C.
(01701 For example, the weights of the RNN models (512 and 514) gpplied to the
input measurements (e.g., 501 and 509) generated by devices other than device C
can be decreased to make the predicted orientations of device C close o the
orierttation measured by device C.

[0171] In some instances, when the RNN models (512 and 514) are used
together, the RNN models (512 and 514) are further trained to minimize the
differences between the predicted meaasurements (537 and 539) for device C.
01721  In some implementations, the average (531) includes weights obtained
using a machine leaming technigue to predict the orientation measurements made
using an optical tracking system. Optionally, the average (531) further receives the
orientation measurement of device C at time instance {, with a weight obtained using
the supervised machine leaming technique.

[0173] The techniques of FIG. 10 and FIG. 11 can be combined and used
together. For example, the adjusted RNN models (512 and 514) in FIG. 11 that
produce reduces differences in the predictions (e.g. 537 and 539) for the share
device C can be used in FIG. 10 to replace the separately trained RNN models (511
and 513); and the BLSTM network (521) can be used to generate a predicted

orientation (523) from predicted orentations (517 and 519) that have reduced
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differences in comparison to those generated by the separately trained RNN models
(511 and 513). Further, the output of the average (531) can be provided as an input
to the BLSTM network (521).

0174  In one implementation, two RNN models (511 and 512) are generated for
a kinematic chain X.  Whan the kinematic chain X is tracked without tracking the
kinematic chain Y, the RNN model (511) that is trained without considering the
differences between the predictions for the device C between the kinematic chains X
and Y is used. When the kinematic chain X and the kinematic chain Y are both
fracked, the RNN model (512) that is frained and/or adjusted to reduce the
differences between the predictions for the device C between the kinematic chains X
and Y is used.

[0178]  Alternatively, after the RNN models (8§12 and 514) are trained to reduce
the differences between the different predictions (537 and 539) for the shared device
C, the RNN models (512 and 514) can be used separately. For example, when the
kinematic chain X is tracked without fracking the kinematic chain Y, the RNN model
(512} is used, and when the kinematic chain Y is tracked without tracking the
kinematic chain X, the RNN model (514) is used.

[0176] FIG. 12 shows a method to train multiple artificial neural networks for
multiple kinematic chains that have overlapping portions according o one
embodiment. For example, the method of FIG. 12 can be used to generate the
RNN models (511 and 513) and the BLSTM network {521) of FIG. 10, and/or the
RNN models (512 and 514) of FIG. 11.

(01771  The method of FIG. 12 includes fraining (551) a first RNN {(e.g., 511, or
512) to predict orientation measurements of a first kinematic chain (e.g., a forearm
kinematic chain). The prediction is made using the measurements A (305) from
track system A (301) (e.g., an iIMU-based tracking system) to match with the
measurements B from tracking system B (302) (&.q., an optical tracking system).
[0178] The method of FIG. 12 further includes training (553) a second RNN (e.g.,
511 or 512) o predict orientation measurements of a second kinematic chain (e.q.,
the clavicle kinematic chain) that shares at least one part (e.g., an upper arm) with
the first kinematic chain (e.g., the forearm kinematic chain), in a way similar to the
training (551} of the first RNN (e.g., 511, or 512).

[0179] The method of FIG. 12 further includes training {555) a third RNN {(e.g.,

521) to predict orientation measurements of the at least one part (e.g., the upper
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arm) shared between the first kinematic chain (e.¢., the forearm kinematic chain) and
the second kKinematic chain (e.g., the clavicle kinematic chain) based at least in part
on prediction results, generated from the first RNN and the second RNN, for the at
least one part (e.9., the upper arm).

(01801 Optionally, the method of FIG. 12 can further include training the first RNN
{e.q., 511, or 512) and the second RNN (e.g., 511 or 512) to reduce prediction
differences between the first RNN (e.g., 511, or 512) and the second RNN {e.g., 511
or 512} for the at least one part (e.q., the upper arm) shared between the first
kinematic chain {&.g., the forearm kinematic chain) and the second kinematic chain
{e.g., the clavicle kinematic chain).

[0181] When the first RNN (e.g., 511, or 512} and the second RNN (e.g., 511 or
512) are trained {o reduce their prediction differences for the sharad part in the first
kinemaiic chain {e.g., the forearm kinematic chain) and the second kinematic chain
(e.g., the clavicle kinematic chainj, the training of the third RNN (g.¢., 521) can be
skipped; and an average (531) can be used to combine the different predictions
{e.q., 537 and 539).

[0182] FIG. 13 shows a method to predict motion measurements of an
overiapping portion of multiple kinematic chains that are module using separate
artificial neural networks according to one embodiment.  For example, the method
of FiGz. 13 can be used in a system illustrated in FIG. 10

[0183] The method of FIG. 13 includes: receiving (561) sensor measurements
from a plurality of motion sensing devices (e.g., 111, 113, 115, 117, 119); applving
(563} sensor measuraments from a first subset (e.g., 111, 113, 115) of the motion
sensing devices as input to a first RNN (e.g., 511 or 512) to obtain first predicted
measurements of a first kinematic chain having a first set of parts (e.g., head (107),
torso (101), and upper arms (103 and 105); applying (565) sensor measurements
from a second subset (e.qg., 117 and 115, and/or 113 and 119) of the motion sensing
devices as input {o a second RNN (513 or 514) to obtain second predicted
measurements of a second kinematic chain having a second set of parts {e.q., hand
(1086), forearm (114), and upper arm {105}, and/or hand (108}, forearm {112}, and
upper arm (103}); and applying (567) at least a portion of the first predicted
measurements (e.g., 517 or 537) and a portion of the second predicted
measurements {e.g., 519 or 539) o a third RNN (e.g., 521) to obtain third predicted

measurements (e.g., 523) of at least one part (e.g., 105 or 103) that is in both the
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first kinematic chain and the second kinematic chain.

10184] FIG. 14 shows a method to use a skeleton model having multiple artificial
neural networks for multiple kinematic chains according to one embodiment.  For
example, the method of FIG. 14 can be used in a system illustrated in FIG. 10 or
FIG. 11

[01858] The method of FIG. 14 includes receiving (581) sensor measurements
from a plurality of motion sensing devices (e.g., 111, 113, 115, 117, and/or 118).
[0186]  If (583) the devices track motions of a first Kinematic chain {(e.g., head
(1073, torso (101), upper arms {105 and 103), the method of FiG. 14 further includes
obtaining (585) predicted motion measurements {e.g., 517 and/or 537) from a first
RNN (511 or 512) using at least g portion of the sensor measurements.

(01871 I (587) the devices track motions of a second kinematic chain (e.g., hand
arm (103)), the method of FIG. 14 further includes obtaining (589) predicted maotion

measurements (519 and/or 539) from a second RNN (513 or 514) using at least a

(106}, forearm (114), and upper arm {105); or hand (108}, forearm (112}, and upper

portion of the sensor measurements.

[0188]  If (591) the devices track both the first and second kinematic chains, the
method of FIG. 14 further includes obtaining (593) predicted motion measurements
(523} of a commaon portion of the first and second chains from a third RNN (e.g.,
521) using at least part of the predicted motion measurements (e.g., 517 and 519)
from the first and second RNNs (511 and 513).

[0189] In some instances, in response (o a determination that the devices frack
both the first and second kinematic chains, the first RNN (511) and the second RNN
are adjusted to reduce the difference between the predictions made for the common
portion of the first and second chains.

(01801 For example, a system can include: a plurality of sensor modules {(e.g.,
111, 113, 115, 117, and/or 119); and a computing device (141) coupled to the
plurality of sensor modules.

[0191] Each respective sensor module (e.g., 111, 113, 115, 117, or 119) has an
inertial measurement unit (g.qg., 121, 131, ...} and is attached t0 a portion of a user to
generate motion data identifying a sequence of orientations of the portion of the
USEF.

10192] The plurality of sensor modules including a first subset (e.g., 111, 113,

115) and a second subset {e.g., 115 and 117} that share a common sensor module
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{e.g., 115) between the first subset and the second subset.

10193] The computing device (141) provides orientation measurements {e.g., 501,
..., 505} generatad by the first subset (e.g., 111, 113, 115) as input to a first artificial
neural network {511 or 512) and obtains, as output from the first artificial neural
network (511 or 512), at least one first orientation measurement {e.g., 517 or 537)) of
the common part {e.g., 105) of the user, on which part (115) the common sensor
module (g.g., 115) is attached.

[0184] The computing device (141) further provides orientation measurements
(e.g., 505, ..., 509) generated by the second subset (e.g., 115 and 117) as input to a
second artificial neural network (513 or 154) and obtains, as output from the second
artificial neural network (513 or 514), at least one second orientation measurement
(e.g., 518 or 539) of the commuon part {e.g., 105) of the user.

[0195] The computing device {141) generates a predicted orientation
measurement {e.q., 523) of the common part (e.g., 105) of the user from combining
{e.q., 521 or 531) the al least one first orientation measurement (517 or 537) of the
common part (e.g., 105) of the user and the at least one second orientation
measurement (519 or 539) of the common part (e.g., 105) of the user.

[0196] For example, the first and second artificial neural networks can be
recurrent neural networks containing long short-term memory (LSTM) units; and the
combining can be performed using a third artificial neural network (e.g., 521) that at
least contains a bidirectional long short-term memory (BLSTM) unit.  Alternativaly,
the combining can be performed via averaging the first orientation measurement
(537} of the common part {e.g., 105} of the user and the second orientation
measurement (539) of the common part (e.q., 105) of the user.

[0197] For example, the predicted orientation measurement (523) of the common
part is predicted for a first time instance {; the at least one first orientation
measurement (517) of the common part {e.g., 105) of the user includes: an
oriertation measurement, predicted by the first artificial neural network, of the
common part (e.g., 105) at a second time instance -1 before the first time instance t;
and an orientation measuremeant, predictad by the first artificial neural network (511
or 512), of the common part (e.g., 105) at a third time instance after the first time
instance; and the at least one second orientation measurement (519) of the common
part (e.g., 105) of the user includes: an orientation measurement, predicted by the

second artificial neural network (513 or 514}, of the common part (e.g., 105) at the
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second time instance {-1 before the first time instance . and an orientation
measurement, predicted by the second artificial neural network (e.g., 513 or 514), of
the common part {(e.g., 105) at the third time instance t+1 after the first time instance
t.

[0198] In some instances, the predictions made for time instance t-1 are updated
in the artificial neural networks (2.g., 511, 514) using the measurements (501, ...,
505, ..., 509) at the subseguent time instance t.

[0199] For example, the predicted orientation measurement (523 or 533) of the
common part (e.g., 105) is predicted to be measured using an optical tracking
system that is used to train the artificial neural networks used in the prediction such
that the optical fracking system can be eliminated from the system after the artificial
neural networks have been trained.

10200 The computing device (141) can have a skeleton model (143). The
tracked movements of the user control the movements of corresponding parts of the
skeleton modei (143).  For example, the first subset (e.g., 111, 113 and 115) tracks
a first kinematic chain of the user (e.g., head (107}, torso (101), and upper arms (103
and 105)) to control movements of a corresponding kinematic chain (e.g., 207, 232,
203 and 205)) of the skeleton model (143); and the second subset {e.g., 115 and
117} tracks a second chain of the user {(e.¢g., hand (106), forearm (114) and upper
arm {105) to control movemenis of a corresponding kinematic chain (206, 215, 205)
of the skeleton model {143).

10201 In some instances, orientations of a first part (e.q., torso (101)) in the
kinematic chain of the user is not tracked using any inertial measurement unit
attached to the first part {(e.g., torso (101)); orientations of a second part (e.¢g.,
forearm {114)) in the kinematic chain of the user is not tracked using any inertial
measurement unit attached to the second part (e.g., forearm (114)); the first artificial
neural network {e.¢g., 511 or 512) predicts orientations of the first part (e.g., torso
(101} from the orientation measurements generated by the first subset (e.g., 111,
113, 115); and the second artificial neural network (2.g., 513 or 514) predicis
orientations of the second part (e.g., forearm {114)) from the orientation
measurements generated by the second subset (e.g., 115 and 117).

[0202] Each inertial measurement unit {e.g., 121, 131, ...} can include a
micro-electromechanical system (MEMS) gyroscope and optionally, a magnetometer

and a MEMS accelerometer.
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(02031 The artificial neural networks {e.g., 511, 512, 513, 514, 321} can be trained
using a separate tracking system that is absent from the system used to track the
motion of a user {0 control the skeleton model (141) in the computing device. For
example, the separate tracking system can be an optical tracking system that uses
one or more cameras (o determine the orientations of optical markers. To generate
the training dataset, optical markers can be placed on sensor modules similar to
those used to track the motion of the user.

[0204] For example, a plurality of sensor modules can be attached to a person
who performs motions (o generate a training dataset.  In a way similar to the
tracking of the motion of the user, the plurality of sensor modules inciude a first
subset {(e.g., 111, 113 and 115) of the sensor modules o track orientations of a first
kinematic chain (e.g., 107, 101, 103 and 105} of the person and a second subset
{e.g., 117 and 115) of the sensor modules to track orientations of a second kinematic
chain {106, 114 and 105} of the person.  The first kinematic chain and the second
kinematic chain have a common part {e.g., 105) of the person.

[0205] In addition to measuring, using the sensor modules (e.g., 111, 113, 115,
117), a plurality of sequences of orientations of the sensor modules during the
person performing a plurality of sequence of motions, the separate tracking system
is used to measure, independent of measurementis of the sensor modules, the
orientations of the sensor modules {(e.g., 111, 113, 115, and/or 117) during the
person performing a plurality of sequence of motions.

[0206] The first artificial neural network (e.g., 511 or 512) is trained using a
supervised machine learning technique to predict, using orientation measurements
from the first subset (e.g., 111, 113, 115), orientation measurements of the first
kinematic chain {e.q., 107, 101, 103 and 105) generated from the separaie tracking
system.

[0207]  Similarly, the second artificial neural network {(e.g., 513 or 514) is trained
using the supervised machine learning technigue to predict, using orientation
measurements from the second subset {e.g., 115 and 117), orientation
measurements of the second kinematic chain (g.¢., 108, 114 and 105) generated
from the separate tracking system.

[0208] The third artificial neural network can be trained using the supervised
machine learning technique to predict orientation measuremenis of the common part

{e.q., 105) of the person from first predicted orientation measurements (e.g., 537} of
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the common part {e.g., 105) of the person generated from the first artificial neural
network (e.g., 511 or 512 and second predicted orientation measurements {(e.g.,
539) of the common part (2.g., 105} of the person generated from the second
artificial neural network {e.g., 513 or 514).

[0209] Optionally, the first and second artificial neural networks can be further
trained {e.g., using an unsupervised machine learning technique) to reduce
differences between predictions made for the common part {e.g., 105) of the person
from the first and second artificial neural networks respectively.

(02107  The present disclosure includes methods and apparatuses which perform
these methods, including data processing systems which perform these methods,
and computer readable media containing instructions which when executed on data
procassing systems cause the systems to perform these methods.

10211] For example, the computing device {(141), the arm modules (113, 115)
and/or the head module {(111) can be implemented using one or more data
Processing systems.

[0212] Atypical data processing system may include includes an inter-connect
(e.¢., bus and system core logic), which interconnects a microprocessor(s) and
memory.  The microprocessor is typically coupled {6 cache memory.

(02131 The inter-connect interconnects the microprocessor(s) and the memory
together and also interconnects them to input/ouiput (YO) device(s) via /O
controller(s). VO devices may include a display device and/or peripheral devices,
such as mice, keyboards, modems, network interfaces, priniers, scanners, video
cameras and other devices known in the art.  In one embodiment, when the data
processing system is a server system, some of the /O devices, such as printers,
scanners, mice, and/or keyboards, are optional.

[0214] The inter-connect can include one or more buses connected o one
another through various bridges, controllers and/or adapters.  In one embodiment
the YO controllers include a USB (Universal Serial Bus) adapter for controlling USB
peripherals, and/or an {EEE-1394 bus adapter for controlling HEEE-1394 peripherals.
[0218] The memory may include one or more of. ROM (Read Only Memory),
volatile RAM {(Random Access Memory), and non-volatile memory, such as hard
drive, flash memory, sic.

10216] Volatile RAM is typically implemented as dynamic RAM (DRAM) which

requiras power continually in order to refresh or maintain the data in the memory.
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Non-voiatile memory is typically a magnetic hard drive, a magnetic optical drive, an
optical drive {e.g., a DVD RAM), or other type of memory system which maintains
data even after power is removed from the system.  The non-volatile memory may
also be a random access memaory.

(02171  The non-volatile memory can be a local device couplad directly 1o the rest
of the components in the data processing system. A non-volatile memory that is
remote from the system, such as a network storage device coupled to the data
proceassing system through a network interface such as a modem or Ethernet
interface, can also be used.

[0218] Inthe present disclosure, some funclions and operations are described as
being performed by or caused by software code o simplify description.  However,
such exprassions are also used o specify that the functions result from execution of
the code/instructions by a processor, such as a microprocessor.

[0218]  Alternatively, or in combination, the functions and operations as described
here can be implemented using special purpose circuitry, with or without software
instructions, such as using Application-Specific Integrated Circuit (ASIC) or
Field-Programmable Gate Array (FPGA). Embodiments can be implemented using
hardwired circuitry without software instructions, or in combination with software
instructions.  Thus, the techniques are limited neither to any specific combination of
hardware circuitry and software, nor to any particular source for the instructions
axecuted by the data processing system.

102207 While one embodiment can be implemented in fully functioning computers
and computer systems, various embodiments are capable of being distributed as a
computing product in a variety of forms and are capable of being applied regardless
of the particular type of machine or computer—readable media used to actually effect
the distribution.

[0221] Al least some aspects disclosed can be embodied, at least inpart, in
software. That is, the technigues may be carried out in a computer system or other
data processing system in response to its processor, such as a microprocessor,
executing sequences of instructions contained in a memory, such as ROM, volatile
RAM, non-volatile memory, cache or a remote siorage device.

[0222] Routines executed o implement the embaodiments may be implemented
as part of an operating system or a specific application, component, program, object,

module or sequence of instructions referred to as “‘computer programs.” The
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computer programs typically include one or more instructions set at various times in
various memory and storage devices in a computer, and that, when read and
axecuted by one or more processors in a computer, cause the computer to perform
operations necessary to execute elements involving the various aspects.

[0223] A machine readable medium can be used {o store software and data
which when executed by a data processing system causes the system to perform
various methods. The executable software and data may be stored in various
places including for example ROM, volatile RAM, non-volatile memory and/or cache.
Portions of this software and/or data may be stored in any one of these storage
devices. Further, the data and instructions can be obtained from centralized
servers or peer 1o peer networks.  Different portions of the dala and instructions can
be obiained from different centralized servers and/or peer {0 peer networks at
different times and in different communication ses8sions or in @ same communication
session.  The data and instructions can be obtained in entirety prior {0 the execution
of the applications. Alternatively, portions of the data and instructions can be
obtained dynamically, just in time, when needed for execution.  Thus, it is not
required that the data and instructions be on a machine readable medium in entirety
at a particular instance of time.

[0224] Examples of computer-readable media include but are not limited to
non-transitory, recordable and non-recordable type media such as volatile and
non-volatile memory devices, read only memory (ROM), random access memory
(RAM), flash memory devices, floppy and other removabie disks, magnetic disk
storage media, optical storage meadia (e.g., Compact Disk Read-Only Memory (CD
ROM), Digital Versatile Disks (DVDs), efc.), among others.  The computer-readable
media may store the instructions.

[0225] The instructions may also be embodied in digital and analog
communication links for electrical, optical, acoustical or other forms of propagated
signals, such as carrier waves, infrared signals, digital signals, etc. However,
propagated signals, such as carrier waves, infrared signals, digital signals, efc. are
riot tangible machine readable medium and are not configured to store instructions.
[0226] In general, a machine readable medium includes any mechanism that
provides (L.e., stores and/or transmits) information in a form accessible by a machine
(e.q., a computer, network device, personal digital assistant, manufacturing tool, any

device with a set of one or more processors, elc.).
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(02271 In various embodiments, hardwired circuitry may be used in combination
with software instructions {o implement the fechniques. Thus, the techniques are
nieither limited to any specific combination of hardware circuitry and software nor to
any particular source for the instructions execuied by the data processing system.
[0228] In the foregoing specification, the disclosure has been described with
reference to specific exemplary embodiments thereof. It will be evident that various
modifications may be made thereto without departing from the broader spirit and
scope as set forth in the following claims.  The specification and drawings are,

accordingly, 1o be regarded in an illustrative sense rather than a restrictive sense.
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CLAIMS

What is claimed is:

1. A system, comprising:
a plurality of sensor modules, each respective sensor module in the plurality
of sensor modules having an inertial measurement unit and attached to
a portion of a user o generate motion data dentifying a sequence of
orientations of the portion of the user; and
a computing device coupled {o the plurality of sensor modules and configured
to:
provide the sequence of orientations measured by the each respeactive
sensor module as input {o an artificial neural network;
obtain, as output from the artificial neural network, an orientation
measurement of a part of the user; and
control an application by configuring, according to the orientation
measurement obtained from the artificial neural network, an
orientation of a rigid part in a kinematic chain of a skeleton

model that has a plurality of rigid parts conneacted by joints.

2. The system of claim 1, wherein the artificial neural network is trained using
orientation measurements generated using an optical tracking system; the
artificial neural network is a recurrent neural network containing at least one
Long Short-Term Memory (LSTM) unit.

3. The system of claim 2, wherein orientations of the part of the user is not
tracked using optical tracking and not tracked using a sensor module
containing an inertial measurement unit; and the plurality of sensor modules
tracks portions of the user corresponding to a subset of rigid parts in the
kinematic chain, and the subset of rigid paris are separated in the kinemalic
chain by the rigid part corresponding to the part of the user that is not fracked

using a sensor module.

4. The system of claim 1, wherein the artificial neural network is trained to
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predict orientation measurements generated using an optical tracking system;
and the artificial neural network provides, as output, predicted origntation
measurements {0 be generated by the optlical tracking system for portions of

the user io which the plurality of sensor modules are atiached.

A method, comprising:

receiving, from a plurality of inertial measurement units attached to portions of
a user connected by joints, motion data identifying sequences of
orientations of the portions of the user,;

providing the sequences of orientations of the portions of the user, as
measured by the inertial measurement units, as input {o an artificial
neural network;

obtaining, as output from the artificial neural network, an orientation
measurement of a part of the user;

configuring, according to the orientation measurement obtained from the
artificial neural network, an onentation of a rigid part in a kinematic
chain of a skeleton model that has a plurality of rigid parts connected
by joints; and

controliing an application based on a state of the kinematic chain.

The method of claim 5, wherein the artificial neural network is a recurrent
neural network having Long Short-Term Memory (LSTM) units; the part of the
user has no attached inertial measurement unit to measure orientations of the
part; the artificial neural network further outputs predicted orientation
measurements of the portions of the user tracked using the inertial
measurement units; and the predicted orientation measurements generated
by the artificial neural network correct accumulated errors in the sequences of

oriegntations measured by the inertial measurement units.

A method, comprising:

attaching a plurality of sensor modules to a person;

measuring a plurality of sequences of orientations of the sensor modules
during the person performing a plurality of seguence of motions to
generate first orientation measurements and second orientation

measurements; and
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training an artificial neural network using a supervised machine learmning
technique to predict the second orientation measurements based on

the first orientation measurements.

The method of claim 7, wherein the artificial neural network is a recurrent

neural network having Long Short-Term Memory (LSTM) units; and the

method further comprises:

generating further measurements using the plurality of sensor modules to the
person; and

fraining the artificial neural network, previously trained using the supervised
machine learning technique based on the Tirst orientation
measurements and the second orientation measurements, using the

further measurements and a reinforcement learning technique.

The method of claim 7, wherein the first orientation measurements are
measured using a first technigue; and the second orientation measurements
are measured using a second technique; and the second orientation
measurements identify orientations of the plurality of sensor modules; and the
first orientation measurements identify orientations of a subset of the plurality

of sensor modules.

The method of claim 7, wherein the first orientation measurements identify
orientations of a first subset of the plurality of sensor modules; and the second
orientation measurements identify orientations of a second subset of the

plurality of sensor modules.

A systemn, comprising:

a plurality of sensor modules, each respective sensor moduie in the plurality
of sensor modules having an inertial measurement unit and attached to
a portion of a user {0 generate motion data identifying a sequence of
orientations of the portion of the user, the plurality of sensor modules
including a first subset and a second subset that share a common
sensor moduie between the first subsat and the second subset:

a computing device coupled {o the plurality of sensor modules and configured

to:
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provide orientation measurements generated by the first subset as
input to a first artificial neural network;

obtain, as output from the first artificial neural network, at least one first
orientation measurement of a common part of the user on which
the common sensor module is attached;

provide orientation measurements generated by the second subset as
input to a second artificial neural network;

obtain, as output from the second artificial neural netwaork, at least one
second orientation measurement of the common part; and

generate a predicted orientation measurement of the common part
from combining the at least one first orientation measurement of
the common part and the at least one second orientation

measurement of the common part.

12.  The system of claim 11, wherein the first artificial neural network and the
second artificial neural network contain long short-term memaory (LSTM) units;
the combining is performed using a third artificial neural network; the third
artificial neural network contains a bidirectional long short-term memory
(BLSTM) unit; and the predicted orientation measurement of the common part
is predicied for a first time instance; the at least one first orientation
measurement of the common part includes:
an orientation measurement, predicted by the first artificial neural network, of

the common part at a second time instance before the first time
instance; and
an orientation measurement, predicted by the first artificial neural network, of
the common part at a third time instance after the first time instance;
and
the at least one second orientation measurement of the common part
includes:
an orientation measurement, predicted by the second artificial neural
network, of the common part at the second time instance before
the first time instance,; and
an orientation measurement, predicted by the second artificial neural

network, of the common part at the third time instance after the
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first time instance.

The system of claim 12, wherein the first artificial neural network and the
second artificial neural network contain long short-term memory (LSTM) units;
the combining is performed via averaging the first orientation measurement of
the common part and the second orientation measurement of the common
part, the predicted orientation measurement of the common part is predicted
to be measured using an optical tracking system; the first subset tracks a first
kinematic chain of the user to control movements of a corresponding
Kinematic chain of a skeleton model in the system; and the second subset
tracks a second chain of the user o control movements of a corresponding
kinematic chain of the skeleton model in the system; and orientations of a first
part in the first kinematic chain of the user is not tracked using an inertial
measurement unit; orientations of a second part in the second kinematic chain
of the user is not tracked using an inertial measurement unit; the first artificial
neural network predicts orientations of the first part from the orientation
measurements generated by the first subset; and the second artificial neural
network predicts orientations of the second part from the orientation

measurements generated by the second subset.

The system of claim 1 or 11, wherein the inertial measurement unit includes a
micro-electromechanical system (MEMS) gyroscope; and the inertial
measurement unit further includes a magnetometer and a MEMS

accelerometer.

A method, comprising:

receiving, from a plurality of inertial measurement units attached to portions of
a user connected by joints, motion data identifying sequences of
orientations of the portions of the user, the plurality of inertial
measurement units including a first subset and a second subset that
share a common inertial measurement unit between the first subset
and the sacond subset

providing orientation measuremenis generated by the first subset as inputio a
first artificial neural network;

obtaining, as output from the first artificial neural network, at least one first
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crientation measurement of the common part of the user on which the
common inertial measurement unit is attached;

providing orientation measurements generatad by the second subset as input
to a second artificial neural network;

obtaining, as output from the second artificial neural network, at least one
second crientation measurement of the common part, and

generating, a predicted crientation measurement of the common part from
combining the at least one first orientation measurement of the
common part and the at least one second orientation measurement of

the common part.

The method of claim 15, wherein the combining includes:

providing the at least one first orientation measurement of the common part
and the at least one second orientation measurement of the commaon
part as input to a third artificial neural network; and

obtaining the predicted orientation measurement of the common part from as
an output from the third artificial neural network;

wherein the first artificial neural network and the second artificial neural
network include long short-term memory (LSTM) units; and

the third artificial neural network include a bidirectional long short-term
memory (BLSTM) unit.

The method of claim 15, wherein the combining includes computing an
average of the first orientation measurement of the common part and the
second orientation measurement of the common part as the pradicted

orientation measurement of the common part.

A method, comprising:

attaching a plurality of sensor modules to a person, including a first subset of
the sensor modules to track orientations of a first kinematic chain of the
person and a second subset of the sensor modules {o track
oriertations of a second kinematic chain of the person, wherein the first
kinematic chain and the second kinematic chain have a common part
of the person;

measuring, using the sensor modules, a plurality of sequences of orientations
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of the sensor modules during the person performing a plurality of
sequence of motions;

measuring, independent of measurements of the sensor modules and using a
separate tracking system, orientations of the sensor modules during
the person performing a plurality of sequence of motions;

training a first artificial neural network using a supervised maching leaming
technique to predict orientation measurements of the first kinematic
chain from the separate fracking system using orientation
measurements from the first subset;

training a second artificial neural network using the supervised machine
learning technique to predict orientation measurements of the second
kinematic chain from the separate tracking system using orientation
measurements from the second subset; and

training a third artificial neural network using the supervised machineg learming
technique to predict orientation measurements of the common part of
the person from first predicted orientation measurements of the
common part of the person generated from the first artificial neural
network and second predicied orientation measurements of the
common part of the person generated from the second artificial neural

network.

1.  The method of claim 18, wherein the first artificial neural network and the
second artificial neural natwork include long short-term memory (LSTM) units;
and the third artificial neural network include a bidirectional iong short-term
memaory (BLSTM) unit;
wherein to predict an orientation of the common part of the person at a first

time instant, the third artificial neural network receives, as input

an orientation of the common part of the person at a second time
instant before the first time instant predicted by the first artificial
neural network:

an orientation of the common part of the person at a third time instant
after the first time instant predicted by the first artificial neural
network;

an orientation of the common part of the person at the second time
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instant before the first time instant predicted by the second
artificial neural network; and
an orientation of the common part of the person at the third time instant
after the first time instant predicted by the second artificial neural
network; and
wherein the orientation of the common part of the person at the second time
instant, predicted by the first artificial neural network, is updated using
orientation measurements of the first kinematic chain at the first time
instance from the first subset of the sensor modules; and
the orientation of the common part of the person at the second time instant,
predicted by the first artificial neural network, is updated using
orientation measurements of the second kinematic chain at the first

time instance from the second subset of the sensor modules.

20.  The method of claim 18, further comprising:
training the first artificial neural network and the second artificial neural
network to reduce differences between:
the first predicted orientation measurements of the common part of the
person generated from the first artificial neural network; and
the second predicted orientation measurements of the common part of

the person generatad from the second artificial neural network.
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Attach tracking devices to at least one kinematic chain of a person, including
first tracking devices that are separated by one or more second tracking
devices on one or more kinematic chains 401

!

Perform a plurality of sequences of actions involving the least one kinematic
chain, starting from a calibration pose 403

!

Record orientations of the first and second tracking devices in the
sequences, where orientations of the first tracking devices are tracked using
both a first system and a second system and orientations of the one or
moresecond tracking devices are tracked using the second system 405

!

Train an artificial neural network to predict the orientations of the first and
second tracking devices measured by the second system based on the
orientations of the first tracking devices measured by the first system 407
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Attach tracking devices to at least one kinematic chain of a user,

including first tracking devices but no second tracking devices on

parts that separate the first track devices in one or more kinematic
chains 411

!

Perform a sequence of actions involving the least one kinematic
chain, starting from a calibration pose 413

!

Generate orientation measurements of the first tracking devices in the
sequence using a first system but not a second system 415

!

Apply the orientation measurements to an artificial neural network
previously trained to predict the orientations of the at least one
kinematic chain as measured by the second system based on

measurements of the first tracking devices tracked by the first system
4“7

!

Generate predicted orientation measurements of the at least one
kinematic chain from applying the orientation measurements to the
artificial neural network 419
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Train a first RNN to predict orientation measurements of a first kinematic
chain 551

!

Train a second RNN to predict orientation measurements of a second

kinematic chain that shares at least one part with the first kinematic chain
553

!

Train a third RNN to predict orientation measurements of the at least one
part shared between the first kinematic chain and the second kinematic chain
based at least in part on prediction results, generated from the first RNN and

the second RNN, for the at least one part 555 F|G 19

FIG. 13

Receive sensor measurements from a plurality of motion sensing devices
961

!

Apply sensor measurements from a first subset of the motion sensing
devices as input to a first RNN to obtain first predicted measurements of a
first kinematic chain having a first set of parts 563

!

Apply sensor measurements from a second subset of the motion sensing
devices as input to a second RNN to obtain second predicted measurements
of a second kinematic chain having a second set of parts 565

!

Apply at least a portion of the first predicted measurements and a portion of

the second predicted measurements to a third RNN to obtain third predicted

measurements of at least one part that is in both the first kinematic chain and
the second kinematic chain 567
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