
(12) United States Patent

USOO8612479 B2

(10) Patent No.: US 8,612.479 B2
Bammi et al. (45) Date of Patent: Dec. 17, 2013

(54) SYSTEMS AND METHODS FOR (56) References Cited
MONITORING AND DETECTING
FRAUDULENT USES OF BUSINESS U.S. PATENT DOCUMENTS

APPLICATIONS 5,557,742 A 9, 1996 Smaha et al.
5,819,226 A 10/1998 Gopinathan et al.

(75) Inventors: Jwahar R. Bammi, Westford, MA (US); 5,826,005. A 10, 1998 Fuller
Bagepalli C. Krishna, Concord, MA 5,873,094. A 2, 1999 Talatik
(US); Robert Posniak, Nashua, MA (Continued)
(US); Joseph Walsh, Acton, MA (US)

FOREIGN PATENT DOCUMENTS

(73) Assignee: FIS Financial Compliance Solutions, WO 2005081110 9, 2005
LLC, Jacksonville, FL (US) WO WO-2005081110 9, 2005

WO 2008O18939 2, 2008

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 316 days. Brown et al., "STEP: A Framework for the Efficient Encoding of

General Trace Data”, 2002, ACM, p. 27-34.

(21) Appl. No.: 11/803,439 (Continued)

(22) Filed: May 15, 2007 Primary Examiner — Robert Beausoliel, Jr.
Assistant Examiner — Alexandria Bromell

O O 74) Attorney, Agent, or Firm — Finnegan, Henderson,
(65) Prior Publication Data E. Garrett & Dunner, L.L.P. 9.

US 2007/O29.4271 A1 Dec. 20, 2007
(57) ABSTRACT

A systems and methods are described detect fraud in existing
Related U.S. Application Data logs of raw data. There can be several disparate logs, each

(63) Continuation-in-part of application No. 1 1/435,159, including data of disparate data types and generated by dif
filed on May 16, 2006, which is a continuation-in-part ferent and possibly unrelated Software enterprise applica
of application No. 11/056,576, filed on Feb. 11, 2005, tions. The fraud management System aggregates and orga
now abandoned. nizes the raw log data, extends the raw data with reference

data, archives the data in a manner that facilitates efficient
(60) Provisional application No. 60/544,790, filed on Feb. access and processing of the data, allows for investigation of

13, 2004. potentially fraudulent usage scenarios, and uses the results of
the investigation to identify patterns of data that correspond to

(51) Int. Cl. correspond to high risk usage scenarios and/or process steps.
G06F 7/30 (2006.01) In Subsequent processing, archived data can be compared

against the identified patterns corresponding to high risk
(52) U.S. Cl. usage scenarios to detect matches, and the invention thereby

USPC ... 707/776; 707/742 automatically detects high risk usage scenarios and issues
(58) Field of Classification Search appropriate alerts and reports.

USPC .. 707/707, 742,776
See application file for complete search history.

SIGNATURE
PROFLER

Use Code A

ise Code 8

301b.

30
31a SCULER

\Signature A 320

24 Claims, 29 Drawing Sheets

LOYESOFTWAREINSTRUMENATONSUITE

330- DETECTOR
340 MONORED Event A(1)

Ewent A(2)

went A(3) H
311

\ Signature B

Event (4)
311

s Signature C

Even C(1)

ENERPRISE
34b APPLICATIONS)

341a is
341a

341

341

US 8,612.479 B2
Page 2

(56)

6,126,330
6,374,369
6,556,964
6,601,048
6,728,955
6,751,789
6,754,890
7,089,592
7,140,008
7, 177,864

2002fOO48369
2003/OO37251
2005/0114375
2005/O182750
2005/0204349
2006, O15O162

References Cited

10, 2000
4, 2002
4, 2003
T/2003
4, 2004
6, 2004
6, 2004
8, 2006

11, 2006
2, 2007
4, 2002
2, 2003
5/2005
8, 2005
9, 2005
T/2006

U.S. PATENT DOCUMENTS

Knight et al.
O'Donnell 714,38.11
Haug et al.
Gavan et al.
Berry et al.
Berry et al.
Berry et al.
Adjaoute
Chilimbi et al.
Ekhaus 707/776
Ginter et al. 380,277
Frieder et al. T13/200
Frieder et al. 707/707
Krishna et al.
Lewis et al.
Mongkolsmai et al.

2006/0230391 A1 10, 2006 Alexander et al.
2007,0006168 A1 1/2007 Dimpsey et al.
2007. O156677 A1* 7, 2007 Szabo 707/707
2010/0332583 A1* 12/2010 Szabo TO9,202

OTHER PUBLICATIONS

Srivastava et al., "ATOM A System for Building Customized Pro
gram Analysis Tools', 1994, ACM, p. 196-205.
International Search Report from International Patent Application
No. PCT/US2005/0041311, dated Aug. 29, 2008.
Office Action dated Mar. 15, 2010 from pending U.S. Appl. No.
11/435,159.
Office Action dated Nov. 26, 2010 from pending U.S. Appl. No.
11/435,159.
Office Action dated Mar. 31, 2011 from pending U.S. Appl. No.
11/435,159.

* cited by examiner

U.S. Patent Dec. 17, 2013 Sheet 1 of 29 US 8,612.479 B2

102

What are the greatest
Identify areas of risk?

104

How can we quantify
real and potential loss
from risk events?

ACCeSS

1 OO 106

\ Mitigate and Control What is the best way
Risk and to Control each risk?
Control

Lifecycle 108

HOW are We Sure that
Monitor Controls controls are working?

110

HOW Can We prev Prevent O e prevent
loss before it occurs?

FIG. 1

U.S. Patent

250 <

Dec. 17, 2013

Walidate Customer . View Statement

Sheet 2 of 29 US 8,612.479 B2

Teller Customer
2O6- Service Process

Print Statement

... Teller Customer
(2) Application instruction 211 ACCount Management

(3-212 System
216 (2) 213

2 &
220 o & 2. 214

3
Validate Customé 219 (2 23 230

240-62) % 215 View Statement
Print Statement

FIG 2

US 8,612.479 B2 Sheet 3 of 29 Dec. 17, 2013 U.S. Patent

N

@ @ @@ sº (S)-(S)-()

US 8,612.479 B2

007

U.S. Patent

Suo)3 eSueu Jo Jequn N

U.S. Patent Dec. 17, 2013 Sheet 5 Of 29 US 8,612.479 B2

Define a Usage
5O1 Scenario

(Operation)

Run Enterprise
Software

502 Application(s)
According to the
Usage Scenarios

Trace Events of the
504 Usage Scenario

(Operation)

Determine
506 Signature Profile

Tag Enterprise
Software

508 Application(s)
According to the
Signature Profile

F.G. 5A

US 8,612.479 B2 Sheet 6 of 29 Dec. 17, 2013 U.S. Patent

e edel, L SI / ON

999

Z9909G

US 8,612.479 B2 Dec. 17, 2013

US 8,612.479 B2 Sheet 10 of 29 Dec. 17, 2013 U.S. Patent

U.S. Patent Dec. 17, 2013 Sheet 11 of 29 US 8,612.479 B2

ESCHEAT FRAUD DETECTION
Process Setup

Concord National Bank (Memento(E) Workspace)
File Edit View Window Help

X x
Eg Feature Sets

Processes
915 3. a E. ACCount Printing
\ HE Doman ACCount Escheat Fraud

TaskS 917
Feature Sets E Teller Login-916

E Customer ACCOunt Balance Inquiry
E Customer Address Update-918

t PE Payment from came out
Processes 919

n

d

FIG 9B

G96

US 8,612.479 B2 U.S. Patent

US 8,612.479 B2 Sheet 14 of 29 Dec. 17, 2013 U.S. Patent

Áueuuuuns qunooovy

996

US 8,612.479 B2 U.S. Patent

US 8,612.479 B2 U.S. Patent

US 8,612.479 B2 U.S. Patent

US 8,612.479 B2 Sheet 18 Of 29 Dec. 17, 2013 U.S. Patent

passaoov ?se-T

US 8,612.479 B2

60 || ||

00 || ||

U.S. Patent

US 8,612.479 B2

pe?oedx=-- ZOZ !

Sheet 20 Of 29 Dec. 17, 2013

uOduoSe

U.S. Patent

Suelled O JeCun N

U.S. Patent Dec. 17, 2013 Sheet 21 of 29 US 8,612.479 B2

s

s
YN NY

S.

\ II

- - - - - - T
N

SWN
NSt. A N SA

SS N
Sir

SN
N s N

s
s
s s L N s

N N N

SS

SSIA hueled AleO CN
CN
CN
wo

U.S. Patent Dec. 17, 2013 Sheet 22 of 29 US 8,612.479 B2

s

s

s
t
g
on

N28
Z.Z.
2/14/21

| St.

O

w
:

N
NN

N.
N

US 8,612.479 B2 Sheet 23 Of 29 Dec. 17, 2013 U.S. Patent

SO?ueueOSSo?ueueOS

US 8,612.479 B2 Sheet 24 of 29 Dec. 17, 2013 U.S. Patent

0 || 7 ||

?ueue InseeW
-- -->

/

US 8,612.479 B2 Sheet 26 of 29 Dec. 17, 2013 U.S. Patent

US 8,612.479 B2 U.S. Patent

US 8,612.479 B2

| Z

Sheet 28 Of 29 Dec. 17, 2013 U.S. Patent

00 LZ

US 8,612.479 B2

O

N

Sheet 29 Of 29 Dec. 17, 2013

0/ZZ

U.S. Patent

US 8,612,479 B2
1.

SYSTEMS AND METHODS FOR
MONITORING AND DETECTING
FRAUDULENT USES OF BUSINESS

APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part and claims prior
ity to and the benefit of U.S. patent application Ser. No.
11/435,159, filed May 16, 2006, which claims priority to and
the benefit of U.S. patent application Ser. No. 11/056,576,
filed on Feb. 11, 2005, which claims priority to and the benefit
of U.S. Provisional Patent Application 60/544,790, filed on
Feb. 13, 2004, the contents of all of which are incorporated by
reference herein in their entirety.

BACKGROUND

The inability to quantify, demonstrate, and monitor infor
mation technology (IT) business value, or assess in a timely,
reliable, and efficient manner exposure of an enterprise's
business processes to risk and loss, consistently ranks among
the top complaints expressed by corporate officers and busi
ness enterprise managers. To improve the efficiency of busi
ness process execution in Support of corporate goals and
objectives, business executives partner with IT specialists to
develop custom applications, or customize commercially
available, off-the-shelf, packaged applications. However, in
spite of these attempts, questions linger over whether these
applications deliver the expected process benefits, whether
they work as expected, or whether they create unexpected
process risks.

Current techniques for measuring and monitoring factors
that impact business value and risk exposure generally fall
into three categories: (1) Conducting manual Surveys, audits,
and polls about whether the application or process in question
is delivering the expected value and is sufficiently immune to
risk; (2) Enhancing and changing the enterprise Software
application to be monitored to produce log files that contain
evidence of whether the application or process in question is
delivering the expected value or has been exposed to risk
through negligence or abuse; and (3) Applying business intel
ligence or rules-based technologies to existing log files to
discover whether the application or process in question is
delivering the expected value or being compromised by expo
Sure to risk.
The current techniques to measure and monitor business

value and risk exposure are manual, imprecise, or homegrown
ad-hoc measurement techniques that can be expensive, time
consuming, unreliable, and inefficient, involving nontrivial
overhead, and often resulting in significant costs and losses
for the business enterprise.

SUMMARY OF THE INVENTION

In one embodiment, the invention provides a method for
managing fraud related to the use of one or more applications.
In particular, the method aggregates and organizes a log of
raw data associated with process steps of the use of the appli
cations, archives the data in a manner that facilitates efficient
access and processing of the data, investigates potential
fraudulent scenarios using the archived data, and uses the
results of the investigations to identify patterns of data that
correspond to high risk usage scenarios and/or process steps.
In Subsequent processing, archived data can be compared
against the identified patterns corresponding to high risk

10

15

25

30

35

40

45

50

55

60

65

2
usage scenarios to detect matches, and the invention thereby
automatically detects high risk usage scenarios and issues
appropriate alerts and reports.

In one aspect, the invention can, within a single framework,
aggregate and process raw data provided in a wide variety of
different types and forms and stored in separate logs. In
another aspect, the methods archive vast quantities of raw
data using, for example, inverted indexing in order to make
the processing of vast quantities of transactional data for
fraud management not only practically possible but also effi
cient. In another aspect, the invention provides a rapid and
automatic method for detecting potentially fraudulent usage
scenarios using evidence collected from past experience, and
issuing appropriate alerts and reports upon detection. In still
another aspect, the invention may not require instrumenting
the code of an enterprise application. Moreover, it can process
raw data from one or both of transaction records implicitly
derived from an instrumented enterprise applications and
transaction records explicitly generated by non-instrumented
applications.

BRIEF DESCRIPTION OF THE DRAWINGS

The following figures depict certain illustrative embodi
ments of the invention. These depicted embodiments are to be
understood as illustrative of the invention and not as limiting
in any way.

FIG.1 depicts applications of the software instrumentation
systems and methods of the invention to a risk mitigation and
control monitoring lifecycle in a business process;

FIG. 2 depicts schematically various exemplary steps of
Software usage monitoring according to an embodiment of
the instrumentation systems and methods;

FIG. 3 depicts schematically an exemplary sequence of
steps—according to an embodiment of the Software instru
mentation systems and methods—from the creation of a trace
to matching a signature profile with a usage scenario;

FIG. 4 depicts an exemplary report, generated by the Soft
ware instrumentation systems and methods, about at least a
subset of the steps in FIG. 2;

FIG. 5A-5B depict flowcharts representing various fea
tures of an embodiment of the software instrumentation
methods:

FIG. 6 depicts various components of an exemplary
embodiment of the software instrumentation system architec
ture;

FIG. 7 depicts an exemplary deployment of the software
instrumentation systems and methods;

FIG. 8 depicts schematically an exemplary usage scenario
for bank account escheat fraud;
FIG.9A-9F depict exemplary computer screenshots asso

ciated with steps of an embodiment of the software instru
mentation systems and methods directed to detecting bank
account escheat fraud of the type depicted in FIG. 8:

FIG. 10A-10C depict exemplary reports generated by an
embodiment of the Software instrumentation system and
method directed to detecting bank account escheat fraud of
the type depicted in FIG. 8:

FIG. 11 depicts an application of the software instrumen
tation systems and methods directed to enhancing realization
likelihood and evaluation of business process goals and
objectives;

FIG. 12A-12C depict exemplary reports produced by an
embodiment of the instrumentation systems and methods that
monitor an enterprise Software Suite implementing a health
care network's patient management system;

US 8,612,479 B2
3

FIG. 13 depicts a schematic diagram of a platform for
modeling application usage scenarios according to an
embodiment of the Software instrumentation systems and
methods:

FIG. 14 depicts schematically various layers of a modeling
and measurement platform of the Software instrumentation
systems and methods;

FIG. 15 depicts schematically various applications of the
platform of FIG. 13; and

FIG. 16 depicts schematically an application of the soft
ware instrumentation systems and methods to business value
and risk measurement.

FIG. 17 depicts the steps in a fraud management method
that does not require instrumenting an enterprise application.

FIG. 18 depicts a system which implements the steps of
FIG. 17.

FIG. 19 illustrates the operation of the matcher 2090 of
FIG. 17.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

To provide an overall understanding of the invention, cer
tain illustrative practices and embodiments will now be
described, including a method for instrumenting one or more
Software applications and a system for doing the same. The
systems and methods described herein can be adapted, modi
fied, and applied to other contexts; such other additions,
modifications, and uses will not depart from the scope hereof.

In one aspect, the systems and methods described herein
are designed based on the premise that the value of an enter
prise software application is realized, and its exposure to risk
is reduced or eliminated, if it is used according to properly
selected, intended scenarios. These scenarios are inter
changeably referred to hereinas use cases, usage scenarios, or
operations.
The invention will be discussed in two parts. Part 1 dis

cusses embodiments of the invention in which Software appli
cations are instrumented. Part 2 discusses embodiments of the
invention which do not require instrumentation of applica
tions, and in particular are versatile enough to process trans
actional data generated from both instrumented and non
instrumented applications.
Part 1: Instrumenting Applications

According to one practice, the invention is directed to
Software instrumentation systems and methods for modeling
and monitoring usage scenarios of enterprise software appli
cations that at least partially Support, implement, or automate
business process goals. In a particular embodiment, the sys
tems and methods described herein employ a software engine
that monitors execution of enterprise Software applications
for occurrence of one or more defined usage scenarios in the
execution of those applications, thereby providing users with
a precise, dynamic assessment of expected-versus-actual
value from the applications and/or business processes. Busi
ness processes can span multiple enterprise Software appli
cations, and multiple processes can be monitored simulta
neously by the systems and methods described herein.

In contrast to other technologies which are typically expen
sive and yield Subjective, qualitative estimates of risk, the
systems and methods described herein, in one embodiment,
monitor enterprise business processes to provide objective
and quantitative risk and loss event information having speci
fied or desired granularity; this enables the users to accurately
and dynamically assess the enterprise’s exposure to risk and
associated potential or real losses. By providing to the users
assessments of value and/or risk, the systems and methods of

10

15

25

30

35

40

45

50

55

60

65

4
the invention enable the users to redefine business processes,
reengineer corresponding enterprise Software applications,
and adjust usage scenarios to mitigate and control risk or to
improve value derived from the business processes of the
enterprise.

Internal fraud, and susceptibility to it, is a form of risk
exposure that poses significant, challenging, and dynami
cally-changing problems for a variety of business enterprises.
Financial losses due to fraud are particularly palpable in the
banking industry. The U.S. Department of Justice, in a 2003
FBI report titled “Financial Institution Fraud and Failure
Report.” identifies a commercial banker who embezzled
about $2,100,000 over a 2.5-year period. She did so at least in
part by opening bank accounts under fictitious names and
then transferring funds from her bank’s internal expense
accounts to the fictitious accounts. She raided the internal
expense accounts in Small increments—presumably to avoid
detection but averaged about 60-100 debits per month.
According to the report, on the first of every Subsequent
month, the banker wrote a large check from one or more of the
fictitious accounts which she Subsequently deposited into her
personal account. The fraud Scenario highlighted above
involves unusual banking activity; for example, the banker
completed an average of about 60-100 transactions per
month.

In one embodiment, the Software instrumentation systems
and methods described herein monitor the bank’s business
processes for—and thereby deter, control, or at least mitigate
real or potential losses due to—such a rogue activity. In one
aspect, the systems and methods of the invention identify and
detect key indicators of risk as part of the monitoring of the
business processes. To better understand how the software
instrumentation systems and methods disclosed herein can be
employed for risk detection, assessment, mitigation, and con
trol, a high-level description of a business enterprise risk and
control lifecycle will now be presented.

FIG. 1 depicts a risk and control lifecycle 100 illustrating
challenges faced by finance, risk, audit, line-of-business, IT,
and other professionals and users who want to mitigate risk
and monitor controls in the business processes of the enter
prise. In particular, FIG. 1 illustrates three exemplary
phases 104, 108, and 110 of the lifecycle 100 where the
system and methods described herein can be employed to
advantage.
The lifecycle 100 begins, in step 102, by identifying one or

more areas of risk in an enterprise, and potential losses result
ing from those risk areas. Typically, this task is performed by
corporate executives, IT staff, or other users familiar with the
business objectives and needs of the enterprise and business
processes that underlie or guide the design of enterprise soft
ware applications. Once the areas of risk have been identified,
the systems and methods of the invention monitor the enter
prise Software applications to detect and assess, in step 104.
real or potential losses associated with those risks. Addition
ally, the systems and methods of the invention provide for an
independent verification of Subjective self-assessments pro
duced by other technologies, thereby increasing the likeli
hood of devising and deploying, in step 106, more appropriate
risk mitigation and control procedures and infrastructure for
the enterprise.

In step 108 of the lifecycle 100, the software instrumenta
tion systems and described herein monitor the risk mitigation
and control procedures and infrastructure devised in step 106
to assess their effectiveness. Typically, risk control proce
dures and infrastructures are tested frequently: an expensive
and time-consuming overhead activity. The systems and
methods described herein, however, reduce or eliminate such

US 8,612,479 B2
5

overheads by, in one embodiment, dynamically, even con
tinuously, monitoring the risk mitigation and controls for
rogue processes that may circumvent the controls and create
new or elevated risks.

Proceeding through the risk and control lifecycle 100, step
110 includes institutionalizing or otherwise adopting loss
prevention or reduction measures. The Software instrumenta
tion systems and methods described herein help prevent, or
Substantially reduce, risk-based losses by detecting risk indi
cators associated with risk hypotheses propounded by enter
prise business process developers or Software application
designers.
Many risks cannot be fully controlled, or their correspond

ing losses prevented, by prior art technologies, especially as
enterprises adapt their business processes in response to
dynamically-changing business conditions, climates, and
landscapes. However, in a typical embodiment, the Software
instrumentation systems and methods described hereincan be
rapidly deployed with little or no change to the enterprise
applications—to test risk hypotheses and monitor associated
quantitative indicators of risk, thereby preventing, or preemp
tively reducing, loss before it occurs.

Given the magnitude of fraud in the banking industry, and
to further illustrate various risk mitigation, control monitor
ing, and loss prevention aspects and features of the Software
instrumentation systems and methods described herein,
examples will now be provided for detecting and preventing
fraudata retail bank. It will become apparent how the systems
and methods of the invention can monitor the business pro
cesses of a financial institution—such as the bank that fell
victim to the rogue activities of the banker, in the case of fraud
reported by the FBI and referred to above to avoid, substan
tially diminish the likelihood of, eliminate, or otherwise miti
gate losses related to fraud risk.

In an exemplary application, a global retail bank faced
losses from fraud committed by tellers in some branch
offices. Bank security officials developed fraud hypotheses
that included the following: (a) more than normal customer
access by recently-hired tellers is strongly correlated with
identity theft; and (b) activation of a dormant account fol
lowed by a payment from that account is an indicator of fraud.
The bank’s security officials determined that monitoring
these teller activities allows them to collect specific risk event
data and quantify real and potential losses, thereby preventing
or preemptively reducing fraud before it occurs.
The Software instrumentation systems and methods

described herein can be quickly deployed to monitor the teller
activities specified in the fraud hypotheses above. Monitoring
is quick, easy, and specific. And the systems and methods of
the invention allow for collection of branch-specific risk
event data and teller activity.

Exemplary steps that an embodiment of the software
instrumentation systems and methods of the invention per
form as part of monitoring enterprise Software applications
will now be described. Although the description is in the
context of potential fraud at a retail bank, other applications
do not depart from the scope hereof.

FIG. 2 depicts three exemplary steps 200 involved in a
customer service process performed by a teller. In step 202,
the teller logs in and validates a customer. Then, in step 204,
the teller views the customer's bank statement. In optional
step 206, the teller prints a copy of the customer's bank
statement or other bank record.

Each of the process steps 202, 204, and 206 is associated
with a corresponding set of Software events (e.g., application
code instructions) in a teller-customer Account Management
System 210, which includes a suite of one or more enterprise

10

15

25

30

35

40

45

50

55

60

65

6
Software applications. According to one practice, as each step
of the customer service process is demonstrated (executed)—
typically in a development environment—the Software
instrumentation systems and methods described herein trace
the software events associated with the step. As shown in FIG.
2, events 211-219 are traced when the three steps 202, 204,
and 206 of a customer service process are performed by the
teller. In one embodiment, the systems and methods of the
invention use the traced events (e.g., the traced application
code instructions) to build a signature profile for one or more
of the process steps.

For example, in the embodiment depicted by FIG. 2, the
Validate Customer process 202 is represented by the signa
ture profile defined by the application code instructions
(events) 211,212, and 216. This is also indicated by a Validate
Customer trajectory 220. Also shown in the embodiment
depicted by FIG. 2 is that the systems and methods described
herein associate the View Statement step 204 with the signa
ture profile specified by the events 211-214. This is also
indicated by a View Statement trajectory 230. When the Print
Statement step 206 is demonstrated, the systems and methods
of the invention determine that the corresponding signature
profile is specified by events 211-215, which collectively
define the Print Statement trajectory 240.

According to FIG. 2, events 217-219 are not incorporated
into the signature profile of any of the steps 202, 204, or 206.
That is, the events 217-219 are discarded by the systems and
methods described herein during the process of signature
profile construction.

FIG. 2 also shows—using application code instruction
detail—an embodiment of a View Statement signature profile
250. In this embodiment, the steps Authenticate(teller) 251,
RetrieveStrmnt(customer) 252. FormatStrmnt(record) 253,
and DisplayStmnt(Statement) 254 make up the signature pro
file 250 representative of the View Statement process 204
(and trajectory 230). Typically, the sequence of the events
251-254 in the signature profile is important or unique, thus
rendering two signatures distinct if they have the same traced
events but in different sequential orders.

According to one embodiment, once a signature profile has
been created, the systems and methods described herein
insert, in one or more enterprise applications, tags (using
Software code injection, for example) corresponding to events
associated with the signature profile. The systems and meth
ods then monitor an additional usage scenario (operation) of
the business processes (as represented by the one or more
enterprise applications) and listen for one or more of the
inserted tags. For example, when one of the process steps—
for example, the View Statement process 204 is performed,
the software instrumentation systems and methods described
herein listen for Software application instructions in the active
signature profiles (i.e., in this case, the profiles for Validate
Customer, View Statement, and Print Statement) and detect
inserted tags corresponding to the process 204.

Optionally, the sequence of detected tags is matched
against the active signature profiles and a determination is
made that the additional operation is a View Statement opera
tion. In one embodiment, the systems and methods described
herein collect data at certain instructions (e.g., teller identity,
customer balance, etc.). According to one practice, the col
lected data is reported to the user. In one embodiment, if a
match is declared between the additional operation and one of
the active signature profiles, information is reported to the
user about the additional operation (e.g., identity of the cus
tomer whose account was viewed in the second operation).
The additional operation may include multiple executions

of one or more of the process steps 202, 204, and 206, and

US 8,612,479 B2
7

these multiple executions may be distributed in time, occur
ring, for example, sequentially in time. If the teller performs
a View Statement step multiple times (for one or more cus
tomers), then, in one embodiment, the systems and methods
described herein detect tags associated with each execution of 5
the View Statement operation and collect data associated with
each execution of the View Statement process, including, the
number of execution times, identities of the customers whose
accounts were viewed, etc. This mode of monitoring is one
way of detecting rogue behavior by tellers or others in a
financial institution. Using the systems and methods
described herein, the about 60-100 monthly fraudulent debit
transactions that the commercial banker of the FBI report was
performing can be discovered.

FIG. 3 is a schematic diagram depicting an exemplary
sequence of steps 300 from the creation of a trace, corre
sponding to a demonstrated usage scenariofoperation, to
matching a monitored usage scenariofoperation with a pro
filed signature. In particular, the embodiment shown in FIG.
3 begins with a set of usage scenarios 301a-301c that are
demonstrated by the systems and methods described herein,
typically in a development phase. The software instrumenta
tion suite creates traces 302a-302c, respectively correspond
ing to the usage scenarios 301a-301c. As mentioned previ
ously, these traces include Software application events that
occur as part of the usage scenarios. A signature profiler/
editor 310 creates signature profiles 311a-311c, respectively
associated with traces 302a-302c. Each signature profile
includes a Subset of events belonging to a corresponding one
of the traces 302a-302C.

Then, an optional scheduler 320 determines appropriate
time frames for deploying the signature profiles 311a-311c to
a detector 330 which monitors one or more enterprise soft
ware applications 340 tagged based on the signature profiles
311a-311C. The scheduler is controlled, in one embodiment,
by a user who specifies the scheduled times or time windows.
In some embodiments, the monitoring is to be continuously
performed in time, in which case the scheduler 320 would not
be employed.

In the embodiment shown in FIG.3, the tags include the set
of software runtime events 341a, corresponding to the signa
ture profile 311a; the set 341b corresponding to the signature
profile 311b; and the set 341c corresponding to the signature
profile 311c. The matcher 350 then compares the tags
detected by the detector 330 (when the monitored application
340 executes according to a yet-unidentified usage scenario)
with a library of active signature profiles 350a (corresponding
to the signature profile 311a), 350b (corresponding to the
signature profile 311b), and 350c (corresponding to the sig
nature profile 311c), and declares a match if a match with one
of the active signature profiles 350a-350c is determined.

FIG. 4 depicts an exemplary report 400 generated by the
systems and methods of the invention deployed to monitor
teller activities corresponding to the risk hypotheses
described in relation to FIG. 2. The figure shows account
access (e.g., View Statement) by four tellers. Mary Smith is a
model teller who is trusted by the bank and whose customer
account management behavior is monitored for the duration
of time represented by the plot 400 of FIG. 4. Her account
access behavior is depicted by the curved line 401, considered
to be a benchmark. Anna Jones, Jim White, and John French
are three tellers whose customer account access activities are
monitored at the dates shown in the figure, and are distilled in
the histogram plots 402 (Anna), 404 (Jim), and 406a-406d
(John), respectively.
As pointed out by the bracketed region 410 of the report

400, John's customer access behavior shown in 406b-406d

10

15

25

30

35

40

45

50

55

60

65

8
are unusually high compared with the behaviors of Anna, Jim,
and Mary. This may suggest fraudulent behavior by John.
This is an exemplary illustration of how the report 400 gen
erated by the systems and methods described herein assists
business executives, IT staff, or other users to detect rogue or
Suspect behavior.

FIG. 5A depicts, in the form of a flowchart, steps 500 of an
embodiment of the software instrumentation methods
described herein; the steps depicted by FIG.5A are generally
considered part of the development environment described
below in relation to FIG. 13. According to one practice, the
development environment steps 500 begin by defining or
describing one or more usage scenarios (operations) in step
501. Typically, a usage scenario is defined or described by one
or more business users (e.g., members of a corporate execu
tive team) who devise business process goals that are impor
tant to the enterprise and which are to be examined. In step
502, the systems and methods described herein demonstrate
the usage scenario (operation) by running (executing) the
enterprise application(s) according to the defined usage sce
nario.

In step 504, the systems and methods described herein
listen to the demonstrated usage scenario and compile a trace
of various events that occur during the demonstration of the
usage scenario. These traced events typically include one or
more software runtime events, such as, without limitation, a
method call, a method return, a line number of executing
Software, an object creation, a memory allocation or reallo
cation, a COM interface call, a COM interface return, a Java
Bean event, a J2EE Bean event, a library load, a library
unload, a file system event, a TCP/IP stack level transmit
event, a TCP/IP stack level receipt event, an SQL event, a
transactional bus event, an MQ series event, an MSMO series
event, a web service event, and a notification framework
event.

In step 506, the systems and methods described hereinfilter
the traced events to determine a signature profile. The signa
ture profile is a subset of the traced events that are correlated
with the demonstrated usage scenario. Typically, though not
necessarily, the traced events are incorporated in the signature
profile according to a specific sequenceforder; that is, if the
traced events A, B, C are incorporated in the signature profile,
they acquire a particular order in the signature profile. Such
that signature A, B, C would be distinct from signature A, C,
B, etc.

Although typically the signature profile includes a strict
Subset (i.e., a fraction) of the traced events, in Some embodi
ments all the traced events are included in the signature pro
file to properly indicate or represent the demonstrated usage
scenario.
Once the signature profile has been determined in step 506,

the systems and methods described herein, in step 508, tag the
enterprise Software application(s) according to the signature
profile. These tags correspond to the traced events belonging
to the signature profile, that is, the events deemed correlated
with, or representative or indicative of the demonstrated
usage scenario.
A purpose of inserting the software tags is to enable Sub

sequent monitoring of a second operation (i.e., a second usage
scenario) of the enterprise application. According to one prac
tice, inserting the tags includes injecting code blocks into the
enterprise Software application, wherein the injected code
blocks correspond to one or more software application
instructions executed as part of the demonstrated usage sce
nario (demonstrated, first operation) of the enterprise soft
ware application(s). In a typical embodiment, injecting the
code blocks includes coupling to a software interface of the

US 8,612,479 B2

enterprise application. The Software interface may include a
runtime environment interface of one or more software lan
guages underlying the construction of the enterprise applica
tion.

The systems and methods described hereinemploy, in vari
ous embodiments, published, secure, open application instru
mentation interfaces at the application’s language runtime
layer. At least in part because of this approach, the Software
instrumentation systems and methods described herein do not
have to depend on application-specific interfaces (e.g., a pub
lished API for the teller system), and can be used to instru
ment a broad range of enterprise applications rather than
integrate with specific applications.

In Some contexts, users do not wish for the software instru
mentation systems and methods described herein to directly
address events in mainframe code. Their wish stems at least in
part from concerns about instrumenting the systems of
record. Accordingly, in various embodiments, the systems
and methods of the invention use interfaces and wrappers
around mainframe applications to assess and monitor main
frame-based processes. In this way, conflict is avoided with
security, integrity, and performance issues while still provid
ing quality, speed, depth, and granularity of information
about process execution.
FIG.5B shows steps 550 of an embodiment of the produc

tion environment of the Software instrumentation systems and
methods described herein. In particular, in step 552, the enter
prise application executes according to an additional (e.g., a
second) usage scenario (operation). The additional usage sce
nario may or may not be the same as the first, demonstrated
usage scenario.

In one embodiment, the systems and methods of the inven
tion detect, in step 554, one or more of the tags previously
inserted in the enterprise application as part of step 508 of the
development phase depicted by FIG. 5A. Optionally, the
detection step 554 is influenced by a scheduling step 558,
wherein one or more times or time windows (time frames) for
monitoring the additional usage scenario are specified; in one
embodiment, the monitoring is continuous, whereas in an
alternative embodiment it is intermittent. The signature pro
file produced in step 506 of FIG. 5A is considered an active
signature profile 556 in FIG. 5B if its constituent tags are
being listened for in the detection step 554. In the embodi
ment wherein a scheduler determines, in step 558, the time
frames for monitoring the additional usage scenario, a signa
ture profile is considered active 556 if it is used by the systems
and methods described herein as a reference signature profile
during the scheduled detection time frames.
The production steps 550 include, in one embodiment, a

step 560 for collecting information about the additional usage
scenario. The collected information may be compiled accord
ing to a sequence in which the tags are detected in step 554
and may include information about the additional scenario at
locations associated with the detected tags. Optionally, the
information collected in step 560 is stored, in step 562, in a
database or other computer-readable storage medium for Sub
sequent referral. In one embodiment, the systems and meth
ods described herein generate, in step 564, a report based on
the collected information. The report can then be used by one
or more users to evaluate risk, measure effectiveness of the
enterprise Software applications, revise the business pro
cesses underlying the enterprise applications, revise risk or
value hypotheses, etc.

FIG. 5B also depicts an optional matching step 566
wherein the tags detected in step 554 are compared against the
active signature profile 556 to determine whether a match
exists. If, in step 568, a match is determined to exist, then the

10

15

25

30

35

40

45

50

55

60

65

10
additional usage scenario of step 552 is said to be the same as
the first, demonstrated usage scenario of step 502 in FIG.5A.
Following a match, a report is optionally generated in step
564. If a match is not discerned between the detected tags of
step 554 and the active signature profile 556, then, optionally,
yet another additional operation of the enterprise application
is monitored, as depicted by link 552.

Although FIGS. 5A-5B have been described in terms of
one enterprise application and one demonstrated usage sce
nario, it is understood that other embodiments of the systems
and methods described herein exist that include two or more
enterprise software applications executed according to one or
more demonstrated usage scenarios. In such embodiments,
one or more signature profiles are produced, corresponding to
the one or more demonstrated usage scenarios; the signature
profiles form a library of signature profiles, which then is
considered an active library of signature profiles in 556 of
FIG. 5B. It is against the active library of signature profiles
that the detected tags from step 554 are compared to deter
mine which, if any, of the demonstrated usage scenarios
matches the detected tags.

FIG. 6 depicts an exemplary architecture 600 of the soft
ware instrumentation systems and methods described herein.
In particular, the embodiment shown in FIG. 6 includes an
OAL application server 610 that acts as an information
exchange hub for the various components of the Software
instrumentation system architecture 600. A tracer 620 traces
Software application events according to a demonstrated
usage scenario (operation) of one or more enterprise Software
applications 601. According to one embodiment, the tracer
620 obtains a list of application instructions for processes of
the enterprise applications 601 to be monitored. In a typical
embodiment, the tracer 620 is deployed on the same devel
opment server as the enterprise applications 601. The tracer
may interface with a custom or commercially-available pack
aged software application.
A signature profiler/editor 630 determines a signature pro

file representative of the usage scenario from the trace pro
duced by the tracer 620. A scheduler 650 sets at least one time
or time window (time frame) for a detector 660 to monitor an
additional usage scenariofoperation of the enterprise Software
application 601. The times or time windows set by the sched
uler 650 may be determined by a user operating the system
600 using a project workspace (that can include a GUI) 640.
In a typical embodiment, the detector 660 monitors instruc
tions in the additional operation of the Software applications
601 corresponding to an active signature profile (i.e., a sig
nature profile against which the additional usage scenario is
to be compared, during the time frame specified by the sched
uler 650). Like the tracer, the detector 660 may interface with
a custom or commercially-available packaged enterprise
application 601.
A matcher 680 compares the tags detected by the detector

660 with a library of one or more active signature profiles. If
a match is detected, the matcher 680 optionally generates a
report 690 containing information about the additional usage
scenario. In one embodiment, the report contains information
about the enterprise applications 601 at one or more locations
associated with the detected tags. In a typical embodiment, a
sequence in which the tags are detected is significant, and is
used in the matching process; that is, if two detected
sequences contain the same events but in different orders, the
two sequences are considered different.
A database 670, which is in communication with the OAL

610 to exchange information, serves as a repository of project
information, including trace, signature, Scheduling, match,
and reporting data, among others things. In one embodiment,

US 8,612,479 B2
11

the project workspace 640 (that may include a GUI or another
user interface), serves as a command and control center for
the user, or team of users, to manage various aspects of the
system architecture 600 and the functioning thereof. In one
embodiment, the project workspace is used as a primary user
interface used by a project team to define projects, describe?
define business processes represented by enterprise Software
applications, demonstrate usage scenarios, and manage sig
natures, reports, and alerts, among other things.

FIG. 7 depicts yet another embodiment of a deployment
configuration 700 of the software instrumentation systems
and methods described herein. In particular, the software
instrumentation Suite 702 is deployed—typically as a trans
parent layer—around one or more enterprise Software appli
cations 701. The deployment of the software instrumentation
suite 702 generally involves little, if any, downtime for the
enterprise applications 701. Overhead (if any exists) associ
ated with the deployment and implementation of the software
instrumentation suite 702 is typically not detectable by appli
cation users 710a-710d who communicate with the enterprise
applications 701 via TCP/IP or other communication proto
cols, which may include wireless protocols.

Also shown in FIG. 7 are components 703-706 associated
with the software instrumentation systems and methods 702.
Typically, these components form a geographically (physi
cally) distributed network and communicate with each other,
and with the Suite 702, via TCP/IP or other communication
network protocols, possibly including one or more wireless
protocols. The distributed components, according to one
embodiment, include, for example, an object access layer
(OAL) 704, described above in relation to FIG. 6. According
to one practice, the OAL 704 serves as an application server
that communicates with, and controls, other components of
the instrumentation suite 702, such as, without limitation, a
graphical user interface (GUI) 703 for controlling the soft
ware instrumentation suite 702 and a data access layer 705,
which, according to one embodiment, serves as a conduit for
the suite 702 to access a database 706. According to one
practice, the database 706 serves as a repository of informa
tion Such as, without limitation, traced event data, signature
profile data, data associated with one or more matches
between monitored usage scenarios (operations) of the Soft
ware applications 701 and profiled scenarios (i.e., scenarios
associated with the signature profiles in the repository 706),
monitoring schedules, etc.

To further illustrate various features and embodiments of
the Software instrumentation systems and methods described
herein, another example will now be described, related to
another area of risk to a financial institution. One form of
fraud in the banking industry is escheat fraud, wherein bank
employees identify dormant accounts, process unauthorized
address changes, and make fraudulent fund transfers. In vari
ous embodiments, the systems and methods described herein
enable banking authorities to identify unauthorized account
activities, the fraudsters involved, the monetary amounts of
the fraudulent transactions, and the accounts affected, among
other things.

FIG. 8 depicts an exemplary process 800 followed by
escheat fraudsters, exemplary Software application processes
810 associated with the various steps of the process 800, and
exemplary Software application modules/systems 820 asso
ciated with the various steps of the process 800. In the par
ticular embodiment depicted by FIG. 8, the bank employee, in
step 802, accesses a dormant account. Then in step 804, the
employee effects an address change. Subsequently, in step
806, the employee makes an unauthorized payment to an
accomplice account from the dormant account.

10

15

25

30

35

40

45

50

55

60

65

12
In the embodiment depicted in FIG. 8, the step 802 includes

processes 812 that include routine access to account Systems
and identifying target dormant accounts. An enterprise soft
ware application associated with the activities of step 802 is
the bank’s checking and savings account management sys
tem.

The Change Address step 804 involves the software pro
cess 814 of accessing the dormant account to alter one or
more features of the account, for example, an address asso
ciated with the account. An enterprise Software application
associated with the activities of step 804 is the bank’s account
management system 822.

According to the embodiment depicted by FIG. 8, the
Make Payment step 806 includes the software process 814 of
accessing to the dormant account to make a seemingly routine
payment from the dormant account to another account Serv
ing as the accomplice account. An enterprise Software appli
cation associated with the activities of step 806 is the bank’s
account management system 822.
FIG.9A-9F depict, in the form of a graphical user interface

(GUI), computer screenshots that illustrate features and steps
of the software instrumentation systems and methods of the
invention employed to detect the escheat fraud described in
FIG 8.
Exemplary screenshot 900 of FIG. 9A depicts a GUI for

defining the escheat detection project. Here, the bank whose
teller's activities are to be monitored is specified.

Exemplary screenshot 915 of FIG.9B depicts a GUI for
defining the processes that are deemed (according to the
established fraud hypotheses) to be indicative of escheat
fraud. In the depicted embodiment, these processes 916-919
include Teller Login, customer account Balance Inquiry, cus
tomer Address Update (also referred to as Address Change),
and Make Payment from customer account.

Exemplary screenshot 930 of FIG.9C depicts a GUI for
setting up a signature profile for the process step 917 of FIG.
9B; account Balance Inquiry. In this embodiment, the event
designated to represent the process step 917 is the application
instruction Bank Transactions. AccountTransaction.
Balance() 932. The screenshot 930 also depicts event param
eters 935 associated with the application instruction 932 of
the signature profile 931. The parameters 935 contain infor
mation that is collected in various embodiments of the sys
tems and methods described herein, e.g., Teller ID, Customer
ID, Account No., Balance amount, Last Transaction.
FIG.9D depicts an exemplary Account Lookup screenshot

945 provided by the GUI of the systems and methods
described herein. In particular, the screenshot 945 shows a
Customer Master List 946 of the bank.

Turning to FIG.9E, an exemplary screenshot 960 is shown
for Address Change. The telleruses this GUI screen to change
the address962 and/or telephone information 963 associated
with a particular customer 961 who has one or more dormant
bank accounts 965. Using the button 964, the fraudster teller
then saves that change in the records associated with the
dormant account(s) of the customer.

Turning now to FIG.9F, an exemplary screenshot 975 is
shown for making a payment 981, typically in a small amount
976, from the dormant account 977 to an accomplice 980. The
accomplice 980 is typically either the teller or an associate of
the teller.

FIG. 10A-10C depict exemplary reports generated by the
Software instrumentation systems and methods described
herein for detecting the escheat fraud described in relation to
FIG. 8 and FIGS. 9A-9F. Information collected by the sys

US 8,612,479 B2
13

tems and methods of the invention in monitoring business
processes are distilled or collated into the various charts
shown in FIGS. 10A-10C.

In particular, FIG. 10A depicts a histogram chart 1000
showing the number, by week, of incidents indicative of
escheat fraud. FIG. 10B depicts a histogram chart 1020 indi
cating, by perpetrator, activities indicative of escheat fraud.
FIG. 10C depicts, in tabular form 1040, an exemplary report
containing customers 1041 affected by activity indicative of
escheat fraud, corresponding amounts transferred 1042 from
their accounts, last account access dates 1043, and identities
of tellers 1044 who manipulated the customers’ accounts.
Other embodiments exist in which other account, access, and
activity information is disclosed in the report.
The systems and methods described herein produce reports

according to the granularity of detail specified by the users.
Business executives and other users can use the exemplary
reports of FIGS. 10A-10C to assess and quantify risk, imple
ment appropriate controls, monitor effectiveness of controls,
monitor key risk indicators, and even revise risk hypotheses
which would then cause a reconfiguration of the systems and
methods described herein to implement revised monitoring
and control procedures and infrastructure in compliance to
the revised risk hypotheses. Such revisions and reconfigura
tions are straightforward because of the ease with which the
Software instrumentation systems and methods described
herein can be reconfigured and deployed.

The embodiments described so far have focused on risk
management utility of the Software instrumentation systems
and methods of the invention. FIG. 11 and FIGS. 12A-12B
illustrate another advantageous aspect of the systems and
methods of the invention, namely, assessment of value from
enterprise applications.

FIG. 11 depicts an application 1100 of the software instru
mentation systems and methods described herein, directed to
enhancing a likelihood of realizing an enterprises business
goals and objectives 1102, and to measuring 1108 the enter
prise's performance 1109 to determine how closely the enter
prise meets those goals and objectives 1102. In various
embodiments, the goals and objectives 1102 include metrics
denoting tolerance for, exposure to, or protection and robust
ness against, risk or loss.

Prompted by a need to adapt to, or even lead, a dynami
cally-changing business climate, a management team of the
business enterprise from time to time adjusts its strategic
goals and objectives 1102. To meet the goals and objectives
1102 in the changing business environment, corporate execu
tives design, reengineer, or otherwise drive, as shown by
block 1103, business processes 1104 which are deemed con
ducive to meeting the enterprise's goals and objectives 1102.
As described above, business processes 1104 are sup

ported, modeled, or otherwise represented at least in part by
one or more enterprise software applications 1106, which
execute to implement one or more aspects of the processes
1104. The enterprise executives typically depend on an effi
cient execution of the software applications 1106, limited
exposure of the Software applications to risk or loss, and
robustness of the business processes 1104 against risk or loss,
in achieving their business goals 1102. To increase process
efficiency, enterprise management executives typically
employ a chief information officer (CIO) and an information
technology (IT) team to develop enterprise Software applica
tions 1106 to implement the business processes 1104. In
various embodiments, the software applications 1106 include
custom applications (e.g., an Insurance Claims Processing
System) or customizations of commercially-available pack
aged applications (e.g., Siebel Customer Relationship Man

10

15

25

30

35

40

45

50

55

60

65

14
agement (CRM)) that automate the business processes 1104
and Support process execution.
The business enterprise also expects value 1107 from the

business processes 1104 implemented at least partially by the
enterprise software applications 1106. Accordingly, the
enterprise assesses value 1107 from the software applications
1106 and their underlying business processes 1104—aided in
part by measuring 1108 the corporate performance 1109–
and revising the goals and objectives 1102 as appropriate.
An example of value assessment and process effectiveness

monitoring is illustrated by the sample reports generated by
the systems and methods described herein, which were
installed for a healthcare network. The healthcare network
includes several stand-alone hospitals working in concert.

FIGS. 12A-12C respectively depict exemplary reports
1200, 1220, and 1240 generated by the systems and methods
described herein to enable management of the healthcare
network to assess, quantitatively and concretely, how well
implemented business processes meet the network's expec
tations and goals. According to one practice, the business
goals and objectives for this healthcare organization broadly
include increasing staffproductivity and reducing costs with
out adversely affecting quality of patient care. To meet these
goals, the healthcare organization implements a Patient Visit
Process—a sequence of steps that includes checking in a
patient, rendering medical services to the patient, and check
ing out the patient—across the healthcare network, a process
that is at least partially supported, implemented, or automated
by a Patient Care System which includes—a suite of one or
more enterprise software applications.

According to one embodiment, the Patient Visit Process
includes the following steps: check in a patient; view the
patient's medical chart; medically examine the patient;
update the patient’s chart; optionally, prescribe a drug treat
ment regimen to the patient; and check the patient out. In
addition to improving overall staff productivity, following the
steps of the Patient Visit Process—which employ the Patient
Care System and the Electronic Patient Record that it gener
ates—is expected to improve overall quality of patient care.
An additional, or alternative, expectation is that on average,
across the entire patient population, this process will be com
pleted in about 25 minutes for each patient.

In one aspect, the expected value from the Patient Visit
Process, and the Patient Care System that implements the
Patient Visit Process, includes a drop in total Patient Cycle
Time. According to one exemplary embodiment, the drop is
from an average of about 55 minutes to about 25 minutes—a
significant productivity increase. Additionally, or alterna
tively, the Patient Care System is expected to enable a signifi
cant portion of all patients (e.g., about 30%, according to one
embodiment) to self-register: a reduction in patient registra
tion staff of close to one-third. In yet another aspect, an
Electronic Patient Record produced by the Patient Care Sys
tem is expected to reduce, or in Some instances eliminate,
incidences of adverse interactions of prescription drugs—a
significant improvement in the quality of patient care.

Turning to FIG. 12A, a set of results 1200 based on moni
toring, in real time, the expected performance 1202 and actual
performance 1204 of the Patient Visit Process is depicted.
Expected results are shown by solid rhombuses depicting the
various steps in the Patient Visit Process: 1202a (patient
check-in), 1202b (view the patient’s chart), 1202c (examine
the patient and update the chart), 1202d (prescribe medica
tion), and 1202e (patient check-out). Actual data is shown by
solid circular dots 1204a-1204e, respectively corresponding
to the steps associated with the expected results 1202a-1202e.

US 8,612,479 B2
15

As FIG. 12A shows, the actual process 1204a-1204e aver
ages a cycle time of about 27 minutes, reasonably close to the
expected 25 minutes. Therefore, taking a primary view of the
total Patient Visit Cycle Time, the data 1200 appears to indi
cate that the Patient Visit Process has been successfully
implemented by the adopted Patient Care System. However,
as indicated by the data on the vertical axes, the number of
patients for whom the Patient Visit Cycle was completed in
time—about 50 is a small fraction (about 20%) of the
expected about 250 patients for whom the Patient Visit Cycle
Time is expected to be about 25 minutes. It is evident that the
healthcare organization does not see the expected Staff pro
ductivity increases or the patient care benefits with this adop
tion rate.

FIG.12B shows the actual process 1220 that the healthcare
network's staff follows for the remaining 80% of the patient
population. For a number of the patients, the electronic
patient record is not viewed 1222 prior to treatment. For a vast
majority of the patients, the patient record is not updated
1224. Such process breakdowns adversely impact the quality
of patient care.

In addition to monitoring the entire Patient Visit Process,
the healthcare network also expects that the new Patient Self
Registration features of the Patient Care System are used and
adopted as expected, so as to realize desired cost-reduction
goals.

Turning to FIG. 12C, expected patient self-registrations are
depicted by solid rhombuses 1242; registrations by the
healthcare network staff are depicted by columns 1244; and
patient self-registration data is depicted by columns 1246.
The data indicates that the healthcare network falls well
behind its expectations for patient self-registrations, with
little or no respite for hospital registration staff.

Employing the systems and methods of the invention for
instrumenting Software applications enables the healthcare
network to, among other things, evaluate a business process
and a Software application used to implement the business
process. Additionally, the systems and methods described
herein enable the healthcare network to use the collected data
to manage and adjust its strategic goals—in this case includ
ing a combination of redesigning the Patient Visit Process;
redesigning the Patient Care system (software application);
retraining the staff, and providing the staff and the patients
with incentives to encourage adoption of the redesigned
Patient Care System.

FIG. 13 shows a high-level schematic diagram of a devel
opment and production environment lifecycle 1300 accord
ing an embodiment of the Software instrumentation systems
and methods described herein. In step 1301, following instal
lation of the software platform of the invention, the software
platform employs a module that provides metadata or infor
mation about a usage scenario—which, as described above,
includes a sequence of steps by which an application is used
(executed).
When the enterprise software application executes accord

ing to a specified usage scenario (i.e., when a usage scenario
of the enterprise Software application is demonstrated), it
produces various Software application events. The monitor
ing engine listens for the application events and maintains a
trace of the produced events. Examples of application events
have been referred to above. For a particular usage scenario,
the nature of software applications is that they execute the
same sequence of application events every time that usage
scenario is repeated; accordingly, if those events are properly
tagged, the Software applications can employ the tags to emit
information representative of the execution of the tagged
Software events. This is an important observation, at least in

5

10

15

25

30

35

40

45

50

55

60

65

16
part because a particular usage scenario is deemed to have
been executed when a particular sequence of application
events is recognized by the systems and methods described
herein.

However, a usage scenario can produce a large number—
perhaps even hundreds of thousands—of application events,
which can make the event sequence running in the enterprise
Software application difficult and expensive to Subsequently
recognize or parse through. Accordingly, in one embodiment,
a raw event sequence (or trace), produced in step 1301 from
the demonstration of the usage scenario, is parsed to identify
an important Subset of application event sequences whose
detection is strongly correlated with the demonstrated usage
scenario. The events of the parsed trace identified as being
correlated with the usage scenario form what has been
referred to herein as a signature, a signature profile, or—de
pending on context—an active signature profile. As shown in
previous figures, for example, FIGS. 9A-9F, the software
platform of the systems and methods described herein con
tains a project workspace module, typically having a graphi
cal user interface (GUI), which makes it possible for a user to
visually convert a trace into a signature.

In the process of creating a signature profile, the user may
create some ambiguity. In other words, a signature profile
created from a trace may match more than one usage scenario
in the enterprise software application. This ambiguity can be
exploited to effect, if the user chooses to demonstrate an
exemplary usage scenario, develop a signature from the
resulting trace, and then use the signature to recognize not just
the exemplary, but many, if not all, similar usage scenarios. In
many embodiments, however, the signature profile uniquely
represents the demonstrated usage scenario.
The collected application traces can be ambiguous if more

than one usage scenario is demonstrated at a time. Typically,
therefore, the systems and methods described herein produce
signatures in a controlled, development environment, as men
tioned above.
The signatures created from usage scenarios in the devel

opment environment can be employed in a production envi
ronment. At least in part because of the synergy between the
existing application environments and the Software instru
mentation systems and methods described herein, typically
no Substantial changes to the application development and
deployment environment in which the disclosed software
platform works are required.
As shown in FIG. 13 (upper dotted half circle), one of the

modules in the software instrumentation platform of the
invention enables a set of signatures (representing usage sce
narios, which in turn represent components of application
business value or risk) to be conveyed, for example, over a
network from the development environment to another soft
ware module of the platform in the production environment.
Optionally, a scheduler determines one or more times or time
windows (generally referred to herein as time frames) for
monitoring the enterprise applications to detect usage sce
narios matching the signature profile.

Referring to the embodiment of FIG. 13, in step 1303, the
Software module, in the production environment, receives
signatures from the module in the development environment
and then uses that information to dynamically insert Software
code into the application to be monitored. Unlike other simi
lar techniques, the code is inserted only where needed, and as
specified by the signature. The code can also be removed after
use and new code can be inserted when a new or different use
scenario is performed. It should be noted that detailed knowl
edge of the application Source code is not required, so that
insertion of, and changes to, the signatures can be efficiently

US 8,612,479 B2
17

and quickly executed without Substantially affecting the
execution of the enterprise software application.

Guided instrumentation, in step 1303 of FIG. 13, refers to
a technique of using signatures to determine places in the
application where special detection codes are to be dynami
cally inserted to aid Subsequent detection of events that make
up a signature. In an exemplary embodiment, the occurrence
of an application event, a procedure call for a procedure P for
example, is detected and reported. One technique to accom
plish this is to get a call back for every procedure called,
match against P. and then report the detection of procedure P.
However, monitoring every step of the executing application
slows down the performance of the application. By using the
events specified in the usage scenario signature as instrumen
tation guides, the signature specifies the sequence of events to
be detected (representing, for example, the procedure call P),
and this information is used to dynamically tag special detec
tion code to procedure P (and typically nowhere else in the
application). This is an efficient detection method, since then
only the procedure P plays a role in its own detection.
As seen in step 1304 of FIG. 13, with the instrumentation in

place, any time an expected usage scenario is triggered by a
user, the modules of the system of the invention efficiently
detect individual events, and then match signatures that rep
resent sequences of events. When a detected sequence of
events is matched to a defined signature profile, a module can
store event data associated with the match, including param
eters associated with events of the matched usage scenario.
The matches can be stored in a database record that can
Subsequently be used for evaluating and/or reporting the per
formance of the executing software application(s) or a mea
sure or risk or potential loss.
The remaining figures illustrate various embodiments

illustrative of how the systems and methods described herein
can be configured to interactor integrate with various features
of enterprise Software applications.

FIG. 14 is a schematic diagram of a high-level architecture
1400 of the software instrumentation systems and methods
described herein. As shown in the figure, the systems and
methods of the invention are shown as functional layers
wrapped around one or more enterprise applications 1401.
Each functional layer represents one or more instrumentation
method steps or system elements. The top portion 1410 of
FIG. 14 shows a modeling (development) environment, and
the bottom portion 1420 a measurement (production) envi
rOnment.

In particular, according to a typical embodiment, the mod
eling environment 1410 includes a functional layer 1412
wherein benefits, risks, and usage scenarios (i.e., operations)
of the enterprise applications 1401 are described or defined—
with due consideration of the goals and objectives of the
enterprise. In functional layer 1414, the systems and methods
described herein demonstrate the usage scenarios defined in
the development layer 1412; trace events associated with the
demonstrated Scenarios; and from the traced events produce
signature profiles associated with demonstrated Scenarios.
Layer 1416 depicts tagging of (instrumenting) the enterprise
applications 1410 according to the signatures produced in the
layer 1414.
The measurement (production) environment 1420 illus

trates an instrumentation layer 1422 wherein the enterprise
applications 1410 execute according to a usage scenario (op
eration) which is to be subsequently identified with (i.e.,
matched to) a Subset of a library of usage scenarios defined or
described in the modeling environment 1410. In the layer
1422, a subset of the tags that were inserted in the modeling
(development) environments instrumentation layer 1416 are

10

15

25

30

35

40

45

50

55

60

65

18
detected in the yet unidentified scenario (operation). At the
functional layer 1424, the detected tags are matched to known
usage scenarios defined in the modeling environment. In a
typical embodiment, the systems and methods described
herein also include a functional layer 1422 that produces a
report indicative of how closely the goals and objectives of the
enterprise have been met by the enterprise applications 1410
or what level of risk exposure the enterprise faces. The reports
can also flag enterprise executives and authorized users of any
Suspicious process activity, for example, by showing bank
officials that a particular teller has accessed customer
accounts in an unusual manner.

FIG. 15 depicts another high-level schematic representa
tion of various applications 1500 of the software instrumen
tation systems and methods described herein. The software
instrumentation systems and methods 1502 are shown in the
figure as being deployed around one or more enterprise appli
cations 1501. In various embodiments, the software instru
mentation systems and methods 1502 are deployed to interact
with one or more platforms for measuring security 1511,
compliance 1512, and defects 1513 of the enterprise applica
tions 1501; for vendor evaluation 1514 and return on invest
ment (ROI) 1515; for business process reporting 1516 and
resource utilization and adoption 1517; and for assessment of
risk, exposure to risk, and anomalies 1518 and the like. These
platforms are mere examples and that other application moni
toring processes can be efficiently and rapidly performed with
the systems and methods described herein.

FIG. 16 depicts another high-level diagram of an exem
plary application of the Software instrumentation systems and
methods of the invention and their integration in a business
value measurement environment. In particular, FIG. 16
shows, according to one practice, an enterprise application
lifecycle 1600 which includes a development portion 1605
(left portion of the figure) and a deployment portion 1606
(right portion of the figure). One or more enterprise software
applications 1601 are at the core of the lifecycle 1600,
wrapped in various business value measurement functional
tool layers.

In one exemplary embodiment, the development portion
1605 of the lifecycle 1600 includes a layer 1611 denoting
software development lifecycle tools such as, without limita
tion, IBM Rational software (IBM Corp., White Plains, N.Y.),
CaliberRM (Borland Software Corp., Scotts Valley, Calif.),
Compuware Application Development Software (Compu
ware Corp., Detroit, Mich.), Mercury Application Develop
ment Environment (Mercury Computer Systems, Inc.
(Chelmsford, Mass.), and others. In this embodiment, the
lifecycle 1600 includes a layer 1612 denoting professional
services automation tools such as, without limitation, Kintana
(Mercury Computer Systems, Inc.), Changepoint (Compu
ware Corp.), PlanView Portfolio Management Software
(PlanView United States, Austin, Tex.), Microsoft Business
Solutions (Microsoft Corp., Redmond, Wash.), and others.
The deployment portion 1606 of the lifecycle 1600,

according to this embodiment, includes a layer 1613 of busi
ness intelligence tools such as, without limitation, SAS Busi
ness Intelligence Client Tools (SAS Institute GmbH, Heidel
berg, Germany), MicroStrategy Business Intelligence
Software Solutions (MicroStrategy, Inc., McLean, Va.). Cog
nos (Cognos Business Intelligence and Performance Man
agement Software Solutions (Cognos, Ottawa, ON, Canada),
Informatica (Informatica Corp., Redwood City, Calif.), and
others.

Another layer of the deployment portion 1606 of this
embodiment of the lifecycle 1600 is the systems management
tools layer 1614, which includes, for example and without

US 8,612,479 B2
19

limitation, BMC (BMC Software, Houston, Tex.), IBM
Tivoli (IBM Corp., White Plains, N.Y.), HP-OpenView (HP
Palo Alto, Calif.), CA (Computer Associates, Islandia, N.Y.),
and others. Another layer of the deployment portion 1606 of
this embodiment of the lifecycle 1600 is the business value
measurement (and risk assessment) layer 1615 where the
Software instrumentation systems and methods described
herein are deployed. Yet another layer of this embodiment
includes an embedded analytics tolls layer 1616.
Part 2: Using Raw Log Data for Fraud Management
The invention as discussed in Part 1 manages fraud by

monitoring, recording, and analyzing software events associ
ated with uses of an enterprise application in part by instru
menting the code of the enterprise application. We now dis
cuss another aspect of the invention that identifies fraudulent
uses of an enterprise application and need not require instru
menting code. In particular, the method aggregates and orga
nizes logs of raw data associated with process steps in the use
of the applications, archives the data in a manner that facili
tates efficient access to and processing of the data, investi
gates potential fraudulent scenarios using the archived data,
and uses the results of the investigations to identify patterns of
data that correspond to high risk usage scenarios and/or pro
cess steps. Additionally, archived data is compared against
the identified patterns to detect matches, and the invention
thereby automatically detects future occurrences of similar
high risk usage scenarios and issues appropriate alerts and
reports. In this aspect of the invention, raw data is provided as
one or more existing logs of data to be processed by the
methods described herein. Each element of raw log data typi
cally corresponds to a transaction record that logs an action
performed with a particular enterprise application.

To this end, FIGS. 17 and 18 depict a fraud management
system 2000 and steps 2100 for using the system. The system
2000 includes users or user groups 2010, applications 2020.
raw data 2030, aggregated data 2040, reference data 2044,
archives 2050, a fraud analyst 2060, a set of evidence related
to a case of fraud 2070, a signature indicative of a case of
fraud 2080, and a matcher to detect cases of fraud 2090.
More specifically, FIG. 17 depicts multiple applications

2020a-c. As discussed in Part 1, the applications can include
custom applications or commercially available packaged
applications. In general, the applications serve to automate
business processes and Support process execution for indus
tries such as, for example, banking, lending, and insurance.
While the operations of the various applications 2020 may be
interdependent (i.e., they may belong to a common applica
tion suite), in FIG. 17 they operate substantially indepen
dently from each other.

Each application is used by a respective user or group of
users 2010a-c, and upon use of the application, raw data 2030
associated with the uses of the applications is generated. The
raw data is stored in logs 2030a, 2030b, and 2030c. Typically,
as in FIG. 17, each application generates its own respective
log. The raw data 2030 can be generated and logged in a
number of ways, and in one aspect, the applications 2020a,
2020b, and 2020c each generate data in different manners and
log data in different formats. For example, one application
may generate an Information Management System (IMS)
transaction log on a mainframe, another may generate an
application specific logona windows server, and another may
generate a log on a UNIX-based system. In certain embodi
ments, some of the applications 2020a-care instrumented and
may log software runtime events as described in Part 1.
The logged raw data 2030 includes data associated with

process steps of the application. A process step generally
refers to a single action taken by a user in the context of a use

5

10

15

25

30

35

40

45

50

55

60

65

20
of an application. For example, “Employee A opens Client
B’s account record and “Employee A credits Client B’s
account with a fee rebate” are each process steps. Each pro
cess step generally includes one or more low level log events.
By way of example, the process step 'Employee A opens
Client B’s account record may include lower level log events
Such a login event, an account selection event, and an account
viewing event. For each process step, the logged raw data can
include an identifier of a person that performed the process
step, a timestamp indicating when the process step was per
formed, a duration of time during which the process step was
performed, an identifier of a client account associated with
the process step, and/or a categorization of the process step
(i.e., a name of the type of process stepperformed). Ofcourse,
the relevant data that is stored will vary depending on the
nature of the particular process step at hand and the particular
application being used, and this in part leads to variability of
the data within the logs.

However, the logs can also include data of a finer grain of
resolution. In the case of an instrumented application, the
logged data includes software runtime events (as discussed in
Part 1). As mentioned above, each process step typically
includes several software runtime events.

In one aspect, because each application2020a-c generates
logs of data 2030a-c in different forms and each log 2030a-c
includes different data due to variability in the process steps
that are logged, it is difficult and inefficient to conform and
store all of the data in a single database using a fixed schema.
The difficulties are compounded since the data may be semi
structured, depending on the application generating the log.
Additionally, the logs may contain vast quantities of data,
such as data corresponding to six months or more of applica
tion use. The logs may contain quantities of data on the order
of 1 terabyte, 10 terabytes, or more. We now discuss methods
to aggregate and archive the data to facilitate efficient fraud
management that could not be achieved by simply conform
ing and storing all of the information in a single database.
More specifically, with respect to FIGS. 17 and 18, step

2110 includes aggregating the data to form a set of aggregated
data 2040. This step serves the purpose of sequentially orga
nizing the raw data into chronological order. As will be dis
cussed below, many of the fraud detection and analysis meth
ods of this invention relate to identifying temporal and/or
sequential relationships between process steps. Thus, the
sequential aggregation 2110 facilitates this Subsequent analy
S1S.

An additional purpose of this step is, in part, to collect the
disparate raw data 2030 of the various applications 2020 so
that the data can be brought together and organized in the
archiving step 2120. In particular, certain business processes
require performing process steps across more than one of the
applications 2020a-c. Since each application 2020a-c typi
cally maintains an independent and unique log, the data
should be aggregated from the logs in order to detect fraudu
lent uses across multiple applications.

After aggregating 2110 the raw data 2030, the data is
extended 2114 with reference data.
As indicated above, raw log data 2030 typically includes

transaction records associated with actions performed by an
enterprise application. The transaction record includes a time
stamp together with data that characterizes the action per
formed by the enterprise application. Although such records
generally provide a complete record of the transaction from
the point of view of the individual enterprise application, they
usually lack reference data that is needed for detecting poten
tially fraudulent usage patterns. Transaction logs also lack
reference data that is needed to generate reports on the results

US 8,612,479 B2
21

of potentially fraudulent usage pattern searches. The system
illustrated in FIGS. 17 and 18 therefore enhances, or extends,
the raw transaction records with reference data, as we
describe below.

Reference data 2044 is static or semi-static information
that is associated with fields of the transaction records. For
example, a transaction record may include a numerical field
designating the identification number of the enterprise
employee who performed the transaction. An example of
reference data is the employee record for that employee,
which would typically include the employee's ID, social
security number, name, job code, date of hire, home address,
as well as up to about 50 additional fields. Employee records
are kept in reference data source 2044e, which is typically
maintained by the human resources department of the enter
prise.
As a second example, a transaction record may include a

numerical field with the account number of the account to
which the transaction was performed. The system may be
interested in reference data associated with that account num
ber. Such data is stored in account records 2044f which
include fields Such as account number, customer name,
account type, and customer home address.

In order to make reference data available for suspicious
pattern detection (described below), aggregated data 2040 is
“pre-joined with reference data 2044 to create extended, or
enhanced, aggregated data that is stored in archives 2050.
Using the example described above, the system pre-joins, or
extends, a transaction log having a single employee ID field
with corresponding reference data 2044e fields for employee
name, job code, date of hire and home address. Thus a single
employee ID field is extended to a total of five fields. Simi
larly, if the transaction record includes an account number,
the system extends the record with corresponding reference
data 2044ffields for customer name, account type, and cus
tomer home address, extending the account information from
a single field to four.
As shown in FIG. 18, extending data step 2114 is per

formed after data aggregating step 2110 and before data
archiving step 2120. However, raw log files can be extended
before they are aggregated in step 2110. For example, a log
file produced by a single enterprise application can be
extended with reference data and then aggregated with other
extended log files. In either case, a raw data field that is to be
extended with reference data will be archived in extended
form, regardless of the order in which the data was extended.

In general, a field is extended regardless of the application
2020 that generated a particular record containing the field.
For example, using retail banking as an example, the
employee ID field is extended with the same reference data
when it appears in raw data generated by any of bank appli
cations 2020a, 2020b, or 2020c. However, this uniform treat
ment is not required, and in Some circumstances it may be
advantageous to extend certain fields for specific applications
only and not for others. For example, one enterprise applica
tion may produce a log which contains the number of the
account on which each transaction is performed. If the fraud
scenarios for this application do not refer to information
about the employee's own accounts, there is no need to extend
the record with information about the employee's own
accounts. However, the fraud scenarios may refer to account
owner information when transactions are performed using a
second application, and so for the second application it is
useful to extend transaction logs to include employee account
information, and be able to determine if a particular account
is owned by the employee who performed the transaction.

10

15

25

30

35

40

45

50

55

60

65

22
The data extension process uses reference data that is up

to-date as of the time of the transaction logging. This ensures
that transactions are extended with reference data that is not
obsolete. For example, when an employee changes his job, his
employee record is correspondingly updated. The next time a
transaction record associated with that employee is extended,
it is joined with the current version of employee records
2044e, ensuring that the archived extended data 2050 con
tains within it an accurate Snapshot of the employee's situa
tion at the time that the transaction was performed. If, on the
other hand, the employee information is joined with the trans
action data at a later time, for example at a time when a fraud
investigation is launched, the employee record will reflect the
employee's job at that later time, not his job at the time the
transactions of interest occurred. Such non-contemporaneous
data extension can mask behavior patterns that characterize
fraud.
Raw data 2030 typically includes transaction log files con

taining records, each of which is rendered unique by a time
stamp corresponding to the time at which the transaction took
place. Whenever a new transaction occurs, a new record is
created and stored. Reference data 2044, on the other hand,
either remains unchanged, or changes only at specific times.
For example, reference data describing what transaction each
transaction code corresponds to changes very rarely. On the
other hand, the job code corresponding to an employee ID
changes every time the employee changes his job. Unlike
transaction data, new reference data is not added to the earlier
data but instead replaces it. If historical reference data is
needed, it has to be retrieved from an archive. In addition,
reference data may not include a time stamp as it is not
associated with a particular time.

Reference data 2044 is stored in databases, or other data
structures that are independent of enterprise applications
2020 that generate raw data 2030. For example, employee
records 2044e are maintained in a database that is set up and
maintained by the human resources department of an enter
prise. Account records 2044fare set up and maintained by the
retail customer division of the enterprise. Each enterprise has
a set of Such internal reference data sources, each of which
may be maintained by a different department within the enter
prise. In some cases, reference data 2044 must be cleaned
before it can be used, or additional reference data used in
order to make links between the transaction data and the
reference data.

Reference data may also come from parties outside the
enterprise. For example, when extending a transaction record
with an address of an employee or of a customer, the entry in
the reference data may be present in one of a number of
equivalent forms, such as "Suite 150, 100 Main Street' or
“100 Main Street, No. 150. In order to allow easier identifi
cation of addresses that correspond to each other, the address
field is also extended with a unique address identification
number from a third party postal address database.
The enterprise provides reference data 2044 from its vari

ous divisions at regular intervals in the form of a flat data file.
Alternatively, the enterprise's reference data is obtained by
directly accessing one or more relational databases that house
the reference data without creating a flat reference data file.

Although transaction data and reference data are quite
different in nature, Some kinds of transaction data are gener
ated from reference data. For example, in a retail banking
application, customer account balances as they stand at the
end of the day are given a time stamp corresponding to mid
night, and added to the transaction records. This “interpola
tion” relies on knowing that an account balance will not
change between logged transactions.

US 8,612,479 B2
23

In a reverse process. Some kinds of reference data are
derived from transaction data. In one method, a particular
transaction or set of transactions are converted into reference
data by removing the transaction time stamps from the
records. For example, in a retail banking application, the bank
balance of an account appearing in the log for the last trans
action of the day is converted into an end-of-day balance, and
added as reference data to all transaction records for that
account for the following day. This enables easy searching for
aggregate withdrawals that exceed a threshold percentage of
the prior day's closing balance. In a second example, the
system extracts reference data from a transaction log that
includes account maintenance actions, such as account open,
account close, add signer, or change address. Such transac
tions are treated as semi-static account status reference infor
mation, and can be used to enhance a teller transaction log.
For example, a flag can be included if the account address has
been changed within the thirty days preceding the transaction.
This enables easy searching for a fraud Scenario featuring
large withdrawals from an account for which the mailing
address was changed in the past thirty days.

In another method, reference data are obtained by comput
ing statistics from transaction data. Using retail banking again
as an example, one such statistic is the average number of
transactions performed by a selected group of tellers during
the past week. Computed daily, this statistic is added during
extension step 2114 to raw logs of bank teller transactions.
The inclusion of this reference data makes it easy to search for
tellers exceeding the current average number of transactions
by a selected threshold percentage. Computed reference data
can also be derived from sources other than transaction logs,
such as a data feed with statistics from a particular market or
industry segment. For example, in a brokerage application,
the system uses a data feed provided by a stock exchange to
compute the Volume of trades for a particular option contract
over a specified time interval. By using the computed average
trading Volume for the contract as reference data, it is easy to
search for fraud scenarios in which a single trade exceeds two
standard deviations above the average.

Prior to joining reference data 2044 with the raw logs, the
system identifies the unique keys that are present in both
transaction data 2040 and in reference data 2044. For
example, for employee records 2044e the system generally
uses the employee ID as the key, and for account information
2044f the system uses the account number. Prior to extending
raw data 2040 with employee information, the system con
verts employee records 2044e into a reverse index by
employee ID. Then for every occurrence of a record of raw
data 2040 that has an employee ID field, the system extends
the record with the desired fields from the entry correspond
ing to that employee ID in employee record 2044 reverse
index. Similarly, the system creates a reverse index of account
information records 2044f by account number prior to joining
the account information with raw data 2040. Once it has
served its purpose an enabled joining of raw data with refer
ence data, the selected keys or unique identifierfields may not
themselves be retained in archives 2050.

Extending data step 2114 increases the size of the raw data
2040. The amount of extension performed depends on what
additional fields are required for the Suspicious pattern detec
tion and for the reporting of leads that might represent fraud.
In some cases, the required extension increases the size of a
record of raw data 2040 by just one or two fields. In other
cases, the extension can result in an extended record having
more than twice the number of fields of the original raw data
record. For example, in the retail banking scenario described
above, raw transaction log 2040 initially includes no home

10

15

25

30

35

40

45

50

55

60

65

24
address fields. However, after extending aggregated raw data
2040 with employee records 2044e and account records
2044f the extended record includes two home address—that
of the employee and that of the account holder. A search of
this extended data record can reveal whether the two
addresses are the same, which might be one of the elements of
a Suspicious pattern.
As indicated above, the system extends raw data 2040 with

reference data that supplies fields that are of interest for
detecting potentially fraudulent usage patterns. For example,
the system can be interested in searching for patterns relating
to the employee's job, employment history, home address,
transaction volume, home address of the holders of the
accounts transacted with, and so on, none of which are present
in the raw transaction log. Since extension step 2114 fully
joins such reference fields to the transaction data, they can be
searched as quickly and easily as the original transaction data
fields without the need to retrieve information from reference
data sources 2044. This ability to search rapidly and uni
formly through both the original raw data fields and the joined
reference data field motivates the joining of reference data,
and justifies the associated expansion or “bloat' in the size of
the transaction data.

Reference data fields are also selected to provide data for
reporting the results of searches for fraudulent patterns of
behavior. For example, a set of leads that includes the names
of suspected employees is more informative than the list of
the ID numbers of the suspected employee. Similarly, a report
showing the name of the Suspected transactions, for example
“withdrawal of funds” is more informative than a list showing
transaction codes. Thus raw data is extended with certain
kinds of reference data used for reporting purposes, even if
those kinds of data are not used to search for potentially
fraudulent usage patterns.

Reference data that is not selected for display in a report
may still be searched by an analyst who is interested in pur
Suing a particular lead or set of leads. For example, if a
particular employee is identified in several potentially fraudu
lent usage patterns, an analyst may wish to access all the
employee data associated with that employee in employee
records 2044e, not just the data selected for the report. The
employee record reverse index described above facilitates
Such forensic research because the analyst can key directly
into the employee records using the unique identifier in the
archived extended transaction data 2050, without the need to
retrieve information from reference data source 2044e.

After the raw log data is extended in step 2114, it is
archived 2120 into one or more archives 2050. In some
embodiments, such as in FIG. 17, there is more than one
archive. The multiple archives can each index different types
of data. For example, one archive can serve to maintain an
index of the previous day's events, while another archive can
serve to index live events as the data is logged and aggregated.
In FIG. 17, archive 2050a archives data generated from appli
cations 2020a and 2020b, while archive 2050b archives data
generated from application 2020c.

In the archiving step 2120, the data associated with each
process step or software event is treated as a logical docu
ment. The documents are partitioned into indexes. An index is
a collection of documents included in a logical folder. Each
folder contains documents associated with process steps or
software events taking place within a prescribed interval of
time. For example, the folders can be created daily, with each
folder including data associated with that day's uses. The
appropriate time period used for each folder typically
depends on the Volume of data being logged by the applica
tions as well as archiving requirements of the enterprise. For

US 8,612,479 B2
25

example, an enterprise may require that five weeks of trans
actions be available for fraud analysis, and each week archive
a week's worth of data that is six weeks old. In such an
enterprise, the indexes are partitioned by week. Some exem
plary time periods for each folder include one hour, one day,
and one week.
The system then indexes the aggregated, extended data in

order to provide a data structure that can be searched rapidly.
The preferred indexing method is reverse, or inverted index
ing, in which the system indexes the aggregated extended data
into an inverted index using a chosen subset of the fields of the
extended transaction log. The fields chosen for inverse index
ing are fields that are of interest for fraud Scenario searches,
and generally include fields whose entries are unique identi
fiers. For example, in retail banking, such fields include
employee ID, account ID, and account owner ID. On the other
hand, the dollar amount of a transaction would typically not
be suitable for indexing because it is not unique and is not a
field that will be searched. Associated with each of the
indexed entries in the inverted index is a set of extended
transaction records containing the entry.

With respect to archive 2050a, various fields associated
with the process step data, Such as type of action or process
step, person responsible, timestamp, client account involved,
are included in an inverted index. For each of these fields, the
index includes an entry which specifies the contents of the
field, and location information specifying where data associ
ated with that field's contents can be found within the data.
For example, an entry specifying “Employee A will include
location information identifying data related to process steps
that were performed by Employee A. In one embodiment, the
location information for a process step is an offset specifying
how far into the data that process steps data is located. The
location information can include one or more logical pointers
to the corresponding process step’s data. Location informa
tion can be added to the index in real time as new data is
logged and aggregated, or at predefined times. Similarly, new
index entries corresponding to process step or event fields can
be defined and indexed in real-time or at predefined times.

After the data is archived 2120, the data is fed to matcher
2090 to detect fraudulent uses 2150, and also sent to an
analyst 2060 to conduct an investigation 2130.

Discussing the investigation 2130 first, the aggregation,
partitioning, and indexing methods discussed above provide
the analyst 2060 with easily searchable archives of data that
facilitate fraud investigation. The analyst attempts to investi
gate and identify fraudulent usage scenarios. As mentioned in
Part 1, a usage scenario generally refers to one or more related
process steps along with temporal or sequential relationships
between the process steps. For example, “Employee A opens
Client B’s account record and “Employee Aprints Client B’s
account record' are each process steps, and “Employee A
opens Client B’s account record and then prints Client B’s
account record is a usage scenario. Similarly, “Employee A
opens Client B’s account record and prints Client B’s account
record after 30 seconds' is a usage scenario. Usage scenarios
can include various numbers of process steps and/or temporal
and sequential relationships among the process steps.
As mentioned, the analyst 2060 attempts to investigate

fraudulent usage scenarios using the archives 2050. To this
end, the analyst 2060 queries the archive for data associated
with Suspected fraudulent usage scenarios, and uses data
returned by the archive 2050 as evidence in an investigation.
For example, if the analyst 2060 suspects Employee A of
fraud, the analyst 2060 can query the archive for “Employee
A.” The archive will use its inverted indexing to identify data
associated with process steps and Software events involving

10

15

25

30

35

40

45

50

55

60

65

26
Employee A, and return this data to the analyst 2060. The
matcher 2090, discussed in more detail below, can search
across multiple indexes in parallel in order to return the
appropriate data. The analyst uses this data as evidence 2070,
which is used as the basis for an investigation. Ultimately, the
analyst 2060 determines whether or not a fraudulent usage
scenario occurred.

If the analyst 2060 determines that no fraudulent usage
scenario occurred, then typically the analyst 2060 takes no
action. However, if the analyst determines that a fraudulent
usage scenario occurred, then the method proceeds to create
2140 a signature 2080 indicative of the fraudulent usage
scenario. The signature is used by the matcher 2090 to detect
additional fraudulent uses similar to the one investigated by
the analyst 2060. In Part 1, in the context of instrumented
Software, a signature for a usage scenario generally referred
to a pattern of one or more software runtime events indicative
of that usage scenario. The signature included a Subset, or in
some cases all, of the software runtime events that were
triggered during the usage scenario. In the context of the
current discussion, this is still the case when processing data
from an instrumented application. However, a signature for a
usage scenario of non-instrumented applications is generally
a pattern including one or more process steps and associated
sequential or temporal constraints among the process steps
indicative of the usage scenario. Examples of these kinds of
signatures will be discussed below.

Based on the evidence 2070, the analyst 2060 determines a
signature 2080 indicative of the fraudulent usage scenario.
For example, the analyst may suspect Employee A of fraud,
query the archive accordingly, and after investigation dis
cover a fraudulent usage scenario in which the employee
performed five consecutive “account lookups' and “account
prints' for five respective clients, each within 30 seconds of
each other, all during his lunch break. In this case, the analyst
2060 may create a new signature 2080 corresponding to
“Employee A performs five consecutive account lookups and
prints within 30 seconds or less during lunchtime.” Alter
nately, the analyst 2060 can define several new signatures
2080 including 'Account lookup during lunchtime.” “Five
consecutive account lookups and prints.” and “Employee A
performs any process step.” Although described in words
herein, the signatures are codified in program logic in the
matcher 2090. If analyzing software event data from an
instrumented application, the signatures will take on the same
form as described in Part 1 of this application. The new
signatures 2080 are provided to the matcher 2090, which we
now discuss.
The matcher 2090 performs the step 2150 of automatically

detecting fraudulent usage scenarios. To this end, the matcher
2090 maintains a set of active signatures, including new sig
natures 2080 identified in step 2140, and is fed data from the
archives 2050. The data can be streamed to the matcher 2090
from multiple sources. In FIG. 17, the data is streamed from
both archive 2050a and 2050b. The matcher 2090 compares
the data from the archive against the active signatures to
identify fraudulent usage scenarios similar to the usage sce
narios characterized by the respective active signatures. The
matcher can run in real-time, examining log data as it is
aggregated and archived, or only at prescribed time periods
Such as at the end of each business day. The matcher functions
automatically in that it includes program code to provide its
functionality with limited human oversight.

In one aspect, the matcher 2090 contains program code to
identify a state of the system with respect a signature in order
to identify partial matches to the signature, and ultimately
identify a match should the data warrant it. By way of

US 8,612,479 B2
27

example, consider the following signature indicative of a
fraudulent usage scenario: Employee A performs three con
secutive “account look-ups' follow by “prints, with each
process step occurring within 30 seconds of the next process
step. As the aggregated and archived data is fed into the
matcher 2090, the matcher keeps track of the state of a system
corresponding to the signature. The system 2200 and its pos
sible states are depicted in FIG. 19. Prior to the arrival of data,
the system begins in state 2210 with an indication of no fraud.
When data arrives indicating the process step “Employee A
performs account lookup, the system moves into state 2220.
If subsequent data indicates that Employee A did not perform
a “print” process step within 30 seconds of the lookup process
step 2220, the system returns to state 2210. Otherwise, the
system proceeds to state 2230, indicating a partial match
containing one lookup and print. The system proceeds simi
larly, eithergoing back to state 2210 or proceeding on through
states 2240, 2250, and 2260. If a print occurs within 30
seconds of system 2200 entering state 2260, the system pro
ceeds to State 2270, indicating a potentially fraudulent usage
scenario. The matcher than issues alerts and reports (step
2165) as will be discussed below.

In one aspect, a method according to system 2200 of FIG.
19 is implemented by a logical queue. Using the example of
FIG. 19, as the system proceeds through the states, the cor
responding process steps (i.e., first lookup, first print, second
lookup, etc.) are added to the queue. When the system 2200
returns to state 2210, the matcher 2090 clears the queue. In
one aspect, the matcher 2090 maintains several queues cor
responding to the several active signatures. This allows for
parallel and high speed matching.
We now discuss exemplary signatures that can be used with

the system, and in particular by the matcher 2090. As men
tioned above, the signatures are generally patterns related to
sets of process steps. The patterns sometimes include con
straints related to the process steps. A pattern in this context
generally refers to one or more process steps and temporal or
sequential relationships and/or constraints among the process
steps. A constraint in this context generally refers to a condi
tion involving process steps and temporal/sequential relation
ships between them that can be evaluated to be either true or
false. The signatures may involve just one process step. In this
case, the signature may include the person responsible for the
process step. For example, if Employee Y is highly suspect of
committing fraud, a signature can be “Any process step per
formed by EmployeeY.” The signature may include a number
of consecutive times an employee performed a particular type
of process step, for example, “Employee A performs 5 con
secutive account lookups. The signature may include tem
poral information related to the process step, Such as when the
process step occurred. For example, a signature may be “Pro
cess step performed by Employee A during Employee As
lunch break.” The temporal information may be an atypical
duration of time, such as “Employee A opened Client B’s
account without closing it within 2 hours.” The temporal
information may include a number of times that a particular
type of process step is performed during a prescribed period
of time, for example “Employee A performs 5 account look
ups in less than 10 minutes.”

The signatures may involve more than one process step,
and include sequential or temporal relationships between the
process steps. The sequential/temporal relationships may
include the time separating and/or the order of two or more
process steps, for example “Employee A performs an account
lookup followed by a print within 30 seconds.” They may
include a number of times a sequence of process steps occurs
during a predefined duration of time, for example “Account

10

15

25

30

35

40

45

50

55

60

65

28
lookup followed by print, 5 times, within 10 minutes.” They
may include a number of consecutive times a sequence of
process steps takes place, for example 'Account lookup fol
lowed by print 100 consecutive times.”
The signatures comprising constraints can include Bool

ean operations. For example, in one instance it was noted in a
bank application that miscellaneous "debits” with neither a
corresponding “credit nor a corresponding "debit reversal'
indicated potentially fraudulent behavior. A signature for this
is “Debit AND NOT (credit within 10 minutes OR debit
reversal within 30 minutes).”

If the matcher 2090 determines that a portion of the aggre
gated and archived data fed into the matcher 2090 matches a
signature, it can issue an alert, Such as an email to an appro
priate authority. It can also issue a report similar to the reports
discussed in the context of Part 1 of this application.
The components of system 2000 are generally located at

the same site as the enterprise application. In addition to the
components shown in FIG. 17, the system can include addi
tional functional blocks. In one embodiment, a report server
and generator is responsible for generating and displaying
reports once the matcher 2090 has identified a potentially
fraudulent usage scenario. The reports as similar to the
reports described with respect to Part 1 of this application.
Similarly, an alert server and generator is responsible for
generating and issuing alerts to appropriate authorities once
the matcher 2090 has identified a potentially fraudulent sce
nario. The system can also include a database which serves as
a repository for one or more of data, reports, and alerts asso
ciated with identified fraudulent usage scenarios. Each of
these functional blocks will generally be in communication
with the system 2000 depicted in FIG. 17, and typically they
are in communication with the matcher 2090.

Particular aspects and implementation details of the inven
tion discussed above may vary depending on the intended
application and use of the invention. The examples given
above are for illustrative purposes only, and other embodi
ments consistent with the invention and not explicitly dis
cussed exist. Furthermore, the embodiments of the invention
related to FIGS. 17-19 may be used in conjunction with other
aspects of the invention discussed herein.

Exemplary platforms that the systems and methods
described herein support include, but are not limited to, the
following: Windows XP for the project workspace and the
OAL: Oracle or SQL Server for the Repository (Database)
management; applications written in Java, C++, using envi
ronments such as J2EE, COM, NET, and on platforms such as
Windows XP/2000, AIX, HP-UX, Linux, and Solaris for the
tracer, signature profiler, detector, scheduler, and matcher.
The contents of all references including, but not limited

to, patents and patent applications—cited throughout this
specification, are hereby incorporated by reference in
entirety.
Many equivalents to the specific embodiments of the

invention and the specific methods and practices associated
with the systems and methods described herein exist. Accord
ingly, the invention is not to be limited to the embodiments,
methods, and practices described herein, but is to be under
stood from the following claims, which are to be interpreted
as broadly as allowed under the law.

What is claimed is:
1. A method for identifying a fraudulent use of an applica

tion using an existing log of data generated from uses of the
application, the log of data including data related to banking
information within a plurality of fields, the method compris
1ng:

US 8,612,479 B2
29

obtaining an existing log of data, the existing log of data
including data within a plurality of fields;

aggregating the data:
obtaining reference data corresponding to at least one of

the fields of data;
extending the at least one of the fields of the data with

corresponding reference data;
including entries for the extended data in an inverted index,
by identifying a location of a data field within the data,
and including the data field and information specifying
the location in the inverted index;

identifying a signature pattern representative of potentially
fraudulent behavior, the signature pattern comprising a
sequence of transaction activities;

comparing at least a portion of the inverted index to the
signature pattern to identify the fraudulent use; and

presenting results of the comparison for further investiga
tion.

2. The method of claim 1, wherein the field of data is
extended with reference data within about twenty-four hours
of the time of generation of the log of data.

3. The method of claim 1, wherein the field of data is
extended with reference data within one business day of the
time of generation of the log of data.

4. The method of claim 1, wherein the reference data is
obtained from at least one of a database and a data feed.

5. The method of claim 1, wherein the reference data is
computed from the log of data.

6. The method of claim 1, wherein identifying the pattern
involves using a search engine to search the index for the
pattern.

7. The method of claim 1, wherein the reference data com
prises a plurality offields, and the pattern involves at least one
reference data field.

8. The method of claim 1, wherein aggregating the data
includes ordering portions of the data based on timestamp
information associated with the portions of the data.

9. The method of claim 1, wherein identifying a location of
a data field includes identifying a location of a name field, a
time field, a place field, an action type field, and an account
identification field.

10. The method of claim 1, wherein providing the existing
log of data includes providing data associated with respective
process steps performed by respective users during the uses of
the application.

11. The method of claim 1, wherein providing the existing
log of data includes providing data generated from uses of a
plurality of applications, wherein data associated with one of
the applications is provided in a substantially different data
format than data associated with another one of the applica
tions.

12. The method of claim 1 wherein the application com
prises a plurality of applications, further comprising provid
ing a plurality of logs of data, and the data generated from
uses of applications are provided in respective logs stored in
substantially different respective locations.

13. The method of claim 1, further comprising including
entries for the data in a plurality of indexes, wherein each
index is associated with user actions taking place during a
prescribed interval of time.

14. The method of claim 1, wherein identifying a pattern
within the data representative of the fraudulent use includes
an analyst conducting an investigation, comprising providing
the inverted index with a query related to a suspected fraudu
lent usage scenario of the application, and the inverted index
providing location information of data satisfying the query.

5

10

15

25

30

35

40

45

50

55

60

65

30
15. The method of claim 14, comprising providing the

inverted index with a query related to at least one of a Sus
pected person, Suspected time period, and Suspected action
type.

16. The method of claim 1, comprising including program
mable logic associated with the pattern into a matcher, and the
matcher automatically comparing at least a portion of the
indexed data to the pattern.

17. The method of claim 1, wherein comparing at least a
portion of the indexed data to the pattern includes searching
for a matching pattern within the data.

18. The method of claim 1, wherein the pattern is a con
straint, and comparing at least a portion of the indexed data to
the pattern includes searching for data that satisfies the con
straint.

19. The method of claim 1, wherein the pattern is a con
straint including Boolean operations, and comparing at least
a portion of the indexed data to the pattern includes evaluating
the Boolean expressions with respect to the indexed data.

20. The method of claim 1, further comprising providing an
alert including information about the fraudulent use.

21. The method of claim 1, further comprising generating
a report including information about the fraudulent use.

22. The method of claim 1, wherein the existing log of data
includes data related to banking information generated from
uses of an application.

23. A method for identifying a fraudulent use of an appli
cation using an existing log of data including data related to
banking information generated from uses of the application,
the method comprising:

obtaining an existing log of data, the existing log of data
including data within a plurality of fields:

aggregating the data;
obtaining reference data corresponding to the log of data;
extending the log of data with the corresponding reference

data;
including entries for the extended data in an electronically

searchable inverted index, by identifying a location of a
data field within the data, and including the data field and
information specifying the location in the inverted
index;

identifying a pattern within the extended log of data rep
resentative of the fraudulent use:

comparing at least a portion of the inverted index to the
pattern to identify the fraudulent use; and

presenting results of the comparison for further investiga
tion.

24. A method for identifying a fraudulent use of an appli
cation using an existing log of data including data related to
banking information generated from uses of the application,
the log of data including a plurality of fields, the method
comprising:

obtaining an existing log of data, the existing of data
including data within a plurality of fields:

obtaining reference data, the reference data including a
plurality of fields, at least one reference data fields cor
responding to one of the fields of the log of data;

extending at least one of the fields of the log of data with the
corresponding reference data;

including entries for the data in an electronically search
able inverted index, by identifying a location of a data
field within the data and including the data field and
information specifying the location in the inverted
index;

identifying a pattern within the extended log of data rep
resentative of the fraudulent use, wherein the pattern
involves a reference data field;

US 8,612,479 B2
31

comparing at least a portion of the inverted index to the
pattern to identify the fraudulent use; and

presenting results of the comparison for further investiga
tion.

32

