发明名称

泥浆洪流飞吊救援方法及两栖医疗救护车

摘要

本发明以大直径主涵道共轴正反转双旋翼或风扇体承担主升力，其周旋水平对称设置多个小直径副涵道旋翼或风扇，其连接臂可伸缩扭摆做四自由度动作，承担辅助升力和方向控制及防涡环，在主涵道设主侧喷口及等离子能量波发射器防涡环，在主旋翼设变惯性系统抗湍流转输风能力。可胜任飞吊救援任务，并与泥浆洪流飞吊救援两栖医疗救护车结合组成特种飞吊救护两栖车方案。在该车架四角设置可伸缩摆动锥头螺旋桨长鞭浮筒式或陀螺螺旋桨浮头式，螺旋桨浮筒式，人字单边锥纹橡胶伸缩螺旋桨浮筏轮胎助推器等泥浆流推进器，具有泥浆流漂浮行驶能力，解决了泥浆洪流特种救援方法及两栖医疗救护车的设计方法。
1. 权利要求泥浆流洪灾多功能飞吊救援医疗救护两栖车的作业方法其特征是：
泥浆流飞吊救援医疗救护两栖车：可优选硬碰式泥浆流飞吊救援医疗救护两栖车 (223)，
可优选敞篷式泥浆流飞吊救援医疗救护两栖车 (265)。从公路用装有可伸缩襟翅助推毂
(246)、人字锯齿纹鼓形大气浮力泥浆推进轮胎两栖轮 (253) 或普通轮高速行驶赶到洪灾区,
用爬坡器 (285) 、(251) 协助可从选择半湿半干浅滩驶进泥浆流或洪水中，再用泥浆推进器
或两栖轮 (253) 水逆风逆航至需救援处上游上风处不远的位置，操控员进入操控室升降
式 (229)、或非升降式 (279)。进行开启飞吊系统总开关 (K) 进行预先启动系统起飞飞吊
器 (1) 作业。飞吊器 (1) 在输能牵引索 (L) 提供传输的电力，又在输能牵引索 (L) 牵引力配
合下稳控起飞进行救生作业。本飞吊器由有线输能电力驱动的救援飞吊系统是由大尺寸直
径的主涵道旋翼或风扇体 (5) 承担主升力。在其周围对称或多对称同水平面上安装连接小
尺寸直径副涵道旋翼或风扇 (A)、(B)、(C)、(D) 或 (E) 体在连接臂 (96)、(97) 可伸缩、扭、
摇、摆、360 度往复转动单独或对称有节奏的与大直径主涵道旋翼或风扇体 (5) 作四自由度相
对动作，具有承担辅助升力和主控制方向及主驱动式防滑环功能。在该馈控中心计算机指令
下设置在大直径主旋翼系统中的交变频系统 (30) 产生差动交变频诱导出陀螺效应的定轴
性，使飞吊器具有具有抗突变切变转捩湍流和侧切风能力。在主涵道下端设的主喷口 (9)
及侧喷口 (10) 承担主升力和调节方向及防涡环。在大直径主涵道内设有等离子能量波发生
器释放的粒子能量可主驱动式防涡环和改善旋翼空气动力雷诺数防止作用，以使飞吊器 (1)
能在湍流大的空域环境中改善升力和飞行安全。承担在恶劣条件下克服技术困难进行救生
和提吊任务。由提吊索 (224) 吊着网笼箱筛器 (225) 可在泥水中捞救。若有伤员是在高处
陆地或建筑房地干用气垫担架 (226) 飞到需救援处上空。飞升的飞吊器 (1) 在自身升力作
用下升空，同时由输能牵引索 (L) 为飞吊器 (1) 传输电能和索的牵引力作用，如同电力
风筝一样逆风在空中悬停飞行。在飞吊器 (1) 飞到灾民上空后，操控员在其摄像机 (d1)、
(d2)、(d3) 观查灾民现场情况将信号发回，在控制台 (K1) 显示屏 (PN) 显示的情况，操控员
操控飞吊器 (1) 提吊绞线 (624) 放下提吊索 (224) 封网笼箱筛器 (225) 接近灾民，并通过飞
吊器 (1) 上语音传声器 (Y) 喊话，指挥灾民配合进行提吊救生人员，运回已打开敞篷的医救
仓泥浆水陆两栖救生车上，实现这种泥浆洪灾医疗救援方法和配套的两栖救生车。若遇山区
公路车辆坠滑山崖沟壑中，选碰硬碰式泥浆流两栖救生车 (223) 或敞篷式泥浆流两栖救援车
(265)，由公路高速行驶赶往出事地，车停时为确保安全可释放爬坡器 (251)、(253)、或泥浆流
推进器 (275)、(290)、(291)、(253) 和 (246) 着地进行增大摩擦面安全停车进行飞吊器
(1) 救生作业。先送下医护救生员对伤员进行预处理，并抬装伤员进气垫担架 (226)。在飞
吊作业中按操作规程条款中规定不论飞吊器 (1) 距地飞行高度，调整控制提吊绞线 (624)
的提吊索 (224) 的长度调控气垫担架 (226) 高度在其底部设有传感器 (631c) 探测随地形
不超 (1) 米 (1.2) 米范围内确保伤员安全高度进行悬空吊运救生作业。从而实现本方案两
栖救援方法和相关设备车辆。

2. 权利要求泥浆流洪灾多功能飞吊救援医疗救护两栖车组成结构其特征是：主要由
飞吊器 (1) 牵拉的输能牵引索 (L) 释卷在输能牵引索 (L) 卷扬器 (238) 上负责飞吊救援作
业的绞远距离提吊，在此设装的转换器提供能源和控制信号，并连接燃油发电机 (N1) 和蓄
电池组 (N2) 供电能源。在车上装有全视野防雨透明可升降操控室 (243) 或非升降操控室
(279) 和可旋转人形椅全控台 (242) 或非升降 (279) 负责救生作业的操控。同时装有液压
机械臂 (232)，臂端装有救生筏 (239) 或救生筏 (292) 负责近距离救生接运及灭火防护装置 (259) 或敞开式 (276)。泥浆两栖车底板上车辆四角装配有可迈步式爬坡器 (285) 和摆动式爬坡器 (251)。或配有泥浆砂石水流推进器；可伸缩折叠角度锥头螺旋长臂大浮力泥浆推进器 (275)，可伸缩摆动变矩螺旋浮头泥浆推进器 (290)，可伸缩摆动式碾滚浮筋翻卷翅推进器 (291)，泥浆流两栖车四个车轮装配可伸缩摆动翅轴驱动 (246) 人字锯齿纹鼓形大浮力泥浆推进轮胎两栖轮 (253)。车头装配泥浆洪水水域航行的气垫式减阻托 (293)，硬篷箱式泥浆洪水水域两栖车加装医疗救护及救生设备 (223)。或半敞开式泥浆洪水流飞吊救援医疗救护两栖车 (255) 行驶底盘组成。

3. 权利要求泥浆洪水流多功ACY救援医疗救护两栖车辆行驶底盘系统结构部分其特征是：泥浆流洪水多功能流放救援医疗救护两栖车硬篷式 (223) 和敞开式 (265) 使用现有技术军用中型越野卡车行驶底盘的车主架基础上原前后轮距轴距尺寸不变的情况下加强加长前后轮以外的主梁长度和加强加强结构件和厚度提高受力强度，在此底盘装甲加拉伸强度的水陆两栖技术规范标准要求的车底盘水密封，另附加类似防弹抗冲击符合材料水密封层皮。再在车架主梁四角位置安装液压伸缩摆动调节角度泥浆推进器；可伸缩折叠角度锥头螺旋长臂大浮力泥浆推进器 (275)；可伸缩摆动变矩螺旋浮头泥浆推进器 (290)，可伸缩摆动式端面滚流筋翻卷翅泥浆推进器 (291)，车头装配泥浆洪水流流航行的气垫式减阻托 (293)，承担泥浆洪水流中航行。液压迈步电动机驱动爬轮履带系统组成的液压迈步式电动爬轮履带爬坡器 (285) 和液压摆动式电动爬轮履带爬坡器 (251)。承担在非公路路段，非平整路段的小坡沟坎借助液压升降迈步系统作迈步越小坎和小斜坡，同时借助爬坡器履带 (605) 大扭矩电机驱动，可在松软地段滚动履带爬行，同借助自动平衡系统控制爬坡器不同脚液压支柱升降降低基本控制保持车身平衡状和克服大角度斜倾度，提高增强了越野性能。如上述系统由独立燃油发电机 (N1) 和蓄电池组 (N2) 负供电力能源。操控都由所设独立操控系统和手柄置于本车驾驶室副驾座负责。在公路由正驾座负责操控车轮公路行驶配用可伸缩摆动翅轴驱动 (246) 人字锯齿纹鼓形大浮力泥浆推进轮胎两栖轮 (253) 在公路行驶或泥浆洪水流中浮行的底盘结构组成。

4. 权利要求硬篷箱式泥浆洪水流多功ACY救援医疗救护两栖车是将由现有技术的军用越野车底盘和水陆两栖车技术进行加长加宽角度材料基础上在底盘主车架四角其特征是：安装优选可迈步式爬坡器 (285) 和摆动式爬坡器 (251)。或配有泥浆洪水流推进器；可伸缩折叠角度锥头螺旋长臂大浮力泥浆推进器 (275)；可伸缩摆动变矩螺旋浮头泥浆推进器 (290)；可伸缩摆动式端面滚流筋翻卷翅泥浆推进器 (291)；清水双涵道螺旋桨 (252)，四个车轮配在泥浆洪水流多功ACY救援医疗救护两栖轮 (253)。硬篷箱式泥浆洪水流医疗救护两栖车 (223) 和救生飞吊吊系统 (I) 的捆绑功能。本车前伸发动机机前仓顶需装加动装置收放式泥浆水流减阻托 (293)，行驶航行减阻，利于逆流航行作业。设车前有伸出发动机机前中设斜坡状长方形驾驶室 (263) 及前挡视双格窗为前方位双排座仓设置其空间。前排为两座左方正座驾驶员负责轮式驾驶操控，右为副驾驶负责泥浆洪水流流航行和爬坡系统驾驶操控。后排副座座位，驾驶室后排设隔仓医疗器材室仓 (261) 均为全防水密封设计。在驾驶室顶安装了自动跟踪式救吊作业照明射灯 (227)，也可作驾驶驶远距照明。设车路、泥水行驶警示灯 (228)，设接可伸缩调风向防水本车发动机排气 (262) 和进气器 (231)，也可移在车尾顶飞吊器仓处边与飞吊器燃油发电机的排烟和吸气共享同一排烟
和吸气口。在室顶装有可（360°）度旋转和升降的全视野透明空调半球形操控室（229）。内装可转动人形椅全控台（230）。在车中部设防水封的活动可敞顶的封闭长方形中等人高度的硬箱救生舱（259），两侧各设可推拉的活动侧门（240）、（254）可顺槽（248）直开拉到尾台，方便救拉落水者。仓顶设可敞顶卷帘机构及卷帘式仓盖（241）。关上防风雨门，开启时便于飞吊器（1）飞吊救送伤员气垫担架（226）吊运仓和用网捞筐筛器（225）救送灾民进仓（259）。在本车设救伤仓备医疗药品及器材仓室（261），设医护仓与进医疗药器材生仓室（260）通道。在左侧门和医救仓门（261）后外角上安装升降液压系统救接起吊器（232），在本车尾部顶侧设有飞吊器（1）存放仓（244），飞吊器（1）仓侧边下方配输电举引索（1）卷扬器256由卷扬电动机257驱动。在本车尾设攀登台（250），开设有医救仓后尾台（247）。专设非伤灾民隔离搭乘转运。该台内设配套的油机组备发电机（N1）和蓄电池组（N2）及（294）。在本车尾下设有可开关常规传统清水双涵道螺旋桨推进器（252）。在涨水时打开使用，泥浆时则关闭。在本车两侧车身设有流体导向器（255），又另用作落水者的救助提供了攀踏板及255的另称，车身四周设有落水者救助攀抓栏（264）。从装设式泥浆流两栖车医救仓后门（247）登台也救救落水者登生。救生作业系统是飞吊器（1）1关连有网捞筐筛（225），辅助液压支架救接架（232），下列可电机转动的基座液压腔（233），上联斜向三角液压支架臂第一节234，又斜连二节液压杆（235），起重臂的末尾设有提动索卷扬器（236），装可倾斜平行四边形桁架（237）与液压可上下伸缩（238）和收短的救生筐（239）相联。车箱顶一侧设有其存放伸缩臂槽（242）和救援筐储藏仓（243）。组成一套完整的能在泥浆沙石洪流航行和公路高速行驶及半湿半干坡道爬坡能力，飞吊系统救援和近距离低高度液压救生臂（232）提吊救生筐（239）的多方救援作业的医疗救护两栖救援救生方法和相应的全硬箱箱式车辆。

5. 权利要求半油蓬式飞吊救援装备备长螺旋铵泥浆流推进器医疗救护两栖车是将由现有技术的军用越野车底盘和水陆两栖技术进行加长加刚度材料基础和底盘等车架四角其特征是：安装可迈步式爬坡器（285）和摆动式爬坡器（251），并配锥头螺旋长轴浮力泥浆推进器（275）、清水双涵道螺旋桨（252），四个车轮配有公路和泥浆洪流及渡航的可伸缩弹翼支撑架 246 人字锁纹鼓形大浮力泥浆推进轮胎两栖轮 253。车体装置泥浆洪流水行航行的气垫式减阻托293，泥浆流医疗救护半油蓬式救护仓两栖车（223）和救生飞吊器系统（1）的搭配功能。本车前伸发动机机前仓顶需加装活动收放式泥浆水流减阻托（293）。进行洪流航行，利于逆流航速驾驶。设车前有伸出发动机机前中设斜坡状长方驾驶室（263）及前挡视双格窗为前三位双排座仓设置其空间。前排为两座左为正座驾驶员负责轮式驾驶操控，右为副驾驶员负责泥浆流航行和爬坡系统驾驶操控。后排救助员座位，驾驶室后排设隔仓医疗器材室仓（261）均为全防水密封设计。车内后设活动可折叠式雨蓬遮阳半油蓬 247 式救护仓 276，车两侧身槽邦上设可推拉的折叠半油蓬 274 顺开滑槽 278 直开拉到尾台，关上防风雨门，开启时便于飞吊器 1 飞吊救送伤员气垫担架 226 吊运仓和用网捞筐筛器 225 救送灾民进救护仓 276。救护仓 276 两侧车身触水面设有流体导流弹翼，另用途作为方便救拉落水者攀踏，车外围四周同时设有抓栏，供落水者方便攀抓。车尾顶仓设飞吊器 1，提吊救生网捞筐器 225 关联系统敞顶式存放仓 277。在尾仓装有空调透明半圆柱形飞吊救生系统的操控室 279 和空调地板 281 内装可转动人形椅全控台 280。在飞吊器 1 仓下方配输能牵引索卷扬器 289，下部位设有配套的油机组备发电机 N1 和蓄电池组 N2，也可移设在本
车尾攀登台 284 内设以增大救护仓面积及攀护栏杆 283。车尾台留有面积专设非伤人员隔离搭乘转运。在本车两侧车身设有流体导向槽 255，该导向槽另用为落水者的救助提供了攀踏平面 286 的称谓，车身四周都设有落水者救助攀爬架 288。组成一套完整的能在泥浆沙石洪流航行和公路高速行驶及半湿半干坡道爬坡能力，飞吊系统 (1) 救援和近距离低高度液压救生臂 (232) 提吊救生篮 (292) 的多方法救生作业的医疗救护两栖救援救生方法和相应的半敞篷式车辆。

6. 权利要求泥浆发洪水流隧道泥浆流推进器多功能飞吊救援医疗救护两栖车辆特征是：在水陆两栖车辆底座上的四个角处装配本方案的可摆动伸缩的泥浆流推进器 (290)。同设清水双涵道螺旋桨 (252)，四个车轮配有公路和泥浆洪流流航的可伸缩楔翅助推器 (246) 人字锯齿纹鼓形大浮力泥浆推进轮胎两栖轮 (253)。在车上设置可靠在较远距离、较高位置的救援作业的救生器 (1) 按装牵引架 (106) 连接输能牵引索 (L)，接在卷扬器 (289) 上并由转换器连接及所配的独立燃油发电机 (N1) 和蓄电池组 (N2) 负责供电动力源，在近距离和高度救援时使用所设的液压伸缩臂 (232) 和救生篮筐 (292)。由操控室 (279) 和人形椅全控台 (280) 承担救援作业的操控，组成泥浆洪流中进行救援的方法和相应功能设备的特种车辆。

7. 权利要求泥浆洪流流道泥浆流推进器多功能飞吊救援医疗救护两栖车辆特征是：在水陆两栖车辆底座上的四个角处装配本方案的可摆动伸缩的泥浆流推进器 (291)。同设清水双涵道螺旋桨 (252)，四个车轮配有公路和泥浆洪流流航的可伸缩楔翅助推器 (246) 人字锯齿纹鼓形大浮力泥浆推进轮胎两栖轮 (253)。在车上设置可靠在较远距离、较高位置的救援作业的救生器 (1) 按装牵引架 (106) 连接输能牵引索 (L)，接在卷扬器 (289) 上并由转换器连接及所配的独立燃油发电机 (N1) 和蓄电池组 (N2) 负责供电动力源，在近距离和高度救援时使用所设的液压伸缩臂 (232) 和救生篮筐 (292)。由操控室 (279) 和人形椅全控台 (280) 承担救援作业的操控，组成泥浆洪流中进行救援的方法和相应功能设备的特种车辆。

8. 权利要求泥浆流两栖救援车行车头气垫式减阻托 293 其特征是：气垫减阻托分两块，上托段 (405) 即拆叠段和副储气仓壁，起到拆叠和储气作用和下托段 (308) 起到产生气垫效应和主减阻段作用，形状都为长方形弧状中空腔结构组成，并可拆叠的连接在一起。上托段 (405) 是长方形弧形扣向发动机舱，长度尺寸边为车宽尺寸，窄尺寸边长为上托段的两侧尺寸，上托段为耐压的中空腔是副储气仓 (406)。上托段 (406) 上端两侧设有液压拉收杆调节器 (404) 和水平发动机机仓盖螺旋轮调节移动进退和转功机构 (403)，即减阻托角度调节和拆叠动作液压拉推动装置 (403)。主要作用是车在公路上行驶时减阻托 (293) 收起，主要靠其拉收作用。在转动机构 (402) 驱动下抬起，液压支杆及定位销 (400) 和 (401) 配合上挺收调长度。一端与车体转动机构 (402) 相连并与下托段气垫工作面积 (308) 上端两侧拆叠轴 (407) 相连及下托段中下位用转动轴及滚轮链。起到收起和释放动作的搭配作用。上托段 (405) 下端两侧穿插拆叠轴机构 (407) 轴，与下托段 (308) 上端两侧联结组合拆叠机构 (407) 轴相连接。下托段 (308) 从上端向下 (1/3) 处设气垫槽 (294)，槽中心线设多排、优选三排气道气孔 (295)。每排间隔一段距离。或组成三角形布孔，或一列排列布孔。在气垫气道槽内 (294)，此为截面三角形。槽底 (296) 设为尖，槽底设气垫孔 (295)。孔外触水面为直，孔内面为斜面 (306) 与导气阀 (297) 与斜锥体圆面 (306) 吻合，气垫导气
槽上棱 (298) 分隔气垫区，起到导气流稳气垫作用。此气垫导气阀 (297) 连一杆套压力弹簧机构 (301) 杆连电磁阀 (300)，该电磁阀 (300) 吸力大小和深度决定了气垫阀 (297) 抬起大小，所释放气大小，根据泥浆水流与减阻托间相对的流速来释放气流形成气垫层的大小。除了在减阻托表面涂类似不粘锅原理涂层外，选择设气垫板发明方法以进一步提高强化减阻参数宽度，以适应不同黏度泥浆流。下托段内设空腔为一级气压室 (299)，其主气压室壁 (307) 为耐高压板、阀间设有二级储气仓 (302)，通过二、一级气储气通孔 (303) 的进退储气量和持续时间，上托段设称三级储气仓 (406)，在一级二级气储气仓间布置气垫导气形成气垫效应 (304) 系统。气垫气压 (Pa) 在喷气孔 (295) 喷出的气流 (305) 行成气垫 (304)。下托段 (308) 气垫效应工作面积段 (308) 由其长度尺寸，最大限度的行成气垫减阻以适应逆泥浆水流的航驶。

9. 权利要求ฉบับชี้แจงถัดมาชี้แจงถัดมา ฉบับชี้แจงถัดมา ฉบับชี้แจงถัดมา ฉบับชี้แจงถัดมา ฉบับชี้แจงถัดมา (253) 其特征是：主要由泥浆流两栖车伸缩裙翅助拖推 (246) 人字锯齿纹鼓形大浮力泥浆推进轮胎两栖轮 (253)。其特征是：主要由泥浆流两栖车伸缩裙翅助拖推 (246) 人字锯齿纹鼓形大浮力泥浆推进轮胎两栖轮 (253)，两部分组成。结构是人字锯齿花大鼓形大浮力泥浆推进轮胎 (253) 是用橡胶制成，外形似大一个大鼓状，胎外纹为大字字形 (410)，设是人字锯齿花大字边即单边的微 (411) 和捺 (409) 单边设锯齿纹鼓形 (409)，此锯齿纹鼓形大浮力泥浆水流在人字纹单边的滑流阻力，以提高此轮推进效率。此轮转动角速度和方向 (408)，轮滚动前进方向 (412) 标示了此轮结构与运动作用力方向关系。大鼓形螺旋状基盘 (413) 与大鼓形螺旋状紧固法兰盘 (414) 连接固定，并与轮毂筒 (416) 连体成车毂，该车毂上设有可伸缩的内筒状主铰筒 (418)，此上设有可屈收的铰翅 (417)。此铰翅形一头头，一头小，像近似 (60)、度 (30)、度 (90)、度内角的三角形长形与筒状主铰筒 (418) 平行相连，两个铰翅 (417) 大头间设一个铰中小头，两铰翅大小头倾倒设计布置，这种布置有利防夹泥浆中石杂物，当主铰筒 (418) 高速转动时又能防铰翅 (417) 后流体废阻通。提高铰翅 (417) 推进有效率。在轮毂筒 (416) 内底端用紧固螺栓 (420) 固连主铰筒 (418) 主铰筒内设优选气压力度底座紧固法兰盘 (419) 和紧固孔 (415)，在法盘中设主铰筒气压伸缩窗机构伸出气压腔 (424)，在此中设活塞 (444)，在进气管 (422) 压进空气作用下主铰筒 (418) 在其中心设的导向滑动轴 (440) 连的驱动活塞 (444) 作用下内活塞导向滑腔 (441) 护滑下伸出轮毂筒 (416)。在进气管 (423) 加压空气通过输气管 (426) 顺压气管转弯 (430) 进回缩腔 (429)，反向作用活塞 (444)，主铰筒 (418) 缩回轮毂 (416) 内。主铰筒 (418) 设伸缩导向法兰座 (427) 设在轮毂 (416) 内伸缩中心有气压柱滑腔 (424) 又是活塞 (444) 导向腔。其外径又是主铰筒 (418) 的中心导滑柱 (424)。在轮毂 (416) 内筒径滑动并密封，外端封垫也是 (442)。在轮毂内形成气压腔 (425)，具有浮力作用。在两铰筒 (253) 人字花轮胎在装进轮毂 (416) 后由轮胎毂箱紧固 (446) 加强特种紧固。主铰筒 (418) 铰翅 (417) 的展收，通过两侧升降滑道 (428) 和 (439) 伸收。在电机 (434) 驱动螺轴 (438) 转动与另头轴封固定 (431)。铰翅在升降主滑动器 (437)、在螺轴 (438) 上驱动下滑动，同时在铰翅下设的被动滑动器 (435) 跟随滑动，使 (X) 形升降器及绞轴 (436) 伸收升降。 (X) 形升降的运作在其配电力通过输管 (421+)，(+) 通道 (445)，主铰筒 (418) 伸出滑到位电力转接触点 (432) 接通转电力，(+) 并通电力导通 (433) 输电电机 (434)，作用铰翅 (418) 展出。设计采用大鼓弧形状面，中间很鼓面于地面接触面小，在公路高速行驶减小了胎阻，节省行驶油耗。在泥浆砂流中航驶增大多与泥浆砂水流接触面驱动力，并设有人字锯齿靶纹增了摩擦推力，此状两铰筒增了浮力。同样节省能
10. 权利要求可伸缩折叠度锥头螺旋长轴大浮力泥浆推进器 275 其特征是：在该车两侧设计了设装置中与车身长度略短的长轴筒，长轴筒凹面为锥状，外周有长度和长度上缠绕连接螺旋鱼翅状泥浆推进尾板，选用车轴驱动，设有调节，正反转功能，在左右两个配合下可在泥浆流中低速行驶，可倒车，可调向。每个推进器臂杆可做水平和向下伸（90°）角度曲直及前后长度方向与车身长度之间调度，并与车头装有可升降伸缩可变角度的雪拖板式泥浆浮力托配合，可使车辆在泥浆流面上呈升降及向前仰倾角度浮升。在公路上行驶时两侧推进器可释放两侧车体内。当进入泥浆流和洪流中时可伸出工作。在该车两侧前后和四角设置爬坡器，锥头螺旋长轴大浮力泥浆推进器（275）是一种大浮力大驱
动泥浆推进器，它可防大夹杂物，程度大的泥浆洪流的行驶，该推进器两头为锥头体（464）上设有锥头螺旋鳍（480）尺寸从锥头跟部的尺寸及锥头尺寸小，中部为长轴筒（473），上设同高尺寸的锥头螺旋鳍（474），在两头锥头到中部长轴筒间，设有两个是定子主箍毂可拆附（463）。此中心有一个穿件中心的旋转驱动主中心轴（471），其泥浆推进
器螺旋锥头体与主轴（471）两连同部头米（482）与锥头体罩（466）固连，并由主臂螺旋环体
与锥头间密封圈（478）防泥浆水。中部浮力仓长轴筒（473）是一个空腔浮力仓通过支承架（472）与旋转驱动主中心轴（471）固连。在两主臂螺旋环体（477）中设电力驱动电机，主臂
螺旋环体（477）为电机定子线圈绕组（469），其上由螺钉（481）镶有主轴承外环（467），主轴
承内环（479）与主中心轴毂套并同主中心轴环永磁铁转子（470）并联。锥体大端镶有联
固的凸形法兰盘（465）并与主中心轴（471）和主轴承内环（479）及电机永磁铁转子（470）
并固为转动部分。在锥体大端与主轴承外环间设有密封（468），长轴筒端密封（476）、环
密封（475）对泥浆的防水保护。本推进行器的电力线（484）通过主臂（463）中通电道（462）与主
驱动电机相连。主臂（463）主伸缩直臂（459）的伸通过进油管（450）进液压液作用活塞
（449）和回缩进液压液管（447）进液压作用回缩。在主伸缩主直伸缩臂（459）上关节轴（460A）
与副关节轴（458）的连有斜臂（461）及两转动关节轴（460B）相连并转动可折叠一定角度。在
液压副臂（451）中插装的伸缩臂（458）的伸缩通过进液压液管（455）进液压到液压腔（453）
作用活塞（456）产生伸缩，回缩时进液压液管（457）进液压，同时连结车体架的转动机构臂固定
转轴（454）配合泥浆推进器定子主箍毂可拆（463）拆一定角度推进器（275）下弯可抬高本车
在泥浆流的行驶浮高双体船一样航行。转向靠两侧推进器不同转速，急转向时两侧转动方向
反向。本推进行器由紧固螺栓（448）将推进行器基座（483）与车架（452）紧固。本推进行器
可调臂折叠角度变成大折角高度适合泥浆稀洪流大水中杂物多的救灾抢险航行使用。
11. 权利要求可伸缩摆动变矩螺旋陀螺浮头泥浆绞刀推进器 290 其特征是：在该车两
侧前后四角设置陀螺浮头泥浆绞刀推进器，又起到在半干半湿上岸和下泥水流岸边交界地带
的泥砂段坡度利助功能用。本推进行器适用于稀泥浆流中驱动行驶与泥浆流两栖车伸缩
鳍翅助推器（426）人字锯齿纹鼓形大浮力泥浆推进螺旋两栖车（253）配合使用于救授作业。
本推进行器设为中钻头陀螺体（290），外面镶有可变矩螺旋鳍翅（501）。根据不同稀度泥
浆转矩。本推进行器利用木钻、木螺丝工作原理和设计，并在此基础上设的钻丝螺旋可变矩，
以适不同稀度泥浆流中推进和拉进，在本车尾部设的推进器是推，推在车头两侧设的
同常推进器是拉，以驱动本车能在泥浆流灾害中救授作业。本推进行器分两部分前部为推力
作用工作陀螺头。后部为伺服机构。前部陀螺头像一个木陀螺形内分两仓，外是环形有分隔
的浮力仓（504），内中心部是动力机构仓（500），在此中心是静轴（508），此轴是不转，静
轴（508）头部连有一个静轴转轴（511）和轴承（509），转动锥头内联托（510）与陀
螺头体固连。在动力仓静轴装电机静子绕组线圈（515）。和永磁铁转子（514），电机电
力线阳极线（528）、阴极线（527）通过主静轴（508）电力通道（526）在电机静子绕组合
接口（516）。在电机两端设有主轴承，主轴静轴承内环圆（505）套在联静轴（508）上，主轴
承外环圈（502）与旋转的陀螺头动力仓（500）内径腔相联，形成变矩螺旋陀螺头泥浆推进
器（290）主推进力转动系统。在陀螺头面直筒段镶变矩螺旋螺纹（501），下部连有变矩套
（502）和所滑接（503）。再随锥头斜面续延变矩螺旋螺纹（507），其变矩器（513）和滑
道，变矩螺旋螺纹（501）和（507）的变矩是由变矩液压器（517）主推进法兰托（497）中间
设滑动滚珠（498）及被动旋转法兰托（499）间形成旋转机构和回缩实现螺旋螺纹（501）、
（507）的变矩。其变矩液压器推进油管（492）进油压腔（494）作用活塞（495）前移和进油
管（493）进油压腔（496）作用活塞（494）另一面回缩来调变矩，螺旋螺纹的的设点（PL0）
发生作用力方向（IP），（PL1）分量大小变化，根据泥浆黏稠度和与车身相对流向及本车运动
方向相对参考进行变矩改变对油体（即泥浆）作用推力。保持车辆行驶的效率和安全性。
本方案推进器（290）可上下摆动和前后伸缩动作，摆头动作在主转推进器上下点头方式摆动
转轴（523）与主转推进器上下点头方式摆动转轴（524）之间存在转动，不移限位情况下作
摆动，是由车架连接座（533）相联推动力是由装在车体副臂转动轴（485）连副臂（534）
液压器通过自身弯曲度转轴（490）联结斜臂（491）的作用力完成。油压进入油管（532）
液压腔（486）作用在活塞（487）推动活塞杆（488）外伸在作用力（PL3）作用下弯曲度转
轴（490）推转转斜臂（491）作用与推进器（290）的摆动。进油管（531）进油下作用液压回
腔（489）活塞（487）回程、推进器向上摆。本方案螺旋陀螺头泥浆推进器（290）可伸缩，
是由进油压管（530）进油液压，推进器主伸缩液压臂伸出，是由油压腔（522）液压作用在活
塞（521）上，推动主滑动轴（525）滑动整体陀螺推进器（290）向前进。若油压从回缩油
管（529）进入回缩油腔（520）活塞（521），使陀螺头推进器（290）向回缩。其伸缩颈的密封
套（518）保护机构防泥浆水。上述的构造和动作具体实施本的发明方法和设备。
12. 权利要求可伸缩摆动式碳素浮筒螺旋式泥浆流推进器（291）其特征是：在该车两侧
前后四角设置碳素浮筒螺旋式泥石流推力器在泥沙水流用又起到在半干半湿上岸和下泥水
流岸边交界地段的爬坡助推攀爬功能用，在该车四车轮芯内设置可伸缩摆动式碳素浮筒螺旋
式泥浆流推进器，在两栖车底盘主梁架四角部位结合底座（583）安装本方案推进器是一种
有浮力的鼓形面（535）碳筒状上带螺旋的碳素式泥浆推进器。可上下摆动，可伸缩，电力
驱动，其特点可作爬坡器的动能。又是可作泥浆推进器。鼓状碳筒分三部分，简中心处
仓是电磁刹车系统和动电动变系统动力仓（560），内设电机油，外层是浮力仓（555），是为
了提供浮力，简面（554）镶嵌有抛物线式分低高度窄端粒（568），中段最高宽端（569），另端头
中高度中宽（570）。圆弧形内有空腔的螺旋，是推进器的动力输出机构。简中心动力仓中
有一个碳素电机定子绕迫（552），永磁铁转子（55）组成动力系统。电磁刹车系统的刹车片
（557）和电磁吸合器（558）组成、变阻减速系统（550）、（556）装在综合主轴（564）上中部
装有电机定子线圈组（552）和永磁铁转子（553），变阻器（d）一通道（543）接口（551）
为电机提供电力。在电机端两侧设有变速减速器系统（550）和（556），再在转轴两侧设电
磁刹车系统的刹车片（557）及电磁吸合器（558），电磁刹车系统内接线处（571）。外通接电
口（559），经通道（543）导入刹车电力线（sha--）。其在鼓形碟铰筒的两端，刹车馆（560）两端各有一对主轴外主轴承环环形线圈（561）与刹车馆（560）内径高端联，主轴外主轴承环环形线圈（566）与中心综合主轴（564）连接，与对应主轴内主轴承（548）承受主轴（564）与碟铰式碟铰承压器（291）的支承和驱动转动。在筒外一端动力仓外设另一副外围护卫浮力管（567），设有一端盖（565），与转动副外围护卫浮力仓（567）外端壁间设有防泥水密封（563）。碟铰主轴端铰轴空心舵（546）和后端主轴体（545）伸出碟铰端铰轴处设有防泥水密封（547），主轴端铰轴（545）与液压伸缩主轴管（580）静轴毂（544）联固。在进油管（574）进油压腔（573）作用活塞（572）主臂体（580）伸出，进油管（581）进油压活塞（572）回程主臂体（580）回缩，主臂体（580）防泥水封（582），碟铰的摆动是由扭摆主轴（578），配装扭摆主轴轴承（577）支承转动，并由驱动电机（576）连轴板（575）的驱动下蜗壳带动扭摆主轴（578）扭摆转动。该轴轴毂箍（579）握联主臂体（580）一起作上下点头摆动和摆动所需角度。碟铰（291）的摆动也可优选安装液压油缸（586），在进油管（584）、（585）的油压作用下的副液压缸（586）的伸缩通过斜臂关节转轴（587）传斜臂（588）的作用力推拉主液压臂体（580）带动碟铰可根据泥浆黏度和密度产生浮力大小，以适航进行调碟铰的摆角，方便快速有效的本车行驶完成救生任务。在碟铰的设计中，优选的每个碟铰的横梁断面为三角形截面内腔（554），（562）也是同形，长度截断面为上下弦都为抛物弧线形与碟铰鼓体弧面吻合，上弦为正抛物弧线形从一端小头（537）渐变到中部大（541），再到另端变渐小（542）的抛物弧线截面。碟铰外表（TUL）为弧面，两碟铰间为凹弧面向外展开如（a，b，c），一条碟铰与两边邻碟铰形状侧倒设置如（538），（539），（541）的标示，即在碟铰一端两个碟铰高端位中一个碟铰低端部位结构相对关系的低区部（539）和一个碟铰分三个高度弧线段的弦长高位位置（541）相邻相互平行状态。并同圆鼓弧面结构（540）对应关系。这种结构防泥浆夹杂物，推进旋转时每叶碟铰防产生尾涡流流废阻，提高碟铰叶工效。

13. 权利要求液压迈步式电动爬轮载带爬坡器（285）其特征是：在本车的底盘车架四角安装液压迈步式电动爬轮履带爬坡器（285）和动力线和信号线的接口液压迈步式电动爬轮履带爬坡器（285）主要组成由两部分组成：第一部分是迈步功能的液压支柱及结构架系统。第二部分是由电动滚爬轮履带系统组成。

第一部分液压迈步结构系统部分：
迈步系统横向水平液压系统（589）与车体主架梁连接。本身是一种内径管状两端设有前进回退液压腔，腔内有长柱状液套体（596）在此长柱状液套体（596）中部镶有向外伸展出长方两头半圆外凸形迈步进程径各（591）并与长方型管迈步水平外滑动器（592）镶连，该滑动器（592）在横向水平液压系统外主体（589）壳上滑道（594）和下滑道（593）上滑动，并与迈步水平移动倒（L）形液压支柱千力顶托座（614）联结。迈步水平移动倒（L）形液压支柱千力顶托座（614）上联结迈步系统前腿支液压支柱（595）伸收，另端前腿支液压支柱（611）主支承力与履带系统主横梁（600）中部转动联结。后腿支液压支柱（590）伸收及连斜推收助力液压系统支柱（613）三个液压支柱上端配合共同分别连结后腿支液压系统横梁千力顶千力顶连转轴（612），三个液压支柱分别与履带及驱动系统结构长方带加强槽和锁的主横梁（600）联结和后爬轮电机主轴联结。液压液通过进液压管（616）进入前进推力液压腔（615）内活塞（596）压推进爬坡履带水平前移，液压液通过进液压管（598）进入液压腔（597）压迫活塞面（596）爬坡履带水平向后收，迈步水平滑动器
(592) 结构体在横向滑道 (594) 、 (593) 上完成迈步水平移动和液压支柱的伸缩并用于其它三个液压迈步式电动爬壁器 (285) 配合完成本方案车辆迈步行动步伐。

第二部履带及驱动系统结构部分: 电动滚轮履带 (605) 系统 : 由两个中凹节 (608) 中夹一个中凸节 (609) 这三节组合的两侧各安装一节摩擦块中凹节 (604) 都由穿节轴 (610) 穿连结合做为一个完整组合, 以此组合循环连接成整个履带系统 (605)。在此履带环中前后都设为主动滚轮爬轮齿 (603) 由履带主横梁 (600) 前后大电机轴 (607) 上装有直径大扭矩直流电机固定螺纹穿 (601) 、转子永磁螺 (602) 组成驱动电动机, 并连输入动力线 (606), 另一端连燃油发电机 (N1) 负责供电, 完成履带中凸节 (609) 做为履带爬力最大的摩擦块布置在爬轮爬齿 (603) 的两爬齿之间位置 (599), 形成滚动抓爬行驶系统组合摩擦力最大化学系统。并在爬轮主轴处安装刹车系统和调前进步和后退转的反向转锁机构, 此项为现有技术方案本图中未示图样。本履带 (605) 主横梁 (600) 联结迈步三个液压支柱 (595) 、 (590) 、 (613) 伸臂下端, 其上述爬轮器 (285) 共同与其它三个同她爬壁器 (285) 配合在中心控制计算机的调控中自动完成承担本车越野行动。

14. 权利要求液压摆动式电动爬轮履带爬壁器 (251) 其特征是: 在本车的底座车架四角安装液压摆动式电动爬轮履带爬壁器 (251) 和动力线和信号线的接口, 固定液压摆动式电动履带爬轮爬壁器 (251), 将倒 (L2) 形架 (617) 与两栖车底板主车架四角设置结合固定。在 (L2) 形架横架前部安装双套平行前腿伸缩摆动液压支柱 (595), 下端与前后两动爬轮之间, 履带主横梁 (600) 长度中部连接可轴转动, 在后爬轮主轴上安装平行双套三叉形三角形挠架 (620), 这三角形挠架 (620) 架两叉的一字架 (618) 一端与 (L2) 形架上部横架后部联接, 另一叉架 (619) 一端与 (L2) 形架竖架联接, 后爬轮 (603) 只保持转动, 前爬轮 (603) 在前摆动伸缩的液压支柱 (595) 下作用下摆动和调不同角度攀爬坡, 可挺起车。整体爬壁履带由内装有直驱电动机动力的前后推筒状爬轮爬齿 (603) 组合, 上套履带摩擦块 (604) 的履带 (605) 组成轻便液压摆动式电动爬壁器 (251) 系统。一般越野车增加固定液压式履带爬壁器起到更强的越野性。

15. 根据权利要求 4、5 所述安装升降近距液压系统救接起吊器 (232) 和救生箱 (292) 救生箱 (239), 其特征是在车顶顶仓设起吊器 (1) 存放仓 (277) 边外角上安装升降近距和低高度液压救生臂起吊器 (232), 在本接救起吊器臂端设提吊一个人高, 肩宽, 可站可蹲的吊臂 (292), 可进行 2-3 米高度的提吊, 同时可吊救两人的装置箱 (292)。或设置辅助近距低高度液压救生臂 (232) 救生箱 (239) 该救生主臂 (232) 下联可电机转动的基座液压腔柱 (233), 上联结斜向三角形液压主支架 (234) 续斜联结第二节液压杆 (235), 该杆 236 装定滑轮上缠绕吊钩, 同时连四边平行液压杆 (237) 与联装可调高度升降的保护环状 (238) 救生箱 292 相联。在车顶箱设有其存放救生箱槽 (234u) 和储存仓。

16. 权利要求防飞吊器下洗流罩起吊电动绞盘器其特征是: 在防飞吊器下洗流罩起落架 (621), 中间设有可连接紧固的法兰盘 (622) 对称连接十字横梁臂 (625) 伸展外连圆环罩 (621a) 同时连有带活动关节的起落架腿 (626) 作为起落架 (621) 的支承骨架体。在其法兰盘 (622) 上设有上连飞吊器的电力, 信号插孔 (622a) 也是提吊绞盘器 (624) 和气垫担架 (226) 提供电源和控制信号的电力, 信号插孔和联结紧固孔 (623), 下部连接提吊绞盘器 (624) 和对应上的联结紧固插孔 (623)。在十字臂架 (625) 伸展连圆环罩 (621) 的面积内设透明柔性可下垂倾斜状防飞吊器下洗气流罩 (626a), 以防受强风破坏下伤员和工作人
员。

17. 权利要求透明半封闭式气垫担架（226）其特征是：在吊索（224）下端连环状可转动的万向接器（633）分四支绳环套钩在透明半封闭式气垫担架（226）的挂环（288）上，半封闭式气垫担架（226）是以最人长度为参照长度盈余长度尺寸设为担架长度。以人最宽肩宽盈余尺寸设为宽尺寸，内腔高设人最高胸脯或孕妇孕期后期胸脯高为参照盈余尺寸设为内腔高尺寸，担架上设两肩弯弧透明活动侧门（628），头颈和后面部位设刚性半包弧边固定端护盖（627）增强防护度，展架主体腔仓（630）下隔间设为自呼吸半包半刚气垫仓（630）其四周为折叠式柔性壁并设气流呼吸进排气孔（632），底部设为刚性（631）又设四角方向仓底自滚滑轮及测距传感器（631c），在此位设有离地高度传感器类汽车车超声雷达探高度，此为现有技术移植的组合，进行技术改进适应本方案应用测控本担架在飞吊器不论飞的高度变化搬运时不超过高度1米-1.2米，以伤病员运送安全高度运抵本车近旁，在担架头前端及担架腔与气垫仓间设有可抽拉式担架手杆（629），方便救生员抬进车救治仓。具有在水上漂浮像橡皮艇功能，可进行水上拖救装救。

18. 权利要求是提揽器（225）及半自动开合提揽钩救捞工具其特征是：在万向节（633）四分布柔性栏（636）连挂提揽器（225）的圆通形硬质重于水的重金属刚性框，该框内编制有柔性筛网，便于水中下沉可水捞托落水者。提揽钩其由联接法兰盘（637），上设电源、信号插孔（295），联结紧固孔（637a）。下述固定长度提揽索（224）及可操控的开关挂钩（638）。上述配的工具以完成基本救援作业。

19. 根据权利要求1.4.5飞吊救援系统部件配置关联示意图30方案其特征是：本具体实施方案的电器设在位置控制变体结构按此图做为雏形基础设置实施和进步。为了配套和关联选了字母标志比较方便分类管理认别功能类。飞吊救援系统是泥浆流多功能飞吊救援方法和生活医疗救护车硬篷箱式（223）、半敞篷（265）进行救生作业关键行提吊设备备其操控电器配置关联及主要由人形椅全控台升降式（230）、非升降式（280）、中心控制计算机（K1）负责操控、燃油发电机（N1）、蓄电池组（N2）负责提供电能、飞吊器（1）、输电牵引索（L）卷扬器（643）、电机铲轮短轴（644）负责输送伺服机构组成。其关联结构由人形化操控椅全控台升降式（230）或非升降式（230）右部制成人头枕形靠背为主线通道从仿人形分岔为右臂电信号通道及电控台（639）和左臂电信号通道及电控台（640），右臂电信号通道及电控台（639）上设飞吊器（1）水平运行方向手柄（K2），当飞吊器自动保姿态和高时，高度时，然后打开转换操作钮（K4）时，左端电信号通道及电控台（640）手柄（K5）由原控飞吊器（1）升降转为如飞吊器联结的提吊绞盘器（624）转动绞盘升降提吊索（224）作业。左翼电控台（640）上设飞吊器升降手柄（K5），同设飞吊救援系统总电源启动开关（K）。本机可旋转在座底设有信号输入光电转换器（642）通过连线信号（Xn2）接主控中心计算机（K1），设有信号输出光转换器（641）通过连线信号（Xn2）接卷扬器（643）的输出端牵引索光电转换器（60）及电力线阳极（y+）阴极（y-）换向器。左翼电控台（640）上总开关（K）的开启通过信号线（K11）传输电源转换器（K8）起动燃油发电机（N1）供电，或转化蓄电池组（N2）自动供电。在（K）开启状态下电源转换器可自动转换电源，同时预热飞吊系统做起飞前的各项自检，完成后起飞作业。飞吊器（1）飞行作业时输电牵引索（L）卷扬器（643）输出和牵回的牵引索长度及拉力由传感器（X5）信号通过信号线（Xn4）传回主控中心计算机（K1），再操控双手柄（K2）、（K5）时主控中心计算机（K1）也自动配合，操控牵引力索（L）卷扬
器 (643) 的蜗轮柱机构 (644) 及驱动电机 (M10) 运行。

20. 权利要求书 小放磁性气浮吊装置设备系统电子零件与设备结构相互位置及作用分布
关联其特征是：主要三大部分组成：

第一部分气浮吊系统部分：主涵道旋翼结构上电器设置及型类。

本气浮吊 (1) 主涵道体 (5) 承担了主升力，在围绕中心轴 (6) 上主旋翼 (3) 安装驱
动电动机组件 (M1)，下主旋翼 (3) 安装驱动电动机组件 (M1)，在上主旋翼 (3) 轴间内
上端设变惯量电磁机构 (V1)，下主旋翼 (3) 轴间内上端设变惯量电磁机构 (V1)，为变惯
量系统中电感系统提供磁力源，为了调控上主旋翼转速传感器 (X1) 和下主旋翼转速传
感器 (X1)。配合变惯量系统在飞控计算机 (K0)。控制下气浮吊具有动惯量诱导的陀螺
效应定轴性，从而增加抗湍流突变变转换风能力。

为此在气浮吊 (1) 外主涵道体 (5) 的四根对称方向上设置四套传感器联合体，检测
(C-D) 间风速方向传感器和超声波测距器联合体 (f1)，检测 (A-D) 间风速方向传感器和超
声波测距器联合体 (f2)，检测 (A-B) 间风速方向传感器和超声波测距器联合体 (f3)，检测
(B-C) 间风速方向传感器和超声波测距器联合体 (f4)，为飞控计算机 (K0) 提供探测四周风
速，风向和气浮吊 (1) 在空腔空间测距飞行数据，实现自动控制。在主涵道体 (5) 上
四个对称方向的上下部位设置 (A) 附近下部大气压传感器 (P1)，(A) 附近上部大气压传
感器 (P2)，(B) 附近下部大气压传感器 (P3)，(B) 附近上部大气压传感器 (P4)，(C) 附近下部
大气压传感器 (P5)，(C) 附近上部大气压传感器 (P6)，(B) 附近下部大气压传感器 (P7)，(B)
附近上部大气压传感器 (P8)，配合上述在高空提供四个方向和上下气流压差数据，为精确
控制飞行姿态抗风能力的自动飞控提供参数。在主涵道 (5) 下部位设置等离子能量波发生
器 (Z1)，也可优选设置在中子子上的电晕放电能量波发生器 (Z2)。为气浮吊 (1) 在恶劣环
境下救生作业，防缠环和改善雷电诸提供了技术支持。气浮吊需要配备有线电路飞控中心
计算机 (二余度设置 (K0) 和无线电测控器电路板 (Kw)，确保气浮吊救生作业的正常运
行的可靠性。为了气浮吊飞行姿态的自动稳定控制和方向自动调整主涵道体 (5) 内和外接
设备平台上设置了保持垂直方向陀螺仪 (T1)、(T2) 和保持水平方向陀螺仪 (T3)、(T4)。及
控制飞行高度安装了高度仪 (h)。在气浮吊 (1) 主涵道体上安装定位仪 (GPS) 解决夜间远
距与目标间的位差，能远距自动导航提供参数。为了能在视距内人工探找目标在气浮吊安
装了强光照明射灯和激光照射器精确定位瞄准专用结合体 (1) 及便与昼夜操控员视觉观
察探控安装光学和红外摄像器 (d1)、(d2)、(d3) 相结合操控员通过控制台屏幕 (PN) 观察进
行救生作业。为了便于指挥被救者配合和指导在气浮吊外接设备平台上安装了扬声器 (Y)。
在救生作业中为不超载专设有气浮吊吊绞盘设重力传感器 (P) 测控。并在外接设备平
台设置多向联接插座和吊绞盘电动器 (M9)。为气浮吊上的电器提供备用电源设置了蓄电池
(N)。第二部分：四个副涵道旋翼体 (A)、(B)、(C)、(D) 上设置的电器部件：四个副涵道
旋翼体 (A)、(B)、(C)、(D) 承担气浮吊 1 辅助升力和方向及防缠环。为了实现这些方面职
能，在相应部位设置了相关部件，(一)。小直径副涵道旋翼体 (A) 设置气浮吊 (1) 与操控
员之间方位，由对称水平布置，与主涵道 (5) 的伸缩臂 (96)、(97) 相连，其副涵道旋翼体
(A) 优选电机 (MA) 驱动。副旋翼转速控制参数由传感器 (A3) 承担。在副涵道旋翼的半月
弯架 (99) 与副涵道园 (108) 的一侧安装了外摇摆驱动步进电机 (m2)。实现四自由度动作
的一个组成部分摇摆动作，由摇摆位置传感器 (A3) 承担角度检测参数精确测控。在大直径
主涵道体 (5) 内安装副旋翼臂可伸缩，扭揺作动驱动步进电机复合机构体 (m_{c2})。可实现四自由度动作的一个组成部分扭揺动作和伸缩动作。这些动作由 (m_{c2}) 伸缩位置传感器 (A_{c2}) 及 (m_{c2}) 扭揺位置传感器 (A_{c2}) 负责检测和提供位置参数。上述完成四自由度动作提供数据。(二) (B) 标示副旋翼及涵道体结合体。小直径副涵道旋翼体 (B) 设置飞吊器 (1) 与操控员之间方位，由对称水平布置，与主涵道体 (5) 的伸缩臂 (96)、(97) 相连，其副涵道旋翼体 (B) 优选电机 (MC) 驱动。副旋翼转速控制参数由传感器 (B_{c2}) 承担。在副涵道旋翼的半月弯架 (99) 与副涵道罩 (108) 的一侧安装了外摇摆驱动步进电机 (m_{c2})。实现四自由度动作的一个组成部分摇摆动作，由摇摆位置传感器 (B_{c2}) 承担角度检测参数精确测控。在大直径主涵道体 (5) 内安装副旋翼臂可伸缩，扭揺作动驱动步进电机复合机构体 (m_{c2})。可实现四自由度动作的一个组成部分扭揺动作和伸缩动作。这些动作由 (m_{c2}) 伸缩位置传感器 (B_{c2}) 及 (m_{c2}) 扭揺位置传感器 (B_{c2}) 负责检测和提供位置参数。上述完成四自由度动作提供数据。(三) (C) 标示副旋翼及涵道体结合体。小直径副涵道旋翼体 (C) 设置飞吊器 (1) 与操控员之间方位，由对称水平布置，与主涵道体 (5) 的伸缩臂 (96)、(97) 相连，其副涵道旋翼体 (C) 优选电机 (MC) 驱动。副旋翼转速控制参数由传感器 (C_{c2}) 承担。在副涵道旋翼的半月弯架 (99) 与副涵道罩 (108) 的一侧安装了外摇摆驱动步进电机 (m_{c2})。实现四自由度动作的一个组成部分摇摆动作，由摇摆位置传感器 (C_{c2}) 承担角度检测参数精确测控。在大直径主涵道体 (5) 内安装副旋翼臂可伸缩，扭揺作动驱动步进电机复合机构体 (m_{c2})。可实现四自由度动作的一个组成部分扭揺动作和伸缩动作。这些动作由 (m_{c2}) 伸缩位置传感器 (C_{c2}) 及 (m_{c2}) 扭揺位置传感器 (C_{c2}) 负责检测和提供位置参数。上述完成四自由度动作提供数据。(四) (D) 标示副旋翼及涵道体结合体。小直径副涵道旋翼体 (D) 设置飞吊器 (1) 与操控员之间方位，由对称水平布置，与主涵道体 (5) 的伸缩臂 (96)、(97) 相连，其副涵道旋翼体 (D) 优选电机 (MC) 驱动。副旋翼转速控制参数由传感器 (D_{c2}) 承担。在副涵道旋翼的半月弯架 (99) 与副涵道罩 (108) 的一侧安装了外摇摆驱动步进电机 (m_{c2})。实现四自由度动作的一个组成部分摇摆动作，由摇摆位置传感器 (D_{c2}) 承担角度检测参数精确测控。在大直径主涵道体 (5) 内安装副旋翼臂可伸缩，扭揺作动驱动步进电机复合机构体 (m_{c2})。可实现四自由度动作的一个组成部分扭揺动作和伸缩动作。这些动作由 (m_{c2}) 伸缩位置传感器 (D_{c2}) 及 (m_{c2}) 扭揺位置传感器 (D_{c2}) 负责检测和提供位置参数。上述完成四自由度动作提供数据。(五) 起落架及提吊绞盘系统；浆液扰流救生系统的飞吊器 (1) 主涵道体 (5) 下端与下铰子 (8) 结连接处可设置四个具有漂浮功能的起落架。在此架下端内安装了蜗轮轴升降系统配有驱动电机 (M_{3})，(M_{5})，(M_{5})，(M_{5})，其设升降高低传感器 (X_{3})，(X_{5})，(X_{5})，(X_{5}) 提供检测升降高度。并设行走驱动电机 (M_{5})，(M_{5})，(M_{5})，(M_{5})，(M_{5}) 直齿轮。起到辅助落驻点移动作用。在飞吊器 (1) 救生作业时外配了专业提吊电动绞盘器电机 (M_{5})。用网捞器救捞作业提吊提供引力。第二部分，控制系统另一浆液扰流救生系统的飞吊器 (1) 的控制是由输能牵力索 (L) 提供能源和辅助飞行牵拽力，主要承担能力，其伺服系统的输能牵力索扰扬器的驱动电力电机 (M10) 承担牵引力。飞吊器输能牵引索 (L) 卷扬器长度和牵力传感器 (X_{5}) 为其功能实现正常工作提供参数。飞吊器输能牵引索 (L) 卷扬器长度和牵力传感器的传导数据是由信号线 (X_{n4}) 与控制台建立。飞吊器的救生作业动作是由控制台和中心计算机 (K_{1})
负责，在中控台上设有救援作业动能系统总开关（K）负责总系统启动。飞吊器上提吊绞盘提吊索具升降由控制手柄（K3）负责，手柄（K5）控制飞倾器升降。操作柄（K4）负责飞倾器和其它电器工作功能开关转换，手柄（K2）控制飞倾器飞行方向。飞倾器上设有扬声器（Y）是与控制台设的麦克风（MK）建立有线和无线语音系统，并通过控制台屏幕（PN）观察，完成救生的语音沟通和配合指挥的语音系统。

泥浆洪灾流救生系统的电力是发出发电机（N1），控制室蓄电池组（N2）。外插电源系统（N3）共同负责，并由自动控制和手动控制转换器（K8）进行自动转换和选择。控制台与发电机间控制信号线（Xn2）负责对发电机的控制。控制台与发电机组间转换器（K8）分控制的信号线（Xn3）。飞倾器输电牵引索（L）控制总线端头设有光纤信号的光电转换器（G60），输电牵引索（L）控制总线中设有阻电导线（y+x），阻电导线（y-）及光纤信号线（y0）承担与飞倾器（1）的救生作业功能的调度和管理。

第三部分，辅助行驶系统部分：飞倾救生系统功能盘控制台中设有余度操纵控制K6负责操控室升吊器（229）或非吊升器（279）的升降控制和转动。升降管线位移和转动的控制器（K7）间连有控制信号线（Xn1），操控室直线升降驱动由电机（M11）承担，升降直线位移位置由传感器（X6）、（X7）、（X8）负责。操控室（360°）度转动驱动由电机M12承担。（360°）度转动角度位置由传感器（X9）、（X10）、（X11）、（X12）负责。当飞倾器1飞至灾民、伤员现场上空域后，打开随机光学摄像机（d1）、（d2）、（d3），夜间展开红外摄像机，拍摄情况，地面救生操作员协助，按下（K4），信号通过光纤传输至飞控计算机（K0），飞控计算机（K0）发出四路脉冲信号，作用于提倾绞盘（624）释放提倾索（224）下降落气垫担架（226）的高度，此时气垫担架（226）底部四角多方向滑动球鼻的超声波高度传感器（631c）给出信号落地状态。飞倾器（1）平稳悬停待地面救生员向担架装伤员。装好后飞倾器（1）启动向上方和前移飞行时，中心计算机K1和飞控计算机K0配合控制飞倾器（1）及提倾绞盘（624）的提倾（224）长度，由其气垫担架（226）底部始终离地面上升1-1.2米高度保持随地面坡形变化吊运伤员回到救护。飞倾器（1）旋翼转速降低，飞倾器下降，当飞倾器（1）降落时其姿态陀螺仪（T）感应到飞倾器不平衡，则控制相应的起落架升降减速电机动作，使飞倾器（1）平稳降落，同时可以适应降落不平的状态。实现泥浆洪灾流飞倾救生系统电器电路的关联方法关系。

21. 权利要求泥浆洪灾流救生方法及设备飞倾救生系统电路控制变量框图变量控制方法其特征是：在泥浆洪灾流飞倾救生设备功能底盘系统电路控制变量结构框图（31）方案。实现功能；飞倾系统电路控制变量方法，当系统启动后，所有动作以及信号流向的方法。当控制室人员按下（K）电源总开关后，开关接通主电源，各个设备启动，自检结束后待机，此时可以进行各种操作：第一部分。飞倾器起飞电路变量控制简介：当系统进入待机状态后，控制室操作员上推飞倾器手柄（S1）和升降手柄（K5）和控制方向手柄（K2），调方向做准备，飞倾器主旋翼和副旋翼根据手柄（K3）推的大小自动控制转速。当上推起飞手柄（K5）后，手柄下面的滑动变阻器向上滑动，变阻器输出电压值由零增加（Δu），最大增至（48V）所有控制器电源为（48V）（11）此电压通过模数转换（AD）转换为（10bit）数字信号，数字信号通过光电/光电转换器转换为光信号，光信号通过光纤（yo）传输至飞倾器，安装于飞倾器上的光电/光电转换器将光信号重新转换为电信号，电信号通过总线到达飞倾器控制计算机（K0）简称：飞控计算机，计算机根据此数字信息，即可以控制飞倾器主/副旋翼转速。飞控
计算机将根据光纤传输的控制手柄数据产生与此数据相关联的PID频率为(5KHZ)、峰值为(12V)的脉冲宽度调制信号(PWM)，此信号控制输入信号的信号控制连接开关的闭合时间，从而控制主副螺旋电机转速。此时所有传感器准备就绪，开始工作，控制图见(图21手柄动作信号流向图)，当手柄(K5)上推角度越大时，则输出电压信号越强，经过光纤传输至飞控计算机(K0)上数据值越大，则产生的PWM信号占空比越大，(τ)越小，则由PWM信号控制的驱动门开的时间就越大，因此，加电机两端电压有效值越小，于是旋翼(M₁)、(M₂)转速就越高。当旋翼转速达到起飞值后，控制台操作员按下飞控吊舱开关(K4)，地面控制器发送高电平信号至飞控吊舱控制器，飞控吊舱电磁铁消磁，吊舱器开始起飞。随着飞吊器的升高，变频器电机(M10)逆时针旋转将能量牵引到(L)送出，送能牵引线(L)中电压线(y+)、(y-)控制天线总线(yo)随飞吊器被拉升至空中。

第二部分，飞吊器飞行动中电的变量控制简介：主旋翼(M₁)、(M₂)启动后，旋翼转速传感器(X₁)、(X₂)检测上下主旋翼转速。转速传感器的信号为非接触式的霍尔元件传感器，霍尔转速传感器产生峰值为(48V)的正脉冲，此脉冲信号通过传感器内部的处理电路将脉冲信号的频率/频率进行测量，输出(1)字节转速数据信息，数据信息通过信息反馈标志(表示为转速信息)至总线(yo)，由总线(yo)传输至飞控计算机(K0)。实现速度实时反馈，根据实时速度信息，调整控制器输出的PWM信号占空比，从而将速度稳定在误差允许范围内。控制转速采用比较成熟的PID算法控制，PID控制是将误差信息进行放大，微分和积分处理得到控制数据。实际转速为(nr)，控制室手柄位置信息通过飞吊器中的控制计算机K₈解析后理论转速为n，因此转速误差(e = n-nr)，控制输出为P(Σe[i]+D(Σe[i]-e[i-1]))，此控制量累加于控制PWM信号占空比的调制量(W)中，当实际转速超过理论控制速度时，(e[i]为负值，叠加于(W)后，(W)值减小，因此输出PWM信号占空比减小，驱动电机开启时间减小，从而上下主旋翼电动机两端电压有效值减小，转速降低；相反，当实际转速低于理论值时，(PWM)信号占空比减小，驱动电机开启时间增加，旋翼电动机两端电压有效值增加，从而增加转速，没有加入任何其他形式的变量。以上分析为典型的波速闭环控制，此种情况没有加入其它干扰，当有风干扰以及湍流时控制分析如下：大气压力(P1)、(P2)、(P3)、(P4)、(P5)、(P6)、(P7)、(P8)、(P9)、(P10)、(F1)、(F2)、(F3)、(F4)输出的模拟量通过自带的(AD)转换器转换后，将模拟量转换为数字量，加入数据头后方便于飞吊器控制器读取，飞行状态控制陀螺仪(T1)、(T2)、(T3)、(T4)直接输出数字信号(AD)RS485)总线传输至飞控计算机(K0)。16位气压、风速、陀螺仪数据被飞控计算机(K0)读取后，飞控计算机(K0)得当前飞行状态，以及是否产生涡流现象，气压值、风速、旋转转速、飞行状态等信息，除了各部分进行相应(PID)算法后，进行数据的融合，每种传感器数据一定权重，占用控制主副旋翼的信号权重分配，某部分失灵后，或者鲁棒传感器数据超出此权重范围值，权重自动增减，通过权重分配，将几种飞行控制信号融合，叠加于控制PWM信号占空比的变化的直接控制量(W₁)(W₂)、(W₃)、(W₄)、(W₅)、(W₆)、(W₇)、(W₈)；当风速超出某范围后，飞控计算机(K0)向变频器系统(30)发送电磁阀(41)控制器(V₈)、(V₉)发送高电平，开启变频器电磁阀(41)，降低风速在离心力作用下喷入其中上下一套主旋翼的机翼(0)内，风速降低，风速降低使上下旋翼产生差动惯量，同时保持主旋翼(M₁)、(M₂)转速，以诱导产生陀螺效应的定轴性、章动性、进动性三性。虽然陀螺效应的定轴性被同轴正反向转转动旋翼结构克服，但是进动
性仍然存在，需要利用小直径四副双层旋转（A）、（B）、（C）、（D），进行有节奏的对称的扭摆对自由度方向调节控制。使飞吊器不在于转动力矩的不平衡而导致飞吊器旋转，同时拖拽的输能牵引索（L）具有对飞吊器抗扭矩作用类似直升机尾旋翼功能。由于产生上下主旋翼转动差动惯量诱导的陀螺效应的定轴性，赋予了飞吊器瞬间抗突遇湍流转流抗风、湍急侧风的能力。此时的控制方式与无风状态下的控制方式不同，各个传感器数据权重不同，风速值权重要比正常风状态下权重大。当飞吊器垂直起飞或降落时或飞行中空气湿度大等气候因素使雷诺数太低时，或两主旋翼气压传感器检测值满足涡环先兆时，飞控计算机（Ko）适应该气压计权值，同时飞控计算机（Ko）向等离子能量波发射器（197）或（89）发送高频率脉冲信号，打开等离子能量波发射器（197）或（89），产生等离子能量波（Z）。改善空气动力的雷诺数的环境条件，或预防涡环，从而消除涡环现象的先兆流。四副双层旋转A、B、C、D由飞控计算机Ko自动控制，地面操作室右手柄K2控制飞行方向，亦即部分改变四副旋转状态，四副旋转主要控制方式由飞控计算机Ko控制，飞控计算机Ko通过当前飞行姿态，是否有突变转动湍流流冲击，是否有涡环流等现象对四副旋转进行实时控制，在无转动湍流，无涡环流时，四副旋转主要控制飞吊器飞行方向，亦即主要控制率为PID控制，控制量Wx，Wy，Wz，Wv基本相等，风速信息，涡流信息被检测到以后，由于飞吊器转动差动惯量很大，本身也具有飞行运动惯性的因素，因此飞行状态不会马上改变，而此时四副旋转A、B、C、D就已经根据传感器预定的状态实时控制动作四自由度动作，从而相对于实际控制具有一定的超前性。飞吊器安装的高度信息，旋转速度信息，气压信息等除了被用于飞行姿态控制，同时通过光纤（yo）传输至控制台，飞控计算机（Ko）将数据取后，进行与控制台主机计算机（Ko）中的模版数据做为参照样版数据进行调整飞吊器飞控计算机（Ko）工作飞行姿态，同时发送至相应的仪表进行显示。

第三部分，飞吊器电路电变量作业简介：当飞吊器（1）飞至作业现场上空域后，打开随机光学摄像机（d1）、（d2）、（d3），夜间改开红外摄像机，拍摄情况，由操作员协助，按下（K4），信号通过光纤（yo）传输至飞控计算机（Ko），飞控计算机（Ko）发出四路脉冲信号，由吊杆升降手柄（K3）作用于吊绞线器（624）释放吊绞索（224）下降作业作业工具的高度，此时工具底部四角的超声波高度传感器（631c）给出信号工具近现场状态。飞吊器（1）平稳悬停作业成功后。飞吊器（1）启动向上方和前移飞行时，控制台中心计算机（Ko）和飞控计算机（Ko）配合控制飞吊器（1）及吊绞线器（624）的吊绞索（224）长度，由其控制工具始终离现场适当升高度以实际的场的起浮面高度由操控员在控制台上控制高度保持随现场高度变化吊运回驻点上空悬停飞行卸载，吊绞索（624）释放卸载方式或接收索飞行下降卸载方式的谐调控制变数量变。第四部分，飞吊器降落电路电变量控制调节：飞吊器旋转速度降低，飞吊器降落，当飞吊器降落时其状态陀螺仪（1）感应到飞吊器不平衡，则控制相应的起落架升降速度进电机运动，使飞吊器平稳降落，同时可以适应降落不平稳的状态。再由飞吊器（1）降落存放仓。从而实现泥浆洪灾流飞吊援救设备功能底盘各电路电路变量控制方法及相应飞吊系统电路控制变量结构框图（31）及所有动作以及信号流向关联方案。
泥浆洪流飞吊救援方法及两栖医疗救护车辆

[技术领域]：
[0001] 本发明涉及发生水灾、泥石流灾害时进行紧急救援的方法和两栖医疗救护车辆。

[技术背景]：
[0002] 全球变暖的极端气候变化下发生在全世界范围的暴雨洪灾，引发河流岸堤决口、崎岖山区泥石流，淹没人口密集的城镇乡村，发生洪灾泥石流，无论在雨中的暴雨夜半，还是白天，在常规救援中大都用的是冲锋舟在湍急流水转换水涡流中作业，由于冲锋舟动力和舟体惯性动量有限，无法抗拒湍急洪流及泥浆流，遇有急涡缓流及洪水中各冲积物的障碍及易造成翻船、遇水深度又容易搁浅，容积有限无平台无法设置辅助攀爬梯架，遇救人员多和需攀高救人的又无法架梯，遇老弱病残孕小人员不好施救，救援工作十分危险。若用直升机救援，只能在白天，周围空域无高压线、无障碍宽阔环境下才方便救援作业。然而，往往会因受洪水的空地环境而选择并不利于方便直升机救援作业和飞行。遇有大批需救人员，使用直升机要多次冒险，代价十分大。在很多中小发展和贫穷国家地区用难承受经济，又受到环境气候条件影响也限制了使用。这给救援工作带来了很大挑战。在全世界范围内没有发达国家地区，还是发展中国家地区都遇有这样的救援难题。

[0003] 现有技术只有单纯的一般性水陆两栖输车也未普遍普及，也无相应的配套理想专用设备，无法解决上述问题。

[0004] 在现有技术中，还未发现有能有效地在湍流泥浆流和湍流洪流中行驶的带有飞吊器救援的特种两栖救援医疗救护综合车辆。

[发明内容]：
[0005] 本发明是利用直升机空动力原理设计的有线供能在较远距离和不同角度悬空提吊人员重物进行救援作业的飞行器和能在泥浆石流、湍急洪流浅滩泥浆砂流中都能行驶的具有急救医疗救护功能两栖车辆技术方案相结合，解决在泥浆石流洪灾中救援的方法和方案车辆。

[0006] 本方案具体是以大直径主涵道共轴正反转双旋翼风扇体承担主升力，在主涵道周围水平对称设置多个小直径副涵道旋翼风扇体，该之连接臂可做相对于主涵道旋翼体的伸缩扭动摇摆四自由度动作，承担辅助升力和方向控制及防涡环功能，优选五轴五涵道六旋翼，或风扇组成的飞吊器克服各种技术困难，在主涵道设置等离子能量波发生器防涡环和改善旋翼空气动力的理数，并设主喷口和侧喷口辅助调整方向和防涡环，在主旋翼设置变频器系统抗洪水流切变转换风能力。承担起在恶劣条件下的救援提吊主任务，并与装有泥浆石流推进器和具备医疗救护的水陆两栖车组成特种多功能救援装备车方案。

[0007] 1. 飞吊器发明实施内容：

[0008] 飞吊器是本方案的关键性配套设备，能在恶劣气候条件下，承载较大提吊力，快速悬空飞吊运行，对紧急医疗作业起决定性作用。飞吊器功能特性如下：

17
本实施方案是以悬停、水平低速移动为主要飞行姿态，能在恶劣气候条件下具有抗湍流、减振、转向和侧风能力。主动式和被动式三项非涡流控制，有长时续航能力，适合不同工作条件下的使用。

一、实现方案必须解决的技术问题：

1. 技术要求

二、在同功能、同功率、同桨盘下优选具有大升力系数和高效爬升率，适合悬停和水平低速移动的飞行姿态的控制能力，控制在窄小空间作业的性能结构。

三、要有一种跨停水平横向飞行稳定性和驻点定位控制能力。

四、要有很强的抗湍流、减振、转向和侧风及逆风能力而保持飞行姿态。

五、要有一种主动对抗的预防涡流控制和先兆控制功能，不改变自身的飞行姿态和起落点及方向。

六、具有在缺氧、有毒烟气条件下正常作业的能力。

七、具有长时的续航能力。

八、具有安全功能。

九、具有电磁电、抗结冰功能。

2. 技术解决办法

一、提高气动升力效率方法

二、选用多通道旋翼或风扇系统，在大直径主涵道内设置共轴反旋转双旋翼、风扇系统，设旋翼、风扇叶尖处采用带空腔的涵道，其外径壁与主涵道内径壁距离有相对高速度旋转其间距形成负压区，增加了大直径主涵道的升力。在大直径主涵道内又设置多层主涵道 I、II，提供加强流动的附加效应，增大了直径主涵道的稳定性。这种形式的涵道的设置，可称作圆环翼形气动结构，也相当于多层轴翼螺旋桨飞机升力效率。

三、要有一种横停水平横向飞行稳定性、驻点定位控制能力方法。

四、在大直径主涵道外径体上对称同一水平布置的四副以上的直轴单轴单旋翼涵道系统，其同有存在的定轴性与辅助升力及主控制方向、姿态的特性，其连接端可对称、可单向，作伸缩和扭摆摇摆四自由度动作调控飞行姿态、方向、抗进动性的配合下共同作用，使飞行器的飞行具有偶然性和抗横停水平稳定性。

五、要有很强的抗湍流、减振和侧风、逆风能力方法。

六、在大直径主涵道中设置的共轴反旋转双旋翼、风扇系统中设置动态的变惯量系统，在飞控器飞控计算机指令下正反旋转的可变距离的旋转、风扇系统产生差动变惯量，从而诱发大直径主涵道旋翼系统产生陀螺效应的定轴性，与外对称同一水平布置的四副涵道单轴单旋翼、风扇系统固有的定轴性作用，使其具有抗湍流、减振和侧风能力。

这种设置组合其特性类似机械式陀螺仪的定轴性。具有横停抗湍流、减振和侧风能力。在主涵道周边对称设置的四副涵道旋翼四个连接端可作伸缩扭摆摇摆四自由度对称动作，可抗侧风和飞控器的进动控制、非对称动作调控姿态和方向。

七、要有一种抗、防涡环气流和先兆气流的功能的三种方法：

1. 飞控器的气动任务分别设置在不同气动结构上，以大尺寸主涵道旋翼体 5 承担主升力的气流与周围对称布置的小直径四副涵道旋翼在连接端的伸缩、扭摆摇摆多自由
度的同时对称动作形成的各自气流场，可相互协助，又可相互干扰，为提前干扰抗涡环先兆气流的形成提供先决条件，在不影响飞行姿态和作业要求的情况下用各自气流相互干扰对方气流运动方向的方法主动防涡环。

0029 (2) 在主涵道下端设置了主喷口侧壁对称布置了侧喷口道，在其导风板中设置了导风板作用下喷出摆动的垂直穿插了主涵道主喷口下洗气流经近点返程上升环流，打破、干扰、冲击了涡环先兆气流的形成。这是一种主动式抗、防涡环方法，是在不影响和不牺牲飞行姿态，并符合作业要求下主动抗击、防止了涡环形成。

0030 (3) 在主涵道内设置了微波能量放大、微波等离子能量波发生器释放等离子体的电磁、焦耳热能、复合能量冲击波，引起周围空气发生气流状态变化和化学反应，产生气流的能量交换，激荡、激荡，干扰，撞击了涡环先兆气流场的形成。用这种分子、离子物理化学方法和设备主动抗防涡环。

0031 五、飞吊器选配动力装置，解决提高续航能力，优选用有线电力电动机驱动。

0032 六、选用有线电缆供应能源，使飞吊器有长久续航能力，能源线又是牵引线，相当于动力风筝工作原理，具有在牵引线作用下，能在抗逆风条件下牵引飞行作业。

0033 七、飞吊器选用防水设计，电动机外壳用密封散热冷却片结构。

0034 八、牵引能源索外层设有耐磨导电金属网层，防拉电。在翼端、风扇系统中设置电加热防冰系统。

0035 3. 本飞吊器气动结构和特性实施方案型。

0036 优选：五涵道五轴六旋翼机。中央涵道上下正反转旋翼升力系数高，爬升限高，承担主升力。中央涵道上下正反转旋转翼同速时旋转的扭矩相互抵消。在主涵道四周同水平面上对称布局四副涵道旋翼，该连接臂设计成可伸缩、可扭摆固定四个自由度动作，承担辅助升力和方向控制。这四副涵道旋翼具有陀螺效应性，定轴性、进动性和章动性。进动性可被四副涵道旋翼的对称动作克服，章动由其结构克服。中央涵道上下旋翼产生差动时可产生陀螺效应的定轴性与四副旋翼固有的陀螺效应的定轴性结合具有抗涡流突然变转旋风能力。若其中一个小直径旋翼有停机或主旋翼停机，不易引起整机失控平衡。有高效的结构气动布局和安全性。

0037 现有技术各种类型的旋翼式、螺旋桨式、风扇式具有垂直起降功能的飞行器在型都存在诱导下的涡环气流和抗湍流突变转旋风能力差的先天性问题，而在恶劣条件下飞行空气动力学参数等影响。只有解决了这些主要问题才会使其在恶劣环境下胜任救生作业。

0038 在现有技术中还没有完善的没有完善的对抗、干扰、破坏、冲撞、专业主动式解决、预防、根除涡环气动结构的技术方法和装备。没有将主升力和推进力气动结构分开设置的旋翼飞行器。还存在抗湍流突然变转旋风、侧风、逆风能力弱的急需解决的问题。

0039 4. 飞吊器的特征气动结构和布局设置功能部件工作原理：

0040 (1) 气动结构和布局设计及功能

0041 优选：五涵道五轴六旋翼机气动结构和布局为技术特征系列说为本方案的选项，结合各种旋翼飞行器各自的基本优点进一步优选设计做为飞吊器的本实施方案的技术支持的实施基础。

0042 一：以大直径主涵道共轴上下正反旋转旋翼体做为中央主涵道旋翼主升力气动系
统承担主升力。在主涵道周围同水平对称布置四个以上小直径副涵道单轴单旋翼升力系统。在其连接臂可伸缩、可扭摆，能做四自由度动作，承担辅助升力和很弱化的方向、姿态控制。

【0043】二：在大直径涵道中设置同心圆多层涵道和上下共轴不同直径桨盘尺寸的旋翼选
项增加气体附壁效应，以提高悬停飞行稳定性或前飞姿控稳定性能。
【0044】设变量系统方法及功能原理：
【0045】在主涵道设置共轴上下正反旋转双旋翼升力系统，在双旋翼中设置变量惯量系
统。优选三种方案：
【0046】第1种是直喷惯量式变惯量系统。
【0047】第2种是电动机卷扬线拉送活塞输惯量液的变惯量系统。
【0048】第3种是电动机驱动螺杆转轴送活塞输惯量式变惯量系统。
【0049】例举第1种为阐述例，在主涵道设置共轴上下正反旋转双旋翼升力系统，在双桨号中设置储存变量液装置，并连接每个旋翼中所穿连变角的转轴，为扭心轴，轴内导流变惯量液，每翼尖处连接空腔涵圈，该为闭开式空心涵圈。当变惯量液在旋翼旋转离心力作用下，同时飞吊器中心控制计算机下达指令后，其中一个主旋翼 3 之，或 3 之旋翼的储惯量液罐的阀门打开。变惯量液顺翼迎角转轴的中心空腔导液管喷向到旋翼尖处连接的涵圈，即惯量圈腔内。上下旋翼转速不变，旋翼迎角不变，该旋翼产生转动惯量的增量，此时主旋翼 3 之，3 之之间产生差动转动惯量。即主涵道旋翼体 5 产生转动惯量的增量 1，根据物理学刚体旋转运动特性[]：
【0050】当刚体是对称刚体时，角动量的向量（方向）与角速度向量（方向）是一致的。因
此公式可简易：
【0051】J = I • ∇J 即：角动量 = 转动惯量 × 角速度 （1）
【0052】J = M • R² • ∇J = M • ∇J （2）
【0053】即：角动量 = 质量 × 角速度 × 半径² （3）
【0054】I = M • R² 即：转动惯量 = 质量 × 半径² （4）
【0055】I = ∫ k•2π • ω • r²dr = π • ω • R²/2 = M • R² （5）
【0056】即：转动惯量 = 圆心 0 点→半径的定积分的物质质量密度 × 半径² （6）
【0057】因此，根据角动量守恒定律原则，当旋转旋翼高速旋转时，旋翼角动量守恒，内设
置的惯量液体质量不变，但是，
【0058】根据公式 (4) (I = ∫ k•2π • ω • r²dr = π • ω • R²/2 = M • R²) 中放置液体的半径发生
变化后，产生了半径平面乘质量的积的增量，即：ΔR² 改变从而引起角动量产生增量（差量）ΔJ 随之旋翼间产生的差动转动惯量增量（差量）ΔI。此增量值是旋翼系统转动惯量的增值量。此时的旋翼角速度就会减少。飞控计算机为了维持升力，即为维持流经主涵道下洗气流量不变，在不改变旋翼总矩迎角和转速的情况下，飞吊器不会产生上下耦合飞行高度姿态差，飞控计算机会指令保持旋翼转速不变的情况下，变化一个旋翼的转动惯量。此时该旋翼与另一个旋翼间产生转动惯量差动量。从而诱导自主涵道共轴双旋翼旋翼系统产生陀螺效应的定轴性。所产生的进动性这个副作用可由四副涵道旋翼系统同时对称摆动一个角度，被四副涵道旋翼所作不同对称动作角度的气动力所克服。抽象性由自身的结构而克服。主涵道共轴旋翼系统产生的定轴性与四副涵道旋翼系统 A、B、C、D 固有的各自定
轴性共同组合类似机械式陀螺仪的特性，使飞吊器 l 整体具有强化的定轴性，赋予了飞吊器抗侧风、抗湍流切变转偏风能力。

【0059】例如：共轴双旋翼直升机的转向是两种方式实现的，一种是半差动式，一种是全差动式，即上下旋翼的其中一套旋翼迎角变矩半变方式或上下旋翼全变总矩方式，诱导出上下旋翼转动惯量未及相产生的扭矩，作用机身实现转向。

【0060】我们从上述例中分析发现这样方式机理实际上也诱导出上下旋翼产生差动惯量，同时也诱导出陀螺效应的定轴性。我们在此机理基础上进行了设计了创新特殊旋翼、风扇、螺旋桨装置系统中设置有变重的装置。即在主涵道旋翼系统中设计形成差动变重惯量，利用上下旋翼的恒定转动惯量转化为差动变重惯量机制，从而诱导出产生陀螺效应的定轴性。使飞吊器具了产生抗湍流切变转偏风能力。

【0061】上下旋翼都装变惯量系统，选择下旋翼变惯量增，降低重心，适合悬停飞行，但有定轴性的抗湍急转偏风能力。选择上旋翼变惯量增大，提高重心，适合飞吊器前倾姿态飞行，同样具有抗湍流转偏风能力。

【0062】在上述情况下飞吊器具有很大定轴性、及扭矩。为了增强抗扭矩作用在大主涵道外所设的四个小直径涵道基础上可再设一个涵道旋翼，即设五个小直径涵道旋翼系统，像单旋翼直升机尾翼一样强化抗扭矩。在飞吊器拖拽的有线信号能源牵引索 l 的拖拽拉力影响下也起平衡抗扭矩作用。

【0063】优选设计主旋翼的变惯量惯系统，沿旋翼长度方向即旋翼迎角轴管内设置可伸缩移动液体重量的方式的一种装置，改变转动惯量的质量半径参数的变化，使旋翼的转速不变的情况下，达到惯量的增加——称为变重惯量系统。

【0064】在上述飞吊器主旋翼系统设计中根据气候实际作业需要时可产生定轴性，抗水流切变化湍流功能。若不需要时，上下风扇的转重惯量相等向量方向相反，扭矩相互抵消，飞吊器中主旋翼系统无定轴性，可灵活控制飞行姿态。

【0065】现有技术的单旋翼直升机类飞行器虽然具有定轴性，但是，在旋翼转速不变得时，这种旋翼惯量诱导的定轴性是相对恒定的，是当转速变化时，需要改变旋翼转速。也不能实用地反映，又不能随机需求而产生大小的变化，差动惯量效应反应十分迟钝，即根据实际需要而能抗湍流转偏风的惯量诱导的定轴性的量值。同时会引起飞行旋翼空气动力耦合高度落差，若是大气层，飞行高度大的无人机是有允许飞行条件的，但很多低空域和有线旋翼垂直起降的飞行器，由其是变重飞吊器的作业环境和空域条件是不允许的，在这种耦合落差很大的飞行作业中会引起飞行安全问题。

【0066】本发明的变重惯量系统赋予飞吊器随需求而产生的惯量值的变化是动态变重惯量值，诱导出可变重的定轴性。飞吊器飞控计算机接收到传感器感受和预测到的湍流转偏风、转偏风的信号，指令旋翼稳定转速和变重惯量系统浸含的惯量增量，即上下旋翼产生差动变重惯量值 ΔI 诱导出可抗当前湍流转偏转偏风的定轴性。从而赋予飞吊器可随机抗转偏风能力。

【0067】（3）设置主动式防涡环气流的方法设备及原理

【0068】1. 分析涡环产生的机理：

【0069】涡环是旋翼飞行器在周围空气低气压、湿度大、雾、雨天、低风速、无风、或高温上蒸汽、在驻点（起降场地）环境注小平整场地、低洼盆地以特定的飞行姿态和速度范围
内垂直起降等条件下，极易诱导出一种特殊的、规则的环涡气流场，易导致旋翼飞行器旋翼失效，造成失事。涡环是旋翼飞行器诱导出的“幽灵”。

[0070] 在《直升机的世界·岁月之旅》第115-116页上对于涡环发生机理的论述：在直升机下降速度和垂直旋翼浆盘气流速度之比为0.4-0.8速度范围内时，旋翼浆尖附近的流场紊乱，拉力和扭矩的脉动明显加大为涡环的发生和形成阶段。

[0071] 该比值在0.8-1.2范围内，这时旋翼拉力脉动最为严重且拉力（升力）大幅下降，直升机操纵极为困难，为典型的涡环状态。

[0072] 当该比值超过1.2之后，拉力和扭矩的脉动逐渐变小，拉力逐渐增大，涡环现象逐渐消失。当该比值增加到1.8之后，涡环基本消失。

[0073] 所以，应当尽量避免直升机垂直下降速度与垂直旋翼浆盘气流速度之比在0.8-1.2的范围内。针对涡环产生的原因，采用人工操纵直升机改出的措施，最常用的方法是增加功率，降低下降速度，使悬停和侧飞时遇涡环，操控驾驶杆，使直升机斜向飞行起降，改出涡环先兆气流。

[0074] 现有技术的直升机和倾斜旋翼机的气动结构和布局承担升力、推进力、规避式防涡环，三重任务合一，其气动结构之间有低不可相对位移，不存在先天性的多套独立气动场的组合，并能的相互作用、干扰和协作，其在执行防涡环时，影响了升力和推进力，引起机体在空中垂直运动耦合动态面落差影响，是以牺牲飞行姿态为代价换取实现防涡环和摆脱涡环先兆气流。

[0075] 在《申请号为：200480012319.0的专利》中是用主升力和推进力为一整体的旋翼机上的气动结构负责防涡环，这是一种被动式防涡环方法和设备，是一种涡环警告装置，是根据主顶层设计，主螺旋桨的脉动幅值及平均值变化等参数计算出涡环先兆气流计算过程。飞行器中心计算机装置向驾驶者发出警告，同时也指令气动机构产生相应动作改出涡环先兆气流。气动控制在空中产生上下左右晃动飞行防涡环，躲避自旋诱导的涡环气流，在空中飞行运动空间垂直落差量动态很大，在一些窄小区域飞行危险系数十分大，有些情况是不允许的也没有这样空域机会。

[0076] 这种方法早在专利申请中就有了由驾驶员人工操纵驾驶使直升机在空中晃动飞行和斜向起降以这种被动防涡环的方式。

[0077] 美国V-22鱼鹰机对涡环状态十分敏感，美国波音、贝尔等公司研制的多功能涡环警告装置，是用预警后，主动优先躲避自旋诱导的涡环气流方式，是一种变相的“主动”，若在特定唯一驻点必须垂直起降，发生涡环气流先兆气流，防涡环设备发出警告信号时，就的放弃正常起降，显然在很多现实情况下这种警告装置并不实用，不能预先根除涡环先兆气流和涡环。

[0078] 上述这些措施和装置都属于被动预防措施的防涡环一种方法，这种方法存在操作难度和风险及一定的局限性，并不适用于所有旋翼机。其预防避免控制的防涡环数据范围0.4-0.8，0.8-1.2的比值范围是现有技术传统直升机机型气动结构累积总结的数据，又因环境、气候、角度、驻点不同，此参考数值意义有限，并不一定适应其它新型气动结构和布局的旋翼机，这种方法和设备也不适用于本实施方案的整机吊浆。

[0079] 旋翼飞行器一般都是对称规则外形的气动结构及布局，又在自身诱导出的规则的对称的环涡气场中作业。主动、预防、全环境、全天侯克服、根除涡环气流场是旋翼飞行器加
强飞行安全不可或缺的技术要求。因此，飞吊器需要设计相应的完善气动结构和创新主动式抗防涡环功能的技术方法及装置。

[0080] 2. 本实施例方案的飞吊器采用三种方法和设备防涡环：

[0081] 1) 采用从新进行气动结构及布局分配不同的任务解决主动式防涡环方法，如图 2 标示了飞吊器气动结构防涡环方法及装置示意图。

[0082] 首先将垂直主升力和姿态、方向水平横向调控推进力分开，分配给不同的气动机构执行。以大直径主涵道轴转又反转气动方法和组件承担垂直主升力，保持水平升力面夹角任务。在在周围对称同水平设置四个小直径副涵道单轴单旋转气动机构，随其在连接臂能做伸缩、扭摆等的四自由度的同轴对称动作或不对称动作，承担辅助升力、水平横向推进力和控制方向及飞吊器变向、抗防涡环的任务。

[0083] 飞吊器大直径主涵道旋翼气机构与四个或多个小直径副涵道旋翼气动机构形成的都是独立的气动场，各自气动场能相对运动，各自的涡流面气体分子弹性碰撞产生能量交换传导空气动力，可互相协力也可相互干扰，为飞吊器整体防涡环提供了先天性条件。

[0084] 飞吊器在起降或悬停飞行中，大直径主涵道旋翼气动机构承担主要升力和水平姿态平衡面。主旋翼气动动垂直直排到下方到驻点面。在特殊气候、湿度、温度、场地平衡面或凹形地面的反射作用下，又在飞吊器对称规则整体的影响下，可能形成返回周围空中的涡环先兆气流状态流。此时飞吊器的飞控中心计算机经传感器检测到的涡环先兆气流预判进行运转，指令装配在主涵道周围对称布局的小直径副涵道旋翼采取动作，为了不干扰飞吊器总体平衡和飞行状态的稳定面。四个副涵道旋翼将同时作对称的有节奏的四自由度动作。对于每个小直径副涵道旋翼也相当于一架单旋翼直升机的主旋翼。用仿人工或类似自动驾驶仪的防涡环被动方式进行作四自由度的摆、摇、扭、伸缩的方式使各自气动场气流相互干扰防涡环。这种方法思想也干涉、扰乱了主涵道旋翼体 5 的下洗气流所诱导的涡环先兆流及外围上返空气的气流场。从而达到这种不牺牲飞行姿态而主动防止了涡环先兆气流的形成。

[0085] 四副涵道旋翼系统同时对称、有节奏的动作用防止了飞吊器的动作用和防涡环。对称动作控制操纵飞吊器的飞行状态。保持水平姿态，起到飞吊器的辅助升力作用。其向一侧倾斜，调控飞行方向，可主动防止飞吊器遭受侧吹风，稳定了飞行姿态。图 2 标示了这种方法的特征。

[0086] (2) 采用物理式空气分子反弹性碰撞方法主动防涡环方法及原理：

[0087] 在主涵道下端设置一个无底盆形喷口 9，在其周围斜壁开了对称布置的扁长方侧喷口 10，在侧喷口风道中设置往返摆动的导风板。在起飞或下降时导风板自动打开，从侧喷口 10 喷射出水平直射摆动气流 Qp、Qp，运动路线与下主喷口 9 的气流 Q9、Q2、Q3 向下喷向地面驻点后环状返上到主涵道外上端吸口的运动路线的涡环先兆气流 Q4、Q5、Q6、Q7 产生交叉，从而干扰、切断、阻止了上返气流运动方向，用这种方法的方法主动防止涡环先兆气流的形成。图 2 标示了这种方法的特征。

[0088] (3) 采用电晕放电、微波消生等离子技术主动式物理化学空气分子反弹性和非反弹性碰撞特性防涡环方法及原理。图 7、15 表示了等离子体技术防涡环和改善雷诺数值。

[0089] 在主涵道下端设置一个无底盆形喷口 9，在其周围斜壁开了对称布置的扁长方侧喷口 10，在侧喷口风道中设置往返摆动的导风板。在起飞或下降时导风板自动打开，从侧喷口 10 喷射出水平直射摆动气流 Qp、Qp，运动路线与下主喷口 9 的气流 Q9、Q2、Q3 向下喷向地面驻点后环状返上到主涵道外上端吸口的运动路线的涡环先兆气流 Q4、Q5、Q6、Q7 产生交叉，从而干扰、切断、阻止了上返气流运动方向，用这种方法的方法主动防止涡环先兆气流的形成。图 2 标示了这种方法的特征。
[0090] 当飞吊器在起飞或降落时，或着低空悬停作业时，飞吊器的飞控计算机下指令让
能量波发生器工作。由于空气湿度大，气压低，气湿状热无风或低于 1～2 低风速时，地面平
整或凹形极易诱导出涡环气流场，为了防止这种涡环气流形成，能量波发生器提前工作，用
粒子射流轰击涡环先兆气流粒子，改变涡流运动轨迹，抗防涡环先兆流的形成。
[0091] 本实施所采用的能量波发生器中应用的电晕放电、微波等离子技术是现有的公知成
熟技术。将该技术进行创新调整适合应用于旋翼飞行器空气动力中解决抗防涡气流场和提
高旋翼在恶劣气候的雷击数，减小外气粘度，改善旋翼空气动力。
[0092] 将这种电晕放电、等离子技术总结各自的优缺点和特性进行有机的组合和技术创新
，研发新适合飞吊器的能峰、频率波段、规格、标准、发射范围。进行技术创新，达到
专用于旋翼飞行器主动式防止涡环先兆气流和根除涡环气流场的改善雷击数的方法和设
备——简称等离子能量波发生器。
[0093] （一）选用微波等离子技术防涡环工作原理：
[0094] 在旋翼空气动力作用下，空气分子进入能量波发生器，在频率功率电压作用的电
晕放电能量场粒子能量作用下，空气分子发生电离，形成等离子云。
[0095] 气体转化为等离子体，每个粒子需要 1～30eV 的能量 (1)，等离子体是物质中能够
发出较高物质聚集体，其中的粒子具有较高的活性。粒子体和普通气体存在一些共同点，如
它们均满足气体状态方程，它们却有截然不同的性质，主要的区别列有三点：
[0096] 1. 普通气体中粒子是电中性的，本身不带电，而带离子体是由大量的粒子和离子
组成，因此粒子是带电的，离子带正电，电子带负电。
[0097] 2. 普通气体中粒子之间的相互作用主要是相互之相互之间的碰撞，是短程牛顿力的
作用，其有效作用半径远小于粒子平均自由径。绝大多数时间内，粒子都是匀速直线运动，当
它碰到另一个粒子时，速度大小和方向可认为瞬时地发生突变，因此粒子运动轨迹是直线
线段连成的折线。而等离子体能量波粒子之间的相互作用，就像长程库仑力的作用，多个
带电粒子之间的集体相互作用要压倒两个粒子之间的碰撞，带电粒子大角度的偏转是多重
小角度偏转积累而成，所以带电粒子的运动轨迹不是简单折线而是不断发生的小波折并逐
渐形成大拐弯的曲线。
[0098] 3. 常温下普通气体分子间的碰撞一般是弹性碰撞，而带离子体中粒子间的碰撞除
弹性碰撞之外还有非弹性碰撞，而且大量的是非弹性碰撞，引发产生等离体系。
[0099] 等离子体是物质第四态表现：
[0100] （1）温度高，粒子动能大。
[0101] （2）作为带电粒子的集合体，具有类似固体的导电性能，等离子体从整体上看是
一种导体流体。
[0102] （3）化学性质活泼，容易发生化学反应。
[0103] （4）具有发光特性。其具有独特的物理和化学性质 (1)：
[0104] 激发：AB+e----AB*+e
[0105] 遇激：AB*-------AB+hv（光子）：
[0106] 离解：AB+e--A+B+e：
[0107] 电离：AB+e--AB*+2e----A*+B+2e
[0108] 电子、离子在电场中被加速：
[0109] 表现发性发性应用于光学
[0110] 表现化学性质应用于化学
[0111] 表现导电性应用于电气学
[0112] 表现高速粒子应用于力学
[0109] 粒子间碰撞产生热效应，粒子和固体表面的碰撞：表现高温应用于热学
[0110] 上述等离子的多样特性是因于内部电子和气体分子间的碰撞的性。遵循四个麦克斯韦电磁场、磁流体动力学、电流体动力学、流体力学、光学、热力学方程。
[0111] 等离子体具有波能和振荡特性。其离子体表现出激发、动能、传播和衰减的历程，对等离子体的约束、稳定、加能、辐射的控制技术是实际具体应用的重要部分。
[0112] 等离子体的特性由等离子体本身的性质和它所处的生成的物理条件决定的。等离子体是由各种带电粒子及中性粒子所混合组成的气态体，其中的波和热压强随电磁力有关，在其存在三种力———热压强梯度，静电力和磁力求着准弹性恢复力的作用。
[0113] 在热压强作用下引起声波效应，各种模式静电波（纵波），电磁波（横波）及之间混杂波。
[0114] 在等离子体中电子与离子质量差异很大，在波振荡中起的作用力、运动速率各自有别，形态是极其多样复杂的。等离子体具有能量激波特性，按振动波频的幅度大小分为线性波和非线性波。非线性波为大振幅的激烈扰动而产生激波和孤立波并遵守非线性偏微分方程。线性波为小振幅激波其遵守线性偏微分方程组的描述。所含电磁波在等离子体介质中传输其体叠加作用发生反射、吸收、偏振现象并维持高电离、高活化形成等离子体独有的高密度、高能量共振特性的离子激波射流。
[0115] 在等离子体中电直接释放出的电晕粒子会通过碰撞过程对其他空气粒子产生影响，并交换动量、动能、内能和电荷。使粒子发生离解 / 电离 / 复合 / 化学反应，光子发射和吸收等物理过程。
[0116] 等离子体间的碰撞不一定直接接触，所带电粒子间产生相互作用可为库仑力，即使两个粒子离得很远，依然存在著相互作用，碰撞截面为无穷大。每个粒子同时受到其它许多粒子的库仑力。粒子运动速度和轨道发生改变，所发生的碰撞结果使得等离子体中粒子速度和能量服从麦克斯韦——玻尔兹曼分布。并引起各种现象：
[0117] 一种是弹性碰撞。粒子只改变速度方向，总动量和动能守恒无论是那个粒子的内能都没有改变时，即不发生化学反应。没有新粒子或光子产生的是弹性碰撞。
[0118] 另一种是非弹性碰撞。在碰撞过程中引起粒子内能变化，伴随着新粒子或光子的产生是非弹性碰撞。当质量 M1 = M2 时转移能量约为 M1/4。若能量大时能改变分子或原子内部结构。激发电离电离周围气体场。使气体内发生化学反应。
[0119] 在等离子体反应器中加入工作气体，空气或一些适当的气态物质（如稀有气体、氢气、氮气、水蒸气、二氧化碳、一氧化碳等）后，在外界电磁场强化合作用下其分子、离子、原子间产生解离、电离、分解、电荷转移、离子复合、自由基复合等反应，等离子体中各种激发态物质的作用可以分为均相作用和非均相作用两类。可以改变原来反应物的转化率和产物的选择性：
[0120] 在地球大气环境中 98%的空气是氮气和氧气，氮气含 78%，氧含 20.9%，在电晕放电等离子体高能量离子非弹性碰撞引发了如下反应：
[0121] \[\text{N}_2 + \text{O}_2 \rightarrow 2\text{NO} \]
[0122] \[2\text{NO} + \text{O}_2 = \rightarrow 2\text{NO}_2 \]
[0123] \[2\text{NO}_2 < \rightarrow \rightarrow \text{N}_2\text{O}_3 + 57\text{kJ} \]
这些均相催化作用，可以归结为加入的工作气体改变了高激发态物质间的能量或电荷的传 递。虽然这些均相催化作用之间还不是普遍的共同规律，但在特定能量场中出现均相催化。

在此，潘宁效应 (Penningeffect) 可能起了重要作用，表示如下：

\[M^+ + A^- \rightarrow A^- + M + e^- \]

\[M^+ + A^- \rightarrow 2A + M \]

式中：\(M \) 为加入的气体分子或原子；\(A \) 为反应物分子或原子；\(e^- \) 为粒子处在激发态。潘宁效应的存在可以促进反应物的电离或解离活化。在非弹性碰撞粒子间能量的释
放、交换、激活，产生了多米诺骨牌连锁化学反应效应，对周围空气分子产生了冲击，振荡和扰动了涡流思想气流。同时附生的放电乘数波的共同作用对涡流气流运动方向产生
了干扰。选用释放离子体射流，激流涡流气体分子结构和运动方向，预先防止和根除旋翼
诱导的涡流思想气流运行机制和形成环境，利用该原理方法和功能装置实现应用于空气动力
学的主动抗涡流气流及改善雷诺数。

（二）选用微波等离子技术改善旋翼空气动力的雷诺数工作原理；

能量波发生器释放分子和离子冲击动动力的同一同时又释放焦耳热能和振荡激波，作
用周围涡流思想分子同时又作用了飞行器中气流场空气回分子，下洗气流中分子产生膨
胀，在反作用力下对升力起到接力作用，起到地面效应的气垫效应，又提高了雷诺数。

环境若湿度大，密度低，黏性大。干燥空气密度高，黏性小。雷诺数增大。在飞
行器起降过程中微波电晕放电、等离子发生器释放大量的复合能量作用下，对下洗气流
柱气旋的湿度减少向干燥向转移，空气密度也随着增大，黏性减小，能量波穿透空气分子
过程也减小了空气黏性力。

根据雷诺公式：

\[Re = \rho / \mu \times V \times L \] 雷诺数 = 密度 / 黏性 × 速度 × 长度（弦长）

或：\(Re = \frac{VL}{\nu} \) 雷诺数 = 速度 × 长度 / 流体黏性系数

雷诺数是无量纲，对于雷诺数效应的全面理解是，相对于每一点流体的速度，旋
翼边界层中空气电由被压缩的惯性力和黏性力的比是重要的。这一比率将随季节情况和高
度的不同有变化，对夏季潮湿气候中雷诺数偏低，在冬季干燥气候中雷诺数较高。总结的
各种情况下，实际结果是干燥的空气雷诺数高。

虽然，在一定环境、时分、季节中空气密度和黏性是旋翼飞行器空气动力的不可控的参量，对于飞行器旋翼的转速 \(V \)、旋翼弦长 \(L \) 在制造时以定规格，但在不同自然环境和气
候情况下，飞行器作业时所在空域的空气密度和黏性的参数在定局的情况下用人为的方法
改变。为了改变雷诺数，本发明方案在飞行器设置反射射式电晕放电等离子能量波发生器，
或百褶裙涵圆式微波等离子能量波发生器改变飞行器旋翼周围局部空气的密度和黏性参数，
从而提高雷诺数，改变空气动力环境，利于飞行器作业安全十分重要。

雷诺数越低旋翼阻阻力影响也越大，湿度大的空气粘度也大，低雷诺数直接结果
就是 带导致飞行器旋翼过早失速。

在释放等离子能量的作用下，空气雷诺数的增加说明空气动力环境得到改善，既
防止了涡流气流先兆气场的形成，又防止了飞吊器旋翼过早失速。

在飞行器设置等离子能量波发生器，在其作用下改善旋翼的空气动力环境，由其
是涵道内旋翼弦长外三分之二段主要空气动力作用的翼面，增加下洗气流空气微团的动量，提高升力系数。改进了空气动力的雷诺数，又根除了涡环产生的机制，是十分必要的有益的选择。

0140 (三) 能量波发生器应用方法和范围：
0141 在能量波发生器工作时有电磁波、微波、电离辐射、臭氧氮类化合物气体产生。对使用范围场合、飞行高度、使用时间需要严格控制。一般控制在起降场周围1-3米内，高度2米内。
0142 起飞时速度作用从0.6米→3米工作，从下变大到2米→3米水平姿态。
0143 侧喷口工作从0米→4米工作，从小功率→大功率→小功率幅满变化。
0144 发生器工作从0米→2米工作，从大功率→小功率幅满变化。
0145 降落时，四副涵道壁摇动从3米→0.6米工作，从大功率→小功率幅满变化。
0146 侧喷口工作从4米→0米工作，从大功率→小功率幅满变化。
0147 发生器工作从2米→0米工作，从小功率→大功率幅满变化。
0148 结合实际情况，使其在环保安全环节中工作。
0149 5. 飞吊器动力优选
0150 1. 电力驱动
0151 (一) 在主涵道共轴风扇中心轴处设置电动机，四副涵道旋翼中心轴处也设置电动机驱动。用电线电缆供电。
0152 (二) 在主涵道内径壁内与上风扇和下风扇对应位置，设置电动机定子绕组，在上风扇和下风扇叶端设置永磁涵。外径壁内设置永磁铁或电动机转子。形成一种厚度薄、大型径、开放式电动机式内置涵道旋翼或风扇新技术结构特点，这种特征的缺点是高转速，大扭矩，节省能源的涵道旋翼或风扇动力系统。
0153 2. 飞吊器配有牵引索，具有牵引力作用，抗逆风作业时提供牵引力作用，此牵引索中配装能源供应管线。选用电力驱动，输能牵引索中设有正负极电力线和信号线。
0154 7. 辅助装置设置方法和设备。
0155 在输能牵引索的下端连接卷在卷扬器上，卷扬器设置转换器，设有正负极电力和光电信号转换器。
0156 设置控制室，操控台由中心计算机及程序负责总操控和管理。
0157 8. 飞吊器能源和信号管理系统优选方案；
0158 优选有线式、无线式，在飞吊器上都安装多通道接收发机，负责无线电或光通信信号管理指挥。能源自带燃料箱或高能电池组及发电机。
0159 通过上述几项设置，飞吊器具有在恶劣环境、气候条件下，抗湍流突变转捩风、抗侧风。主动式防涡环，增强了升力和爬升效率，能长时续航，具有在抗强逆风恶劣环境中作业能力，是一种具备实战效能提吊功能的飞行器。
0160 通过上述几项优选设置的原理和方法应用到新一代旋翼、风扇、螺旋桨机型中解决实际问题。
0161 二. 泥浆流多功能飞吊救援两栖医疗救护车和各部件具体实施例。
0162 发生洪水泥石流时易将河道堵塞，造成河水断岸决堤，发生洪水时冲淹城镇村庄。
上。为了救助这些分散的群众。以近年来所发生的国内外洪涝灾害，都十分需要本发明方案救援方法和有效的适应这种水感激流夹杂各类漂流物，黏稠泥浆流，浮高忽低的湍急流和浅滩流中都能运行的两栖救援救护舟车。

[0163] 1：洪灾泥浆流两栖救援的方法和救护两栖车具体实施方案：

[0164] 在现有技术的水陆两栖车的基础上设式加设本方案的两栖救援系统，车前装设气垫式泥浆减阻板。设装泥浆流通捷系统及装置电梯式或非电梯式爬坡器。在泥浆推车装置变频随调电动机驱动，前后左右驱动装置设有液压伸缩支承臂与车体侧连接，推车器设计的螺旋制冷气冷凝绕，具有承受的推力和导向功能，浮筒具有增强在泥浆中浮力，推动车辆在泥石流上浮行。设置两栖车轮，其外胎花纹像拖拉机后轮人字直向轮胎纹状改良人字斜向螺旋曲折状轮胎，具有增强在泥浆中防滑浆流推动能力。解决了洪灾泥石流中救拖作业需求特有车辆设计和方法。

[0165] 泥浆流两栖救援车，可选择硬套式泥浆流两栖救援车 223，可优选敞篷式泥浆流两栖救援车 265，从公路用轮胎高速行驶赶到洪灾区，用爬坡器 285、251 协助可从选择半湿半干地段驶进泥浆流或洪水中，逆水逆风前进到达救援处上下方上风处不远的位置，操控员进入操控室飞升吊车 1，吊吊车 1 自身上升作用下升空，同时由输能牵引索 1 为飞吊车 1 输送电能和牵引力作用，如电动力驱动一样逆风在空中停滞飞行。

[0166] 在此吊车 1 中设了差动变频控制系统 30 诱导脉冲效应的定轴性使飞吊车具有抗突切变转换流速和侧切风能力。

[0167] 同时安装的等离子能量波发生器释放的粒子能量改善旋翼空气动力雷诺数，以使飞吊车能在大风的空域环境中改善升力和飞行安全。

[0168] 在飞吊车 1 飞到灾区上空后，操控员在其中的摄像装置 d1、d2、d3 观察灾区现场情况将信号发回，在控制台 k1 显示屏 P1 显示的情况，操控员操控飞吊车 1 将吊车绞盘 624 释放吊索 224，网笼由障碍 225 接近灾区，并通过飞吊车 1 上语音扬声器 y 喊话，指挥灾区配合进行吊拖救援人员，运回已打开篷的医救仓，泥浆水陆两栖救援车上，从而实现这种救援方法和配套的两栖救援车的功能。

[0169] 在气候环境恶劣时山区公路湿滑易在上下坡急转弯路段发生车祸滑入山崖下沟壑中，用本发明的硬套式泥浆流两栖救援车 223，或敞篷式泥浆流两栖救援车 265，由高速公路行驶赶往出事地点，车停时为防滑不可释放爬坡器 251、285，或泥浆流推进器 275、290、291、293 和 246 等进行增大摩擦面积安全停车进行飞吊车 1 救生作业输送山崖下救生员，用气垫带架 266 飞吊运伤员的方法和车辆设备，图 16 展示用这种飞吊救生方案和设备车辆实现本发明的两栖吊车救援功能作用。

[0170] 2：泥浆洪灾流两栖医疗救护车辆和行驶底盘实施内容方法方案：

[0171] （1）在陆地公路和半湿半干山林沟壑的行驶方法：

[0172] 在车前后左右四角各装有液压升降器的履带式刮式爬坡器行驶，每个可独立调升降高度和液压伸缩作迈步动作增强越野性能，在山林沟壑不平整地用液压迈步式电动履带爬坡器行驶，提高了行驶底盘越野性能，当在公路上行驶可收起，人字锯齿花纹大鼓形大浮力泥浆推进轮胎两栖车轮和普通轮胎高速行驶，实现了这种救护车作业行车能力多样性。

[0173] 液压迈步式电动爬坡器的结构有平衡整体车身功能，解决履带车爬坡角度的倾仰角度，行驶的地域坡度，本车采用的液压支柱结构件是现有技术，如两付履带式装甲车和坦
克、拖拉机、挖掘机等，四付履带式在筑路铺路机上构造，是平滚动行驶，未见到有配步动作的液压支柱之间的搭配应用于制造迈步式液压系统和平衡控制系统，也未见将其运用到辅加到轮胎式车架上的救车辆上，以增强越野性能。本方案实现这种组合结构以增强救车的山地沟壑救生作业能力。

综上所述，结合附图和附图标记说明及结构功能简介进一步公开本方案具体实施例，使其变更为现实的产品和能实现飞吊作业方法。

在泥浆池水流行驶的方法；

泥浆密度过高，浮力也漂浮水浮力大，例如如温泉管，我们曾有这样体会，人在泥浆池池里泡时身体可漂浮在泥浆上，而在清水池池时则下沉，设计泥浆助器中设含有空腔增浮能力腔室和驱动电机，具有驱动轮，又有增大浮力效果。

设计时克服现有技术的水陆两栖车上缺点，进行改进，现有技术水陆推进器，不适应于水陆两栖车辆运行，易遭缠绕和堵塞。虽然泥浆浮力大于清水，但黏度和杂物缠绕的复杂因素直接影响本车在其中的运行。为了解决这个问题，在泥浆中运行的综合减阻滑板和各种泥浆推进器，配合人字锯齿花大鼓形大浮力泥浆推进轮胎两栖车辆，在半湿半干坡面配有爬坡器驱动。

优选如下方案：

（1）优选在车头装有可升降伸缩可变角度的雪托板式泥浆气垫浮力减阻板。

（2）图22所示流程，或泥浆流两栖救援车可选配的车头气垫式减阻托（293）。

（3）在车头装有可升降伸缩可变角度的雪托板式泥浆浮力托行板，可调节车头在泥浆中行驶的仰角，以适应不同粘度和行驶速度及浮力点支撑角。

每种车前部外凸部泥浆水流中有着十分大的泥流黏性阻力，泥流中由其逆流行驶，在救援作业中往往逆流行驶才能稳住位置不变，因此在车头前设置减阻托，像雪托原理一样在泥浆流中减低行驶阻力方木在水中位置，有利飞吊救援被困水中人员救援中泥浆水的航行速度和缩短时间。

泥浆流密度大于清水流，浮力也大于清水，但黏稠性大于清水，在泥浆流中行驶阻力远远大于清水，优选本发明气垫式减阻托是十分必要的。在减阻托腔中加入气垫方法是进一步优化减阻托的技术进步。具体实施例如下：

气垫减阻托两块，上托段起到折叠和储气作用和下托段起到产生气垫效应和主减阻段作用，形状都为长方形圆柱状中空腔结构组成，并可折叠的连接在一起。

上托段是长方形弧弯扣向发动机仓，长度尺寸边为车宽尺寸，缓尺寸边长为上托段的两侧尺寸，上托段为耐压的中空腔是储气仓。上托段上端两侧设有液压拉收杆和水平延发动机仓盖蜗轮导轨移动进退和转功机构，主要作用是车在公路上行驶时减阻托收起，主要靠其收拉作用。在转动机构驱动下抬起，液压支杆和配合上滚收调长度。一头与车体转动机构相连并与下托段上端两侧折叠轴相连及下托段中下位用转功轴及毂连接。起到收起和释放动作的搭配作用。

上托段下端两侧穿插折叠轴机构轴，与下托段上端两侧联结组合折叠机构轴毂相连。

下托段从上端向下1/5处设气垫槽，槽中心线设多排、优选三排气垫导气孔。每排间隔一段距离。或组成三角形布孔，或一线排列布孔。在气垫导气道槽内，此为截面三角
形。槽底设为尖，槽底设气垫孔。孔外触水面为直，孔内面为斜面与导气阀锥体吻合，此阀连一根套压力弹簧机构杆连电磁阀，该电磁阀吸力大小和深度决定了气垫阀抬起大小，所释放气大小，根据泥浆水流与减阻阻断相对的流速来释放气流行成气垫层的大小。除了在减阻托面涂类似不粘锅原理涂层外，选择设气垫方法以进一步提高气化减阻参数宽余度。以适应不同黏度泥浆流。

[0188] 下托段内设空腔为一级气室，其主气室壁为耐高压板，阀间设有二级储气室，通过二、一级气室气通道的预备储气量和持续时间，上托段设设第三级储气室，于一二级储气阀间布置气垫导气通道形成产生持续性气垫效应系统，气垫气压 Pa 在喷气孔喷出的气流行成气垫。下托段气垫效应工作长度段。最大限度的形成气垫减阻以适宜逆急泥浆水流的减阻行驶。

[0189] (2) 优选轴伸缩式电动助力泥浆水流推进器人字锯齿花大鼓形轮胎两栖车轮方案。

[0190] 图 23. 标示泥浆流两栖车带轮毂伸缩襟翼泥浆助力器和人字锯齿花大鼓形大浮力泥浆推进轮胎两栖车。

[0191] 车轮外胎花纹像拖拉机后轮状的人字花并把此花纹进行改进，在人字纹的每条推力面设计再加进锯齿小纹，使人字大花纹具有抗泥浆滑流作用，增大在泥浆中进推力，使本方案车在泥浆中行驶时遇砾夹碎石硬底时又可用人字锯齿花大鼓形大浮力轮胎驱动行驶能力。解决了洪灾泥浆石流中救援业作业的车辆行驶驱动效率问题。

[0192] 设计带轮毂伸缩襟翼泥浆助力器的人字锯齿花大鼓形大浮力泥浆推进轮胎到两栖车轮是两栖车行驶的执行机构中的一种方法及器件。

[0193] 人字锯齿花大鼓形大浮力泥浆推进轮胎是用橡胶制成，外形似大一个大鼓状、胎外纹为大字形，设置人字笔特下方边即单边的撒和捺单边设有锯齿形凸纹，此锯齿凸纹增大泥浆水流在人字纹单边的滑流阻力，以提高此轮推进效率。此轮转动角速度和方向，滚动前进方向 412 表示了此轮结构与运动和作用力方向关系。

[0194] 轮毂上设有可伸缩的圆筒状碾轮，此上设有可展收的襟翼。此襟翼形一头大一头小像近似 60 度、30 度、90 度内角的三角形长方块与圆筒状碾轮平行相连，两个襟翼大头间设一个大小，两个襟翼大小头倒置设，这种设计有利防夹夹泥浆中石杂物，当碾轮高速转时又能防襟翼后流体改废满。提高襟翼推进有效率。

[0195] 在轮毂内底端用紧固螺栓固连，碾轮主轴筒内设选气气动力底座紧固法兰盘和紧固孔，在法盘中设碾轮气压伸缩腔机构伸出气压腔，在此中设泄塞在进气管进压作用下碾轮伸出轮毂，在进气管加压通过输通管转弯进回缩腔，带翅助推碾轮缩回轮毂内。

[0196] 碾轮设伸缩导向法兰设设在轮毂内伸缩中心有气压柱导向，外径在轮毂内径管滑动并密封。在轮毂内形成气压腔，具有浮力作用增加本方案车轮的浮力。

[0197] 碾轮襟翼的拉展：通过两侧升降滑道和伸收。在电机驱动螺轴转动与另头轴承固定。襟翼在升降主滑动器、在螺轴上驱动下滑动，同时在襟翼下设的被动滑动器 5 跟随滑动，使 X 形升降器及绞轴伸收升降。X 形升降的动作在其配电力通过道电 445 输入电力线供电，本案碾轮伸出滑到位电力转接触点接通进电力，并通过接口进输电机，襟翼伸出或收起动作。

[0198] 通过本方案实现带轮毂伸缩襟翼泥浆助力器和人字锯齿花大鼓形大浮力泥浆推
进轮胎两栖车轮，使本轮在公路行驶时轮胎与地面接触面小阻力小节能行驶轻快，在泥浆砂石流中防陷增加浮力面，在起泥浆流中有吹浮推进器作用多用途功能两栖车轮。

【0199】泥浆流推力器中设置变频调速电动机驱动，每推力器有前后设有支承臂与车体侧连固装置。该推力器设计的螺旋翼鳍防挂缠绕，具有承受主推力和导向功能，浮筒是增强泥浆流中浮力，驱动车辆在泥浆流上浮行。车轮外侧装有拖拉机后轮状的胎花并把此花进行改良在拉床锁挒划后方一边成做锯齿状，具有在泥浆中行驶驱动能力。解决了洪灾泥石流中救援作业的问题。

【0200】（3）优选在该车两侧设置锥头状螺旋翼鳍长锥浮筒泥浆流推力器方案；

【0201】该车两侧装有各设置了一种与车身长度略短的长锥筒，长锥筒两端为锥状形，在外周和长度上缠绕连结螺旋螺鳍状泥浆推力板，选用电力驱动，设有调速、正反转功能和刹车系统在左右两个配合下可在泥浆流中低速行驶，可倒车，可调向。每个推力器臂可做水平和向下作 90°角度曲直及前后长度方向与车身长度之间可调倾角度，并与车头装有可升降伸缩可变角度的雪橇车板泥浆浮力托配合，可使车辆在泥浆流面上呈升降和向前俯倾角度浮驶。在公路上行驶时两侧推力器可缩收回两侧车体仓内。当进入泥浆流和洪流中时可伸出工作。

【0202】（4）优选变矩螺旋浮体推力器方案；

【0203】在该车底主架梁两侧前后角设置变矩螺旋浮体泥浆推力器

【0204】图 25：标示变矩螺旋浮体推力器（290）。

【0205】本推力器装置于螺旋泥浆流中驱动行驶与带轮转伸缩螺旋鳍泥浆推力器和人字锯齿刀大鼓形大浮力泥浆推力器轮胎两栖车轮搭配使用有助泥浆中行驶驱动器利于救援作业。

【0206】本推力器装置于螺旋浮力体 290，外侧镶有可变矩螺旋鳍板。根据不同辐度泥浆调矩。本推力器是利用木船、木螺旋工作原理而设计，并在此基础上设的铝丝螺纹可变矩，以适应不同黏稠度泥浆流中推进和拉进，在本车尾部设的推力器是推力作用，在车头两侧设的同样推力器是拉力作用，以驱动本车能在泥浆流灾害中救援作业。本推力器分两部分前部为推力作用工作部车头，后部为伺服机构。

【0207】前部车头呈个木螺型内分两仓，外是环形有半隔的浮力仓，内中心部是动力机构仓，在此中心是转主轴，此轴是不转，静轴头轮部连有一个静轴轴转动轴和轴承，转动锥头内联托与浮头体固连。在动力仓静轴轴轮电机速线环绕组。和永磁铁转子，电机电力线线极板、阴极线通过转主轴电力通道在电机速线环绕组连接口。在电机两端设有主轴承，轴承内环联静主轴，外环与转动的螺旋浮体仓内径联相联。

【0208】在螺旋浮筒直筒段镶变矩螺旋鳍板，下部连有变矩鳍和所在滑道。再随锥头斜面续延连变矩螺旋鳍翅，其变矩鳍和滑道。

【0209】变矩螺旋鳍翅的变矩是由变矩液压器作用，主推进法兰托，中间设滑动滚珠及被动旋转法兰托同形成驱动机构和回缩实现螺旋鳍翅的变矩。其变矩液压器，由推进油管送进油压腔作用活塞前移和进油管进油压腔作用活塞后退来调变矩，螺旋鳍翅的面点 PLO 发生作用力方向 P。PL1 分量大小变化，根据泥浆黏度和与车身相对流向及车本运动方向相对参考进行变矩改变对流体（即泥浆）作用推力。本车车行驶的效率和安全性。

【0210】本方案推进器可上下摆动和前后伸缩动作，摆头动作在主转轴与主轴转套之间存在转动不移限位情况下作摆动，并与车架相联推动力是由副液压器及斜臂完成。油压进入
油管进液压腔，作用在活塞推动活塞杆外伸在作用力PL3作用下斜臂轴关节转动斜臂作用与推进器的摆动。进油管进油下作用回程腔活塞回程。推进器向上摆。

【0211】本方案可伸缩是由进液压管进液主伸缩作用在活塞滑动在主滑动轴上。陀螺头推进器向前伸，油压从油管进入油腔活塞回缩陀螺头向回缩。其伸缩颈的密封套保护机构防泥浆水。上述的构造和动作具体实施本方案的发明方法和设备。

【0212】（5）碾辊浮筒襟翼泥浆流推进器方式。

【0213】泥浆流推进器中设置变频调速电动机驱动，每推进器前后设有支承臂与车体侧连固，该推进器设计的螺旋襟翼防挂缠绕，具有承担主推力和导向功能，浮筒是增强在泥浆中浮力，驱动车辆在泥浆流上浮行。辊同端升高的两端翅辊间夹有另端翅辊端头，夹角外张开，又有锻制外鼓圆弧状，可积极有利防泥石浆流中杂物夹夹。这是为这种设计的理由和要解决的问题。在该车两侧前后四角设置碾辊浮筒襟翼泥浆流推进器。又起到在半干半湿上岸和下泥水流岸边交界段的爬坡器功能。

【0214】（6）液压迈步式电动爬轮履带爬坡器具体方案：

【0215】根据当地气候和地理环境实际情况进行评估可选择轻便式也可选重装式装配方案，具体制造方案：

【0216】液压迈步式电动爬轮履带爬坡器主要组成由两部分组成：

【0217】第一部分是迈步功能的液压支柱及结构架系统。

【0218】第二部分是由电动滚爬轮履带系统组成。

【0219】1. 液压迈步结构系统部分：

【0220】第一部分：迈步系统横向水平液压系统与车体主梁架连接。本身是一种内径管状两段设有前进回退液压腔，腔内有长柱状活塞体，在此长柱活塞体中部镶有向外伸展出长方两头半园外凸形迈步退行程序，并与长方梭状迈步水平外滑动器锻连，该滑动器在横向水平液压系统外主体壳上滑道和下滑道滑动，与迈步水平移动倒L形液压支柱千力顶托联结。迈步水平移动倒L形液压支柱连结在千力顶托座上，再联结迈步系统前腿液压支柱系统做伸收，另端前腿液压系统鞍座千力顶主支承力与履带系统主横梁中部转动联结。后腿主液压支柱系统伸收，及连斜推收助力液压系统支柱，三个液压支柱上端配合共同分别连结后腿液压系统鞍座千力顶三叉连转轴。三个液压支柱分别与履带及驱动系统结构长方带加强槽和筋的主横梁联结又和后爬轮电机后轴联结。

【0221】液压液由油液管进入前进推力液压腔内活塞压前进爬坡履带水平前移，液压液通过油液管进入液压腔压迫活塞面爬坡履带水平后收，迈步水平滑动器结构体在横向滑道上完成迈步水平行程移动和液压支柱的伸收，并于其它3个液压迈步式电动爬坡器配合完成本方案车迈步行动步伐。

【0222】2. 履带及驱动系统结构部分：

【0223】第二部为电动滚爬轮履带系统，由两个中凹节中夹一个中凸节这三节组合的两侧再各安装一节摩擦块中凸节都由穿节轴串连结合做为一个完整组合，以此组合循环连接成整个履带系统。在此履带环中后前都设为驱动滚爬轮爬齿由履带主横梁前大电机轴轴上装由大直径大扭矩直驱主电机定子绕组、转子永磁组组成动力输出源，并连输入动力线，另一端连燃油发电机转供电中凸节做为履带爬抓力最大的摩擦块布置在爬轮爬齿的两爬齿之间位置形成滚动抓爬行驶系统组成摩擦力最大化完善系统。并在爬轮主轴处
安装刹车系统和调前进松和后退松的反向调顺机构，这项为现有技术本教图中未显图样。本履带主梁联接端面三个液压支柱，伸臂下端，其上述爬坡器共同与其它 3 个同类爬坡器配合在中心控制计算机的调控中自动完成承担本车越野活动。

[0224] 上述结构联结并结合图及标记说明阐述了其构造及动作功能。

[0225] (7) 液压摆动式电动爬轮履带爬坡器 251 具体方案。

[0226] 图 27-5: 液压摆动式电动爬轮履带爬坡器 251 主视剖视图。根据当地气候和地理环境实际情况进行评估可选择轻便式装配方案，具体制造方案：

[0227] 将倒 L 形架与两栖车底盘主车架四角设置结合固定，将在 L 形架横梁中前部安装双套平行前腿伸缩摆动支撑支点，下端与前后两电动爬轮之间，履带主横梁长度中部连接可轴转动，在后爬轮主轴上安装平行双套三叉角形桁架，这角形桁架两叉的一叉架一端与 L 形架上部横梁后部接通，另一叉架一端与 L 形架竖梁联接，后爬轮只保持转动，前爬轮在前摆动伸缩的液压支柱作用下摆动和调整不同角度攀爬坡，可挺起车。整体爬坡履带由内装有直驱电动机动力的前后滚筒状爬轮爬齿组合，上套装履带和履带滚轮的履带组成轻便液压摆动式电动爬坡器系统。一般增加固定液柱式履带爬轮爬坡器起到在半湿半干均湿情况路况更增强本车的越野性。

[0228] (8) 防飞吊器下洗油罩起吊电动绞盘器。

[0229] 图 28-1: 液压摆动式电动爬轮履带爬坡器 251 侧视图。

[0230] 图 28-1: 液压摆动式电动爬轮履带爬坡器 251 侧视图。根据当地气候和地理环境实际情况进行评估可选择轻便式装配方案，具体制造方案：

[0231] 图 28-2: 标示提吊物机架。

[0232] 图 28-3: 标示主要应用于水中救生提捞器。

[0233] 图 28-4: 防飞吊器下洗油罩起落架 621；

[0234] 在中间设有可连接紧固的法兰盘对称连结十字横框臂伸展外连环环框同时连有带活动关节的起落架腿作为起落架的支撑骨架体。在其法兰盘上设有上连飞吊器的电锯、信号插孔也是摆动绞盘器和气垫担架提供电源和控制信号的电锯、信号插孔和联结紧固孔，下部连接提吊绞盘器和对应的上连联结紧固孔。在十字框臂伸展连环环框的面积内设透明柔性可下垂呈斜兜状防飞吊器下洗油罩，以防受强吹保护下伤员和工作人员。

[0235] (9) 救生工具的透明半封闭式气垫担架 226；

[0236] 在灾难现场遇老弱病残受伤者，大都失去行动能力需要救抬，在很多现场条件恶劣，需要特殊设计担架，为了防风沙雨雪又便于观察制成半封闭，透明折叠式，底部设成下气垫腔防震有缓冲，为保持飞吊器提升高度设有高度传感器，一般控制离地 1 米高度，又防水防沉，在水中像小船像气垫浮筏一样，担架柄可收短便于放车的医疗仓中。具体制做方案如下：

[0237] 在提吊索下端连环状可转动的万向接器分四支绕环套钩在透明半封闭式气垫担架 226 的挂环上。半封闭式气垫担架是以最高人长度为参照长度盈余长度尺寸，设为担架长度。以人最宽肩盈余宽尺寸设为宽尺寸，内腔高设人最高胸脯或孕妇孕期后月肚脯高为参照盈余尺寸设为内腔高尺寸，担架上设两扇弯弧透明活动侧门，头顶和脚底部设刚性半弯弧弧边，固定两端护盖增强防护刚度。担架主体腔下隔间设为自呼吸半柔半刚气垫仓其四周为折叠式柔性壁并设气流呼吸进排气孔，底部设为刚性底。又设四角方向仓底自滚滑球及测距传感器，在此位设有离地高度传感器类汽车倒车超声雷达探高度，此为现有
技术移植的组合，进行技术改进适应本方案应用测控本担架在开吊器不论飞的高度变化搬运时限离起足地 1 米 -1.2 米，以保伤员运送安全高度运抵本车医疗仓。在担架头脚端及担架舱气垫仓间设有可抽出式担架手柄，便于救生员抬进车外救治仓。本气垫式担架可在水下漂浮类似水上橡皮艇强度和功能。

（0.10）. 提捞器 225 具体方案；

在洪水中急流冲遇有落水者，多半人身都在水中，设计一种重金属刚性椭圆框内网高强纤维网，用开吊器像直升机一样飞行提捞救救网箱器急急水流下游探捞水沉一样捞人。此捞救器做的圈网大些设计可乘载两人客积。备有制做吊物钩方案。具体方案如下；

在万向节四分布柔性拦绳连接在捞救器的椭圆前框，该框是硬硬重扭水的重金属刚性椭圆框，该框内编织有柔性军展网，便于水中下沉可在水捞托落水者。

半自动开合提吊钩，其由联接法兰盘，上设电源、信号插孔 295，联结紧固孔。下连开合长度度提吊索 224 及可操作的开关挂钩。上述配的工具已完成基本救援作业。

附图标志说明及结构功能简介；

图 1 标示开吊器工作状态受力原里六个维度空间移动七种飞行姿态八种主要控制示意图。

L 标示有线控制开吊器的牵引索，具有输传电力、气体、充煮氧、控制信号，牵引力，在本方案牵引索上设压缩空气喷气式飘浮器、或优选安装电力双旋翼飘浮器，简称输能牵引索。输电力的表示为 L，输燃料的表示为 Lₙ。

0 标示开吊器重心部位。

A 标示开吊器副涵道旋翼设置在距牵引索 L 及控制台最近的副涵道旋翼组件，提供辅助升力、方向力矩。

B 标示开吊器副涵道旋翼设置在牵引索 L 左侧的副涵道旋翼组件，提供辅助升力、方向力矩。

C 标示开吊器副涵道旋翼设置在牵引索 L 对面及副涵道旋翼组件 A 对面的副涵道旋翼，或旋翼组件，提供辅助升力、方向力矩。

D 标示开吊器副涵道旋翼设置在牵引索 L 右侧的及副涵道旋翼组件 A 对面的副涵道旋翼组件，提供辅助升力、方向力矩。

ω₄标示开吊器上主旋翼角速度和顺时针旋转方向。

ω₅标示开吊器下主旋翼角速度和逆时针旋转方向。

ω₆、ω₇、ω₈、ω₉、ω₊、ω₋标示 A、B、C、D 副旋翼角速度和旋转方向。

Aₒ₇、B₃₇、C₃₇、D₃₇标示 A、B、C、D 副旋翼旋转扭矩、旋转线速度方向。

E₅标示开吊器受力相对控制台方位正向左移动方向和受左方力。

E₆标示开吊器受力相对控制台方位正向右移动方向和受右方力。

E₇标示开吊器受力相对向远离牵引索 L 及控制台方位点方向移动，受 E₇ 方向力。

E₈标示开吊器受牵引 L 拉力大于其它力向相对控制台方位移动，受 E₈ 方向力。

F 标示开吊器克服其它力影响远离牵引点 L 的力，F 大于其它力时，开吊器沿 E₈ 方向移动，为 F 和 F₉ 的合力。

F₉标示开吊器克服其它力影响、产生的升力，升力大于其它力时开吊器上升。
[0260] F_w 标示飞吊器受的重力，重力大于其它力时飞吊器下降。
[0261] F_L 标示飞吊器受牵引索 L 拉力影响向综合卷扬器 192 点及控制台位位点移动，牵引索 L 力的分力，F_L 力大于其它力时。
[0262] F_ϕ 标示飞吊器在综合力作用下产生向右的扭矩力。
[0263] F_ϕ 标示飞吊器在综合力作用下产生的左的扭矩力。
[0264] E_1-E_2 标示飞吊器四个副旋翼臂 96.97 的伸缩，作用力及方向。
[0265] F_3-F_4 标示飞吊器四个副旋翼做连接在弯月架 99 两端的摇摆轴 100 往复转动内外摇摆，作用力及方向。
[0266] Q_0 标示飞吊器受左侧气流影响。
[0267] Q_0 标示飞吊器受右侧气流影响。
[0268] Q_0 标示飞吊器受来自与牵引索 L 力方向一致的气流影响简称为顺风。
[0269] Q_0 标示飞吊器受来自与牵引索 L 力方向相反的气流影响简称为逆风。
[0270] W 标示为重物。
[0271] 图 2 标示飞吊器在遇到特殊气候情况下起降时防涡环的工作状态示意图。
[0272] Q_1，Q_6 标示进入上主旋翼涵道并经上静子 2 整流后受上旋翼上力矩作用的气流。
[0273] Q_1，Q_6 标示排下主旋翼涵道主喷口 9，并经过下主旋翼力 3 力矩作用，经下静子 8 整流后排出的下洗气流。
[0274] Q_1 标示主旋翼涵道主喷口 9 排出的主气流 Q_1 经下静子 8 整流后向地面的气流。
[0275] Q_1 标示排出的主气流 Q_1 通过地面后推返回空中的主气流。
[0276] Q_5，Q_6，Q_1 标示应受特殊气候和起降场地影响涡环先兆气流和方向。
[0277] Q_0 标示进入副涵道旋翼圈 108 旋翼 102 的滑气流。
[0278] Q_{11}，Q_{13} 标示副涵道旋翼圈 108 旋翼 102 作用经下静子 101，103 整流后排下洗气流，起干扰涡环先兆流 Q_1 的作用气流。
[0279] Q_8 标示进入上主旋翼涵道的滑气流 Q_1，Q_8 吸附力带动影响作用下，进入外环层主一涵道 111 的滑流气流，并有附属效应。
[0280] Q_8 标示进入外环层主一涵道 111 的滑流气流 Q_{11}，经过中静子 13 整流后的下洗气流，并有附属效应。
[0281] Q_8 标示受中静子 12 整流后气流。
[0282] Q_8 标示外环层主一涵道 111 和内环层主二涵道 112 排出的部分气流经喷口 9 的防涡环侧排风道 10，并经导风板 26 整流导向侧排出口 10 的压力喷射气流。
[0283] Q_{10} 标示侧排喷口 10 射气流 Q_8 作用，与气流 Q_8 交叉后干扰冲击防涡环气态的气流。
[0284] Z_1 标示中静 12、13 处设置的电晕放电等离子发生器释放的防涡环气流的等离子能量波。
[0285] Z_2 标示外环层主一涵道 111 和内环层主二涵道 112 上设置的电晕放电等离子发生器释放的防涡环气流的等离子能量波。
[0286] 图 3 标示飞吊器上下主旋翼直径大小设置和设置多环层主涵道及动力装置、电动机结构设置的方案示意剖视图。
图 3-1 标示飞吊器双环层主通道设置方案的外环层主一通道 H₁ 高度大于内环层主二通道 H₂ 高度尺寸，内环层主二通道 H₂ 安装在中静子 12、13 上部与上静子 2 之间的方案。上主旋翼 3₁直径小于下主旋翼 3₂直径的结构，其上主旋翼 3₁设置变惯量涵圈 0₁，下主旋翼设置不变惯量惯量，则电枢机设置在中心轴 6 处，方案示意图。

图 3-2 标示飞吊器双环层主通道设置方案的外环层主一通道 H₁ 高度大于内环层主二通道 H₂ 高度尺寸，内环层主二通道 H₂ 安装在中静子 12、13 下部与下静子 8 之间的方案。上主旋翼 3₁直径大于下主旋翼 3₂直径的结构，其上主旋翼 3₁设置不变惯量涵圈 0₁，下主旋翼设置变惯量惯量圈 0₁，电枢机设置在中心轴 6 处，方案示意图。

图 3-3 标示飞吊器双环层主通道设置方案，外环层主一通道 H₁ 套在内环层主二通道 H₂ 外，涵道高度尺寸同样，上下主旋翼直径同样尺寸，设在内环层主二通道 H₂ 内，其电枢机定子绕组 18 结构设置在内环层主一通道 H₄ 内壁 20 外径壁。内，永磁铁转子 17 设在上下主旋翼 3₁、₃₂的涵圈壁惯量圈 0₁₂、₀₁₂外侧壁上，其 ₀₁₂、₀₁₂圈不设变惯量方案示意图。

1 标示飞吊器总称。
2 标示内外环层主通道旋转翼 5 上静子，上下主旋翼中心轴 6 上支撑架。防止上滑气流的附带气流产生龙卷风变，起到整流作用、形成双环层涵道腔的上支架。
3 标示旋转翼总称。
3₃标示上主旋翼。
3₁标示下主旋翼。
4 标示外环层主一涵道 H₁ 内径壁与内环层主二涵道 H₂ 外径壁之间的涵道腔。
5 标示飞吊器内外环层主涵道旋转翼、风扇体总称。
6 标示飞吊器上下主旋翼中心主轴和支撑上、下、中静子横向垂直竖向支撑架。
7 标示飞吊器主喷口 9 潜状侧斜面上设的遮挡环侧喷风口 10 处为长方扁状。
8 标示飞吊器下静子，支撑下部双环层涵道形成涵道腔，是上下主旋翼中心轴 6 下支撑主体结构架，功能作用是整流 3₁₃₂的下洗气流，防止产生龙卷风变。
9 标示飞吊器主涵道下端无底盆状形状主喷口，提高空气动力效率产生主升力。
10 标示飞吊器涵道下端主喷口 9 内环盆斜状面设防涡环气流的侧喷口。
11 标示飞吊器外环层主一涵道 H₁ 壁。
12 标示飞吊器内环层主二涵道 H₂ 中静子，作用是整流上主旋翼 3₂的下洗气动流。
13 标示飞吊器内外环层涵道 H₁、H₂ 缩中静子，整流附壁效应滑流或大直径上主旋翼 3₃的下洗气流。
14 标示飞吊器外环层主一涵道 H₁间与其外壳 29 间的内腔，可设等离子发生器舱。
15 标示飞吊器上下主旋翼惯量圈 ₀₁₂、₀₁₂外壁与主涵道内径壁间隙腔，产生负压。
16 标示飞吊器上、下主旋翼中变矩轴和通变惯量液管道。
17 标示飞吊器上、下主旋翼中变矩轴和通变惯量液管道内腔。
18 标示设置在主旋翼惯量涵圈 0₁圈外壁上的电枢机转子永磁铁。
19 标示设置在主涵道壁内的电枢机定子绕组。
20 标示内环层主二涵道 H₂的外径壁。
M₁标示上旋翼 3 驱动电机。
M₁标示下旋翼 3 驱动电机。
H₁标示外环层主一涵道。
H₂标示内环层主二涵道。
O₁标示上主旋翼惯量涵圈含变惯量仓腔结构。
O₂标示上主旋翼惯量涵圈含变惯量仓腔结构。
O₁标示下主旋翼惯量涵圈含变惯量仓腔结构。
O₂标示下主旋翼惯量涵圈含变惯量仓腔结构。

图 4 标示飞吊器主旋翼电机定子绕组设置在外环层主一涵道 H₁、内环层主二涵道 H₂ 涵圈内，永磁铁转子设在上主旋翼惯量涵圈上，其主涵道下端与下静子之间设主喷口 9 的优选结构示意图。

图 4-1 标示飞吊器电动机定子绕组设置在单环层主涵道内径壁内，转子永磁铁设在旋翼惯量圆上的结构，俯视局部剖视示意图。

图 4-2 标示飞吊器电机设置在单环层主涵道壁内，转子永磁铁设在旋翼惯量圆上，在主涵道体 5 下端与下静子 8 之间设主喷口 9 的结构主视剖视图。

图 4-3 标示飞吊器主喷口 9 部件仰视剖视图。
图 4-4 标示飞吊器主喷口 9 中设喷口 10 防涡环气流的结构局部剖视立体示意图。
2 标示飞吊器上静子，也标示了主旋翼中心轴 6 支撑架的结构关系。
8 标示飞吊器下静子，也标示了主一、二涵道的下端与主喷口 9 结合部位关联。
9 标示飞吊器主喷口主体。
10 标示飞吊器主喷口 9 中设的辅助调方向和防涡环侧喷口。
17 标示设置在主旋翼惯量涵圈上转子永磁铁优选结构俯视剖视图。
18 标示飞吊器主旋翼电动机定子绕组圆圈设置在主涵道内径壁结构俯视剖视图。
21 标示主旋翼惯量涵圈上电动机转子永磁铁环托架。
22 标示主旋翼惯量涵圈上电动机转子永磁铁外紧箍环。
23 标示主旋翼中心轴 6 上端托架法兰盘。
24 标示主涵道下端口与主喷口 9 部件上端口结合部位。
25 标示主涵道主喷口 9 内盆形斜面上端形下收口形环面。
26 标示侧喷口 10 长方扇形 7 内风道 38 腔内导风板，用于调方向和防涡环气流。
27 标示主旋翼电动机及变惯量系统外设的电磁发生器总称。
28 标示飞吊器外环层主涵道体内环状口形主横梁。
28T 标示飞吊器外环层主涵道体内环状口形主横梁安装的稳定转动节 97 的悬凸轴。
29 标示飞吊器主旋翼涵道外鼓形壳。
30 标示主旋翼变惯量系统总称。
30 标示主旋翼液液式变惯量系统总称。（图 6 标示）
30 标示主旋翼液液式变惯量系统总称。（图 13 标示）
30 标示主旋翼液液式变惯量系统总称。（图 14 标示）
31 标示侧喷口 10 导风板摆动件转轴。
[0348] 32 标示侧喷口 10 导风板转轴。
[0349] 33 标示侧喷口 10 导风板 26 驱动蜗轴。
[0350] 34 标示侧喷口 10 导风板 26 驱动齿条和导风板移动方向。
[0351] 35 标示侧喷口 10 导风板驱动蜗轮蜗杆。
[0352] 36 标示侧喷口 10 导风板驱动电机。
[0353] 37 标示导风板驱动蜗轴支架。
[0354] 38 标示侧喷口 10 内扁长方形管道。
[0355] 39 标示导风板驱动蜗轮蜗杆齿条导轨槽。
[0356] 图 5 标示主旋翼变惯量惯量圆圈 0i 仓储各种实施例编号示意图。
[0357] 图 5-1 标示月牙形仓，主视局部剖视图。
[0358] 图 5-2 标示圆圆柱形仓。主视局部剖视图。
[0359] 图 5-3 标示主旋翼变惯量惯量圆圈 0i 仓储的俯视局部剖视图。
[0360] 图 5-4 标示圆形仓腔示意图。
[0361] 图 5-5 标示三角形仓腔示意图。
[0362] 图 5-6 标示上主旋翼变惯量圆圈 0i 仓储惯量液储罐 43 结构关系主视剖视图。
[0363] 图 5-7 标示下主旋翼变惯量圆圈 0i 仓储惯量液储罐 43 结构关系主视剖视图。
[0364] 图 5-8 标示主旋翼变惯量圆圈 0i 仓储仰视局部剖视图。
[0365] 图 5-9 标示变惯量液罐 43 中释液电磁柱阀局部剖视立体图。
[0366] 图 5-10 标示上下主旋翼变惯量或非变惯量圆圈减双扁环带锁空内锁斜翅圆圈 0i。
[0367] 0a 标示月牙形惯量仓示意图。
[0368] 0b 标示月弯矩形惯量仓示意图。
[0369] 0c 标示圆圆柱形惯量仓的示意图。
[0370] 0d 标示三角形惯量仓示意图。
[0371] 0e 标示矩形惯量仓的示意图。
[0372] 0f 标示惯量仓腔总称。
[0373] 0i 标示环形变惯量仓和不含惯量仓惯量圆圈。
[0374] 0j 标示环形变惯量仓和不含惯量仓惯量圆圈 0i 斜翅及长、宽、斜角、方向示意圈。
[0375] 0k 标示双扁环带锁空内锁斜翅圆圈。
[0376] 16。标示主旋翼变矩轴中心导惯量液体管道腔。
[0377] 40 标示变惯量圆圈 0i 仓储 0k 的卸液口。
[0378] 40a 标示变惯量圆圈 0i 仓储 0k 卸液口 40 自感电的电动开关。
[0379] 40b 标示装在内外环层主液道 H1 或 H2 壁 11 或 20 内的变惯量仓卸液口电磁感应器。
[0380] 41 标示变惯量储液罐卸液柱阀。
[0381] 42 标示变惯量圆圈内径边侧面，内截面弯月形 0a 为直环面、矩弯形 0b 为凹弯环面、圆 0c 为斜角弯面、斜三角形 0d 为内倾斜弯面、正矩形 0e 为直弯面，此弯面影响惯量圆圈内旋翼尖升力、气流的形阻和边沿尾梢气流状态。
[0382] 43 标示旋转变惯量主储液罐。
[0383] 44 标示泄液阀电磁线圈。
45 标示液阀电磁铁。
46 标示液阀吸合柱。
47 标示液阀吸合柱弹簧。
48 标示液阀电磁铁整体。
49 标示液阀液释液喷口。喷向旋翼迎角轴腔 16, 内 (变恒量液通道)。
图 6 标示飞吊工座旋翼电动机和喷液式变恒量系统总体结构示意主剖视图。
图 6-1 标示上下旋翼电动机和中心轴 6 部位的喷液变恒量系统部件主剖视图。
图 6-2 标示转动的变恒量储液罐与不转动的预存罐关联结构轴测剖视示意图。
50 标示旋翼液态变恒量系统预储液仓。
51 标示预储液仓外注恒量液口，与中心轴 6 联接，不转动。
52 标示预储液仓导液管，又是中心轴 6 内导液轴管。
53 标示预储液仓中心轴 6 内导液管的横向导液管。
54 标示预储液 Animac。
55 标示预储液门形输导流管。
56 标示门形导流管进液口。
57 标示门形导流管出液口。
58 标示主储液仓进口 (靠离心力吸进仓内)。
59 标示主旋翼轴承滚珠架。
60 标示主旋翼轴承内圆封箱。
61 标示主旋翼轴承外圆封箱。
62 标示旋转变恒量储液罐仓中部斜面顶端泄液口。
63 标示旋转变恒量储液罐内腔。
64 标示主旋翼轴承外圈。
65 标示主旋翼轴承滚珠。
66 标示主旋翼轴承内圈。
67 标示恒量储液罐离心力注液凹环仓。
68 标示上旋翼电动机设在中心轴处的转子永磁铁。
69 标示上下旋翼电动机设在中心轴处的转子与定子间隙。
70 标示上下旋翼电动机设在中心轴处的定子线圈匝绕组。
71 标示中静子内设的电力，信号线通道导管内腔。
72 标示中心轴 6 上电动机定子线圈匝绕组的接线口。
73 标示泄液阀吸合柱滑道。
74 标示中心轴 6 内设的注恒量液内竖向导管。
75 标示中心轴 6 内设的注恒量液内导管返流液竖向管。
76 标示中心轴 6 内设的电引导管和外配设备的导线接联器。
77 标示中心轴 6 内设的注恒量液内竖向导管底部返流注流管的出口。
78 标示下旋翼电动机支承法兰托。
79 标示下旋翼电动机和变恒量系统封盖。
80 标示泄液阀滑动导管。
[0423] 81 标示惯量储液仓离心斜壁。
[0424] 82 标示惯量储液仓直壁。
[0425] 83 标示中心轴内设横向注液导管。
[0426] 84 标示中心轴内设注液竖向导与返注流竖向管横通液孔。
[0427] 85 标示中心轴内设注液竖向导与返流竖向管间支架寒环。
[0428] 图7 标示防滚环气流反射锅式电晕放电等离子能量波发生器示意图。
[0429] 图7-1 标示在注液上设置的反射锅式电晕放电等离子能量波发生器示意图。
[0430] 图7-2 标示注液上设置的反射锅式电晕放电等离子能量波发生器示意图。
[0431] 图7-3 标示中子宽棚上设置的反射锅式电晕放电等离子能量波发生器示意图。
[0432] 图7-4 标示反射锅式电晕放电等离子能量波发生器结构局部示意图。
[0433] 图7-4A 标示反射锅式电晕放电等离子能量波发生器单频电容耦合等效电路图。
[0434] 图7-4B 标示反射锅式电晕放电等离子能量波发生器双频电容耦合等效电路图。
[0435] 图7-4C 标示 BCR 微波等离子体发生器结构工作原理示意图。
[0436] 86 标示主喷口9部件座，等离子能量波发生器托架。
[0437] 87 标示等离子能量波发生器阴极模块。
[0438] 88 标示等离子能量波发生器阳极模块。
[0439] 89 标示等离子能量波发生器射频。
[0440] 90 标示等离子能量波发生器射频。
[0441] 91 标示等离子能量波发生器射频。
[0442] 92 标示中子支架上的等离子能量波发生器射频。
[0443] 93 标示中子等离子能量波发生器支架。
[0444] 94 标示等离子能量波发生器正极电极接头（阳极线）。
[0445] 95 标示等离子能量波发生器负极电极接头（阴极线）。
[0446] M.B 标示电容耦合匹配器。
[0447] Cε 标示耦合隔离电容。
[0448] ω 标示高频波源。
[0449] ω’ 标示自偏压高频波源。
[0450] Kε 标示高电极（阳极板）。
[0451] Aε 标示接地电极（阴极板）。
[0452] Bε 标示电子回旋离子磁化耦合场洛伦兹力磁控线示意。
[0453] 图8 标示双环层中主通道飞吊器三视图。
[0454] 图8-1 标示双环层中主通道飞吊器俯视示意图。
[0455] 图8-2 标示双环层中主通道飞吊器主剖视示意图。
[0456] 图8-3 标示双环层中主通道飞吊器仰视剖视示意图。
[0457] 96 标示飞吊器主旋翼间道体与副旋翼通道体A、B、C、D连接臂可伸缩节。
[0458] 97 标示飞吊器主旋翼间道体与副旋翼通道体A、B、C、D连接臂可伸缩旋转节。
[0459] 98 标示飞吊器主旋翼间道体与副旋翼通道体A、B、C、D连接臂可伸缩旋转节。
98 标示牵引架 1 与飞吊器臂结合器 98 中控制转动的步进电机齿轮和离合器。
99 标示副旋翼涵道体 A、B、C、D 与臂伸缩 96 连接的弯月环。
100 标示驱动副旋翼涵道体 A、B、C、D 摇摆步进电动机中心轴管联合体。
101 标示驱动副旋翼涵道体 A、B、C、D 摇摆扭矩中心管轴 100 和三角静子结合体。
102 标示副旋翼或风扇。
103 标示副旋翼涵道体 A、B、C、D 薄片刃形下静子。
104 标示副旋翼涵道体 A、B、C、D 旋翼、风扇 102 驱动电动机总称。
105 标示飞吊器输能牵引索 L 连的牵引架 106 内导线通道。
106 标示飞吊器抗扭矩和输能牵引索 L 抛物线形输电牵引架，简称牵引架。
107 标示飞吊器输能牵引索 L 与牵引架 106 连接的环形接口。
108 标示副涵道旋翼的涵圈，内环壁直线形连下静子总称 H4，外壁为鼓形。
109 标示飞吊器内外双环层主涵道中间流环腔 4 中静子 13 整流环形气导口。
110 标示飞吊器中用于固定外装设备法兰环坚向支撑架。
111 标示飞吊器中固定外装设备支架法兰盘紧固孔。
112 标示飞吊器上固定外装设备支架法兰环。
113 标示飞吊器中心轴 6 轴外又下静子 8 连接盘与外接设备平台 158 组合。
114 标示内环层主二涵道 H2 紧固件。
115A 标示飞吊器输能牵引索耐磨，耐温，防水，防低温外表膜，最外层。
115B 标示外表面下耐高温，防低温，防水，高强，防蠕变纤维复合层，内三层。
116 标示耐高温金属丝网屏蔽层，内二层。
117 标示耐拉伸强度高，抗高温，防水纤维复合层，内层。
118 标示驱动副旋翼涵道体 A、B、C、D 旋扭摆节 97 的主动扭摆步进电动机。
119 标示驱动副旋翼涵道体 A、B、C、D 旋扭摆节 97 的主动小蜗轮。
120 标示驱动副旋翼涵道体 A、B、C、D 旋扭摆节 97 的驱动大蜗轮。
121 标示驱动副旋翼涵道体 A、B、C、D 旋扭摆节 97 的驱动滑轴。
122 标示驱动副旋翼涵道体 A、B、C、D 旋伸缩节 96 的驱动螺旋臂轴。
123 标示驱动副旋翼涵道体 A、B、C、D 旋伸缩节 96 的驱动蜗轮。
124 标示驱动副旋翼涵道体 A、B、C、D 旋伸缩节 96 的驱动螺旋步进电机。
125 标示飞吊器起落架升降步进电动机组件共四个（M1，M2，M3，M4）。
126 标示驱动飞吊器起落架升降的蜗杆。
[0500] 127 标示驱动飞吊器起落架升降的蜗轮式螺母管。
[0501] 128 标示驱动飞吊器起落架升降弹簧支架托盘。
[0502] 129 标示飞吊器起落架降弹簧支架托盘。
[0503] 130 标示飞吊器起落架升降弹簧。
[0504] 131 标示飞吊器起落架升降的升降杆。
[0505] 132 标示飞吊器起落架移动的铰轮。
[0506] 133 标示飞吊器着陆后移动行走电机组件总称共四个（M3、M6、M7、M8 电机）。
[0507] 134 标示飞吊器起落架。
[0508] 135 标示飞吊器外配提吊绞盘。
[0509] 136 标示提吊绞盘卷扬机及索。
[0510] 137 标示提吊绞盘卷扬导索口。
[0511] 138 标示提吊绞盘驱动蜗轮轴机构。
[0512] 139 标示提吊绞盘驱动蜗轮轴机构电线线通道。
[0513] 140 标示飞吊器提吊绞盘提吊杆。
[0514] 141 标示提吊绞盘提吊杆驱动步进电机及驱动杆联动机构。
[0515] 142 标示提吊绞盘抱栏铰器。
[0516] 143 标示飞吊器提吊绞盘提吊索。
[0517] 143J 标示提吊索钩。
[0518] 144 标示提吊绞盘抱栏铰电静子座。
[0519] 145 标示提吊绞盘抱栏铰电转子盘。
[0520] 图11 标示飞吊器控制电路通道俯视剖视示意图。
[0521] 146 标示副旋翼臂内电路通道。
[0522] 147 标示副旋翼臂A、C 电力线和信号线在主涵道内的电线通道。
[0523] 148 标示主涵体填充轻质发泡材料，减共振。
[0524] 149 标示副旋翼臂A、B、C、D 滑摆轴 100 内电路通道，副涵道旋翼体 A、B、C、D 驱动旋翼电机 MA、MB、MC、MD 的电源通道。
[0525] 150 标示飞吊器的输电牵引索连接的牵引架 106 选用轻质高强材料制造。
[0526] 151 标示副旋翼 A、B、C、D 摆摆转轴 100 贯穿转轴 99 另端，安装轴承总承。
[0527] 152 标示副旋翼 A、B、C、D 伸缩臂 96 中心轴线电力、信号通道。
[0528] 153 标示上下主旋翼用高强纤维材料制造。
[0529] 154 标示副涵道旋翼 A、B、C、D 摇摆轴 100 中提供电机电源通道。
[0530] 155 标示副涵道旋翼 A、B、C、D 摇摆轴 100 电路通道，摇摆电机 mAl、mBl、mCl、mD1 和旋翼电机 104 电源通道。
[0531] 156 标示飞吊器输电牵引索连接牵引架 106 拉力传感器 L1 及固定索 L 紧固器总承。图12 标示飞吊器单环层主涵道结构轴侧剖视示意图。
[0532] 157 标示飞吊器输电牵引索连接牵引架 106 中信号控制线 y0 和电源线 y+、y-。
[0533] 158 标示飞吊器中心轴 6 轴动 113 外配装设备及电力、控制信号接插口平台，
[0534] 159 标示提吊器 135 联接法兰盘电路插接孔座。
[0535] 160 标示上下主旋翼电动机转子体与惯量储液罐 43 联接的凸键。
[0538] 160 标示上下旋翼电动机转子体与惯量储液罐 43 上的联接键凹槽。
[0537] 161 标示飞吊器外配设备方向联接器电插孔。
[0538] 162 标示飞吊器外配设备方向联接器。
[0539] 164 标示方向联接器中调节方向法兰盘。
[0540] 165 标示联接外配设备方向联接器法兰盘。
[0541] 图 13 标示飞吊器旋翼线拉活塞式变限量系统。
[0542] 图 13-1 标示飞吊器旋翼线拉活塞式变限量系统主剖视图。
[0543] 图 13-2 标示飞吊器旋翼线拉活塞式变限量系统轴侧剖视图。
[0544] 30 标示线拉活塞送液式变限量系统总称。
[0545] 166 标示上旋翼动力电线入口。
[0546] 167 标示上旋翼高能电磁发生器导线阴极线及入口。
[0547] 168 标示高能电磁发生器线圈绕组。
[0548] 169 标示高能电磁发生器电磁铁。
[0549] 170 标示线拉变限量系统电磁感应发电线圈。
[0550] 171 标示线拉活塞送液式变限量系统电磁感应电机电力线。
[0551] 172 标示线拉活塞送液式变限量系统电磁感应电机。
[0552] 173 标示变限量绳绕线器绕线。
[0553] 174 标示变限量绳绕线器绕轴。
[0554] 175 标示变限量液。
[0555] 176 标示变限量拉线式活塞。
[0556] 176a 标示变限量拉线活塞泄液口。
[0557] 176b 标示变限量活塞泄液阀管回程弹簧。
[0558] 176A 标示变限量活塞移动方向，该方向移动到顶端泄液阀管泄液口 176a 被打开方向，同时惯量储圈 0，上的卸液口 40 被泄液阀管卸液塞 177a 关闭方向。
[0559] 176B 标示变限量活塞移动方向，该方向离开顶端泄液阀管泄液口 176a 被关闭方向，同时惯量储圈 0，上的卸液口 40 被泄液阀管卸液塞 177a 打开方向。
[0560] 177 标示变限量活塞泄液阀管。
[0561] 177a 标示变限量活塞泄液阀管上设置的主旋翼储圈 0，卸惯量液孔 40 开关塞。
[0562] 177b 标示变限量活塞泄液阀管端头泄液口。
[0563] 177c 标示变限量活塞泄液阀管腔。
[0564] 178 标示变限量作业中释放段活塞释收线。
[0565] 179 标示上旋翼主电机电力线阴极线。
[0566] 180 标示旋翼系统驱动主上电机电力线阳极线。
[0567] 181 标示飞吊器中心轴 6 中上旋翼电动机电力线通轴中心轴管。
[0568] 182 标示上旋翼高能电磁发生器导线阳极线及入口。
[0569] 183 标示下旋翼高能电磁发生器供电导向线通轴。
[0570] 184 标示飞吊器中心轴 6 中下旋翼电动机电力线通轴中心轴管。
[0571] 185 标示下旋翼高能电磁发生器导线阳极线及入口。
[0572] 186 标示下旋翼主电机电力线阳极线。
[0573] 187 标示下旋翼高能电磁发生器导线阴极线及入口。
[0574] 188 标示下旋翼主电机电力线阳极线。
[0575] 189 标示飞吊器旋翼系统中心轴 6 与下静子 8 紧固螺栓结构。
[0576] 图 14 标示飞吊器主旋翼轴活塞式变惯量系统。
[0577] 图 14-1 标示飞吊器主旋翼轴活塞式变惯量系统主剖视图。
[0578] 图 14-2 标示飞吊器主旋翼轴活塞式变惯量系统轴侧剖视图。
[0579] 30 标示蜗轮活塞液式变惯量系统总称。
[0580] 190 标示变惯量系统螺母式活塞螺纹轴。
[0581] 191 标示变惯量系统螺母式活塞螺纹轴上螺纹。
[0582] 192 标示变惯量系统螺母式活塞。
[0583] 193 标示变惯量系统螺母式活塞螺纹轴承。
[0584] 194 标示变惯量系统电机反转发电感应线圈。
[0585] 195 标示变惯量系统电机反转发电感应线圈高能电磁发生器电磁铁。
[0586] 196 标示变惯量系统电机反转发电感应线圈高能电磁发生器电磁线绕组。
[0587] M_{1}, M_{2} 标示上旋翼电机正负动力线。
[0588] M_{3}, M_{4} 标示下旋翼电机正负动力线。
[0589] A++ 标示下旋翼变惯量电机正转时高能电磁发生器工作正负电线。
[0590] B++ 标示下旋翼变惯量电机正转时高能电磁发生器工作正负电线。
[0591] C++ 标示下旋翼变惯量电机反转时高能电磁发生器工作正负电线。
[0592] D++ 标示下旋翼变惯量电机反转时高能电磁发生器工作正负电线。
[0593] 图 15 标示双环层主缆道等离子能量波发生器示意图。
[0594] 图 15-1 标示双环层主缆道等离子能量波发生器轴测图。
[0595] 图 15-2 标示双环层主缆道等离子能量波发生器主剖视原理示意图。
[0596] 图 15A 标示百褶裙涵圈式等离子能量波发生器结合感应耦合 (ICP) 原理等效电路图。
[0597] 图 15B 标示百褶裙涵圈式等离子能量波发生器结合介质阻挡低频源方法等效电路图。
[0598] 图 15Bb 标示百褶裙涵圈式等离子能量波发生器结合介质阻挡高频源方法等效电路图。
[0599] 197 标示百褶裙涵圈式双环层主缆道等离子能量波发生器。
[0600] 197L 标示百褶裙涵圈式等离子能量波发生器主管外侧的电感耦合环形线圈（电感耦合等离子方法选型项）。
[0601] 198A 标示外缆道能量波等离子发生器主—缆道 H1 顶端空气进口调气门。
[0602] 198B 标示外缆道能量波等离子发生器主—缆道 H1 顶端空气进口。
[0603] 199A 标示外缆道能量波等离子发生器主—缆道 H1 壁侧空气进口调气门。
[0604] 199B 标示外缆道能量波等离子发生器主—缆道 H1 壁侧空气进口。
[0605] 200 标示双环层主缆道等离子能量波发生器与内环层主二缆道 H2 内外壁间等离子反应腔。
[0606] 200a 标示双环层主缆道等离子能量波发生器与内环层主二缆道 H2 内外壁间等离
子反应堆中工作。

[0607] 201A标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0608] 201B标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0609] 201A标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0610] 201B标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0611] 203标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0612] 204标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0613] 205标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0614] 206标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0615] 207标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0616] 208标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0617] 209标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0618] 210标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0619] 211标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0620] 212标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0621] 213标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0622] 214标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0623] 215标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0624] 216标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0625] 217标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0626] 218标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0627] 219标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0628] 220标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0629] 221标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0630] 222标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0631] 223标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0632] 224标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0633] 225标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0634] 226标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0635] 227标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
[0636] 228标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”

RF标示交流高频电源。

Ip标示高频电流，I_{RF}标示交流高频电流。

La标示高频电流，I_{RF}标示交流高频电流。

Lg标示内部燃料组件的长度与直径比为1:2，等效于外表面的厚度。”
LP 标示环状等离子体中惯性电感。
Ra 标示高频电流 I_{op} 在初级线圈中耦合时的阻抗。
Rp 标示等离子体产生射频热的直流电阻。
M_{op} 标示互感。
I_{op} 标示交流频源电压频率。
Vop 标示交流电压峰值。
V* 标示低频阻值条件下回路中积分电流为零时的电压值。
V*op 标示高频电压值条件下回路中积分电流为零时的电压值。
Cd 标示介质电容量。
Cg 标示放电等离子间隙的电容量。
R_{g} 标示放电等离子间隙等效电阻。
图 16 标示泥浆洪流飞吊救援医疗救护两栖车正在救援作业场景的示意图。
图 17 标示泥浆洪流飞吊救援医疗救护两栖车示意图。
223 T: 标示硬篷式泥浆洪流飞吊救援医疗救护两栖车。
224 T: 标示硬篷式泥浆洪流飞吊救援医疗救护两栖车。
225 T: 标示救援作业中可在水中提捞的网捞筛器。
226 T: 标示救援作业中应用的气垫式担架。
265 T: 标示硬篷式泥浆洪流飞吊救援医疗救护两栖车。
L T: 标示飞吊器输能牵引索。
227 T: 标示泥浆洪流飞吊救援医疗救护两栖车。
228 T: 标示泥浆洪流飞吊救援医疗救护两栖车。
229 T: 标示泥浆洪流飞吊救援医疗救护两栖车。
230 T: 标示随升降操控舱的人形升降全控椅。
231 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
232 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
233 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
234 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
235 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
236 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
237 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
238 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
239 T: 标示泥浆洪流两栖救援车发动机防淋雨升降空气进气器。
240 T: 标示车硬篷救护仓一侧的自动门。
241 T: 标示车硬篷顶部电维卷帘门。
242 T: 标示车硬篷顶部电维卷帘门。
243 T: 标示车硬篷顶部电维卷帘门。
244 : 标示车硬篷顶部上设输能牵引索卷扬器的吊具存放仓。
245 : 标示车硬篷式泥浆流两栖车轮胎助推行器标翅。
246 : 标示硬篷式泥浆流两栖车轮胎联合作业机标翅。
247 : 标示硬篷式泥浆流两栖车救护仓后门。
248 : 标示硬篷式泥浆流两栖车救护仓侧门滑道。
249 : 标示硬篷式泥浆流两栖车尾台内飞吊器燃油发电机 N1 和蓄电池组 N2 仓。
250 : 标示硬篷式泥浆流两栖车尾登台。
251 : 标示硬篷式泥浆流两栖车爬坡助推器。
252 : 标示硬篷式泥浆流两栖车可开关通道式清水推进器。
253 : 标示泥浆流两栖车人字形铝合金式大浮力泥浆推进轮胎。
254 : 标示泥浆流两栖车救护仓另一侧自动门。
255 : 标示泥浆流两栖车在泥浆行驶导流板, 又是救落水者攀踏踏板。
256 : 标示泥浆流两栖车飞吊器有线输能牵引索 L 卷扬器。
257 : 标示泥浆流两栖车飞吊器有线输能牵引索 L 卷扬器电动机。
258 : 标示车救护车顶上电动卷帘门电动卷扬结构。
259 : 标示车救护车。
260 : 标示车救护车医疗药品及器材室门。
261 : 标示车救护车医疗药品及器材仓室。
262 : 标示泥浆流两栖车发动机防淋雨升降排气器。（可设置在车尾上部）
263 : 标示泥浆流两栖车驾驶仓。
264 : 标示泥浆流两栖车落水者救援攀爬抓栏。
265 : 标示泥浆流两栖车救护车医疗救护两栖车。
266 : 标示泥浆流两栖车救护车驾驶仓。
267 : 标示泥浆流两栖车救护车医疗药品器材室。
268 : 标示泥浆流两栖车救护车前部救护车落水者攀爬抓栏。
269 : 标示泥浆流两栖车救护车救援作业照明射灯。
270 : 标示车发动机防淋雨升降排气器。（可设置在车尾上部）
271 : 标示泥浆流两栖车警示灯。
272 : 标示泥浆流两栖车救护车医疗器材仓门。
273 : 标示车发动机防淋雨升降排气器。
274 : 标示车发动机防淋雨遮阳折叠蓬。
275 : 标示泥浆流两栖救护车可伸缩折叠角电动浮力螺旋长轴泥浆推进器。
276 : 标示泥浆流两栖救护车半敞式救护仓。
277 : 标示泥浆流两栖救护车下设输能牵引索卷扬器的飞吊器存放仓。
278 : 标示泥浆流两栖救护车救护作业操控室。
279 : 标示泥浆流两栖救护车救护作业操控室非降人形操控杆。
280 : 标示泥浆流两栖救护车救护作业操控室非降人形操控杆。

图 18 : 标示敞篷式装有长螺旋棍泥浆推进器泥浆洪灾流飞吊救援医疗救护两栖车。
说明 书

[0714] 281 :标示敞篷式泥浆流两栖救援车救援作业操控室空调通风地板。
[0715] 282 :标示敞篷式泥浆流两栖救援车可开关涵道式清水推进器。
[0716] 283 :标示敞篷式泥浆流两栖救援车尾攀登台仓和水者救援攀爬抓栏。
[0717] 284 :标示敞篷式泥浆流两栖救援车尾攀登台。
[0718] 285 :标示敞篷式泥浆流两栖救援车迈步式电动爬坡器。
[0719] 286 :标示敞篷式泥浆流两栖救援车水者救援攀爬踏蹬翅、又是泥水流车车辆稳定导向翅。
[0720] 287 :标示泥浆流两栖救援车电动浮力螺旋长轴泥浆推进器安装伸缩存放仓及仓盖。
[0721] 288 :标示泥浆流两栖救援车陆地行驶单鼓形轮胎、或普通轮胎。
[0722] 289 :标示敞开式泥浆流两栖救援车救援作业飞吊器输能牵引索卷扬器。
[0723] 290 :标示泥浆流两栖救援车可伸缩摆动螺旋舵螺头泥浆推进器推进器车型。
[0724] 291 :标示泥浆流两栖救援车可伸缩摆动螺旋舵螺头泥浆推进器。
[0725] 292 :可选普通轮胎 288 , 或优选伸缩式襟翅泥浆助力器毂 246 人字锯齿花大鼓形轮胎两栖轮 253。
[0726] 293 :标示泥浆流两栖救援车前后两侧四角位置设置螺旋状襟翅泥浆推进器推进器车型。
[0727] 294 :标示泥浆流两栖救援车碟形状襟翅泥浆推进器。
[0728] 295 :可选普通轮胎 288 , 或优选伸缩式襟翅泥浆助力器毂 246 人字锯齿花大鼓形轮胎两栖轮 253。
[0729] 296 :标示泥浆流两栖救援车前后两侧四角位置设置固定式可倾角的爬坡助推器，车尾配的泥浆流横道推进器的一种搭配车型。可选普通轮胎 288 , 或优选伸缩式襟翅泥浆助力器毂 246 人字锯齿花大鼓形轮胎两栖轮 253。
[0730] 297 :标示泥浆流、或泥浆流两栖救援车可选配的近距液压伸缩转动的救生臂及救生篮。
[0731] 298 :标示泥浆洪灾泥流飞吊救援医疗救护两栖车自救绞盘机及前自动抛锚。
[0732] 299 :标示泥浆洪灾泥流飞吊救援医疗救护两栖车自救绞盘机及后自动抛锚。
[0733] 300 :标示泥浆洪灾泥流飞吊救援医疗救护两栖车可选配的车头气垫式减阻托 293。
[0734] 301 :标示泥浆洪灾泥流飞吊救援医疗救护两栖车航行时的气垫式减阻托。
[0735] 302 :标示气垫式减阻托气垫导槽。
[0736] 303 :标示气垫式减阻托气垫导向气孔。
[0737] 304 :标示气垫式减阻托气垫导向气道底。
[0738] 305 :标示气垫式减阻托气垫导向气阀。
[0739] 306 :标示气垫式减阻托气垫导向槽上棱。
[0740] 307 :标示气垫式减阻托气垫导向气室。
[0741] 308 :标示气垫式减阻托气垫导向气阀电磁开关。

48
[0742] 301:标示气垫式减阻托气垫导气阀电磁开关弹簧机构。
[0743] 302:标示气垫式减阻托气垫室储气仓。
[0744] 303:标示气垫式减阻托气垫室储气仓孔通道。
[0745] 304:标示气垫式减阻托气垫效应示例。
[0746] 305:标示气垫式减阻托气垫效应示例的气压流。
[0747] 306:标示气垫式减阻托气垫导气阀门配合斜面孔面。
[0748] 307:标示气垫式减阻托气垫室墙体，也是减振托波水面。
[0749] 308:标示气垫式减阻托产生气垫效应的工作段。
[0750] 309:标示气垫式减阻托产生气垫效应的工作段的上托段，也是拆叠段和副储气仓。

[0751] 400:标示气垫式减阻托产生气垫效应的工作段角度调节液压动作器下件。
[0752] 401:标示气垫式减阻托产生气垫效应的工作段角度调节液压动作器上件。
[0753] 402:标示气垫式减阻托角度调节和拆叠动作转动器。
[0754] 403:标示气垫式减阻托角度调节和拆叠动作拉推驱动器。
[0755] 404:标示气垫式减阻托角度调节和拆叠动作拉推液压调节器。
[0756] 405:标示气垫式减阻托产生气垫效应的工作段的上托段，也是拆叠段和副储气仓壁。

[0757] 406:标示气垫式减阻托产生气垫效应的工作段的上托段，也是拆叠段和副储气仓腔。
[0758] 407:标示气垫式减阻托上托段和下托段连接轴，也是拆叠转轴。

图 23:标示泥浆流两栖车设伸缩襟翅泥浆助力器轮毂 246、人字锯齿花大鼓形浮力泥浆推进轮胎两栖轮 253。

[0759] 408:标示泥浆流两栖车人字锯齿花大鼓形浮力泥浆推进轮胎旋转方向。
[0760] 409:标示泥浆流两栖车大鼓形轮胎人字锯齿花纹。
[0761] 410:标示泥浆流两栖车大鼓形轮胎人字捺纹。
[0762] 411:标示泥浆流两栖车大鼓形轮胎人字捺纹。
[0763] 412:标示泥浆流两栖车大鼓形轮胎行进方向与轮胎纹为单向性所设决定了方向。
[0764] 413:标示泥浆流两栖车大鼓形轮胎。
[0765] 414:标示泥浆流两栖车大鼓形轮毂紧固法兰盘。
[0766] 415:标示泥浆流两栖车大鼓形轮胎紧固法兰盘孔。
[0767] 416:标示泥浆流两栖车大鼓形轮毂。

[0768] 417:标示泥浆流两栖车轮毂伸缩襟翅泥浆助力器襟翅。
[0769] 418:标示泥浆流两栖车轮毂伸缩襟翅泥浆助力器主镍管。
[0770] 419:标示泥浆流两栖车轮毂伸缩襟翅泥浆助力器主镍管内紧固法兰盘。
[0771] 420:标示泥浆流两栖车轮毂伸缩襟翅泥浆助力器主镍管内紧固螺栓。
[0772] 421:标示泥浆流两栖车轮毂伸缩襟翅泥浆助力器主镍管襟翅伸缩电动力线 +、- 及通道。

[0773] 422:标示泥浆流两栖车轮毂伸缩襟翅泥浆助力器主镍管伸出气压或液压管。
[0774] 423:标示泥浆流两栖车轮毂伸缩襟翅泥浆助力器主镍管缩回气压或液压管。
说 明 书

424: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器主轴筒伸缩气压或液压腔。
425: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器主轴筒伸缩存储轮胎腔。
426: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器主轴筒伸缩回气压或液压通道。
427: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器主轴筒伸缩座轮胎腔导向法兰盘。
428: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降滑道。
429: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器主轴筒缩回气压或液压腔。
430: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器主轴筒缩回气压或液压通道回管。
431: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降铰轴另端轴承座。
432: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降电机输出线导电转接触点。
433: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降电机输出线 +, - 导线通道。
434: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降电机。
435: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降被动滑动器。
436: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼 X 形升降器及绞轴。
437: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降主动滑动器。
438: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降主动驱动绞轴。
439: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器襟翼升降小端滑道。
440: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器伸缩活塞导向滑动轴。
441: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器伸缩活塞导向滑动腔。
442: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器伸缩与轮毂腔导向法兰盘 427 密封圈。
443: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器主轴筒与轮毂内径吻合法兰盘。
444: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器伸缩活塞。
445: 标示泥浆流两栖车轮毂伸缩襟翼泥浆助力器主轴筒襟翼伸缩电机 434 电力线通道。
446: 标示泥浆流两栖车轮胎毂液压紧固。
447: 标示锥头螺旋长锥大浮力泥浆推进器 275。
448: 标示锥头螺旋长锥大浮力泥浆推进器按装在车体上的固定座的紧固螺栓。
449: 标示锥头螺旋长锥大浮力泥浆推进器主臂伸缩液压活塞。
450: 标示锥头螺旋长锥大浮力泥浆推进器主臂伸出液压管。
451: 标示锥头螺旋长锥大浮力泥浆推进器液压副臂。
452: 标示锥头螺旋长锥大浮力泥浆推进器臂固定在车体上位置。
453: 标示锥头螺旋长锥大浮力泥浆推进器副臂液压腔。
454: 标示锥头螺旋长锥大浮力泥浆推进器副臂固定转轴。
455: 标示锥头螺旋长锥大浮力泥浆推进器副臂伸出液液压进管。
[0809] 456:标示锥头螺纹螺杆大浮力泥浆推进器副臂伸缩摆角液压活塞。
[0810] 457:标示锥头螺纹螺杆大浮力泥浆推进器副臂回缩液压液进管。
[0811] 458:标示锥头螺纹螺杆大浮力泥浆推进器副臂直升伸缩臂。
[0812] 459:标示锥头螺纹螺杆大浮力泥浆推进器主臂主臂伸缩臂。
[0813] 460A:标示锥头螺纹螺杆大浮力泥浆推进器主臂伸缩臂关节点轴与转转臂转轴共结
[0814] 460B:标示锥头螺纹螺杆大浮力泥浆推进器副臂转转轴与转转臂转轴共结轴。
[0815] 461:标示锥头螺纹螺杆大浮力泥浆推进器主拆臂推转臂中电力线通道
[0816] 462:标示锥头螺纹螺杆大浮力泥浆推进器主拆臂中电力线通道。
[0817] 463:标示锥头螺纹螺杆大浮力泥浆推进器定子主箱液可拆臂。
[0818] 464:标示锥头螺纹螺杆大浮力泥浆推进器螺旋锥头。
[0819] 465:标示锥头螺纹螺杆大浮力泥浆推进器螺旋锥头内固定法兰座又与主轴固连。
[0820] 466:标示锥头螺纹螺杆大浮力泥浆推进器螺旋锥头体罩
[0821] 467:标示锥头螺纹螺杆大浮力泥浆推进器主轴主轴承外环。
[0822] 468:标示锥头螺纹螺杆大浮力泥浆推进器螺旋锥头主轴主轴承间的密封垫。
[0823] 469:标示锥头螺纹螺杆大浮力泥浆推进器主导动力电机定子绕组。
[0824] 470:标示锥头螺纹螺杆大浮力泥浆推进器主动动力电机转子磁铁组。
[0825] 471:标示锥头螺纹螺杆大浮力泥浆推进器旋转轴动力中心轴。
[0826] 472:标示锥头螺纹螺杆大浮力泥浆推进器浮力仓及长轴内支承架。
[0827] 473:标示锥头螺纹螺杆大浮力泥浆推进器浮力仓长轴筒。
[0828] 474:标示锥头螺纹螺杆大浮力泥浆推进器长轴筒螺旋螺纹，泥浆推进主螺纹。
[0829] 475:标示锥头螺纹螺杆大浮力泥浆推进器长轴筒主密封圈。
[0830] 476:标示锥头螺纹螺杆大浮力泥浆推进器长轴筒端头主密封动圈。
[0831] 477:标示锥头螺纹螺杆大浮力泥浆推进器长轴筒主轴箱环体。
[0832] 478:标示锥头螺纹螺杆大浮力泥浆推进器长轴筒主臂箱环体与锥头间密封动圈。
[0833] 479:标示锥头螺纹螺杆大浮力泥浆推进器主轴承内环。
[0834] 480:标示锥头螺纹螺杆大浮力泥浆推进器螺旋锥头体面上的螺旋螺纹。
[0835] 481:标示锥头螺纹螺杆大浮力泥浆推进器主轴承外环与主臂握环体连固螺栓件。
[0836] 482:标示锥头螺纹螺杆大浮力泥浆推进器螺旋锥头体与主轴连固部头尖。
[0837] 483:标示锥头螺纹螺杆大浮力泥浆推进器主臂基座，是与车体连固部。
[0838] 484:标示锥头螺纹螺杆大浮力泥浆推进器主臂内动力线与车体电源连结线。
[0839] 图 25:标示可伸缩摆动变矩螺旋轴螺浮头泥浆推进器 290。
[0840] 485:标示螺旋轴螺端头泥浆推进器摆头液压推进副臂与车体连结转动轴。
[0841] 486:标示螺旋轴螺端头泥浆推进器摆头液压推进臂伸出液压腔进液管口。
[0842] 487:标示螺旋轴螺端头泥浆推进器摆头液压推进臂伸出液压活塞。
[0843] 488:标示螺旋轴螺端头泥浆推进器摆头液压推进臂伸出液压活塞杆本
[0844] 489:标示螺旋轴螺端头泥浆推进器摆头液压推进臂液压回程腔。又是进液管口。
[0845] 490:标示螺旋轴螺端头泥浆推进器摆头液压推进臂弯曲节转动轴。
[0846] 491:标示螺旋轴螺端头泥浆推进器摆头杠杆斜臂。
[0847] 492: 标示螺旋陀螺头泥浆推进器螺旋鳍翅变矩液压器推进液管。
[0848] 493: 标示螺旋陀螺头泥浆推进器螺旋鳍翅变矩液压器回缩液管。
[0849] 494: 标示螺旋陀螺头泥浆推进器螺旋鳍翅变矩液压器推进液腔。
[0850] 495: 标示螺旋陀螺头泥浆推进器螺旋鳍翅变矩液压器活塞。
[0851] 496: 标示螺旋陀螺头泥浆推进器螺旋鳍翅变矩液压器回缩液腔及液管口。
[0852] 497: 标示螺旋陀螺头泥浆推进器螺旋鳍翅变矩液压器主推进法兰托。
[0853] 498: 标示螺旋陀螺头泥浆推进器螺旋鳍翅变矩液压器主推进法兰托轴承。
[0854] 499: 标示螺旋陀螺头泥浆推进器螺旋鳍翅变矩液压器被旋转法兰托。
[0855] 500: 标示变矩螺旋陀螺头泥浆推进器动力仓。
[0856] 501: 标示螺旋陀螺头泥浆推进器根部变矩螺旋鳍翅。
[0857] 502: 标示螺旋陀螺头泥浆推进器变矩螺旋鳍翅变矩滑靴。
[0858] 503: 标示螺旋陀螺头泥浆推进器变矩螺旋鳍翅变矩滑靴道。
[0859] 504: 标示螺旋陀螺头泥浆推进器浮力仓。
[0860] 505: 标示螺旋陀螺头泥浆推进器主轴承静圈。
[0861] 506: 标示螺旋陀螺头泥浆推进器主推力P示意。
[0862] 507: 标示螺旋陀螺头泥浆推进器头端变矩螺旋鳍翅。
[0863] 508: 标示螺旋陀螺头泥浆推进器静主轴。
[0864] 509: 标示螺旋陀螺头泥浆推进器静主轴端静转动轴承。
[0865] 510: 标示螺旋陀螺头泥浆推进器静主轴与动锥头内联托。
[0866] 511: 标示螺旋陀螺头泥浆推进器锥头端静主轴转动轴。
[0867] 512: 标示螺旋陀螺头泥浆推进器主轴承外环动圈。
[0868] 513: 标示螺旋陀螺头泥浆推进器锥头变矩螺旋鳍翅变矩滑靴。
[0869] 514: 标示螺旋陀螺头泥浆推进器主电机转子永磁铁圈。
[0870] 515: 标示螺旋陀螺头泥浆推进器主电机静子绕组线圈。
[0871] 516: 标示螺旋陀螺头泥浆推进器主电机静子绕组线圈输出线接口。
[0872] 517: 标示螺旋陀螺头泥浆推进器另一端螺旋鳍翅变矩液压器。（可设多个）
[0873] 518: 标示螺旋陀螺头泥浆推进器主伸缩液压臂密封套。
[0874] 519: 标示螺旋陀螺头泥浆推进器另一端螺旋鳍翅变矩液压器回缩液管。
[0875] 520: 标示螺旋陀螺头泥浆推进器主伸缩液压臂回缩液压腔。和管口。
[0876] 521: 标示螺旋陀螺头泥浆推进器主伸缩液压臂进缩活塞。
[0877] 522: 标示螺旋陀螺头泥浆推进器主伸缩液压臂伸出液压腔。
[0878] 523: 标示螺旋陀螺头泥浆推进器上下点头方式摆动转轴。
[0879] 524: 标示螺旋陀螺头泥浆推进器摆动转轴外固车体上下点头方式摆动转轴套。
[0880] 525: 标示螺旋陀螺头泥浆推进器主伸缩液压臂伸缩滑动主体轴。
[0881] 526: 标示螺旋陀螺头泥浆推进器主伸缩液压臂伸缩滑动主轴内电动机动力线通道。
[0882] 527: 标示螺旋陀螺头泥浆推进器主电动机动力阴极线。
[0883] 528: 标示螺旋陀螺头泥浆推进器主电动机动力阳极线。
[0884] 529: 标示螺旋陀螺头泥浆推进器主伸缩液压臂回缩油压管。
530: 标示螺旋轴螺纹推进器主伸缩液压臂伸长液压管。
531: 标示螺旋轴螺纹推进器摆头液压推进臂回缩液压腔进液管口。
532: 标示螺旋轴螺纹推进器摆头液压推进臂伸长液压腔进液管口。
533: 标示螺旋轴螺纹推进器与车体连结基座。
534: 标示螺旋轴螺纹推进器副臂液压器。
535: 标示螺旋轴螺纹推进器变矩螺旋桨翼主推力点作用主推力示意。
536: 标示螺旋轴螺纹推进器变矩螺旋桨翼主推力点侧面力示意。
537: 标示螺旋轴螺纹推进器第二排变矩螺旋桨翼主推力点侧面力示意。
538: 标示螺旋轴螺纹推进器受副臂液压压力使自身上下摆头的作用力。
539: 标示螺旋轴螺纹推进器受副臂液压压力 PL3 使自身上下摆头的作用力的方向。

图 26: 标示可伸缩摆动式碾辊浮筒襟翼泥浆推进器 291。
图 26-1: 标示可伸缩摆动式碾辊浮筒襟翼泥浆推进器 291 由螺纹轴摆动的结构图。
图 26-2: 标示可伸缩摆动式碾辊浮筒襟翼泥浆推进器 291 简体与襟翼结构剖面图。
图 26-3: 标示可伸缩摆动式碾辊浮筒襟翼泥浆推进器 291 简体与襟翼结构轴测图。
图 26-4: 标示可伸缩摆动式碾辊浮筒襟翼泥浆推进器 291 液压副臂推前推背动的结构图。
535: 标示碾辊襟翼泥浆推进器碾辊外径一端鼓面。
536: 标示碾辊襟翼泥浆推进器碾辊外径上安装的襟翼高端部位。
537: 标示碾辊襟翼泥浆推进器碾辊外径上安装的襟翼长段的低端位置。
538: 标示碾辊襟翼泥浆推进器碾辊外径上安装的襟翼高端部位与同端高端部位同高度。
539: 标示在碾辊一端两个襟翼高端位中夹一个襟翼高端部位结构关系的低位置。
540: 标示在碾辊一端为鼓弧面结构。
541: 标示一个襟翼分三个高度弧弦长段的弦长高位置。
542: 标示一个襟翼分三个高度弧弦长段的弦长中位置。
543: 标示碾辊电动机电线连接。
544: 标示碾辊液压伸缩主臂体静轴油。
545: 标示碾辊主轴根端轴。
546: 标示碾辊主轴根端轴内腔。
547: 标示碾辊主轴根端轴封。
548: 标示碾辊主轴内主轴承。
549: 标示碾辊电磁刹车系统。
[0918] 550 : 标示辊臂变速减速器。
[0919] 551 : 标示辊臂电动机接线处。
[0920] 552 : 标示辊臂电动机定子电线绕组。
[0921] 553 : 标示辊臂电动机转子永磁组。
[0922] 554 : 标示辊臂主体与焊接腔。
[0923] 555 : 标示辊臂内浮力仓。
[0924] 556 : 标示辊臂外端变速减速器。
[0925] 557 : 标示辊臂外端电磁刹车片系统。
[0926] 558 : 标示辊臂外端电磁刹车系统。
[0927] 559 : 标示辊臂外端电磁刹车系统接线处。
[0928] 560 : 标示辊臂外端电磁刹车系统和电动变速系统仓。
[0929] 561 : 标示辊臂外端主轴外轴承外环圈。
[0930] 562 : 标示辊臂襟翼低端腔。
[0931] 563 : 标示辊臂外端轴封。
[0932] 564 : 标示辊臂电机驱动系统、电磁刹车系统、变速减速系统综合主轴。
[0933] 565 : 标示辊臂侧封盖。
[0934] 566 : 标示辊臂主轴外轴承内环静套。
[0935] 567 : 标示辊臂外围护卫浮力仓。
[0936] 568 : 标示辊臂襟翼弧弦仓部位与辊臂主体筒相互位的低高度窄位。
[0937] 569 : 标示辊臂襟翼弧弦仓部位与辊臂主体筒相互位的最高度宽位。
[0938] 570 : 标示辊臂襟翼弧弦仓部位与辊臂主体筒相互位的中高度端位。
[0939] 571 : 标示辊臂内端电磁刹车系统接线处。
[0940] 572 : 标示辊臂向外伸缩的液压系统活塞。
[0941] 573 : 标示辊臂向外伸展的液压系统活塞腔。
[0942] 574 : 标示辊臂向外伸展的液压系统进液管。
[0943] 575 : 标示辊臂上下摆振驱动蜗轮蜗轴。
[0944] 576 : 标示辊臂上下摆振驱动蜗轮蜗轴电机。
[0945] 577 : 标示辊臂上下摆振主轴轴承。
[0946] 578 : 标示辊臂上下摆振主轴。
[0947] 579 : 标示辊臂上下摆振主轴抱箍。
[0948] 580 : 标示辊臂伸缩液压系统主臂体。
[0949] 581 : 标示辊臂回缩液压系统进液管。
[0950] 582 : 标示辊臂伸缩液压系统主臂体封套。
[0951] 583 : 标示辊臂装在两粘车底盘主架架四角部位结合底座。
[0952] 584 : 标示辊臂伸缩液压系统主体摆动的副推拉液压臂推进液管。
[0953] 585 : 标示辊臂伸缩液压系统主体摆动的副推拉液压臂回缩进液管。
[0954] 586 : 标示辊臂伸缩液压系统主体摆动的副推拉液压臂。
[0955] 587 : 标示辊臂及伸缩液压系统主体摆动的副推拉液压臂连接杆斜臂关节转轴。
[0956] 588 : 标示辊臂及伸缩液压系统主体摆动的副推拉液压臂连接杆斜臂。
abc-TuL标示一个襟翼和邻襟翼间撕开弧面角为钝角关系。
图27:标示液压迈步式电动爬轮履带爬坡器285和液压摆动式电动爬坡器251。
图27-1:标示液压迈步式电动爬轮履带爬坡器主视剖视图。
图27-2:标示液压迈步式电动爬轮履带爬坡器俯视剖视图。
图27-3:标示液压迈步式电动爬轮履带爬坡器局部剖视图。
图27-4:标示液压迈步式电动爬坡器履带主体零件局部剖视图。
图27-5:标示液压摆动式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
图27-5:标示液压迈步式电动爬轮履带爬坡器主视剖视图251。
[0995] 620 : 标示液压摆动式电动爬轮履带爬坡器三叉肩架后轴系统结构示意图。
[0996] 图 28 : 标示救生工具。
[0997] 图 28-1 : 标示救生工具的气垫担架和防脱器下洗轴罩起吊电动绞盘器。
[0998] 图 28-2 : 标示提物钩器钩。
[0999] 图 28-3 : 标示主要应用于水中救生提捞器。
[1000] 621 : 标示防脱器下洗轴罩起落架。
[1001] 621a : 标示防脱器下洗轴罩园枢结构架。
[1002] 622 : 标示防脱器下洗轴罩起落架法兰盘。
[1003] 622a : 标示防脱器下洗轴罩法兰盘上起吊电动绞盘器电控接线孔。
[1004] 623 : 标示防脱器下洗轴罩与防脱器结合紧固螺栓孔。
[1005] 624 : 标示防脱器下洗轴罩起吊电动绞盘器。
[1006] 625 : 标示防脱器下洗轴罩横枢臂。
[1007] 626 : 标示防脱器下洗轴透明罩起落架腿。
[1008] 626a : 标示防脱器下洗轴透明罩。
[1009] 627 : 标示气垫担架固定式端盖。
[1010] 628 : 标示气垫担架活动式透明侧盖。
[1011] 629 : 标示气垫担架抽拉式架杆。
[1012] 630 : 标示气垫担架主箱体。
[1013] 631 : 标示气垫担架主箱体下气垫座及柔体壁。
[1014] 631c : 标示气垫担架主箱体下气垫座底自滚滑球及测距传感器。
[1015] 632 : 标示气垫担架主箱体下气垫座进排气孔。
[1016] 633 : 标示气垫担架和提捞网器无向接头。
[1017] 634 : 标示提捞网器刚性接头。
[1018] 635 : 标示提捞网器柔性网。
[1019] 636 : 标示提捞网器柔性索。
[1020] 637 : 标示提物钩与提物器连接紧固法兰盘。
[1021] 637a : 标示提物钩与提物器连接紧固法兰盘电控信号线。
[1022] 638 : 标示提物钩。
[1023] 图 29 : 提捞系统电器部件配置联系示意图。
[1024] 639 : 标示人形操控椅左臂电力线信号线通道及电控台。
[1025] 640 : 标示人形操控椅右臂电力线信号线通道及电控台。
[1026] 641 : 标示人形操控椅中控及飞吊器输出信号转接器。
[1027] 642 : 标示人形操控椅中控及飞吊器的中心计算机输入信号转接器。
[1028] 643 : 标示检测飞吊器输送系统抬升器及驱动蜗轮蜗杆系统。
[1029] 644 : 标示检测飞吊器输送系统抬升器及驱动蜗轮蜗杆系统。
[1030] 图 30 : 标示救援设备电子元件与设备结构相互位置及作用分布联系示意图。
[1031] 1 : 主旋翼引渡结构上电器设置及型类。
[1032] M1 标示上主旋翼电动机组件。
[1033] M1 标示下主旋翼电动机组件。
[1034] \(V \text{ 1} \) 标示上主旋翼惯量测角液镜电磁机构。
[1035] \(V \text{ 2} \) 标示下主旋翼惯量测角液镜电磁机构。
[1036] \(X \text{ 1} \) 标示上主旋翼转速传感器。
[1037] \(X \text{ 2} \) 标示下主旋翼转速传感器。
[1038] \(f \text{ 1} \) 标示检测 C-D 间风速方向传感器和超声波测距器联合体。
[1039] \(f \text{ 2} \) 标示检测 A-D 间风速方向传感器和超声波测距器联合体。
[1040] \(f \text{ 3} \) 标示检测 A-B 间风速方向传感器和超声波测距器联合体。
[1041] \(f \text{ 4} \) 标示检测 B-C 间风速方向传感器和超声波测距器联合体。
[1042] \(P \text{ 1} \) 标示 A 附近下部大气压传感器。
[1043] \(P \text{ 2} \) 标示 A 附近上部大气压传感器。
[1044] \(P \text{ 3} \) 标示 D 附近下部大气压传感器。
[1045] \(P \text{ 4} \) 标示 D 附近上部大气压传感器。
[1046] \(P \text{ 5} \) 标示 C 附近下部大气压传感器。
[1047] \(P \text{ 6} \) 标示 C 附近上部大气压传感器。
[1048] \(P \text{ 7} \) 标示 B 附近下部大气压传感器。
[1049] \(P \text{ 8} \) 标示 B 附近上部大气压传感器。
[1050] \(Z \text{ 1}, Z \text{ 2} \) 标示设置在主涵道圈离子能量波发生器。
[1051] \(K \text{ 0} \) 标示飞吊器电路飞控中心计算机（二余度设置）。
[1052] \(K \text{ 2} \) 标示无线控制飞控器电路板。
[1053] \(T \text{ 1}, T \text{ 2} \) 标示飞吊器保持垂直方向陀螺仪。
[1054] \(T \text{ 3}, T \text{ 4} \) 标示飞吊器保持水平方向陀螺仪。
[1055] \(GPS \) 标示飞吊器定位仪。
[1056] \(N \) 标示飞吊器备用电池组。
[1057] \(d \text{ 1}, d \text{ 2}, d \text{ 3} \) 标示飞吊器光学和红外摄像器。
[1058] \(h \) 标示飞吊器高度仪。
[1059] \(J \) 标示飞吊器照明灯和激光照射器结合体。
[1060] \(Y \) 标示飞吊器扬声器。
[1061] \(P \text{ 9} \) 标示重力传感器。
[1062] \(P \text{ 10} \) 标示万向联接头限向铰电磁驱动器。
[1063] \(2:4 \) 四个副旋翼涵道体上设置的电器部件。
[1064] (一) \(A \) 标示副旋翼及涵道体结合体。
[1065] \(M \text{ 1} \) 标示副旋翼内外摇摆驱动步进电机。
[1066] \(M \text{ 2} \) 标示副旋翼臂伸缩，扭摆驱动步进电机复合机构体。
[1067] \(A \text{ 3} \) 标示副旋翼转速传感器。
[1068] \(A \text{ 4} \) 标示 \(m \text{ 1} \) 摇摆位置传感器。
[1069] \(A \text{ 5} \) 标示 \(m \text{ 2} \) 扭摆角度位置传感器。
[1070] \(A \text{ 6} \) 标示 \(m \text{ 3} \) 扭摆角度位置传感器。
[1071] (二) \(B \) 标示副旋翼及涵道体结合体。
[1072] \(M \text{ 6} \) 标示副旋翼 B 电动机。
说明书

[1073] \(M_n \) 标示副旋翼内外摇摆驱动电机。
[1074] \(M_{n2} \) 标示副旋翼伸缩、扭摇驱动电机复合机构体。
[1075] \(B_1 \) 标示副旋翼转速传感器。
[1076] \(B_2 \) 标示 \(m_{n1} \) 摇摆位置传感器。
[1077] \(B_3 \) 标示 \(m_{n2} \) 伸缩位置传感器。
[1078] \(B_4 \) 标示 \(m_{n3} \) 扭摇角度位置传感器。
[1079] 三 \(C \) 标示副旋翼及涵道体结合体。
[1080] \(M_c \) 标示副旋翼 C 电动机。
[1081] \(M_{c1} \) 标示副旋翼内外摇摆驱动步进电机。
[1082] \(M_{c2} \) 标示副旋翼臂伸缩、扭摇驱动步进电机复合机构体。
[1083] \(C_1 \) 标示副旋翼转速传感器。
[1084] \(C_2 \) 标示 \(m_{c1} \) 摇摆角度传感器。
[1085] \(C_3 \) 标示 \(m_{c2} \) 伸缩位移传感器。
[1086] \(C_4 \) 标示 \(m_{c3} \) 摇摆角度传感器。
[1087] 四 \(D \) 标示副旋翼及涵道体结合体。
[1088] \(M_0 \) 标示副旋翼 D 电动机。
[1089] \(M_{n0} \) 标示副旋翼内外摇摆驱动步进电机。
[1090] \(M_{n2} \) 标示副旋翼臂伸缩、扭摇驱动步进电机复合机构体。
[1091] \(D_1 \) 标示副旋翼转速传感器。
[1092] \(D_2 \) 标示 \(m_{n0} \) 摇摆角度传感器。
[1093] \(D_3 \) 标示 \(m_{n2} \) 伸缩位移传感器。
[1094] \(D_4 \) 标示 \(m_{n3} \) 摇摆角度传感器。
[1095] \(M_1 \) \(M_2 \) \(M_3 \) \(M_4 \) 标示飞吊器起落架升降电机。
[1096] \(M_5 \) \(M_6 \) \(M_7 \) \(M_8 \) 标示飞吊器起落架行走移动电机。
[1097] \(M_9 \) 标示提吊电动绞盘器电动机。
[1098] \(M_{10} \) 标示输能牵引索卷扬器电机。
[1099] \(M_{11} \) 标示救援功能盘直线位移驱动电机。
[1100] \(M_{12} \) 标示救援功能盘往复旋转驱动电机。
[1101] \(M_{13} \) \(M_{14} \) \(M_{15} \) \(M_{16} \) 标示救援功能盘及近距行驶轮电驱动电机。
[1102] \(K \) 标示救援作业动能系统总开关。
[1103] \(K_1 \) 标示控制台和中心控制计算机。
[1104] \(K_2 \) 标示提吊绞盘提吊索钩升降控制手柄。
[1105] \(K_3 \) 标示飞吊器升降控制手柄。
[1106] \(K_4 \) 标示飞吊器和其它电器工作功能开关操作钮。
[1107] \(K_5 \) 标示飞吊器飞行方向控制手柄。
[1108] \(K_6 \) 标示麦克风。
[1109] \(K_7 \) 标示救援设备近距行驶前进倒车手柄。
[1110] \(K_8 \) 标示功能部件底盘直线移动和转动的控制器。
[1111] \(K_9 \) 标示发电机和备用电源电池组自动控制和手动控制转换器。
K_9 标示控制台与功能底盘直线位移和转动的控制器间的控制信号线。
K_{10} 标示控制台与发电机间控制信号线。
K_{11} 标示控制台与发电机电池组之间控制信号线。
K_{12} 标示飞吊器输能牵引线L卷扬器长度和牵力传感器与控制台信号线。
X_1, X_2, X_3, X_4 标示飞吊器起落架升降高低传感器。
X_5 标示飞吊器输能牵引线L卷扬器长度和牵力传感器。
X_6, X_7, X_8 标示功能部件底盘直线移动位置传感器。
X_9, X_{10}, X_{11}, X_{12} 标示功能部件底盘转动角度位置传感器。
P_8 标示控制台屏幕。
G_8 标示飞吊器牵引索控制总线中光纤信号的光电转换器。
y_0 标示飞吊器牵引索控制总线中的光纤线。
y 标示飞吊器牵引索控制总线中正极电源转换器。
y_1 标示飞吊器牵引索控制总线中负极电源转换器。
图 31 标示飞吊救援设备功能底盘各电器电路控制变量结构示意框图。

[具体实施例]
本发明以大直径涵道正反转双风扇体承担主升力，其外水平对称设置四个小直径
涵道单风扇体，连接臂可伸缩扭摆作为自由度矫正，承受辅助升力和方向控制及防涡环
功能，这五轴五涵道六风扇组合的飞吊器起到救援提吊任务，并与泥石流水陆两栖车组
成特种多功能飞吊救援装备医疗救护两栖车方案。

一、飞吊器气动机构具体实施优选方案：
（一）、飞吊器大直径主涵道旋翼体5优选方案：
1. 飞吊器的大直径主涵道旋翼体5外形似偏鼓状29，在偏鼓形壳29与外环层主
一涵道H1之间体腔14设环状口形主梁28，优选设单环层大直径主涵道内壁为上下直线状
环圆壁标示为11。优选设双环层主涵道的外环主一涵道H1内壁为上下直线状环圆内径壁
11，其与主涵体5外壳29鼓形面组合，统称谓外环层主一涵道H1。内环层主二涵道H2为上下
都为直线状环圆内径壁20，外径壁19，统称谓内环层主二涵道H2。
2. 在大直径主涵道旋翼体5上端口部设上静子2方案：
3. 在大直径主涵道旋翼体5上端口部设上静子2似机刀，刀背为弧状朝上，刀刃朝
下，单环层主涵道旋翼5型设的上静2一端连接在主涵道旋翼体5上端口边上，双环层主涵
道旋翼5型设的上静子2的一端连外环层主一涵道H1和内环层主二涵道H2上端口部，另一
端都于中心轴6上轴部毂23连接。优选配上静子2是为防止上滑流吸附流发生龙卷风变，
提高上旋翼气动升力效率。形状和设置方法刃朝下，是为防止产生边沿尾涡流和减小形
阻。图3、图4、图8、图9、图10、图12标示结构特征。
4. 在大直径主涵道旋翼体5中部装有中静子12、13方案：
5. 在大直径主涵道旋翼体5中部装有中静子12、13，单环层主涵道旋翼5型的为中
静子12一个区，双环层主涵道旋翼5型的分两区，设外环层主一涵道H1与内环层主二涵道
H2之间的分区为中静子13。内环层主二涵道H2内径间分区为中静子12。其中静子形似中
式剑体截面，有微绞角逆向上旋翼转动方向略斜设置，中静子12一端连接中心轴6的轴毂，
另一端贯穿中心环层内二罐道 H2 内径壁 20 后又贯穿外径壁 19 后直接连外环层主一罐道 H1 内径壁 11 又与主罐道壁状口形圆柱 28 连固，其形成中静子 13 和环形腔 4 为滑流附壁效应区。优选设置中静子 12、13 是为上旋翼 3 让的下洗气流整流，防畸卷和环形腔 4 滑流整流。图 2、图 3、图 4、图 8、图 9、图 10、图 12 标示其技术结构特征。

【1134】4. 在大直径主罐道旋翼体 5 中以中静子 12、13 为界分上下两个气动区方案

【1135】在大直径主罐道旋翼体 5 中以中静子 12、13 为界分上下两个气动区，以上静子 12 与中静子 12、13 之间为上气动区，以中心主轴 6 为转动中心设置上主旋翼或风扇系统 3，以下静子 8 与中静子 12、13 之间为下气动区，以共轴中心主轴 6 为转动中心设置下主旋翼 3，上下旋翼或风扇系统 3、3，正反转。主气动旋翼或风扇系统承担主升力。

【1136】优选罐道共轴正反转旋翼或风扇气动系统是需要时可抵消扭转矩，在同浆盘面积下与单旋翼或风扇比较，共轴正反转旋翼或风扇有效高升力效率。图 2、图 3、图 4、图 8、图 9、图 10、图 12 标示其技术结构特征。

【1137】5. 设置的上下主旋翼或风扇 3、3 叶片数为不等同奇数方案；

【1138】在设计飞吊器 1 方案中设置的上下主旋翼或风扇 3、3 叶片数为不等同的奇数，选上主旋翼或风扇 3 叶片多于下主旋翼或风扇 3 叶片数，其特点是防止气动系统产生共振和减小上下主旋翼或风扇形变。图 12 标示其技术结构特征。

【1139】6. 在上主罐道旋翼体 5 下端口部设置下静子 8 方案；

【1140】在主罐道旋翼体 5 下端口部设置下静子 8 似为刀形，刀背为弧状朝下，刀刃朝上，单环层主罐道旋翼 5 型的一端连接在主罐道下端口部，双环层主罐道旋翼 5 型的一端连接外环层主一罐道 H1 和内环层主二罐道 H2 下端口部，另一端都与中心轴 6 下部轴毂 113 连接，该毂盘 113 又与上配重构件和平台 158 联成组合法兰台，设有飞吊器专用和非专用其它功能部件的外接电路插口和控制信号插口。优选设置下静子 8 为了防止主下洗气流形变，提高升力效率。图 2、图 3、图 4、图 8、图 9、图 10、图 12 标示其技术结构特征。

【1141】7. 单环层主罐道结构设置；

【1142】主罐道旋翼体 5 外壳形似偏鼓状 29 与外环层主一罐道 H1 之间内设畸状口形主梁 28，承担主刚性支承，单环层大直径主罐道内壁为上下径状环形壁，环形上口沿连设上静子 2，下口沿连续设下静子 8，环形中部连设有中静子 12，形成大直径单环层主罐道体）腔体结构，适合整体倾斜姿态飞行优势。同样优选单环层大直径主罐道外壳体，单环层大直径主罐道螺旋桨体结构形式。图 10、图 11、图 12 标示该结构。

【1143】8. 双环层主罐道结构设置；

【1144】飞吊器）中心主罐道是：双环层大直径主罐道旋翼体 5 外壳形似偏鼓状 29 与外环层主一罐道 H1 之间内设畸状口形主梁 28，外环层主一罐道 H1 内壁为上下径状环形壁环腔。内套内环层主二罐道 H2 内径上下内外壁都为径状环形壁壁，共为同心圆。双环层大直径主罐道旋翼 5 腔上口沿连设上静子 2，下口沿连续设下静子 8，环形中部内环层主二罐道 H2 内腔道设有中静子 12 区，连接贯穿内环层主二罐道 H2 内径壁 20 和外径壁 19 与外环层主一罐道 H1 内径壁 11 连接贯穿后连接在环状口形主梁 28 上，内外双环层主罐道之间的中静子为 13 区，其间环状 4 形成滑流区气流 Q_h1、Q_h2 具有附壁变型，具有增强悬停飞行姿态稳定性优势。本案形成大直径双环层主罐道体 5 腔体结构技术特性。同样优选双环层大直径主罐道外壳体，双环层大直径主罐道螺旋桨体结构形式。图 3、图 8、图 16 标示该结
9. 内外双环层主涵道 5，上下主旋翼 3 上、下选优选同直径结构设置；
10. 内外双环层主涵道 5，上下主旋翼 3 下，上选优选同直径结构，以中心轴 6 同轴正反转，共同设置在内环层主二涵道 H2 内与之配合直径，设外环层主一涵道 H1 直径大于内环层主二涵道 H2 直径一定尺寸，形成中静子 13 区环形涵腔 4。外环层主一涵道 H1 高度与内环层主二涵道 H2 高度相同，都从上静子 2 上沿边连至下静子 8 下沿边之间。所形成的环形涵腔 4 具有吸附滑流附壁效应气流动力，提高气动力系数。上下主旋翼和双环层内外主涵道都以中心轴 6 为同心圆。其特点适合悬停飞行。图 3-2 标示这种结构。
副涵道旋翼或风扇体 A, B, C, D 在摇摆电机 MA1, MB1, MC1, MD1 分别驱动下围绕空心轴 100 可做摇摆动作转动。

[1153] 四个小直径的副涵道旋翼体 A, B, C, D 连接臂为两节, 伸缩节 96 和转动节 97 组合在一起。在主环状口形梁架 28 上装扭摆动作驱动步进电机 118, 本电机分别称之为 mA2, mB2, mC2, mD2。装配小直径蜗齿轮 119, 与大直径蜗齿轮 120 啮合连套在扭摆动作驱动套轴联合体 121 并连转动节 97。该另一端连接在主涵道旋翼体 5 壳体内主环状口形梁架 28 上的凸状固定转轴 28, 在转动节 97 另一端装在伸缩节 96 此伸缩臂的一端内设伸缩被动蜗轴 122, 咬合伸缩主动蜗轮传动器 123, 连伸缩主动步进电机系统 124、伸缩节 96 另一端连接在弯月架 99 的中段最短弧处上固定。在弯月架 99 的一端一侧设有摇摆电机 mA1, mB1, mC1, mD1, 其内设空腔中心轴管 100 贯穿弯月架 99 一端, 并贯穿与副涵道旋翼或风扇三角下静子 101 顺方向内穿连接在一起, 该轴管的另一端穿连弯月架 99 另端穿连并设有轴承结构。在摇摆空心轴管 100 内腔是旋翼 102 电机 mA, mB, mC, mD 和摇摆电机 mA1, mB1, mC1, mD1 供电力的电线隧道。

[1154] 在上述结构组合下共同动作可作伸缩、扭、摇、摆, 四自由度动作。起到辅助升力和强化调控方向及防滴水功能作用。图 8, 图 10, 图 11, 图 12, 图 16 标示其技术结构特征。

[1155] 二: 主涵道体旋翼或风扇系统 5 设备变惯量机构 30、30'、30'' 具体实施优选方案:

[1156] 图 6-1 是旋翼电动机结构与喷液式变惯量系统 30' 主要视图。

[1157] 图 6-2 是喷液式变惯量系统 30' 原剖视图。

[1158] 变惯量机构特性功能：在共轴上下旋翼系统中设置变惯量机构。其功能使飞吊器上下主旋翼产生上下差动变惯量诱导产生陀螺效应的定轴性, 达到抗湍流突变变风能力的功能。

[1159] (1). 优选喷液式变惯量机构 30'' 结构组成及工作原理：

[1160] ①. 喷液式变惯量机构 30'' 结构组成：

[1161] 在单环层或双环层主涵道内, 以中心轴 6 为中心, 上静子 2 与下静子 8 与下静子 12、13 间和下静子 12、13 分为上下两气动部分, 在此上下气动区设有上下正反转共轴主旋翼或风扇系统, 在其驱动装置电机 M3' 和 M3' 的永磁转子 68 外壳 82 处设喷液式变惯量系统 50, 惯量积液罐 43 内为环形腔储变惯量液仓 63, 坪近永磁转子 68 处的壁是平直环状壁 82, 内腔 63 外径的内壁 62 是中部向内突的三角形，在三角形中部角处设溶液口三角面 62, 该外安装有溶液口 41, 顺溶液口出口 49 外连接释液道 16, 此道是一个金属刚性管又是旋翼迎角轴管 16, 在旋翼或风扇需要变惯量时, 飞控中心计算机 K0 发出指令供电给上旋翼 3' 或下旋翼 3' 中一套系统的电磁线圈 44、电磁铁 45 产生吸力，释液阀吸铁 46 被吸进入吸铁 46 滑道仓 73, 伺服阀弹簧 47 力液液液面 41 对打开释液道口 49, 惯量液在提前预存在变惯量积液罐 43, 惯量液在离心力作用下, 同时在释液口 41 打开后喷涌通过溶液口 49 注流通过旋翼迎角轴管 16, 到达旋翼或风扇叶尖端头处所专设本方案带空腔惯量液涵 0, 腔 0 内, 在此质量流体 M' R 2 中放置物质质量的半径发生了即：ΔR2 变量, 从而产生了旋翼变惯量增量（差）ΔI, 使 M3'、M3' 旋翼系统产生了差动惯量的增量（差）ΔI 诱发出了定轴性。使飞吊器主涵道共轴旋翼系统体具有了抗湍流突变变换风能力。类似陀螺定轴性原理、无论在多大颠簸抽力作用下，在设定的质量和转速下保持旋转姿态不变。此管 16 贯
通旋翼连接外涵圈可称变旋量涵圈 0。此旋量涵圈 0 内为环形空内腔 0，，具有变旋量增量功能，由于上下旋翼的差动作用，从而诱导出飞吊器陀螺效应的定轴性。使飞吊器具有抗湍流突出变化的旋风能力。当不需要主旋翼或风扇差动作用时，飞控计算机指令，驱使涵道壁内电磁感应器 40b 通电产生磁场，旋量涵圈 0 内扇形电感电动开关 40a 切割磁场力线产生电流驱动自身内芯转动打开阀门，旋量液从旋量涵圈 0 的泄漏孔 40 液流出，旋量减小恢复原状前量，上下旋翼转动旋量相等，方向相反，上下两节转动旋量抵消，差动旋量消失。主涵道嵌旋体的定轴性也消失，此时飞行调姿灵活性增大。从而实现喷液式变旋量方法和相应设备。

①翼尖惯量涵圈设置：惯量涵圈 0a 可选形。
②五种内腔型：一种月牙形 0a，图 5-1 标示这种结构。
③一种弯矩形 0b，图 5-2 标示这种结构。
④一种椭圆内腔，图 5-4 标示这种结构。
⑤一种三角形 0d，图 5-5 标示这种结构。
⑥一种矩形 0e，图 5-6 标示这种结构。
⑦两种外型：a 翼尖双环壁镂空内镶斜翼型涵圈 0a。图 5-10 标示这种结构。
⑧b 翼尖单环壳壁外镶斜翼型涵圈 0b。图 5-1.2.3.4.8 标示这种结构。

①翼尖惯量涵圈内外设置斜翼制造镶嵌方法：
②飞吊器 1 中上下主旋翼 3 为 3 旋量惯量涵圈 0 的外径环状外壁设计制有槽旋转方向的一定宽度的槽翼 0，槽翼在上端与翼尖涵圈 0 的旋转方向上沿边下端贴壁后至下沿边附近，倾斜角度方向和长度与主旋翼 3 旋转方向方向，槽翼后端旋盘端量涵圈 0 上沿，槽翼上后端旋盘端量涵圈 0 下沿。根据其部位旋转速度及速度大小决定倾斜和长度及斜率数，增强主涵道内壁与惯量涵圈外壁间隙的负压吸力。选翼尖双环壁圈内镂空镶斜翼型 0a。选翼尖单环壁圈内镂空镶斜翼型 0b。

③一般飞吊器 1 是在 100 米~300 米低空飞行作业，空气密度和湿度很小，飞吊器旋翼浆盘直径远远小于一般小型直升机旋翼浆盘直径，在尺寸限制下，为了尽可能提高升力承载能力，选大动率动率和旋翼转速高，为了防止翼尖速度超音速使翼尖数太大产生空气激波，尽量选小迎角，以免转速和最大升力效率，折衷求的优选斜翼倾角范围在：斜翼 0 在设计倾角时选择 5°~25°之间。斜翼宽控制在 40~200mm，斜翼长度控制在 200~600mm，设斜翼数尽量少的选择。转速、长度，同径距圆中设斜翼数决定变波噪声。在同倾角情况下转速低、斜翼长度大，同径距圆中设斜翼数少变波噪声小，反之噪声大。在一些救援中让周围人群警觉，警示和盲人听觉指示，设计时有必要产生不刺耳的风车声风鸣声为此项技术选择。

④翼尖惯量涵圈内外设置斜翼镶嵌条件和方法：

①a 飞吊器 1 中的上下主旋翼 3 为 3 旋量惯量涵圈 0 的设置及形状设置优选：当上旋翼 3 上直径尺寸小于下旋翼 3 下直径尺寸时，上旋翼 3 的翼尖惯量涵圈 0 设置为空心的内腔截面形状可为月牙形 0a，矩形 0b，圆形 0c，三角形 0d，长方型 0e。上旋翼 3 上安装变旋量系统 30°、30°、30°。下旋翼 3 下安装变旋量系统，旋翼 3 的翼尖涵圈 0 为翼尖单环壁圈外镶斜翼型 0a。翼尖双环壁圈内镂空镶斜翼型 0b。

②b 当上旋翼 3 上直径尺寸大于下旋翼 3 下直径尺寸时，在下旋翼 3 下安装变旋量系
说明书

图 5-1、28 标示该结构。

图 5-10 标示该种结构。

图 6 标示了该原理及结构。

图 5-10、12、12 翼尖沿液量涵腔 0，与内外主涵道 H、H 间间隙形成气负压区 15 增加气动吸力，提高升力系数。

图 5-1、28 标示该结构。

图 5-10 标示该种结构。

图 6 标示了该原理及结构。

图 5-12、12 翼尖沿液量涵腔 0，与内外主涵道 H、H 间间隙形成气负压区 15 增加气动吸力，提高升力系数。
178 拉力作用下向 176B 方向移动，活塞 176 上泄液阀 177 在弹簧 176b 回弹下泄液阀管 177 关闭了泄液口 176a，图量涵圈 0，上卸液孔 40 被活塞 176 上的泄液阀管 177 隔开 177a 拉力作用下打开，图量涵圈 0，仓 0 中图量液 175A 在离心力作用下象洗衣机甩干筒一样甩甩出图量液 175A。上下主旋翼图量变一样，转速相同，方向相反，角动量相互抵消，主涵道旋翼体 5 定轴性消失，具有一定的飞行调姿灵活性，由小直径四副涵道旋翼体 A、B、C、D 的定轴性还存在，仍保持一定飞行稳定性和定轴性。图 13 标示了该原理结构。

【1185】（3）优选电动蜗轴活塞输送图量液式变图量系统 30w 结构组成及工作原理：

【1186】在原变图量储液仓 63 内中部位设有步进电机 172 连接螺纹轴 190 在轴上有图螺纹 190，在该轴上套螺母式活塞 192，设计进退角轴 16 内腔 160，在该轴 190 端头镶在图量涵圈 01 内腔 00 壁上的轴承 193 穿联，在该原变图量储液仓 63 外层储液仓内 175 储有变图量液 175A，当需要在 M3 上和 N3 间产生差动图量时，飞控计算机 K0 指令为电磁铁 169 及电磁线绕组 168 供电产生强磁场，变图量仓 63 的电磁感应发电线圈 170 切割了电磁力线产生电能经导线 171 供给电机 172 运转驱动螺纹轴 190 旋转，在该轴螺纹 191 推动下套在该轴上的螺母式活塞 192 顺轴和旋翼进退角轴管 16c 轴中滑动，活塞 192 沿 176a 方向滑动到外径端头，活塞 192 端头外露的泄液阀管 177 的塞头 177a 被顶开，一方面关塞了图量涵圈 0，内仓 00 的卸液孔 40，另方面泄液阀管 177 的泄液口 176a 被打开，图量液 175a 经泄液阀管腔 177c 从泄液口 176a 释进图量涵圈 0，内腔 00 内并在离心力作用下产生了差动图量的增量诱导出定轴性，使飞吊器主涵道旋翼体 5 共轴旋翼或风扇系统具有了抗激流突变切变转换风能力。

【1187】若飞吊器需要灵活调姿飞行不需要主涵道体 5 定轴性时，飞控计算机 K0 指令螺母式活塞 192 在螺纹轴 190 及螺纹 191 作用下向 176B 方向移动，活塞 192 上泄液阀管 177 在弹簧 176b 回弹下泄液阀管 177 关闭了泄液口 176a，图量涵圈 0，上卸液孔 40 被活塞 192 上的泄液阀管 177 塞头 177a 拉力作用下打开，图量涵圈 0，仓 0 中图量液 175A 在离心力作用下象洗衣机甩干筒一样甩甩出图量液 175A。当上下主旋翼转速一样时图量相同，方向相反，角动量相互抵消，主涵道旋翼体 5 定轴性消失，具有一定的飞行调姿灵活性，由于小直径四副涵道旋翼体 ABCD 的定轴性还存在，仍保持一定飞行稳定性和定轴性。图 14 标示了该原理结构。

【1188】（4）共轴正反同速旋转主旋翼设置变图量系统原理方法抗激流突变切变转换风方法：

【1189】在大直径主涵道共轴正反双旋翼或风扇 3 上 3 下系统中由飞控计算机指令设置上下主旋翼转速控制不变，旋翼迎角不变，只变上下其中一个主旋翼内设的可沿桨盘直径变化的质量物沿横向旋转半径放置位置而产生该主旋翼的转动图量变化增或减，形成共轴正反同速旋转主旋翼之间产生差动图量诱导出共轴系统的定轴性变量从而便于本系统具有对称旋转刚体特性抗激流突变切变转换风能力。如设置变图量系 30w 30w 30w 30w 在飞吊器的飞控中心计算机（K0）指令下设置的上下旋翼或风扇 3 上 3 下变图量系统产生的差动变图量诱导出飞吊器的陀螺效应的定轴性赋予飞吊器具有抗激流侧风及转换风能力的方法和设备。

【1190】三：本实施方案的飞吊器采用三种方法防激流和相应设备结构组成：

【1191】（1）飞吊器 1 采用设计多组气动结构及布局分配不同的任务主动防激流方法：如
图 2 标示了飞吊器气动结构防雷壳方法及假设示意图。

【1192】首先将垂直主升力和水平方向控制推进力分开，分配给不同的气动机构执行。飞吊器飞控中心计算机 Ko 从高度仪 h 接收的高度信号指令以大直径主道旋翼体 5 共轴正反转双旋翼或风扇 3 + 3 - 气动机构承担垂直主升力，保持水平升降面位置任务。在飞吊器外环层主道旋翼或风扇 5 周围设置的上下 8 个大气压传感器 P1, P2, P3, P4, P5, P6, P7, P8，不同部位感知不同方向的气流风压差和四个方向风速传感器 F1, F2, F3, F4，检测的风速信号，及承担不同速度检测责任的陀螺仪 T1, T2, T3, T4 提供兆气流对飞吊器的姿态影响的信号，飞控中心计算机 Ko 进行综合分析分析指令其周对称同水平设置四个小直径副道单轴单旋转旋翼或风扇体 A, B, C, D 气动机构，随其连接的两节臂伸缩节 96, 转动节 97 能做 E1E2 方向伸缩和往复恒转及起落 E3E4 方向的四自由度的调节的对称动作或不对称动作，承担辅助升力和水平方向控制推进力及防飞吊器进动、偏侧风、抗湍流变换及防雷壳的任务。

【1193】飞吊器 1 大直径主道旋翼 5 气动机构与四个或多个小直径副道旋翼 A, B, C, D 气动机构形成的自己独立的气动场，能相对运动，各自的湍流面气体分子弹性碰撞产生能量交换传达空气动力，可互相助力也可相互干扰，为飞吊器整体防雷壳提供了先决条件。

【1194】飞吊器在起降或悬停飞行中，大直径主道旋翼 5 气动机构承担全机总承栽的主要升力和水平权衡平面上。主道旋翼 5 下洗的主气流 Q2, Q9 垂直排流向下方到驻点面气流 Q3。在特殊气候温度湿度、温度、场地平衡面或凹面形地面的反射作用下，又在飞吊器 1 对称规则外形影响下，能转换返回四周空域中的涡壳先兆气流状态流 Q4, Q5, Q6, Q7。此时飞吊器 1 的飞控中心计算机 Ko 经各传感器检测到的涡壳先兆气流信号反馈进行运算，指令装配在主道道机对称布局的小直径副道道旋翼体 A, B, C, D 采集动作，为影响飞吊器整体平衡和飞行姿态的稳定性。四个副道旋翼 A, B, C, D 将同时作对称的有节奏的四自由度动作 E1E2, F1F2, F3F4。对于每个小直径副道旋翼体 A, B, C, D 就相当于一架单旋翼直升机的主旋翼。用直人工或类似自动驾驶仪的防雷壳，被动作方向作成对自由度的摆，挥、扭、伸缩的方式，使各自气动场气流 Q11, Q12 相互干扰防雷壳。这种方式也干涉了和扰乱了主道道旋翼 5 的下洗主气流诱导的涡壳先兆外上返回中的气流场 Q4, Q5, Q6, Q7。从而达到这种不牺牲飞行姿态而主动式防止了涡壳先兆气流场的形成。

【1195】小直径副道道旋翼系统 A, B, C, D 在飞控中心计算机 Ko 指令下：

【1196】① : 同时对称有节奏的动作防止了飞吊器的进动和防雷壳。

【1197】② : 不对称动作控制操纵了飞吊器的飞行方向。

【1198】③ : 保水平姿态，起到飞吊器的辅助升力作用。

【1199】④ : 自动统一向一侧倾斜姿态运作，防止飞吊器遭受侧风影响，稳定飞行姿态。

【1200】(2) : 采用物理式空气分子弹性碰撞主动防雷壳方法及原理。

【1201】在大直径主道道道旋翼 5 下端口部与下斜子 8 之间装有一个环状类似无底盆形主喷口。

【1202】9, 环状圈周呈盆形斜面 25, 上接端部 24 与主道道道旋翼体 5 外层主一和道内壁 31 同直径对接，下端收口似盆无底状。在其内径盆周斜状面 25 四周对称水平设置扁长方形 27 侧喷口 10, 对称偶数或奇数个布置，侧喷口 10 内腔风道 38 安装了带上下竖轴 32 的长方
形片状导风板26，在飞吊器飞控计算机Ko的指令下步进电机36齿轮33及固定轴枢机构37共同驱动齿条35在轨道39内往复带动导风板26的动作围绕转轴32随34方向往复摆动。按设计要求，飞控计算机Ko指令导风板26进行关、闭、往复以技术要求速度摆动。[1203] 当导风板26自动打开到与侧喷口10腔道38侧而平行状和复往摆动，从侧喷口10喷射出水平直射摆动的气流Qp、Qnl。运动路线与下主喷口9的下洗气流Q2、Q9喷向鱼雷艇各流Q3后沿飞吊器1外形环状向上返流Q4到主涵道旋转体5外上端吸口处的运动路线形成的涡环先兆气流Q4、Q5、Q6、Q7产生交叉，从而冲击、切断、阻止、干扰了上返气流Q2、Q9、Q3、Q4、Q5、Q6、Q7运动方向，切断涡环先兆流，实现防涡环。

[1204] 当导风板26自动打开到与侧喷口10腔道38侧而平行状一定角度，达到调方向功能。

[1205] 主喷口9是收敛口，有强下洗流风压，承担主升力功能。

[1206] 上述在主喷口9内设侧喷口10的有机组合技术原理实现物理性主动式防止涡环先兆气态场的形成。图2、图3、图4-2、图4-3、图4-4、图10标示其结构和工作原理技术特征。

[1207] （3）：飞吊器1采用等离子物理化学空气分子弹性及非弹性碰撞特性主动式防涡环方法及原理。

[1208] 等离子生成方法主要有两个基本方法一种是直流生成，一种是交流生成。

[1209] 交流电磁耦合微波等离子体与直流放电生成的等离子比较，直流放电等离子缺点是有极放电等离子，密度低，电离度低，运用气压高。射频放电生成等离子是无极放电等离子，密度和电离度有所提高，但应用范围受限。

[1210] 选用在交流微波频段功率和电磁场耦合过程同时又与等离子体的相互作用通常是共振的相互作用。在这种中作用中，生成的等离子体作为一种介电媒质又参与耦合离解的电子群的相互作用，能产成共同谐振高能等离子体微波释放。交流微波产生的等离子体电子温度为5eV～15eV，比直流（DC）或射频（RF）产生的等离子体电子温度1eV～2eV有更高的电子温度。如果交流微波功率为千瓦级，等离子体中的电子密度可接近数万所确定的临界值。可选频率为2.2～2.5GHz间，密度可达6～7×10^{16} m^{-3}。交流微波等离子体可以在很宽的压气范围内产生，可选大气压强范围，设计自动调节的等离子反应器，选择适合的射频源段，功率，强度，生成等离子体。

[1211] 选用交流电容耦合、电感耦合、电磁波耦合（微波等离子耦合）、电子回旋谐振（ECR）磁化微波等离子生成方法、介质阻挡放电等离子体生成原理方法与本案等离子发生器技术特征相结合解决防涡环和改善雷诺数的实施方法和设备。

[1212] （一）选用电容耦合、电子回旋谐振（ECR）磁化微波等离子生成方法、介质阻挡放电生成等离子体的技术方法选型与优选反射腔式能量波等离子体发生器。

[1213] A. 反射式等离子体反应发生器89结构组成具体实施例：

[1214] 防涡环能量波发生器阴极电路模块87伸出负极线95与阴极发射极板88相接与阳极电路模块91伸出阳极线94与阳极发射极板90相接, 并共同设在反射器窝98中平行对称设置电极板, 其电极板间的相对气隙间隔约1 ～3cm之间组成电晕放电等离子云, 该反射器89等离子生成系统有若干于若干个组成, 对称环形布置安装在大直径主涵道外环层主一涵道H1壁内下端与主喷口9直接接处上端的能量波等离子发生器环状托架86上。该
反射聚能锅 89 装置若干个又分别安装在中静子 12、13 中一个三角形宽中静子架 93 内，共同和主通道外环层主一通道圈 11 内壁下端与主喷口 9 接镶处的环状托架 86。反射聚能锅 89 发射线组成飞吊器防涡环电晕放电等速波等离子体发生器 89, 92。建立电子离子动能粒子场，选用非弹性碰撞方法产生等离子体作用于气流分子、原子、粒子，使其能量的传递、交换、激励，产生多米诺骨牌连锁化学反应效应，对周围空气分子运动方向产生冲击，引起气场的振荡和干扰了涡环先兆气流，用等离子粒射流所含的动能量干涉周围空气分子粒子的运动方向达到防涡环作用。同时附加产生的放电次声波的共同作用下对可能产生的涡环先兆气流进行了干扰。从而防止和根除涡环形成先兆气流的形成环境。

【1215】当飞吊器在起飞或降落时，或者低空悬停作业时，飞吊器飞控计算机 KO 下指令让等离子能量波发生器工作。由于空气湿度大，气压低，空气潮湿热无风或低于 1~2 低风速时，地面平整或凹形极易诱导出涡环气态场，为了防止这种涡环先兆气流形成，能量波发生器提前工作。图 2,7-7 显式其结构及工作原理示意。

【1216】（B）。反射枪式等离子体生成的选用方法和原理优选具体实施例：

【1217】1. 选用交流电容耐压等离子体具体实施例：

【1218】优选图 7 例为述：在交流电容合微波电晕放电能量波发生器反射锅 89 中设置放电平行板阴极板 88 和阳极板 90，设为自然空气做为工作气体，在两极板间施加 12~14MHz 之间高频功率的激励下产生电容耦合等离子体。放电条件优选常压，电极间距选 2cm~4cm 之间，高频功率选 100W~300W 可调，其生成等离子体密度可调控在 10^{-18}m^{-3}~10^{-18}m^{-3} 量级范围。

该技术特点：

【1219】1. 选用常压自然空气做为工作气体时，可控制极板间放电离子分布均匀。

【1220】2. 选用本方案反射锅组合物架方法能够容易生成所需辐射面积大口径等离子体。

【1221】3. 在反射聚能锅中设电极间距为可调型集电的轴撑层可维持稳定等离子体状态。

【1222】（1）可选标准交流单频电容耦合型等离子体生成方法的应用：

【1223】设匹配器和阳极 90 高频电极 K_{\text{RF}} 之间连接配分离电容，当在该耦合极板间加上 12~14MHz 的高频功率时，可使放电装置获得最佳的功耗和保护阳极频源 (91)、阴极频源 (87) 功率频源模块电能。在其中阴极 88 加有 RF 电压（自给偏压）后两极板间会产生负直流电。而等离子体中的电子被电极阴极加速后轰击阳极极板 K_{\text{RF}}。通过这种设置可改变单频电容耦合型等离子发生器的放电功率后调控离子轰击能量和通量，从而用这种方法设置该防涡环型能量波等离子发生器形成这种工作特性。图 7-4A 显示这种等效电路。

【1224】（2）选择交流双频电容耦合型等离子体生成方法的应用：

【1225】1. 在两极间施加不同频率产生等离子体。在阳极 90 板 K 施加放电用的高频电压：

\[\omega_1 / 2 \pi = 8 \text{MHz}~60 \text{MHz} \] 承担调控等离子体密度。在施加有基板的阴电极 88 板 A 施加频率较低的高频电压：\[\omega_2 / 2 \pi = 0.6 \text{MHz}~1.5 \text{MHz} \] 负责调控自给偏压（离子轰击能量）。

【1226】2. 选双频式在每个板上如阴电极 88、或阳极板 90 同时加两个频率 \(\omega_1, \omega_2 \) 的高频电压来调控离子密度和离子轰击能量的方式。等离子体是通过外部的高频场对电子的加速作用引起电离而产生等离子体，在这种高频放电中，在两电 88,90 间与等离子体间形成一个高压容性层，经过层的射频电流导致了层的随机或无碰撞加热，而流过
反射镜两极间主体等离子体区的射频电流导致了主体等离子体区的欧姆加热，即称焦耳加热。射频的等离子体含有动能的释放而改变涡环先流形成机制和改善雷诺数。

图7-4B标示了这种原理可选应用在反射式、百褶裙式等离子发生器制造中。

[1228] (3) 选用电子回旋谐振 (ECR) 磁化微波等离子生成方法的适用于反射镜式中，图7-4C标示该方法示意图。

[1229] 该方法选用图7反射镜式发生器底部中安装几何结构像一个收敛喇叭形状，在喇叭状底部设有2.45GHz 频率，功率1KW，磁场强0.1T量级的波导器。在其处设置阻抗匹配陶瓷真空腔，装在此腔底部的裙摆面栅栏与波导器的馈入间室形成谐振腔，谐振面栅栏与喇叭状口之间形成共振腔，通过馈入谐振腔的射频波功率，再在喇叭状共振腔的磁场中生成高密度（10¹³m⁻³）等离子体。在此底处谐振面栅栏与喇叭状口与其中部之间共振腔外面设设厚环形磁场谐振整型线圈，其在馈线使用同频率的振荡电场施加此馈线内，形成电子回旋谐振磁化耦合场在洛伦兹力作用下做环绕磁力线回旋运动，电场频率ω与电子回旋角频率ωe一致时发生电子共振加速。加能，即ωe = ω为电子回旋共振聚能量，使共振腔内离子、电子得更高动能，利用该原理的 ECR等离子体装置由于吸收微波能量的高速电子频繁地引起电离使低气压下能获更高密度、共振的接力作用获更高能量的等离子体。这种方法选用在反射镜式等离子体发生器选项技术电路设计原理中，以生成高能等离子应用于适合更宽范围的防涡环流和改善雷诺数的设备制造理论依据。

[1230] (二) 选用电容耦合、电磁耦合、磁耦合、介质阻挡放电生成等离子体的方法选手续与百褶裙式等离子体能量波发生器结合的实施具体实例：

[1231] (1) 百褶裙涵圈式等离子体生成方法应用优选具体实施例：

[1232] a. 选用交流电感耦合 (ICP) 型等效电路研制等离子体生成方法与百褶裙涵圈式结合生成等离子体；图15-1、15-2、15A 标示了这种等效电路示意图。

[1233] 本案中是选用图15 表示的百褶裙涵圈式等离子体发生器，将高频功率交流 RF 来源电路 209 连接并提供以 2π/ω 周期的高频率电流 RF 传输给围绕在百褶裙涵圈式发生器 197 胗外侧的耦合环形线圈 197LRF 中，流经的交变电流 IRF 产生交变磁场电感 La、内电阻 Rq 共同形成像变压器的初级线圈（耦合环形线圈 197LRF）功能，此时引起百褶裙涵圈式发生器 197 胗腔 205 中产生感应电场，激发电场中设定常压自然空气 Q1、Q2 做工作气体，被电离产生管柱状等离子体。同时在腔 205 中产生的管柱状等离子云又与外耦合环形线圈 197LRF 交变电流 IRF 的感应场强产生互感动电势 Me，在原有耦合成稳态管柱状等离子体中伴有涡电流 Ip、运动速度 Vc。这种互作起到均衡下，在此时外耦合环形线圈 197LRF 像变压器初级线圈特征，耦合到的管柱状等离子云环像变压器次级线圈一样的特征。产生呈现初始耦合电感 Lg、涡电流 Ip、惯性电感互感场强电感：Ip = (1/s)(me/N0e2) 对原等离子体有趋肤效应，其半径方向的截面深度即环柱宽度呈 δ 尺寸，并与腔 205 气隙同宽。截面积 S 与反应腔 205 同截面积，等离子体等效电阻 ：Rg = (1/s)/δ 的存在提供产生焦耳热能。所吸收功率：Pabs = ω²LgIp²/ω²(Lg+Ip)²+Rg²×1²fr，后获的复合等离子体具有高能量状态特性表现。

耦合环形线圈 197LRF 线圈流经 12～14MHz 高频电流，感应耦合等离子体工作频率，可选调节低频 8KHz 至高频 60MHz 范围，选用常压供自然空气做工作气体，生成等离子体释放能量功率可达；

[1234] Pabs = ω²LgIp²/ω²(Lg+Ip)²+Rg²×1²fr 的工作特性，选百褶裙涵圈式交流电感耦
合能量波等离子发生器生成的等离子体具有高能、高密度、稳定特性。

【1235】 b. 选用交流电磁波耦合（微波等离子体）型等效电路研制等离子体生成方法与百褶裙涵圈式结合生成等离子体。

【1236】 (1) 选用微波等离子体的反应器匹配的波导器类似短粗注射器形 205a，选设频率为 900MHz---3.60GHz，控波长 6-13.0cm 之间，功率选设几十瓦至几千瓦波导器，进行耦合反应，分别设置安装在双环层百褶裙涵圈式微波等离子体发生器 197 腔 205 中，200 上端环形面上，同样插入百褶裙涵圈式环形腔 200 内波导器 200a，该波导管与反应腔 205、200 两侧壁面平行，将调试的微波功率馈送波导管内一个渐变的谐振腔，再在中间介质管中充以常压空气作为工作气体。调整微波功率以常压空气条件下适应建立强轴向电场，它使腔 205、200 中工作气体（自然常压空气）击穿，产生并维持等离子体的释放。

【1237】 选用该结构特点，可避免微波功率从大气压进入低气压真空系统时出现的阻抗匹配问题，可使微波功率以简单方式耦合到等离子体。

【1238】 (2) 设置微波等离子体双环层百褶裙涵圈式反应器 197 形成多模弧形反应腔，腔弧半径和高度可选与波长的整数倍比关系，其中电磁场分布出现多模结构。为了降低表面面积一容积比，改善约束条件，避免在等离子体腔 205、200 中形成电模结构，可用多模弧状腔反应器 197 多折弧状多模腔 205、200 的弧半径和高度选中尺寸应与波长数倍为参照数，一般选中大于波长数，以至模式竞争不冲突，使微波功率均匀分布于整个多折弧状腔 205、200 体中增加获得均匀等离子体的机会。

【1239】 选圆柱谐振腔型微波等离子体波导管，设选频率 1.5---3.00GHz 范围，控波长 6-13cm 之间，将波导器微波功率馈送平面装设在百褶裙涵圈式多模弧形反应器 197 腔仓 205、200 顶端环形面的安装位上，对应每个弧形反应腔 205、200。在该反应腔 205、200 中，波导器微波功率通过耦合窗馈入，在大气压下的波导与真系统隔离，阻抗匹配后，几千瓦的稳态高功率可馈入谐振腔，工作气体（空气）分子被电离，在常压下形成等离子体。

【1240】 选用微波交流电磁波微波耦合生成的等离子体电子温度 5eV ～15eV 离子密度高 6-7×10^10m^-3。选气压范围宽，选自然常压生成。

【1241】 C. 选用交流介质阻挡放电（DD）型等效电路研制等离子体生成方法。

【1242】 图 15B 标示了这种等效电路示意图，该方法可选在反射器式和百褶裙涵圈式。

【1243】 本方法选用两种频率段，一种以 100kHz 以下为低频交流生成方式图 15B(a) 标示，另一种以 100kHz 以上为高频交流生成方式图 15B(b) 标示。

【1244】 选百褶裙涵圈式发生器为阐明描述。

【1245】 低频介质阻挡法：在低频交流功率频源电路（f 频）209 一端输出连接百褶裙涵圈式发生器 197 中反应腔 205 中的阳极面 210 做为介质电容 Cd 等效体，另一输出以 Vop 外界电压值又与反应腔 205 的阳极面 211 连接形成的气隙等效电容量 Cg 连接形成百褶裙涵圈式发生器 197 介质阻挡放电等离子生成腔电路耦合回路，同时在 Cg 两端分别设配，一端连接驱动二极管施低频电压值 V*，另一端连接驱动二极管施高频电压值 Vop，作用的方法生成等离子。

【1246】 高频介质阻挡法：在高频交流功率频源电路（f 频）209 一端输出连接发生器 197 中反应腔 205 中的阳极面 210 做为介质电容 Cd，另一输出以 Vop 外界电压值又与反应腔 205 的阳极面 211 连接形成的气隙等效电容量 Cg 连接形成发生器 197 介质阻挡放电等离子生
成腔设定气隙等离子电阻为 R_{ext} 电路耦合回路中施高频电压值为 V_{op} 的方法生成等离子。

【1247】在本中非质电容器 C_{d} 与放电气隙推 200、205 电容量 C_{g} 组成了介质阻抗等效等离子生成反应腔体 205、200，间隙间形成等离子体等效电阻 R_{eq} 作用的电压 V_{op} 其峰值 $V_{*}、V_{*op}$ 分别是低频和高频条件下回路中积分电流为零时的电压值，此时 C_{d} 远大于 C_{g}，

Cd 施加电压 V_{g} 小于 V_{d} 时，则当氧化电容 Cd 与气隙间空气体 Q_{a}，Q_{g} 电容 Cg 是串联关系。当放电气隙腔 205 电压 V_{g} 达到 V_{d} 时开始放电并持续达到外供电压最大值 V_{op} 为止。当 $V_{g} \approx V_{d}$ 时持续放电中 V_{d} 为平均值，产生等离子的量率由在反应腔 200、205 中的间隙宽度尺寸和气体压力（浓度）及气体种类压及输电流大小所决定。在 197 反应器腔 200、205 施加的电压不变情况下增大输入功率主要改变输入电流大小，提高频率电压将产生较大电场强度导致电子能量升高，提高释放电子动量，扩大电流就会增大输入功率将导致增大了离子密度，同时增加焦耳热能的释放，其作用释放的动量与气体分子、周围空气分子产生离子、原子、激态活性物种并发生化学反应及粒子冲量转换，作用与周围气流运动方向和解离空气分子提供抗防涡环改善电弧数先决条件。

【1248】（2）百褶裙涵圈层等离子体发生器结构组成具体实施例：

【1249】优选在飞吊器 I 主涵道旋翼体 5 单环层或双环层主涵道内设置单或双涵道百褶裙

式单或双环层能量波等离子发生器反应腔 197。在主涵道旋翼体 5 的外环层主一涵道 II 壁

与外鼓形壳 29 之间 14 腔内设有同直径，同涵道管长的外环层百褶裙涵圈层式能量波等离子

发生器 197 仓位 205，为最大限度化增环形面积，提高离子发生率，设计成多折圆弧连排仓

腔 205。在该仓顶设进空气口 198 并设环形圈状电动滑动调气门 198A，该仓内径面壁 11

内侧设空气进口 198B 和上下电动滑动调气门 199A，此面为阴极面 211 并连接频波功率电路

模块仓 209 的阴极线及阴极 211，在该仓外壁面 203 与外鼓形壳 29 相档，此面面 203 为阴极

面连接射电路径电路模块仓 209 的阳极线及阳极 210。形成外环层等离子发生器仓 205。在

内环层主二涵道 H2 内径壁 20 与外径壁 19 间设内环层能量波等离子发生器仓 200，为尽最

大化增环形面积，提高离子发生率，设计成多折圆弧连排仓腔 200，该仓外径环面设空气

进口 202B，设上下电动调气门 202A，在此顶端设圆孔空气进口 201B 并设电动 滑动环圆

形调气门 201A，在外壁开进空气口 202B 面与频波功率电路模块仓 209 阴极线及阴极 211

相连，该仓内径环壁 214 与内环层主二涵道 H2 内径壁 20 联结，设为阴极面 210 连接频波功

率电路模块仓 209 阳极线及阴极 210。

【1250】在外环层主一涵道 H1 壁 29 与仓 205 壁面 203 与主涵道主侧喷口 10 结合设离

子流喷口 204、离子流内道 218 与侧喷口 10 连接对口，释放等离子流 Q_{1} 和下洗侧喷气流 Q_{2}

混合射流 206。辅助调方向和防涡环。

【1251】在双环层主涵道等离子发生器 197 双环仓 200、205 下端喷出的等离子流 Q_{1} 和下

洗侧喷气流 Q_{2} 混合射流 207、208、220、222，其作用是提高空气动力主升力及气垫效应协助

力，有助于空气稀薄的高空悬停飞行助力和低空起降改善翼空气动力雷诺数。

【1252】在内环层主二涵道 H2 中静子 12 等离子发生器内涵仓 200 内径段 212 上下端一侧

设等离子喷射口 216、221。改善上下气动而雷诺数。

【1253】在内外环层主涵道 H1、H2 间中静 13 环腔 4 等离子发生器双涵仓 200、205 之间段

结构 213 上下端一侧设等离子喷射口 217、219。用于提高增强滑流机翼效应气动力。
【1254】在外环层等离子发生器外侧面203外环嵌设耦合线圈197L，其选项是电感耦合生成等离子方法。

【1255】设置等离子能量波发生器，其功能作用在低空时：增加干燥气垫层，提高气垫效率，改善飞吊器在大湿度气候条件下起降飞升力效率，改善空气动力雷诺数，启动或抗防涡环，防旋翼失速掉机。

【1256】在高空时：增加力，提高升力系数，爬升率。

【1257】图15标示了该功能结构。

【1258】四．选用等离子技术改善旋翼空气动力的雷诺数：

【1259】空气若湿度大，空气密度大，黏性大，黏性高，黏性减小。雷诺数增大。设等离子能量波发生器释放的等离子能量与周围空气分子作用，同时作用了飞吊器中气流中水分子，水分子气分子产生膨胀，在反作用力下对升力起到接力地面效应的气垫效应，对进气道的气流柱气团的湿度减小，向干燥倾向转移，能量波穿透空气分子过程也减低了空气黏性。在其作用下改善旋翼的空气动力环境，增加气流空气微团的动量，也增加了升力系数，改善了空气动力的雷诺数，又根除了涡环产生的机制。是十分必要的有益的选择。

【1260】五．飞吊器动力装置和输送供能源的优选具体实施案例和机构：

【1261】（1）优选电力驱动方法：

【1262】飞吊器优选电动机驱动时电动机设置为两种方案：

【1263】①：在飞吊器1主涵道旋转系统5以中心轴6设置电动机方案：

【1264】在飞吊器1主涵道旋转系统5以中心轴6为核心上子翼2和中子翼12、13间安装上主旋转3L，在中子翼12、13中间安装上主旋转3T。设置电动机M M T，定子绕组70与中心轴6固联。电力线y+，y-和信号线yo经并列牵引索系连进飞吊器牵引架106中部接口107分左右两路牵引架两路电力、信号线道105引进，通过飞吊器牵引架106臂轴箱98内导线通道120接线中子翼12、13中导线通道71再进中心轴6的外层套76层定子绕组70接线孔72连至电动机M M T定子绕组70接点。再一路余度电力线从牵引架轴箱98内导线通过上子翼2内导线通道20与中心轴6的外层套76层从上向下进线孔72连结电动机M M T接点。电动机转子为永磁转子68与其连接变频系统30T、30V、30V。

【1265】小直径四副涵道旋转系统A、B、C、D由电动机驱动，电力线从主涵道旋转体5外环层主一涵道11内壁11与鼓形壳29间腔14内分岔通过导线通到147及146转通臂转通节97连接伸缩节96内导管通到进入弯月29内导线通道155，先联接接轴100步进电动机mA、mB、mC、mD。然后通过小直径四副涵道旋转系统A、B、C、D涵道下子翼101中的导线通道154与四副涵道旋转电动机总承104中的定子绕组连结电接点，此101接点101与接轴100是联合体又是小直径四副涵道旋转电动机总承104的与片状下子翼103呈十字支承主托架。为了防滑气流奇变龙卷可优选在小直径四副涵道上游端口设置上子翼为滑流整流。

【1266】②：在主涵道外环层内壁与旋转翼、或风扇尖端外径涵道外壁之间设置电动机方案：

【1267】在大直径外环层主一涵道内壁11和内环层主二涵道内壁12，中子翼12、13上端和
下端分两部分设置两套旋转式电动机系统。在内环层主一涵道壁 H1 与主涵道外壁近侧之间内设置定子绕组 18，或在内环层主二涵道壁 H2 内设置定子绕组 18，在主上下端壁或风扇 S、S 广外壁近侧 0、0 设置永磁转子 17，形成薄型开放式大直径旋转式转子与定子绕组及外涵道形成涵道旋转式电动机，或称电动机式涵道旋转系统。这种形式涵道旋转飞行器特点是，低转速，扭矩大，功率大，可直转，结构轻便。图 3、4 表示了该电力驱动机构组成的选配。

【1268】 3. 飞吊器 1 电动机动力设置位置:
【1269】 (1) 飞吊器 1 主涵道旋转系统 5 动力系统的主旋转或风扇 S、S 电力设置在中心轴 6 为中部轴上，以中静子 13、12 与上静子 2 之间设置上旋转 3、3 的电动机 M_1。以中静子 13、12 与下静子 8 之间设置下旋转 3、3 的电动机 M_2。上下电动机选为直接驱动，或设变速器传递驱动，上主旋转 3、3 与下主旋转 3、3 为正反对转共轴涵道旋转系统，优选中心轴 6 设置电动机为旋转旋转，承受主升力，为有线供电。

【1270】 (2) 飞吊器 1 主涵道旋转系统 5 电力系统的电力动力在单环层主涵道 H1、双环层主涵道内外壁 19、20 与旋转或风扇叶尖端惯量透圆 01 外壁之间设置电动机。

【1271】 a. 优选在单环层主涵道 H1 中的上下主旋转 3、3 端部惯量透圆 0 为实心扁状截面外壁上安装电动机 M_1。M_2 的转子永磁铁 17 成为电动机转子。将电动机定子绕组 1 安装于单环层主涵道内壁与外壁 29 之间，中静子 12、13 之间上段设成上下两段电动机绕组定子 18。以中心轴 6 为同心圆，在上静子 2 与中静子 12 之间，外环层主涵道 H1 内径设上电动机上旋转 3、3 端部惯量透圆 00 外壁装永磁铁 17 转子，成为上旋转 3、3 电动机动力系统。在下静子 8 与中静子 12 之间，外环层主一涵道 H1 内径设下旋转 3、3 端部惯量透圆 00 外环层装永磁铁 17 转子，成为下旋转 3、3 电动机动力系统。双环层主涵道旋转系统 5 实际成为上下双线旋转反转两套径直变形旋转系统电动机动力系统。为有线动力。

【1272】 b. 优选双环层主涵道旋转系统 5 电动机的设置，在外环层主一涵道 H1 内套设置内环层主二涵道 H2，在内壁 20 和外壁 19 之间设电动机 M_1、M_2 的上下两段定子绕组 18。以中心轴 6 为同心圆，在上静子 2 与中静子 12 区间，内环层主二涵道壁 12 腔内设置上电动机上旋转 3、3 端部惯量透圆 0，外壁装永磁铁 17 转子，成为上电动机动力系统。在下静子 8 与中静子 12 区间，内环层主二涵道 H2 腔内，以中心轴 6 为同心圆设下旋转 3、3 端部惯量透圆 0，外壁装永磁铁 17 转子，成为下电动机动力系统。双环层主涵道旋转系统 5 实际成为上下双线旋转反转两套径直变形旋转系统电动机动力系统。主涵道系统 5 的外环层主一涵道 H1 在外，内环层主二涵道 H2 在内，互相套在一起，形成滑流区 4 涵道腔，在滑流 Q，具有强的附壁效应。上下旋转 3、3、3、3 电动机系统直径相同，共轴正反转，设在内环层主二涵道 H2 内同心圆涵道内。根据上述技术设置形成大功率、大扭矩、低转速，变速范围大，可直转，高度小直径大，薄片开口形状旋转系统电动机联合体，为有线供电。图 8、图 10、图 11、图 12、图 16 标示其技术结构特征。

【1273】 六，飞吊器辅助装置优选具体实施方案和机构；
【1274】 七，输能牵引索 L 的设置；
【1275】 飞吊器配输能量牵引索 L，具备牵引力作用，抗逆风作业时提供牵引力作用，此输能牵引索 L 中配装能源供应线；输电点的，简称，输能牵引索 L。选输燃料的，简称，输能牵引索 L。
（1）优选适用电力驱动具体实施例：
牵引架106联结输电牵引索L，在牵引索L结构中设有光缆y0传递信号，两头设有光电转换器CO，安装有光电线，正极电力线y+和负极电力线y-。牵引索L同时承担着牵引力，在逆风中牵引的提供像风筝的牵引一样的功能，使飞吊器具有抗逆风作业的能力。牵引索设多层，从内向外设内1层包封信号光缆y0正极线y+，负极线y-，为高强线性，抗高强拉伸强度纤维防水复合内芯层117。其外为耐高温金属丝网屏蔽层，轻合金丝网，起屏蔽作用，又是防静电，防雷电引线作用又起散热作用为内2层116。在外耐高温、防低温、防水，高强耐拉伸抗蠕变纤维复合层为第3层115。最外设耐磨、耐高温、耐低温、防水外表复合膜114为最外防护层组成。图9标示该结构。

（2）牵引架106的设置：
飞吊器1牵引架106对称位的臂伸缩节96相连的转动节97外圆上安装了转动环箱98上连接牵引架106，截面为长偏弧形。设有内腔105为箱圆形，刚性结构。牵引架106两端头与飞吊器1的对称臂的转动节97外套转动环箱98联结。该环箱98内设驱动电机及齿轮系统和离合器组合器28，可自由滑转，可强制操控电力驱动旋转牵引架106，中部及端设有法兰环箱107有输能牵引索L相连。并设有拉力传感器105和光电转换器CO。在牵引架106通道箱105中设有电力线y+、y-和信号线y0。为飞吊器1飞控计算机提供传输信号。为飞吊器1上下主旋翼电机EM、M1和四个小直径副涵道旋翼电机MA、MB、MC、MD等各电机提供电力和传导操控信号，又为地面控制室提供控制反馈信号。图8、图10、图11标示该结构。

七：飞吊器性能工作原理概述：
图1标示飞吊器工作原理：
主涵道旋翼体5中主旋翼3、3-T共轴相互反时针转，转速不变，转速相同，上主旋翼3-的角速度ω-与下主旋翼3-T角速度ω-T相等，即ω-=ω-T。飞吊器水平悬停状态时主涵道旋翼体5无定轴性，不存在陀螺效应，有机动性。

四副涵道旋翼A、B、C、D各自对称正反转，转速相同，旋翼或风扇的扭矩在十字对称结构中相互取的平衡，每个单轴单涵道旋翼具有转动惯量，都有陀螺效应诱导出定轴性。四副涵道旋翼A、B、C、D各自的定轴性同时对称作用在飞吊器总体结构上，赋予飞吊器具有定轴性。当刚体是对称刚体时，角动量的向量（方向）与角速度向量（方向）是一致的，可按以下公式简算：
当M=M-T，R²< R²-T，ω-> ω-T或ω-< ω-T时或当M=M-T，ω-> ω-T或R²< R²-T, R²<- R²-T时上下主旋翼3,3-T产生差动转动惯量，即产生转动惯量的增量I-x，根据角动量守恒定律原则，当旋转旋翼高速旋转时，旋翼角动量守恒。

质量不变，但是，根据公式（4）I = ∫r²dτ = ∫πr²/2 = M·R²，放置物质质量的半径发生了即：△R²改变从而引起角动量产生增量（差量）△J，随之旋翼转动惯量增量（差量）△I，产生陀螺效应诱导出主涵道系统5定轴性，加上四个副涵道旋翼系统A、B、C、D固有的各自定轴性，赋予飞吊器1整体具有强化的定轴性，赋予了抗侧风、抗湍流突变转换风能力。

副涵道旋翼A、B、C、D根据飞吊器1承载负荷和环境气流情况都可单独或几个组合承担方向控制功能，类似单旋翼直升机尾旋翼功能，可随机发挥其机动性，调控飞行姿
态。设发生受右侧风Q_{e}的方向作用时，四个副通道旋翼系统A、B、C、D的臂中的E臂扭转移E_{1}→E_{2}方向，A臂扭转移E_{3}→E_{4}方向，D臂扭转移E_{5}→E_{6}方向，B臂扭转移E_{7}→E_{8}方向，若Q_{e}更加强时B的臂向E_{1}→E_{2}伸长，B臂力矩增加。

【1287】设受左侧风Q_{s}的方向作用时，C臂扭转移E_{3}→E_{4}，D臂扭转移E_{5}→E_{6}，A臂扭转移E_{7}→E_{8}，B臂扭转移E_{9}→E_{10}，若风更大时D臂由E_{1}→E_{2}伸长，增加力臂E_{1}→E_{2}的长度，抗风能力增大。争取平衡和方位姿态不变。

【1288】设飞吊器受顺风Q_{u}方向的风作用时，为保持姿态和方位。B臂由E_{5}→E_{6}方向扭转，D臂由E_{9}→E_{10}扭转，A臂扭转移E_{7}→E_{8}，C臂扭转移E_{9}→E_{10}。

【1289】若遇顺风更大时，由B和D的臂间为转动轴心，A臂E_{1}→E_{2}向伸长，加力矩抗风能力增大。争取平衡和方位姿态不变。

【1290】设飞吊器受逆风方向的风作用时，D的臂扭转移E_{5}→E_{6}，B臂扭转移E_{9}→E_{10}，C臂扭转移E_{9}→E_{10}，若逆风Q_{s}方向风更大时，C臂由E_{1}→E_{2}向伸长，增加C臂力矩，抗风能力增大，争取平衡和方位姿态不变。图2表示这种控制示意。

【1291】上述为全部设为参照点的各旋翼动作的简述分析。

【1292】八。飞吊器工作状态受力原卷六个维度空间移动七种飞行姿态八种主要控制状态作为参照点动作分析。

【1293】图1标示飞吊器工作状态受力原卷六个维度空间移动七种飞行姿态八种主要控制示意。

【1294】飞吊器1在图21电路以飞控计算机K0为飞行管理核心自动控制作用下表现出受力原理可达六个维度七种飞行姿态八种控制方法：

【1295】一。飞吊器1受逆风Q_{s}作用很大时，顺逆风方向飞行E_{5}，松弛输能牵引索E_{1}卷扬器，放松输能牵引索E_{2}，副通道旋翼系统A、B、C、D同时扭转，B扭转移E_{5}→E_{6}，A扭转移E_{7}→E_{8}，C扭转移E_{9}→E_{10}，动作方向，当力F_{s}大于牵引力F_{L}时$F_{s}>F_{L}$。飞吊器受逆风和飞行空气动力向前方移动飞行途中状态。

【1296】二。反之，飞吊器1向E_{5}方向移动时，输能牵引索E_{2}在卷扬器拉力作用下$F_{L}>F_{s}$，E_{1}受力E_{1}受力时，同时A、B、C、D扭转的方向与飞吊器1向E_{5}移动的方向正好相反，是输能牵引索E_{1}牵引飞吊器抗逆风作业或回程飞行途中状态受力。

【1297】三。若飞吊器1向E_{5}方向飞行时，设$F_{s}=F_{L}$，副通道旋翼系统A、B、C、D扭转的角度于抗Q_{s}方向风相反，飞吊器1受的合力$F_{s}=F_{L}$，即飞吊器受侧合力F_{s}小于受右侧合力F_{L}，受右侧风力和气动力影响飞吊器1向左方飞行。

【1298】四。若飞吊器1向E_{5}方向移动时，设$F_{s}=F_{L}$，A、B、C、D扭转的角度于抗Q_{s}方向风相反，飞吊器受的合力$F_{s}=F_{L}$，即飞吊器受侧合力F_{s}大于受右侧合力F_{L}，受左侧风力和气动力影响飞吊器1向右方飞行。

【1299】五。若飞吊器1在受到3_{L}的ω_{L}和3_{F}的ω_{F}及A、B、C、D的$\omega_{A,B,C,D}$旋翼的气动合升力$F_{s}>F_{L}$重力飞吊器上升。即飞吊器1在主通道旋翼系统5和副通道旋翼系统A、B、C、D共同水平姿态配合下，受的旋翼气动合升力F_{s}大于重力F_{L}，飞吊器进行提吊重物作业状态，飞控计算机K0指令调控各旋翼气动机构的功率输出控制变量。

【1300】六。飞吊器1受到上下主旋翼3_{L}的ω_{L}和3_{F}的ω_{F}主合升力及副旋翼A、B、C、D的气动合升力$F_{s}<F_{L}$重力F_{L}飞吊器1降落。即飞吊器1在主通道旋翼系统5和副通道旋翼
体 A、B、C、D 共同水平姿态配下，受的旋翼气动升力 F 升小于重力 Fw，飞吊器进行提吊重物作业状态降落或在吊提重物时用提吊绞盘器下卸载重物时，保持飞行落差平衡，飞控计算机 Kc 指令调控各旋翼动机构的功率输出控制变量。

【1301】七、Fz = Fw、Fz = F、F 总 = F 时飞吊器 1 保持悬停姿态于空中飞行。

【1302】八、飞吊器 1 产生定轴性时，若 3 x 和 3 y 转速不等，ω x > ω y 或 ω x < ω y 上旋翼角速度差值越大时，产生差动惯量，但会造成飞行姿态姿态差值大。优选上下主旋翼的转速不变，上下旋翼角变，ω x = ω y。选变动质量物半径的变化，即改变惯性量：R2 ≤ R2 或 R2 < R2 上下翼转动惯量的质量半径差值越大，I ≤ I 下下翼转动惯量 I，角动量 J 不等：上下翼转动惯量不等时，所产生的转动惯量增量（差量）ΔI 越大，诱导的飞吊器定轴性越大，加上同时四个偏轴的固有定轴性是保持飞吊器稳定姿态的先决条件，在其技术特性共同作用下，所产生抗不同方向偏侧和湍流旋转惯的合力。飞吊器 1 的 3 x 或 3 y 的转速可随时调整，当在 3 z 的角速度 ω x > ω y 时的 3 y 角速度。3 z 转速大于 3 y 转速，产生的变惯量补动符合倾斜鱼飞但落差大。优选 R2 > R2 时，I > I 下下翼鱼翼重心偏于上以适应飞吊器 1 体倾侧姿态侧方向飞行，主涵道旋翼体 5 并呈现定轴性具有抗湍流旋转惯力。当在 (3 z、3 y) 转速大于 (3 z、3 y) 转速 ω x > ω y 同样影响飞行落差。优选 R2 ≤ R2，I ≤ I 下下翼时重心偏低以适应飞吊器 1 体水平姿态倾停飞行。优选设置调整刚体质量物半径的改变 R2 ≤ R2 参数方式实现产生差动变惯量，诱导有涵道旋翼 5 的陀螺效应的定轴性的方法。飞吊器飞控计算机 (Kc) 预先设置 A、B、C、D 的扭摆角度和 ω x、ω y、ω z 的角度速度，J 角动量，I 转动惯量的控制变率系数，自动谐同将大直径涵道旋翼 5 的差动变惯量 参数进行配合，以实现飞吊器 1 以悬停提吊重物为主飞行姿态的稳定性及抗湍流旋转惯力。在克服重物负载的地球引力作用下与受的各种合力有机的谐调，实实在在环境、气流状况下完成飞吊作业的方法和相应气动机构设置布局及装配图 20 电器电路控制变量框图配合管理操控飞吊器飞行作业相应设备。

【1303】二、泥浆洪水流多功能飞吊救援两栖医疗救护机各部件具体实施例：

【1304】发生洪水泥石流时易将河道堵塞，造成河水满岸决堤，发生洪水时冲入城镇村庄，人们为了避水冲淹，紧急时大都就近躲到树林、家宅房顶，城镇楼 2~3 层上及高坡弧小丘上。为了急救这些分散的群众。以近年来所发生的国内外洪涝灾害，都十分需要本发明方案救援方法和有效的适应这种水急湍流夹杂各种漂流物，黏稠泥浆，幅高幅低的急流和浅滩流中都能运用的两栖救援救护舟。

【1305】泥浆流推进器中设置变频调速电动机驱动，前后左右推进器设有液压伸缩支承臂与车体侧连固，推力器设计的螺旋桨翅防挂缠绕，具有承担主推力和导向功能，浮筒具有增强在泥浆中浮力，驱动车辆在泥石流上浮行。车轮外胎花纹拖拉机后轮直斜向 HSV 花状改良成斜向曲折状胎花，具有增强在泥浆中驱动能力。解决了洪水泥石流中救援作业需求特种车辆的设计方法的世界性问题。

【1306】一：泥浆洪涝流多功能飞吊救援方法和医疗救护两栖车具体实施例：

【1307】泥浆流两栖救援车：可优选硬篷式泥浆流两栖救援车 223、可优选敞蓬式泥浆流两栖救援车 265，从公路用轮胎高速行驶到洪灾区，用爬坡器 285、251 协助可从选择半浮半干浅滩驶进泥浆流或洪水区，逆水逆风仍能教授上游上风上风处不远的位置，操控员进入操控室飞升飞吊器 1，飞吊器 1 在自身升力作用下跌升，同时由输能牵力索 l 为飞吊器
输送电能，和串的牵拉力作用，同样电动力风筝一样逆风在空中悬停飞行。

- 在此飞吊器 1 中设了差动变恒量系 30 诱导陀螺效用的定轴性使飞吊器具有能抗突切变换溜流和侧切风能力。
- 同时安装的等离子能量波发生器释放的粒子能量改善旋翼空气动力雷诺数，以使飞吊器能在湿度大空域环境中改善升力和飞行安全。
- 在飞吊器 1 滑到将至灾民上空后，操控员在该摄像机 d1、d2、d3 观察灾民情况将会号发问，再控制台 K1 显示屏 PN 显示的情况下，操控次操控飞吊器 1 提吊绞盘 624 释放提吊索 224 和网捞篮筛子 225 将灾民，并通过飞吊器 1 上语音扬声器 Y 吼话，指挥灾民配合进行提吊救生人员，返回已打开网筛的医救舱泥浆水陆两栖救援车上，从而实现这种救援方法和配套的两栖救援车的功能。
- 在气候环境恶劣时山区公路湿滑易在上下坡急转弯公路段发生车祸滑入山崖下沟壑中，用本发明的硬篷箱式泥浆流两栖救援车 223 或敞篷式泥浆流两栖救援车 265，由公路高速行驶赶往出事点，车停时为防滑倾可释放爬坡器 251、285、或泥浆流推进器 275、290、291、253 和 246 者地进行增大擦魔面积安全停车进行飞吊器 1 救生作业输送灾下救生员，用气垫担架 266 飞吊运伤员的方法和车辆设备，图 16 展示用这种飞吊救生方法和设备车辆实现本发明的功能作用。
- 硬篷箱式泥浆沙洪灾流飞吊救医疗救护两栖车具体实施例；
- 图 17 标示硬篷箱式泥浆沙洪灾流飞吊救医疗救护两栖车示意图。
- 硬篷式泥浆流轮胎推进器 253、246 两栖车 223 由现有的技术的军用越野车底盘和水陆泥浆流技术进行加长加大底板加钢度材料基础上在底盘架四角安装优选的泥浆流推进器 275、290、291、253 和 246 或配爬坡器 251、285、的方式增加在泥浆中航行能力。
- 泥浆流密度大于清水流，浮力也大于清水，但黏连性大于清水，在泥浆流中航行阻力远远大于清水，同时夹杂着大量漂浮物和缠绕物普通常规船用清水螺旋桨推进器无法在洪灾流、泥浆流、泥石流中航行，湍急洪流也使传统冲锋救生筏无法正常使用。在此情况下本发明的泥浆流推进器优于传统清水螺旋桨 252 的工作。
- 泥浆流两栖救生救援车 223 和救生飞吊器系统 1 的搭配功能作用远远大于传统水陆两栖车和冲锋舟的功能和救生方法。
- 本车前方发动机前舱顶需加装活动收放式泥浆水流阻断 293，进行航程防阻，利于逆流航程作业。
- 本车驾驶室 263 为双排座舱设置其空间，前排为两座左为正座驾驶员负责轮式驾驶操控，右为副驾驶员负责泥浆流驾驶操控。驾驶室后排设隔板医疗器品室仓 261。
- 车中设平动可敞顶的封闭长方形中等人高度的硬箱救治仓 259，仓两侧设可推拉的活动侧门 240、254，可顺槽 248 直开拉到尾台，方便救拉落水者。
- 仓顶设可敞顶卷帘机构及卷帘式仓盖 241，关上防风雨，开启时便于飞吊器 1 飞吊救伤员气垫担架 226 吊进仓和用网捞篮筛子 225 救送灾民进仓 259。
- 在驾驶室顶安装了自动跟踪式救吊作业照明射灯 227，也可用作航趋远距照明。设公路、泥水行驶警示灯 228，设接可收收调风向防雨水本车发动机排气器 262 和进气器 231，也可移在车尾顶飞吊器仓处与飞吊器燃油发电机的排气口和吸气口共享同一排烟和吸气口。
- 在室顶装有可 360 度旋转和升降的全视野透明空调半球形操控室 229 内装可转动
说明书

人形椅全控台 230。

[1323] 在本车设救医备用医疗药品及器材仓库 261，此为医被仓与洗医疗药器材生仓室门 260 通道。右侧门和移仓仓门 261 后外角上安装升降近距液压系统推接起吊架 232，在本车尾部顶仓设有飞吊器 1 存放仓 244，飞吊器 1 仓侧下方配输电牵引索 1 卷扬器 256 由卷扬器电机机 257 驱动。在本车尾设瞭望台 250，开办有医救仓后尾仓门 247，专设非伤灾民隔离搭乘转运。该台内设配套的油箱发电机 N1 和蓄电池组 N2 仓 294。在本车尾下设有可开关常规通讯清水双涵道螺旋桨推进器 252。在清水时打开使用，泥浆状时关闭，用架四角设的泥浆推进器。在本车底盘四角梁架上设有电动爬坡机助推器 251，也可选液压迈步式电动爬坡机 285，以便行至半湿半干或上下坡时助力行爬。

[1324] 本车纯公路行驶时使用普通加强越野公路轮胎 288，也可优选本发明的公路和泥浆石水流多功能人字单边锯齿轮轮纹轮胎 253 和轮毂式带有伸缩襟翼 245 和伸收秧内的推进器 246 综合一体型轮。

[1325] 本车两侧车身设有水体导向槽 255，又另用途为落水者的救助提供了攀踏板斜 255 的称“车身四周都设有落水者救助攀抓栏 264。从硬蓬式泥浆两栖车医救仓后门 247 登台也可救助落水者攀登。

[1326] 本车主救作业系统是飞吊器 1 关联网搁箱 225，设配近距离和高度的液压救生臂 232，下联可电机转动的基座液压柱柱 233，上联斜向三角液压支架臂第一节 234，又斜连二节液压杆 235，起重臂端头设的提吊索卷扬器 236，装可倾斜平行四边行桁架 237 与液压可上下伸缩高低的救生箱的上环保护圈 238 和救生箱 239 相联。车箱顶一侧设有其存放液压救生臂杆槽 242 和救生箱储藏仓 243。

[1327] 上述组成了一套完整的能在泥浆砂石洪流航驶和公路高速行驶及半湿半干坡道爬坡能力的底盘，车体箱医救舱，主飞吊系统和辅助液压提吊救接器的两栖救护车的救援救生方法和相应的车器。

[1328] 半敞蓬式泥浆洪流飞吊救援医疗救护两栖车具体实施例：

[1329] 图 18：半敞蓬式装有长螺旋钻泥浆推进器泥浆洪流飞吊救援医疗救护两栖车。

[1330] 半敞蓬式泥浆沙石水流两栖救援车 265 由现有技术的军用越野车底盘和水陆两栖车技术进行加长加强底盘架钢度材料基础上在底盘架两或四角安装优选的几种泥浆流推进器 275、290、291、253 和 246 和装配爬坡器、251、285、的方式及公路和泥浆石水流多功能人字单边锯齿轮轮纹轮胎 253 和轮毂式带有伸缩襟翼 245 和伸收轮毂螺旋推进器 246 综合一体型轮。增加在泥浆沙石洪流中航驶、于地越野、公路高速运行能力，缩短抵达现场和回程医院救治时间。

[1331] 泥浆流密度大于清水流，浮力也大于清水，但黏度性大于清水，在泥浆流中航驶阻力远远大于清水，同时夹杂着大量漂浮物和缠绕物，普通常规船用清水螺旋桨推进器无法在洪灾流，泥浆流，泥石流中航驶，湍急洪流也使传统冲锋救援舟无法正常使用。在此情况下发明的几种泥浆流推进器优于传统清水螺旋桨 252 的工作，泥浆流两栖救援救护车 223 和救生飞吊器系统 1 的搭配功能作用远远大于传统水陆两栖车和冲锋舟的功能及救生方法。

[1332] 本车前伸发动机仓前仓顶需加装活动收放式泥浆水流减阻托 293。进行航驶减阻，
利于逆流航驶作业。

【1333】本车驾驶室 266 为双排座舱配置其空间，前排为两座左为正座驾驶员负责轮式驾驶操控；右为副驾驶员负责泥浆泵驱动操控。驾驶室后棚设隔间医疗室室 267，医疗室室

开盖的门 272 与半敞式救生舱 276 相通连。其中顶设自动启动的救急作业照明射灯 269 也可用作水道、公路航驶远距照明。设行驶警示灯 271，设接可伸缩调风向防水伞本车发动机排气槽 270 和进气器 273，也可移在车尾顶飞吊器仓处边与飞吊器燃油发电机的排

烟和吸气共享同一排烟和吸气口。

【1334】车中前部设有活动可折叠的防淋雨遮阳半敞篷 247 式救急舱 276，车两身侧棚设上设可推拉的折叠半敞篷 274 顺开滑槽 278 直开拉到尾台，关上防雨防水，开启时便于飞吊器 1 飞

吊救伤员气垫担架 226 吊进仓和用网捞篓筛器 225 救送伤员进救急舱 276。救护舱 276

两侧车身触面设有流体导流襟翼，另用途作为方便救拉落水者攀踏，车外围四周同时设有

枝栏，供落水者方便攀抓。

【1335】车尾顶仓设救吊器 1 提吊救生网捞篓器 225 关联系统敞顶式存放仓 277。

【1336】在尾仓装有空调透明半圆柱形操控室 279 和空调地板 281 内装可转动人形椅全控

台 280。

【1337】在飞吊器 1 舱下方配输钢缆牵引索卷扬器 289，下部位设有配套的燃油发电机 N1 和

蓄电池组 N2，也可移设在本车尾攀拦台 284 内仓以增大救护仓面积及攀护拦杆 283。

【1338】车尾台留有面积专设非伤人员隔离搭乘转运。

【1339】在本车后尾设有可开关常规传统清水双涵道螺旋桨推进器 282，在一般性水灾情

况下运行。

【1400】在本车底盘四角梁架上部设有电动爬坡助堆器 251，也可选油压迈步式电动爬坡

器 285，以便行至半湿半干或上下坡时助力行爬。本车纯公路行驶时使用普通加强越野公路

普通轮胎 288。或优选本发明的公路和泥浆石水流多功能人字单边锯齿轮胎纹轮胎 253 和

轮毂式带有伸缩支撑翼 245 和伸缩轴内的推进器 246 综合一体型两轮。在本车两侧车身设

有流体导向襟 255，该导向襟另用途为落水者救助提供了攀踏板架 286 的另称，车身四周

都设有落水者救助攀抓 268。

【1341】本案主要用于水中搜救作业系统的工具是飞吊器 1 设置捞救联网捞篓器 225。

【1342】优选一车型：硬篷式泥浆沙石流飞吊两栖救护车 223。

【1343】优选二车型：半敞篷式泥浆沙石水流飞吊两栖救护车 265。

【1344】4. 半敞篷式装有长螺旋钻泥浆推进器泥浆洪灾流飞吊救援医疗救护两栖车 265

具体实施例。

【1345】在上述两个优选车型中安装以下优选的泥浆沙石水流推岸器和爬坡器。

【1346】优选 1：在本车的底盘车架四驱人字单边锯齿纹鼓形轮 253 和轮毂内液压伸缩碳

幅展收支撑翼综合体 246 泥浆沙石水流行驶航轮和动力线和信号线的接口。图 17 标示了这一

优选实施例装配图。

【1347】优选 2：在本车的两侧开有可配装排头螺旋钻锚长锚泥浆流推进器 275 的接口和

伸收仓 287。图 18 标示了这一优选实施例装配图。本方案可选可配普通胎轮 288，或优

选轮胎伸缩式螺旋锚泥浆助力器人字锯齿花大鼓形轮防两轮 246、253。

【1348】优选 3：在本车的底盘车架四角安装侧螺旋钻锚泥浆流推进器 290 和动力线和信
号线的接口。图 19: 标示泥浆流两栖救援车前前后侧方四角位置设置螺旋蛇螺状泥浆推进器车型，优选实施例装配图。

[1349] 优选 4: 在本车的底盘车架四角安装螺旋螺杆泥浆流推进器 291 和动力线和信号线的接口。图 20: 标示泥浆流两栖救援车前前后侧方四角位置设置螺旋螺杆状泥浆推进器车型。该车优选泥浆流两栖救援车螺旋螺杆状泥浆推进器 291 优选实施例装配图。

[1350] 优选 5: 在本车的底盘车架四角安装液压油压式动力螺旋卷带爬坡器 285 和动力线和信号线的接口。图 18 标示了这一优选实施例装配图。

[1351] 优选 6: 在本车的底盘车架四角安装液压摆动式动力驱动轮带爬坡器 251 和动力线和信号线的接口。

[1352] 在车尾顶设防护罩 277，边外角上安装升降液压系统，接接吊架 232，在本车接起吊器臂端底端吊一个环，肩宽，可站可蹲的吊笼箱 292，可进行 2~3 米高度同时吊救两人的情况。或设配辅助近距离和高度的液压救生臂 232，下联可电机驱动的基座液压腔柱 233，上联斜向三角液压主支架 234 又斜连二节液压杆 235，杆头 236 装定滑轮救生箱 292 相联。车尾顶箱边设有存放救生臂 232 槽 234U 及救生箱储藏仓。

[1353] 图 21: 标示泥浆流两栖救援车前前后侧方四角位置放置固定式可倾角的爬坡助力器，车尾部的泥浆流涵道推进器的一种装配车型优选实施例装配图。在泥浆流、或泥浆流两栖救援车优选配的近距液压伸缩转动的救生臂 232 及救生箱 292。

[1354] 上述组成了一套完整的能在泥浆沙石混流中用飞吊系统实现救生方法和相应的车型及装配的几种推进器、爬坡器。

[1355] 5. 泥浆流两栖救援车行车头气排式减阻托 293。

[1356] 图 22: 标示泥浆流、或泥浆流两栖救援车可选配的车头气排式减阻托 293。

[1357] 在车头装有可升降伸缩可变角度的雪橇板式泥浆浮力托，可调车头在泥浆中行驶的仰角度，以适应不同粘稠度和行驶速度及浮力点支承角。

[1358] 每种车前部外凸部泥浆流水中有着十分大的阻力，在泥浆湍急中由其逆流行驶，对救援作业中往往逆流行驶仍能稳定位置不变，因此在车头前设置减阻托 293，像雪橇原理一样在泥浆流中减低行驶阻力方便平稳在水中位置，有利飞吊救援被困中人员。

[1359] 泥浆流密度大于泥浆流，浮力也大于泥浆，但粘稠性大于泥浆，能泥浆流中行驶阻力远远大于泥浆，优选本发明气流式减阻托是十分必要的。在减阻托腔中加入气托方法是进一步优化减阻技术的进步。具体实施例如下：

[1360] 气垫减阻托分两种，上托段 405 即拆叠式和副储气仓，起到拆叠和储气作用和下托段 308 起到产生气垫效应和主减阻作用，形状都为长方形弧状中空腔结构组成，可拆叠的组合在一起。

[1361] 上托段 405 是长方形弧形扣向发动机仓，长度尺寸为车宽尺寸，窄尺寸边长为上托段的两侧尺寸，上托段为耐压的中空腔副储气仓 406。上托段 406 上端两侧设有液压拉收杆调节器 404 和水平延发动机仓盖滑轮驱动装置移动进退和转动机架 403，即减阻托角度调节和拆叠动作液压拉推驱动器 403，主要作用是车在公路上行驶时减阻托 293 收起，主要靠其收拉作用。在转动机架 402 驱动下抬起，液压支杆及定位销 400 和 401 配合上收收起调长度。一端与车体转动机构 402 相连并与下托段气垫工作面积 308 上端两侧折叠轴 407 相连及下托段中下应用转动轴及毂镰锁，起到收起和释放动作的搭配作用。
说明书

上托段 405 下端两侧穿插拆叠轴机构 407 轴，与下托段 308 上端两侧联结组合拆叠机构 407 轴毂相连。

下托段 308 从上端向下 1/3 处设气垫槽 294，槽中心线设多排、优选三排气垫导气孔 295，每排间隔一段距离。或组成三角形布孔，或一线排列布孔。在气垫导气槽内 294，槽为截面三角形。槽底 296 设为尖，槽底设气垫孔 295。孔外触水面为直，孔内面为斜面 306 与导气阀 297 与斜锥体圆面 306 吻合，气垫导气槽上棱 298 分隔气垫区，起到导气流稳气垫作用。此气垫导气槽 297 连一杆套压力弹簧机构 301 杆连电磁阀 300，该电磁阀 300 吸力大小和深度决定了气垫槽 297 抬起大小，所释放气大小，根据泥浆水流与减阻间相对的流速来释放气流形成气垫层的大小。除了在减阻表面涂类似不粘锅原理涂层外，选择设气垫基方法以进一步提高加强减阻参数修余度。以适应不同黏度泥浆流。

下托段内设空腔为一级气压室 299，其主气压室壁 307 为耐高压板，阅间设有二级储气仓 302，通二、一级气仓储气通孔 303 的进退储气量和持续时间，上托段设称三级储气仓 406，在一二级储气仓间布置气垫导气形成气垫效应 304 系统，气垫气压 Pa 在喷气孔 295 喷出的气流 305 行成气垫 304。下托段 308 气垫效应工作面积段 308 由其长度尺寸，最大限度的行成气垫减阻以适应泥浆水流的航变。

图 23：标识伸缩接头推力人字锁齿绞鼓形大浮力泥浆推进轮轴两栖轮 253。

图 23：标识伸缩接头推力人字锁齿绞鼓形大浮力泥浆推进轮轴两栖轮 253 是飞吊救援医疗救护两栖车硬篷封闭箱式（223）和半敞篷式（265）两栖行驶的执行机构具

实施例：

人字锁齿环大鼓形大浮力泥浆推进轮轴 253 是利用橡胶制成，外形似大一个大鼓状，胎外纹为大人数字 410，设是人字笔画下方及边单边的数 411 和捺 409 单边设有锁齿形凸纹 409，此锁齿纹凸增大泥浆水流在人字纹单边的滑流阻力，以提高此轮推进效率。此轮转动速度和方向 408，轮滚动前进方向 412 标示了此轮结构与运动和作用力方向关系。大鼓形轮胎基盘 413 与大鼓形轮胎空法兰盘 414 连接固定，并与轮胎筒 416 连体成车，该车轴上设有可伸缩的圆筒状主轴筒 418，此上设有可展收的襟翅 417。此襟翅形一头大，头小，像近似 60 度、30 度、90 度内角的三角形长弦与圆筒状主轴筒 418 平行相连，两个襟翅 417 头间设一个头，两襟翅大小头颠倒设计布置。这种布置有利防夹杂泥浆中石杂物，当主轴筒 418 高速转动时又能防襟翅 417 后流休风阻。提高襟翅 417 推进有效率。在轮胎筒 416 内端用紧固螺丝 420 固连主轴筒 418 主轴筒内设优选气压动力底座紧固法兰盘 419 和紧固孔 415，在法盘中设主轴筒气压伸缩槽机构伸出气压轴 424，在此中设活塞 444，在进气管 422 压进空气作用下主轴筒 418 中心设的导向滑动轴 440 连的驱动滑片 444 作用下内活塞导滑槽 441 护滑下伸出轮胎筒 416。在进气管 423 加压空气通过输通管 426 顺压气管转弯 430 进回缩槽 429，反向作用活塞 444，主轴筒 418 绕回轮轴 416 内。主轴筒 418 设置伸缩导向法兰座 427 设在轮轴 416 内伸缩中心有气压柱滑槽 424 又是活塞 444 导向腔。其外径又是主轴筒 418 的中心导向滑柱 424。在轮胎 416 内筒径滑动并密封，外端封垫也是 442。在轮轴内形成气压腔 425，具有浮力作用。在两轴轮 253 人字花轮胎在装进轮轴 416 后由轮胎毂箍紧圈 446 加强特种紧固。主轴筒 418 襟翅 417 的展收，通过两侧升降滑道 428 和 439 伸收。在电机 434 驱动螺轴筒 438 转动与另轴轴承固定 431。襟翅在升降主滑动器 437，在螺轴 438 上驱动下驱动，同时在襟翅下设的被动滑动器 435 跟随滑动，使 X
形升降器及绞轴 436 伸收升降。X 形升降的动作在其配电力通过输入线 421+、- 通道 445，主输筒 418 伸出滑动部位电力转接触点 342 接通导进电力 +、- 并通电力线通道 433 输进电机 434，作用螺杆 418 展出。设计采用大鼓弧形状面，中间很鼓面于地面接触面小，在公路高速行驶减小了胎阻，节省行驶能耗。在泥浆砂流中输送增大与泥浆砂水流接触而驱动力，并没有人字锯齿铸面增了摩擦驱力，状此两输轮增了浮力。同样节省能耗。

7. 可伸缩缩角度锥头螺旋长铰大浮力泥浆推进器 275 方案实施例：

图 24：标示可伸缩缩角度锥头螺旋长铰大浮力泥浆推进器 (275)。

锥头状螺旋伸出浮简镭泥石流推力器方案：

在该车两侧同向各设置了一种与车身长度略短的长铰筒，长铰筒两头为锥状形，在外周圈和长度上缠绕连接螺旋鱼鳍状泥浆推力板，选用电力驱动力，设有调速，正反转功能，在左右两侧及其内可在泥浆流中高低速行驶，可倒车，可调向。每个推力器臂可做水平和向后驶 90°角度曲直及前后长铰方向与车身长度之同调角度，并与车头装有可升降伸缩可变角度的雪橇板式泥浆浮力托配，可使车辆在泥浆流面上呈升降和向前倾角度浮驶。在公路上行驶时两侧推力器可缩收回两侧车体内。当进入泥浆流和洪流中时可伸出工作。在该车两侧前倾四角设置螺旋器，锥头螺旋长铰大浮力泥浆推进器 (275) 是一种大浮力大驱动泥浆推进器，它可防大夹杂物，深度大的泥浆洪流的行驶，该推进器两头为锥头体 464 上设有锥头螺旋状 480 尺寸从锥体变部的尺寸大渐变到锥尖尺寸小，中部为长铰筒 473，上设同高尺寸的长铰筒螺旋状 474，在两头锥头到中部长铰筒间，设有两个是止子夹紧锥体可拆 463。在此中心有一个贯穿中心的旋转动力中心轴 471，其泥浆推进器螺旋锥体体与主轴 471 两连固部头尖 482 与锥头体塞 466 固连，并由主输筒环体与锥头间密封动圈 478 防泥浆水。中部浮力康长铰筒 473 是一个空腔浮力仓通过支承架 472 与旋转动力中心轴 471 固连。在两主输筒环体 477 中设电力驱动电机，主输筒环体 477 为电机定子线圈绕组 469，其上由螺钉 481 镶有主输轴外环 467，主输轴内环 479 与主输轴轴套同并主输轴环绕水磁铁转子 470 并联。锥体大端镶有联固的凸形法兰盘 465 并与主中心轴 471 和主输轴内环 479 及电机永磁铁转子 470 并联固为转动部分。在锥体大端与主输轴外环设有密封 468，长铰筒端密封 467 密封 475 对其的防水保护。

本推进器的电力线 484 通过主臂 463 中电力通道 462 与主驱动电机相连。主臂 463 主输缩直臂 459 的伸通过过油管 450 进液压液作用活塞 449 和回缩进液管 447 进液压作用回缩。在主输缩直缩臂 459 上关节轴 460A 与副折臂 458 的连有斜臂 461 及两转动关节轴 460B 相连并转动可打折一定角度。在液压副臂 451 中插装的直缩臂 458 的伸缩是进液管 455 进液压到液压腔 453 作用活塞 456 产生伸缩，回缩时进液管 457 进液压，同时连结车体架的转动机构副臂固定转轴 454 配合泥浆推进器定子主输缩臂 463 拆一定角度推进器 275 下弯可抬高车体在泥流中的行驶浮高双体船样航行。转向靠两侧推进器不同转速，急转动时两侧转动方向反向。本推进器由紧固螺栓 448 将推进器座基 483 与车架身 452 紧固，本推进器可调臂折叠角度变成大折角高度适合泥浆稀洪流大水中杂物多的救灾抢险航行使用。

8. 可伸缩摆动变矩螺旋蛇形浮头泥浆砂流推进器方案 290 具体实施例：

图 25：标示可伸缩摆动变矩螺旋蛇形浮头泥浆推进器 290。

在该车两侧前端四角设置螺旋蛇形浮头泥浆推力器，又起到在半干半湿上岸和下
说明书

泥水流岸边交界地段的泥砂段爬坡助推功能。

【1377】本推进器适用干软黏泥浆流中驱动行驶与泥浆流两栖车伸展鳍翅助推排除246字锯齿纹鼓形大浮力泥浆推进轮胎两栖轮253配合使用于救援作业。

【1378】本推进器像个钻头陀螺体290,外面镶有可变矩螺旋鳍翅501。根据不同粘度泥浆调矩。本推进器利用木钻、木螺丝工作原理而设计，并在此基础上将钻丝螺丝可变矩，以适应不同粘度泥浆流中推进和拉进，在车尾后部设的推进器是推，车在车头两侧设的同样推进器是拉，以驱动本车能在泥浆流灾害中救援作业。本推进器分两部分前部为推力作用工作陀螺头，后部为伺服机构。

【1379】前部陀螺头像个木陀螺形内分两仓，外是环形有分隔的浮力仓504，内中心部是动力机构仓500，在此中心是静主轴508，轴是不转，主轴静508头部连有一个主轴转轴511和转轴509,转动锥头内联接510与陀螺头体固连。在动力仓静主轴装电机静子线圈绕组515。和电磁铁转子514,电机电力线阳极线528、阴极线527通过主静轴508和动力电源526在电机静子绕线连接口516。在电机两端设有主轴承，主轴静轴承内环圈505套在联静轴508上，主轴外环圈512与转动的陀螺头动力仓500内径腔相联，形成变矩螺旋陀螺头泥浆推进器290主推力转动系统。

【1380】在陀螺头面直筒段镶变矩螺旋鳍翅501，下部连有变矩鳍502和所在滑道503。再随锥头斜面绕连变矩螺旋鳍翅507，其变矩鳍513和滑道。

【1381】变矩螺旋鳍翅501和507的变矩是由变矩液压器517主推进法兰托497中间设滚动滚珠498及被动旋转法兰托499间形成旋转机构和回缩实现螺旋鳍翅501、507的变矩。其变矩液压器推进油管492进油压腔494作用活塞495前移和进油管493进油压腔496作用活塞494另一面回缩来调变矩，螺旋鳍翅的面点PL0发生作用力方向P, PL1分量大小变化，根据泥浆黏度和与车身相对流向及本车运动方向相对参考进行变矩改变对流体（即泥浆）作用推力。保本车航驶的效率和安全性。

【1382】本方案推进器290可上下摆动和前后伸缩动作，摆头动作在主推进器上下点头方式摆动转轴523与主转推进器上下点头方式摆动转轴套524之间存在转动，不移限位情况作摆动，是由车架联结基座533相联推力是由装在车体副臂转动轴485连副臂534液压器通过自身弯曲节转动轴490连结斜臂491的作用力完成。油压进入油管532液压腔486作用在活塞487推动活塞杆488外伸在作用力PL3作用下弯曲节转动轴490推转动斜臂491作用与推进器290的摆动。进油管531进油下作用液压回程腔489活塞487回程、推进器向上摆。

【1383】本方案螺旋陀螺泥浆推进器290可伸缩，是由进油液压管530进油液压，推进器主伸缩液压臂伸出，是由油压腔522液压作用在活塞521上，推动主滑动轴525滑动整体陀螺推进器290向前伸。若油压从回缩油管529进入回缩油腔520活塞521,使陀螺推进器290向回缩。其伸缩颈的密封套518保护机构防泥浆水。上述的构造和动作具体实施本方案的发明方法和设备。

【1384】9. 可伸缩摆动式砾石浮简鳍翅泥浆流推进器291方案具体实施例。

【1385】在该车两侧前后四角设置可伸缩摆动砾石浮简鳍翅泥石流推力器在泥沙水流用又起到在半干半湿土上和下泥水流岸边交界地段的破碎助推攀爬功能用。

【1386】在该车车轮毂内设置可伸缩摆动式砾石浮简鳍翅泥浆砂流推进器
图 26 : 标示可伸缩摆动式碾辑浮简摆＠泥浆推进器 291。
图 26-1 : 标示可伸缩摆动式碾辑浮简摆＠泥浆推进器 291 由蜗轮轴摆动的主结构示意图。
图 26-2 : 标示可伸缩摆动式碾辑浮简摆＠泥浆推进器 291 筒体与摆＠结构剖面图。
图 26-3 : 标示可伸缩摆动式碾辑浮简摆＠泥浆推进器 291 筒体与摆＠结构轴测图。
图 26-4 : 标示可伸缩摆动式碾辑浮简摆＠泥浆推进器 291 由液压副推摆＠摆动主结构示意图。

在两栖车底盘与车架四角部位结合底座 583 安装本方案推进器是一种有浮力的鼓形面 535 镍筒状上带楞翅的碾辑式泥浆推进器。可上下摆动，可伸缩，电力驱动，其特点可作爬坡器的动能。又是可作泥浆推进器。

鼓状碾辑筒分三层部分，筒中心处是电刷刹车系统和电动变速系统动力仓 560，内设电机，外层是浮力仓 555，是为了提供浮力，筒面 554 焊有抛物线式分低高度窄端平 568、中段最高宽径 569，另端头中高度中宽 570。园弧形内有空腔的楞翅，是推进器的动力输出机构。筒中心动力仓中有一个碾辑电机定子绕迫 552，永磁铁转子 553 组成动力系统、电磁刹车系统的刹车片 557 和电磁吸合器 558 组成，变速减速系统 550、556 装在总体轴 564 上中部装有电机定子线圈组 552 和永磁铁转子 553，连动力线 d+ 通道 543 接口 551 为电机提供电力。在电机两端设有变速减速器系统 550 和 556，再在同轴两侧设电磁刹车系统的刹车片 557 及电磁吸合器 558，电磁刹车系统内接线处 571。外通接口 559，经通道 543 导入刹车电力线 s…。其在鼓形碾辑筒的两端，刹车仓 560 两端安有一对主轴外轴承外环动圈 561 与刹车仓 560 内径锁联，主轴外轴承内环静圈 566 与中心轴合轴 564 煅联，与对应轴内轴承轴 548 承担主轴 564 与碾辑式摆＠泥浆推进器 291 的支承和驱动转动。在筒外端，动力仓外设另一副外围护卫浮力仓 567，设有一端盖 565，与转动副外围护卫浮力仓 567 外端壁间设有防泥水密封 563。碾辑主轴端轴轴空心轴 546 和端轴主轴 545 伸出碾辑端轴处设有防泥水封 547，主轴端轴轴 545 与液压伸缩主臂体 580 铰轴 544 联固。在进油管 574 进油压腔 573 作用活塞 572 主臂体 580 伸出，进油管 581 进油压活塞 572 回程主臂体 580 回缩，主臂体 580 防泥水封 582，碾辑的摆动是由扭摆主轴 578，配装扭摆主轴轴承 577 支承转动，并由驱动电机 576 连轴轴 575 的驱动下蜗轮连带扭摆轴 578 摆摆转动。该轴扭摆铰 579 握联主臂体 580 一起作上下点头摆动和摆摆所需角度。

碾辑 291 的摆动也可优选安装副液压臂 586，在进油管 584，585 的油压作用下的副液压臂 586 的伸缩通过斜臂关节转轴 587 传斜臂 588 的作用力推拉主液压臂体 580 带动碾辑可根据泥浆黏稠度和密度产生浮力大小，以适应进行调碾辑的摆摆，方便快速有利的本车行驶完成救灾任务。

[1394] 在棱_are 的设计中，优选的每个棱_are 的横截断面为三角形截面内腔 554，562 是同形，长度截面为上下弦皆为抛物弧线上天弦与碾辑鼓体弧线吻合，上弦为正抛物弧线形从一端小头 537 渐变到中部大 541，到另端变小 542 的抛物弧线截面。棱_are 外表 TUL 为弧面，两棱_are 间为凹弧面向外展开如 a b c，一条棱_are 与两边棱_are 形状略倒设置如 538，539，541 的标示，即在碾辑一端两个棱_are 高端位中夹一个棱_are 低端部位结构相对关系的位位置 539 和一个棱_are 分三个高度弧线段的弦长位置 541 相邻相互平行状态。并同向同鼓弧面结构 540 对应关系。这种结构防泥浆夹杂物、推进旋转时每叶棱_are 防产生尾涡涡流废阻，

84
提高瓣翅叶工效。

[1395] 10. 液压迈步式电动爬轮履带爬坡器 285 具体实施例：

[1396] 图 27：表示液压迈步式电动爬轮履带爬坡器 285 和液压摆动式电动爬坡器 251。

[1397] 图 27-1：表示液压迈步式电动爬坡器 285 主视剖视图。

[1398] 图 27-2：表示液压迈步式电动爬坡器 285 俯视剖视图。

[1399] 图 27-3：表示液压迈步式电动爬轮履带爬坡器 285 履带局部剖视图。

[1400] 图 27-4：表示液压迈步式电动爬轮履带爬坡器 285 履带主体零件局部剖视图。

[1401] 液压迈步式电动爬轮履带爬坡器 285 主要组成由两部分组成第一部分是迈步功能的液压支柱及结构架系统，第二部分是由电动滚爬轮履带系统组成。

[1402] 1. 液压迈步结构系统部分：

[1403] 第一部分：迈步系统横向水平液压系统 589 与车体主梁架连接。本身是一种内径管状两端设有前进回退液压腔，腔内有长柱状活塞体 596，此柱状活塞体 596 中部镶有向外伸展出长方两头环面凸型迈步进退行程挡 591 并与长方圆柱迈步水平外滑动器 592 镶连，该滑动器 592 在横向水平液压系统外主体 589 套上滑道 594 和下滑道 593 上滑动，并与迈步水平移动挡 L 形液压支架千斤顶托座 614 联结。迈步水平移动倒 L 形液压支架千斤顶托座 614 上联结迈步系统前腿主液压支柱系统 595 伸收，另端前腿主液压系统鞍座千斤顶 611 主支承力与履带系统主横梁 600 中部转动联结。后腿主液压支柱系统 590 伸收及延迟推收助力液压系统支柱 613 三个液压支柱上端配合共同分别连结后腿主液压系统鞍座千斤顶三叉连接轴 612，三个液压支柱分别与履带及驱动系统结构长方带加强槽和筋的主横梁 600 联结和后爬轮电机主轴联结。

[1404] 液压液通过进液管 616 进入前进推力液压腔 615 内活塞 596 压推进爬坡爬轮履带水平前移，液压液通过进液管 598 进入液压腔 597 压迫活塞面 596 爬坡履带水平向后收，迈步水平滑动器 592 结构体在横向滑道 594, 593 上完成迈步水平行程移动和液压支柱的伸收并预其它 3 个液压迈步式电动爬坡器 285 配合完成本方案车迈步行动步伐。

[1405] 2. 履带及驱动系统结构部分：

[1406] 第二部分为电动滚爬轮履带 605 系统：由两个中凹节 608 中央一个中凸节 609 这三节组合的两侧再各安装一节摩擦块中凸节 604 都由穿节轴 610 穿连结合做为一个完整组合，以此组合循环连接成整个履带系统 605。在此履带环中前后都设为动式滚动爬轮爬齿 603 由履带主横梁 600 前后大电机主轴 607 上装由大直径大扭矩直流电机定子绕组 601、转子永磁组 602 组成动力输出源，并连输入动力线 606，另一端连燃油发电机 N1 供电完成履带主凹节 609 做为履带抓力力最大的摩擦块布置在爬轮爬齿 603 的两爬齿之间位置 599 形成滚动抓爬行驶系统成摩擦力最大化完善系统。并在爬轮主轴处安装刹车系统和调前进转和后退转的倒转转接机构，此项为现有技术本画图中未显图样。本履带 605 主横梁 600 联结迈步三个液压支柱 595, 590, 613 伸臂下端，其上述爬坡器 285 共同与其它 3 个同类爬坡器 285 配合在中心控制计算机的调控中自动完成承担本车越野行动。

[1407] 上述结构联结并结合图及标记说明阐述了其构造及动作功能。

[1408] 11. 液压摆动式电动爬轮履带爬坡器 251 具体实施例。

[1409] 图 27-5：表示液压摆动式电动爬轮履带爬坡器 251 主视剖视图。

[1410] 251：表示固定液压摆动式电动爬轮履带爬坡器 251 具体实施例；
将倒 L 形架 617 与两栖车底盘主架四角设置结合固定。在 L 形架横架中前部安装双套平行前腿伸缩摆动液压支柱 595。下端与前后两电动爬轮之间，履带主轮梁 600 长度中部连接可轴转动，在后爬轮主轴上安装平行双套三叉角形衍架 620。这角形衍架 620 架两叉的一叉架 618 一端与 L 形架上部横架后部联接，另一叉架 619 一端与 L 形架竖架联接，后爬轮 603 只保持转动。前爬轮 603 在前摆动伸缩的液压支柱 595 的作用下摆动和调不同角度攀爬坡，可挺起车。整体爬坡履带由内装有直驱电动机动力的前后锯筒状爬轮爬齿 603 组合，上装履带摩擦块 604 的履带 605 组成轻便液压摆动式电动爬坡器 251 系统。

一般越野车增加固定液压式履带爬轮爬坡器起到更强的越野性。

12. 救生工具的气垫担架和防飞吊器下洗流罩起吊电动绞盘器。

图 28-1: 检示救生工具的气垫担架和防飞吊器下洗流罩起吊电动绞盘器。

图 28-2: 检示防飞吊物钩。

图 28-3: 标示主要应用于水中救生提捞器。

1: 防飞吊器下洗流罩起落架 621。

在中间设有可连接紧固的法兰盘 622 对称连接十字横框臂 625 伸展外连园环框 621a 同时还有带活动关节的起落架腿 626 作为起落架 621 的支承骨架体。在其法兰盘 622 上设有上连飞吊器的电力、信号插孔 622a 也是吊绞盘器 624 和气垫担架 226 提供电源和控制信号的电力、信号插孔和联络紧固孔 623，下部连接吊绞盘器 624 与对应上的联络紧固插孔 623。在十字框臂 625 伸展连园环框 621 的面积内设透明柔性可下垂呈斜兜状飞吊器下洗气流罩 626a，以防受强风吹刮下坠伤员和工作人员。

2. 透明半封闭式气垫担架 226。

在提吊索 224 下端连环状可转动的万向接器 633 分四支绳环套钩在透明半封闭式气垫担架 226 的挂环 288 上，半封闭式气垫担架 226 是以最高人长度为参照长度盈余长度尺寸设为担架长度。以人最宽肩宽余宽尺寸设为宽尺寸，内腔高设人最高胸膛或孕妇孕期后月 肚腩高为参照盈余尺寸设为内腔高尺寸，担架上设两扇弯弧透明活动侧门 288，头顶和底脚部位设刚性半弯弧弧边固定端护盖 627 增强防护刚度，担架主体腔 630 下隔间设为自呼吸半柔半刚气垫仓 630 其四周为折叠式柔性壁并设气流呼吸进排气孔 632，底部设为刚性底 631，又设四角方向仓底自滚滑球及测距传感器 631c，在此位设有离地高度传感器类汽车倒车超声雷达测高度，为此现有技术移植的组合，进行技术改进适应本方案应用测控本担架在飞吊器不论飞的高度变化搬运时不超离起吊下 1 米 -1.2 米，以伤员运送安全高度运抵本车近旁。在担架头脚端及担架腔与气垫仓间设有可抽拉式担架手杆 629，方便救生员抬进出车祸治仓。

提捞器 225 具体实施例：

在万向节 633 四分布柔性栏 636 连挂提捞器 225 的椭园形硬质重于水的重金属刚性臂，该裙内编制有柔性筛装网，便于水中下沉可在水捞托落水者。

半自动开合提吊器；其由联接法兰盘 637，上设电源、信号插孔 295，联结紧固孔 637a。下连固定长度提吊索 224 及可操控的开关挂钩 638。上述配的工具以完成基本救援作业。

飞吊救援系统电器部件配置关联示意图。
图 29：飞吊救援系统电器部件配置关联示意图。

本具体实施方案的电器设备位置控制变位机构按此图做为整形基础设置实施和进步。为了配合和关联选择了字母标示比较方便分类管理认证功能类。

飞吊救援系统是泥浆流多功能飞吊救援方法和两栖医疗救护车 223,265 进行救生作业关键飞行提高设备位置控制及其操控电器部件关联及主要由人形化全控合 230,280,130 中心控制计算机 K1 负责操控。燃机发电机 N1,蓄电池组 N2 负责提供电能,飞吊器 L,输能牵引索 L,卷扬器 643,644 负责伺服输送机组组成。其关联结构由人形化操控接合器全控合 230,280 中部制成人体物形整体为主线通道从人形臂分岔为右臂电信号通道及电控台 639 和左臂电信号通道及电控台 640,右臂电信号通道及电控台 639 上设飞吊器 L 水平飞行方向手柄 K2。当飞吊器自动保姿和功率、高度时,然后打开交换操作线 K4 时,左臂电信号通道及电控台 640 手柄 K5 由原控飞吊器 L 升降转为飞吊器联结的提吊绞盘 624 转动绞盘升降提吊索 224 作业。左臂电控台 640 上设飞吊器升降手柄 K5,同设飞吊救援系统总电源启动开关 K。

本机可旋转在座底设有信号输入光电器件 642 通过连信号线 Xn2 接主控中心计算机 K1,设有信号输出光电器件 641 通过连信号线 Xn2 接卷扬器 643 上的输能牵引索光电器件 GO 及电力线正极 Y+ 阴极 Y- 交换器。左臂电控台 640 上总开关 K 的开启通过信号线 K11 传输通往电源转换器 K8 起动燃油发电机 N1 供电,或转蓄电池组 N2 自行动电。在 K 开启状态下电源转换器可自动转换电源,同时预热飞吊系统起飞前的各项自检,完成此后起飞作业。

飞吊器 L 飞行作业时输能牵引索 L 卷扬器 643 输出和牵回的牵力索长度及拉力由传感器 X5 信号通过信号线 Xn4 传回主控中心计算机 K1,再操控双手柄 K2, K5 时主控中心计算机 K1 也自动配合;操控牵力索 L 卷扬器 643 的蜗轮杆机构 644 及驱动电机 M10 运行。

14. 飞吊救援设备电子器件与设备结构相互位置及作用分析关联
图 30: 标示设备电子器件与设备结构相互位置及作用分析关联示意图。

本具体实施方案的电器设备位置控制变位结构按此图做为整型基础设置实施和进步。为了配合和关联选择了字母标示比较方便分类管理认证功能类。

主要有以下三大部分组成：

1. 飞吊系统部分：

（1）主涵道旋翼结构上电器设置及型类。

本飞吊器 L 主涵道体 5 承担了主升力,在围绕中心轴 6 上主旋翼 3 与安装驱动电动机组件 M, 下主旋翼 3 与安装驱动电动机组件 M, 优选电压驱动具体实施例。

在上主旋翼 3 轴内上端设变惯量电磁机 V, 下主旋翼 3 轴内上端设变惯量电磁机 V, 为旋翼惯量系统中电感系统提供磁力源。

为了测控上主旋翼转速传感器 X 和下主旋翼转速传感器 X, 配合变惯量系统在飞控计算机 K0 控制下使飞吊器具有差动惯量诱导的陀螺效应定轴性, 从而增加抗湍流切变扭转能力。

为此在飞吊器 L 外主涵道体 5 的四个对称方向上设置了四套传感器联合体: 检测 C-D 间风速方向传感器和超声波测距器联合体 f2, 检测 A-D 间风速方向传感器和超声波测距器联合体 f1, 检测 A-D 间风速方向传感器和超声波测距器联合体 f3, 检测 B-C 间风速方
向传感器和超声波测距器联合体 F4，为飞控计算机 K0 提供预测四周风速，风向和飞吊器 1 的空间位置和飞行提供数据，实现自动控制。

[1441] 在主涵道体 5 上的四个对称方向的上下部位设置 A 附横向部大气压传感器 P1、A 附横向上部大气压传感器 P2、D 附横向下部大气压传感器 P3、D 附横向上部大气压传感器 P4、C 附横向下部大气压传感器 P5、C 附横上下部大气压传感器 P6、B 附横上下部大气压传感器 P7、B 附横上下部大气压传感器 P8，配合上述在高空提供四个方向和上下气流测力数据，为精确控制飞行姿态和风力的自动飞行提供参数。

[1442] 在主涵道体 5 下部设置等离子能量波发生器 Z1，也可优选设置在中子子上的电场放电能量波发生器 Z2。为飞吊器 1 在恶劣环境下出现作业，防特雷和改善雷电，提供了技术支持。

[1443] 飞吊器需要配备有外围电路飞控中心计算机（二余度设置）K1 和无线控制飞控器电路板 K2，确保飞吊器的作业的正常运行的可靠性。

[1444] 为了飞吊器飞行姿态的自动稳定控制和方向自动调整主涵道体 5 内和外接设备平台上设置有保持垂直方向陀螺仪 T1、T2 和保持水平方向陀螺仪 T3、T4。及控制飞行高度安装了高度仪 h。

[1445] 在飞吊器 1 主涵道体上安装定位仪 GPS 解决夜间距离与目标间的位差，能远距离自动导航提供参数。

[1446] 为了能在视线内人工探头目标或飞吊器安装的强光照明射灯和激光照射器精确定位瞄准专用结合体 J 及便于昼夜操控员视觉观察探控安装光学和红外摄像头 d1、d2、d3 相结合操控员通过控制台屏幕 PN 观察进行救生作业。

[1447] 为了便于指挥被救对象和指导在飞吊器外接设备平台上安装了扬声器 Y。在救生作业中为不超重专设有飞吊器吊装绞盘设重力传感器 P5 测控。并在外接设备台设置多向联接插座和吊装绞盘电动器 M9。为飞吊器上的电源提供备用电源设置有蓄电池 N。

[1448] 四个副涵道旋翼体 A、B、C、D 上设置的电器部件。

[1449] 四个副涵道旋翼体 A、B、C、D 承担飞吊器 1 辅助升力和方向及防特雷。为了实现这些方面职能，在相应部位设置了相关电器、

[1450] (一) A 标示副旋翼及涵道体结合体。

[1451] 小直径副涵道旋翼体 A 设置飞吊器 1 与操控在之间方位，由对称水平布置，与主涵道体 5 的伸缩臂 96、97 相连，其副涵道旋翼体 A 优选电机 M1 驱动。副旋翼转速控制参数由传感器 A1 承担。

[1452] 在副涵道旋翼的半月弯管 99 与副涵道体 108 的一侧安装了外摇摆驱动步进电机 m1。实现四自由度动作的一个组成部分摇摆动作，由摇摆位置传感器 A2 承担角度检测参数精确测控。

[1453] 在大直径主涵道体 5 内安装副旋翼臂可伸缩，扭摆运动驱动步进电机复合机构体 m2。可实现四自由度动作的一个组成部分扭摆动作和伸缩动作。这些动作由 m2 伸缩位置传感器 A3 及 m2 扭摆角度位置传感器 A4 负责检测和提供位置参数。上述完成四自由度动作提供数据。

[1454] (二) B 标示副旋翼及涵道体结合体。

[1455] 小直径副涵道旋翼体 B 设置飞吊器 1 与操控员之间方位，由对称水平布置，与主涵
道体 5 的伸缩臂 96、97 相连，其副道道升臂 B 优选电机 M 5 驱动。副旋翼转速控制参数由传感器 B 1 承担。

[1456] 在副道道旋翼的半伸弯架 99 与副道道圈 108 的一侧安装了外摆动驱动步进电机 m 91。实现四自由度动作的一个组成部分摆动动作，由摆位位置传感器 B 2 承担角度检测参数精确检测。

[1457] 在大直径主道道体 5 内安装副旋臂可伸缩，扭摆动驱动步进电机复合机构体 m 92。可实现四自由度动作的一个组成部分扭摆动作和伸缩动作。这些动作由 m 92 伸缩位置传感器 B 3 及 m 92 扭摆角度位置传感器 B 4 负责检测和提供位置参数。上述完成四自由度动作提供数据。

[1458] （三）C 标示副旋翼及涵道体结合体。

[1459] 小直径副涵道旋翼体 C 设置飞吊器 1 与操控器之间方位，由对称水平布阵，与主涵道体 5 的伸缩臂 96、97 相连，其副涵道旋翼体 C 优选电机 M 6 驱动。副旋翼转速控制参数由传感器 C 1 承担。

[1460] 在副涵道旋翼的半伸弯架 99 与副道道圈 108 的一侧安装了外摆动驱动步进电机 m 93。实现四自由度动作的一个组成部分摆动动作，由摆位位置传感器 C 2 承担角度检测参数精确检测。

[1461] 在大直径主道道体 5 内安装副旋臂可伸缩，扭摆动驱动步进电机复合机构体 m 92。可实现四自由度动作的一个组成部分扭摆动作和伸缩动作。这些动作由 m 92 伸缩位置传感器 C 3 及 m 92 扭摆角度位置传感器 C 4 负责检测和提供位置参数。上述完成四自由度动作提供数据。

[1462] （四）D 标示副旋翼及涵道体结合体。

[1463] 小直径副涵道旋翼体 D 设置飞吊器 1 与操控器之间方位，由对称水平布阵，与主涵道体 5 的伸缩臂 96、97 相连，其副涵道旋翼体 D 优选电机 M 6 驱动。副旋翼转速控制参数由传感器 D 1 承担。

[1464] 在副涵道旋翼的半伸弯架 99 与副道道圈 108 的一侧安装了外摆动驱动步进电机 m 94。实现四自由度动作的一个组成部分摆动动作，由摆位位置传感器 D 2 承担角度检测参数精确检测。

[1465] 在大直径主道道体 5 内安装副旋臂可伸缩，扭摆动驱动步进电机复合机构体 m 92。可实现四自由度动作的一个组成部分扭摆动作和伸缩动作。这些动作由 m 92 伸缩位置传感器 D 3 及 m 92 扭摆角度位置传感器 D 4 负责检测和提供位置参数。上述完成四自由度动作提供数据。

[1466] 感器。

[1467] （五）起落架及提吊绞盘系统。

[1468] 洪浆洪灾救灾系统的飞吊器 1 主涵道体 5 下端与下遮子 8 结连处可设置四个具有漂浮功能的起落架。在此架下端内安装了蜗轮轴升降系统配有机动电机 M 9 M 9 M 9 M 9，其设升降高低传感器 X 1 X 2 X 3 X 4 提供检测升降度。并设行走驱动电机 M 9 M 9 M 9 M 9 直驱。起到辅助落驻点移动作用。

[1469] 在飞吊器 1 救生作业时外配了专业提吊电动绞盘器电动机 M 9。用网捞器救捞作业提吊提供驱动力。
控制部分：
泥浆流程系统的控制是由输能锯索 L 提供能源和辅助飞行牵引力，主要承担能力，其伺服系统的输能锯索卷扬器的驱动电机 M10 承担牵引。飞吊器输能锯索 L 卷扬器长度和牵引传感器 X5 为其功能实现正常工作提供参数。飞吊器输能锯索 L 卷扬器长度和牵引传感器的传送数据是由信号线 Xn4 与控制台建立。

飞吊器的操纵作业操作是由控制台和中心计算机 K1 负责，在中控台上没有救援作业功能系统总开关 K1 负责总系统启动。

飞吊器上提圆盘提吊索具升降由控制手柄 K3 负责，手柄 K5 控制飞吊器升降。操作齿轮 K4 负责飞吊器和其它电气工作功能开关转换，手柄 K2 控制飞吊器行进行方向。

飞吊器上设有扬声器 Y 以及控制台的麦克风 M K 建立有线和无线语音系统，并通过控制台屏幕 P N 观察，完成救生的操作和下达指令语音系统。

泥浆流程系统的电力是由发电机 N1，控制室蓄电池组 N2。外插电源系统 N3 共同负责，并由发电机和备用电源电池组自动控制和手动控制转换器 K8 进行自动转换和选择。控制台与发电机间控制信号线 N2 负责对发电机的控制。

控制台与发电机电池组之间转换器 K8 控制的信号线 Xn3。

飞吊器输能锯索 L 控制总线端头设有光纤信号的光电转换器 G0，输能锯索 L 控制总线中设有光电检测线 y y + 和阴极检测线 y - 及光纤信号 y 0 承担与飞吊器 1 的救生作业功能的调控和管理。

辅助行驶系统部分：

飞吊救生系统功能盘控制台中设有操作手柄 K6 负责操控室的升降控制和转动。

升降水平位移和转动的控制器 K7 间连有控制信号线 X1。操控室水平升降转动由电机 M11 承担，升降水平位移位置由信号器 X6、X7、X8 负责。操控室 360 度转动驱动由电机 M12 承担，360 度转动角度位置由信号器 X9、X10、X11、X12 负责。

15. 飞吊设备系统以及设备和飞吊救生系统电路控制变量说明：

图 31 采用的泥浆设备系统示意图。

1. 飞吊系统电路控制变量简要说明：

当系统启动后，所有动作以及信号流向说明。

控制人员按下 K 钮后，开关接通主电源，各个设备启动，自检结束后待机，此时可以进行各种操作。

当系统进入待机状态后，控制室操作员上推飞吊手柄：调升降手柄 K5 和控制方向手柄 K2，调方向做准备，飞吊器主旋翼和副旋翼根据手柄 K5 拆的大小自动控制转速。当上推起飞手柄 K5 后，手柄下面的滑动变阻器向上滑动，变阻器输出电压值由零增加 Δ u，最大增至 48V （所有控制器电源为 48V） 41 此电压通过模数转换 AD 转换为 10bit 数字信号，数字信号通过电光 / 光电转换器转换为光信号，光信号通过光纤 y0 传输至飞吊器，安装于飞吊器上的电光 / 光电转换器将光信号重新传输为电信号，电信号通过总线到达飞吊器控制计算机 K0。（简称：飞控计算机），计算机根据此数字信号，即可控制飞吊器主 / 副旋翼转速。飞控计算机将根据光纤传输的控制手柄数据产生与此数据相关联（按照一定控制率
PID) 频率为 5KHz，峰值为 12V 一定脉冲宽度的 PWM 信号，此 PWM 信号控制控制开关管的闭合时间，从而控制主副旋翼电机转速，此时所有传感器准备就绪，开始工作。控制图见图 21
手柄动作信号流向图，当手柄 K5 上推角度越大，则输出电压信号越强，经过光敏传输至飞控计算机 K0 上数值越大，则产生的 PWM 信号空量比 △ 愈大，△ 愈大，则由 PWM 信号控制的驱动门开的时间就越长，因此，加上电机两端电压有效值越小，因此旋翼 M1、M 2 速度就越高。当旋翼转速达到起飞初值后，控制室操作员按下飞吊机锁开关 K4，地面控制器发送一高电平信号至飞吊机锁控制器，飞吊机锁电磁铁消磁，飞吊机开始起飞。随着飞吊机的升高，卷扬器电机 M10 逆时针旋转将输能牵引索 L 送出，输能牵引索 L 中电力线 y+、y- / 控制光纤总线 y0 随飞吊机被拉至空中。

【1488】2. 飞吊机飞行中电路的变量控制简介；

【1489】主旋翼 M1,M2 启动后，旋翼转速传感器 X1,X2 检测上下主旋翼转速。转速传感器选择为非接触式的霍尔元件传感器，霍尔转速传感器产生峰值为 48V 的正脉冲，此脉冲信号通过传感器内部的处理电路将脉冲信号的周期 / 频率进行测量，输出 1 字节转速数据信息，数据信息通过信息头标示（表征为转速信息）至总线 y0，由总线 y0 传输至飞控计算机 K0。实现速度实时反馈，根据实时速度信息，调整控制器输出的 PWM 信号空量比 △，从而将速度稳定在误差允许范围内。控制转速采用比较成熟的 PID 控制，PID 控制是将误差信息进行放大，微分和积分处理得到控制数据。

【1490】实际转速为 nr，控制室手柄位置信息通过飞吊机中的 PID 控制器 K0 解析后理论转速为 n，因此转速误差 △ = n-nr，控制量输出为 w = P(ε[i]) + I(Σ e[i] + D(e[i] - e[i-1]))，此控制量累加于控制 PWM 信号空量比 △ 的调制量 W 中，当实际转速超过理论控制速度时，ε[i] 为负值，叠加于 W 后，W 值减小，因此输出 PWM 信号空量比 △ 减小，驱动门开启时间减小，从而上下主旋翼电动机两端电压有效值减小，转速降低；相反，当实际转速低于理论值时，PWM 信号空量比 △ 增大，驱动门开启时间增大，旋翼电动机两端电压有效值增加，从而增加转速，仅误差反馈，没有加入任何其他形式的变量。

【1491】以上分析为简单的速度闭环控制，此种情况没有加入其它干扰，当有风干扰以及涡流时控制分析如下：

【1492】大气压计 P1, P2, P3, P4, P5, P6, P7, P8, 风速 / 风向传感器 F1, F2, F3, F4 输出的模拟量通过自带的 AD 转换器转换后，将模拟量转换为数字量，加入数据总线后方便于飞吊机控制器读取，飞行状态控制陀螺仪 T1, T2, T3, T4 直接输出数字信号通过 RS485 总线传输至飞控计算机 K0。16 位气压、风速、陀螺仪数据被飞控计算机 K0 读取后，飞控计算机 K0 得知当前飞行状态，以及是否产生涡流现象。气压值、风速、旋翼转速、飞行姿态等信息，除了每部分进行相应 PID 算法后，进行数据的融合，每种传感器量分配一定权重，占用控制主副旋翼 PWM 信号的部分权重，某部分失效后，或某种传感器数值超出此权重范围值，权重值自动增加，通过权重分配，将几种飞行控制信息融合后，叠加于控制 PWM 信号空量比 △ 变化的直接控制量 W(ε1, W1, W2, W3, W4)，当风速超出某范围后，飞控计算机 K0 向变位量系统 30 液电磁阀 41 控制器 V1, V2, V3 发送高电平，开启液电磁电磁阀 41，液电磁在离心力作用下喷入其中上下一套主旋翼液电阀 C0, 内 O0，增加转动惯量使上下旋翼产生差动惯量，同时保持主旋翼 M1,M2 转速，以诱导产生陀螺效应之定轴性、章动性、进动性的三维。虽然陀螺效应的章动性被同轴正反向转动旋翼结构克服，但是进动性仍然存在，需要利用小直径四
副涵道旋翼A、B、C、D，进行有节奏的对称的扭摆摆动，以自由度方向调节控制。使飞吊器不至
于转动力矩的不平衡而导致飞吊器旋转，同时拖拽的输能牵引索l，具有对飞吊器抗扭矩作
用类似直升机尾旋翼功能。由于产生上下主旋翼转动差动惯量诱导的陀螺效应的定轴性。赋
予了飞吊器瞬间抗突变流转换位、湍急侧风的能力。

此时的控制方式与无风状态下的控制方式不同，各个传感器数据权重不同，风速
值权重要比正常无风状态下权重大些。

当飞吊器垂直起飞或降落时或飞行中空气湿度大等气候因素雷仏数太低时，或两
主旋翼上下气压传感器检测值满足微风，风强条件时，飞控计算机Ko 适当加重气压计权重值，
同时，飞控计算机Ko 向等离子能量波发生器 197 或 89 发送高电平脉冲信号，打开等离子能
量波发生器 197 或 89，产生等离子能量波 Z。改善空气动力的雷仏数的环境条件，或预防湍
流，从而消除湍流现象的先兆。

副涵道旋翼A、B、C、D 由飞控计算机Ko 自动控制，地面操作室双手柄K2 控制飞
行方向，亦即部分改变四副旋翼状态，四副旋翼主要控制方式由飞控计算机Ko 控制，飞控
计算机Ko 通过当前飞行姿态，是否有突变转换湍流风冲击，是否有湍流等现象对四副旋
翼进行实时控制，在无转换湍流风，无湍流时，四副旋翼主要控制飞吊器飞行方向，亦即
主要控制工为PID控制，控制量Wz，Wα，Wβ基本相等，风速信息，湍流信息被检测到以后，由
于飞吊器转动差动惯量很大，本身就也具有供运运动惯性的因素，因此飞行状态不会马上改
变，而此时四副旋翼A、B、C、D 就已经根据传感器检测的状态实施控制动作四自由度动作，
从而相对与控制具有一定的超前性。

飞吊器安装的高度信息，旋翼转速信息，气压信息等除了被用于飞行姿态控制，同
时通过光纤yo 传输至控制台，控制计算机Ko 将数据读取后，进行与控制台主控计算机Ko 中
的模版数据做为参照样版数据进行调整飞吊器飞控计算机Ko 工作飞行姿态。同时发送至
相应的仪表进行显示。

3. 飞吊器电路变量作业简介：

当飞吊器1 飞至作业现场上空域后，打开随机光学摄像机d1-d3，夜间分隔开外红摄
像机，拍摄情况，由操作员协助，按下K4, 信号通过光纤yo 传输至飞控计算机Ko，飞控计算
机Ko 发出四路脉冲信号，由提吊升降手柄K3 作用于提吊绞盘器624 释放提吊索 224 下降落
作业工具的高度，此时工具底部四角的超声波高度传感器 631c 给出信号工具近现场状态。
飞吊器1 平稳悬停等待作业成功后。飞吊器1 启动向上方和前移飞行时，控制台中心计算机
Ko 和飞控计算机Ko 配合控制飞吊器1 及提吊绞盘 624 的提吊索 224 长度，由其控制工具始
终离现场适当升高度以实际现场的起浮面高度由操控员在控制台下方控制高度保持随现场
高度变化吊运回驻点上空悬停飞行卸载，提吊绞盘 624 释放卸载方式或控收索飞行下降卸
载方式的谐调控制变量配合。

4. 飞吊器降落电路变量调整简介：

飞吊器降落时其姿态陀螺仪 T 感应到飞吊器不不平衡，控制相应的起落架升降进电机动作，使飞吊器平稳降落，同时可以适应降落不平的状态。再由飞吊器1 降落存放仓。

本发明的几种泥浆沙石水流救援两栖救护车是实现这种救援的方法的必备设备
和技术措施。是实现这种救援方法的工具。
[1502] 本具体实施方案的电路控制变量结构按此框图做为锥形基础设置实施和进步。
[1503] 本具体实施例所用具体参数等项不是对本方案的限止，为了使本发明方案能实现
产品和泥浆混合流的救援方法所列具体的描述及所配的附图能实现具体产品和发挥其功
能方法。
[1504] 附注：附图标记说明和功能简介与具体实施例之间互相支持和补充说明结构零部
件的全意，结合附图表达其整体特征。
[1505] [1] 选择控制器提高了其抗干扰能力为系统 EMC（电磁兼容）设计所需要。
[1506] [2] 备选型：释为此项预留较宽外配功能器电路接口和选型接口可改选其它型号
设备。
[1507] 参考资料
[1508] 致谢现有技术成果的先师参考资料的帮助！
[1509] [1]. 《等离子体技术及应用》赵青、刘述章、童洪辉编著，国防工业出版社出版。
[1510] [2]. 《模型飞机空气动力学》[英] 马丁·西蒙斯著、肖治垣、马成立译。
[1511] [3]. 《直升机的世界·岁月之旅》李成智，倪先平编著。
[1512] [4]. 《新概念物理教程·力学》赵凯华、罗蔚茵。
[1513] [5]. 《化学基础》蒋玉芝编。
[1514] [6]. 《申请号 200480012319.0 专利》发明人罗纳德·L·基索尔。
[1515] [说明书附图]：详见下页。
图 1
图11
图12
图 13
图 20
图 21