
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0220734 A1

Nalluri et al.

US 2015022O734A1

(43) Pub. Date: Aug. 6, 2015

(54)

(71)

(72)

(21)

(22)

(86)

(30)

Oct. 19, 2012

MOBILE APPLICATION MANAGEMENT

Applicant: MCAFEE, INC., Santa Clara, CA (US)

Inventors: Srikanth Nalluri, Bangalore (IN);
Dattatraya Kulkarni, Bangalore (IN);
Raja Sinha, Bangalore (IN);
Venkatasubrahmanyam Krishnapur,
Bangalore (IN); Venkata Krishnan
Nagarajan, Chennai (IN); Kaushal
Kumar Dhruw, Bilaspur (IN); Kamlesh
Halder, Bangalore (IN)

Appl. No.: 14/126,866

PCT Fled: Oct. 18, 2013

PCT NO.:

S371 (c)(1),
(2) Date:

PCT/US2013/065799

Dec. 17, 2013

Foreign Application Priority Data

(IN) 1215/KOLF2012

- APPLICATION
SERIERS

PROCESSCR

/
215
SARE
Exit

PRocessor MEMORY

Publication Classification

(51) Int. Cl.
G06F 2/56 (2006.01)
G06F 2/55 (2006.01)

(52) U.S. Cl.
CPC G06F2I/563 (2013.01); G06F2I/552

(2013.01); G06F 222 1/033 (2013.01)

(57) ABSTRACT

Code of a particular application is analyzed against a seman
tic model of a software development kit of a particular plat
form. The semantic model associates a plurality of applica
tion behaviors with respective application programming
interface (API) calls of the particular platform. A set of behav
iors of the particular application is identified based on the
analysis of the code and a particular one of the set of behaviors
is identified as an undesired behavior. The particular applica
tion can be automatically modified to remediate the undesired
behavior. The particular application can be assigned to one of
a plurality of device modes, and access to the particular appli
cation on a user device can be based on which of the plurality
of device modes is active on the user device.

205
1/

APCAO: if AGER

ERY

22) (222
28

SER
ANAGER

{}F. Ap
A-CATORS SE, CS ...)

20- 24, 252 ^. - 265
- 45 48 250

S.: 1 PPERE I x - NEN ST-S APCAONS
ANAGER 27

(, 235 240
EAG BAWOR 232 238
EGE ANAYSS

230 Y APECAO
225 228 DATA COES
ACAC GENCE

PROCESSOR

245 USER DEVICE

EORY

ECJRTY
OOS

S

255

242

SEGS TC) - 26
CE

Asia ET O)- ES

Patent Application Publication Aug. 6, 2015 Sheet 1 of 23 US 2015/0220734 A1

AP CAON
ANAGEN

100 SERVER APPECAON
SERVERS

130

NTERN

SS
- s

AS r

NFORMATION:
SERVERS

US 2015/0220734 A1 Aug. 6, 2015 Sheet 2 of 23 Patent Application Publication

Patent Application Publication Aug. 6, 2015 Sheet 3 of 23 US 2015/0220734 A1

arts 300
- 4.5 s

Ar 228 BAWOR ANAYSS

{CONEN SUSPECT

ENGINE MANAGER

OOFE)
APECATON

re

CONEN

Y 248 NNSA

F.G. 3

Patent Application Publication Aug. 6, 2015 Sheet 4 of 23 US 2015/0220734 A1

45s APPLICATION
3NARES 400

4. DISASSEMBERAND Y DAAFCONRO.
Of ANAYER 45

AMBEEN APPCAON
KNOWLEDGE: ESCRIPTION,
COMMENTS, SRINGS, ETC,

420 - MODEL OF
AP CATION O{GC

450

3AWORA
SRST:CS

RESENGENE 435- AORA AP
NESMC

'.

430
APCAON

425 - BEHAVIOR

COMMUNY

7- 440
445 F.G. 4

Patent Application Publication Aug. 6, 2015 Sheet 5 of 23 US 2015/0220734 A1

SWSA HEN AS GAA 500
...Android AP. Graphics - display-gaine -

&W (Control
...Android A.F. iouchpad text-game &W

F.G. 5A < &W C controit
...Android A.P. Graphics - ispiay update ;

& (Android A.P. telephony
Ne Send SiS Wi. . . W5)

RE APCAON

DATABASE OCC ODE
RE
ENGE

AP CAO
8E-AWORS

FIG 7

US 2015/0220734 A1 Aug. 6, 2015 Sheet 6 of 23 Patent Application Publication

L^019

US 2015/0220734 A1 Aug. 6, 2015 Sheet 7 of 23

Mae Tivº || Slow1N00

Patent Application Publication

Patent Application Publication Aug. 6, 2015 Sheet 8 of 23 US 2015/0220734 A1

405 APCAOM
BNARES 800

-

40. DISASSEMBERAND Y DAAJCONTRO
FON Asia YER 415

/
ABEN APCAON

KNOWLEDGE: DESCRPION,
COMMENTS, SRINGS, ETC.

420s ODE OF
AP CAON LOGO

45

BEAVORA
jRSCS

RULES ENGINE PAOK, A
NEGENCE

430
APCAON

O SEAVOR

O - 425

HEALING
ENGINE

HEALED
8 ARES

Patent Application Publication Aug. 6, 2015 Sheet 9 of 23 US 2015/0220734 A1

USERN

EAEf
REEAE
APCAO:S

QUARANNE
APCATIONS OCES

FG. 9

1000 (05
l

ACAON MONOR ANAYSS

ust Behaviors ANDoFFENDING SEctions of cope 1/100

AC RE RULES
TO BEHAWOR AABASE

EA
REMG
Crs. APCATON EAERENGN

SRCTX:S Riji SiS EAER SS SA HEAER

LOCATON A 8EAORA Y-228
& RECNGA RWACY EAER TARGEN EAER
CASO CJSON

MOFEAK - O5

MSNAC:\S

F.G. O.

US 2015/0220734 A1

leznoudas

----8}, {{{}{} O3S,

Patent Application Publication

Patent Application Publication Aug. 6, 2015 Sheet 11 of 23 US 2015/0220734 A1

AR RADS OR
SENOSAA <?xml versior:"O' encoding:"JTF-8">

c <AppMonitor
- KAPSCO3(ii)

- SAP AP:Category:"GetData" Naires"Landroid telephony Telephony Manager->
getDevicettiljavailangString." D:"00001">

KSensitivity>40<Sensitivity> NFORMATION
<Nine:O3Farrete: S^{<!Nerfaaneters> CRCA.Y
katane:8;se <P3rameters)

- <ReturaType types"jawaiiang String'>
<PossibleWaltesi
KPossibleStTypesis

<Description>Reads iNE Numer-lescription> |A OES
KiA.

* <AP AP:Category: "Sendata" Name: "...android telephoayiSinshanage->serdTextilessage
(LjavailangString availangStringtjavailangString androidisippi Rendingstentiatidroid
apppendingintertw"Ox"00002">

<Sensitivity-40KiSensitivity>
KNine: Ciafaetes Saki NinterOfataeiers>

- KP3raineese
<Parameters..javailaag String<iParameter
Karameter-ijawaiiang Sting<iParameters
<Parametersijawaiiang String<lparameter)
KParameterstandroid apprendinglintent<iParameters
<Parameter-android appfendingintent<Farameter

KiPafanate:S-
- <ReturnType type:"V">

KossibleWalesis
KPossible.SubTypesis

KiRetainiype>
<escription>Sends data to so; he ceil Ruaber via sins<Description

&A)
r &APAP:Category "Sendata" Names."orgisoni;SONO!ject:->putawaiiangString,

javailangOiject:}orgisoniSONObject" - "00003">
<Sensitivity)4.0<Sensitivity>
<N:rnbe:O3rariete:S-8&Numerofaaneters)

- KParantee: SY
Karameter-ijayatia:g|String<iarameters
<Parameter-ijawaiiangiOject.<Parameters

<!Paraete:SY
- <ReturnType Syper"Lorgisoni JSONObject">

KossibleWaleSix
<PossibleSubtypesis

<!Returniype
<Description-Sends it to some websiteXDescription> FIG. 2A

& Ax

CARACERAON
O: FARAy:RS:
READ, WRITE, Yip

Patent Application Publication

838:3
local w8. ocation:Landroidiocaiologation
invoke-static , landroid teleptorySmshianager->gettefault asidroidei
move-result-object wi
388

iogay, SSandroidteegion
invoke-virtua iw8, androidiotation locatio:->getatitude
nove-testal-vide 3

invoke-static{v3, 4, javariang'Siring->yakeof).javaila:gString
move-fesulti-object wi
88:
Calvi, ajayaag Stig

invoke-vita: w83, at droiocatioxiccatio;->getongitude:
Ove-testal-wide v3

invok8-static v3, w8, javailaigSiring->yakeof.javaila:gString,
nove-resili-object v3

i.e. 33
local w8, cation:Landroidiscation locatios:
invoke-static, android telephorylSmshianager->getefault asidroide
Fave-fesult-object v.
i88
local v0, sins: androidteisphony Shishanager,
invoke-direct pil, Coffmasakahailocationeso->getakelatitude)
Row8-'esili-side 3

invok-static{v3, w8, javaiiang Sirig->vakseofljavalaig String,
move-testal-object vi
i.e. 8:
local vi, at LavalangString
invoke-direct p0, commarakanalocationiseme;->ge:Fakelongitude,
five-festal-wide v3

invoke-static v3, wa, javariang String->yaltiect.javaila:g|String;
fove-testilt-object 9

FIG. 2B

Aug. 6, 2015 Sheet 12 of 23

tethod private ge:Fakelatitixie
kcas?

prologue
is 55
const-wide;80, (x)
feturn-wide w

er method

aethod private getFakelongitude
iC3s

prologue
i.e55
&Onst-wide;6 (), (x)
lettiff-icey

end 83d

US 2015/0220734 A1

US 2015/0220734 A1 Aug. 6, 2015 Sheet 13 of 23 Patent Application Publication

Patent Application Publication Aug. 6, 2015 Sheet 14 of 23 US 2015/0220734 A1

ife 80
locatw, Sislandroid telephonyiSrishanager,
const-string yi, "S432"

const-stringw3, "SUB NEWS"

move-object va, v2

move-object w8, v2

re-void
etcheod

ine 6
local w, sis:Landroid telephony Smashianager,
const-string w, "5432"

Const-stringw3, "SUB NEWS"

move-object w8, v2

nove-object w5, v2

in 83
return-void

edineiosi

FIG. 2D

US 2015/0220734 A1 Aug. 6, 2015 Sheet 15 of 23 Patent Application Publication

Patent Application Publication Aug. 6, 2015 Sheet 16 of 23 US 2015/0220734 A1

300
REMEAE

APPCAON BNARY

APCAOs RN-N-G NSANCE

AiNC

REME)AE
8-AWOR
3AWOR 2
8EAVOR 3
8-AWOR 4

N HEALED SECTION b2.

FIG 3

Patent Application Publication Aug. 6, 2015 Sheet 17 of 23 US 2015/0220734 A1

1400a
ACCESS JCDEACWY

JSR NERFACE
APCAON

MONOR SERVICE

CONSEXT ARCAON

ANAGER INSTALL MONITOR

ACAOM
AiNCE ONOR

ACCESS WiiCE ANAGEr

ACCESS
ANAGER

CREENA
STORE

SORAGE

FIG. 4A

ACCESS
BE

DATABASE

lock CREENA
ANAGER ANAGER

OCK ARRCAON
SERVICE PROTEC

SERVCE

A MNSTRAOR
435 - PASSWORD SS-Up

FIG. 4B

Patent Application Publication Aug. 6, 2015 Sheet 18 of 23 US 2015/0220734 A1

PASSR SORNG

AKE PASSWORD FROM USERp
key is generatekeyi Pesaiti)
ep at encryptwithikey key, p)
store fouple <Miodefiane, ep>

PASSOR: WADAON
TAKE PASSWORD FROM USER p
keys generatekeypt sai
digs decryptwithikey(key, ep
if p equalispi

feiff SiCC&SS,
eis&

return failure

FIG. 5A

PASSWORD WADAON AN E ERNE THE CEO ACTWAE
ON SEVCE OCKSCREEN PRESEN SER J EEENTSO ENERE PASSWOR)
TAKE PASSWORD FROM USER p
key is generatekeyip+ salt
for each mode<!-lodeName, ep > on device

tip at decryptivithikey key, ep
if do equais p

return Modename, entered password matched with this nodes
password
eise

Continie.
retir failure; it to modes 8atched the password provided

FG. ISB

Patent Application Publication Aug. 6, 2015 Sheet 19 of 23 US 2015/0220734 A1

FG. 6

CLOUD SERVICE (SHARE MODES) 1600

ONOAAN
SARE CES ROWSON iOES

ACCESS
iOS

MANAGER

ACCESS
O)

ASAGEr
10- 2O

OBE
EWC

OBE
DEVCE

FG. 1 7

ER tier CONTEXT ACTIVATEDEACTIVATE MODEs ESS
ODE

ANAGER proxy MANAGER
SENSORS

SENSORS-GPS, BOERC BATERY OER CONEX
WiFi, AA ANCAON SAS NFORMAON

Patent Application Publication Aug. 6, 2015 Sheet 20 of 23 US 2015/0220734 A1

PROVISON A NEW iO,
PROVSONA POCY

as ACJAEDEACTWAE
ANY ODE ACCESS

MODE
ANAGER

CC
SERCE

MOBE
SWCS

At SRAOR F.G. 8

si 1905 1910 1915
AP CAEON
SORS

NFORMAON

E3 SER
RUTAON

APCACN
ANAYSS

AFCAON FORMATON
CATEGORY
RANGS
RWACYRATINGS

CONFEN RANG
TC,

FG. 9

O @ @ #

US 2015/0220734 A1 Aug. 6, 2015 Sheet 21 of 23 Patent Application Publication

US 2015/0220734 A1 Aug. 6, 2015 Sheet 22 of 23

No.orr,

Patent Application Publication

Patent Application Publication Aug. 6, 2015 Sheet 23 of 23 US 2015/0220734 A1

2100a

ANAYZE C{}}E OFA
205 PARCARAPPECATION

AGANSASEANC
REPRESENATON
OALAOR

OENSFY AST OF
BEHiaVORS OF HE

PARCARAP CATON
2110

ENTY AEAS ONE

21151 INES IDENTEYABEHAVORINA 212 SET OF BEHAVORS OF A -
FG 2. A ARCULAR A-CATION

ENTY ASECON OF CODE
OF THE PARCAR - 2125

APPCAON CORRESPONONG
O THE BEAVOR

PERFORMA REEAON
ACON ON ESSCON

2100c OF CODE: OREMEDATE: Y 2130
E 8:AWOR

FIG 21B ACWAA ARCAR
2140 - ONE OF A PLURALITY OF

MOES DEFINED OR A
USER COUNG DEVECE

RESRC ACCESSO ONE
OR ORS APSPCAONS
INSTALED ON THE USER

214.5- COPNS DEVO
ACCORNGO ACNATON
O Tix ACUARiiOE

FG. 2 C

US 2015/0220734 A1

MOBILE APPLICATION MANAGEMENT

TECHNICAL FIELD

0001. This disclosure relates in general to the field of
computer security and, more particularly, to security of
mobile devices.

BACKGROUND

0002. The distribution and use of mobile devices, such as
Smart phones, PDAs, laptops, netbooks, and tablets have
grown at a rapid pace. Further, adoption of Such devices is
also expanding and number overtaking that of desktop com
puters and feature phones in Some developed markets. The
Sophistication of the operating systems and the hardware
capabilities of mobile devices is also increasing and, in some
cases, outpacing the features sets and functionality of tradi
tional computers. For example, modem mobile devices can
possess Such varied sensors and Subsystems as location sen
sors like global positioning systems (GPS), accelerometers,
gyroscopes, near field communication (NFC), etc. that are
ordinarily not included on traditional devices. Adding to this
the always connected nature of some mobile devices and the
tendency for their owners to constantly carry the devices,
mobile devices have become attractive targets for malware
developers, hackers, and other malicious actors. Further, "app
stores” and other open marketplaces have enabled the devel
opment of tens of thousands of applications (or "apps') that
have been developed for such devices, including device plat
forms such as Google AndroidTM, iOSTM, WindowsTM, etc.,
with some of these applications being of questionable quality
and purpose.

BRIEF DESCRIPTION OF THE DRAWINGS

0003 FIG. 1 is a simplified schematic diagram of an
example system including an application management sys
tem in accordance with one embodiment;
0004 FIG. 2 is a simplified block diagram of an example
system including an example application manager and user
device in accordance with one embodiment;
0005 FIG. 3 is a simplified block diagram representing
analysis and healing of an application for a user device in
accordance with one embodiment;
0006 FIG. 4 is a simplified block diagram representing an
example behavioral assessment of an application in accor
dance with one embodiment;
0007 FIGS. 5A-5B are simplified representation of con
trol flow within example applications in accordance with
Some embodiments;
0008 FIG. 6 is a simplified block diagram representing
example Subsystems accessible to an example user device in
accordance with Some embodiments;
0009 FIG. 7 is a simplified block diagram representing
use of rules to determine application behaviors in accordance
with some embodiments;
0010 FIG. 8 is a simplified flow diagram representing
assessment of application behaviors and healing of undesired
behaviors in accordance with one embodiment;
0011 FIG. 9 is a simplified flow diagram representing
decisions made in connection with the management and
remediation of applications determined to include undesir
able behaviors based on behavioral analyses of the applica
tions in accordance with one embodiment;

Aug. 6, 2015

0012 FIG. 10 is a simplified flow diagram representing an
example healing of an application in accordance with one
embodiment;
0013 FIG. 11 is a simplified block diagram representing
an example healing of an application in accordance with one
embodiment;
0014 FIGS. 12A-12E represent examples of detection
and remediation of undesired behaviors of an application in
accordance with some embodiments;
0015 FIG. 13 is a simplified flow diagram representing an
example healing of an application in accordance with one
embodiment;
0016 FIGS. 14A-14B are simplified block diagram rep
resenting features of an example mode manager in accor
dance with some embodiments;
(0017 FIGS. 15A-15B represent portions of example algo
rithms for managing modes in a user device in accordance
with some embodiments;
0018 FIG. 16 is a simplified block diagram for sharing
device modes between devices in accordance with one
embodiment;
0019 FIG. 17 is a simplified flow diagram illustrating use
of context in managing modes of a device in accordance with
one embodiment;
0020 FIG. 18 is a simplified flow diagram illustrating
remote provisioning and/or activation of modes on a user
device in accordance with some embodiments;
0021 FIG. 19 is a simplified block diagram representing
application information collected in accordance with some
embodiments;
(0022 FIGS. 20A-20D are screenshots of example user
interfaces provided in connection with mode management of
a user device in accordance with Some embodiments;
(0023 FIGS. 21A-21C are flowcharts representing
example operations involving an example application man
agement system in accordance with some embodiments.
0024 Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

0025 FIG. 1 illustrates an example system 100 including,
for instance, an example application management server 105.
and one or more mobile user devices 110, 115, 120,125, such
as Smartphones, mobile gaming systems, tablet computers,
laptops, netbooks, among other examples. Application man
agement server 105 can provide one or more services to the
user devices to assist in the management of applications
downloaded, installed, used, or otherwise provided for the
user devices 110, 115, 120, 125. User devices 110, 115, 120,
125 can access application servers 140. Such as centralized
application storefronts, such as, for example, Android Mar
ketTM, iTunesTM, and other examples. Application servers 140
can further include, in Some examples, other sources of soft
ware applications that can be downloaded and installed on
user devices 110, 115, 120, 125. User devices 110, 115, 120,
125 can communicate with and consume the data and services
of the application management server 105 over one or more
networks 130, including local area networks and wide area
networks such as the Internet. Among the services of an
example application management server 105, applications
available to user devices 110, 115, 120, 125 can be analyzed,
assessed, and repaired at least in part by functionality pro
vided through application management server 105. Further,
application management server 105, in connection with Ser

US 2015/0220734 A1

vices made available to user devices 110, 115, 120, 125 can
interact with and consume resources, data, and services of
other outside systems and servers such as information servers
145. For instance, such information servers 145 can host
services and data that provide additional intelligence and
context regarding applications available to user devices 110.
115, 120, 125, among other examples.
0026. In general, “servers,” “clients.” “client devices.”
“user devices.” “mobile devices.” “computing devices.” “net
work elements.” “hosts.” “system-type system entities, and
“systems, including system devices in example computing
environment 100 (e.g., 105, 110, 115, 120, 125, 140, 145,
etc.), can include electronic computing devices operable to
receive, transmit, process, store, or manage data and infor
mation associated with the computing environment 100. As
used in this document, the term “computer.” “processor.”
“processor device.” or “processing device' is intended to
encompass any suitable processing device. For example, ele
ments shown as single devices within the computing environ
ment 100 may be implemented using a plurality of computing
devices and processors, such as server pools including mul
tiple server computers. Further, any, all, or some of the com
puting devices may be adapted to execute any operating sys
tem, including LinuxTM, UNIXTM, Microsoft WindowsTM,
Apple OSTM, Apple iOSTM, Google AndroidTM, Windows
Server'TM, etc., as well as virtual machines adapted to virtual
ize execution of a particular operating system, including cus
tomized and proprietary operating systems.
0027. Further, servers, user devices, network elements,
systems, and other computing devices can each include one or
more processors, computer-readable memory, and one or
more interfaces, among other features and hardware. Servers
can include any suitable Software component or module, or
computing device(s) capable of hosting and/or serving soft
ware applications and services (e.g., personal safety systems,
services and applications of server 105, etc.), including dis
tributed, enterprise, or cloud-based software applications,
data, and services. For instance, in Some implementations, an
application management server 105, application servers 140,
information servers 145, or other Subsystems of computing
system 100 can be comprised at least in part by cloud-imple
mented systems configured to remotely host, serve, or other
wise manage data, Software services and applications inter
facing, coordinating with, dependent on, or otherwise used by
other services and devices in System 100. In some instances,
a server, system, Subsystem, or computing device can be
implemented as some combination of devices that can be
hosted on a common computing system, server, serverpool,
or cloud computing environment and share computing
resources, including shared memory, processors, and inter
faces.

0028. User, endpoint, or client computing devices (e.g.,
110, 115, 120, 125, etc.) can include traditional and mobile
computing devices, including personal computers, laptop
computers, tablet computers, Smartphones, personal digital
assistants, feature phones, handheld video game consoles,
desktop computers, internet-enabled televisions, and other
devices designed to interface with human users and capable
of communicating with other devices over one or more net
works (e.g., 130). Computer-assisted, or “Smart, appliances
can include household and industrial devices and machines
that include computer processors and are controlled, moni
tored, assisted, Supplemented, or otherwise enhance the func
tionality of the devices by the computer processor, other

Aug. 6, 2015

hardware, and/or one or more software programs executed by
the computer processor. Computer-assisted appliances can
include a wide-variety of computer-assisted machines and
products including refrigerators, washing machines, automo
biles, HVAC systems, industrial machinery, ovens, security
systems, and so on.
0029. Attributes of user computing devices, computer-as
sisted appliances, servers, and computing devices generally,
can vary widely from device to device, including the respec
tive operating systems and collections of Software programs
loaded, installed, executed, operated, or otherwise accessible
to each device. For instance, computing devices can run,
execute, have installed, or otherwise include various sets of
programs, including various combinations of operating sys
tems, applications, plug-ins, applets, virtual machines,
machine images, drivers, executable files, and other software
based programs capable of being run, executed, or otherwise
used by the respective devices.
0030 Some system devices can further include at least one
graphical display device and user interfaces, supported by
computer processors of the system devices, that allow a user
to view and interact with graphical user interfaces of appli
cations and other programs provided in System, including
user interfaces and graphical representations of programs
interacting with applications hosted within the system
devices as well as graphical user interfaces associated with
application management server services and other applica
tions, etc. Moreover, while system devices may be described
in terms of being used by one user, this disclosure contem
plates that many users may use one computer or that one user
may use multiple computers.
0031 While FIG. 1 is described as containing or being
associated with a plurality of elements, not all elements illus
trated within computing environment 100 of FIG. 1 may be
utilized in each alternative implementation of the present
disclosure. Additionally, one or more of the elements
described in connection with the examples of FIG.1 may be
located external to computing environment 100, while in
other instances, certain elements may be included within oras
a portion of one or more of the other described elements, as
well as other elements not described in the illustrated imple
mentation. Further, certain elements illustrated in FIG.1 may
be combined with other components, as well as used for
alternative or additional purposes in addition to those pur
poses described herein.
0032 Turning now to the example block diagram of FIG.
2, an example system is shown including an application man
ager 205, user system 210, among other computing devices
and network elements including, for instance, application
servers 140 and information servers 145 communicating over
one or more networks 130. In one example implementation,
application manager 205 may include one or more processor
devices 215, memory elements 218, and one or more other
Software and/or hardware-implemented components. For
instance, in one example implementation, an application
manager 205 may include a share engine 220, user manager
222, healing engine 225, behavior analysis engine 228, appli
cation intelligence engine 230, among other potential
machine executable logic, components and functionality
including combinations of the foregoing.
0033. In one example, a share engine 220 can be config
ured to provide functionality for managing crowdsourcing of
information relating to applications (e.g., made available by
application servers 140), as well as the sharing of such infor

US 2015/0220734 A1

mation and resources, including resources generated at least
in part by or collected by application manager 205. For
example, an example share engine 220 can allow modified
applications 232 developed for particular users and associ
ated user devices (e.g., 210) as well as defined application
modes 240 to be shared across multiple user devices (e.g.,
210), among other examples. An example user manager 222
can provide functionality for managing user accounts of vari
ous user devices (e.g., 210) that consume or otherwise make
use of services of application manager 205. An example user
manager 222 can associate various modified applications
232, application data and feedback data (e.g., 235), and appli
cation modes 240, including application modes developed or
modified by particular users with one or more user accounts
and user devices (e.g., 210) in a system, among other
examples.
0034. An application manager 205 can, in some imple
mentations, additionally include components, engines, and
modules capable of providing application management, Secu
rity, and diagnostic services to one or more user devices (e.g.,
210) in connection with user device attempts to download,
install, activate, or otherwise use or procure various applica
tions including applications provided through one or more
application servers (e.g., 140). For instance, in one example
implementation, application manager 205 can include an
example behavior analysis engine 228 adapted to analyze and
identify functionality of various applications made available
to user devices on the system. Further, functionality of appli
cations can be identified, for instance, by behavior analysis
engine 228, that users or administrators may wish to block,
limit, repair, or modify, among other examples. Accordingly,
in Some implementations, an example application manager
205 can include an example healing engine 225 configured to
modify applications on behalf of users to eliminate undesir
able application features detected, for example, by behavior
analysis engine 228 and thereby generate modified applica
tions 232. Modified applications 232 can, in some examples,
be specifically modified and configured based on the requests,
rules, settings, and preferences of a corresponding user. Addi
tionally, application manager 205 may include an application
intelligence engine 230 configured to collect application data
(e.g., 235), for instance, from information servers 145 and
other sources both internal and external application manager
205 and its client user devices (e.g., 210). An application
intelligence engine 230 can be used to collect intelligence
regarding one or more applications served, for instance, by
application servers 144. The intelligence can be used in con
nection with services provided by application manager 205,
Such as behavior analysis and assessments of applications by
application manager 205, among other examples.
0035. In some implementations, a user device (e.g., 210)
may include one or more processor devices 242 and one or
more memory elements 245 as well as one or more other
Software- and/or hardware-implemented components includ
ing, for example, a mode manager 248, settings manager 252,
security tools 250, and one or more applications 255 (e.g.,
procured through application servers 140). In one example
implementation, a user device 210 can include a mode man
ager 248 that is equipped with functionality for defining,
enforcing, and otherwise managing multiple application
access modes 265 on the user device 210. Mode rules 270 can
additionally be managed by mode manager 248, the mode
rules 270 defining, for instance, particular conditions for
automatically initiating or enforcing various modes 265 on

Aug. 6, 2015

the user device 210. Additionally one or more settings 260 can
be defined by users, for instance, through an example settings
manager 252, the setting corresponding to and in Some cases
used in connection with various modes 265 of the device 210,
among other examples.
0036 Turning to the example of FIG.3, a simplified block
diagram 300 is shown illustrating functionality and flows of
an example application manager. For example, a behavior
monitor 228 can assess applications to identify whether one
or more functions and/or content of an application are good,
bad, Suspect, or of unknown quality, among other examples.
The assessment can be based on information acquired from a
variety of Sources (e.g., 145), Such as information servers,
user feedback, and other sources. In instances where “bad”
application functionality and/or content is identified an appli
cation healing engine 225 can be engaged to modify the
application and remediate the identified undesirable function
ality to generate a modified application file 232 correspond
ing to a healed version of the application. Further, Suspect or
unknown applications can be designated, for instance, by a
mode manager 248, to be dedicated to a particular limited
access mode of the user device 210 So as to, in effect, quar
antine the Suspect application until more intelligence is
acquired regarding the application’s functionality. In
instances where it is determined that an application satisfies
rules, requirements, or preferences of a user, network, admin
istrator, etc., the application may instead be allowed to pro
ceed for installation on a user device. Further, applications
which have been healed to generate a modified application
file can allow for the modified application to proceed to the
user device for installation on the device, among other
examples.
0037 FIG. 4 includes a block diagram 400 illustrating
example principles and activities enabled through an example
application behavior analysis engine. Application binaries
405 can be accessed or received by a disassembler data/
control flow analyzer 410 which, in combination with ambi
ent application knowledge 415 (e.g., collected from outside
information sources as well as users, reviewers, etc.) Such as
application descriptions, reviews, comments, and other struc
tured and unstructured data, can develop a model of the appli
cation logic 420 for each application binary 405. The disas
sembler and control flow analyzer 410 can identify behaviors
425 of the given application based on, for example, compar
ing code or application logic model with known functionality
defined in or identifiable from a software development kit
and/or common APIs utilized by the corresponding client
device operating system as well as most or all applications
compatible with the client device. Some examples include the
Google Android software development kit, Apple iOS soft
ware development kit, Windows software development kit,
among other examples.
0038 Generally, a platform software development kit (or
“SDK) can provide documentation, header files, libraries,
commands, interfaces, etc. defining and providing access to
the various platform Subsystems accessible by applications
compatible with the platform. In one example implementa
tion, a platform SDK and corresponding APIs and API calls
(i.e., calls to functions and routines of the API) can be repre
sented in a model that can be used, for instance, by an appli
cation behavior engine, to determine behavior and function
ality of applications compatible with the platform. The
semantics of commonly used APIs is represented in a pro
gram readable form along with critical information necessary

US 2015/0220734 A1

to derive application behavior. The semantics of the platform
SDK can be represented so that an example application
behavior engine can use the semantic model to understand
and identify the operations and behaviors of a given applica
tion using the API call. For example, in one example imple
mentation, all of the potential API calls of the platform can be
represented, for instance through API intelligence 430, by
tagging the name of each respective API call with the behav
ioral tag describing what the respective API call does on the
platform as well as the corresponding parameters of the APIs
operations and behaviors. As an example, a template of Such
a semantic representation can be modeled, for instance, as:

<APIName: name
<Category: read/write processtransform......--

<Category Detail
<Reads: sensitivity>
<Writes: sensitivity>
<Transform: sensitivity>

<Senitivity: red:5/orange:4/yellow:3/green:1>
<Parameters: No of paramerers

<ParameterIndex:Index
<Type: integeri object string....>
<Operation: input/output/transformatives
<return value: void integerfobject stringf

<Dependency>
<Trueffalsex

<Description>
<APIDescription: description of the APID
<VerbS:XXX>
<Nouns:XXX

0039. In the foregoing example, a “category' can desig
nate the type of an API call and be used to identify the general
functionality of such API calls, such as, that the API call reads
information from a particular Subsystem, disk, etc. generates
various messages, initiates various network behaviors,
attempts to communicate with various outside servers, trig
gers particular device functions or elements (e.g., a camera,
SMS controller, etc.). “Sensitivity” can represent the respec
tive sensitivity of the subsystem affected or associated by the
API in the context of the potential for malicious behavior in
connection with the Subsystem, Such as whether reading to a
particular memory location introduces the potential for spy
ing, where the Subsystem potentially permits the introduction
of malware, unauthorized tracking or data collection, the
unauthorized or undesired reading or sending of SMS or
email messages, among many other examples. Further,
“dependency' can represent whether the output of this API
can have an impact on other parts of the program in a direct
way. For instance, a sendTextMessage() API can be identified
as having no dependency where the API simply sends an SMS
message out and does not return anything, among other
examples.
0040. Other information can be used by a behavior heu
ristics/rule engine 435 (e.g., of an example analysis engine
(e.g., 228)) to determine behaviors of an application under
assessment, Such as global threat intelligence (GTI) 440
aggregating intelligence from a community of Sources 445.
rules 450, and other information.
0041 As noted above, an example application behavior
analysis engine (e.g., 228) can possess functionality for iden
tifying the control flows, operations, functionality, and
behavior of a given application based, for instance, on a
semantic representation of a standard platform SDK upon
which compatible applications are based. In FIG. SA, repre

Aug. 6, 2015

sentation500 of a simplified application control now is shown
for an example gaming application. While the functionality of
the game may be in the main desirable, secure, and benign,
deeper inspection of the code of the game application binary
in comparison with the semantic representation of the plat
form SDK as well as ambient application intelligence for the
game application, may yield identification of other function
ality that is not immediately or otherwise identifiable, under
stood, or appreciated by users, such as the application sending
SMS messages either with or without a user's explicit knowl
edge or permission. In another example, shown in FIG. 5B,
inspection of a particular object of an application binary may
reveal the totality of functions and control flows of the given
application as well as reveal dependencies between distinct
programs, program units, or applications the user may not
otherwise realize, understand, or approve of. As an example,
identified behavior heuristics can be represented externally,
in some implementations, in an XML file that identifies the
specific pattern of data flow and calls, from which the behav
ior can be identified. For instance:

< Pattern
< Call to API1(): mandatory
< Call to API2()/API3()/....: mandatory>
< Call to API5()/API6()/....: optional
< Call to API10(): mandatory>

< Pattern

0042. In some implementations, based for instance on a
model of the semantic representation of the platform SDK,
application logic can be modeled and rules can be applied to
interpret the application logic and identify instructions and
calls within a corresponding binary of the application that
correspond with malicious, privacy infringing, policy violat
ing, or other undesirable behaviors. The logical model of an
application’s functionality can include representation (e.g.,
505) of the application logic through data flow structures and
control flow structures, among other examples. A dataflow
structure can represent the lifetime of data objects as they
pass-through the application logic (e.g., 510) and onto other
program units (e.g., 515) including external program units. A
dataflow structure (e.g., 505) can be used to identify the flow
of data from one part of the application program as it moves
and is potentially transformed by the application logic. For
example, a dataflow model can be used to deduce that par
ticular data is being leaked by the application through an
Internet communication post operation, among other
examples. Further, control flow structures can represent the
control flow of different function calls (e.g., 520, 525) to
identify an originating source of an application call deter
mined to be sensitive or undesirable. As an illustrative
example, a call by the application to send an SMS message
can be traced back, for example, to a UI element of an appli
cation interacted with by user, or even an autonomous event in
a background process of the application, among potentially
many other examples.
0043 Turning to the examples of FIG. 6, a simplified
block diagram is illustrated representing various Subsystems,
devices, and functionality accessible by applications through
one or more APIs defined in a platform SDK, for example. In
Some implementations, all platform Subsystems can be cat
egorized or assigned weights based on the sensitivity of the
respective subsystem in the context of the potential that the
Subsystem could be manipulated or utilized in connection

US 2015/0220734 A1

with a malicious or otherwise undesirable behavior. Such
weights and sensitivities can be based on a variety of factors
including, for example, the potential for an invasion of pri
vacy, data leaks, financial sensitivity, among other examples.
These factors can also form the basis of categorizations of the
various Subsystems of the platform. Such Subsystems can
include, for example, contact lists, photo galleries, email
clients, calendars, Internet connectivity and browsing, graph
ics, video functionality, cameras, audio, security tools and
engines, telephony, Wi-Fi capabilities, Bluetooth capabili
ties, data ports, battery power, touchscreens, global position
ing systems, among potentially many other functionalities
and Subsystems including future functionality that can be
integrated in mobile devices.
0044 As represented in the example of FIG. 7, a rule
engine of an application behavior analysis engine can access
rules, for instance, from a rule database, including rules that
have been custom defined for and/or by a particular user or set
ofusers according, for example, to preferences of the users as
well as policies applicable to the users (e.g., policies of an
Internet service provider, enterprise network, broadband data
provider, etc.). The rule engine can take as a further input an
application logic model (e.g., developed based on a semantic
representation of a platform SDK corresponding to the appli
cation) to assess the various operations and functionality of an
application as identified in application logic model. The rule
engine can assess the various operations and functionality of
an application according to rules identified as applicable to
the particular instance of an application, Such as an instance
of an application that has been attempted to be downloaded or
installed on a particular user computing device of a user
associated with the identified rules. Application behaviors
can be identified by the rule engine including application
behaviors identified as violating one or more rules (e.g., rules
forbidding certain behaviors or actions) and prompting, in
Some instances, remediation of the identified application
behaviors and/or assignment of the application to one or more
operation modes on the destination user device. Such as a
quarantine or administrative operation mode, among other
examples.
0045. In some implementations, a human readable
description of a behavior identified and based on a description
of API semantics can be constructed. In one example, human
relatable verbs and nouns can be associated with template
messages in the semantic representation and mapped to par
ticular human understandable descriptions of functions and
operations available to the APIs. Further, in connection with
assessments of an application according to the semantic
model performed, for example, by an application behavioral
analysis engine, a human-readable Summary of the behavior
analysis results can be generated from the mapping and pre
sented to a user that describes the various functionality, as
well as, in Some implementations, the control flow dataflow
of the analyzed application. Such results can make use of the
human readable description to generate a description of the
functionality uncovered during analysis of the application,
including functionality that may otherwise be invisible to or

Aug. 6, 2015

difficult to detect by the user. For example, in one implemen
tation, the template can be utilized and populated so as to
identify and describe an example application’s functionality
for reading SMS data from the user's device. As an illustrative
example, corresponding description could be generated Such
as: “This application reads your SMS data from SMS inbox
and sends to a web site.” Such a description could be con
structed, for example, by filling in an example template based
on the semantic representation of the platform SDK and APIs
such as: “This application <verb: reads your <noun:SMS
data from <noun: SMS inbox> and <verb: sends to a
<noun: website’, among other examples.
0046. In some examples, the analyzed application behav
ior can reveal the use of other applications, programs, or
services by the analyzed application. Some instances, a call to
a local application, remote service, or other program by the
analyzed application may be undesirable, for instance, when
the other called application is identified as unsecure, un
trusted, or unknown, among other examples. In other
instances, a program called or used by the analyzed applica
tion may be identified as a trusted program. Accordingly, in
Some implementations, an application behavior analysis
engine can make use of generate, modify, and otherwise
manage whitelists and/or blacklists that identify the status
and reputations of various programs that have been known to
or could be potentially called by various analyzed applica
tions. In some implementations, applications and services
hosted by remote servers can additionally be identified in
such whitelists and/or blacklists by the respective URLs or
other address information corresponding to their respective
host servers, among other examples.
0047. In some implementations, the behavioral analysis
engine can identify the context in which a particular activity
is performed, platform API is accessed, or functionality is
employed by the application under assessment. As an
example, an analyzed applications attempts to access a plat
form telephony Subsystem can be assessed based upon the
cause or context of the attempt. For instance, in Some con
texts, a particular API call may be perfectly acceptable while
in other contexts the API call can be undesirable. For instance
identified application functionality that accesses the tele
phony Subsystem in response to a user interface interaction,
Such as a button press, may be assessed differently than an
attempt by an application to access the telephony Subsystem
autonomously and not in response to a user provided direc
tive, among other examples.
0048. As noted above, in some implementations, rules can
be defined that can be used in the assessment of application
behaviors. Such rules can be represented and configured for
use in performing heuristic analysis of an application's logic
or of a potentially malicious behavior identified by an appli
cation behavior analysis engine, including contexts in which
the behavior is to be determined to be malicious. For instance,
a rule engine can apply one or more rules to an application
logic model to identify one a more potentially malicious or
otherwise undesirable behaviors present in the application. In
Some implementations, a rule can be represented as:

<Run-Dataflow><ReadOperation>of<red subsystem to a:Write0peration>
of<write subsystem

US 2015/0220734 A1

The rules can be generic or can be specific to a particular
Subsystem, etc., such as a rule to detect data leak of a memory
element storing personal contact data, among other examples.
A specific application behavior can be derived based on appli
cation of a single rule or multiple rules.
0049. In some implementations, an application behavior
analysis engine can be hosted on one or more server comput
ing devices remote from the mobile user devices for which
analysis performed. In other examples, at least a portion of
application behavior analysis engine can be provided alter
natively or redundantly with functionality of server-side
application behavior analysis engine components. For
instance, in one example implementation, a user computing
device can be provided with application behavior analysis
engine functionality allowing at least a partial or quick pre
liminary assessment of an application to be performed at the
user device to thereby provide a user with fast feedback as
well as assess whether an application should be quarantined,
denied downloador installation, and/or forwarded to a remote
application behavior analysis engine. Such as one provided in
a cloud system, allowing then for a more robust behavioral
analysis of the application (that could possibly introduce
increased latency into the behavioral analysis assessment).
0050. In some implementations, during an analysis of an
application, downloading, insulation, or launching of the ana
lyzed application may be prevented or delayed until the
analysis is completed. In some instances, a user can be pro
vided with a prompt identifying the analysis of the applica
tion as well as providing the user with various options for
dealing with the installation, downloading, or launching of
the analyzed application. For instance, a user may be pro
vided with the option of skipping the analysis, delaying
installation of the analyzed application, assigning the ana
lyzed application to a particular mode, among other
examples. Additionally, in Some implementations, a prompt
presented to the user in connection with the assessment may
be presented together with information, such as preliminary
information, gleaned from the behavioral analysis engine
assessments and/or external intelligence relating to the ana
lyzed application. Such intelligence can include, for example,
intelligence gleaned by the behavioral analysis engine in
previous assessments of the analyzed application, among
other examples. Indeed, in Some implementations, the behav
ioral analysis engine can indicate to the user behaviors dis
covered for the application, how other users have responded
to feedback received from the behavioral analysis engine
regarding the particular analyzed application, among other
examples.
0051. In some implementations, behavioral analysis
engine can maintain blacklists, greylists, and/or whitelists of
applications known to and/or previously analyzed by the
behavioral analysis engine. Such blacklists, greylists, and/or
whitelists can be based on historical intelligence collected
from previous behavioral analyses, outside intelligence from
other sources, and other users. The behavioral analysis engine
can utilize Such information to perform an initial assessment
of an application and leverage information gleaned from pre
vious analyses. Initial filtering or feedback can thereby be
provided to a user to assist the user in determining how to deal
with a particular application as well as whether to initiate
further behavioral analysis on the application using the
behavioral analysis engine.
0052 Behavioral analysis of applications and/or black
lists/whitelists can further incorporate or consider general

Aug. 6, 2015

reputation information of developers or other parties identi
fied as responsible for various applications, among other
examples and considerations. Rules can be defined that con
sider the trustworthiness or untrustworthiness of the devel
oper, distributor, etc. ofan application. For example, an appli
cation development score rating can be computed for a
developer based on aggregate analyses of applications of the
developer by the behavioral analysis engine. For instance,
Such a rating can be derived as: AppDeveloper Rating f(total
number of apps, weighted average of undesired behavior in
apps, popularity of the app, average ratio of low ratings),
among other examples. For instance, in one Illustrative
example, a weighted average of undesired behavior can be
generated for a set of applications of a developer:

Weight No of Total
Behavior (out of 10) occurrence weight

Contacts leakage 9 2 18
Device ID leakage 2 5 10
Message Leakage (SMS) 8 3 24
Location leakage 5 4 2O
Unnecessary permissions 2 1 2

and average weight can be derived by Average Weight=Total
Weight/Total number of Apps, among other example imple
mentations.

0053. Outside sources, such as intelligence databases,
such as a global threat intelligence (GTI) feed, can be used for
identifying malicious behaviors that have been detected
across one or more networks that may be employed by appli
cations assessed by behavioral analysis engines. For instance,
various URLs, IP addresses, phone numbers, and files can be
identified that have been previously determined to be associ
ated with or used in other malicious attacks, malware, or
Suspect systems. Additionally, a behavioral analysis engine
can interface with intelligence databases to provide addi
tional intelligence gleaned from the behavioral analyses of
applications performed by the behavioral analysis engine
itself, among other examples.
0054 Further, in some systems and platforms, applica
tions offered by one or more application servers or storefronts
may provide users with basic descriptions, ratings, user feed
back, etc. collected for a given application. Unfortunately, in
many instances, such ratings, application descriptions, con
tent ratings, etc. may be provided by, manipulated by, or
otherwise influenced by the application developers them
selves thereby diminishing, potentially, the truthfulness or
legitimacy of the information provided to users regarding
Some applications. Accordingly, in some of implementations,
intelligence (e.g., behavioral descriptions) gleaned from
behavioral analyses of applications performed by an example
behavioral analysis engine may be used to Supplement, cor
rect, or otherwise modify descriptions provided to users in
connection with their browsing, purchasing, and download
ing of applications available on a platform. Further, in some
implementations, a behavioral analysis engine can make use
of these default application descriptions, content ratings, user
feedback etc. as external intelligence considered in connec
tion with a behavioral analysis. In still other examples, a
behavioral analysis engine may be used to identify common
behavioral traits between multiple applications that can serve
as the basis for categorizing the applications according to
behavior. Such categories can then be provided to users to

US 2015/0220734 A1

assist users in better understanding the qualities and behav
iors, as well as potential risks, of various applications, among
other examples.
0055 Turning to FIG. 8, a simplified schematic diagram
800 is shown of an example flow for performing deep analysis
of application behavior (e.g., using a behavioral analysis
engine) and performing application healing in an attempt to
remedy those behaviors determined to be undesirable in an
application while still preserving other core functionality of
the application, in some examples. As shown, application
binaries can be submitted to a disassembler and data control
flow analyzer 410 (e.g., of a behavior analysis engine) to
develop application logic models (e.g., 420) based, in some
examples, additionally on ambient application knowledge
415, intelligence, and the like. As noted above, the model of
application logic 420 can be assessed based on defined rules,
platform API intelligence, and behavioral heuristics through a
behavioral heuristics/rules engine 435 to identify application
behaviors of a respective application. Further, sections of
code of the application can be identified during the assess
ment as responsible for the exhibited undesirable behavior.
This code can be flagged for remediation. Additionally, in
instances where application behaviors are identified as unde
sirable and are requested or dictated, by a user, administrator,
or predefined rules, to be healed, the application binaries can
be further processed to remove, block, or otherwise remediate
the offending behaviors and corresponding code to thereby
generate healed versions 232 of the application binaries that a
user can then cause to be downloaded, installed, and executed
on the user's device. Additionally, as noted above, the global
threat intelligence feed 440 or other intelligence database can
provide intelligence for consideration and behavioral analy
ses as well as application healing. Additionally, intelligence
gleaned from the behavioral analyses can be shared with
outside intelligence databases that additionally receive input,
data, and intelligence from a community of users and systems
445.

0056 Turning now to the example of FIG.9, an additional
flowchart 900 shown representing decisions made in connec
tion with the management and remediation of applications
determined to include undesirable behaviors based on behav
ioral analyses of the applications. For instance, rules and
policies can be defined, for instance, by a user or system or
network administrator, to define how and under what condi
tions applications are to be handled that have been determined
to include one or more undesirable behaviors. Such policies
can, for example, identify particular types of undesirable
behaviors and map such behaviors to predefined courses of
action, such as the healing or remediation of the applications,
blacklisting or whitelisting of the applications, quarantining
of the applications, among other examples. Additionally, user
inputs can drive management of an application's deployment
on a user computing device. Such inputs can be received in
connection with prompts presented to the user and can
include, for example, requests to remediate one or more iden
tified undesirable behaviors, instructions to assign the ana
lyzed application to aparticular operation mode or quarantine
area, among other examples.
0057. As noted above, static healing and personalization
of application behavior can be performed by a healing engine
allowing the code of the application to be modified and gen
erate a “safe' version of the application that allows the user to
retain safe or legitimate functionality of the application while
removing undesirable behaviors. Such healing can in some

Aug. 6, 2015

cases be personalized or customized to particularly-defined
policies driving the healing, thereby allowing a user, service
provider, device manufacturer, etc. to control and personalize
the functionality of applications to be installed on corre
sponding user devices. In FIG. 10, simplified b diagram 1000
is illustrated showing the flow of an example healing of an
original application 1005. Upon identifying 1010 undesirable
behaviors and offending sections of the code of the applica
tion binary, a healing engine can be provided for identifying,
removing, replacing, or blocking, the offending code and
corresponding behaviors in order to generate a modified
application binary 1015. As an example, a healing engine 228
may include logic for modifying an application by removing
or blocking various types of undesired behaviors such as, in
this example, unauthorized reads or accesses of SMS func
tionality by removing the offending instructions discovered
in the original application binary. In other instances, such as
shown in this example, a healing engine may modify the
offending code, Such as by rewriting the code to redirect an
API call to a trusted system, destination, address, etc. A
healing engine 228 can modify the original code with mini
mal changes so as to avoid affecting the core desired func
tionality of the application. Further, healing policies caniden
tify the patterns that are considered for identifying
application code for healing. This can be represented, for
example, in an XML file that identifies the heuristic pattern of
code corresponding to an offending behavior. Each type of
defined or identified pattern of code can be healed by a spe
cific healing method, Such as according to corresponding
policies. Such methods can be identified and defined in such
a way that the healing does not impact the rest of the appli
cation’s functionality.
0.058 A variety of healing methods can be employed by an
application healer engine. For instance, a particular offending
line of code functionality can be identified as a final or leaf
node in a control chain. In Such instances, the offending code
may be determined to be able to be suppressed or removed
without affecting other dependencies in the application,
among other examples. In another example, if a removal of a
particular API call is determined to likely have no impact on
Surrounding code, the removal healing method can be
applied. The nature and character of APIs can be learned, for
example, from the semantic platform SDK representation,
among other examples. In other instances, the offending
behavior can be from one or more sections of code and may
result in multiple methods of healing applied to remediate the
behavior, such as by replacing the data in a register to alter the
behavior of the API or redirecting of the API call to a new
version of the API with same interface by replacing the
offending API code with the new API code, among other
examples. In instances where a new version of an API is
introduced, the new API may, for example, do nothing and set
the register status so as not to impact other parts of the pro
gram, process the inputs in a different way to avoid the undes
ired behavior, or do pre-processing and/or post-processing of
the input/output parameter and call the original API, among
other example techniques that resolve the undesirable behav
1O.

0059 Turning to FIG. 11, a simplified block diagram is
illustrated showing the identification of code relating to par
ticular undesirable behaviors. For instance, sections 1a and
1b of application code can be identified as corresponding to a
first, detected, undesirable behavior and sections 2a and 2b
can be identified as corresponding to a second undesirable

US 2015/0220734 A1

behavior of the application. Accordingly, healing the appli
cation can include modifying or replacing the identified
offending sections of code with code that modifies or Sup
presses the undesirable behaviors. Further, healing policies
can be identified corresponding to the identified code or API
calls to identify healing techniques for modifying the
offended code and remediating the undesired behaviors.
0060. In FIGS. 12A-12E, additional examples are illus
trated of the detection of undesirable behaviors as well as the
remediation of the undesirable behaviors. For example, in
FIG. 12A, an example code fragment allowing an application
to send latitude and longitude information to an outside server
is shown as having been processed to populate an API tem
plate, for instance, utilizing a behavior analysis engine. As
shown in FIG. 12B, portions of the application code can be
identified that correspond to the behavior of collecting geo
positional data and sending the geo-positional data to the
outside server. In accordance with one example, the offending
lines of code can be replaced, for example with code that
masks or redirects the sending of the geo-positional data to
prevent the application from tracking user location, among
other examples. In another example, illustrated in FIG. 12C,
a control flow can be identified within an application along
with corresponding application code. As shown in the
examples of FIGS. 12D-12E, remediation of a particular
undesirable behavior can include deletion of an offending line
of code, among other examples.
0061 FIG. 13 illustrates an example flow 1300 in connec
tion with remediation of one or more detected undesirable
behaviors of an application. For instance, the connection with
the dynamic personalization of an application’s behavior for
particular user, the composite behaviors of the application
and corresponding code segments can be identified. A user
interface can be presented in connection with the healing or
customization of the application allowing the user to select
particular identified behaviors for remediation or modifica
tions. In one example implementation, the user interface can
be provided in connection with an application healing engine
with the user inputs directing how (e.g., which identified
behaviors) the application healing engine is to modify the
application. In another example, application healing engine
can insert one or more user interface controls into the original
binary of the application allowing the user at launch of the
modified application to dynamically enable, disable, or oth
erwise remediate or customize the behavior of the applica
tion. For instance, based on the selections of the user, an
original section of the code corresponding to an accepted
behavior can be utilized in lieu of a healed version of the same
code, among other examples. Effectively, each of the seg
ments of the code where behavior is demonstrated can be
selectively turned off or on based on the user preferences and
inputs. Further, the user interface can provide a user with the
option of Saving the settings of an application so that the
selection of a particular Subset of application behaviors per
sists and is available the next time the application is launched
on the user's device.

0062. In some implementations, functionality can be pro
vided to define, enable, and employ defined usage modes on
the user devices. Traditionally, user devices, such as Smart
phones and tablet computers, among other examples, are
designed to Support a single user and application profile.
However, a single operation profile and mode may not be
appropriate for all of the actual users of the device or the
situations in which the device is used. For instance, a user may

Aug. 6, 2015

desire to loan their device to a friend for some short period of
time, but would like to nonetheless retain control of the access
to Some of the sensitive applications and data on the device,
email applications, contacts, calendars, messaging function
ality, etc. In other instances, the user may desire to allow a
child to temporarily use the device, for example, to play
game, but would prefer for other applications (e.g., web
browsers) and access to certain device settings and data to be
blocked from the child. Additionally, users may desire to
control usage of some Subset of the applications on the device
to specific times, locations, and situations. For instance,
games and Social networking applications may be desired to
be disabled during School hours, among other examples.
0063 FIG. 14A illustrates a simplified block diagram
1400a of an example implementation of a mode manager. For
instance, various modes may be defined based on intelligence
gleaned from the user device as well as outside services. A
user may define one or more modes through a user interface
and a mode manager, for instance, on the device may manage
access to the various modes, for example, using dedicated
credentials assigned to each of the modes. Additionally, as
noted above, an application monitoring service or application
behavioral analysis engine may recommend particular appli
cations for a quarantine or high-security mode available on
the user device. Accordingly, a user may define Such modes to
restrict access to potentially risky or currently analyzed appli
cations to administrative, adult, or other trusted users, among
other examples.
0064 FIG. 14B illustrates another simplified block dia
gram 1400b illustrating principles of an application mode
manager. An application mode manager 248, in Some imple
mentations, may include various modules and functionality
such as a mode setup manager 1405, lock service 1410, lock
manager 1415, credential manager 1420, application access
manager 1425, application protection service 1430, password
engine 1435, among other examples. For instance, in the
illustrated example, the user with administrative privileges
can set up passwords or PINs and assign these credentials to
modes defined by the user, for instance, using a mode setup
manager. An access manager can utilize a credential manager
to verify whether valid credentials have been received that
allow a current user of the device to access one of a set of
modes defined for the device. In the event that incorrect
credentials are entered, a lock manager can invoke a lock
service to lock out the current user from one or more appli
cations by assigning the user to a restricted mode or locking
out the user altogether.
0065. In some implementations, a device mode can be
composed of an exclusion list or inclusion list. Device modes
can be defined as respective sets of applications that are either
allowed or somehow protected in that mode, in the sense their
usage is prohibited or limited. In some instances, an exclusion
list can be defined for a mode that indicates a particular subset
of the applications and/or Subsystems of a device that are
accessible under the corresponding mode (i.e., with the
remaining applications protected or locked in that mode). For
instance, a mode can be defined Such as according to:<Mode
Name, inclusion/Exclusion, Access PIN. App1, App2, App3.
. . App N>. In some instances, each device mode can be
protected and associated with a particular password. The
master mode can be defined that allows access to the entirety
of the device's functionality and applications. Accordingly, a
master password can be provided that enables access to the
master mode. Within the master mode, the user may be pro

US 2015/0220734 A1

vided with access to a management console for managing the
set of modes available or defined at the device. Accordingly
the user may edit or define modes through the management
console, as well as activate or delete predefined modes. An
example management console can allow a user to select, from
a listing of applications, those applications the user wishes to
designate as protected or accessible in any given mode. In
Some cases, a single application can be allowed or protected
under multiple different modes.
0066. In some implementations, mode passwords may be
stored in encrypted memory. For instance, the password of
each mode can be encrypted using a key generated by the
same password. A stored, encrypted password can then be
validated by decrypting the password with a key generated
from the password entered by the user. The decrypted data can
then be compared with the user-entered password. Based on
the password provided by user, a corresponding mode can be
identified and authenticated to allow access to the mode by
the user. In some implementations, the user may manually
lock the device or the device may lock itself, for instance,
after a prolonged period of inactivity. When attempting to
unlock the device or wake up the device a user may be again
presented with a login prompt requesting a password of one of
the modes available and defined for the device.
0067. In some implementations, modes can be hierarchi

cal. For instance, a user logged into a higher level mode (i.e.,
a mode providing a relatively greater level of access), may be
able to freely move to another mode without providing cre
dentials for that lower-level mode. On the other hand, a user
who has been authenticated to a lower level mode may be
forced to enter additional credentials when attempting to
access another mode at a higher level in the hierarchy than the
lower-level mode to which the user was previously authenti
cated. For example, in one instance, four device modes can be
defined where:
0068 Model is admin level mode:
0069. Mode 2 guest level mode:
0070 Mode 3 is guest level mode; and
(0071 Mode 4 is low privilege mode
and the hierarchy is defined as: Model D(Mode2 and Mode
3)>Mode 4, where Mode2 is the same level as Mode3, among
other example implementations.
0072. In some implementations, configuration of the
device can be altered, customized, or at least partially
restricted when certain modes are active. For example, a
particular mode can activate or deactivate GPS functionality,
data access, telephony, as well as certain applications. Fur
ther, in some examples, device modes can be provided that
secure data of particular applications when mode. For
instance, once a new mode has been created and assigned a
corresponding access level to set of applications, the data of
these applications may be protected by encryption through a
separate encryption key. This can be implemented for
example by using an encrypting file system for encrypting
files and folders, among other examples.
0073. In some implementations, the executable code of
applications can be secured to protect against applications
being used in modes that disallow access and/or use to one or
more of the behaviors or features of the application. For
instance, in one implementation, the application executable
can be stored in encrypted secondary storage. An operating
system loader of the user device can gain conditional unen
crypted access to the executable code, in some examples, only
if the application is found in an allowed application list for the

Aug. 6, 2015

active device mode in which access to the application is
attempted, among other potential implementations.
0074. In some examples, defining multiple device modes
for a user device can further result in the provision of multiple
unique home screens to be presented in each of the corre
sponding modes. As a result, in Such implementations, the
appearance of a given home screen can indicate to a user the
mode that is active on the device as well as access privileges
available in that mode. In some instances, home screens can
include icons of applications that are available within that
corresponding mode, hiding or obscuring the icons of other
applications that are protected within that mode, among other
examples.
0075. Further, in some instances, device modes can be
created automatically, for instance, based on identified
behaviors and security profiles of applications that are
detected or loaded on the user device. For instance, a mode
manager can make use of behavioral analyses performed, for
example, by an example application behavioral analysis
engine, to identify applications that exhibit a common cat
egory of behaviors or category of security profiles. For
instance, applications identified as permitting access to
online resources may be grouped and assigned dynamically
to one or more modes that have been defined as allowing Such
access. Other modes. Such as modes dedicated for underage
users, may be denied access to applications that allow users to
access the Internet, among other examples. Other example
categories may include applications that enable telephony or
mobile messaging functionality, applications that make use of
Subsystems that utilize sensitive data, collect potentially pri
vate information (e.g., cameras, Voice recorders, GPS sys
tems, etc.), and other examples. In some implementations,
ambient intelligence relating to an application, Such as an age
rating (e.g., 7+, 12+, 18+years, etc.), user reviews, or other
information may be used to categorize applications and group
them in various modes. For example, a description of an
application may include an age or maturity rating as well as
reasons for the maturity rating. Accordingly, in one example,
one or more modes may be defined, for example, that block
access by child users to applications with higher maturity
ratings, among other examples.
0076. Other global or distributed intelligence can also be
used to develop information for a given application, such as
illustrated in the simplified block diagram 1900 of FIG. 19.
For instance, application information can be constructed from
security information regarding behaviors of an application
from global threat intelligence 440, publisher/developer
reputation information 1905, app store feedback and reviews
1910, behavior analysis results 1915, among other examples.
Such information (e.g., 440, 1905, 1910, etc.) can be used in
combination with behavioral assessments 1915 of the appli
cations (e.g., whether an application potentially leaks data,
provides location information, enables SMS messaging, etc.)
to assign certain applications to particular device modes, such
as quarantine or administrative modes, among other
examples. A user may further designate custom categories or
behaviors or select pre-defined categories or behaviors as the
basis for assignments of applications to respective modes
rather than individually selecting the applications for inclu
sion in one or more modes on all a carte basis, among other
examples.
0077 Turning to the example of FIG. 15A, an example
algorithm is represented for the storing of password informa
tion associated with a particular mode. FIG. 15B represents

US 2015/0220734 A1

an example algorithm for validating a password and identi
fying a mode to activate that corresponds to the entered pass
word. It should be appreciated that the algorithms of FIGS.
15A-15B are non-limiting examples presented merely for
purposes of illustration and that other alternative algorithms
and implementations can be utilized in other instances.
0078 Turning to the example of FIG. 16, in some imple
mentations, modes defined by a given user may be provided,
for instance, to an application management service, cloud
service or other service (e.g., 1600) that allows one or more
modes, as well as rules associated with the modes, to be
aggregated and shared with other users. Additionally, shared
device modes maintained by a mode sharing service 1600 can
be browsed and selected for download and utilization on user
devices 110, 120, allowing a user to provision their own
device with modes created by other users and shared using the
mode sharing service. Further, the user can provision the
shared mode, in Some examples, by downloading and install
ing a definition of the shared mode from the mode sharing
service and assigning a unique password to the newly
installed mode. In still other examples, mode configurations
can be shared directly between devices, with one device
obtaining a new mode from another device sharing the mode,
for instance, through wireless peer-to-peer technologies like
Bluetooth, near field communications (NFC), WiFi, and oth
CS.

0079. In some implementations, such as shown in the
example of FIG. 17, modes can be activated automatically
based on context information detected, for example, by the
device itself. A user, in some examples, can configure (e.g., on
the management console), rules for automatically activating
particular modes. For instance, a particular mode can be
activated automatically in response to the detection of a spe
cific context at the user device. Such contexts can include, for
example, detecting the location or proximity of the device
within a defined geo-fence, detecting that the device is in
proximity of other devices, detecting the device in range of
particular data networks, detecting a user of the device (e.g.,
based on user biometric information collected by the device),
a detected time of day, device battery status, usage activity
(e.g., to guard against particular users spending too much
time on the device, etc.), whether the device is traveling or in
motion (e.g., as detected through GPS functionality, acceler
ometers, or other functionality on the device), among poten
tially many other examples.
0080 Turning now to the example of FIG. 18, in some
implementations, modes can be provisioned and configured
through a remote service, such as a cloud service, allowing a
user to activate/deactivate or define a mode remotely. Using
Such a service, a user can create a mode remotely (e.g., using
a computer other than the target mobile user device) and
provision one or more modes to the target user device and also
activate and deactivate the mode on the user device from a
remote location. Further, an administrator can also use the
service to provision Such modes on mobile user devices as
well as define rules and contexts for automatically activating,
applying, or deactivating a given mode, among other
examples.
I0081 FIGS. 20A-20D illustrate example screenshots of
user interfaces showing particular features of Some example
implementations of mode management on a mobile user
device. For instance, screenshot in FIG.20A illustrates a user
interface for defining a new mode and mode password. A
similar user interface can be provided to allow a user to select

Aug. 6, 2015

and activate one of multiple available modes on the device
and/or provide credentials for the selected mode. In some
implementations, a user device may include native login cre
dentials or a native login manager. A mode manager may be
implemented as an application itself that overrides a native
login manager and replaces a native login screen with the
mode-specific login prompts (e.g., that allow the multi-mode
functionality of the user device). In some instances, a user
may not be able to visually distinguish that a user device is
provisioned with multiple modes, with the login screen
capable of accepting one of a plurality of different login
codes, each login code corresponding to a Supported mode
(including hidden modes) provisioned on the user device.
0082. The screenshot of FIG. 208 illustrates a view of a
home screen for a particular mode. As shown in this example,
a set of restricted applications can be designated that can only
be accessed by providing credentials to and activating a
higher level mode (e.g., that permits access of the restricted
applications). Further, a My Apps folder can provide access to
those applications that have been enabled in a current active
mode. Screenshot of FIG. 20O provides another view of an
example administrative Screen that permits users to activate,
edit, or create new modes. Additionally, example screenshot
of FIG.20D illustrates a user interface that can be provided in
Some implementations of a mode manager allowing a user to
designate from a list of applications on the device which
applications are to be included or protected in a given mode,
and so on. It should be appreciated that the foregoing
examples are provided merely for the sake of illustrating
certain principles and should not be interpreted as limiting
examples. Indeed, a variety of different implementations,
user interfaces, program architectures, operating systems,
SDK platforms, and method sequences can be substituted for
those examples described above without diverting from the
general principles illustrated and described in this Specifica
tion.

I0083 FIGS. 21A-21C are flowcharts 2100a-c illustrating
example techniques in the management of applications on
mobile user computing devices. For instance, in the example
of FIG. 21A, code of a particular application can be analyzed
2105, for instance, against a semantic representation of a
platform, such as a representation of a platform SDK and/or
APIs. A set of behaviors of the particular application can be
identified 2110. At least one undesirable behavior in the set of
behaviors can be identified 2115, for instance, based on the
user selection of one of the identified set of behaviors or
automatically according to rules and/or policies defined (e.g.,
by a user or administrator) for applications to be downloaded,
installed, launched, or otherwise used at a particular mobile
computing device.
I0084. In the example of FIG. 218, a behavior can be iden
tified 2120 and a set of behaviors detected for a particular
application (e.g., according to the principles of the example of
FIG. 21A). A section of code of the particular application can
then be identified 2125 corresponding to the identified behav
ior. A remediation action can be performed 2130 on the iden
tified section of code to automatically remediate the behavior,
for instance, in response to an identification that the identified
behavior is an undesirable behavior, etc. The remediation
action can result in the dynamic generation of a "healed'
version of the particular application that retains at least a
portion of its original functionality, with the undesired func
tionality being blocked or stripped from the healed version.

US 2015/0220734 A1

0085. In the example of FIG. 21C, a particular one of a
plurality of modes can be activated 2140. The modes can be
defined for a particular user computing device and dictate
what subset of the functionality of the computing device and
its software may be accessible to a particular user having
credentials for accessing a respective mode in the plurality of
modes. Access can be restricted 2145 to one or more appli
cations installed on the user computing device according to
the activation 2140 of the particular mode. In addition, in
Some implementations, activation of the particular mode can
result in a restricted or alternate configuration of the comput
ing device to be applied that thereby limits a user's access to
one or more Subsystems and functionality, including hard
ware functionality, and settings and data of the user comput
ing device, among other examples.
I0086 Although this disclosure has been described in
terms of certain implementations and generally associated
methods, alterations and permutations of these implementa
tions and methods will be apparent to those skilled in the art.
For example, the actions described herein can be performed
in a different order than as described and still achieve the
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the par
ticular order shown, or sequential order, to achieve the desired
results. In certain implementations, multitasking and parallel
processing may be advantageous. Additionally, diverse user
interface layouts and functionality can be supported. Other
variations are within the scope of the following claims.
I0087 Embodiments of the subject matter and the opera
tions described in this specification can be implemented in
digital electronic circuitry, or in computer Software, firm
ware, or hardware, including the structures disclosed in this
specification and their structural equivalents, or in combina
tions of one or more of them. Embodiments of the subject
matter described in this specification can be implemented as
one or more computer programs, i.e., one or more modules of
computer program instructions, encoded on computer storage
medium for execution by, or to control the operation of data
processing apparatus. Alternatively or in addition, the pro
gram instructions can be encoded on an artificially generated
propagated signal, e.g., a machine-generated electrical, opti
cal, or electromagnetic signal that is generated to encode
information for transmission to Suitable receiver apparatus
for execution by a data processing apparatus. A computer
storage medium can be, or be included in, a computer-read
able storage device, a computer-readable storage Substrate, a
random or serial access memory array or device, or a combi
nation of one or more of them. Moreover, while a computer
storage medium is not a propagated signal perse, a computer
storage medium can be a source or destination of computer
program instructions encoded in an artificially generated
propagated signal. The computer storage medium can also be,
or be included in, one or more separate physical components
or media (e.g., multiple CDs, disks, or other storage devices),
including a distributed Software environment or cloud com
puting environment.
0088 Networks, including core and access networks,
including wireless access networks, can include one or more
network elements. “Network elements' can encompass vari
ous types of routers, Switches, gateways, bridges, load bal
ancers, firewalls, servers, inline service nodes, proxies, pro
cessors, modules, or any other Suitable device, component,
element, or object operable to exchange information in a
network environment. A network element may include appro

Aug. 6, 2015

priate processors, memory elements, hardware and/or soft
ware to Support (or otherwise execute) the activities associ
ated with using a processor for screen management
functionalities, as outlined herein. Moreover, the network
element may include any suitable components, modules,
interfaces, or objects that facilitate the operations thereof.
This may be inclusive of appropriate algorithms and commu
nication protocols that allow for the effective exchange of
data or information.

I0089. The operations described in this specification can be
implemented as operations performed by a data processing
apparatus on data stored on one or more computer-readable
storage devices or received from other sources. The terms
"data processing apparatus.” “processor “processing
device and "computing device' can encompass all kinds of
apparatus, devices, and machines for processing data, includ
ing by way of example a programmable processor, a com
puter, a system on a chip, or multiple ones, or combinations,
of the foregoing. The apparatus can include general or special
purpose logic circuitry, e.g., a central processing unit (CPU),
a blade, an application specific integrated circuit (ASIC), or a
field-programmable gate array (FPGA), among other Suitable
options. While some processors and computing devices have
been described and/or illustrated as a single processor, mul
tiple processors may be used according to the particular needs
of the associated server. References to a single processor are
meant to include multiple processors where applicable. Gen
erally, the processor executes instructions and manipulates
data to perform certain operations. An apparatus can also
include, in addition to hardware, code that creates an execu
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross
platform runtime environment, a virtual machine, or a com
bination of one or more of them. The apparatus and execution
environment can realize various different computing model
infrastructures, such as web services, distributed computing
and grid computing infrastructures.
0090. A computer program (also known as a program,
Software, Software application, Script, module, (software)
tools, (software) engines, or code) can be written in any form
of programming language, including compiled or interpreted
languages, declarative or procedural languages, and it can be
deployed in any form, including as a standalone program or as
a module, component, Subroutine, object, or other unit Suit
able for use in a computing environment. For instance, a
computer program may include computer-readable instruc
tions, firmware, wired or programmed hardware, or any com
bination thereof on a tangible medium operable when
executed to perform at least the processes and operations
described herein. A computer program may, but need not,
correspond to a file in a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more Scripts stored in a markup language document),
in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, Sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib
uted across multiple sites and interconnected by a communi
cation network.

0091 Programs can be implemented as individual mod
ules that implement the various features and functionality
through various objects, methods, or other processes, or may

US 2015/0220734 A1

instead include a number of Sub-modules, third party Ser
vices, components, libraries, and Such, as appropriate. Con
versely, the features and functionality of various components
can be combined into single components as appropriate. In
certain cases, programs and Software systems may be imple
mented as a composite hosted application. For example, por
tions of the composite application may be implemented as
Enterprise Java Beans (EJBs) or design-time components
may have the ability to generate run-time implementations
into different platforms, such as J2EE (Java 2 Platform, Enter
prise Edition), ABAP (Advanced Business Application Pro
gramming) objects, or Microsoft's .NET, among others.
Additionally, applications may represent web-based applica
tions accessed and executed via a network (e.g., through the
Internet). Further, one or more processes associated with a
particular hosted application or service may be stored, refer
enced, or executed remotely. For example, a portion of a
particular hosted application or service may be a web service
associated with the application that is remotely called, while
another portion of the hosted application may be an interface
object or agent bundled for processing at a remote client.
Moreover, any or all of the hosted applications and software
service may be a child or sub-module of another software
module or enterprise application (not illustrated) without
departing from the scope of this disclosure. Still further, por
tions of a hosted application can be executed by a user work
ing directly at a server hosting the application, as well as
remotely at a client.
0092. The processes and logic flows described in this
specification can be performed by one or more programmable
processors executing one or more computer programs to per
form actions by operating on input data and generating out
put. The processes and logic flows can also be performed by,
and apparatus can also be implemented as, special purpose
logic circuitry, e.g., an FPGA (field programmable gate array)
or an ASIC (application specific integrated circuit).
0093 Processors suitable for the execution of a computer
program include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor
dance with instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA),
tablet computer, a mobile audio or video player, a game
console, a Global Positioning System (GPS) receiver, or a
portable storage device (e.g., a universal serial bus (USB)
flash drive), to name just a few. Devices suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The pro
cessor and the memory can be Supplemented by, or incorpo
rated in, special purpose logic circuitry.

Aug. 6, 2015

0094. To provide for interaction with a user, embodiments
of the subject matter described in this specification can be
implemented on a computer having a display device, e.g., a
CRT (cathode ray tube) or LCD (liquid crystal display) moni
tor, for displaying information to the user and a keyboard and
a pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of devices
can be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi
tion, a computer can interact with a user by sending docu
ments to and receiving documents from a device, including
remote devices, which are used by the user.
0.095 Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front end component, e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
Subject matter described in this specification, or any combi
nation of one or more Suchback end, middleware, or frontend
components. The components of the system can be intercon
nected by any form or medium of digital data communication,
e.g., a communication network. Examples of communication
networks include any internal or external network, networks,
sub-network, or combination thereof operable to facilitate
communications between various computing components in
a system. A network may communicate, for example, Internet
Protocol (IP) packets, Frame Relay frames, Asynchronous
Transfer Mode (ATM) cells, voice, video, data, and other
suitable information between network addresses. The net
work may also include one or more local area networks
(LANs), radio access networks (RANs), metropolitan area
networks (MANs), wide area networks (WANs), all or a
portion of the Internet, peer-to-peer networks (e.g., ad hoc
peer-to-peer networks), and/or any other communication sys
tem or systems at one or more locations.
0096. The computing system can include clients and serv
ers. A client and server are generally remote from each other
and typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi
ments, a server transmits data (e.g., an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter
action) can be received from the client device at the server.
0097 While this specification contains many specific
implementation details, these should not be construed as limi
tations on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular embodiments of particular inventions. Certain fea
tures that are described in this specification in the context of
separate embodiments can also be implemented in combina
tion in a single embodiment. Conversely, various features that
are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as Such, one or more features from a claimed

US 2015/0220734 A1

combination can in Some cases be excised from the combi
nation, and the claimed combination may be directed to a
Subcombination or variation of a Subcombination.
0098. The following examples pertain to embodiments in
accordance with this Specification. One or more embodi
ments may provide an apparatus, a system, a machine read
able medium, and a method to analyze code of a particular
application against a semantic model of a Software develop
ment kit of a particular platform, identify, based on the analy
sis of the code, a set of behaviors of the particular application,
and identify that one or more of the set of behaviors are
undesired behaviors. The semantic model can associate
potential application behaviors with one or more of APIs of
the particular platform.
0099. In one example, identifying that one or more of the
set of behaviors are undesired behaviors includes determining
that the one or more behaviors violate one or more rules. The
rules can be associated with a particular user.
0100. In one example, a user input identifies one or more
of the set of behaviors as undesirable. The user input can be
received in connection with a user interface displaying human
readable descriptions of the identified set of behaviors.
0101. In one example, code of the particular application
can be disassembled into a control flow and a model of appli
cation logic for the particular application can be generated
based at least in part on the semantic model. The model of
application logic can be further based, at least in part, on
ambient application knowledge.
0102. In one example, a remediation action can be per
formed based on the identification that one or more of the set
of behaviors are undesired behaviors.
0103) In one example, the code of the particular applica
tion is analyzed in connection with an attempt to implement
the particular application on a particular user device.
0104 One or more embodiments may provide an appara

tus, a system, a machine readable medium, and a method to
identify a particular behavior in a set of behaviors detected as
included in a particular application, identify a section of code
of the particular application corresponding to the particular
behavior, and perform a remediation action on the section of
code to remediate the particular behavior and generate a
healed version of the particular application.
0105. In one example, the remediation action preserves
other behaviors of the particular application other than the
particular behavior.
0106. In one example, the remediation action includes
deleting the section of code.
0107. In one example, the remediation action includes
rewriting the section of code.
0108. In one example, the remediation action includes
adding additional code to the application to nullify the par
ticular behavior.
0109. In one example, the remediation action is identified
from a policy identifying a remediation pattern determined to
be applicable to remedying the particular behavior.
0110. In one example, the remediation action includes
inserting application logic allowing a user to selectively
enable a healed version of the particular behavior at launch of
the healed application on a user device. The user can be
further allowed to selectively enable an unhealed version of
the particular behavior in lieu of the healed version.
0111. In one example, the set of behaviors of the particular
application can be detected through an analysis of code of the
particular application.

Aug. 6, 2015

0112 In one example, the remediation action is triggered
by a user request.
0113. One or more embodiments may provide an appara
tus, a system, a machine readable medium, and a method to
activate a particular one of a plurality of modes defined for a
particular user device, and restrict access to one or more
applications installed on the particular user device in accor
dance with the activated particular mode. The restricted appli
cations can be accessible when another one of the plurality of
modes is activated.
0114. In one example, the particular mode is activated in
response to a particular passcode entered by a user of the
particular user device, where each of the plurality of modes is
associated with a corresponding passcode. Activation of the
particular mode can include identifying the particular mode
from the plurality of modes based on the entry of the particu
lar passcode, and authenticating access to the particular mode
based on the entry of the particular passcode.
0.115. In one example, one or more of the plurality of
modes are user-defined modes.
0116. In one example, an alternate device configuration
can be applied to the particular user device based on activa
tion of the particular mode. The alternate device configura
tion can restrict access to one or more Subsystems of the
particular user device.
0117. In one example, one of the plurality of modes is an
administrative modes allowing for modification of the plural
ity of modes.
0118. In one example, at least one of the plurality of modes

is an instance of a mode downloadable from a mode sharing
service remote from the particular user device.
0119. In one example, the particular mode is activated
automatically based at least in part on the detection of a
particular context using functionality of the particular user
device.
I0120 In one example, at least a particular one of the appli
cations is restricted based on a defined rule for the particular
mode.
I0121. In one example, the defined rule pertains to detected
behavior of the particular application.
I0122. In one example, the plurality of modes includes a
mode designated as a quarantine mode for application await
ing behavioral analysis or remediation.
I0123. In one example, the particular mode is activated in
response to a user command received at a device remote from
the particular user device.
0.124 Similarly, while operations are depicted in the draw
ings in a particular order, this should not be understood as
requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In cer
tain circumstances, multitasking and parallel processing may
be advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi
ments, and it should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft
ware products.
0.125 Thus, particular embodiments of the subject matter
have been described. Other embodiments are within the scope
of the following claims. In some cases, the actions recited in
the claims can be performed in a different order and still
achieve desirable results. In addition, the processes depicted

US 2015/0220734 A1

in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desir
able results.

1-74. (canceled)
75. At least one machine accessible storage medium having

instructions stored thereon, the instructions when executed on
a machine, cause the machine to:

analyze code of a particular application against a semantic
model of a software development kit of a particular
platform, wherein the semantic model associates a plu
rality of application behaviors with respective applica
tion programming interface (API) calls of the particular
platform;

identify, based on the analysis of the code, a set of behav
iors of the particular application; and

identify that a particular one of the set of behaviors is an
undesired behavior.

76. The storage medium of claim 75, wherein identifying
that the particular behavior is an undesired behavior includes
determining that the one or more behaviors violate one or
more rules.

77. The storage medium of claim 76, wherein the rules are
associated with a particular user.

78. The storage medium of claim 77, wherein at least a
portion of the rules include rules defined by the particular
USC.

79. The storage medium of claim 76, wherein the rules are
associated with a network service provider.

80. The storage medium of claim 75, wherein a user input
identifies that the particular behavior is undesired.

81. The storage medium of claim 80, wherein the user input
is received in connection with a user interface displaying
human readable descriptions of the identified set of behav
iors.

82. The storage medium of claim 81, wherein the human
readable description is generated using a template for gener
ating the description and the semantic model.

83. The storage medium of claim 75, wherein the particular
user device is one of a Smartphone and a tablet computing
device.

84. A method comprising:
analyzing code of a particular application against a seman

tic model of a software development kit of a particular
platform, the semantic model associating a plurality of
application behaviors with respective application pro
gramming interface (API) calls of the particular plat
form;

identifying, based on the analysis of the code, a set of
behaviors of the particular application; and

identifying that a particular one of the set of behaviors is an
undesired behavior.

85. The method of claim 84, further comprising disassem
bling code of the particular application into a control flow and
generating a model of application logic for the particular
application based at least in part on the semantic model.

86. The method of claim 85, wherein the model of appli
cation logic is further based, at least in part, on ambient
application knowledge.

87. The method of claim 84, further comprising perform
ing a remediation action based on the identification that one or
more of the set of behaviors are undesired behaviors.

Aug. 6, 2015

88. The method of claim 84, wherein the code of the par
ticular application is analyzed in connection with an attempt
to implement the particular application on a particular user
device.

89. The method of claim 88, further comprising restricting
implementation of the particular application on the particular
user device based on identifying that one or more of the set of
behaviors are undesired behaviors.

90. The method of claim 89, wherein restricting implemen
tation includes blocking installation of the particular applica
tion on the particular user device.

91. The method of claim 89, wherein restricting implemen
tation includes assigning the particular application to a device
mode that is to limit access to the particular application.

92. The method of claim 89, further comprising modifying
code of the particular application to remediate the undesired
behavior.

93. A system comprising:
at least one processor device;
at least one memory element; and
an application behavioral analysis engine, adapted when

executed by the at least one processor device to:
analyze code of a particular application against a seman

tic model of a software development kit of a particular
platform, wherein the semantic model associates a
plurality of application behaviors with respective
application programming interface (API) calls of the
particular platform;

identify, based on the analysis of the code, a set of
behaviors of the particular application; and

identify that a particular one of the set of behaviors is an
undesired behavior.

94. The system of claim 93, further comprising an appli
cation healer engine to:

identify a section of code of the particular application
corresponding to the particular behavior; and

perform a remediation action on the section of code to
remediate the particular behavior and generate a healed
version of the particular application.

95. The system of claim 93, further comprising a mode
manager to:

activate a particular one of a plurality of modes defined for
a user device; and

restrict access to the particular application in accordance
with the activated particular mode, wherein the particu
lar application is made accessible when another one of
the plurality of modes is activated.

96. The system of claim 93, further comprising a user
device, wherein the application behavioral analysis engine is
to communicate results of the analysis of the code to the user
device based on an attempt by the user device to install the
particular application on the user device.

97. A system comprising:
means for analyzing code of a particular application

against a semantic model of a Software development kit
of a particular platform, the semantic model associating
a plurality of application behaviors with respective
application programming interface (API) calls of the
particular platform;

means for identifying, based on the analysis of the code, a
set of behaviors of the particular application; and

means for identifying that a particular one of the set of
behaviors is an undesired behavior.

k k k k k

