US 20150220734A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0220734 Al

Nalluri et al.

43) Pub. Date: Aug. 6, 2015

(54) MOBILE APPLICATION MANAGEMENT Publication Classification
(71) Applicant: MCAFEE, INC., Santa Clara, CA (US) (51) Int.ClL
GOG6F 21/56 (2006.01)
(72) Inventors: Srikanth Nalluri, Bangalore (IN); GOG6F 21/55 (2006.01)
Dattatraya Kulkarni, Bangalore (IN); (52) U.S.CL
Raja Sinha, Bangalore (IN); CPC GOGF 21/563 (2013.01); GO6F 21/552
Venkatasubrahmanyam Krishnapur, (2013.01); GO6F 2221/033 (2013.01)
Bangalore (IN); Venkata Krishnan
Nagarajan, Chennai (IN); Kaushal (57) ABSTRACT
Kumar Dhruw, Bilaspur (IN); Kamlesh
Halder, Bangalore (IN) Code of a particular application is analyzed against a seman-
tic model of a software development kit of a particular plat-
(21) Appl. No.: 14/126,866 form. The semantic model associates a plurality of applica-
) tion behaviors with respective application programming
(22) PCT Filed: Oct. 18,2013 interface (API) calls of the particular platform. A set of behav-
iors of the particular application is identified based on the
(86) PCT No.: PCT/US2013/065799 analysis of the code and a particular one of the set of behaviors
§371 (©)(1), is identified as an undesired behavior. The particular applica-
(2) Date: Dec. 17,2013 tion can be automatically modified to remediate the undesired
behavior. The particular application can be assigned to one of
(30) Foreign Application Priority Data aplurality of device modes, and access to the particular appli-
cation on a user device can be based on which of the plurality
Oct. 19,2012 (IN) cevevevivivivinene 1215/KOL/2012 of device modes is active on the user device.
205
P
APPLICATION MANAGER
PROCESSOR | | MEMORY -
~._ APPLICATION 7 290 7 onn ,
SERVERS 215 J 218 p !
140 MOBIFIED APt
4 SHARE USER APPLICATIONS 1}* | SEMANTICS
ENGINE MANAGER /4
f, 235 o 240
/\ HEALNG | | BEHAVIOR 282 238
ENGINE ANALYSIS o -
7/ 2730 O APPLICATION J E
25 57 228 DATA MODES
| APPLICATION INTELLIGENCE | e

242 245 USER DEVICE
5 N, -
PROCESSOR I MEMORY ! Jys—— l
e SECURITY “"""—*—“‘].....“‘J 260
TOOLS l
MANAGER ,] MODES []]
145 24g 22 ZS\i B e
. : o | [ooERuEs)
- INFORMATION
SETTINGS | | APPLICATIONS l -
SERVERS MANAGER ! : l ‘, . }'\«279

Patent Application Publication Aug. 6,2015 Sheet 1 of 23 US 2015/0220734 A1

APPLICATION
MANAGEMENT
APPLICATION
SERVERS

INTERNET

P
-~
145
INFORMATION
SERVERS

—
“«
-+
(o)
~
>
N
m I _ , HIDYNYI
L Ole~ I, | W snoivorady | | saniias SUIARIG
m L s3I0y 3000 - K NOLLYINHO NI
@ 0sc " 4 G}~
- 415 TSN [em—_— N §9C ¢sc) 012
L s300W | L1 HIDVNYI
” SH0L IO0I
& 097~ =, | "L| ALRNO3S
= L] soniLis
S Jro— ¥OSSIT0Ud
= olAza Hasn G2 &ve
il WHOMLIN
S - e | IONSOITIILNI NOLLYOI Y
& . V1Y(ezz gz
o S3don NOLLY Dl N A
<« G - - SISATYNY INIONT
7 ez A 767 HOINYHIA e
- ovz < gez
2) AN L S— HAOYNYH INONE
g 1 SouNviEs |] SNOLYONddY SIS0 TUYHS Va
& 1Y _ omaaog: y 81z T mmmwmmm
£ e g Oee NOLLYOddY
g AHOWZN HOSSIOONd
5 HIOYNYI NOLLYOFddy
= 7
j=3 - . .
~—
=
&
~
=W

Patent Application Publication Aug. 6,2015 Sheet 3 of 23 US 2015/0220734 A1

300
-145 »
210~
il ~ CLOUD
BEHAVIOR ANALYSIS | ~228
 § : k
GOOD BAD
CONTENT CONTENT SUSPECT
¥ 4
INSTALL/ [HeaunG MODE
UNINSTALL 22571 ENGINE MANAGER |™-248
A
¥
MODIFIED
APPLICATION R o
FILE 232
3 ¥

FIG. 3

Patent Application Publication Aug. 6,2015 Sheet 4 of 23 US 2015/0220734 A1

;
,s
405~ | APPLICATION |
BINARES | 400
¥
410~ | DISASSEMBLER AND
| DATAICONTROL
FLOW ANALYZER 415
AMBIENT APPLICATION

KNOWLEDGE: DESCRIPTION,
COMMENTS, STRINGS, ETC.

'y

k J

420~ MODELOF
APPLICATION LOGIC

450

Y /
S

BEHAVIORAL | | RULES
4351 HEURISTICS/ ——
RULES ENGINE | _ PLATFORM API
~ 4| INTELLIGENCE

\\

Y

" 430

APPLICATION
4951 BEHAVIOR

COMMUNITY

445

Patent Application Publication Aug. 6,2015 Sheet 5 of 23 US 2015/0220734 A1

SMS APP HIDDEN AS GAME APP 500
..Android AP ... Graphics - display-game -
v (control()
Android AP .. Touchpad text-game Qf

.Android AP! ... Graphics - display update {}

Y 7 Android AP . Telsphony
~ send SMS (V1. .. V8)

FI1G. SA- o C controf

APPLICATION - RULE | RULE |
LOGICMODEL { ENGINE | DATABASE
1
APPLICATION
BEHAVIORS
*\J-\

FIG. 7

US 2015/0220734 Al

Aug. 6,2015 Sheet 6 of 23

Patent Application Publication

qds Dlid
_ , _ -5
£ 48N 248N ,~ Tl e - zasn -

4 4 | } 4 NOWLDZTIOD
¢ 38N L 380 | £ 38N LaEsn - SNOLLOMHLSN
I I m T T WYHOONd

i
4 1
Z NOLLONNS L NOILONNA M
lllllllllllllllllllllll -

L3 \\ - - -~ - - - - L3 - - - - - - ————
w AUYANNOS WYHOOU
|
w |] 0L

£33N z3sn L e3sn - z3sn -

1 t | t ” i NOLLOZTION
£38N L 380 | € 3sn B « SNOILOMYLSNI
i I | i] HYHOONd

| ,
, S W
NOLIYIHD e | NOLLYZHD . LINA NYHSOMd
Z NOLLONR L NOILONNS

) Vd
s 98

MO YLV 19960 Yivo

028

US 2015/0220734 Al

Aug. 6,2015 Sheet 7 of 23

Patent Application Publication

9 "Dld

SMOT ONY S35S300Y FALISNIS "SIILINIALY 'SLHOIIM 3NIA3C

SVAYY

SYHY

AMA11YE 13S0v3H HNGH 850
P HLO0L3NE 1M WACON
SHOSNAS ”
JSHIO OUAD HILINOHIEOOY 8d9
” s . ANIONT
O4N Wa SHINYILS ALIMAOAS
VAR : m " -
NOHIITAL AYIdSIO VHINYD HONOL
ONIDVI olany OIaA SOHAYHEO
as LINYTILIN HSY'Td TYNYILNI 3dV
HYONT WO HYNS AHITIVO S1OYINGD

Patent Application Publication Aug. 6,2015 Sheet 8 of 23 US 2015/0220734 A1

i
t
405- APPLICATION
BINARIES || 800
-~
r
410~ | DISASSEMBLER AND
™ DATA/ICONTROL
FLOW ANALYZER 415
l/l
AMBIENT APPLICATION

KNOWLEDGE: DESCRIPTION,
COMMENTS, STRINGS, ETC,

&

\d

420~ MODEL OF

APPLICATION LOGIC
=1F
450
" .
_ -
BEHAVIORAL | RULES
RULESENGINE | PLATFORM AP
N INTELLIGENCE
\“\
¥ ¥ 4.3@
APPLICATION
HEALING |
225-"1 ENGINE | BEHAVIOR
— V“ VVVVVVVVV \.{—\
HEALED 6Tl
BINARIES N
) — | 440
232~

Patent Application Publication Aug. 6,2015 Sheet9 of 23 US 2015/0220734 A1

USER INPUT

HEALED/
Somioxnos | (_Pouces) | revediateD
APPLICATIONS
Fi(:. 9
1000 ORIGINAL APK _~1005
N :
APPLICATION MONITOR ANALYSIS
LIST BEHAVIORS AND OFFENDING SECTIONS OF cope - 1010

RULES
DATABASE

MATCH RULE
TO BEHAVIOR

HEAL METHOD:
REMOVING
OFFENDING | | APPLICATION HEALER ENGINE
INSTRUCTIONS * PREMIUM SMS HEALER SMS SPAM HEALER
| LOCATION AD BEHAVIORAL 908
REDIRECTING AP i PRIVACY HEALER TARGETING HEALER
CALLS TO CUSTOM |
IMPLEMENTATIONS i

FiG. 10

US 2015/0220734 Al

Aug. 6,2015 Sheet 10 of 23

Patent Application Publication

NOLLYONddY
(37V3H

i1 "Did

HOIAYHIE Z MOIAYHIS ¥O4

aaI00N 3000 ONIANIAH0
__ ‘ £ 0z NOLLO3S Tt
-~ 1 NOILO3S TH — g1 NOIL03S E
,..\“, e

A] \/ o ik - S - i § ﬂ

Wmmm NOLLgS T
-2 8} NOILOES =]

HOIAVHEE

i

O3I00W

ISVEYIVG
WOIdVHYd
ONIMY3H

HOINVYHEE
133130

NOLLYOIddY

} HOIAYHZY
H04 3000
ONIANDH40

00141

Patent Application Publication Aug. 6,2015 Sheet 11 of 23 US 2015/0220734 A1

APL READS OR
<Pxmd version="1.0" encoding="UTF-8"7> SENDS DATA
~ <AppMoritor>
- <APisCollection>
-~ <AP APICategory="GelDala" Name="Landroldtelephony/TelephonyManager~>
getDevicald(Ljavalang/String;” 1D="00001">
<Bensilivity>4 O</Sensitivity> INFORMATION
<NumberQfParameters>d</NumberOfParameters> =""1 cRITICALITY
<Paramelers> </Paramelers>
~ <RetumType Type="Ljavaflang/String">

<PossibleValussi>

<PossiblaSubTypes)> DEACRIPTION OF
<fRetumnType> ‘ ‘
<Desaription>Reads IMEI Number</Description> & |___WHAT IT DOES

</APl>
- <AP} APICategory="SendData" Name="Landroidtelephony/Smshanager->sendTextMessage
{Ljavaflang/String;Liavallang/String;Ljavatang/String; Landroidiapp/PendingintentLandroid!
app/Pendingintent; V" 10="00002">
<Sensifivity=4.0</Sensitivity>
<NumberOfParameters>0</NumberOfParamelers» CHARACTERIZATION

- <Parameters> ‘ -~
<Paramster>]javaflang/Sting</Parameler> / Rgi?;‘;ﬁgiﬁ;

<Paramater-Ljavallang/Sting</Parameter>
<Parameter>Ljavallang/Sting</Parameter>
<Parameter>Landroid/app/Pendingintent</Parameter>
<Parameter-LandroidfappPendinglntent</Parameter>
</Paramsters>
- <RetumType Type="V">
<PossibleValues/>
<PossiblaSubTypest>
</RetumType>
<Description>Sends data o some call number via sms</Description>
<fAPL>
- <AP APICategory="SendData" Name="Lorgfison/JSONObject->puilliavadang/String,
LjavadangiObject Lorgfleon/JSONObject” 1D="00003">
<Sensitivity>4.0</Sensitivity>
<NumberOfParameters>0<iNumberOfParameters>
~ <Parameters>
<Parameter=Ljavallang/Sting</Parametecs
<Parameter>t javalang/Object</Parameter>
</Paramelers>
- <ReturnType Type="Lorg/son/JSONObject™
<PogsibleValuest>
<PossibleSubTypes/>
</ReturnType>
<Deseription>Sends it to some website</Dascription> FIG. 12A
/AP

Patent Application Publication Aug. 6,2015 Sheet 12 of 23 US 2015/0220734 A1

fine 49
Jocal v, location:Landroidiocation/Location;
invoke-static {1, Landrolditelephony/SmsManager-»getDefault))Landroidfieli

move-result-object vi

Jine 50
Jocal v, smeLandroidftelenhony/SmsManager;
{invoke-virtual {v8}, LandroidfocationiLocation;->getLatitede{)D]

move-result-wids v3
invoke-static {v3, v4}, Liavaltang/Siing;->valueofiDiLjavallang/Stdng;

move-result-object v7
Jine 51

Jocal v7, iablisvalang/Siing;
{invoke-virtual {y8}, Landraidlocationliocation;->getl ongitude{)0 i

move-result-wide v3
invoke-static {v3, v4}, Ljavaltang/Siring.->valueofiDiLjavallang/String;

fine 48

Jocal v8, location:Landroldfocation/Location;
fnvoke-static £}, Landrolditelephony/SmsManager->getDefault{ JLandroidie

move-resulf-oblect v3

method privalte getFakelatiiude(OD

move-result-object vi
Jocals 2

Jine 50
Jocal v0, sms:Landroidtelephony/SmsManager;

]invokeadirect {pi}, Loonv/marakanaflocationDemo ->getFakeLalitude(}D H\ ,I;;;:ggﬁue
const-wide/16 w0, (0

move-resulbwide v3
invoke-static {v3, v4}, Ljavallang/Siing->valueofDiljavallang/Steng; raturn-wide w0
move-result-ablect v7 end method

fise 51 method pn’\(ate getFaielongitude()D
Jocal v7, latLiavalang/String: docais 2
] invoke-direct {p0}, LoommarakanalLocationDeme;->geiFakelongliude()0 H/ prologue

Jine 55
const-widef16 v0, Bx0

move-result-wide v3
£ Liavallang/Siing> W -
invoke-static {v3, v}, Lavalang/String-svalueofDiljavallang/String; elurrsice vO
and method

move-result-object v8

FIG. 12B

US 2015/0220734 Al

Aug. 6,2015 Sheet 13 of 23

Patent Application Publication

SANIIE!

14 aluoqnss-eaoul

B BuBpeagii OO AUBIHONPIDIDUE T e« Uy NGO DICIPUE MOIDGOW WO {0d} onEjs-BxoAw

alqonogruosyBio{algn/buepeselBug/Bueyeaei1ind«-508l0ONOST/UOSB0 (GA * LA *EA} [BRLIA-DYOAL)

LA 108[G0-NSBI-BA0W

BupnsBueyeaei{Xajuo)AUsLONPIcIPUR TG < O/PoIPUBMOIcqoWLI0TT oo} aEls-a%oaul

On poslgo-uimes
b puod:

oA Joslqo-ynsal-eaou

o yoey: {gThue AL T (RS TALY wondsoxgBusyesely yoiey
O pus AR
BungBueyeselinsomarpba-afeuspivoydae | Auotdoeypupue {on) Eria-eyom

-2 Tpuen ‘za z2beey

« 130 ON, ‘78 Buigs-isueo
Juabpiogoqop, ‘1A Bunissuco
[PUeT. DA 288

Jsfieuepfuoydelp | /AuoydesypIoipuET DA 1SEI-HOUD
g4 8{go-nss-eac

JosinoBueyeseiibumsBueyesefTeomaguasigiel - auonusiuoapioipur Son ‘od} Eria-ayoa

Patent Application Publication Aug. 6,2015 Sheet 14 of 23 US 2015/0220734 A1

line 60

Jocal v@, sms:Landroidfiielephony/SmeManager;
const-string v, "54321"

const-string v3, "SUB NEWS"

move-object v4, v2

move-object v5, v2

invoke-virtualfrange {v0 .. v5}, Landroldftelephony/SmsManager-»sendTexiMessagefljavallang/
Landroid/app/Pendinglntent;)V

line 83
retum-void
end method

Jine 60

Jocal v@, sms:LandroidftelephonyfSmsManagern
consbstring vi, "54321"

gonst-string v3, "SUB NEWS"
move-object vé, v2
move-object v5, v2

Jine 63

return-void
end mathod

FIG. 12D

US 2015/0220734 Al

Aug. 6,2015 Sheet 15 of 23

Patent Application Publication

41 D14

</, JBABIOYAIBALBIT DIOIDUE USNOER 1100, =BILBLE DICIDUR JOAISDRI>
</ Jonpoayebessayy PIoIpUE YSNO MR LU0, = R DICIPUR JBNBISEs
<], JOABODSIRIGCHBS Y PIIpUR YSNAAR LIOD, =SWBLLDICIDUR JONBIaLs
< MonesuofuappiHpiscgisy ssefiueyoBucpioIpuR SPYUSN PIOIpUS YsSnd iR wos, seuweupoIpue AlMoes>
DS HIOIPUEOGOLE 00, =BWBLLPIDIDUE JBE8[H | ON TUSONSURI | "sluay | /eAIS piopue) =owslEnicipus AIMoes
<Aynioet
<iayusiuy>
<, LWy 430 AobBapoqusiur piospue, =eweitmoipue Aobeers
</, Y UOH0E UL PIIPUE, =DUIBLERIIPUE UOTR
<Jgjjg-jueiu> -
< AALOYIGY zaweupicipue adessplel, zUCHESBOLISEINS pioiDUe swey dde/Sums) =isaernicipus Aanoes

1

<}, 1BABIaMAIBNIA PIoIpUE YSnd e wino =BUBLIDICIDUE 18A18081s
</, JONFINSRRSSOI PICIPUE YSNITIE LU0, =SB U DICIPUR 1OME08I>
< JBANBOB NSRS TY PIOIPUE YSNO 4" 00, ~SUWBDICIPLE JBARISI>
< Lonejusns] usppiieoghey =sabury)BYUOIDINIDUR SPYUST PIOIBUE YSNBE 0O, =dWRLIDIOIpUR AIAIORS
SXIDGON DS PIOIPUE XIIGOW O, =SWBLEDIOIBUL L IBgei | ON USoNSURI | "alioy | /s n0ipued) ~owsuipoipus Anines
_ <fE4E3E5/ 94096730608 V-I508 -0 0B PO =0NBADIODUR Ol NOWLY DI ddy XIDGoW 103, =8Bl pospuE Bjep-esul> _
<AHAES
<sairusy>
<, N g0 AoBareojusiur piosplis, eweirpoipue Anbeyeos
<, A T HOUDE UL DIOIPUE, =BUIBLEDIIPUE UOTDR
<Jajpueiun
< ALOYIGY =swsupoipue adeospuel, zUolEIUSEOLISI0S pioipUe swey dde/Sums D) zpaerpioipus Alanoes -

Patent Application Publication

1300

\

Aug. 6,2015 Sheet 16 of 23

REMEDIATED
APPLICATION BINARY

APPLICATION R

UNNING INSTANCE

LAUNCH

k4

BEHAVIOR 1
BEHAVIOR 2
BEHAVIOR 3
BEHAVIOR 4

REMEDIATE

RIRILIRI

IF (BEHAVIOR 1 == FALSE}

(o

;;;;;

l‘ll.

B U S S Y

SEC"HON b1

R B A

B D U SO O RO RO SRR N . M. A

ELSE

N

>~ HEALED SECTION bt

Y

OTHER CODE RUNNING

Y

IF {BEHA\QOR

2 == FALSE}

13003

::::::

O

ELSE

HEALED SECT%ON b2

FIG. 13

US 2015/0220734 Al

Patent Application Publication Aug. 6,2015 Sheet 17 of 23 US 2015/0220734 A1
145)03
ACCESS MODE ACTMITY | APPLICATION '3
USER INTERFACE MONITOR SERVICE
CONTEXT | | | | APPLICATION
MANAGER INSTALL MONITOR
¥ §
ACCESS MODE MANAGER APPLICATION
T LAUNCH MONITOR
ACCESS ¥
MANAGER ACCESS
¥ MODE
CREDENTIAL DATABASE
STORE
I
{ STORAGE]
FIG. 14A
1490?3
'3
248 SYOR;AGE
1420
r
1415 “~ LOCK - CREDENTIAL - ACCESS
MANAGER » MANAGER « MANAGER
1 Lock MODES SET-UP APPLICATION
1410-") service MANAGER PROTECT
A SERVICE
1405
| ADMIMISTRATOR
14357 PASSWORD SET-UP

FIG. 14B

Patent Application Publication Aug. 6,2015 Sheet 18 of 23 US 2015/0220734 A1

PASSWORD STORING

TAKE PASSWORD FROM USER p
key = generatekey(P+ saitt)

ep = encryplwithkey(key, p)

store foupie <ModeName, ep >

PASSWORD VALIDATION
TAKE PASSWORD FROM USER p
key = generatekey{p+ salif)
dn = decryphvithkey(key, ep;
if { dp equals p}
retumm Success;

elfsa
return failare;

FIG. 15A

PASSWORD VALIDATION AND DETERMINE THE MODE TO ACTIVATE
ON DEVICE LOCK SCREEN PRESENT USER UL ELEMENTS TO ENTER THE PASSWORD
TAKE PASSWORD FROM USER p
key = generatekey(p+ saltl}
for sach mode<ModeName, ep > on device

dn = decryplwithikey(key, ep}

if { dp equals p)

refurn ModsName; Yenlered password matched with this modes
password
gise

continus;
return failure; // no modes matched the password provided

FI1G. 15B

Patent Application Publication Aug. 6,2015 Sheet 19 of 23 US 2015/0220734 A1

FIG. 16
1600~ cLouD SERVICE (SHARE MODES)
F
DOWNLOAD AND
SHARE MODES PROVISION MODES
ACCESS ACCESS
MODE MODE
|| MANAGER MANAGER
110 120
MOBILE MOBILE
DEVICE DEVICE
FI1G. 17
TIMER |
CONTEXT | ACTIVATEIDEACTIVATE MODES Aggggs
MANAGER
PROXIMITY | MANAGER
SENSORS |
F
& f & F 3
SENSORS-GPS, BIOMETRIC BATTERY | | OTHER CONTEXT
WiF, DATA AUTHENTICATION | | STATUS INFORMATION

Patent Application Publication Aug. 6,2015 Sheet 20 of 23 US 2015/0220734 A1

» PROVISION A NEW MODE, ,
PROVISION A POLICY TN

o ACTIVATE/DEACTIVATE
cLOUD ANY MODE ACCESS
SERVICE = MODE
MANAGER

ADMINISTRATOR FIG. 18 MOBILE
DEVICE

A40 ?9{)5 ‘29.1{) 1915

\ \"\ i’j I
- PUBLISHER APF;%%’;QON APPLICATION
REPUTATION | | e oorimon ANALYSIS

F ¥
APPLICATION INFORMATION

CATEGORY

ol BATINGS

PRIVACY RATINGS

CONTENT RATING
ETC.

FI1G. 19

d0¢ 'Did VO0Z DId

US 2015/0220734 Al

Aug. 6,2015 Sheet 21 of 23

peplisey sddy A
80 <755
TR
Aunoeg ety gigUie]) JEpUBED
N & @
d) g
JojenoeD L
o SR S
== _ 7 AM;A.N/
L EEE el TN
b T R -
Ly 5 eIy
on\ f.
S e ST
ST T s TS e MG
",)w e /
.//})
T S omsens]| IDIOMSSEY
-~ o e T
s ﬂw,\?;i{wv,f:huf,
k.‘\\‘ (./..):w e
o b
\/ «/ﬁ Bliyo | ‘ewieu spofy
s
S N
Aﬁ, ~S[IB}a(] BPON MBN
. G % A TFT < Yo B u M [
Wi g [0 Yo Y- oL O P o $O&T

Patent Application Publication

US 2015/0220734 Al

Aug. 6,2015 Sheet 22 of 23

Patent Application Publication

aoc "Hld

uoposes diig [| aear)

D0C "HDId

L

spomaN

=)

jsliatuy
" O

-painsi0id 8q o) sddy sy 18RS

il [[0 & 0&T

53010

Usni0G-HO0T SaDOR SIBAIIDY .

SEOY MoN BB

syja(]

#d

SlRARCY

{sagoBul)

3P0y ON

U9BIoG URUpY

S

T

Patent Application Publication

2105~

2110"’\\

21157

2140~

21457

21QDa
\

Aug. 6,2015 Sheet 23 of 23

ANALYZE CODE OF A
PARTICULAR APPLICATION
AGAINST A SEMANTIC
REPRESENTATION
OF APLATFORM

'

{DENTIFY A SET OF
BEHAVIORS OF THE
PARTICULAR APPLICATION

'

IDENTIFY AT LEAST ONE
UNDESIRABLE BEHAVIOR
IN THE SET OF BEHAVIORS

2100b

-

¥

US 2015/0220734 Al

FIG. 21A

ETQOC

™
1

ACTIVATE A PARTICULAR

ONE OF A PLURALITY OF

MODES DEFINED FOR A
USER COMPUTING DEVICE

'

RESTRICT ACCESS TO ONE
OR MORE APPLICATIONS
INSTALLED ON THE USER

COMPUTING DEVICE
ACCORDING TO ACTIVATION

OF THE PARTICULAR MODE

FIG. 21C

IDENTIFY A BEHAVIOR IN A
SET OF BEHAVIORS OF A
PARTICULAR APPLICATION

~ 2120

'

{DENTIFY A SECTION OF CODE
OF THE PARTICULAR
APPLICATION CORRESPONDING
TO THE BEHAVIOR

2125

'

PERFORM A REMEDIATION

ACTION ON THE SECTION

OF CODE TO REMEDIATE
THE BEHAVIOR

~2130

FI1G. 218

US 2015/0220734 Al

MOBILE APPLICATION MANAGEMENT

TECHNICAL FIELD

[0001] This disclosure relates in general to the field of
computer security and, more particularly, to security of
mobile devices.

BACKGROUND

[0002] The distribution and use of mobile devices, such as
smart phones, PDAs, laptops, netbooks, and tablets have
grown at a rapid pace. Further, adoption of such devices is
also expanding and number overtaking that of desktop com-
puters and feature phones in some developed markets. The
sophistication of the operating systems and the hardware
capabilities of mobile devices is also increasing and, in some
cases, outpacing the features sets and functionality of tradi-
tional computers. For example, modem mobile devices can
possess such varied sensors and subsystems as location sen-
sors like global positioning systems (GPS), accelerometers,
gyroscopes, near field communication (NFC), etc. that are
ordinarily not included on traditional devices. Adding to this
the always connected nature of some mobile devices and the
tendency for their owners to constantly carry the devices,
mobile devices have become attractive targets for malware
developers, hackers, and other malicious actors. Further, “app
stores” and other open marketplaces have enabled the devel-
opment of tens of thousands of applications (or “apps”) that
have been developed for such devices, including device plat-
forms such as Google Android™, iOS™, Windows™, etc.,
with some of these applications being of questionable quality
and purpose.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 is a simplified schematic diagram of an
example system including an application management sys-
tem in accordance with one embodiment;

[0004] FIG. 2 is a simplified block diagram of an example
system including an example application manager and user
device in accordance with one embodiment;

[0005] FIG. 3 is a simplified block diagram representing
analysis and healing of an application for a user device in
accordance with one embodiment;

[0006] FIG. 4isasimplified block diagram representing an
example behavioral assessment of an application in accor-
dance with one embodiment;

[0007] FIGS. 5A-5B are simplified representation of con-
trol flow within example applications in accordance with
some embodiments;

[0008] FIG. 6 is a simplified block diagram representing
example subsystems accessible to an example user device in
accordance with some embodiments;

[0009] FIG. 7 is a simplified block diagram representing
use of rules to determine application behaviors in accordance
with some embodiments;

[0010] FIG. 8 is a simplified flow diagram representing
assessment of application behaviors and healing of undesired
behaviors in accordance with one embodiment;

[0011] FIG. 9 is a simplified flow diagram representing
decisions made in connection with the management and
remediation of applications determined to include undesir-
able behaviors based on behavioral analyses of the applica-
tions in accordance with one embodiment;

Aug. 6, 2015

[0012] FIG. 10 is a simplified flow diagram representing an
example healing of an application in accordance with one
embodiment;

[0013] FIG. 11 is a simplified block diagram representing
an example healing of an application in accordance with one
embodiment;

[0014] FIGS. 12A-12E represent examples of detection
and remediation of undesired behaviors of an application in
accordance with some embodiments;

[0015] FIG. 13 is a simplified flow diagram representing an
example healing of an application in accordance with one
embodiment;

[0016] FIGS. 14A-14B are simplified block diagram rep-
resenting features of an example mode manager in accor-
dance with some embodiments;

[0017] FIGS. 15A-15B represent portions of example algo-
rithms for managing modes in a user device in accordance
with some embodiments;

[0018] FIG. 16 is a simplified block diagram for sharing
device modes between devices in accordance with one
embodiment;

[0019] FIG. 17 is a simplified flow diagram illustrating use
of context in managing modes of a device in accordance with
one embodiment;

[0020] FIG. 18 is a simplified flow diagram illustrating
remote provisioning and/or activation of modes on a user
device in accordance with some embodiments;

[0021] FIG. 19 is a simplified block diagram representing
application information collected in accordance with some
embodiments;

[0022] FIGS. 20A-20D are screenshots of example user
interfaces provided in connection with mode management of
a user device in accordance with some embodiments;

[0023] FIGS. 21A-21C are flowcharts representing
example operations involving an example application man-
agement system in accordance with some embodiments.
[0024] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0025] FIG. 1 illustrates an example system 100 including,
for instance, an example application management server 105,
and one or more mobile user devices 110,115, 120, 125, such
as smart phones, mobile gaming systems, tablet computers,
laptops, netbooks, among other examples. Application man-
agement server 105 can provide one or more services to the
user devices to assist in the management of applications
downloaded, installed, used, or otherwise provided for the
user devices 110, 115, 120, 125. User devices 110, 115, 120,
125 can access application servers 140, such as centralized
application storefronts, such as, for example, Android Mar-
ket™, iTunes™, and other examples. Application servers 140
can further include, in some examples, other sources of soft-
ware applications that can be downloaded and installed on
user devices 110, 115, 120, 125. User devices 110, 115, 120,
125 can communicate with and consume the data and services
of the application management server 105 over one or more
networks 130, including local area networks and wide area
networks such as the Internet. Among the services of an
example application management server 105, applications
available to user devices 110, 115, 120, 125 can be analyzed,
assessed, and repaired at least in part by functionality pro-
vided through application management server 105. Further,
application management server 105, in connection with ser-

US 2015/0220734 Al

vices made available to user devices 110, 115, 120, 125 can
interact with and consume resources, data, and services of
other outside systems and servers such as information servers
145. For instance, such information servers 145 can host
services and data that provide additional intelligence and
context regarding applications available to user devices 110,
115, 120, 125, among other examples.

[0026] In general, “servers,” “clients,” “client devices,”
“user devices,” “mobile devices,” “computing devices,” “net-
work elements,” “hosts,” “system-type system entities,” and
“systems,” including system devices in example computing
environment 100 (e.g., 105, 110, 115, 120, 125, 140, 145,
etc.), can include electronic computing devices operable to
receive, transmit, process, store, or manage data and infor-
mation associated with the computing environment 100. As
used in this document, the term “computer,” “processor,”
“processor device,” or “processing device” is intended to
encompass any suitable processing device. For example, ele-
ments shown as single devices within the computing environ-
ment 100 may be implemented using a plurality of computing
devices and processors, such as server pools including mul-
tiple server computers. Further, any, all, or some of the com-
puting devices may be adapted to execute any operating sys-
tem, including Linux™, UNIX™, Microsoft Windows™,
Apple OS™_ Apple i0OS™, Google Android™, Windows
Server™, etc., as well as virtual machines adapted to virtual-
ize execution of a particular operating system, including cus-
tomized and proprietary operating systems.

[0027] Further, servers, user devices, network elements,
systems, and other computing devices can each include one or
more processors, computer-readable memory, and one or
more interfaces, among other features and hardware. Servers
can include any suitable software component or module, or
computing device(s) capable of hosting and/or serving soft-
ware applications and services (e.g., personal safety systems,
services and applications of server 105, etc.), including dis-
tributed, enterprise, or cloud-based software applications,
data, and services. For instance, in some implementations, an
application management server 105, application servers 140,
information servers 145, or other subsystems of computing
system 100 can be comprised at least in part by cloud-imple-
mented systems configured to remotely host, serve, or other-
wise manage data, software services and applications inter-
facing, coordinating with, dependent on, or otherwise used by
other services and devices in system 100. In some instances,
a server, system, subsystem, or computing device can be
implemented as some combination of devices that can be
hosted on a common computing system, server, server pool,
or cloud computing environment and share computing
resources, including shared memory, processors, and inter-
faces.

[0028] User, endpoint, or client computing devices (e.g.,
110, 115, 120, 125, etc.) can include traditional and mobile
computing devices, including personal computers, laptop
computers, tablet computers, smartphones, personal digital
assistants, feature phones, handheld video game consoles,
desktop computers, internet-enabled televisions, and other
devices designed to interface with human users and capable
of communicating with other devices over one or more net-
works (e.g., 130). Computer-assisted, or “smart,” appliances
can include household and industrial devices and machines
that include computer processors and are controlled, moni-
tored, assisted, supplemented, or otherwise enhance the func-
tionality of the devices by the computer processor, other

2 < 2 <

Aug. 6, 2015

hardware, and/or one or more software programs executed by
the computer processor. Computer-assisted appliances can
include a wide-variety of computer-assisted machines and
products including refrigerators, washing machines, automo-
biles, HVAC systems, industrial machinery, ovens, security
systems, and so on.

[0029] Attributes of user computing devices, computer-as-
sisted appliances, servers, and computing devices generally,
can vary widely from device to device, including the respec-
tive operating systems and collections of software programs
loaded, installed, executed, operated, or otherwise accessible
to each device. For instance, computing devices can run,
execute, have installed, or otherwise include various sets of
programs, including various combinations of operating sys-
tems, applications, plug-ins, applets, virtual machines,
machine images, drivers, executable files, and other software-
based programs capable of being run, executed, or otherwise
used by the respective devices.

[0030] Somesystem devices can further include at least one
graphical display device and user interfaces, supported by
computer processors of the system devices, that allow a user
to view and interact with graphical user interfaces of appli-
cations and other programs provided in system, including
user interfaces and graphical representations of programs
interacting with applications hosted within the system
devices as well as graphical user interfaces associated with
application management server services and other applica-
tions, etc. Moreover, while system devices may be described
in terms of being used by one user, this disclosure contem-
plates that many users may use one computer or that one user
may use multiple computers.

[0031] While FIG. 1 is described as containing or being
associated with a plurality of elements, not all elements illus-
trated within computing environment 100 of FIG. 1 may be
utilized in each alternative implementation of the present
disclosure. Additionally, one or more of the elements
described in connection with the examples of FIG. 1 may be
located external to computing environment 100, while in
other instances, certain elements may be included within or as
a portion of one or more of the other described elements, as
well as other elements not described in the illustrated imple-
mentation. Further, certain elements illustrated in FIG. 1 may
be combined with other components, as well as used for
alternative or additional purposes in addition to those pur-
poses described herein.

[0032] Turning now to the example block diagram of FIG.
2, an example system is shown including an application man-
ager 205, user system 210, among other computing devices
and network elements including, for instance, application
servers 140 and information servers 145 communicating over
one or more networks 130. In one example implementation,
application manager 205 may include one or more processor
devices 215, memory elements 218, and one or more other
software and/or hardware-implemented components. For
instance, in one example implementation, an application
manager 205 may include a share engine 220, user manager
222, healing engine 225, behavior analysis engine 228, appli-
cation intelligence engine 230, among other potential
machine executable logic, components and functionality
including combinations of the foregoing.

[0033] In one example, a share engine 220 can be config-
ured to provide functionality for managing crowdsourcing of
information relating to applications (e.g., made available by
application servers 140), as well as the sharing of such infor-

US 2015/0220734 Al

mation and resources, including resources generated at least
in part by or collected by application manager 205. For
example, an example share engine 220 can allow modified
applications 232 developed for particular users and associ-
ated user devices (e.g., 210) as well as defined application
modes 240 to be shared across multiple user devices (e.g.,
210), among other examples. An example user manager 222
can provide functionality for managing user accounts of vari-
ous user devices (e.g., 210) that consume or otherwise make
use of services of application manager 205. An example user
manager 222 can associate various modified applications
232, application data and feedback data (e.g., 235), and appli-
cation modes 240, including application modes developed or
modified by particular users with one or more user accounts
and user devices (e.g., 210) in a system, among other
examples.

[0034] An application manager 205 can, in some imple-
mentations, additionally include components, engines, and
modules capable of providing application management, secu-
rity, and diagnostic services to one or more user devices (e.g.,
210) in connection with user device attempts to download,
install, activate, or otherwise use or procure various applica-
tions including applications provided through one or more
application servers (e.g., 140). For instance, in one example
implementation, application manager 205 can include an
example behavior analysis engine 228 adapted to analyze and
identify functionality of various applications made available
to user devices on the system. Further, functionality of appli-
cations can be identified, for instance, by behavior analysis
engine 228, that users or administrators may wish to block,
limit, repair, or modify, among other examples. Accordingly,
in some implementations, an example application manager
205 can include an example healing engine 225 configured to
modify applications on behalf of users to eliminate undesir-
able application features detected, for example, by behavior
analysis engine 228 and thereby generate modified applica-
tions 232. Modified applications 232 can, in some examples,
be specifically modified and configured based on the requests,
rules, settings, and preferences of a corresponding user. Addi-
tionally, application manager 205 may include an application
intelligence engine 230 configured to collect application data
(e.g., 235), for instance, from information servers 145 and
other sources both internal and external application manager
205 and its client user devices (e.g., 210). An application
intelligence engine 230 can be used to collect intelligence
regarding one or more applications served, for instance, by
application servers 144. The intelligence can be used in con-
nection with services provided by application manager 205,
such as behavior analysis and assessments of applications by
application manager 205, among other examples.

[0035] In some implementations, a user device (e.g., 210)
may include one or more processor devices 242 and one or
more memory elements 245 as well as one or more other
software- and/or hardware-implemented components includ-
ing, for example, a mode manager 248, settings manager 252,
security tools 250, and one or more applications 255 (e.g.,
procured through application servers 140). In one example
implementation, a user device 210 can include a mode man-
ager 248 that is equipped with functionality for defining,
enforcing, and otherwise managing multiple application
access modes 265 on the user device 210. Mode rules 270 can
additionally be managed by mode manager 248, the mode
rules 270 defining, for instance, particular conditions for
automatically initiating or enforcing various modes 265 on

Aug. 6, 2015

theuser device 210. Additionally one or more settings 260 can
be defined by users, for instance, through an example settings
manager 252, the setting corresponding to and in some cases
used in connection with various modes 265 of the device 210,
among other examples.

[0036] Turning to the example of FIG. 3, a simplified block
diagram 300 is shown illustrating functionality and flows of
an example application manager. For example, a behavior
monitor 228 can assess applications to identify whether one
or more functions and/or content of an application are good,
bad, suspect, or of unknown quality, among other examples.
The assessment can be based on information acquired from a
variety of sources (e.g., 145), such as information servers,
user feedback, and other sources. In instances where “bad”
application functionality and/or content is identified an appli-
cation healing engine 225 can be engaged to modify the
application and remediate the identified undesirable function-
ality to generate a modified application file 232 correspond-
ing to a healed version of the application. Further, suspect or
unknown applications can be designated, for instance, by a
mode manager 248, to be dedicated to a particular limited
access mode of the user device 210 so as to, in effect, quar-
antine the suspect application until more intelligence is
acquired regarding the application’s functionality. In
instances where it is determined that an application satisfies
rules, requirements, or preferences of a user, network, admin-
istrator, etc., the application may instead be allowed to pro-
ceed for installation on a user device. Further, applications
which have been healed to generate a modified application
file can allow for the modified application to proceed to the
user device for installation on the device, among other
examples.

[0037] FIG. 4 includes a block diagram 400 illustrating
example principles and activities enabled through an example
application behavior analysis engine. Application binaries
405 can be accessed or received by a disassembler data/
control flow analyzer 410 which, in combination with ambi-
ent application knowledge 415 (e.g., collected from outside
information sources as well as users, reviewers, etc.) such as
application descriptions, reviews, comments, and other struc-
tured and unstructured data, can develop a model of the appli-
cation logic 420 for each application binary 405. The disas-
sembler and control flow analyzer 410 can identify behaviors
425 of the given application based on, for example, compar-
ing code or application logic model with known functionality
defined in or identifiable from a software development kit
and/or common APIs utilized by the corresponding client
device operating system as well as most or all applications
compatible with the client device. Some examples include the
Google Android software development kit, Apple i10S soft-
ware development kit, Windows software development kit,
among other examples.

[0038] Generally, a platform software development kit (or
“SDK”) can provide documentation, header files, libraries,
commands, interfaces, etc. defining and providing access to
the various platform subsystems accessible by applications
compatible with the platform. In one example implementa-
tion, a platform SDK and corresponding APIs and API calls
(i.e., calls to functions and routines of the API) can be repre-
sented in a model that can be used, for instance, by an appli-
cation behavior engine, to determine behavior and function-
ality of applications compatible with the platform. The
semantics of commonly used APIs is represented in a pro-
gram readable form along with critical information necessary

US 2015/0220734 Al

to derive application behavior. The semantics of the platform
SDK can be represented so that an example application
behavior engine can use the semantic model to understand
and identify the operations and behaviors of a given applica-
tion using the API call. For example, in one example imple-
mentation, all of the potential API calls of the platform can be
represented, for instance through API intelligence 430, by
tagging the name of each respective API call with the behav-
ioral tag describing what the respective API call does on the
platform as well as the corresponding parameters of the API’s
operations and behaviors. As an example, a template of such
a semantic representation can be modeled, for instance, as:

<APIName: name
<Category: read/write/process/transform/.../...>
<CategoryDetail>
<Reads: sensitivity>
<Writes: sensitivity>
<Transform: sensitivity>
<Senitivity: red:5/orange:4/yellow:3/green:1>
<Parameters: No of paramerer>
<ParameterIndex:Index>
<Type: integer/object/string/../..>
<Operation: input/output/transformative>
<return value: void/integer/object/string/>
<Dependency>
<True/False>
<Description>
<APIDescription: description of the API>
<Verbs:xxx>
<Nouns:xxx>

[0039] In the foregoing example, a “category” can desig-
nate the type of an API call and be used to identify the general
functionality of such API calls, such as, that the API call reads
information from a particular subsystem, disk, etc. generates
various messages, initiates various network behaviors,
attempts to communicate with various outside servers, trig-
gers particular device functions or elements (e.g., a camera,
SMS controller, etc.). “Sensitivity” can represent the respec-
tive sensitivity of the subsystem affected or associated by the
API in the context of the potential for malicious behavior in
connection with the subsystem, such as whether reading to a
particular memory location introduces the potential for spy-
ing, where the subsystem potentially permits the introduction
of malware, unauthorized tracking or data collection, the
unauthorized or undesired reading or sending of SMS or
email messages, among many other examples. Further,
“dependency” can represent whether the output of this API
can have an impact on other parts of the program in a direct
way. For instance, a send TextMessage() API can be identified
as having no dependency where the API simply sends an SMS
message out and does not return anything, among other
examples.

[0040] Other information can be used by a behavior heu-
ristics/rule engine 435 (e.g., of an example analysis engine
(e.g., 228)) to determine behaviors of an application under
assessment, such as global threat intelligence (GTI) 440
aggregating intelligence from a community of sources 445,
rules 450, and other information.

[0041] As noted above, an example application behavior
analysis engine (e.g., 228) can possess functionality for iden-
tifying the control flows, operations, functionality, and
behavior of a given application based, for instance, on a
semantic representation of a standard platform SDK upon
which compatible applications are based. In FIG. SA, repre-

Aug. 6, 2015

sentation 500 of a simplified application control now is shown
for an example gaming application. While the functionality of
the game may be in the main desirable, secure, and benign,
deeper inspection of the code of the game application binary
in comparison with the semantic representation of the plat-
form SDK as well as ambient application intelligence for the
game application, may yield identification of other function-
ality that is not immediately or otherwise identifiable, under-
stood, or appreciated by users, such as the application sending
SMS messages either with or without a user’s explicit knowl-
edge or permission. In another example, shown in FIG. 5B,
inspection of a particular object of an application binary may
reveal the totality of functions and control flows of the given
application as well as reveal dependencies between distinct
programs, program units, or applications the user may not
otherwise realize, understand, or approve of. As an example,
identified behavior heuristics can be represented externally,
in some implementations, in an XML file that identifies the
specific pattern of data flow and calls, from which the behav-
ior can be identified. For instance:

<Pattern>
< Call to API1(): mandatory
< Call to API2()/API3()/....: mandatory>
< Call to APIS()/API6()/....: optional>
< Call to API10(): mandatory>
</Pattern>

[0042] In some implementations, based for instance on a
model of the semantic representation of the platform SDK,
application logic can be modeled and rules can be applied to
interpret the application logic and identify instructions and
calls within a corresponding binary of the application that
correspond with malicious, privacy infringing, policy violat-
ing, or other undesirable behaviors. The logical model of an
application’s functionality can include representation (e.g.,
505) of the application logic through data flow structures and
control flow structures, among other examples. A dataflow
structure can represent the lifetime of data objects as they
pass-through the application logic (e.g., 510) and onto other
program units (e.g., 515) including external program units. A
dataflow structure (e.g., 505) can be used to identify the flow
of data from one part of the application program as it moves
and is potentially transformed by the application logic. For
example, a dataflow model can be used to deduce that par-
ticular data is being leaked by the application through an
Internet communication post operation, among other
examples. Further, control flow structures can represent the
control flow of different function calls (e.g., 520, 525) to
identify an originating source of an application call deter-
mined to be sensitive or undesirable. As an illustrative
example, a call by the application to send an SMS message
can be traced back, for example, to a UI element of an appli-
cation interacted with by user, or even an autonomous event in
a background process of the application, among potentially
many other examples.

[0043] Turning to the examples of FIG. 6, a simplified
block diagram is illustrated representing various subsystems,
devices, and functionality accessible by applications through
one or more APIs defined in a platform SDK, for example. In
some implementations, all platform subsystems can be cat-
egorized or assigned weights based on the sensitivity of the
respective subsystem in the context of the potential that the
subsystem could be manipulated or utilized in connection

US 2015/0220734 Al

with a malicious or otherwise undesirable behavior. Such
weights and sensitivities can be based on a variety of factors
including, for example, the potential for an invasion of pri-
vacy, data leaks, financial sensitivity, among other examples.
These factors can also form the basis of categorizations of the
various subsystems of the platform. Such subsystems can
include, for example, contact lists, photo galleries, email
clients, calendars, Internet connectivity and browsing, graph-
ics, video functionality, cameras, audio, security tools and
engines, telephony, Wi-Fi capabilities, Bluetooth capabili-
ties, data ports, battery power, touchscreens, global position-
ing systems, among potentially many other functionalities
and subsystems including future functionality that can be
integrated in mobile devices.

[0044] As represented in the example of FIG. 7, a rule
engine of an application behavior analysis engine can access
rules, for instance, from a rule database, including rules that
have been custom defined for and/or by a particular user or set
of'users according, for example, to preferences of the users as
well as policies applicable to the users (e.g., policies of an
Internet service provider, enterprise network, broadband data
provider, etc.). The rule engine can take as a further input an
application logic model (e.g., developed based on a semantic
representation of a platform SDK corresponding to the appli-
cation)to assess the various operations and functionality of an
application as identified in application logic model. The rule
engine can assess the various operations and functionality of
an application according to rules identified as applicable to
the particular instance of an application, such as an instance
of an application that has been attempted to be downloaded or
installed on a particular user computing device of a user
associated with the identified rules. Application behaviors
can be identified by the rule engine including application
behaviors identified as violating one or more rules (e.g., rules
forbidding certain behaviors or actions) and prompting, in
some instances, remediation of the identified application
behaviors and/or assignment of the application to one or more
operation modes on the destination user device, such as a
quarantine or administrative operation mode, among other
examples.

[0045] In some implementations, a human readable
description of a behavior identified and based ona description
of API semantics can be constructed. In one example, human
relatable verbs and nouns can be associated with template
messages in the semantic representation and mapped to par-
ticular human understandable descriptions of functions and
operations available to the APIs. Further, in connection with
assessments of an application according to the semantic
model performed, for example, by an application behavioral
analysis engine, a human-readable summary of the behavior
analysis results can be generated from the mapping and pre-
sented to a user that describes the various functionality, as
well as, in some implementations, the control flow dataflow
of'the analyzed application. Such results can make use of the
human readable description to generate a description of the
functionality uncovered during analysis of the application,
including functionality that may otherwise be invisible to or

Aug. 6, 2015

difficult to detect by the user. For example, in one implemen-
tation, the template can be utilized and populated so as to
identify and describe an example application’s functionality
forreading SMS data from the user’s device. As an illustrative
example, corresponding description could be generated such
as: “This application reads your SMS data from SMS inbox
and sends to a web site.” Such a description could be con-
structed, for example, by filling in an example template based
on the semantic representation of the platform SDK and APIs
such as: “This application <verb: reads> your <noun:SMS
data> from <noun: SMS inbox> and <verb: sends> to a
<noun: website>", among other examples.

[0046] Insome examples, the analyzed application behav-
ior can reveal the use of other applications, programs, or
services by the analyzed application. Some instances, a call to
a local application, remote service, or other program by the
analyzed application may be undesirable, for instance, when
the other called application is identified as unsecure, un-
trusted, or unknown, among other examples. In other
instances, a program called or used by the analyzed applica-
tion may be identified as a trusted program. Accordingly, in
some implementations, an application behavior analysis
engine can make use of, generate, modify, and otherwise
manage whitelists and/or blacklists that identify the status
and reputations of various programs that have been known to
or could be potentially called by various analyzed applica-
tions. In some implementations, applications and services
hosted by remote servers can additionally be identified in
such whitelists and/or blacklists by the respective URLs or
other address information corresponding to their respective
host servers, among other examples.

[0047] In some implementations, the behavioral analysis
engine can identify the context in which a particular activity
is performed, platform API is accessed, or functionality is
employed by the application under assessment. As an
example, an analyzed application’s attempts to access a plat-
form telephony subsystem can be assessed based upon the
cause or context of the attempt. For instance, in some con-
texts, a particular API call may be perfectly acceptable while
in other contexts the API call can be undesirable. For instance
identified application functionality that accesses the tele-
phony subsystem in response to a user interface interaction,
such as a button press, may be assessed differently than an
attempt by an application to access the telephony subsystem
autonomously and not in response to a user provided direc-
tive, among other examples.

[0048] Asnoted above, in some implementations, rules can
be defined that can be used in the assessment of application
behaviors. Such rules can be represented and configured for
use in performing heuristic analysis of an application’s logic
or of a potentially malicious behavior identified by an appli-
cation behavior analysis engine, including contexts in which
the behavior is to be determined to be malicious. For instance,
a rule engine can apply one or more rules to an application
logic model to identify one a more potentially malicious or
otherwise undesirable behaviors present in the application. In
some implementations, a rule can be represented as:

<Rule>

<Run><Dataflow><ReadOperation>of <red sub system>to a<WriteOperation>

of <write sub system>

US 2015/0220734 Al

The rules can be generic or can be specific to a particular
subsystem, etc., such as a rule to detect data leak of a memory
element storing personal contact data, among other examples.
A specific application behavior can be derived based on appli-
cation of a single rule or multiple rules.

[0049] In some implementations, an application behavior
analysis engine can be hosted on one or more server comput-
ing devices remote from the mobile user devices for which
analysis performed. In other examples, at least a portion of
application behavior analysis engine can be provided alter-
natively or redundantly with functionality of server-side
application behavior analysis engine components. For
instance, in one example implementation, a user computing
device can be provided with application behavior analysis
engine functionality allowing at least a partial or quick pre-
liminary assessment of an application to be performed at the
user device to thereby provide a user with fast feedback as
well as assess whether an application should be quarantined,
denied download or installation, and/or forwarded to aremote
application behavior analysis engine, such as one provided in
a cloud system, allowing then for a more robust behavioral
analysis of the application (that could possibly introduce
increased latency into the behavioral analysis assessment).
[0050] In some implementations, during an analysis of an
application, downloading, insulation, or launching ofthe ana-
lyzed application may be prevented or delayed until the
analysis is completed. In some instances, a user can be pro-
vided with a prompt identifying the analysis of the applica-
tion as well as providing the user with various options for
dealing with the installation, downloading, or launching of
the analyzed application. For instance, a user may be pro-
vided with the option of skipping the analysis, delaying
installation of the analyzed application, assigning the ana-
lyzed application to a particular mode, among other
examples. Additionally, in some implementations, a prompt
presented to the user in connection with the assessment may
be presented together with information, such as preliminary
information, gleaned from the behavioral analysis engine
assessments and/or external intelligence relating to the ana-
lyzed application. Such intelligence can include, for example,
intelligence gleaned by the behavioral analysis engine in
previous assessments of the analyzed application, among
other examples. Indeed, in some implementations, the behav-
ioral analysis engine can indicate to the user behaviors dis-
covered for the application, how other users have responded
to feedback received from the behavioral analysis engine
regarding the particular analyzed application, among other
examples.

[0051] In some implementations, behavioral analysis
engine can maintain blacklists, greylists, and/or whitelists of
applications known to and/or previously analyzed by the
behavioral analysis engine. Such blacklists, greylists, and/or
whitelists can be based on historical intelligence collected
from previous behavioral analyses, outside intelligence from
other sources, and other users. The behavioral analysis engine
can utilize such information to perform an initial assessment
of'an application and leverage information gleaned from pre-
vious analyses. Initial filtering or feedback can thereby be
provided to a user to assist the user in determining how to deal
with a particular application as well as whether to initiate
further behavioral analysis on the application using the
behavioral analysis engine.

[0052] Behavioral analysis of applications and/or black-
lists/whitelists can further incorporate or consider general

Aug. 6, 2015

reputation information of developers or other parties identi-
fied as responsible for various applications, among other
examples and considerations. Rules can be defined that con-
sider the trustworthiness or untrustworthiness of the devel-
oper, distributor, etc. of an application. For example, an appli-
cation development score rating can be computed for a
developer based on aggregate analyses of applications of the
developer by the behavioral analysis engine. For instance,
such a rating can be derived as: AppDeveloper Rating=f(total
number of apps, weighted average of undesired behavior in
apps, popularity of the app, average ratio of low ratings),
among other examples. For instance, in one Illustrative
example, a weighted average of undesired behavior can be
generated for a set of applications of a developer:

Weight No of Total
Behavior (out of 10) occurrence weight
Contacts leakage 9 2 18
Device ID leakage 2 5 10
Message Leakage (SMS) 8 3 24
Location leakage 5 4 20
Unnecessary permissions 2 1 2

and average weight can be derived by Average Weight=Total
Weight/Total number of Apps, among other example imple-
mentations.

[0053] Outside sources, such as intelligence databases,
such as a global threat intelligence (GTT) feed, can be used for
identifying malicious behaviors that have been detected
across one or more networks that may be employed by appli-
cations assessed by behavioral analysis engines. For instance,
various URLs, IP addresses, phone numbers, and files can be
identified that have been previously determined to be associ-
ated with or used in other malicious attacks, malware, or
suspect systems. Additionally, a behavioral analysis engine
can interface with intelligence databases to provide addi-
tional intelligence gleaned from the behavioral analyses of
applications performed by the behavioral analysis engine
itself, among other examples.

[0054] Further, in some systems and platforms, applica-
tions offered by one or more application servers or storefronts
may provide users with basic descriptions, ratings, user feed-
back, etc. collected for a given application. Unfortunately, in
many instances, such ratings, application descriptions, con-
tent ratings, etc. may be provided by, manipulated by, or
otherwise influenced by the application developers them-
selves thereby diminishing, potentially, the truthfulness or
legitimacy of the information provided to users regarding
some applications. Accordingly, in some of implementations,
intelligence (e.g., behavioral descriptions) gleaned from
behavioral analyses of applications performed by an example
behavioral analysis engine may be used to supplement, cor-
rect, or otherwise modify descriptions provided to users in
connection with their browsing, purchasing, and download-
ing of applications available on a platform. Further, in some
implementations, a behavioral analysis engine can make use
of'these default application descriptions, content ratings, user
feedback etc. as external intelligence considered in connec-
tion with a behavioral analysis. In still other examples, a
behavioral analysis engine may be used to identify common
behavioral traits between multiple applications that can serve
as the basis for categorizing the applications according to
behavior. Such categories can then be provided to users to

US 2015/0220734 Al

assist users in better understanding the qualities and behav-
iors, as well as potential risks, of various applications, among
other examples.

[0055] Turning to FIG. 8, a simplified schematic diagram
800 is shown of an example flow for performing deep analysis
of application behavior (e.g., using a behavioral analysis
engine) and performing application healing in an attempt to
remedy those behaviors determined to be undesirable in an
application while still preserving other core functionality of
the application, in some examples. As shown, application
binaries can be submitted to a disassembler and data control
flow analyzer 410 (e.g., of a behavior analysis engine) to
develop application logic models (e.g., 420) based, in some
examples, additionally on ambient application knowledge
415, intelligence, and the like. As noted above, the model of
application logic 420 can be assessed based on defined rules,
platform APl intelligence, and behavioral heuristics through a
behavioral heuristics/rules engine 435 to identify application
behaviors of a respective application. Further, sections of
code of the application can be identified during the assess-
ment as responsible for the exhibited undesirable behavior.
This code can be flagged for remediation. Additionally, in
instances where application behaviors are identified as unde-
sirable and are requested or dictated, by a user, administrator,
or predefined rules, to be healed, the application binaries can
be further processed to remove, block, or otherwise remediate
the offending behaviors and corresponding code to thereby
generate healed versions 232 of the application binaries that a
user can then cause to be downloaded, installed, and executed
on the user’s device. Additionally, as noted above, the global
threat intelligence feed 440 or other intelligence database can
provide intelligence for consideration and behavioral analy-
ses as well as application healing. Additionally, intelligence
gleaned from the behavioral analyses can be shared with
outside intelligence databases that additionally receive input,
data, and intelligence from a community of users and systems
445.

[0056] Turning now to the example of FIG. 9, an additional
flowchart 900 shown representing decisions made in connec-
tion with the management and remediation of applications
determined to include undesirable behaviors based on behav-
ioral analyses of the applications. For instance, rules and
policies can be defined, for instance, by a user or system or
network administrator, to define how and under what condi-
tions applications are to be handled that have been determined
to include one or more undesirable behaviors. Such policies
can, for example, identify particular types of undesirable
behaviors and map such behaviors to predefined courses of
action, such as the healing or remediation of the applications,
blacklisting or whitelisting of the applications, quarantining
of'the applications, among other examples. Additionally, user
inputs can drive management of an application’s deployment
on a user computing device. Such inputs can be received in
connection with prompts presented to the user and can
include, for example, requests to remediate one or more iden-
tified undesirable behaviors, instructions to assign the ana-
lyzed application to a particular operation mode or quarantine
area, among other examples.

[0057] As noted above, static healing and personalization
of application behavior can be performed by a healing engine
allowing the code of the application to be modified and gen-
erate a “safe” version of the application that allows the user to
retain safe or legitimate functionality of the application while
removing undesirable behaviors. Such healing can in some

Aug. 6, 2015

cases be personalized or customized to particularly-defined
policies driving the healing, thereby allowing a user, service
provider, device manufacturer, etc. to control and personalize
the functionality of applications to be installed on corre-
sponding user devices. In FIG. 10, simplified b diagram 1000
is illustrated showing the flow of an example healing of an
original application 1005. Upon identifying 1010 undesirable
behaviors and offending sections of the code of the applica-
tion binary, a healing engine can be provided for identifying,
removing, replacing, or blocking, the offending code and
corresponding behaviors in order to generate a modified
application binary 1015. As an example, a healing engine 228
may include logic for modifying an application by removing
or blocking various types of undesired behaviors such as, in
this example, unauthorized reads or accesses of SMS func-
tionality by removing the offending instructions discovered
in the original application binary. In other instances, such as
shown in this example, a healing engine may modify the
offending code, such as by rewriting the code to redirect an
API call to a trusted system, destination, address, etc. A
healing engine 228 can modify the original code with mini-
mal changes so as to avoid affecting the core desired func-
tionality of the application. Further, healing policies caniden-
tify the patterns that are considered for identifying
application code for healing. This can be represented, for
example, in an XML file that identifies the heuristic pattern of
code corresponding to an offending behavior. Each type of
defined or identified pattern of code can be healed by a spe-
cific healing method, such as according to corresponding
policies. Such methods can be identified and defined in such
a way that the healing does not impact the rest of the appli-
cation’s functionality.

[0058] A variety of healing methods can be employed by an
application healer engine. For instance, a particular offending
line of code functionality can be identified as a final or leaf
node in a control chain. In such instances, the offending code
may be determined to be able to be suppressed or removed
without affecting other dependencies in the application,
among other examples. In another example, if a removal of a
particular API call is determined to likely have no impact on
surrounding code, the removal healing method can be
applied. The nature and character of APIs can be learned, for
example, from the semantic platform SDK representation,
among other examples. In other instances, the offending
behavior can be from one or more sections of code and may
result in multiple methods of healing applied to remediate the
behavior, such as by replacing the data in a register to alter the
behavior of the API or redirecting of the API call to a new
version of the API with same interface by replacing the
offending API code with the new API code, among other
examples. In instances where a new version of an API is
introduced, the new API may, for example, do nothing and set
the register status so as not to impact other parts of the pro-
gram, process the inputs in a different way to avoid the undes-
ired behavior, or do pre-processing and/or post-processing of
the input/output parameter and call the original API, among
other example techniques that resolve the undesirable behav-
ior.

[0059] Turning to FIG. 11, a simplified block diagram is
illustrated showing the identification of code relating to par-
ticular undesirable behaviors. For instance, sections 1a and
15 of application code can be identified as corresponding to a
first, detected, undesirable behavior and sections 2a and 25
can be identified as corresponding to a second undesirable

US 2015/0220734 Al

behavior of the application. Accordingly, healing the appli-
cation can include modifying or replacing the identified
offending sections of code with code that modifies or sup-
presses the undesirable behaviors. Further, healing policies
can be identified corresponding to the identified code or API
calls to identify healing techniques for modifying the
offended code and remediating the undesired behaviors.

[0060] In FIGS. 12A-12E, additional examples are illus-
trated of the detection of undesirable behaviors as well as the
remediation of the undesirable behaviors. For example, in
FIG. 12A, an example code fragment allowing an application
to send latitude and longitude information to an outside server
is shown as having been processed to populate an API tem-
plate, for instance, utilizing a behavior analysis engine. As
shown in FIG. 12B, portions of the application code can be
identified that correspond to the behavior of collecting geo-
positional data and sending the geo-positional data to the
outside server. In accordance with one example, the offending
lines of code can be replaced, for example with code that
masks or redirects the sending of the geo-positional data to
prevent the application from tracking user location, among
other examples. In another example, illustrated in FIG. 12C,
a control flow can be identified within an application along
with corresponding application code. As shown in the
examples of FIGS. 12D-12E, remediation of a particular
undesirable behavior can include deletion of an offending line
of code, among other examples.

[0061] FIG.13 illustrates an example flow 1300 in connec-
tion with remediation of one or more detected undesirable
behaviors of an application. For instance, the connection with
the dynamic personalization of an application’s behavior for
particular user, the composite behaviors of the application
and corresponding code segments can be identified. A user
interface can be presented in connection with the healing or
customization of the application allowing the user to select
particular identified behaviors for remediation or modifica-
tions. In one example implementation, the user interface can
be provided in connection with an application healing engine
with the user inputs directing how (e.g., which identified
behaviors) the application healing engine is to modify the
application. In another example, application healing engine
can insert one or more user interface controls into the original
binary of the application allowing the user at launch of the
modified application to dynamically enable, disable, or oth-
erwise remediate or customize the behavior of the applica-
tion. For instance, based on the selections of the user, an
original section of the code corresponding to an accepted
behavior can be utilized in lieu of ahealed version of the same
code, among other examples. Effectively, each of the seg-
ments of the code where behavior is demonstrated can be
selectively turned off or on based on the user preferences and
inputs. Further, the user interface can provide a user with the
option of saving the settings of an application so that the
selection of a particular subset of application behaviors per-
sists and is available the next time the application is launched
on the user’s device.

[0062] Insome implementations, functionality can be pro-
vided to define, enable, and employ defined usage modes on
the user devices. Traditionally, user devices, such as smart
phones and tablet computers, among other examples, are
designed to support a single user and application profile.
However, a single operation profile and mode may not be
appropriate for all of the actual users of the device or the
situations in which the device is used. For instance, a user may

Aug. 6, 2015

desire to loan their device to a friend for some short period of
time, but would like to nonetheless retain control of the access
to some of the sensitive applications and data on the device,
email applications, contacts, calendars, messaging function-
ality, etc. In other instances, the user may desire to allow a
child to temporarily use the device, for example, to play
game, but would prefer for other applications (e.g., web
browsers) and access to certain device settings and data to be
blocked from the child. Additionally, users may desire to
control usage of some subset of the applications on the device
to specific times, locations, and situations. For instance,
games and social networking applications may be desired to
be disabled during school hours, among other examples.

[0063] FIG. 14A illustrates a simplified block diagram
14004 of an example implementation of a mode manager. For
instance, various modes may be defined based on intelligence
gleaned from the user device as well as outside services. A
user may define one or more modes through a user interface
and a mode manager, for instance, on the device may manage
access to the various modes, for example, using dedicated
credentials assigned to each of the modes. Additionally, as
noted above, an application monitoring service or application
behavioral analysis engine may recommend particular appli-
cations for a quarantine or high-security mode available on
the user device. Accordingly, a user may define such modes to
restrict access to potentially risky or currently analyzed appli-
cations to administrative, adult, or other trusted users, among
other examples.

[0064] FIG. 14B illustrates another simplified block dia-
gram 14005 illustrating principles of an application mode
manager. An application mode manager 248, in some imple-
mentations, may include various modules and functionality
such as a mode setup manager 1405, lock service 1410, lock
manager 1415, credential manager 1420, application access
manager 1425, application protection service 1430, password
engine 1435, among other examples. For instance, in the
illustrated example, the user with administrative privileges
can set up passwords or PINs and assign these credentials to
modes defined by the user, for instance, using a mode setup
manager. An access manager can utilize a credential manager
to verify whether valid credentials have been received that
allow a current user of the device to access one of a set of
modes defined for the device. In the event that incorrect
credentials are entered, a lock manager can invoke a lock
service to lock out the current user from one or more appli-
cations by assigning the user to a restricted mode or locking
out the user altogether.

[0065] In some implementations, a device mode can be
composed of an exclusion list or inclusion list. Device modes
can be defined as respective sets of applications that are either
allowed or somehow protected in that mode, in the sense their
usage is prohibited or limited. In some instances, an exclusion
list can be defined for a mode that indicates a particular subset
of the applications and/or subsystems of a device that are
accessible under the corresponding mode (i.e., with the
remaining applications protected or locked in that mode). For
instance, a mode can be defined such as according to: <Mode-
Name, inclusion/Exclusion, Access PIN, Appl, App2, App3 .
. . App N>. In some instances, each device mode can be
protected and associated with a particular password. The
master mode can be defined that allows access to the entirety
of'the device’s functionality and applications. Accordingly, a
master password can be provided that enables access to the
master mode. Within the master mode, the user may be pro-

US 2015/0220734 Al

vided with access to a management console for managing the
set of modes available or defined at the device. Accordingly
the user may edit or define modes through the management
console, as well as activate or delete predefined modes. An
example management console can allow a user to select, from
a listing of applications, those applications the user wishes to
designate as protected or accessible in any given mode. In
some cases, a single application can be allowed or protected
under multiple different modes.

[0066] Insome implementations, mode passwords may be
stored in encrypted memory. For instance, the password of
each mode can be encrypted using a key generated by the
same password. A stored, encrypted password can then be
validated by decrypting the password with a key generated
from the password entered by the user. The decrypted data can
then be compared with the user-entered password. Based on
the password provided by user, a corresponding mode can be
identified and authenticated to allow access to the mode by
the user. In some implementations, the user may manually
lock the device or the device may lock itself, for instance,
after a prolonged period of inactivity. When attempting to
unlock the device or wake up the device a user may be again
presented with a login prompt requesting a password of one of
the modes available and defined for the device.

[0067] In some implementations, modes can be hierarchi-
cal. For instance, a user logged into a higher level mode (i.e.,
amode providing a relatively greater level of access), may be
able to freely move to another mode without providing cre-
dentials for that lower-level mode. On the other hand, a user
who has been authenticated to a lower level mode may be
forced to enter additional credentials when attempting to
access another mode at a higher level in the hierarchy than the
lower-level mode to which the user was previously authenti-
cated. For example, in one instance, four device modes can be
defined where:

[0068] Model is admin level mode;
[0069] Mode 2 guest level mode;
[0070] Mode 3 is guest level mode; and
[0071] Mode 4 is low privilege mode

and the hierarchy is defined as: Model>(Mode2 and Mode
3)>Mode 4, where Mode2 is the same level as Mode3, among
other example implementations.

[0072] In some implementations, configuration of the
device can be altered, customized, or at least partially
restricted when certain modes are active. For example, a
particular mode can activate or deactivate GPS functionality,
data access, telephony, as well as certain applications. Fur-
ther, in some examples, device modes can be provided that
secure data of particular applications when mode. For
instance, once a new mode has been created and assigned a
corresponding access level to set of applications, the data of
these applications may be protected by encryption through a
separate encryption key. This can be implemented for
example by using an encrypting file system for encrypting
files and folders, among other examples.

[0073] In some implementations, the executable code of
applications can be secured to protect against applications
being used in modes that disallow access and/or use to one or
more of the behaviors or features of the application. For
instance, in one implementation, the application executable
can be stored in encrypted secondary storage. An operating
system loader of the user device can gain conditional unen-
crypted access to the executable code, in some examples, only
ifthe application is found in an allowed application list for the

Aug. 6, 2015

active device mode in which access to the application is
attempted, among other potential implementations.

[0074] In some examples, defining multiple device modes
for auser device can further result in the provision of multiple
unique home screens to be presented in each of the corre-
sponding modes. As a result, in such implementations, the
appearance of a given home screen can indicate to a user the
mode that is active on the device as well as access privileges
available in that mode. In some instances, home screens can
include icons of applications that are available within that
corresponding mode, hiding or obscuring the icons of other
applications that are protected within that mode, among other
examples.

[0075] Further, in some instances, device modes can be
created automatically, for instance, based on identified
behaviors and security profiles of applications that are
detected or loaded on the user device. For instance, a mode
manager can make use of behavioral analyses performed, for
example, by an example application behavioral analysis
engine, to identify applications that exhibit a common cat-
egory of behaviors or category of security profiles. For
instance, applications identified as permitting access to
online resources may be grouped and assigned dynamically
to one or more modes that have been defined as allowing such
access. Other modes, such as modes dedicated for underage
users, may be denied access to applications that allow users to
access the Internet, among other examples. Other example
categories may include applications that enable telephony or
mobile messaging functionality, applications that make use of
subsystems that utilize sensitive data, collect potentially pri-
vate information (e.g., cameras, voice recorders, GPS sys-
tems, etc.), and other examples. In some implementations,
ambient intelligence relating to an application, such as an age
rating (e.g., 7+, 12+, 18+ years, etc.), user reviews, or other
information may be used to categorize applications and group
them in various modes. For example, a description of an
application may include an age or maturity rating as well as
reasons for the maturity rating. Accordingly, in one example,
one or more modes may be defined, for example, that block
access by child users to applications with higher maturity
ratings, among other examples.

[0076] Other global or distributed intelligence can also be
used to develop information for a given application, such as
illustrated in the simplified block diagram 1900 of FIG. 19.
Forinstance, application information can be constructed from
security information regarding behaviors of an application
from global threat intelligence 440, publisher/developer
reputation information 1905, app store feedback and reviews
1910, behavior analysis results 1915, among other examples.
Such information (e.g., 440, 1905, 1910, etc.) can be used in
combination with behavioral assessments 1915 of the appli-
cations (e.g., whether an application potentially leaks data,
provides location information, enables SMS messaging, etc.)
to assign certain applications to particular device modes, such
as quarantine or administrative modes, among other
examples. A user may further designate custom categories or
behaviors or select pre-defined categories or behaviors as the
basis for assignments of applications to respective modes
rather than individually selecting the applications for inclu-
sion in one or more modes on al a carte basis, among other
examples.

[0077] Turning to the example of FIG. 15A, an example
algorithm is represented for the storing of password informa-
tion associated with a particular mode. FIG. 15B represents

US 2015/0220734 Al

an example algorithm for validating a password and identi-
fying a mode to activate that corresponds to the entered pass-
word. It should be appreciated that the algorithms of FIGS.
15A-15B are non-limiting examples presented merely for
purposes of illustration and that other alternative algorithms
and implementations can be utilized in other instances.
[0078] Turning to the example of FIG. 16, in some imple-
mentations, modes defined by a given user may be provided,
for instance, to an application management service, cloud
service or other service (e.g., 1600) that allows one or more
modes, as well as rules associated with the modes, to be
aggregated and shared with other users. Additionally, shared
device modes maintained by a mode sharing service 1600 can
be browsed and selected for download and utilization on user
devices 110, 120, allowing a user to provision their own
device with modes created by other users and shared using the
mode sharing service. Further, the user can provision the
shared mode, in some examples, by downloading and install-
ing a definition of the shared mode from the mode sharing
service and assigning a unique password to the newly
installed mode. In still other examples, mode configurations
can be shared directly between devices, with one device
obtaining a new mode from another device sharing the mode,
for instance, through wireless peer-to-peer technologies like
Bluetooth, near field communications (NFC), WiFi, and oth-
ers.

[0079] In some implementations, such as shown in the
example of FIG. 17, modes can be activated automatically
based on context information detected, for example, by the
device itself. A user, in some examples, can configure (e.g., on
the management console), rules for automatically activating
particular modes. For instance, a particular mode can be
activated automatically in response to the detection of a spe-
cific context at the user device. Such contexts can include, for
example, detecting the location or proximity of the device
within a defined geo-fence, detecting that the device is in
proximity of other devices, detecting the device in range of
particular data networks, detecting a user of the device (e.g.,
based on user biometric information collected by the device),
a detected time of day, device battery status, usage activity
(e.g., to guard against particular users spending too much
time on the device, etc.), whether the device is traveling or in
motion (e.g., as detected through GPS functionality, acceler-
ometers, or other functionality on the device), among poten-
tially many other examples.

[0080] Turning now to the example of FIG. 18, in some
implementations, modes can be provisioned and configured
through a remote service, such as a cloud service, allowing a
user to activate/deactivate or define a mode remotely. Using
such a service, a user can create a mode remotely (e.g., using
a computer other than the target mobile user device) and
provision one or more modes to the target user device and also
activate and deactivate the mode on the user device from a
remote location. Further, an administrator can also use the
service to provision such modes on mobile user devices as
well as define rules and contexts for automatically activating,
applying, or deactivating a given mode, among other
examples.

[0081] FIGS. 20A-20D illustrate example screenshots of
user interfaces showing particular features of some example
implementations of mode management on a mobile user
device. For instance, screenshot in FIG. 20A illustrates a user
interface for defining a new mode and mode password. A
similar user interface can be provided to allow a user to select

Aug. 6, 2015

and activate one of multiple available modes on the device
and/or provide credentials for the selected mode. In some
implementations, a user device may include native login cre-
dentials or a native login manager. A mode manager may be
implemented as an application itself that overrides a native
login manager and replaces a native login screen with the
mode-specific login prompts (e.g., that allow the multi-mode
functionality of the user device). In some instances, a user
may not be able to visually distinguish that a user device is
provisioned with multiple modes, with the login screen
capable of accepting one of a plurality of different login
codes, each login code corresponding to a supported mode
(including hidden modes) provisioned on the user device.

[0082] The screenshot of FIG. 208 illustrates a view of a
home screen for a particular mode. As shown in this example,
a set of restricted applications can be designated that can only
be accessed by providing credentials to and activating a
higher level mode (e.g., that permits access of the restricted
applications). Further, a My Apps folder can provide access to
those applications that have been enabled in a current active
mode. Screenshot of FIG. 20C provides another view of an
example administrative screen that permits users to activate,
edit, or create new modes. Additionally, example screenshot
of FIG. 20D illustrates a user interface that can be provided in
some implementations of a mode manager allowing a user to
designate from a list of applications on the device which
applications are to be included or protected in a given mode,
and so on. It should be appreciated that the foregoing
examples are provided merely for the sake of illustrating
certain principles and should not be interpreted as limiting
examples. Indeed, a variety of different implementations,
user interfaces, program architectures, operating systems,
SDK platforms, and method sequences can be substituted for
those examples described above without diverting from the
general principles illustrated and described in this Specifica-
tion.

[0083] FIGS. 21A-21C are flowcharts 2100a-c illustrating
example techniques in the management of applications on
mobile user computing devices. For instance, in the example
of FIG. 21A, code of a particular application can be analyzed
2105, for instance, against a semantic representation of a
platform, such as a representation of a platform SDK and/or
APIs. A set of behaviors of the particular application can be
identified 2110. At least one undesirable behavior in the set of
behaviors can be identified 2115, for instance, based on the
user selection of one of the identified set of behaviors or
automatically according to rules and/or policies defined (e.g.,
by a user or administrator) for applications to be downloaded,
installed, launched, or otherwise used at a particular mobile
computing device.

[0084] Inthe example of FIG. 218, a behavior can be iden-
tified 2120 and a set of behaviors detected for a particular
application (e.g., according to the principles of the example of
FIG. 21A). A section of code of the particular application can
then be identified 2125 corresponding to the identified behav-
ior. A remediation action can be performed 2130 on the iden-
tified section of code to automatically remediate the behavior,
for instance, in response to an identification that the identified
behavior is an undesirable behavior, etc. The remediation
action can result in the dynamic generation of a “healed”
version of the particular application that retains at least a
portion of its original functionality, with the undesired func-
tionality being blocked or stripped from the healed version.

US 2015/0220734 Al

[0085] In the example of FIG. 21C, a particular one of a
plurality of modes can be activated 2140. The modes can be
defined for a particular user computing device and dictate
what subset of the functionality of the computing device and
its software may be accessible to a particular user having
credentials for accessing a respective mode in the plurality of
modes. Access can be restricted 2145 to one or more appli-
cations installed on the user computing device according to
the activation 2140 of the particular mode. In addition, in
some implementations, activation of the particular mode can
result in a restricted or alternate configuration of the comput-
ing device to be applied that thereby limits a user’s access to
one or more subsystems and functionality, including hard-
ware functionality, and settings and data of the user comput-
ing device, among other examples.

[0086] Although this disclosure has been described in
terms of certain implementations and generally associated
methods, alterations and permutations of these implementa-
tions and methods will be apparent to those skilled in the art.
For example, the actions described herein can be performed
in a different order than as described and still achieve the
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the par-
ticular order shown, or sequential order, to achieve the desired
results. In certain implementations, multitasking and parallel
processing may be advantageous. Additionally, diverse user
interface layouts and functionality can be supported. Other
variations are within the scope of the following claims.

[0087] Embodiments of the subject matter and the opera-
tions described in this specification can be implemented in
digital electronic circuitry, or in computer software, firm-
ware, or hardware, including the structures disclosed in this
specification and their structural equivalents, or in combina-
tions of one or more of them. Embodiments of the subject
matter described in this specification can be implemented as
one or more computer programs, i.e., one or more modules of
computer program instructions, encoded on computer storage
medium for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the pro-
gram instructions can be encoded on an artificially generated
propagated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. A computer
storage medium can be, or be included in, a computer-read-
able storage device, a computer-readable storage substrate, a
random or serial access memory array or device, or a combi-
nation of one or more of them. Moreover, while a computer
storage medium is not a propagated signal per se, a computer
storage medium can be a source or destination of computer
program instructions encoded in an artificially generated
propagated signal. The computer storage medium can also be,
or be included in, one or more separate physical components
ormedia (e.g., multiple CDs, disks, or other storage devices),
including a distributed software environment or cloud com-
puting environment.

[0088] Networks, including core and access networks,
including wireless access networks, can include one or more
network elements. “Network elements” can encompass vari-
ous types of routers, switches, gateways, bridges, load bal-
ancers, firewalls, servers, inline service nodes, proxies, pro-
cessors, modules, or any other suitable device, component,
element, or object operable to exchange information in a
network environment. A network element may include appro-

Aug. 6, 2015

priate processors, memory elements, hardware and/or soft-
ware to support (or otherwise execute) the activities associ-
ated with using a processor for screen management
functionalities, as outlined herein. Moreover, the network
element may include any suitable components, modules,
interfaces, or objects that facilitate the operations thereof.
This may be inclusive of appropriate algorithms and commu-
nication protocols that allow for the effective exchange of
data or information.

[0089] The operations described in this specification can be
implemented as operations performed by a data processing
apparatus on data stored on one or more computer-readable
storage devices or received from other sources. The terms
“data processing apparatus,” “‘processor,” “processing
device,” and “computing device” can encompass all kinds of
apparatus, devices, and machines for processing data, includ-
ing by way of example a programmable processor, a com-
puter, a system on a chip, or multiple ones, or combinations,
of'the foregoing. The apparatus can include general or special
purpose logic circuitry, e.g., a central processing unit (CPU),
ablade, an application specific integrated circuit (ASIC), or a
field-programmable gate array (FPGA), among other suitable
options. While some processors and computing devices have
been described and/or illustrated as a single processor, mul-
tiple processors may be used according to the particular needs
of'the associated server. References to a single processor are
meant to include multiple processors where applicable. Gen-
erally, the processor executes instructions and manipulates
data to perform certain operations. An apparatus can also
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross-
platform runtime environment, a virtual machine, or a com-
bination of one or more of them. The apparatus and execution
environment can realize various different computing model
infrastructures, such as web services, distributed computing
and grid computing infrastructures.

[0090] A computer program (also known as a program,
software, software application, script, module, (software)
tools, (software) engines, or code) can be written in any form
of programming language, including compiled or interpreted
languages, declarative or procedural languages, and it can be
deployed in any form, including as a standalone program or as
a module, component, subroutine, object, or other unit suit-
able for use in a computing environment. For instance, a
computer program may include computer-readable instruc-
tions, firmware, wired or programmed hardware, or any com-
bination thereof on a tangible medium operable when
executed to perform at least the processes and operations
described herein. A computer program may, but need not,
correspond to a file in a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more scripts stored in a markup language document),
in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

[0091] Programs can be implemented as individual mod-
ules that implement the various features and functionality
through various objects, methods, or other processes, or may

US 2015/0220734 Al

instead include a number of sub-modules, third party ser-
vices, components, libraries, and such, as appropriate. Con-
versely, the features and functionality of various components
can be combined into single components as appropriate. In
certain cases, programs and software systems may be imple-
mented as a composite hosted application. For example, por-
tions of the composite application may be implemented as
Enterprise Java Beans (EJBs) or design-time components
may have the ability to generate run-time implementations
into different platforms, such as J2EE (Java 2 Platform, Enter-
prise Edition), ABAP (Advanced Business Application Pro-
gramming) objects, or Microsoft’s .NET, among others.
Additionally, applications may represent web-based applica-
tions accessed and executed via a network (e.g., through the
Internet). Further, one or more processes associated with a
particular hosted application or service may be stored, refer-
enced, or executed remotely. For example, a portion of a
particular hosted application or service may be a web service
associated with the application that is remotely called, while
another portion of the hosted application may be an interface
object or agent bundled for processing at a remote client.
Moreover, any or all of the hosted applications and software
service may be a child or sub-module of another software
module or enterprise application (not illustrated) without
departing from the scope of this disclosure. Still further, por-
tions of a hosted application can be executed by a user work-
ing directly at a server hosting the application, as well as
remotely at a client.

[0092] The processes and logic flows described in this
specification can be performed by one or more programmable
processors executing one or more computer programs to per-
form actions by operating on input data and generating out-
put. The processes and logic flows can also be performed by,
and apparatus can also be implemented as, special purpose
logic circuitry, e.g., an FPGA (field programmable gate array)
or an ASIC (application specific integrated circuit).

[0093] Processors suitable for the execution of a computer
program include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor-
dance with instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA),
tablet computer, a mobile audio or video player, a game
console, a Global Positioning System (GPS) receiver, or a
portable storage device (e.g., a universal serial bus (USB)
flash drive), to name just a few. Devices suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The pro-
cessor and the memory can be supplemented by, or incorpo-
rated in, special purpose logic circuitry.

Aug. 6, 2015

[0094] To provide for interaction with a user, embodiments
of the subject matter described in this specification can be
implemented on a computer having a display device, e.g., a
CRT (cathode ray tube) or LCD (liquid crystal display) moni-
tor, for displaying information to the user and a keyboard and
a pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of devices
can be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-
ments to and receiving documents from a device, including
remote devices, which are used by the user.

[0095] Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
orthatincludes a front end component, e.g., aclient computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
subject matter described in this specification, or any combi-
nation of one or more such back end, middleware, or front end
components. The components of the system can be intercon-
nected by any form or medium of digital data communication,
e.g., a communication network. Examples of communication
networks include any internal or external network, networks,
sub-network, or combination thereof operable to facilitate
communications between various computing components in
a system. A network may communicate, for example, Internet
Protocol (IP) packets, Frame Relay frames, Asynchronous
Transfer Mode (ATM) cells, voice, video, data, and other
suitable information between network addresses. The net-
work may also include one or more local area networks
(LANSs), radio access networks (RANs), metropolitan area
networks (MANs), wide area networks (WANSs), all or a
portion of the Internet, peer-to-peer networks (e.g., ad hoc
peer-to-peer networks), and/or any other communication sys-
tem or systems at one or more locations.

[0096] The computing system can include clients and serv-
ers. A client and server are generally remote from each other
and typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g., an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter-
action) can be received from the client device at the server.

[0097] While this specification contains many specific
implementation details, these should notbe construed as limi-
tations on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular embodiments of particular inventions. Certain fea-
tures that are described in this specification in the context of
separate embodiments can also be implemented in combina-
tion in a single embodiment. Conversely, various features that
are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
bedescribed above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed

US 2015/0220734 Al

combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

[0098] The following examples pertain to embodiments in
accordance with this Specification. One or more embodi-
ments may provide an apparatus, a system, a machine read-
able medium, and a method to analyze code of a particular
application against a semantic model of a software develop-
ment kit of a particular platform, identify, based on the analy-
sis of the code, a set of behaviors of the particular application,
and identify that one or more of the set of behaviors are
undesired behaviors. The semantic model can associate
potential application behaviors with one or more of APIs of
the particular platform.

[0099] Inone example, identifying that one or more of the
set of behaviors are undesired behaviors includes determining
that the one or more behaviors violate one or more rules. The
rules can be associated with a particular user.

[0100] In one example, a user input identifies one or more
of the set of behaviors as undesirable. The user input can be
received in connection with a user interface displaying human
readable descriptions of the identified set of behaviors.
[0101] In one example, code of the particular application
can be disassembled into a control flow and a model of appli-
cation logic for the particular application can be generated
based at least in part on the semantic model. The model of
application logic can be further based, at least in part, on
ambient application knowledge.

[0102] In one example, a remediation action can be per-
formed based on the identification that one or more of the set
of behaviors are undesired behaviors.

[0103] In one example, the code of the particular applica-
tion is analyzed in connection with an attempt to implement
the particular application on a particular user device.

[0104] One or more embodiments may provide an appara-
tus, a system, a machine readable medium, and a method to
identify a particular behavior in a set of behaviors detected as
included in a particular application, identity a section of code
of the particular application corresponding to the particular
behavior, and perform a remediation action on the section of
code to remediate the particular behavior and generate a
healed version of the particular application.

[0105] In one example, the remediation action preserves
other behaviors of the particular application other than the
particular behavior.

[0106] In one example, the remediation action includes
deleting the section of code.

[0107] In one example, the remediation action includes
rewriting the section of code.

[0108] In one example, the remediation action includes
adding additional code to the application to nullify the par-
ticular behavior.

[0109] Inone example, the remediation action is identified
from a policy identifying a remediation pattern determined to
be applicable to remedying the particular behavior.

[0110] In one example, the remediation action includes
inserting application logic allowing a user to selectively
enable a healed version of the particular behavior at launch of
the healed application on a user device. The user can be
further allowed to selectively enable an unhealed version of
the particular behavior in lieu of the healed version.

[0111] Inoneexample, the set of behaviors of the particular
application can be detected through an analysis of code of the
particular application.

Aug. 6, 2015

[0112] Inone example, the remediation action is triggered
by a user request.

[0113] One or more embodiments may provide an appara-
tus, a system, a machine readable medium, and a method to
activate a particular one of a plurality of modes defined for a
particular user device, and restrict access to one or more
applications installed on the particular user device in accor-
dance with the activated particular mode. The restricted appli-
cations can be accessible when another one of the plurality of
modes is activated.

[0114] In one example, the particular mode is activated in
response to a particular passcode entered by a user of the
particular user device, where each of the plurality of modes is
associated with a corresponding passcode. Activation of the
particular mode can include identifying the particular mode
from the plurality of modes based on the entry of the particu-
lar passcode, and authenticating access to the particular mode
based on the entry of the particular passcode.

[0115] In one example, one or more of the plurality of
modes are user-defined modes.

[0116] In one example, an alternate device configuration
can be applied to the particular user device based on activa-
tion of the particular mode. The alternate device configura-
tion can restrict access to one or more subsystems of the
particular user device.

[0117] In one example, one of the plurality of modes is an
administrative modes allowing for modification of the plural-
ity of modes.

[0118] Inoneexample, atleast oneofthe plurality of modes
is an instance of a mode downloadable from a mode sharing
service remote from the particular user device.

[0119] In one example, the particular mode is activated
automatically based at least in part on the detection of a
particular context using functionality of the particular user
device.

[0120] Inoneexample, atleast a particular one of the appli-
cations is restricted based on a defined rule for the particular
mode.

[0121] Inoneexample, the defined rule pertains to detected
behavior of the particular application.

[0122] In one example, the plurality of modes includes a
mode designated as a quarantine mode for application await-
ing behavioral analysis or remediation.

[0123] In one example, the particular mode is activated in
response to a user command received at a device remote from
the particular user device.

[0124] Similarly, while operations are depicted in the draw-
ings in a particular order, this should not be understood as
requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In cer-
tain circumstances, multitasking and parallel processing may
be advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi-
ments, and it should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft-
ware products.

[0125] Thus, particular embodiments of the subject matter
have been described. Other embodiments are within the scope
of the following claims. In some cases, the actions recited in
the claims can be performed in a different order and still
achieve desirable results. In addition, the processes depicted

US 2015/0220734 Al

in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desir-
able results.

1-74. (canceled)

75. Atleast one machine accessible storage medium having
instructions stored thereon, the instructions when executed on
a machine, cause the machine to:

analyze code of a particular application against a semantic

model of a software development kit of a particular
platform, wherein the semantic model associates a plu-
rality of application behaviors with respective applica-
tion programming interface (API) calls of the particular
platform;

identify, based on the analysis of the code, a set of behav-

iors of the particular application; and

identify that a particular one of the set of behaviors is an

undesired behavior.

76. The storage medium of claim 75, wherein identifying
that the particular behavior is an undesired behavior includes
determining that the one or more behaviors violate one or
more rules.

77. The storage medium of claim 76, wherein the rules are
associated with a particular user.

78. The storage medium of claim 77, wherein at least a
portion of the rules include rules defined by the particular
user.

79. The storage medium of claim 76, wherein the rules are
associated with a network service provider.

80. The storage medium of claim 75, wherein a user input
identifies that the particular behavior is undesired.

81. The storage medium of claim 80, wherein the user input
is received in connection with a user interface displaying
human readable descriptions of the identified set of behav-
iors.

82. The storage medium of claim 81, wherein the human
readable description is generated using a template for gener-
ating the description and the semantic model.

83. The storage medium of claim 75, wherein the particular
user device is one of a smart phone and a tablet computing
device.

84. A method comprising:

analyzing code of a particular application against a seman-

tic model of a software development kit of a particular
platform, the semantic model associating a plurality of
application behaviors with respective application pro-
gramming interface (API) calls of the particular plat-
form;

identifying, based on the analysis of the code, a set of

behaviors of the particular application; and

identifying that a particular one of the set of behaviors is an

undesired behavior.

85. The method of claim 84, further comprising disassem-
bling code of the particular application into a control flow and
generating a model of application logic for the particular
application based at least in part on the semantic model.

86. The method of claim 85, wherein the model of appli-
cation logic is further based, at least in part, on ambient
application knowledge.

87. The method of claim 84, further comprising perform-
ing aremediation action based on the identification that one or
more of the set of behaviors are undesired behaviors.

Aug. 6, 2015

88. The method of claim 84, wherein the code of the par-
ticular application is analyzed in connection with an attempt
to implement the particular application on a particular user
device.

89. The method of claim 88, further comprising restricting
implementation of the particular application on the particular
user device based on identifying that one or more of the set of
behaviors are undesired behaviors.

90. The method of claim 89, wherein restricting implemen-
tation includes blocking installation of the particular applica-
tion on the particular user device.

91. The method of claim 89, wherein restricting implemen-
tation includes assigning the particular application to a device
mode that is to limit access to the particular application.

92. The method of claim 89, further comprising modifying
code of the particular application to remediate the undesired
behavior.

93. A system comprising:

at least one processor device;

at least one memory element; and

an application behavioral analysis engine, adapted when

executed by the at least one processor device to:

analyze code of a particular application against a seman-
tic model of a software development kit of a particular
platform, wherein the semantic model associates a
plurality of application behaviors with respective
application programming interface (API) calls of the
particular platform;

identify, based on the analysis of the code, a set of
behaviors of the particular application; and

identify that a particular one of the set of behaviors is an
undesired behavior.

94. The system of claim 93, further comprising an appli-
cation healer engine to:

identify a section of code of the particular application

corresponding to the particular behavior; and

perform a remediation action on the section of code to

remediate the particular behavior and generate a healed
version of the particular application.
95. The system of claim 93, further comprising a mode
manager to:
activate a particular one of a plurality of modes defined for
a user device; and

restrict access to the particular application in accordance
with the activated particular mode, wherein the particu-
lar application is made accessible when another one of
the plurality of modes is activated.

96. The system of claim 93, further comprising a user
device, wherein the application behavioral analysis engine is
to communicate results of the analysis of the code to the user
device based on an attempt by the user device to install the
particular application on the user device.

97. A system comprising:

means for analyzing code of a particular application

against a semantic model of a software development kit
of a particular platform, the semantic model associating
a plurality of application behaviors with respective
application programming interface (API) calls of the
particular platform;

means for identifying, based on the analysis of the code, a

set of behaviors of the particular application; and
means for identifying that a particular one of the set of
behaviors is an undesired behavior.

#* #* #* #* #*

