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STATISTICAL SIGNATURES USED WITH MULTIVARIATE ANALYSIS FOR
STEADY-STATE DETECTION IN A PROCESS

Cross—References To Related Applications

[0001] This application claims priority from U.S. Provisional Application Serial
No. 60/827,631, which was filed on September 29, 2006, entitled “ON-LINE PRINCIPAL
COMPONENT ANANLYSIS IN A DISTRIBUTED CONTROL SYSTEM.” The above-
referenced provisional patent application 1s hereby incorporated by reference herein, in its

entirety.

Technical Field

[0002] This disclosure relates generally to process plant diagnostics and, more
particularly, to monitoring and diagnostic systems involving multivariate statistical

technigues.

Description of the Related Art

f0003] Process control systems, like those used in chemical, petroleum or other
processes, typically include one or more centralized or decentralized process controllers
communicatively coupled to at least one host or operator workstation and to one or more
process control and instrumentation devices such as, for example, field devices, via analog,
digital or combined analog/digital buses. Field devices, which may be, for example, valves,
valve positioners, switches, transmitters, and sensors (e.g., temperature, pressure, and flow
rate sensors), are located within the process plant environment, and perform functions within
the process such as opening or closing valves, measuring process parameters, increasing or
decreasing fluid flow, etc. Smart field devices such as field devices conforming to the well-
known FOUNDATION™ Fieldbus (hereinafter "Fieldbus") protocol or the HART® protocol
may also perform control calculations, alarming functions, and other control functions

commonly implemented within the process controller.

[0004]  The process controllers, which are typically located within the process plant
environment, receive signals indicative of process measurements or process variables made
by or associated with the field devices and/or other information pertaining to the field

devices, and execute controller applications. The controller applications implement, for
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example, different control modules that make process control decisions, generate control
signals based on the received information, and coordinate with the control modules or blocks
being performed in the field devices such as HART® and Fieldbus field devices. The control
modules in the process controllers send the control signals over the communication lines or

signal paths to the field devices, to thereby control the operation of the process,

[6005]  Information from the field devices and the process controllers is typically
made available to one or more other hardware devices such as operator workstations,
maintenance workstations, personal computers, handheld devices, data historians, report
generators, centralized databases, etc., to enable an operator or a maintenance person to
perform desired functions with respect to the process such as, for example, changin g setlings
of the process control routine, modifying the operation of the control modules within the
process controtlers or the smart field devices, viewing the current state of the process or of
particular devices within the process plant, viewing alarms generated by field devices and
process controllers, simulating the operation of the process for the purpose of training
personnel or testing the process control software, and diagnosing problems or hardware

failures within the process plant.

[0006]  Asis known, problems frequently arise within a process plant environment,
especially a process plant having a large number of field devices and supporting equipment.
These problems may take the form of broken or malfunctioning devices, logic elements, such
as software routines, residing in improper modes, process control loops being improperly
tuned, one or more failures in communications between devices within the process plant, etc.
These and other problems, while numerous in nature, generally result in the process operating
in an abnormal state (i.e., the process plant being in an abnormal situation) which is usually

associated with suboptimal performance of the process plant.

[0007]  Many diagnostic tools and applications have been developed to detect and
determine the cause of problems within a process plant and to assist an operator or a
maintenance person to diagnose and correct the problems, once the problems have occurred
and been detected. For example, operator workstations, which are typically cormected to the
process controllers through communication connections such as a direct or wircless bus,
Ethernet, modem, phone line, and the like, have processors and memories that are adapted to
run software, such as the DeltaV™ and Ovation® control systems, sold by Emerson Process

Management. These control systems have numerous control module and control loop



WO 2008/042807 PCT/US2007/079986

diagnostic tools. Likewise, maintenance workstations, which may be connected to the
process control devices, such as field devices, via the same communication connections as
the controller applications, or via different communication connections, such as object
linking and embedding (OLE) for process control (OPC) connections, handheld connections,
ete., typically include one or more applications designed to view maintenance alarms and
alerts generated by field devices within the process plant, to test devices within the process
plant and to perform maintenance activities on the field devices and other devices within the
process plant. Similar diagnostic applications have been developed to diagnose problems

within the supporting equipment within the process plant.

[0008] Thus, for example, software available commercially as the AMS™ Suite:
Intelligent Device Manager from Emerson Process Management enables communication with
and stores data pertaining to field devices to ascertain and track the operating state of the field
devices. See also U.S. Patent Number 5,960,214 entitled “Integrated Communication
Network for use in a Field Device Management System.” In some instances, the AMS™
software may be used to communicate with a field device to change parameters within the
field device, to cause the field device to run applications on itself such as, for example, self-
calibration routines or sclf-diagnostic routines, to obtain information about the status or
health of the field device, etc. This information may include, for example, status information
(e.g., whether an alarm or other similar event has occurred), device configuration information
(e.g., the manner in which the field device is currently or may be configured and the type of
measuring units used by the field device), device parameters (e.g., the field device range
values and other parameters), etc. Of course, this information may be used by a maintenance

person to monitor, maintain, and/or diagnose problems with field devices.

[6009]  Similarly, many process plants have included software applications such as,
for example, the Machinery Health® application provided by CSI Systems, to monitor,
diagnose, and optimize the operating state of various rotating equipment. Maintenance
personnel usually use these applications to maintain and oversee the performance of rotating
equipment in the plant, to determine problems with the rotating equipment, and to determine
when and if the rotating equipment must be repaired or replaced. Similarly, many process
plants include power control and diagnostic applications such as those provided by, for
example, the Liebert and ASCO companies, to control and maintain the power generation and
distribution equipment. It is also known to run control optimization applications such as, for

example, real-time optimizers (RTO+), within a process plant to optimize the control
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activities of the process plant. Such optimization applications typically use complex
algorithms and/or models of the process plant to predict how inputs may be changed to
optimize operation of the process plant with respect to some desired optimization variable

stich as, for example, profit.

[0010]  These and other diagnostic and optimization applications are typically
implemented on a system-wide basis in one or more of the operator or maintenance
workstations, and may provide preconfigured displays to the operator or maintecnance
persomnel regarding the operating state of the process plant, or the devices and equipment
within the process plant. Typical displays include alarming displays that receive alarms
generated by the process controllers or other devices within the process plant, control
displays indicating the operating state of the process controllers and other devices within the
process plant, maintenance displays indicating the operating state of the devices within the
process plant, etc. Likewise, these and other diagnostic applications may enable an operator
or a maintenance person to retune a control loop or to reset other control parameters, to run a
test on one or more field devices to determine the current status of those field devices, or to

calibrate field devices or other equipment.

[0011] While these various applications and tools are very helpful in identifying
and correcting problems within a process plant, these diagnostic applications are generally
configured to be used only after a problem has already occurred within a process plant and,
therefore, afier an abnormal situation already exists within the plant. Unfortunately, an
abnormal situation may exist for some time before it is detected, identified and corrected
using these tools, resulting in the suboptimal performance of the process plant for the period
of time during which the problem is detected, identified and corrected. In many cases, a
control operator will first detect that some problem exists based on alarms, alerts or poor
performance of the process plant. The operator will then notify the maintenance personnel of
the potential problem. The maintenance personnel may or may not detect an actual problem
and may need further prompting before actually running tests or other diagnostic
applications, or performing other activities needed to identify the actual problem. Once the
problem is identified, the maintenance persennel may need to order parts and schedule a
maintenance procedure, all of which may result in a significant period of time between the
occurrence of a problem and the correction of that problem, during which time the process
plant runs in an abnormal situation generally associated with the sub-optimal operation of the

plant.
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[0012]  Additionally, many process plants can experience an abnormal situation
which results in significant costs or damage within the plant in a relatively short amount of
time. For example, some abnormal situations can cause significant damage to equipment, the
loss of raw materials, or significant unexpected downtime within the process plant if these
abnormal situations exist for even a short amount of time. Thus, merely detecting a problem
within the plant after the problem has occurred, no matter how quickly the problem is
corrected, may still resulf in significant loss or damage within the process plant. As a result,
it is desirable to try to prevent abnormal situations from arising in the first place, instead of
stmply trying to react to and correct problems within the process plant afier an abnormal

situation arises.

[0013]  One technique that may be used to collect data that enables a user to predict
the occurrence of certain abnormal situations within a process plant before these abnormal
situations actually arise, with the purpose of taking steps to prevent the predicted abnormal
situation before any significant loss within the process plant takes place. This procedure is
disclosed in U.S. Patent Application Serial No. 09/972,078, now U.S. Patent No. 7,085,610,
entitled "Root Cause Diagnostics” (based in part on U.S. Patent Application Serial No.
08/623,569, now U.S. Patent No. 6,017,143). The entire disclosures of both of these
applications are hereby incorporated by reference herein. Generally speaking, this technique
places statistical data collection and processing blocks or statistical processing monitoring
(5PM) blocks, in each of a number of devices, such as field devices, within a process plant.
The statistical data collection and processing blocks collect process variable data and
determine certain statistical measures associated with the collected data, such as the mean,
median, standard deviation, etc. These statistical measures may then be sent to a user and
analyzed to recognize patterns suggesting the future occurrence of a known abnormal
situation. Once a particular suspected future abnormal situation is detected, steps may be
taken to correct the underlying problem, thereby avoiding the abnormal situation in the first

place.

[0014]  Principal Component Analysis (PCA) is a multivariate data analysis
technique that has been used in the process control industry for analysis of multidimensional
data sets. PCA techniques generally involve reducing data from a high-dimensional space to
a lower-dimensional space, which still explains most of the significant variations in the
original data. For example, PCA may be used to reduce the dimensionality of a multivariable

data space (e.g., multidimensional data) to a data space of a few dimensions (e.g., 2 or 3
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dimensions), such that the multidimensional data is projected (scored) onto a lower
dimensional principal component space. Further details regarding the typical implementation
of PCA techniques for fault detection in industrial processes may be found in L. H. Chiang, et
al., “Fault Detection and Diagnosis in [ndustrial Systems,” Springer-Verlag London Limited,
pp. 35-54 (2001}, and E. L. Russell, et al., “Data-Driven Techniques for Fault Detection and

Diagnosis in Chemical Processes,” Springer-Verlag London Limited, (2000).

[0015] A number of software packages provide PCA functionality, but most of
these packages utilize offline process data from a database. In other words, PCA has been an
off-line multivariate statistical analysis tool. This is useful for an after-the-fact analysis of an
abnormal situation in the process data, such as historical data or stored multidimensional data
files, but it cannot be used to detect the abnormal situation in real time (e.g., on-line, at-line
or in-line data analysis). Some existing PCA software packages may be capable of doing
real-time analysis of the data, but only if the software would have access to the process data
from the control system, often through an interface such as an OPC server. As a result, plant
personnel would unfortunately have the burden of maintaining a software package separate
from the control system, including supporting its access to, and interface with, the control
system. Further, detection of abnormal process situations should be available at all times and
for various abnormal situations (e.g., a continuous process vs. a one-time solution), in order
for the abnormal situation prevention tools to exhibit alertness and accuracy at various times

for various abnormal situations.

[0016]  Traditional PCA techniques also may fail to easily convey information
indicative of process dynamics. The results of PCA analysis, i.e., the scores, are often
displayed through scatter plots that are static representations of the underlying process data.
Regardless of the manner in which score data is recorded or interpreted in the scatter plots,
there will generally be a small uncertainty associated with data being characterized
incorrectly. As described below, without more information, a process operator often cannot
be certain that a given score is normal or abnormal. For exampile, the first two principal
components of a PCA analysis capture the largest variations in the multidimensional data,
such that the first two scores from a PCA analysis may be plotted because they represent the
most significant information about the behavior of the multidimensional data, including the

largest variations in the process.
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[6017]  For these reasons, traditional PCA techniques have exhibited unreliable
performance in the detection of abnormal situations. A PCA score can suggest an abnormal
sttuation when one does not exist (i.e., a false alarm), and conversely can indicate normal
operation when the process is behaving abnormally (i.e., missed diagnostics). Further, in
order to implement PCA, a PCA model is developed using training data (e.g., data from a
“normal” process operation), and the resulting model is applied for detecting abnormal
process situations. The training data s used to derive the model in terms of the principal
components. As such, the PCA scores are not directly related to the actuai process variables,
and the physical process limits of the process variables being monitored using PCA are lost in
the analysis, thereby requiring a statistical interpretation (e.g., to quantify the “goodness of

data™).

Summary of the Disclosure

[0018]  In accordance with certain aspects of the disclosure, a number of techniques
are disclosed to facilitate the detection of a steady-state of a process and any elements
thereof. Collected process data is generated from a plurality of process variables of the
process. A multivariate statistical model of the operation of the process is generated using a
set of the process data. The multivariate statistical model may be generated from principal
component analysis (PCA). The model is executed to generate one or more outputs each
corresponding to the most significant variations in the process. Statistical measures of the
output(s) are generated and used to determine whether a steady-state or unsteady-state is

related to the process.

[0019] The steady-state or unsteady-state may be determined from the statistical
measure of the output corresponding to the most significant variation alone (e.g., the first
principal component). If the statistical measure of the output corresponding to the most
significant variation meets steady-state criteria, it may be determined that the whole process
is in a steady-state. Alternatively, steady-state or unsteady-state may be determined from the
statistical measure of a plurality of outputs each corresponding to a significant variation in the
process. If all of the statistical measures of the plurality of outputs meet the steady-state
criteria, it may be determined that the system is in a steady-state. If any one of the statistical
measures of the plurality of outputs does not meet the steady-state criteria, it may be

determined that the process is in an unsteady-state.
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[00206] The steady-state criteria may be based on a difference between the means of
an output as compared to a significant deviation of the output. The means and standard
deviations may be generated from outputs corresponding to different sampling windows of
the process data. The standard deviation used in the steady-state criteria may be the standard
deviation corresponding to any of the sampling windows, or may be the minimum of the
standard deviations of all the sampling windows being used. By monitoring the statistical
measures of outputs from the multivariate statistical representation, the steady-state of the
process may be determined based on the component(s) of the representation corresponding io
the largest variation(s) in the process, and the steady-state operation of the process may be
used as the basis for further multivariate statistical analysis to model the process in a normal,

on-line state.

Brief Description of the Drawings

[0021] Fig. 1 is an exemplary block diagram of a process plant having a distributed
process control system and network including one or more operator and maintenance

workstations, controllers, field devices and supporting equipment;

[0022] Fig. 2 is an exemplary block diagram of a portion of the process plant of
Fig. 1, illustrating communication interconnections between various components of an

abnormal situation prevention system located within different elements of the process plant;

{0023] Fig. 3 is a graphical plot of a process variable over time with operational

requirements or control limits for monitoring operation of the process plant;

10024] Fig. 4 is a graphical, multivariate visnalization or plot of a number of
process variables relative to operational requirements or control Iimits, the visualization or
plot being suitable for incorporation into a user interface generated in accordance with certain

embodiments and aspects of the disclosure for on-line process monitoring;

[0025] Fig. 5 is another view of the visualization plot of Fig. 4 after one of the
process variables has exceed the operational requirement or control limit, which may be

mdicative of an abnormal situation or fault condition;

[0026] Fig. 6 is a representation of an exemplary function block configured for

implementing principal component analysis (PCA) techniques and instantiated within a
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process control system for training and operation in accordance with one aspect of the

disclosure;

[0027] Fig. 7 1s a representation of another exemplary PCA function block shown
during implementation of the PCA techniques in accordance with another aspect of the

disclosure;

[6028]  Fig. 8 is a block diagram of a multivariate monitoring and diagnostics
module (MMDM) in accordance with another aspect of the disclosure, components of which,

in some embodiments, may be implemented in the function blocks of Figs. 6 and 7;

[0029]  Figs. 9-12 are exemplary user interface displays generated in accordance
with another aspect of the disclosure, which, in some embodiments, may be created or
supported by the function blocks of Figs. 6 and 7 or by the MMDM tool(s) of Fig. 8, for

multivariate monitoring and fault detection;

{0630]  Figs. 13 and 14 are further exemplary user interface displays generated in
accordance with another embodiment and created or supported in manners similar to the user

interface displays of Figs. 9-12 for multivariate monitoring and fault detection;

[0031]  Figs. 15-19 are still further exemplary user interface displays generated in
accordance with yet another embodiment and created or supported in manners similar to the

user interface displays of Figs. 9-12 for multivariate monitoring and fault detection;

[0032]  Figs. 20 and 21 are still further exemplary user interface displays generated
in accordance with yet another embodiment and created or supported in manners similar to

the user interface displays of Figs. 9-12 for multivariate monitoring and fault detection;

[0033]  Figs. 22 and 23 are block diagrams of PCA-based steady-state detection
systems and techniques in accordance with another aspect of the disclosure that may utilize

the function blocks of Figs. 6 and 7;

[0034]  Fig. 24 is a schematic diagram of a fired heater, an exemplary process to
which the disclosed techniques and MMM tools of the present disclosure may be applied

for monitoring, diagnostics and fault detection;

[0035]  Fig. 25 is a graphical representation of training data scores mapped to a two-
dimensional space based on principal components t1 and (2, the training data being used for
PCA-based monitoring, diagnostics and fault detection in connection with the fired heater of

Fig. 24;

[
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[0036] Figs. 26 and 27 are exemplary user interface displays generated by the
MMDM tool 1n connection with the PCA-based monitoring, diagnostics and fault detection

for the fired heater of Fig. 24,

[0037] Fig. 28 1s a graphical plot of crude o1l flow rate data to be used as vahdation
data in connection with a multivariate statistical technique for detecting or determining

dynamic operation in accordance with another aspect of the disclosure;

{0038]  Fig. 29 1s a graphical plot comparing the actual output temperature data
(Tou) associated with the flow rates depicted in Fig. 28 with the output temperatures
predicted by a PCR meodel of the multivariate statistical technique for detecting or

determining dynamic operation;

[0039]  Figs. 30-36 are exemplary user interface displays generated in connection
with the implementation of the multivariate statistical technique for detecting or determining
dynamic operation;

j0040] Fig. 37 is a flow diagram of the multivariate statistical technique for

detecting or determining dynamic operation in accordance with one embodiment;

[0041] Figs. 38 and 39 are graphical plots comparing actual output temperature
data for an exemplary fired heater with data predicted by a multivariate statistical model that

may be used for detection of coking in accordance with another aspect of the disclosure;

[0042] Figs. 40 and 41 are graphical plots comparing actual and predicted output
temperature data in accordance with one embodiment of the coking detection technique based

on the multivariate statistical model;

[0043] Fig. 42 is a graphical plot of a PCA model parameter for the output
temperature of a fired heater demonstrating another, non-regression-based technique for

coking detection in accordance with another aspect of the disclosure; and

[6044] Fig. 43 is a flow diagram of one embodiment of the non-regression-based

coking detection technique depicted in the graphical plot of Fig. 42.

Detailed Description

[0045] Referring now to Fig. I, an exemplary process plant 10 in which an

abnormal situation prevention system may be implemented includes a number of control and

10
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maintenance systems interconnected together with supporting equipment via one or more
communication networks. In particular, the process plant 10 of Fig. 1 includes one or more
process control systems 12 and 14. The process control system 12 may be a fraditional
process control system such as a PROVOX or RS3 system or any other control system which
includes an operator interface 12A coupled to a controller 12B and to input/output (1/O) cards
12C which, in turn, are coupled to various field devices such as analog and Highway
Addressable Remote Transmitter (HART)® field devices 15. The process control system 14,
which may be a distributed process control system, includes one or more operator nterfaces
14A coupled to one or more distributed controllers 14B via a bus, such as an Ethernet bus.
The controllers 14B may be, for example, DeltaV ™ controllers sold by Emerson Process
Management of Austin, Texas or any other desired type of controliers. The controllers 14B
are connected via 170 devices to one or more field devices 16, such as for example, HART®
or Fieldbus field devices or any other smart or non-smart field devices including, for
example, those that use any of the PROFIBUS®, WORLDFIP*, Device-Net”, AS-Interface
and CAN protocols. As is known, the field devices 16 may provide analog or digital
information to the controllers 14B related to process variables as well as to other device
information. The operator interfaces 14A may store and execute tools 17, 19 available to the
process control operator for controlling the operation of the process including, for example,

control optimizers, diagnostic experts, neural networks, tuners, etc.

[0046]  Still further, maintenance systems, such as computers executing the AMS™
application and/or the monitoring, diagnostics and communication applications described
below may be connected to the process control systems 12 and 14 or to the individual devices
therein to perform maintenance, monitoring, and diagnostics activities. For example, a
maintenance computer 18 may be connected to the controller 12B and/or to the devices 15
via any desired communication lines or networks (including wireless or handheld device
networks) to communicate with and, in some instances, reconfigure or perform other
maintenance activities on the devices 15. Similarly, maintenance applications such as the
AMS™ application may be installed in and executed by one or more of the user interfaces
14A associated with the distributed process control system 14 to perform maintenance and
monitoring functions, including data collection related to the operating status of the devices

16.

[0047] The process plant 10 also includes various rotating (and other) equipment

20, such as turbines, motors, etc. which are connected to a maintenance computer 22 via

11
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some permanent or temporary communication link (such as a bus, a wireless communication
system or hand held devices which are connected to the equipment 20 to take readings and
are then removed). The maintenance computer 22 may store and execute any number of
monitoring and diagnostic applications 23, including commercially available applications,
such as those provided by CSI (an Emerson Process Management Company), as well the
applications, modules, and tools described below, to diagnose, monitor and optimize the
operating state of the rotating equipment 20 and other equipment in the plant. Maintenance
personnel usually use the applications 23 to maintain and oversee the performance of rotating
equipment 20 in the plant 10, fo determine problems with the rotating equipment 20 and to
determine when and if the rotating equipment 20 must be repaired or replaced. In some
cases, outside consultants or service organizations may temporarily acquire or measure data
pertaining to the equipment 20 and use this data to perform analyses for the equipment 20 to
detect problems, poor performance or other issues effecting the equipment 20. In these cases,
the computers running the analyses may not be connected to the rest of the system 10 via any

communication line or may be connected only temporarily.

[0048]  Similarly, a power generation and distribution system 24 having power
generating and distribution equipment 25 associated with the plant 10 is connected via, for
example, 2 bus, to another computer 26 which runs and oversees the operation of the power
generating and distribution equipment 25 within the plant 10. The computer 26 may execute
known power control and diagnostics applications 27 such as those provided by, for example,
Liebert and ASCO or other companies to control and maintain the power generation and
distribution equipment 25. Again, in many cases, outside consultants or service organizations
may use service applications that temporarily acquire or measure data pertaining to the
equipment 25 and use this data to perform analyses for the equipment 25 to detect problems,
poor performance or other issues effecting the equipment 25. In these cases, the computers
{such as the computer 26) running the analyses may not be connected to the rest of the system

10 via any communication line or may be connected only temporarily.

[0049]  Asillustrated in Fig. 1, a computer system 30 implements at least a portion
of an abnormal situation prevention system 35, and in particular, the computer system 30
stores and implements a configuration application 38 and, optionally, an abnormal operation
detection system 42, a number of embodiments of which will be described in more detail

below. Additionally, the computer system 30 may implement an alert/alarm application 43.

12



WO 2008/042807 PCT/US2007/079986

[0050]  Generally speaking, the abnormal situation prevention system 35 may
communicate with (or include) abnormal operation detection systems, modules or tools (not
shown in Fig. 1) optionally located in the field devices 15, 16, the controllers 12B, 14B, the
rotating equipment 20 or its supporting computer 22, the power generation equipment 25 or
its supporting computer 26, and any other desired devices and equipment within the process
plant 10, and/or the abnormal operation detection system 42 in the computer system 30, to
configure each of these abnormal operation detection systems and to receive information
regarding the operation of the devices or subsystems that they are monitoring. The abnormal
situation prevention system 35 may be communicatively connected via a hardwired bus 45 to
cach of at least some of the computers or devices within the plant 10 or, altematively, may be
connected via any other desired communication connection including, for example, wireless
connections, dedicated connections which use OPC (or OLE for process control), intermittent
connections, such as ones which rely on handheld devices to collect data, etc. Likewise, the
abnormal situation prevention system 35 may obtain data pertaining to the field devices and
equipment within the process plant 10 via a LAN or a public connection, such as the Internet,
a telephone connection, ete. (illustrated in Fig. 1 as an Internet connection 46) with such data
being collected by, for example, a third party service provider. Further, the abnormal
situation prevention system 35 may be communicatively coupled to computers/devices in the
plant 10 via a variety of techniques and/or protocols including, for example, Ethernet,
Modbus, HTML, XML, proprietary techniques/protocols, etc. Thus, although particular
examples using OPC to communicatively couple the abnormal situation prevention system 35
to computers/devices in the plant 10 are described herein, one of ordinary skill in the art will
recognize that a variety of other methods of coupling the abnormal situation prevention
system 35 to computers/devices in the plant 10 can be used as well. In any case, the
abnormal situation prevention system 35 may communicate with, and receive process
variable data from, any of the computers, devices or other aspects of the plant 10, including,
but not limited to a process control system (e.g., DeltaV™, Ovation® or other distributed
control systems}), devices and computers that conform to various standards or protocols (e. 2.,
FOUNDATION™ Fieldbus, HART®, OPC, Modbus, wireless, etc.), and various
transmitters, sensors and actuators which may be implemented with the devices or distributed
throughout the process plant 10. As discussed further below, the data received and used by
the abnormal situation prevention system 35 may be historical data, such as data from a data

historian, but may also be on-line data (e.g., data collected when the process is on-line),
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which includes, but is not limited to, data collected on-line, at-line or in-line, as well as data

collected in real-time as the process is operating.

[0051] By way of background, OPC is a standard that establishes a mechanism for
accessing process data from the plant or process control system. Typically, an OPC server is
implemented in a process control system to expose or provide process information from, for
example, field devices. An OPC client creates a connection to an OPC server and writes or
reads process information to or from a field device. OPC servers use OLE technology (i.e.,
Component Object Model or COM) to communicate with such clients so that the software
applications implemented by the clients can access data from the field devices or other

process plant equipment.

[0052] Fig. 2 illustrates a portion 50 of the example process plant 10 of Fig. 1 for
the purpose of describing one manner in which the abnormal situation prevention system 35
and/or the alert/alarm application 43 may communicate with various devices in the portion 50
of the example process plant 10. While Fig. 2 illustrates communications between the
abnormal situation prevention system 35 and one or more abnormal operation detection
systems within HART® and Fieldbus field devices, it will be understood that similar
communications can occur between the abnormal situation prevention system 35 and other
devices and equipment within the process plant 10, including any of the devices and

equipment illustrated in Fig. 1.

[0053]  The portion 50 of the process plant 10 illustrated in Fig. 2 includes a
distributed process control system 54 having one or more process controllers 60 connected to
one or more field devices 64 and 66 via input/output (I/O) cards or devices 68 and 70, which
may be any desired types of I/O devices conforming to any desired communication or
controller protocol. The field devices 64 are illustrated as HART® field devices and the field
devices 66 are illustrated as Fieldbus field devices, although these field devices could use any
other desired communication protocols. Additionally, each of the field devices 64 and 66
may be any type of device such as, for example, a sensor, a valve, a transmitter, a positioner,
¢te., and may conform to any desired open, proprietary or other communication or
programming protocel, it being understood that the /O devices 68 and 70 must be compatible

with the desired protocol used by the field devices 64 and 66.

[0054] In any event, one or more user interfaces or computers 72 and 74 (which

may be any types of personal computers, workstations, ete.) accessible by plant personnel
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such as configuration engineers, process control operators, maintenance personnel, plant
managers, supervisors, etc. are coupled to the process controllers 60 via a communication line
or bus 76 which may be implemented using any desired hardwired or wireless
communication structure, and using any desired or suitable communication protocol such as,
for example, an Ethernet protocol. In addition, a database 78 may be connected to the
communication bus 76 to operate as a data historian that collects and stores configuration
information as well as on-line process variable data, parameter data, status data, and other
data associated with the process controllers 60 and field devices 64 and 66 within the process
plant 10. Thus, the database 78 may operate as a configuration database to store the current
configuration, including process configuration modules, as well as control configuration
information for the process control system 54 as downloaded to and stored within the process
controllers 60 and the field devices 64 and 66. Likewise, the database 78 may store historical
abnormal situation prevention data, including statistical data collected by the field devices 64
and 66 within the process plant 10, statistical data determined from process variables

collected by the field devices 64 and 66, and other types of data that will be described below.

[0055] While the process controllers 60, /O devices 68 and 70, and field devices
64 and 606 are typically located down within and distributed throughout the sometimes harsh
plant environment, the workstations 72 and 74, and the database 78 are usually located in
control rooms, maintenance rooms or other less harsh environments easily accessible by

operators, maintenance personnel, etc.

[0056] Generally speaking, the process controllers 60 store and execute one or
more controller applications that implement control strategies using a number of different,
independently executed, control modules or blocks, The control modules may each be made
up of what are commonly referred to as function blocks, wherein each function block is a part
or a subroutine of an overall control routine and operates in conjunction with other function
blocks (via communications called links) to implement process control loops within the
process plant 10. As is well known, function blocks, which may be objects in an object-
oriented programming protocol, typically perform one of an input function, such as that
associated with a transmitter, a sensor or other process parameter measurement device, a
control function, such as that associated with a control routine that performs PID, fuzzy logic,
elc. contrel, or an output function, which controls the operation of some device, such as a
valve, to perform some physical function within the process plant 10. Of course, hybrid and

other types of complex function blocks exist, such as model predictive controliers (MPCs),
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optimizers, etc. It is to be understood that while the Fieldbus protocol and the DeltaV ™™
system protocol use control modules and function blocks designed and implemented in an
object-oriented programming protocol, the control modules may be designed using any
desired conirol programming scherne including, for example, sequential function blocks,
ladder logic, etc., and are not limited to being designed using function blocks or any other

particular programming technique.

[0057]  As illustrated in Fig. 2, the maintenance workstation 74 includes a processor
74A, a memory 74B and a display device 74C. The memory 74B stores the abnormal
situation prevention application 35 and the alert/alarm application 43 discussed with respect
to Fig. 1 in a manner that these applications can be implemented on the processor 74A to
provide information to a user via the display 74C (or any other display device, such as a

printer).

[0058]  Each of one or more of the field devices 64 and 66 may include a memory
(not shown) for storing routines such as routines for implementing statistical data collection
pertaining to one or more process variables sensed by sensing device and/or routines for
abnormal operation detection, which will be described below. Each of one or more of the
field devices 64 and 66 may also include a processor (not shown) that executes routines such
as routines for implementing statistical data collection and/or routines for abnormal operation
detection. Statistical data collection and/or abnormal operation detection need not be
implemented by software. Rather, one of ordinary skill in the art will recognize that such
systems may be implemented by any combination of software, firmware, and/or hardware

within one or more field devices and/or other devices.

[0059]  Asshown in Fig. 2, some (and potentially all) of the field devices 64 and 66
include abnormal operation detection (i.e., abnormal situation prevention) blocks 80 and 82,
which will be described in more detail below. While the blocks 80 and 82 of Fig. 2 are
illustrated as being located in one of the devices 64 and in one of the devices 66, these or
similar blocks could be located in any number of the field devices 64 and 66, could be located
in other devices, such as the controller 60, the I/O devices 68, 70 or any of the devices
illustrated in Fig. 1. Additionally, the blocks 80 and 82 could be in any subset of the devices
64 and 66.

[0060]  Generally speaking, the blocks 80 and 82 or sub-elements of these blocks,

collect data, such as process variable data, from the device in which they are located and/or
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from other devices. Additionally, the blocks 80 and 82 or sub-elements of these blocks may
process the variable data and perform an analysis on the data for any number of reasons. For
example, the block 80, which is illustrated as being associated with a valve, may have a stuck
valve detection routine which analyzes the valve process variable data to determine if the
valve is in a stuck condition. In addition, the block 80 may include a set of one or more
statistical process monitoring (SPM) blocks or units such as blocks SPM1 - SPM4 which may
collect process variable or other data within the valve and perform one or more statistical
caiculations on the collected data to determine, for example, a mean, a median, a standard
deviation, a root-mean-square (RMS), a rate of change, a range, a minimum, a maximum, etc.
of the collected data and/or to detect events such as drift, bias, noise, spikes, etc., in the
collected data. Neither the specific statistical data generated, nor the method in which it is
generated, is critical. Thus, different types of statistical data can be generated in addition to,
or instead of, the specific types described above. Additionally, a variety of techniques,
including known techniques, can be used to generate such data. The term statistical process
monitoring (SPM) block is used herein to describe functionality that performs statistical
process monitoring on at least one process variable or other process parameter, and may be
performed by any desired software, firmware or hardware within the device or even outside
of a device for which data is collected. It will be understood that, because the SPMs are
generally located in the devices where the device data is collected, the SPMs can acquire
quantitatively more and qualitatively more accurate process variable data. As a result, the
SPM blocks are generally capable of determining better statistical calculations with respect to
the collected process variable data than a block located outside of the device in which the

process variable data 1s collected.

f0061] 1t is to be understood that although the blocks 80 and 82 are shown to
include SPM blocks in Fig. 2, the SPM blocks may instead be stand-alone blocks separate
from the blocks 80 and 82, and may be located in the same device as the corresponding block
80 or 82 or may be in a different device. The SPM blocks discussed herein may comprise
known FOUNDATION™ Fieldbus SPM blocks, or SPM blocks that have different or
additional capabilities as compared with known FOUNDATION™ Fieldbus SPM blocks.
The term statistical process monitoring (SPM) block is used herein to refer to any type of
block or element that collects data, such as process variable data, and performs some
statistical processing on this data to determine a statistical measure, such as a mean, a

standard deviation, etc. As a result. this term is intended to cover software, firmware,
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hardware and/or other elements that perform this function, whether these elements are in the
form of function blocks, or other types of blocks, programs, routines or elements and whether
or not these elements conform to the FOUNDATION ™ Fieldbus protocol, or some other
protocol, such as Profibus, HART®, CAN, etc. protocol. If desired, the underlying operation
of blocks 80, 82 may be performed or implemented at least partially as described in U.S.

Patent No. 6,017,143, which is hereby incorporated by reference herein.

(0062} It is to be understood that although the blocks 80 and 82 are shown to
include SPM blocks in Fig. 2, SPM blocks are not required of the blocks 80 and 82. For
example, abnormal operation detection routines of the blocks 80 and 82 could operate using
process variable data not processed by an SPM block. As another example, the blocks 80 and
82 could each receive and operate on data provided by one or more SPM blocks located in
other devices. As yet another example, the process variable data could be processed in a
manner that is not provided by many typical SPM blocks. As just one example, the process
variable data could be filtered by a finite impulse response (FIR) or infinite impulse response
(IIR} filter such as a bandpass filter or some other type of filter. As another example, the
process variable data could be trimmed so that it remained in a particular range. Of course,
known SPM blocks could be modified to provide such different or additional processing

capabilitics.

10063]  The block 82 of Fig. 2, which is illustrated as being associated with a
transmitter, may have a plugged line detection unit that analyzes the process variable data
collected by the transmitter to determine if a line within the plant is plugged. In addition, the
block 82 may includes one or more SPM blocks or units such as blocks SPM1 - SPM4 which
may collect process variable or other data within the transmitter and perform one or more
statistical calculations on the collected data to determine, for example, a mean, a median, a
standard deviation, etc. of the collected data. While the blocks 80 and 82 are illustrated as
including four SPM blocks each, the blocks 80 and 82 could have any other number of SPM

blocks therein for collecting and determining statistical data.

[0064]  Further details regarding the implementation and configuration of abnormal
situation prevention systems and components thercof can be found in U.S. Pat. Publ. No.
2005/0197803, now U.S. Patent No. 7,079,984 (" Abnormal situation prevention in a process
plant™), U.S. Pat. Publ. No. 2005/G197806 ("Configuration system and method for abnormal
situation prevention in a process plant™), and U.S. Pat. Publ. No. 2005/0197805 ("Data
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presentation system for abnormal situation prevention in the process plant”), each of which is

hereby incorporated by reference for all purposes.

{0065}  In the abnormal situation prevention systerns and techniques described
above and in the referenced documents, the SPM (or abnormal situation prevention) blocks
80, 82 may be associated with, or considered components of, one or more abnormal situation
prevention modules. While abnormal situation prevention blocks may reside in a field
device, where the faster-sampled data 1s available, abnormal situation prevention modules
may reside i a host system or controller. The abnormal situation prevention modules may
take data from one or more abnormal situation prevention blocks, and use the data to make a
decision about the larger systemi. More generally, an abnormal situation prevention module
may be developed and configured to receive data from one or more function blocks (e.g.,
abnormal situation prevention blocks) to support diagnostics for each type of field device,
instrumentation or other equipment (e.g., valve, pump, etc.). Nonetheless, the function
blocks associated with an abnormal situation prevention module may reside and be
implemented by devices other than the specific equipment for which it was developed. In
such cases, the abnormal situation prevention module has a distributed nature. Other
abnormal situation prevention modules may be implemented entirely within one device, such
as the process controller 60, despite being directed to diagnostics for a specific field device.
In any event, a diagnostics routine or technique may be developed for each equipment type
for detecting, predicting and preventing abnormal situations or operation of the equipment (or
process). For ease in description only, the term “abnormal situation prevention module” will
be used herein to refer to such routines or techniques. An abnormal situation prevention
module 1s therefore responsive to a set of measurements needed to perform the diagnostics,
and further includes (i) a set of abnormal conditions to be detected by the module, and (ii) a
set of rules, which link a change in the measurements to a corresponding abnormal condition.
Furthermore, references to abnormal situation prevention modules in the description of the
disclosed techniques to follow are set forth with the understanding that the techniques may be

utilized in conjunction with abnormal situation prevention blocks as well.

[0066] In some cases, the configuration application 38§ or other component of the
abpormal situation prevention system 35 may support the development or generation of a
template for each abnormal situation prevention module. For example, the configuration and

development platform provided by the DeltaV™ confrol system may be used to create
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specific instances, or instantiations, of abnormal situation prevention modules from

corresponding composite template blocks.

[0067] Although shown and described in connection with Fig. 2 as abnormal
sitnation prevention functionality, the modules and blocks described above may be more
generally directed to implementing multivariate statistical techniques configured for process
monitoring and diagnostics and fault detection as described below. [n some cases, the
techniques described below may include or be integrated with abnormal situation prevention
modules or biocks. In any case, references below to systems and techniques {(and any
modules, function blocks, applications, software or other components or aspects thereof) may
be utilized, included, be integrated with, or otherwise be associated with the workstation tools
17, 19, operator interfaces 12A, 14A, applications 23, abnormal situation prevention system

25 and interfaces 72, 74 described above.

[0068] The monitoring and diagnostics techniques described herein may be used to
detect abnormal operations, also referred to as abnormal situations or abnormal conditions,
that have occurred or are occurring. In addition, the monitoring and diagnostics techmques
may be used to predict the occurrence of abnormal operations before these abnormal
operations actually arise, with the purpose of taking steps to prevent the predicted abnormal
operation before any significant loss within the process or the process plant takes place, for

example, by operating in conjunction with the abnormal situation prevention system 35.

[0069] Turning to Fig. 3, a number of multivariate monitoring and diagnostic
techniques described herein may build on and incorporate visualization and other aspects of
multivariate and univariate diagnostics tools. For example, the process variable (PV) is
shown with its corresponding process requirements in Fig. 3 in a chart often referred to as a
Shewhart chart. Each process variable may be described in terms of the Shewhart chart,
which plots the variable relative to an upper control limit (UCL) 100, a lower control limit
(1L.CL) 102, and a Target value 104, The UCL 100 and LCL 102 are real physical limits and
not statistical limits. During operation, each process variable is preferably constrained
between its UCL and LCL, with the ideal value for the process variable being the Target
value. Within these limits, the process variable is said to be in-control, otherwise it 1s said to
be out of control. As indicated, the UCL and LCL represent physical limits, which may be
provided by the process operating requirements. Although this manner of visualization is

based on a multidimensional view of process variable data, this description of the process
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variables may be useful in combination with further visualization techniques based on

process variable normalization, as described below.

[0070] However, a brief summary the algorithm underlying PCA is provided for
reference to the various aspects that will be described further below. Although PCA is
disclosed herein as a multivariate statistical analysis that may be used with various aspects of
this disclosure, it should be understood that other multivariate statistical analyses may be
used in place of PCA, inciuding, but not limited to, Principal Component Regression (PCR),
Partial Least Squares (PLS), Fisher Discriminant Analysis (FDA) and Canonical Vanate
Analysis (CVA).

[0071] For a given process, process unit, process device, etc., there are numerous
measured process variables. Each of these can be used as an input variable to the PCA
algorithm. Data from each of the process variables is collected either for a certain length of
time, or a certain number of points, and are referred to herein as observations of the process

variable. Generally, all of the process variables used in PCA are sampled simultancously.

{0072]  If m is the number of input variables, and » is the number of observations of
each input variable, then the matrix X is an # x m matrix which contains all of the
observations for all input variables. In a typical process, some variables have magnitudes
significantly larger than others. In order to ensure that all process variables have an equal
effect on the PCA model, the X data may be autoscaled (for each input variable, subtract the
mean and divide by the standard deviation). After the input variables are autoscaled, the
sample covariance matrix is calculated by: S = XTeX / (n-1), where T is a transpose operation

of the matrix X.

[0073] An Eigenvalue-Eigenvector decomposition is performed on the sample
covariance matrix: S = VeD+VT, where D is a diagonal matrix containing the m Eigenvalues,
sorted from largest to smallest. The columns of V are the corresponding Eigenvectors, and T
is a transpose operation of the matrix V. The largest Eigenvalue, and its corresponding
Eigenvector, correspond to the direction in the original input spaces containing the largest
amount of variation in the original process data. This is considered the first principal
component. The second largest Eigenvalue, and its corresponding Eigenvector, correspond to
the direction, orthogonal to the first principal component, containing the next largest amount
of variation. This continues until a new orthogonal vector space, explaining all of the

original process data, is created.
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[0074]  After the Eigenvalues and Eigenvectors are computed, PCA determines
which ones of the Eigenvalues and Eigenvectors are the significant principal components,
usually corresponding to the important variation in a process, and which are insignificant,
usually corresponding to noise. There are many different methods that have been proposed
for selecting the number of significant principal components, including Kaiser’s Rule (1.¢.,
selecting principal components with Eigenvalues greater than one), percent variance test (i.e.,
selecting the number of principal components that explain a certain percent (e.g., 80% or

00%) of the total variation in the data), parallel analysis, and cross-validation.

[0075] Whichever method is utilized, the final result determines the number of
significant principal components, @, that will be retained for the PCA model. Then, the
loading matrix P € R"™*“1is created by taking the first « columns from V. The projection of
the original observations onto the subspace defined by the loading matrix is called the score
matrix, and denoted by T = X*P. The columns of T are called the scores of the PCA model,
referred to as ty, ts, ... t,. The loading matrix P, along with the means and standard deviations
used in the autoscaling, are considered fogether to be the PCA model. This PCA model may

then be applied to any future data set.

[0076]  After the PCA model is created, statistically-based himits, based on the
original process data, may be created for defining the normal operation of the process defined
by the original data. One method that is used is Hotelling’s T test, though it should be
understood that other methods for deriving statistically-based limits may be utilized. When
the scores exceed the limit, it can be an indication that something is abnormal in the process.
Also, 2-o and 3-o limits, which accordingly limit the amount of variation, may alternatively

be applied.

[0077] One can make several plots, based upon score data from the PCA model.
The simplest plot is a plot of one of the scores versus time. In this plot, upper and lower
limits are created based on statistics, and an alarm could be triggered if either threshold is
exceeded. A second common plot is a scatter plot of two of the scores. Most often the first
two scores, t; and ty, are plotted, because these describe the largest amount of variation mn the
process. A number of exemplary two-score scatter plots are shown in the user interfaces
described below. In these and other cases, the statistical-based limit may include or mvolve a
circle or ellipse around the normal process data. Again, an alarm could be triggered if scores

exceed these limits.
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10678]  Turning to Figs. 4 and 5, and in accordance with an aspect of the disclosure
generally directed to supporting on-line monitoring and analysis of multivariate real-time
process data, a process visualization technique utilizes the control limits within a
multidimensional (or multivariate) set of process variable data, such as the control limits
associated with the Shewhart chart above. Despite the multivariate data set, the limits may be
represented in univariate form using a transformation, such as the one described below.
Generally speaking, the transformation may be based on a univariate technique for
monitoring multivariate data. Using the technique, process data and control limits of any
number of process variables can be normalized and brought to the same standard by using a

single projection parameter.

[0079] By contrast, there exist different statistical tools for off-line applications,
and some of them can be used for on-line monitoring. For instance, as discussed above,
Principal Component Analysis (PCA) is a technique often used to reduce dimensionality of
multivariable data space to a few dimensions (often two to three). However, to implement
PCA, the PCA model is developed using training data, or data from a “normal” process
operation, and then the model is applied for further monitoring of the process. As discussed
above, the model derived is in terms of the principal components, which are essentially
dominant eigenvectors of the covariance matrix determined by the training data. As such
PCA results, also referred to as scores, are not directly related to the true process variables,
and hence the physical process limits of variables monitored are lost in analysis. For this
reason, when using PCA tool, some statistical interpretation is often used to quantify
“goodness of data”, (i.e., 95% or 99% confidence intervals are computed using Hotelling’s T*

statistics).

[0080] Using a univariate analysis, a deterministic method is proposed for
monitoring multivariate process data with a single monitoring variable. The method can be
applied easily m both off- and on-line data monitoring and analysis applications. The method

and model development are described as follows.

[0081] At the outset, X, Xs,...., X, are disclosed as representing the process
variables. Each variable X, i=1,..., n, is a vector containing time dependent data x;;, where j
designates a j-th sample or component of X;. For example, Xi=[X;1, X{2, .... , Xg,m]T where T
implies a franspose operation on X;, and m is the vector dimension that is determined by the

data sampling rate and the total time of data collection. With such nomenclature each process
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variable is described according to the transformation, p= [{y — o) + k;x;f], where 1=1,..., 1,
and j=1,..., m, and where v is a variable designated to bundle together multivariable process

variables, @ is a unique position assigned for variable Xj, k; is a scaling parameter and x; 1s

the i-th component of X;. Since the transformation p; can uniquely be defined for each

vartable X;, 1=1,..., n, then the multivariable transformation can be defined as P(y)
ZPE(Y)*PQ(Y) *pﬂ(y)

10082] Next P is used to derive the projection model My(y)=K,/P(y), where K, is a
scaling factor and M (y) designates a multivariate projection. Using these assignments,

multivariate data is projected by the single variable v.

[0083] Figs. 4 and 5 illustrate the resulting visualization of multiple process
variables (PV1, PV2, etc.) on a single plot in relation to the respective physical operating
limits for each variable. Fig. 4 depicts a plot 106 for a data point in which each of the process
variables remain within the operating limits. Fig. 5 depicts a plot 108 for another data point,

one in which one of the process variables may have exceed its control limit.

[0084] To further illustrate this method (including how the visualization indicates
that a control limit has been exceeded), an example is provided using six process variables,
X1, X3, X3, X4, X5 and Xg. Under normal operating conditions, each of these variables has an
operating limit defined by |Xi.| (with the assumption that data points are centered). With this
information each transformation p; is tuned to the same level with coefficients k; so the
visualizations in Figs. 4 and 5 are obtained. This effectively defines a group of multivariate
monitor settings. As can be seen, each of the six process variables has a unique position,
given by ¢;’s=-10, -5, 0, 5, 10, 15, with respect to the variable y (the horizontal axis).
Furthermore, all process variables are tuned by the parameters k;s to achieve the equal

maximum response, or imit, for the maximum operating ranges given by X s.

[0085] Now if during the monitoring stage any of the six peaks pierce through the
process variable indicators, then that particular variable will have encountered an out of range
event. This is shown in Fig. 5. As can be seen, process variable #2 is marginal with respect
to the allowable limit, while process variable #4 clearly exceeds the limit. Nonetheless, the
situation depicted in Fig. 5 clearly illustrates the normal operating condition for the six

process variables.

[0086] During the monitoring stage, the events of Figs. 4 and 5 are not 1solated, or

stand alone, events. They are in reality visual snippets, or frames, of continuously changing
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variables. That is, as new process data enters the model (at a given sampling rate) the
response changes instantly. The monitoring image is therefore refreshed in accordance with

the sampling rate, which may be anywhere from 0.1 to 1 second, or longer.

[0087] In this monitoring approach, when the limits for all process variables are
known, the disclosed method does not require training data. For example, to create the
multivariate monitor, one applies the design procedure described above and the univarnate
model 1s completed, which is not possible with other approaches. In other cases, if the
process variable limits are not all known, then training data for the process variables without
predefined limits may be used to determine process variable limits under normal process
operating conditions, and the model can then be computed. In the case of either known or
unknown limits, each of the process variables may be normalized using the univariate
analysis method to define a common process variable limit (see e.g., Fig. 4), and each of the
process variables may be monitored relative to the common process variable limit. Further
examples of normalization, using both known and unknown process variable limits, as

discussed further below and may be implemented with the univariate analysis method.

[0088] The disclosed univariate analysis method is not restricted to any particular
set or type of process variables. It can be applied to any mix of process variables, (e.g.,
process inputs, outputs and external variables). In addition the univariate method offers a
unique way for creating and analyzing process data patterns. These patterns can further be
used for process diagnostics, including abnormal situation prevention applications. For
instance, if most of the time two or more peaks have a tendency to move synchronously up or
down, then the corresponding process variables are correlated. Otherwise the variables are
uncorrelated. Similarly, the univariate technique can be used to evaluate whether a process
variable is malfunctioning. In short, the disclosed univariate data modeling and visualization
method offers a technique to implement multivariate monitoring, for either on-line and off-
line contexts using a single variable. The method does not require training data if the limits
of all process variables are known, and as such it provides monitoring results that can easily

be interpreted by the process operators.

[0089]  Further information is now provided regarding three alternative methods
that may be used for normalizing process variables for display in the form illustrated m Figs.
4 and 5. To describe them ,the typical process variable description illustrated in Fig. 3 (the

Shewhart chart) may be considered. In this figure, the process variable is constrained
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between the UCL 100 and the LCL 102, and the ideal value for the process variable is the
Target value. Within these limits, the process variable is said to be in-control, otherwise it is
satd to be out of control. As discussed above, UCL and LCL represent physical limits which
may be provided by the process operating requirements. Based on this, the following data

normalization methods may be utilized.

[0690]  The first method may be used when process variable control limits are
known for each process variable. In particular, the process variable, PV, may be normalized

as a function of the control limits and the Target value:

PV -1y
PV*= EOO%XHXVL&H: ) , with G<n<1

2

where Target = T, CL = |[UCL-T]| = [LCL-T|.

[6091] A second method may be used when process variable control limits are not
known for all of the process variables. In particular, the process variable, PV, may be
normalized as a function of the training data set collected for the process variable when the
process is operating normally, which includes the observations of the process variable within

the training data set:

PV-M, )Y
PV*=100%x n x (—wwwgii)m , with O<n<l
CL
where the normal process operation is represented by the training data set T{PV}, Mpy is the

mean of T{PV}, and CL = [PV- Mpy|a, in T{PV}.

[0092] A third method uses a statistical autoscaling approach, which may also be
used when process variable control limits are not known for all process variables. In
particular, the process variable, PV, may be normalized as a function of the training data set
collected for the process variable when the process is operating normally, which includes the

observations of the process variable within the training data set:

PV =100%x nx V———————ww , with 0<n<]

where the normal process operation is represented by the training data set T{PV?, o7 is the
variance of T{PV}, Mpy is the mean of T{PV}, and ko, k=1,2,..., n determines a statistical

control limit (e.g., 36).
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[0093] Variations of these methods and other user defined control imits (and
methods of determining them) may be utilized in connection with the disclosed techniques as

desired.

[0094]  The above-described data monitoring and analysis technique 1s ideal for a
rapid on-line visualization and understanding of process data behavior. It can be used in
process diagnostics and abnormal situation prevention applications. For instance data from
multiple intelligent devices spread over a Fieldbus can rapidly be analyzed and monitored.
The same is true for data from sensor arrays and bio-microarrays. The monitoring results can
also be used for process optimization and quality control. Furthermore, the method can be
used with statistical data modeling methods to enhance data analysis. For instance, it can be
used in parallel with the PCA method in order to speed-up and enhance interpretation of

scored data.

[0095]  In accordance with certain aspects of the disclosure, the above-described
visualization technigues may be integrated in an operator interface that displays the process
data in other ways, such as after processing via other multivariate statistical techniques, as
described below. For example, the visualization of process variables with respect to their
physical limits can be used in conjunction with a PCA score plot to enable more accurate

decisions about the current state of the process.

[0096] The above-described univariate technique may be incorporated info a
deterministic multivariate data analysis tool (examples of which are described below) that
offers a method for monitoring multivariable real-time process data. In this way, the single

variable monitoring model may be used for visualization of the behavior of multivariate data.

[0097] More generally, an advantage of this approach is that all process variables
are bundled together within a single monitoring variable. The disclosed univariate method is
well suited for both on-line and off-line applications. As mentioned above, the disclosed
method requires no training data when the operational limits of all process variables are
known. The operational limits associated with process variables are used to develop the
single variable monitoring model. In some cases, training data may be used for process
variables for which the operational limits are not known. The model may be implemented on

a number of software platforms, including, for instance, DeltaV'™.

[0098]  With reference now to Figs. 6 and 7, another aspect of the disclosure is

directed to the functionality provided by principal component analysis (PCA) and other
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multivariate statistical techniques. The PCA and other multivariate statistical techniques
described below may be integrated components of a process control system, such as the

distributed control systems DeltaV ™

and Ovation®. Such integration supports the plant
personnel utilization of PCA techniques for on-line monitoring applications. As described
below, the visualization and alarms supported by the PCA and other techniques may be fully
mntegrated mto the control system along with other visualization schemes, such as the ones
described above in connection with Figs. 4 and 5. For these and other reasons, plant
personnel may utilize a streamlined or single user interface without the need to monitor,
maintain or support separate software applications. Implementing PCA as part of a process

control system also makes 1t more practical to implement monitoring and diagnostics using

on-line process data, as described below.

[0099]  Figs. 6 and 7 depict exemplary PCA function blocks 110, 112 for
implementation of PCA-based techniques, which were discussed above, within a process
control system. Generally speaking, each PCA function biock 110, 112 can collect data
during a training period, and at the end of the training period, develop a PCA model, and then
apply the PCA model to all future data. On the left-hand side of the function block 110, 112
are the inputs to the PCA, which are the raw process variables. The outputs of the function

block are the scores, corresponding to the most significant Eigenvalues.

[0100] For instance, the function blocks 110, 112 may be custom function blocks
made available via the Control Studio of Delta\/m, also sold by Emerson Process
Management of Austin, Texas, an interface 114 of which may be used to depict the function
block input/output connections and other details. In this example, up to 20 process variables
can be provided as inputs to the PCA. Of course, in general any number of inputs can be
used for PCA. The inputs to the PCA block 110, 112 are process variables normally
available in the DCS. There is also an input for a dependent process variable (Yy) which can
be used to do Principal Component Regression (PCR), a statistical technique that may
utilized in one or more of the disclosed methods described herein. Although the disclosed
example shows a single variable, in general it should be understood that there can be multiple

dependent variables.

[0101]  The PCA function block 110, 112 may include a number of operational
modes for both configuration and application of the PCA model. In the exemplary

embodiments shown, the PCA function blocks 110, 112 run in two different modes: Learning
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and Monitoring (as determined by the True/False on the LEARN function block input).
During the Learning Mode, the function block collects data from each of the input variables.
For example, when a user gives the Leam command, the PCA block 110, 112 begins
collecting process data for all of the input variables. The process data is stored in the
computer memory, and data collection is continued indefinitely until the user gives the

Monitor command.

10102]  After a sufficient amount of data has been collected, the user gives the
Monitor command to the PCA block. After the Monitor command is given, the PCA block
110, 112 performs the PCA algorithm to develop a PCA model based on the data collected.
Model development may include the following steps: autoscaling the input data (for each
input variable, subtract its mean, and divide by its standard deviation), calculating the
covariance matrix from the scaled data, calculating the Eigenvalues and Eigenvectors,
determining the number of significant Eigenvectors to retain for the PCA loading matrix, and
calculating statistical limits using o-based limits, or T* Hotelling’s statistics (e.g. 95% or

99%) for the PCA scores.

[0103] When this calculation is complete, the PCA block 110, 112 proceeds into
monitoring mode, where 1t calculates the scores, based on new process data input to the
block. In particular, the new process data may be on-line process data generated in real-time.
if any of the scores exceed the limit, this could indicate an abnormal situation and an alarm
parameter on the block 110, 112 1s set. Thas alarm parameter may be tied to any other part of

the process control system or network.

[0104] Each visualization plot of the PCA results may be provided or generated as
part of the control system operator interface. For instance, the interface may be used to
generate a PCA score plot in a DeltaV™ Process History View that plots the score over time.
Alternatively or additionally, data for two PCA scores may be plotted in a two-dimensional
graph, as shown and addressed above and below. The statistical limit computed results either
in circular or elliptical shape that may also be provided via the operator interface. An alarm

may be triggered if the score exceeds the limit.

[0105] In some cases, the multivariate monitoring and diagnostics techniques
described herein may be implemented in a module (or other element or system component) of
a system directed to abnormal situation prevention. Like other abnormal situation prevention

algerithms, the techniques may therefore be directed to detecting abnormal process situations
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before they occur. These algorithms generally exhibit “alertness™ and accuracy continuously
for a number of abnormal situations. Accordingly, the abnormal situation prevention module

may be a continuous process, rather than offering a one-time, or non-real time, solution.

[0106] The muitivariate monitoring and diagnostics techniques described herein
may also be utilized in batch processing, whereby the function blocks 110, 112 may collect
different sets of process data for the input vaniables, where each set corresponds to a different
on-line state of a process. For example, a user may give the Leam command when the
process 1s operating at various capacities, such that the PCA function blocks collect process
data for the input variables for a particular capacity level (e.g., a particular on-line state)
when the process is operating normally. Thereafter, the user may give the Monitor command
for the PCA block 110, 112 to perform the PCA algorithm to develop a PCA model based on
the data collected for the particular on-line state (e.g., level of capacity). As such, a variety of
PCA models may be developed, each corresponding to a different on-line state for the
process when the process is operating normally. Thereafter, when the process 1s being
executed in a particular on-line state (e.g., 50% capacity), the the PCA block 110, 112
proceeds into monitoring mode using the corresponding PCA model, where it calculates the
scores, based on new process data input to the block. Accordingly, a user may select from a
plurality of multivariate statistical models to select the one most closely associated with the
on-line state of the process to analyze the on-line, real-time operation of the process to
monitor the process, detect abnormail situations, etc. In one example, the user may select a
particular training session and elect to build new models customized to a particular on-line

state of a process.

[0107] This aspect of the disclosure proposes a general (open source) data-driven
approach for on-line (i.e., real time) multivariate monitoring and diagnostics applications.
Moreover, the approach generally supports creating and manipulating data for developing on-
line models and comparing model parameters for use in diagnostics, fault detection, etc. The
disclosed approach includes the definition of an integration platform for process monitoring
and diagnostics, which ultimately may be implemented by using a plant-wide or networked
architecture, such as the PlantWeb® architecture sold by Emerson Process Management of
Austin, Texas. The proposed integration platform 1s based on a multivariate approach and
can accommodate different computational algorithms, including those utilized in the
detection techniques described below. With reference to the open source nature of the data-

driven platform, it is understood that the disclosed methods and systems can receive data
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from different input domains (e.g., FOUNDATION™ Fieldbus, HART®, Modbus, OPC,
wireless, etc.). The data received may be on-line process data collected {rom any number of
different transmitters, sensors and actuators and is used to define a multivariate process
domain. The same data is used by the process control system and can be stored in a data

historian.

[0108] The flow of data through the disclosed system and module 1s shown 1n Fig.
8. Once data from the process enters the disclosed module, the data may be used for on-line
training, on-line monitoring, or both during the same time period. Two switches SW1 and
SW2 are implemented in way to support the different data paths, as desired. If training is
desired, data may be accumulated until user/operator stops the accumulation process. This
procedure may be accomplished by placing SW1 into an on-line training state. Any
accumulated data may be stored in a file 120, and then be used in a model builder or
generator 122, Each generated model may be stored as shown, and made available to the
components involved in the monitoring mode via, for instance, the switch SW2. When the
model building operation is completed, the model together with a training data is stored,

typically as a .txt file in a model folder which resides in a database or memory (drive C:/).

[0109] Models that may be built by this data include, but are not limited to,
Principal Component Analysis (PCA), Artificial Neural Networks (ANN), Fuzzy Logic and
Bayesian Decision Trees. The tools for each of the algorithms may be provided in a drop-
down-window fashion by, for instance, the abnormal situation prevention module. Each of
these models may be used to develop predictions, as described below. The same model may
also be used for on-line monitoring. When the model is in an on-line monitoring mode, the
abnormal situation prevention module uses the model output (O/P) to generate three types of
outputs: statistical, normalized process variables (PVs), and process variable (PV) ratings.
As shown in Fig. 8, each of the outputs (PV ratings, Normalized PVs & Physical Limits, and
Scores & Statistical Limits) may be further used to generate alarm status (alarm diagnostics),

visualizations {Operator Graphics Interface) and/or verification of the models.

[0110]  The statistical output is composed of scores which are low dimensional
representations of multivariate data points. The low dimensional space is obtained based on
directions with largest daia variation in the multivariate domain. The PCA modelingis a

technique that may be used for developing scores, as has been discussed above, although
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other modeling techniques produce scores as well. The statistical output can also contain

95%(99%) contidence limits, or o-based limits.

[6111}]  The concept of normalized process variables was described above in
relation to both known and unknown process variable limits. Based on this concept, a bar
chart (or other two-dimensional plot or graph) may be used for presenting normalized data.
These charts may also contain physical or process limits that are useful for alarm
identification. As described below in connection with further aspects of the disclosure, the
combination of the statistical limits and the physical limits in a single user interface provides
a useful way for accurately identifying abnormal situation prevention alarm status, and as

such offers a technique supportive of the abnormal situation prevention initiative,

[0112]  Process variable ratings may be useful in connection with abnormal
situation prevention because the process variable rating is basically a rating that is given to a
process variable for its variability. The more variation that the process variable exhibits the
higher is its rating. This is a useful parameter in that it can easily be cross-validated with
ratings obtained for monitoring the same process situation at different times. For example, if
all process variables exhibit the same ratings for two or more monitoring models, the
confidence in monitoring models increases. To obtain the process variable rating the

following calculation may be used:

jmiing - ¥ g'
k..

where PVjuung is the rating of the j"‘ process variable, S 1s the # x # auto-scaled covariance
matrix, # 1s the dimension of multivariate data space, trS is the trace of S, k<n is the principal
component space, o; and p; for i=1,.. ., k are, respectively, the principal Eigenvalues and
Eigenvectors of S, and py; is the jth component of the eigenvector p;. pi s are also referred to
as the loadings. The ratings may be computed for each developed PCA model and can be

stored in model files with other model parameters.

[0113]  The above equation 1s composed of model parameters, and the process
variable rating obtained in this fashion 1s intimately related to the model. Thus, if two models
correctly describe the same process event, then they rate process variables in the same order.
As such, the models may be verified based upon their respective ratings. This also is
generally true when models are different. For example, one model may be PCA-based and

the other ANN based, and their process variable ratings are generally In the same order.
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Exceptions may include when the process data is nonlinear (i.e., deviates significantly from

the normal distribution).

{0114] It is further noted that other model parameters may be used for model
validation. PCA parameters such as the eigenvector loadings pi; and Eigenvalues o, or ANN
parameters such as the number of hidden layers and the number of outputs, are also useful
parameters. Every model exhibits certain set of parameters that can be used for the validation

task.

[6115]  In accordance with another aspect of the disclosure, the mode! output data
may be used to generate alarm status and, more generally, a composite, multivariate graphical
interface for operators. Figs. 9-13 illustrate exemplary graphical interfaces that display
normalized process variables, process variable ratings (see Fig. 13), scores and alarm status.
The graphical interface also contains tabs from which other model information and graphs
can be accessed. As shown in Fig. 13, the process variable ratings may be given in
parentheses, fe.g., (2)], next to the variable description in the upper left part of Fig. 13. In
this particular instance there are 10 process variables, and ratings range from I to 10. Process

variable S21531 has the rating 1, implying it is the variable with largest variation.

{0116]  With reference now to Fig. 14, accessing a BiPlot tab 130 provides the
operator with an opportunity to view two score presentations as depicted in a score plot panel
132. The bi-plot is used to represent a score simultancously with process variables, which are
in the graph defined by their loadings p;;. The lines indicate how much of the principal
component is present in process variables. For instance it can be seen that the process
variable, S21531 rated 1, has largest first principal component t1 (horizontal axis). In contrast
the process variable, S21008 rated 8, has the largest third principal component t3 (vertical
axis). This makes perfect sense because t1 defines the direction with the largest variation in
the data space, while 13 is significantly inferior. One can explore process variable relation
with other principal components by simply changing the presentation in the window in the

upper right part of the graph, (e.g., scores for t1-12 can be obtained).

[0117]  The bi-plot offers an easy way to relate an on-line score (black dot) to the
process variables. The line closest to the score determines the dominant process variable for
the score. Now since the lines are always in the same locations and the score is the only
dynamic component on the graph, the operator can quickly understand which process

variable, or a group of process variables, are most influential for a score projected at any
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given instant of time. As such, the operator can become quickly familiar with all process

variables through a single display.

[0118] With regard to implementation options, the disclosed user interface displays
(and the system or module responsible for generating them) may be implemented in
DeltaV'™, Ovation® or any other control system platform. For instance, the PCA-based
function blocks may be utilized to this end. Alternatively, Visual Basic (VB) with NET
technology may also be utilized as an implementation platform. In one case, an exemplary
implementation strategy may incorporate some combination of VBNET and DeltaV ™ or
Ovation®. Notwithstanding the foregoing, implementation may also be accomplished on

different software platforms, (i.e., Java, Delph, C++). Further details regarding the operator

display interfaces of Figs. 9-13 are provided below.

[0119] It is noted that despite the usefulness of PCA, the PCA technique does not
readily convey information about process dynamics. This is generally due to the use of
scatter plots to display the results of the PCA analysis (scores). The scatter plots, although
useful, are generally static representations of process data. As discussed above,
multidimensional training or monitoring data sets are projected (scored) onto the lower
dimensional principal component space. Typically the first two principal components capture
the largest variations in data, and as a result they produce a scatter plot with most significant
information about data behavior. Hotelling’s T distribution may also be used to compute
95% or 99% confidence region, or apply c-based limits. A knowledge of this region may be
umportant for detection of abnormal situations because if the training data represents a normal
process performance, then for any new score point inside the region one can be 95% (99%)
certain that the data point is normal. In contrast, for score points outside the limit region one

can be 95% (99%) certain that the data point is not normal (abnormal).

[0120]  As is apparent from the above, recordation and interpretation of scores
through scatter plots results in a degree of uncertainty associated with the data being
mterpreted incorrectly. Unfortunately, as discussed above, experience has shown that this
approach ofien leads to false alarms. The main reason for this is that the statistically
calculated limits do not take into account the actual physical limits of the process variable,
Each score is a linear combination of the mean-centered mput variables. For example, inside
and outside the confidence limit region, there 1s an ambiguity of 5% (1%), such that there is

not a 100% assurance that any given score is normal or abnormal, and traditional PCA is not
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always reliable in detecting abnormal situations. For example, a PCA score may trigger an
abnormal situation when one does not exist (false alarm}, and conversely a PCA score can
indicate a normal behavior when the process is actually behaving abnormally (missed
diagnostics). 1t is apparent this 1s not generally acceptable when determining abnormat
situations and issuing abnormal alerts. The question 1s what happens when one takes the
same linear combination of the physical limits. Because process variables have different

scales, it is not always clear how one would transform these limits onto a PCA score plot.

[0121]  The interface displays of Figs. 9-13 show an exemplary manner in which an
operator interface may be used to visualize the PCA model applied to the current process
data, while addressing the foregoing concerns. In short, both a PCA score plot 146, which
may be generated from a PCA or other multivariate analysis, and a physical limit plot 148,
which may be generated from univariate analysis, are included. The combination of these
two plots gives an indication of the current state of the process. In the example of Fig. 9,
because the PCA scores are within the statistical limits and all of the process variables are
within their physical limits, this indicates the process is in the normal operating condition,

and an indicator block 150 1s highlighted to that effect.

[0122] Fig. 10 illustrates an example of how, according to the PCA score plot 146,
everything appears to be normal. However, one of the process variables has exceeded its
physical operating limits, as shown in the physical limit plot 148. Therefore, an indicator

block 152 highlights a Missed Alarm.

[0123] Conversely, it is also possible for the PCA Score plot to indicate that there
is a problem, while all of the process variables are still within their physical operating limits.
Fig. 11 illustrates this case, which we call a False Alarm as depicted by an indicator block
134. Therefore, a true alarm condition is detected when both the statistical limits on the PCA
plot and the physical operating limits are exceeded. This is illustrated in Fig. 12 with an

indicator block 156.

[0124] Referning to Fig. 13, it is shown that the graphical representations are
accompanied by a user-selectable graphic for selecting previous sets of collected data, shown
as a slide bar, and a user-selectable graphic of principal components, shown as a drop down
menu. The slide bar, or other graphical representation, enables the user to select previously
collected data based on a previous operation of the process, and generate PCA scores based

on the previously collected data. The graphical representations may then be updated with the
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PCA score, such that a user may readily access and analyze any previous process operations
for abnormal behavior. Sull further, it 1s noted that the process variables may be expressed as
a function of their process limits, which may include a common process Hmit as discussed
above. Likewise, selection of different principal components enables a user to view the
operation of different process variables having different degrees of significance on the

process, and the graphical representations may be updated accordingly.

[0125]  Figs. 15-19 tllustrate different states of an exemplary user interface that
presents dynamic process data visualization together with the PCA scoring of control limits
in a manner similar to that shown in connection with the embodiments of Figs. 9-14. As
described above, the control limits of seven process variables have been normalized to a
unigue value, and if the PCA score for this case is outside the 95% confidence region, a
warning may be issued. These two graphical illustrations run simultaneously on-line for any
incoming data. In addition, the PCA score plot contains one point, which is dynamic, while
the peaks in the process variable monitor change according to the data mputs. When all
peaks are below a control limit line 160, the process is in control and operation is normal.
The corresponding statistical score should also be inside a limit circle 162. That situation is
depicted in Fig. 16. Similarly when one or more peaks cross the limit line 160, the out of
control or abnormal condition occurs and the PCA score should be outside the limit circle

162, as shown in Fig. 17.

[0126}] False call diagnostics may also be experienced. In Fig. 18, the score is
outside the limit circle 162 (abnormal), while all process variables are below the limit line
160 (normal). Thus case is clearly a false alert to be ignored. However, the opposite can also
occur. The case illustrated in Fig. 19 shows the situation in which the score is inside the limit
circle 162 (normal), while the process variable indicator indicates that process variable #2 has

violated limit requirements (abnormal). This is the case of missed detection, or missed alert.

[0127]  The two on-line graphical representations can accurately diagnose whether a
data point corresponds to a normal or abnormal process situation. Moreover if abnormal
situation occurs, process variables that have violated normal status can instantly be identified.
The significance of these variables for process operations, however, may not be the same.
The importance of process variables for a particular monitoring requirement are determined
from the PCA loading values in the loading matrix P. If the process variable signaling an

alert 1s associated with a small PCA loading value it may have a very little significance to
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process operations, and the alert may be classified simply as warning. In contrast, if the
loading value is high a variable is likely to be signiticant for process operations and high alert

should be advised.

[0128]  The foregoing visualization techniques and accompanying operator
interfaces may be realized within any process control system architecture or platform and, in
any case, may be supported by the functionality implemented by the PCA block described

above.

[0129}  Figs. 20 and 21 depict further alternative operator interfaces generated in
accordance with the disclosed techniques, both of which support on-line monitoring,
diagnostics, and false alarm detection functionality, as described above. In particular, Fig. 20
depicts the process variables in a bar graph as a percentage of their process variable limits,

which may include a common process variable limit, as discussed above.

[0130] Detection of Steadv-State Operation with Multivariate Statistical

Yechnigques

[0131]  Figs. 22 and 23 are directed to another aspect of the disclosure relating to
recognizing and detecting steady-state operation using a PCA-based statistical signature.
Many abnormal situation prevention algorithms rely on making a detection by learning the
initial state of one or more of the process variables, and then triggering an alarm when the
process variables change in a certain manner. However, many of these abnormal situation
prevention algorithms also require that the process be in a steady-state, both before training
for the initial conditions, and before making a detection. While it is generally easy for an
operator to look at a plot of one ar more process variables, and tell whether or not they are at
a steady-state, it is generally more difficult to create an algorithm which can reliably make
the same determination. A technique directed to detecting a steady-state in a process is now
described. The technique is capable of making the determination based on monitoring

multiple process variables.

[0132]  Given a process variable x, the mean and standard deviation can be
calculated over non-overlapping sampling windows of a given length (e.g. five minutes). In

one example, the mean is calculated by:

1 7
f:waj
L

and the standard deviation is calculated by:
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where # is the number of samples, and xy, x2, ... X, are the samples of the process variable x

taken over the sampling window.

[0133] In this example, ¥, and s; are the mean and standard deviation, respectively,

calculated in one sampling window, and X, and s; are the mean and standard deviation,

respectively, caleulated over the next sampling window. Then, if }5%”‘ - X, £3-5, the process

may be described as being in steady-state. Conversely, if [¥, ~ %,|>3-s, then the process is
not in a steady-state.

[0134]  Next, the parameter s used in the calculation is determined. If the process is
in steady-state, and the sampling window is chosen correctly, then s, =5, In that case, it
should not matter whether s =5, or 5 =5,. However a more robust algorithm, which would
result in smaller limits for declaring steady-state (which may provide greater certainty that
the process is actually in a steady-state when the abnormal situation prevention module starts

running) utilizes the minimum of sy and 2, or s = min(s,,s,) . Insuch acase, the criteria for
declaring steady-state s Iil -X, [ <3-min(s,,s,). The multiple of “3” may be a user-

configurable parameter, though it is understood this may complicate the configuration of an
abnormal situation prevention system, particularly when there are many process variables.
The functionality of calculating mean and standard deviation of a process variable and
determining steady-state, as well as other functionality, may be encapsulated into a Statistical

Process Monitoring (SPM) block, as described above.

[0135] In accordance with another aspect of the disclosure, a steady-state detection
technique utilizes scores generated by a PCA model (rather than the process variable data
directly) to determine whether a process with multiple process variables is in a steady-state,
Fig. 22 illustrates an SPM block 170 coupled to a PCA block 172, which may be used to
determine whether or not a system with multiple process variables (INy, INa, INs, ...} 1s
currently at steady-state. The PCA block 172 may correspond to the function block described

above.

[0136] The example shown in Fig. 22 implements steady-state detection using the

first score of a PCA model. As discussed above with respect to PCA models, the first score,
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which corresponds to the largest Eigenvalue value and is calculated from the first loading
vector, represents the largest amount of variation in the process. For example, in some
processes, this may correspond to a load change that propagates through to many of the other
process variables. In such a case, if only the first principal component meets the steady-state

criteria, then it may be determined that the whole system 1s in steady-state.

[0137]  While the first component may be the most statistically significant,
alternative examples may use multiple scores of the PCA model, as shown in Fig. 23. In this
case, the PCA function block 172 is coupled to multiple SPM blocks 170, with each SPM
biock 170 monitoring one of the scores of the PCA model. In this case, there would be one
SPM block 170 for each principal component that was determined to be significant according
to the chosen method (e.g., Kaiser’s rule, percent variance, parallel analysis, etc.). A logic
block 174 may be used to make a steady-state determination for the entire system. If all of
the SPM blocks 170 indicate a steady-state, then steady-state may be determined for the
entire system. If any of the blocks 170 show an unsteady process, then it may be determined

that the entire system is not at steady-state.

[0138] A method implementing this technique may include collecting process data
from all process variables, creating a PCA model of the process, coupling the first PCA score
to a Statistical Process Monitoring (SPM) block, and declaring the system to be at a steady-
state if the SPM block declares the first PCA score to be at a steady-state. The SPM block
calculates means (X, and X, ) and standard deviations (s1 and s2) of an input variable over

consecutive non-overlapping sampling windows, and declares that the input variable is at a

steady-state if ]551 - 552[ < n-min(s,,s, ), where n is any real number. In some cases, the
steady-state may be determined by |,§] - 552] <n-s,. Alternatively, the steady-state may be

determined by IJ"E] - wx"2| < n-s,. Inan exemplary embodiment, n=3.

[0139]  The techniques and methods described above may be implemented with one
or more additional SPM blocks coupled to the second and greater PCA scores, and a logic
module which takes as inputs the steady-state detection of each of the SPM blocks and
generates an output signal that indicates that the entire system is at a steady-state 1f all of the
SPM blocks indicate a steady-state. The logic module may additionally determine the entire

system to be an unsteady process if any of the SPM blocks indicates an unsteady process.
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Alternatively or additionally, other multivariate techniques may be used with the SPM block

for detecting steady-state. Such techniques include PLS, PCR, FDA, CVA, etc.

[0146]  Although shown in Figs. 22 and 23 as involving multiple, separate units, the
disclosed techniques and methods may be implemented in a single, integrated function block
(e.g., a Fieldbus function block), a field device interface module, a control system, a

standalone software application, or the like.

[0141] Detection_of Transient Dynamics

[0142}  Figs. 24-37 are directed to another aspect of the disclosure relating to the
detection of transient dynamics using multivariate statistical techniques. Dynamic behavior
is commonly encountered in process operations. For instance, a process exhibits transient
behavior due to changes in input or load variables, such as flow rates. This is quite common

in fired heaters because they usually run under various flowrates of crude oil.

[0143]  When implementing fault or abnormal situation detection, it is important to
distinguish between a normal operating condition and a transient operating condition. In
particular, a process does not behave in a normal manner in a transient region, and a false
diagnostic (e.g., abnormal operation) may easily be construed from the transient operation.
For example, in fired heaters the outlet temperature of crude oil overshoots and takes time to
drop to the normal level when the flowrate of crude oil increases. This is because the change
in flowrate is faster than the change in the manipulated variable (fuel flowrate). In other
words, in first order dynamic systems, the final temperature will need time equal to the time
constant plus any lag time to reach its new steady-state point. Hence, it is useful to
distinguish between dynamic transient region and steady-state, or set point, regions of

operation when detecting a fault or abnormal situation.

{0144]  In accordance with another aspect of the disclosure, a transient operation is
detected using a multivariate statistical technique based on, for instance, principal component
analysis (PCA). The disclosed technique is described in connection with dynamic transients
in fired heaters, although the disclosed technique is well suited for implementation in
connection with other process control contexts. The detection method may also integrate
PCA-based techniques with principal component regression (PCR) to differentiate between
abnormal situations and dynamic transients in processes, such as fired heaters. The example
of detecting coking (or fouling) in fired heater tube-passes will be used to illustrate the

robustness of the proposed method. Tt is important to identify transient behavior of the
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process to avoid false alarms in the detection algorithm. Detection during transient
operations may lead to false results and false alarms. It is also noted that the disclosed
transient detection techniques may be utilized to address transient modes in other processes

or unit operations, such as distillation columns and heat exchangers, for example.

[0145] Tuming to Fig. 24, fired heaters are often used in refineries and
petrochemical plants to raise the temperature of crude oil or heavy hydrocarbons to some
elevated temperatures. A fired heater indicated generally at 180 includes one or more tube-
passes 182. In this example, the feed is split evenly among heater passes 182. Each tube-
pass 182 acts as a heat exchanger where the feed flowing inside the tube-pass 182 is heated
by the burning fuel. The flow of fuel is often manipulated to achieve desired target final

temperature of the crude oil (feed stream).

[0146] A common abnormal condition in coker heaters, also referred to as fired
heaters, is coking. In particular, due to elevated temperatures in the fired heaters, crude oil
cracks and forms a residue carbon called coke. Coke gets deposited over time on the inside
surface of tubes, also referred to as passes, causing lower performance of the tubes or the
fired heater in general. This process is called fouling. As time progresses, the performance
of coker heaters gets poorer and sudden shut down may take place to clean the coker heater.
In some instances, some tubes may get severe blockage. As such, coke formation is

monitored inside coker heater tube passes to schedule unit cleaning.

[0147] Coker heaters present a multivariate data structure that is well suited for
analysis using the multivariate monitoring and diagnostics techniques and tools described
herein, referred to herein at times as MMDM (i.e., multivariate monitoring and diagnostics
module) tools. For example, the process variables (PVs) set forth in Table 1 may monitored
and processed by the MMDM tools in accordance with the techniques described herein.
These process variables are also illustrated in Fig. 24. However, it 1s noted that process
variable data may be supplied in any desired fashion via the process countrol system or
network, as described above, and in accordance with a variety of different architectures and
platforms, such as the PlantWeb® digital plant architecture and by using Emerson
FOUNDATION™ Fieldbus devices (e.g., Micro Motion coriolis flow meters, Rosemount

temperature devices, etc.) for example.

Monitored Process Variables Abbreviation
Inlet temperature of crude o1l Tin
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Flow rate to each pass F;
) Total flow of oil F
Exit temperature of the targeted pass Tout
Final temperature of crude o1 (controlied variable) TF
Fuel flow rate FIF
Final temperature of fuel FIT

TABLE I: Monitored Variables for Fired Heater

[0148]  Fig. 25 presents training data scores developed from PCA in a space defined
by principal components ) and t. In this example, the undertying training data was gathered
for various flowrates with a single set point of the controlled variable. Approximately 30,000
real-time process data points were collected. The training data was used to develop models
for the MMDM tool, and one of the scatter plots produced by the MMDM tool may
correspond with the plot shown in Fig. 25. The eight clusters in the scatter plot correspond

with the eight different flowrate regions in the training data.

[0149]  The region inside the dashed line 190 shown in the plot of Fig. 25
corresponds with the ellipsotd shown in Figs. 26 and 27, which, in turn, represents the 99%
confidence ellipsoid. That is, the area inside the ellipsoid gives 99% probability that any
score within the boundaries of the ellipsoid belongs to a normai operating condition of the

fired heater unit.

[0150] Turning to Figs. 26 and 27, the outlet temperature of a tube pass (T, was
used as the dependent variable in this aspect of the disclosure and the other six variables were
treated as independent variables. The independent variables are selected for monitoring, and
used to create a normalized process variable data model, as well as a PCA model with score
plots. The process variable data provides training data for the model development. The
model is then used to define the operator user interface for on-line monitoring, as depicted in
Fig. 26. As described above, the interface displays the independent process variables in both
normalized and scoreplot fashions, as well as the process alarm status indicators. Generally
speaking, the interface may be generated as described above in connection with Fig. 8 and
may incorporate any one or more aspects of the exemplary interfaces described in connection

with Figs. 9-21.

[0151}]  As for the dependent process variable (T,,), the training data is used to
create a regression type PCR model. This is accomplished by the MMDM tool during the

mode] building session. That is, componentis from the data space created by the PCA model
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arc used as independent components in creating the PCR model that models the dependent
process variable as a function of the independent process variables. In the context of the
interface, the PCR model may be accessed by pushing the “PCR” tab in the operator interface
window, and the display window depicted in Fig. 27 appears. This display window shows

regression coefficients computed for the score components Ty, Ta, ..., Th

[0152] To validate a detection of transient behavior by using the PCA model
developed, a validation data set (4300 data points) was created for various crude oil
flowrates. Fig. 28 shows seven different regions for the crude oil flow rate for the validation
data. In this example, there are six different transient (dynamic) regions in the validation
data, and the PCR model was used to predict these regions from the validation data. Fig. 29
shows the predicted Tou (Y) vs. actual Toy. The overlapping plots shown in Fig. 29 exhibit
the success of the PCR model in predicting the dependent variable (Y) in both steady-state
and transient regions. The prediction in the transient regions is slightly lagging, which is in
agreement with expectations. Nevertheless, the six transient regions present in the validation

data set are clearly identifiable in Fig. 29.

[0153] Figs. 30-34 depict the use of the Hotelling (T?) computation, and the
corresponding portion of the operator interface, for transient region detection. Specifically,
Fig. 30 shows a T” plot at the moment the transient region starts. In particular, T? spikes up
as flowrate of crude oil starts to change. In addition, Fig. 30 shows that the point of operation
is outside the ellipse of scoreplot t-t3. Fig. 31 shows that dynamic (fransient) region was
detected by PCA even though none of the independent variables are outside the limit. As
dynamic transient progresses T? stays outside the acceptable limit and the scoreplots are
outside the ellipsoid (Fig. 32). Once the process settles to the new steady-state region (Fig.
33), the T° response is below the limit and the scoreplot is inside the ellipsoid region. As can
be seen, the PCA scoreplots and T* representation may be used to detect transients in process
variables, as well as to estimate a transient time constant. Fig. 34 illustrates all six transient
regions detected by T? for the whole validation data. The width of each transient region

represents the transient duration.

[0154]  Figs. 35 and 36 depict the results of an approach that does not uiilize the
controlled variable in the PCR analysis. In so doing, the usefulness of incorporating the
controlled variable, and how it affects the detection robustness of the proposed method, is

described. In the coker heater example used in this work, the final temperature (TF) of crude
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oil is the controlled variable. In this example, it is desired to heat crude oil to a desired set
point, final temperature. As before, a PCA model was developed using 5 of the 6
independent variables for the same training data: f{inal temperature (TF) of crude oil was
removed from the list. The new model was verified by using the same validation data as was
used in the 6 variable analysis. Fig. 35 shows that the new model is not able to detect the
dynamic behavior of the process. T? was also obtained for the validation data using the new
model. Fig. 36 shows that spikes obtained in the 6 variable model no longer exist. Based on
the foregoing, the inclusion of controlled variables in the model is useful in detecting
transient or dynamic behavior, which may be expected given that controlled variables are

often directly affected by changing load or input variables.

[0155] Fig. 37 is directed to a procedure for coking detection. From the discussion
above, 1t is apparent that during the transition period the process behaves dynamically and the
predicted Y is different than the actual Y. As such, abnormal condition detection may be
halted during a transient condition, which may be accomplished using the behavior of T°.
For example, abnormal condition detection may be disabled if T is outside the limit. If T
goes back within the acceptable limit, then abnormal condition detection will resume/start.
For example, referring to Fig. 37, on-line process control data from a process is collected as
training data at a block 202, from which the independent and dependent variables are
determined at a block 204. At a block 206, PCA, or another multivariate analysis technique,
is utilized on the independent variables to reduce the dimensions of the multivariate data
space. At ablock 208, the Hotelling (T?) limits are determined from the PCA executed at
block 206. A PCR model is developed at a block 210 using the components from the PCA
model as the independent variable(s) and using the dependent variable(s) determined from
block 204 to develop a model of the dependent variable(s) as a function of the independent
variable(s). At ablock 212, both PCA and PCR may be used to monitor the process based on
monitored process control variabies and detect abnormal conditions. For example, if an
abnormal condition is detected using PCA, PCR may be utilized to determine whether the
abnormal condition is a transient condition or an actual (or predicted) abnormal condition. In
particular, PCR may be used to develop a prediction as to when transient conditions occur
and may be compared against the occurrence of an abnormal condition. At a block 214, the
T? values are generated based on the monitored data, and if the T* values are within
acceptable limits, abnormal condition detection continues (block 218) and the occurrence

may be treated as an abnormal condition. Otherwise, the procedure determines the
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occurrence as a transient condition. When T* returns within acceptable limits, abnormal
condition detection may resume. The disclosed detection method and technigue may be
applied to other processes and unit operations such as distillation columns, heat exchangers,
turbines, etc, and is well suited for different process applications in chemical, refining, power,

and life science industries.

[0156] In accordance with the foregoing aspect of the disclosure, a PCA-based
monitoring technique has been implemented for on-line detection of transient behavior in
process operations. A PCR regression technique may also be for on-line detection of
transient behavior in process operations. The combination of both PCA and PCR techniques
supports the characterization of process alerts, as the disclosed techniques can distinguish
between an alert of an abnormal situation prevention type and one caused by process
transients. Alternative designs are possible by using techniques such as multivariable

regression, artificial neural-networks and Bayesian decision trees.

{0157}  Exemplary Application: Coke Detection in Coker Heaters with PCA
and PCR

[0158] Tuming to Figs. 38-41, another aspect of this disclosure is directed to using
PCA and PCR techniques to detect coking (or fouling) in coker heater tube-passes. In the
embodiments described below, PCA and PCR techniques are used to collect and analyze off-
line data and then monitor the process on-line to detect coking. The disclosed methods and
techniques may be integrated with any of the controllers, field devices and other process

control system elements described herein.

[0159]  As described below, the disclosed coking detection method generally
includes three steps: gathering training data, developing a model using PCA and PCR
techniques, and using actual and predicted values of a targeted process variable to detect the
coking fault. The training data gathered is generally real-time data, which is free of faults
and representative of the expected operational range of the load variables. For example,
training data may include minimum and maximum crude flow rates that are expected to be
encountered in running the fired heater. The model to be developed may also benefit from
having several flowrates between the minimum and maximum flowrates. In some cases,
traming data is gathered to cover each range of load variables, and may also include transient
(i.c., dynamic) data for changing load variables. Generally, the sampling time and set point

for the controlled variable may remain constant throughout the training data set. Given data
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having the foregoing characteristics, the training data may be collected in a variety of ways.
For instance, data may be collected on-line or be extracted from the process data historian. In
any case, practice of the disclosed method is not limited to the manner in which the traming

data 1s gathered.

[0160] Multiple process variables are used to support robust coke detection in the
tube-passes. In this exemplary case, the disclosed method utilizes the process variables set
forth in Table | and depicted in Fig. 24. Of these, tube-pass outlet temperature (T 18 the
monitored dependent process variable, as it should decrease with coke formation inside the
tubes. For coker heaters, as coke (fault) starts forming inside the tubes, the overall heat
transfer across the tube from hot side to cold side decreases. Compared to normal operation
conditions (fault free), the tube-pass outlet temperature (T, should also decrease. The other

six variables in Table 1 are considered to be independent variables.

[0161] The coker heater provides a multivariate data structure well suited for
explaining the analysis using the above-described multivariate monitoring and diagnostics
module (MMDM). Once the independent variables are selected for monitoring, the selected
variables are used to create a normalized process variable data model, as well as a PCA
model with score plots. The gathered process variable data provides the training data for
model development. The developed model is then used to generate the operator interface for
on-line monitoring, as described above. As shown in, for instance, Fig. 26, the six
independent process variables are displayed in both normalized and scoreplot fashions in
conjunction with the four process alarm status indicators. The details of the model and

operator interface are set forth above.

[0162]  As for the dependent process variable (Tou), the training data 1s also used to
create a regression-type PCR model. As described above, the generation of the PCR model is
accomplished automatically by the MMDM tool during implementation of the model
building procedure. In the context of the interface, the PCR model may be accessed by
selecting the “PCR” tab in the operator interface, which may generate the exemplary display
window shown in Fig. 27. As described above, this display window shows regression

coefficients computed for the score components T, Ta, ..., T,

[0163] Embodiments of the disclosed fired heater monitoring system and method

suitable for coke detection are now described. Coke formation may be indicated if the actual

value of T, (Y) is consistently lower than the predicted value T out (‘i’). For example this
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may mean that the actual pass outlet temperature is continuously lower than the predicted
temperature. In this case, no false alarms or alerts are generated. Absolute values or mean
values of Y can be used for this purpose. As illustrated further below, the deviation of the
actual Y from the predicted ¥ can give an accurate indication of the severity of coking. This
tool may be utilized by plant engineers and operators to schedule unit cicaning or shut down
based on the actual unit performance. In one example, the ratio Y/Y may be plotted as a
function of time, such that plant engineers or operators may continuously monitor the
performance of the unit and detect unit degradation or coking. Alternatively, the difference
between the two values can be monitored as function of time. Based on the ratio of Y to Y.
plant personnel can decide what action to take. Since coking is a slow process, plant
personnel may not select to enforce alarms or alerts. However, alerts or alarms may be
activated based on threshold limits. For example, alerts can be issued if the ratio gets down

to a certain limit ( 4 ). For instance,

if | =l<a,
¥y
then an alert may be issued. Various alerts may be issued to indicate the severity of coking.

For example, A, indicates low coking, 4, indicates medium coking, etc.

[0164] More generally, the disclosed coke detection method includes the following
steps: obtaining sufficient training data, developing a statistical model, and using the model
for monitoring unit performance. In one example simulation, the training and validation data
for the coker heater was generated by, and obtained from, a hi-fidelity simulator, SSPRO,
commercially available from GSE Systems. The sampling rate was one second. The
flowrate of fuel was manipulated to achieve the desired target final temperature of the crude
oil. The simulation had flexibility to introduce coking of various severity levels. The
simulation was used to obtain training data and simulation data. The seven process variables

were recorded and used n the multivariate analysis provided by the MMDM tool.

[0165]  The training was run with various flowrates. The flowrate and inlet
temperature of the crude oil were allowed to have uniform noise, as to imitate real plant
operation. Approximately 30,000 real-time process data points were collected. The training
data was used to develop MMDM models, and the scatter plot produced by the MMDM tool
1s illustrated in Fig. 25, which depicts eight clusters which correspond to the eight flow

regimes i the training data. Fig. 25 also displays the 99% confidence ellipsoid. The area
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inside the ellipsoid gives a 99% probability that any score within the boundaries of the

ellipsoid belongs to a normal operating condition of the fired heater.

[0166]  Several real-time simulation data files were collected with various coking
levels to test the robustness of the proposed abnormal situation detection. The simulation
data points contain both good and fanlty data. In order to introduce coking into the tube-pass,
the overall heat transfer coefficient (U) was intentionally lowered. Several data sets were
gathered as follows. In Set 1, the coefficient U was lowered from 1000 to 995, then to 990,
to 980, and to 950. In Set 2, the coefficient [/ was reduced from 1000 to 500.

[0167]  In this exemplary application, the PCR model developed for this specific
case is Y = By + By*T) + Bo*T, + B3*Ty, where By = 316.9227895, B, = -0.215154485, B, =
0.274120980, and B3 = -0.276083039. T, T,, T; are the score components determined on-

line (validation data) based on variable contributions.

[0168] Before using this model for monitoring new data for abnormal condition
(e.g., coke) detection, the model was tested by using a new set of validation data in order to
ensure robustness of the model. Fig. 38 shows how accurate the PCR model was in
predicting Y (Tow). The model has accuracy higher than 99.9%, excellent accuracy given that
the data was scattered among various operation conditions (Fig. 25). Accuracy would be

even higher if the range of operation conditions was narrower.

[0169] The model was also used to predict Y(T,,.) for flow rates higher than what
was used in the training data by 12%. In other words, the model was used to predict behavior
of the process for flow rates outside the range of flow rates used in the training data. Fig. 39
shows that the prediction operated again with very high accuracy. It is noted that, the model
may be used to data that remains within the training range (e.g., the range for which the

model was trained).

[0170]  The above-described model was used to detect coking in the validation data.
The model was able to detect coking for all simulated validation data. Fig. 40 shows how the
actual Y is lower than the predicted Y (Y). The ratio of actual Y to ¥ gets lower as the
coking increases (overall heat transfer coefficient gets lower). The predicted Y is the value of
Y at normal conditions (fault/coking free). From the behavior of actual Y with respect to

predicted Y, plant personnel can determine the severity of coking inside tube-passes.

[0171]  Another set of data was used to verify the proposed detection methodology.

The set contains data or a normal process where a sudden large abnormal condition (coking)
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of high value 1s introduced. Fig. 41 shows how the ratio of actual Y to predicted Y changes.
The first part of data in Fig. 41 demonstrated how good the model is in predicting the normal

behavior.

[0172]  In summary, the above-described technique (and underlying model) is
directed fo coke, fouling and other abnormal condition detection in coker heater tube passes
using PCA and PCR. To that end, the inlet temperature of the crude oil, the tube-pass crude
flowrate, the total crude flowrate, the tube-pass outlet temperature, the final temperature, the
fuel flowrate, and the fuel outlet temperature may be monitored, and the tube-pass outlet
temperature may be used as a performance indicator of the coker heater. In some cases, the
performance indicator 1s modeled using PCA and predicted using PCR for operating
conditions within the range of training data for the model. Nonetheless, PCR may be used for
the prediction of the key performance indicator of the coker heater for operating conditions

outside the range of the training data.

[0173]  Turning to the aspects of the disclosure addressed in Figs. 42 and 43, a PCA
parameter-based technique for on-line multivariate monitoring and diagnostics of coking in
fired heaters is now described. The approach is based on developing multiple Principal
Component Analysis (PCA) models, and comparing the model parameters for different
process operating conditions. Apart from coking detection, the disclosed technique method
may also be effective for determining or detecting other slow varying process changes
involving a variety of different process equipment {e.g., soot buildup in furnaces, fouling and
other degradation of reactors, compressors, heat exchangers, distillation columns, and

membranes, etc.).

[0174]  As described above, the PCA-based techniques may be integrated with a
distributed process control systems (DCS) for implementation in connection with on-line
momtoring and diagnostics. The disclosed techniques also enabled the creation and
manipulation of data for developing on-line models and comparing model parameters. PCA-
based techniques were also applied to the specific details presented by the challenge of
determiming coking levels in coker heaters using Principal Component Regression (PCR)

analysis.

{0175]  This aspect of the disclosure provides a method for detecting slow varying
process changes, such as coking, without using a regression-based approach. The disclosed

method is instead based on continuously, repeatedly or otherwise constantly developing PCA
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models during process operations, and comparing the developed models to a baseline model
developed under normal process operating conditions. The disclosed technique may provide
a more robust solution in certain applications (e.g., abnormal situation prevention
applications) relative to others that use regression for the reasons set forth below. For
example, a regression-based technique generates a prediction every time data points are read
from a field device communication link (e.g., Fieldbus, Modbus, wireless, etc.). As a result,
regression-based techniques provide a current prediction of a process state, which may then
be processed or evaluated via logic to determine a diagnostic status. This process often
creates false alerts/alarms due to dynamic process changes such as setpoint and steady-state
changes, as well as outlier noise in data strings, These types of alerts often become
troublesome for operators and, accordingly, should be minimized, if not eliminated all

together,

[0176]  In contrast, the disclosed approach creates data files of predetermined
dimension in the background of process operation either continually or on-demand. These
data files are then used to generate PCA model updates used for evaluating process
performance. As a result, the disclosed method may be more robust, as it is not entirely
dependent on the current process data values. Instead, the disclosed method may generate an
alert report based on process performance diagnostic based on a long term data behavior,
which, for instance, may be determined by the size of data files. Further defails of the

disclosed method are described below,

[0177]  Atthe outset, a training data file may be established to develop a PCA. The
training data may represent data collected during normal process operating conditions. As
described above, the data file may thus contain rows of data (observations) and columns,
where each column corresponds to an assigned process variable (PV). The process variables
may be either raw data, or statistical signatures obtained from the raw data, (e.g., abnormal
situation prevention block data). Consequently, the data file contains n columns and m rows
with a general assumption that m>>n, With such an assignment, the model addresses n
process variables with m observations and contains mxn data matrix X, which is autoscaled
as described above. The actual model may then be constructed by evaluating spectral

components of the nxn covariance matrix 8, where S = X"«X / (m-1), which are used to
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ol 0 0
rewrite S as § = VoDV’ where D= o _ | and where o/, =1,..n, are
o 0 o’

Eigenvalues (variances), sorted from largest to smallest, and the columns of V are the
corresponding Eigenvectors. The largest Eigenvalue, and its corresponding eigenvector,
correspond to the direction in the original input spaces containing the largest amount of
variation in the original process data. This is considered the first principal component. The
second largest Eigenvalue, and its corresponding eigenvector, correspond to the direction,
orthogonal to the first principal component, containing the next largest amount of variation.
This continues until a new orthogonal vector space, explaining all of the original process

data, 1s created,

[0178]  After the Eigenvalues and Eigenvectors are computed, it is necessary to
determine which ones are the significant principal components, usually corresponding to the
important variation in a process, and which are insignificant, usuaily corresponding to the
noise. It should be understood that a number of methods may be used to determine the
significant and insignificant principal components, examples of which have been provided

above.

[6179] Whichever method is chosen, the final result is determining the number of

signmficant principal components, a, that will be retained for the PCA model. Then, the

HXi

loading matrix P € R™™ may be created by taking the first a columns (Eigenvectors) from V.
The projection of the original observations onto the subspace defined by the loading matrix is
called the score matrix, and denoted by T = X*P. The columns of T are called the scores of

the PCA model, referred to as ty, to, ... t,, and the nxa matrix P is the PCA model.

[0180] Tramning data file X. For the purpose of this aspect of the disclosure, the

training data X may be selected by selecting independent process variables that affect the
process behavior to be resolved and letting those represent the first k<m columns of X, as
well as selecting dependent process variables that describe the process behavior and letting
them be represented by the last n-k>0 columns of X. If a regression technique were to be
implemented, then the first k process variables in X are used to for prediction of the Tast n-k
process variables. However, when developing the PCA model, X has k independent process

variables only and n=k. They are used to create the loading nxa matrix P, which contains a
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principal component vectors (loading vectors) used to create scores ty, 1y, ..., {, that are then
employed to predict dependent variables. In the disclosed approach, the independent and

dependent variables are combined to create the training data file X.

[0181]  Once the PCA model is specified, the loading matrix P=[py,p2.....pa], where
pg:[pg,i,..,pi,k-pi,ké-},",pj‘”]'l" is a loading vector for 1=1,...a, becomes defined. The first p; 1....pix
components of p; are loading values corresponding to the first k independent variables in X.
Similarly, pig-1,...pin components are loading values corresponding to the last n-k dependent
variables in X. As a result, P defines the space of interrelated loading values that are directly
related to the original process variables. Now cach dependent variable in X, n-k of them, has
a loading value metric in this space given by

2
a
i

Vi:] 0',? $

where j=k+1,...,n, and o, is i-th Eigenvalue in D.

3

Z; =

{0182 The loading value metric z; is the model outcome of a i"™ dependent process
variable with the following propertics. Where X and Y are data files from the same process
operation, and collected at different times, and z; and v; are the model outcomes respectively
corresponding to X and Y of the same dependent process variable, then if z;~ v; the process
behavior described by the jth process variable is similar for X and Y. Incontrast, if z;# v;,

then the process behavior described by the j™ process variable is different for X and Y.

[0183] This property is useful for process diagnostics, and in particular for
diagnostics of stowly changing process behavior. The reason is that the loading value metric
z; reflects process behavior over a period of time specified by the operator, and, as such,
provides a more complete diagnostics than the most current update given by the regression

approach.

[0184] Coker Heater Application. The foregoing technique may used to determine

the level of coking in coker heaters. As described above, the data file X was composed of the
process variables defined in Table 1 and Fig. 24. In that example, T, was the only
dependent variable, while all other variables were independent. In the technique in
accordance with this aspect of the disclosure, however, all variables are used to create the

PCA model, and PCR is not utilized,
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[0185])  With such an assignment, the baseline model was created under normal
operating conditions (e.g., 0% coking), and the loading value metric Z was computed for Ty
Subsequently, the same was done for different percent of coking in fired heaters, and Fig. 42
illustrates the results obtained. As can be seen in Fig. 42, there is a monotonic decrease in Z
as percent of coking mcreases, which implies that there is a structural change in the loading
space due to changes in process variable contributions as the percent of coking is varied.

This change is collaborative and may not be easily determined by monitoring one variable at

the time.

[0186] Based on the foregoing, by placing different limits on Z, this technique may
be used in a diagnostics/fault detection method or system. Alerts and alarms issued using this
technique are more reliable because each model represents the behavior of Z based on the
length of time used to gather the model data. Moreover, while running, the detection method
may be entirely transparent to operators. This is because the detection method may be
running in the background of the monitoring console, and may be configured to alert
operators of abnormal situations only when the set limits are exceeded or violated. The flow
chart in Fig. 43 illustrates how the method or system may be implemented in accordance with
one embodiment. With this approach, false alarms and alerts may be avoided and

performance of process parameters may nonetheless be rigorously monitored with time.

[0187] Referring to Fig. 43, at a block 302 the procedure specifies the size of the
data file X and creates the data file X based on training data generated from process variables
of the process being monitored. As discussed above, the training data may correspond to the
normal on-line operation of the process. At a block 304, the multivariate model, such as a
PCA model, is developed from the data file X and evaluated to determine the loading matrix
P and the diagonal matrix D. The Z variables are evaluated at a block 306 for the dependent
variables of the data file X, as discussed above. At a block 308, the limits L are sef to the Z
values evaluated at block 308 for the data file X.

[0188] Having generated the limits L, the procedure from blocks 302-306 may be
repeated with a new data file Y in order to detect abnormal operations. In particular, data
generated from process variables of the system may be received, where the data corresponds
to data generated while the process is operating on-line which may correspond to a
monitoring state where the process is being monitored for abnormal operations. As discussed

above, the data of the data file Y is generally collected at a different time from the same
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process. At a block 310, the size of the new data file Y is specitied, and the data file Y is
created to model the on-line operation of the process. A multivariate model, such as a PCA
model, 1s developed and evaluated at a block 312 to determine the loading mairix P and the
diagonal matrix D for the data file Y. The Z values are evaluated at a block 314 for the
dependent vartables of the data file Y, and the Z values for the data file Y are compared to the
limits L at a block 316. 1f the Z values for the dependent variables of the data file Y exceed
the limits, an alert may be generated at a block 318 to indicate an abnormal operation.
Otherwise, the process may continue with a new data file generated from the same process,
and generally at yet another different time than the data files X and Y. Thus, the procedure
may be repeated for vartous data files corresponding to different time of operation of the
process to detect abnormal conditions based on long term data behavior, where the abnormal
conditions may relates to slow varying changes in the process. Although the block 316
indicates that an alert may be generated is the Z values are greater than the limits L, it should

be recognized that an alert may also be generated if the Z values are Iess than the limits L.

[0189]  With this aspect of the disclosure, a PCA model parameter may be defined
and applied for on-line diagnostics, which may be useful in connection with coking in coker
heaters and a variety of process equipment faults or abnormal situations. The model
parameter may be derived using PCA loadings and variance information, and a loading value
metric may be defined for the dependent or independent process variables. In some cases, the
disclosed method may be used for observing long term coking, rather than instantaneous or
most current changes. For instance, the disclosed method may be used for on-line long term
coliaborative diagnostics. Alternatively or additionally, the disclosed method may provide an
alternative approach to regression analysis. The disclosed method may be implemented in
connection with a number of control system platforms, including, for instance, DeltaV™ and
Ovation®, and with a variety of process equipment and devices, such as the Rosemount 3420
FF Interface Module. Alternatively, the disclosed method and system may be implemented
as a stand alone abnormal situation prevention application. In either case, the disclosed
method and system may be configured to generate alerts and otherwise support the regulation

of coking levels in fired heaters.

[0190]  One of ordinary skill in the art will recognize that the exemplary systems
and methods described above may be modified in various ways. For example, blocks may be
omitted or reordered, additional blocks may be added, etc. For example, with regard to Fig.

7, the block 146 could be implemented at a different point in the flow. Similarly, the block
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148 could be implemented as part of a separate routine, and thus it could actually occur at
various points with the flow of Fig. 7 depending upon when a suitable command is received

to 1nitiate implementation of the separate routine.

[0191] The above-described examples involving abnormal situation prevention
modules and abnormal situation prevention blocks are disclosed with the understanding that
practice of the disclosed systems, methods, and techniques is not limited to such contexts.
Rather, the disclosed systems, methods, and technigues are well suited for use with any
diagnostics system, application, routine, technique or procedure, including those having a
different organizational structure, component arrangement, or other collection of discrete
parts, units, components, or items, capable of selection for monitoring, data collection, etc.
Other diagnostics systems, applications, etc., that specify the process parameters being
utilized in the diagnostics may also be developed or otherwise benefit from the systems,
methods, and techniques described herein. Such individual specification of the parameters
may then be utilized to locate, monitor, and store the process data associated therewith.
Furthermore, the disciosed systems, methods, and techniques need not be utilized solely in
connection with diagnostic aspects of a process control system, particularly when such
aspects have yet to be developed or are in the early stages of development. Rather, the
disclosed systems, methods, and techniques are well suited for use with any elements or

aspects of a process control system, process plant, or process control network, etc.

[0192}  The methods, processes, procedures and techniques described herein may be
implemented using any combination of hardware, firmware, and software. Thus, systems and
techniques described herein may be implemented in a standard multi-purpose processor or
using specifically designed hardware or firmware as desired. When implemented in software,
the software may be stored in any computer readable memory such as on a magnetic disk, a
laser disk, or other storage medium, in a RAM or ROM or flash memory of a computer,
processor, /O device, field device, interface device, etc. Likewise, the software may be
delivered to a user or a process control system via any known or desired delivery method
including, for example, on a computer readable disk or other transportable computer storage
mechanism or via communication media. Communication media typically embodies
computer readable instructions, data structures, program modules or other data in a
modulated data signal such as a carrier wave or other transport mechanism. The term
“modulated data signal” means a signal that has one or more of its characteristics set or

changed in such a manner as to encode information in the signal. By way of example, and
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not mitation, communication media includes wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, radio frequency, infrared and other
wireless media. Thus, the software may be delivered to a user or a process control system via
a communication channel such as a telephone line, the Internet, etc. (which are viewed as
being the same as or interchangeable with providing such software via a transportable storage

medium).

[0193]  Thus, while the present invention has been described with reference to
specific examples, which are intended to be illustrative only and not to be limiting of the
invention, it will be apparent to those of ordinary skill in the art that changes, additions or
deletions may be made to the disclosed embodiments without departing from the spirit and

scope of the invention.
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Claims

1. A system for facilitating detection of a steady-state operation of a process in a
process plant, the system comprising:

a data collection tool adapted to collect process data from a process within the
process plant, wherein the collected process data is representative of an operation of the
process and wherein the collected process data is generated from a plurality of process
variables;

an analysis tool comprising a multivariate statistical analysis engine adapted to
generate a representation of the operation of the process based on a set of the collected
process data representative of the operation of the process, wheretn the analysis tool is
adapted to execute the representation based on the set of the collected process data to
generate a first outcome corresponding to the largest amount of variation in the process; and

a statistical calculation tool adapted to perform a statistical calculation on the
first outcome corresponding to the largest amount of variation in the process to generate a
statistical measure of the first outcome, and adapted to determine a steady-state operation

status related to the process based on the statistical measure.

2. The system of claim 1, wherein the analysis tool is adapted to execute the
representation based on the set of the collected process data representative of the operation of
the process to generate a second outcome corresponding to a significant amount of variation

in the process different from the largest amount of vanation in the process.

S

3. The system of claim 2, wherein the statistical calculation tool comprises a first
and second statistical calculation tool, wherein the first statistical calculation tool is adapted
to perform a statistical calculation on the first outcome to generate a statistical measure of the
first outcome and the second statistical calculation tool is adapted to perform a statistical
calculation on the second outcome generate a statistical measure of the second outcome, and
wherein the first and second statistical calculation tools are each adapted to determine the
steady-state operation status related to the process based on the corresponding statistical

Measures.

4. The system of claim 3, wherein the first and second statistical calculation tools
are cach adapted to generate an indication pertaining to the corresponding determination of a

steady-state operation status related to the process, the system further comprising a
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monitoring tool adapted to analyze each of the steady-state indications of the first and second
calculation tools and adapted to determine the steady-state operation status of the process
based on any one of the steady-state indications generated by the first and second calculation

tools.

5. The system of claim 1, wherein the statistical calculation tool is adapted to
perform a statistical calculation on the first outcome to generate a first mean and a first
standard deviation of the first outcome corresponding to a first sampling window from the set
of collected process data and adapted to generate a second mean and a second standard
deviation of the first outcome corresponding to a second sampling window from the set of

collected process data.

6. The system of claim 5, wherein the statistical calculation tool is adapted to
determine the steady-state operation status related to the process based on a difference
between the first and second mean as compared to at least one of the first or second standard

deviations.

7. The system of claim 6, wherein the statistical calculation tool is adapted to
determine the steady-state operation status related to the process based on the difference
between the first and second mean as compared to the minimum of the first and second

standard deviations.

8. The system of claim 1, wherein the multivariate statistical analysis engine is
adapted to perform a principal component analysis to generate the representation of the
operation of the process based on the set of the collected process data representative of the
operation of the process, wherein the first outcome corresponds to the most significant

component generated from the principal component analysis.
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9. A method of facilitating detection of a steady-state operation of a process na

process plant, the method comprising:

collecting process data {rom a process within the process plant, wherein the
collected process data is representative of an operation of the process and wherein the
collected process data is generated from a plurality of process variables;

generating a multivariate statistical representation of the operation of the
process based on a set of the collected process data representative of the operation of the
process;

generating a first outcome corresponding to the largest amount of variation
the process from the multivariate statistical representation;

generating a statistical measure of the first outcome; and

determining the presence of a steady-state operation status related to the

process based on the first statistical measure.

10.  The method of claim 9, further comprising generating a second outcome
corresponding to a significant amount of variation in the process from the multivariate
statistical representation, wherein the significant amount of variation in the process is

different from the largest amount of variation in the process.

11.  The method of claim 10, further comprising generating a statistical measure of
the second outcome, wherein determining the presence of a steady-state operation related to
the process comprises determining the presence of a steady-state operation status related to

the process based on the statistical measures of the first and second outcomes.

12 The method of claim 11, further comprising:
generaling a first indication pertaining to the determination of a steady-state
operation status based on the statistical measure of the first outcome; and
generating a second indication pertaining to the determination of a steady-state
operation status based on the statistical measure of the second outcome;
wherein determining the presence of a steady-state operation status related to
the process comprises determining the presence of a steady-state operation status related to

the process based on any one of the first and second steady-state indications.
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13, The method of claim 9, wherein generating a statistical measure of the first
oulcome comprises:
generating a first mean and a first standard deviation of the first outcome
corresponding to a first sampling window from the set of coilected process data; and
generating a second mean and a second standard deviation of the first outcome

corresponding to a second sampling window from the set of collected process data.

14. The method of claim 13, wherein determining the presence of a steady-state
operation status related to the process comprises determining the presence of a steady-state
operation status related to the process based on a difference between the first and second

mean as compared to at feast one of the first or second standard deviations.

15, The method of claim 14, wherein determining the presence of a steady-state
operation status related to the process comprises determining the presence of a steady-state
operation status related to the process based on the difference between the first and second

mean as compared to the minimum of the first and second standard deviations.

16.  The method of claim 9, wherein generating a multivariate statistical
representation of the operation of the process comprises performing a principal component
analysis to generate a representation of the operation of the process based on the set of the
collected process data representative of the operation of the process, and wherein generating a
first outcome comprises generating a first outcome corresponding to the most si gnificant

component generated from the principal component analysis.
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17. A method of facilitating detection of a steady-state operation of a process in a

process plant, the method comprising:

collecting process data from a process within the process plant, wherein the
collected process data is representative of an operation of the process and wherein the
collected process data is generated from a plurality of process variables of the process
comprising a first data space having a plurality of dimensions;

generating a model of the operation of the process using a set of the collected
process data of the process, wherein the model comprises a measure of the operation of the
process when the process is operating at different times within a second data space having
fewer dimensions than the first data space;

generating a plurality of outputs from the model of the operation of the
process, each output corresponding to a different significant variation in the process;

generating a statistical measure for each of the plurality of outputs; and

determining the presence of a steady-state operation status of the process

based on any one of the plurality of statistical measures.

18.  The method of claim 17, wherein generating a model comprises performing a
principal component analysis on the set of the collected process data to represent the
operation of the process in a loading matrix defining a subspace of the first data space,
wherein each output corresponds to a different significant component generated from the

principal component analysis.

19. The method of claim 17, wherein generating a statistical measure for each of
the plurality of outputs comprises generating a first and second mean and a first and second
standard deviation for each of the plurality of outputs, wherein the first mean and first
standard deviation correspond to a first sampling window from the set of collected process
data and the second mean and second standard deviation correspond to a second sampling
window from the set of collected process data, and wherein determining the presence of a
steady-state operation status of the process comprises determining the presence of a steady-
state operation status of the process based on a difference between the first and second mean
as compared to at least one of the first or second standard deviations for any one of the

plurality of outputs.
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20. The method of claim 19, wherein determining the presence of a steady-state
operation status of the process comprises determining the presence of a steady-state operation
status of the process based on a difference between the first and second mean as compared to
the minimum of the first and second standard deviations for any one of the plurality of

outputs.
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21. A system for facilitating detection of a steady-state operation of a process in a
process plant, the system comprising:

a data collection tool adapted to collect process data from a process within the
process plant, wherein the collected process data is representative of an operation of the
process wherein the collected process data s generated from a plurality of process vanables
of the process comprising a first data space having a plurality of dimensions;

an analysis tool adapted to generate a model of the operation of the process
based on a set of the collected process data of the process, wherein the model comprises a
measure of the operation of the process when the process is operating at different times
within a second data space having fewer dimensions than the first data space, and wherein the
analysis tool is adapted to execute the model of the operation of the process to generate a
plurality of outputs each corresponding to a different significant variation in the process; and

a statistical calculation tool adapted to perform a statistical calculation on each
of the plurality of outputs corresponding to a different significant variation in the process to
generate a statistical measure for each of the plurality of outputs, and adapted to determine a
steady-state operation status related to the process based on any one of the plurality of

statistical measures.

22.  The system of claim 21, wherein the analysis tool comprises a multivariate
statistical engine adapted to perform a principal component analysis on the set of the
collected process data to represent the operation of the process in a loading matrix defining a
subspace of the first data space, wherein each output corresponds to a different significant

component generated from the principal component analysis.

23.  The system of claim 21, wherein the statistical calculation tool is adapted to
perform a statistical calculation on each of the plurality of outputs to generate a first and
second mean and a first and second standard deviation for each of the plurality of outputs,
wherein the first mean and first standard deviation correspond to a first sampling window
from the set of collected process data and the second mean and second standard deviation
correspond to a second sampling window from the set of collected process data, and wherein
the statistical calculation tool is adapted to determine the presence of a steady-state operation
status of the process based on a difference between the first and second mean as compared to

at least one of the first or second standard deviations for any one of the plurality of outputs.
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24.  The system of claim 23, wherein the statistical calculation tool is adapted to
determine the steady-state operation status of the process based on a difference between the
first and second mean as compared to the minimum of the first and second standard

deviations for any one of the plurality of outputs.
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