20107125336 A1 I 00 O 010 OO 0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

. TN
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /g5 1IN I V00T 0 AN OO0 0O A1
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10
4 November 2010 (04.11.2010) PCT WO 2010/125336 Al
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GOG6F 9/38 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
. .. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN. HR. HU. ID. IL. IN. IS, JP. KE. KG. KM. KN. KP
PCT/GB2010/000832 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
27 April 2010 (27.04.2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
. . SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
0907286.9 28 April 2009 (28.04.2009) GB GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(71) Applicant (for all designated States except US): IMAGI- TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
NATION TECHNOLOGIES LIMITED [GB/GB]; ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Home Park Estate, Kings Langley, Hertfordshire WD4 MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
8LZ (GB). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(72) Inventor; and ML, MR, NE, SN, TD, TG).
(75) Inventor/Applicant (for US only): WEBBER, Andrew, Published:
David [GB/GB]; 17 Fields End, Tring, Hertfordshire s ,
HP23 SER (GB), with international search report (Art. 21(3))
)) — before the expiration of the time limit for amending the
(749) Agent: REDDIE & GROSE; 16 Theobalds Road, Lon- claims and to be republished in the event of receipt of
don WC1X 8PL (GB). amendments (Rule 48.2(h))
(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(54) Title METHOD AND APPARATUS FOR SCHEDULING THE ISSUE OF INSTRUCTIONS IN A MULTITHREADED

] Thread 0
Instruction Decode
— d fetch [and resource [t —]
interlocks
* 0On-Chip Priority
RAM Arbiter \ \
(-
o5 o
Thread 1
2 il !
. o Instruction Decode
| Insft:::rl‘mn le—m andresource le—m instruction | D
| interfocks Scheduler 2
) \
|| 2 2%
20 Instruction Priority Thread n
cache Arbiter
" Instruction Decode
instruction 1yl " and resource f—te]
fetch p
interlocks .
A Figure 2
! 3 N

25

26

(57) Abstract: There is provided a method to dynamically determine which instructions from a plurality of available instructions
to issue in each clock cycle in a multithreaded processor capable of issuing a plurality of instructions in each clock cycle, compris -
ing the steps of: determining a highest priority instruction from the plurality of available instructions; determining the compatibili-
ty of the highest priority instruction with each of the remaining available instructions; and issuing the highest priority instruction
together with other instructions compatible with the highest priority instruction in the same clock cycle; wherein the highest prior-
ity instruction cannot be a speculative instruction. The eftect of this is that speculative instructions are only ever issued together
with at least one non- speculative instruction.

WO 2010/125336 PCT/GB2010/000832

10

15

20

25

30

35

: -1 - _ : .
Method And Apparatus For Scheduling The Issue Of Instructions In A

Multithreaded Microprocessor

Field of the Invention _

The invention relates to a method and apparatus for dynamically optimising the.
issue of 'instructions in a multithreaded microprocessor. Specifically, the
invention relates to the issuing of speculative instructions in a multithreaded
microprocessor which is capable of issuin'g instructions from more than one

thread in each clock cycle.

Background of the Invention

A multi-threaded processor is a microprocessor with execution units, caches
and memories, etc. as per any other processor, but that additionally
incorporates the concept of multiple threads of execution. A thread of
execution consists of a stream of instructions acting upon the resources of the -
microprocessor, some of which are private to that specific thread and some of
which may be shared between threads. Resources include registers,
bandwidth and space in the cache or memories. Figure 1 is a schematic
illustration of a multithreaded microprocessor cd_re, known in the art. Ina
multithreaded processor coré as shown in Figure 1, a number of threads 2 can
operate in parallel, subject to their ability to issue instructions via the thread
instruction scheduler 1. The threads may be given a priority order to allow the

scheduler to determine which instructions to issue first.

It is possible for the processor to issue instructions from multiple threads in the
same clock cycle provided that they do not use the same resources, such as
the same data cache 3, at the same time. The scheduler must be configured to

determine which instructions .can be issued together in each clock cycle.

Speculative instructions are a particular type of instruction. The concept of
speculative instruction fetching and issue is well understbod in the field of
microprocessors. Speculative instruction fetch and issue takes the form of
making a prediction of the outcome of an earlier program instruction and then
fetching and issuing instructions based on that prediction before it is known

whether the prediction was correctly made. The most common exafnple of an

WO 2010/125336 PCT/GB2010/000832

-2
action to predict the outcome is of a branch in a program, where a choice is
made as to what code path to take based on a conditional test. Other |
examples include return predictions and jump predictions. If it is later
determined that the prediction was correct, the processor continues. If it is

5 determined that the prediction was incorrect, then it is necessary to delete the
predicted instructions and their side effects, and restart the instruction fetch and

issue from the newly determined instruction fetch address.

The term speculative is used because the processor needs to act in advance of
10 knowing the outcome of any recently issued instructions. For example,
a branch may well follow immediately after a compare or condition testing
instruction. In a pipelined proCessor the pipeline may be many stages long and
the result of the condition test typically produces a result a long way down the
pipeline. However, branches directly affect instruction fetch and will therefare
15 have an impact right at the start of the pipeline. This leads to a bubble or stall
as the branch has to wait for the condition test resuilt to be known, and the
alternative to this wait is to guess which branch is likely to be taken and take
that guess as the route to follow until it is known whether the guess was right or
wrong. The instructions fetched and/or issued between guessing and knowing
~ 20 the correctness of that guess are not necessarily correct and may have to be
unwound — hence the term speculative. Guesses are either made based upon
simple rules (e.g. backwards branches taken, forwards branches not taken) or
historical data that indicates what a given section of code did most commonly in
the past. .
25 ' ,
As used herein, the term “speculative instruction” means an instruction fetched
and/or issued that may not be necessary, because the outcome of an earlier

progra'm instruction is not yet known.

30 The present invention deals with the problem of how to schedule the issue of
speculative instructions in a processor that can issue instructions from multiple

threads in the same clock cycle.

WO 2010/125336 PCT/GB2010/000832

20

25

30

Summary of the Invention

According to a first aspect of the invéntion, there is provided a method

to dynamically determine which instructions from a plurality of available

instructions to issue in each clock cycle in a multithreaded processor capable of
issuing a plurality of instructions in each clock cycle, comprising the steps of:

determining a highest priority instruction from the plurality of available
instructions;

determining the compatibility of the highest priority instruction with each
of the remaining available instructions, wherein instructions are compatible with
each other if they do not require the same resources; and

issuing theAhighest priority instruction tdgether with other instructions
dompatible both with the highest priority instruction and with each other in the
same clock cycle; '

wherein the highest priority instruction cannot be a speculative

instruction.

The effect of this is that speculative instructions are only ever issued

together with at least one non-speculative instruction.

According to a second aspect of the invention, there is provided a
system for issuing instructions in a muitithreaded processor capable of issuing
a plurality of instfuctions_ in each clock cycle, comprising:

means for determining a highest priority instruction from the plurality of
available instruétions;

meéns for determining the compatibility of the highest priority instruction
with‘each of the remaining available instructions, wherein instructions are
compatible with each other if they do not require the same resources; and

means for issuing the highest priority instruction together with other
instructions compafible both with the highest priority instruction and with each

other in the same clock cycle;

WO 2010/125336 PCT/GB2010/000832

20

25

30

35

-4 -
wherein the highest priority instruction cannot be a speculative

instruction.

Preferred embodiments of the present invention address the problem of
efficient scheduling of speculative instructions in a multithreaded
microprocessor capable of issuing instructions from a plurality of threads on

each clock cycle.

This and other aspécts of the invention are defined in the appended claims,

to which reference should now be made.

Brief description of the drawings
There now follows a detailed description of a preferred embodiment of the
invention, which is provided by way of example with reference to the

accompanying drawings, in which:

Figure 1 illustrates a multithreaded processor core;

- Figure 2 illustrates an instruction fetch subsystem suitable for use in a system

in accordance with the present invention;
Figure 3 illustrates a system for speculétive instruction fetching;

Figure 4 illustrates a system for speculative instruction fetch and execution in

accordance with the present invention; and

Figure 5 illustrates the process steps taken to schedule the issue of instructions

‘in accordance with an aspect of the invention.

Detailed description

Figure 1 is a schematic illustration of a multithreaded microprocessor. The
microprocessor supports a plurality of threads that operate in parallel, subject to
their ability to issue instructions via the instruction. scheduler 1. In this system,
different threads may issue instructions simultaneously provided that they are

not attempting to use the same resoUrces at the same time. The resources

WO 2010/125336 PCT/GB2010/000832

20

25

30

-5.
used by thread instructions include arithmetic units 4, 5, the cache

subsystem 3, including instruction cache and data cache, and the
coprocessors. In addition, the system may include small quantities of on-chip
randorﬁ access-memory (RAM) that can be accessed instead of the cache
subsystem based upon a simple address mapping. Systems may incorporate
instruction RAM as well as data RAM. '

The microprocessor includes a number of pipelines or execution units that
operate in parallel. If one thread is issuing instructions to one pipeline, it is
possible to allow other threads to issue instructions to other pipelines on the
same clock cycle. In order to do this, instructions from multiple threads have to
be available to the scheduler at each clock cycle and the scheduler must be

able to prevent any conflicting resource requirements.

Figure 2 illustrates the elements involved in fetching instructions in order that
instructions from a plurality of threads are available to the scheduler every clock
cycle. This sub-system is described in co-pending abplication GB0802314.5.

In the embodiment illustrated in Figure 2, there are two main sources of
instruction data — the instruction cache 20 and the on chip RAM 22.

To optimize performance, both sources may be accessed at the same time
(although each thread will only access one or the other, never both). Having
two sources of instruction data enables up to two instructions for. two different

threads to be obtained per cycle.

In order to determine which thread is to access instructions from either the
instruction cache 20 or the on chip RAM 22, each source of instructions has a

priority arbiter 24 coupled between it and the instruction fetch units 25 for each

.of the threads.

Each priority arbiter is coupled to an instruction fetch unit 25 for each of the
threads (thread O to thread n). Via this connection, the priority arbiter can
receive requests for instructions with associated prioritisétion data and can

provide fetched instructions to an instruction fetch unit 25.

WO 2010/125336 PCT/GB2010/000832

-6-
Each instruction fetch unit 25 includes an instruction buffer which can hold Up

to eight instructions in readiness to feed to an instruction decoder and resource
interlocking unit 26 before issuing the instruction to an instruction scheduler 28

which will pass each instruction in turn to a processor for execution.

Having obtained instructions for multiple threads the instruction scheduler 28
may then be in a position to issue those instructions for multiple threads on the

same cycle.

10 In order for the instruction scheduler 28 to be able to issue instructions from
multiple threads in the same clock cycle, it needs to test the resources required
by each thread’s instruction against those needed for other instructions. - This
then ensures that conflicting instructions do not issue at the same time. This
can be managed by the instruction decode unit 26 performing pre-decode of

15 - ‘each instruction as it comes out of the corresponding instruction fetch unit 25
and then ANDing the stated resources required for this instruction against

those determined in parallel for all the other threads active in the device.

- Areduced set of these resource requirements may be tested. Picking a simple
20 example, a thread may wish to use an execution unit to send a request for a |
data memory fetch to load or store some data. If another thread wishes to use
either the same execution unit or wishes to use the data memory port for the
data memory fetch, then it will be incompatible with execution of the first thread
such that the two cannot be issued at the same time. If, however, another '
25 thread wishes to perform a set of different instructions such as a program
branch which does not require those resources, it will be deemed to be
compatible and may be issued for execution at the same time as a thread is

used to request a data memory fetch.

30 In order to make an appropriate determination, all of the threads present have
all of their stated resource requiremehts tested against each other in parallel. -
This process is symmetrical, in that if a thread A ié compatible with a thread B
then by definition thread B will also be compatible with thread A. Therefore, the
test only needs to be made once between each pair of threads. As a result of

35 this compatibility testing, a ﬂég is generated for each pairing of threads and the

WO 2010/125336 PCT/GB2010/000832

-7-
status of this flag is determines whether or not threads are compatible.
Therefore, the result of testing each thread against all other threads is that for
each pair of threads a compatibility flag isAgenerated‘, the status of which
determines whether or not threads are compatible for execution, i.e. whether or

s not only two threads overlapping resource requirements at the same time.

In order to determine which ihstructions to then issue, each thread is given a
priority ranking. The priority ranking may be based on any suitable metric, such
as the automatic MIPS a'IIocation (AMA) metric described in EP1639554. The
10 thread with the highest priority ranking that is not prevented from issuing
. instructions due to register or resource interlocks, is then chosen as the thread
to issue. Any other threads that ére found not to require the same resources
may be grouped with the instruction from the highest priority thread that is free
to issue (cailed the lead instruction) into a set of instructions to be issued on
15 that clock cycle. Instructions may be added to the set in priority order subject to

their compatibility with instructions already included in the set.

The determination of the resources required by each instruction is carried out
by an instruction pre-decode operation in the instruction decode unit 26. The
20 decode unit 26 produces a short summary of the resources required by each
instruction. The instruction scheduler then tests the resource requirements
against other threads for inter-thread compatibility and against machine state
‘for resource and register availability. The scheduler combines the‘results of
these tests with the priority ranking to provide final sets of instructions to

25 schedule on any given cycle.

The concept of ‘speculation’ is well understood within the art. This takes the
form of making a prediction and then issuing instructions based upon that
prediction before it can be known whether that prediction was made correctly.

30 The most common example of an action to predict the outcome of an _
instrUction is a branch where a choice is made as to what code path to take
based upon a conditional test. Speculation only applies for.‘shor’t periods, after
which the outcome of the instruction is known and normal scheduling can
resume. | |

35

WO 2010/125336 PCT/GB2010/000832

10

5

20

25

30

-8-

In-accordance with an aspect of the present invention, instructions that are

speculatively executed do not use the normal thread instruction prioritisatioh
rules described above. They should not use these rules because it is not
known at the point of issue whether the speculation is correct or not.

An alternative to using the normal prioritisation rules is to give these threads the

"~ minimum priority. However, this can lead to a number of design challenges.

Therefore the preferred arrangement is that speculatively executed instructions

should have no opportunity to issue except when paired with another thread.

A preferred example of the invention consists of a multi-threaded
mfcroprocessor with two or more fhreads (specifically 2, 3 or 4 threads). Each
thread in the microprocessor possesses its own program counter (PC) which in
turn‘is used to control instruction fetch for that thread, such that every thread
has a piece of hardware to fetch instructions from instructibn memory or an
instruction cache: It is possible for every thread to have its own instruction
memory or instruction cache as well. HoWever, this requires each thread to be
built with the resources it needs regardless of whether a thread in a system
needs less memory than other threads in the same system. This is
undesirable. A preferable strategy is to share the instruction memories and
instruction cache between all of the threads and arbitrate between them for the

right to access that memory or cache.

Bécause each thread has a certain amount of hardware specific to its own
instruction fetch, it is possible to augment that hardware to make predictions as
to the flow of instructions. In the first instance, for example, the prediction
hardware could watch for branch lnstructlons in the instruction stream belng
sent to issue and predict whether that branch would be taken or not.

Thereafter, the instruction fetch could change the fetch pattern based upon that
prediction (e.g. taking or not taking a branch). At this stage it is possible‘ for the
system to be configured such that instruction fetch waits until the outcome of
the branch itself (at issue) can be determined and then feeds further
instructions or restarts the fetch at the corrected location. Predicted instructiqn

fetch of this nature is shown in Figure 3.

WO 2010/125336 PCT/GB2010/000832

10

15

20

25

30

9.
As can be seen from Figure 3, the instruction fetch system for each thread

consists of a state machine 30 to generate new requests (‘address feed’) an'd a

~ state machine 32 to feed instructions to the thread and its instruction scheduler

(‘data feed’). State machine 32 includes the functionality of the instruction pre-
decode and resource interlocks tests 26 of Figure 2. Also, shown in Figure 3 is -

a branch filter and prediction unit 34 that picks out branch instructions from the

~ returning fetch data and which can update the address feed as to where to be

reading instructions from based upon predictions of where those branches

will go.

In non-multithreaded microprocessors, the instruction fetch pipeline could be

stalled if the consumption of instructions was less than the maximum rate of

~ request. However, in multithreaded systems, where the instruction cache is

shared between the threads, such stalling is not usually possible because it
would introduce a dependency between threads such that a thread that has
requested a number of instructions but not used them might then stall all the
other threads in the system. Therefore, each thread instruction fetch unit
incorporates an instruction buffer able to hold the returning data for a fixed
number of instruction requests. As many instruction requests may be in transit
as there are slots in the instruction buffer may be stored. The instruction buffer
is shown as block 36. From the instruction buffer, instructions pass via an

instruction data feed unit 32 to the instruction scheduler.

In this system predictions can be made based upon simple rules such as the
direction of the branch (forwards or backwards) or using some form of abridged
history as to which route was taken for this branch in the past. The actual issue
of the branch instruction at the issue register 38 is held up until such time as
the outcome is known (i.e. the predicates such as condition testing can be
determined). Once the outcome can be determined the branch can be issued
and then the flow of instructions can either pick up the predicted fetch data or

cause the instruction fetch to restart with the correct instruction address.

Such a system is useful for hiding some of the latency involved in taking

branches. However, it does have the significant limitation that there may

WO 2010/125336 PCT/GB2010/000832

15

20

25

30

35

-10 -
aIWays be stalls introduced while waiting to determine the result of the branch

condition test.

An improvemenf upon this system is to issue the predicted inst.ructions before
the outcome of the branch, and therefore the correctness of the branch
prediction, has been determined. In this case the instructions issued
immediately _after the branch are speculatively executed (as at the point of
issue it is unknown whethér the branch prediction was correct or not). As the
branch outcome is calculated ih the processor pipeline it will eventually become
apparent whether the prediction was made correctly or not. When predictions
are made correctly the issue of instructions ceases to be speculative and the
thread may carry on as normal. When predictions are found to have been
incorrectly predicted it is then necessary to delete the instructions issued after
the branch and their side-effects and restart the instruction fetch from the newly
determined instruction fetch address.. This speculative instruction fetch and

issue is shown in Figure 4.

Figure 4 shows the same features of a fetch system as Figure 3, but with the
difference that speculative instructions are issued. Figure 4 shows a three
stage execution pipeline 40 following the instruction scheduler 28, and
additionally a branch prediction verification data path 42 back to branch
prediction unit 34. As can be seen from Figure 4 the evaluation of branch
instructions can take several cycles. To avoid stalling for these cycles the
thread needs to be able to continue issuing instructions that followed on from
the branch. This may be done provided the actions of those instructions can be
unwound. As can be seen from Figure 4, the number of instructions in question

is typically fairly short — as shown it would be at most three or four instructions.

~ In a multi-threaded microprocessor there may well be several threads that have

instructions available to be issued on any given cycle. Therefore, it may be
better to issue non-speculative instructions from other threads where there is
no question of the correctness of the instructions to be issued (in terms of
whether they should be issued or not). However, if speculative instructions are
never issued there will always be stalls in a thread's instruction stream (exactly

as per the arrangement where only the fetch is predicted). The advantage of

WO 2010/125336 PCT/GB2010/000832

10

20

25

30

211 -
speculatively issuing instructions is that if good predictions can be made, more
useful work can be done with fewer stalls in the instruction stream for if/then

decisions.

As such it is beneficial to be able to speculatively execute instructions where
possible, provided that issue does not impact on other threads that have other
instructions ready to run. One way to do this is to give threads which are
speculatively executing the lowest priority. However, this can be hard to
achieve in a syétem with a feedback loop between current instruction issues |
and future briority levels. An alternative that can be achieved more easily is to
mark speculative execution instructions as unsuitable for being the first or
principal or lead issuer. This is achieved by not presenting speculatively
executed instructions as available instructions to the main instruction scheduler
— instead the threads may mark themselves as interlocked or unavailable at this

stage.....

In parallel with the choice of the highest priority thread with an instruction that is
ready to run, the decision has to be made as to what other threads might be
allowed to issue at the same time as this one. This can be calculated for all of
the threads on every cycle, as there are fewer gates involved when compéred

to working out a full set of load-balancing metrics. The gates required test a
thread’s stated resources against all of the other threads in the system, giving a
list of other threads that this thread’s instruction is compatible with. This
information can then be combined with the pre-ptepared thread priority ordering -
into an absolute list of which threads would issue with this thread if it wins the

initial scheduling decision.

Figure 5 illustrates the steps taken in determining which instructions to use,

in accordance with an aspect of the binvention. At step 500 a priority ranking is
determined for each of the threads having available instructions. At this stagé
threads that are. prevented from issuing an instruction owing to resource or
register interlocks are removed from consideration. Threads having
speculative instructions mark themselves as ineligible for consideration at this
stage as well. At step 510 the highest priority thread able to issue an

instruction is selected. The instruction issued from this thread is referred to as

WO 2010/125336 PCT/GB2010/000832

10

-12 -
the lead instruction. As stated, this lead instruction cannot be a spchlative
instruction. At step 520, a list of compatible threads is compiled for each thread
with an available instruction. From these lists and the priority ranking, a set of

instructions for issue with the lead instruction is determined, at step 530.

At step 540, the instruction set is issued by the instruction scheduler.

Therefore, the invention provides a simple means by which a thread can take
itself out of th.e normal instruction scheduling rules when speculatively
executing inétructions, while still maintaining the possibility of improved
throughput due to being able to issue instrucﬁdns where previouély the
scheduler would have had to stall while it waited for a branch outcome to be
determined. This solution uses few additional gates and as a result does not
have a negative impact on the clock speed that cén be achieved for a given
multi-threaded micrdprocéssor design. '

WO 2010/125336 PCT/GB2010/000832

15

20

25

30

13

Claims

A method to dynamically determine which instructions from a plurality of
available instructions to issue in each clock cycle in a multithreaded
processor capable of issuing a pIuraIity of instructions in each clock
cycle, comprising the steps of:

determining a highest priority instruéti_on from the plurality of available

instructions;

determinihg the compatibility of the highest priority instruction with each
of the available instructions, wherein instructions are compétible with

each other if they do not require the same resources; and -

issuing the highest priority instruction together with other instructions
compatible both with the highest priority instruction and with each other

in the same clock cycle;

wherein the highest priority instruction cannot be a speculative

instruction.

A method according to claim 1, wherein the step of determining the
highest priority instruction comprises determining a highest priority
thread that is able to issue an instruction, and selecting the instruction

from that thread as the highest priority instruction.

A method according to claim 1, further comprising the step of marking
speculative instructions, or threads with speculative instructions,

as unavailable for the step of determining a highest priority instruction.

A methbd according to claim 1, 2 or 3, further comprising the step of
detérmining a priority ranking for the plurality of available instructions,
wherein compatible instructions are issued with the highest priority

instruction in order of priority ranking.

WO 2010/125336

20

25

30

14

A method according to claim 4, wherein speculative instructions are

given a lower priority ranking than non-speculative instructions.

A method according to claim 4 or 5, wherein the step of determining a
priority ranking for the plurality of available instructions comprises
determining a priority ranking for each thread having an-available

instruction.

A method according to any preceding claim, further comprising the step
of determining a list of compatible or incompatible instructions for each

of the available instructions.

A system for issuing instructions in a multithreaded processor capable
of issuing a plurality of instructions in each clock cycle, comprising:

means for determining a highest priority instruction from the pl'uyality of

available instructions;

means for determining the compatibility of the highest priority instruction
with each of the remaining available instructions, wherein instructions
are compatible with each other if they do not require the same

resources; and

means for issuing the highest priority instruction together with other

instructions compatible both with the highest priority instruction and with

"~ each othér in the same clock cycle;

wherein the highest priority instruction cannot be a speculative |

instruction.

A system according to claim 8, wherein the means for determining the

highest priority instruction comprises means for determining a highest

PCT/GB2010/000832

WO 2010/125336 PCT/GB2010/000832

20

25

30

10.

11.

12.

13.

14,

15.

15

priority thread that is able to issue an instruction and selecting the

instruction from that thread as the highest priority instruction.

A system according to claim 8 or 9, further comprising means for

marking speculative instructions, or threads with speculative
instructions, as unavailable for consideration as the highest priority

instruction.

A system according to any one of claims 8, 9 or 10, further comprising
means for determining a priority ranking for the plurality of available -
instructions, wherein the means for issuing is configured to issue
compatible instructions with the higheSt priority instruction in order of

priority ranking.

A system according to claim 11, wherein the means for determinihg a
priority ranking for the plurality of available instructions comprises
means for determining a priority ranking for each thread having an

available instruction.

A system according to any one of claims 8 to 12, further comprising
means for determining a list of compatible or incompatible instructions

for each of the available instruvctions.

A method to dynamically determine which instructions from a plurality of
available instructions to issue in each clock cycle in a multithreaded
processor capable of issuing a pIuraIity of instructions in each clock
cycle substantially as herein described with reference to the

accompanying drawings.

A system for issuing instructions in a multithreaded processor capable
of issuing a plurality of instructions in each clock cycle substantially as

herein described with reference to the accompanying drawings.

WO 2010/125336 PCT/GB2010/000832

1/5
; 4
Instruction Fetch
Engine +
I Instruction Adress Unit
&\ Decoder Thread | (16x32 bit
0 registers)
2 ' , Thread - . T
Instruction
Instruction Fetch Scheduler
Engine + : gt
Instruction 8&2;33[2”:)'1& 3
Decoder thread registers) /
n it
DSP RAM
Coprocessor [Lo R ——
interfaces | - ’
Memory Mapped 6
Registers \\J
I cache D cache Internal Regist
. nternal Registers
v
MMU Debug port -t >

Figure 1

WO 2010/125336

2/5

PCT/GB2010/000832

-~
2 ‘On-Chip
RAM
-~)
20 Instruction
cache

[

Thread 0
> . Instruction Decode
Instruction
-t - g and resource -
fetch .
interlocks -
Priority
Arbiter
" 2 A
25 28
Thread 1
\
24 > o Instruction Decode
Instruction -
-4 and resource <4—P» |nstruction
fetch .
. interfocks * Scheduler
) \
. 25 26
Priority Thread n
- Arbiter)
< > . Instruction Decode
Instruction <@
fetch and resource -—p
- interlocks
)
) N 3\
25 26

Figure 2

28

WO 2010/125336

To Instruction

3/5

From Instruction

PCT/GB2010/000832

Cache 34 Cache
A |
/ \ Branch fiiter
predicted
— 1 Instruction B Branch prediction) \ss
30 Address Feed | & Instruction Buffer
restart i
Y
A Single —
Thread’s Instruction Data ™
Instruction Feed 32
Fetch
Engine
Y 8
Branch l> Issue register
ta;(el?/not Hold branch
aken instruction
until branch
. destination
To multi-threaded known

instruction scheduler

Figure 3

PCT/GB2010/000832

WO 2010/125336
4/5
To Instruction From Instruction
Cache 24 Cache
A }
/ Branch filter A 4
predicted .)
I i Branch prediction : -
30/ A:,Z?g:: t;:?ed P Instruction Buffer
restart A
A Single
Thread's Instruction Data I
Instruction Feed o
Fetch
Engine
j A
Branch miss- | -
prediction l> Issue register j—aa
rewind and
restart

: Multi-threaded instruction ' 28
: scheduler :

R

|> Branch pipeline (stage 1) |

h J

E Branch pipeline (stage 2) I—— 40

A 4
| Branch pipeline (stage 3)

Branch prediction
verification

42

Figure 4

WO 2010/125336

5/5

PCT/GB2010/000832

Determine priority ranking for
threads

——— 500

A 4

Determine highest priority
thread with non-speculative.
instruction

510

A 4

Determine compatibility list for
~each thread

520

A 4

Determine set of threads to issue
instructions from with the lead
instruction

530

h 4

Issue chosen set of instruction

Figure 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2010/000832

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO06F9/38
ADD.

According to Inierational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO—Iﬁterna], INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

X US 2006/136915 A1 (AINGARAN KATHIRGAMAR 1-13
[US] ET AL) 22 June 2006 (2006-06-22)
paragraphs [0010], [0011], [0022],
[0023], [o0038], [0043], [0045] -
[0048]; figures 6,9

-/—

Relevant to claim No.

m Further documents are listed in the continuation of Box C.

E See patent family annex.

*

Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international
filing date

‘L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

‘0" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international fiting date but
later than the priority date claimed

"T* later document published after the intemational filing date
or priority date and not in conflict with the application but
cited 1o understand the principle or theory underlying the
invention

"X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
me'r:ls, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the internationat search

13 September 2010

Date of mailing of the intemational search report

17/09/2010

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Thibaudeau, Jean

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2010/000832

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

IL PARK ET AL: "Implicitly-multithreaded
processors”
PROCEEDINGS OF THE 30TH. INTERNATIONAL

“SYMPOSIUM ON COMPUTER ARCHITECTURE. ISCA

2003. SAN DIEGO, CA, JUNE 9 - 11, 2003;
[INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE.(ISCA)], LOS ALAMITOS, CA :
IEEE COMP. SOC, US,

9 June 2003 (2003-06-09), pages 39-50,
XP010796919

ISBN: 978-0-7695-1945-6

Page 2, left column, second paragraph;
page 4, left column, first and second full
paragraphs; page 9, left column, last
three Tines to right column, line 15.

1-13

Form PCT/ISA/210 {continuation of second sheet) (April 2005)

Intemational application No.
INTERNATIONAL SEARCH REPORT PCT/GB2010/000832
Box No. Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

— because they relate to subject matter not required to be searched by this Authority, namely:

2. m Claims Nos.: 14 ’ 15
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

see FURTHER INFORMATION sheet PCT/ISA/210

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. 1l Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. l:, As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this intemational search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.: -
Remark on Protest The additional search fees were accompanied by the applicant’s protest and, where applicable, the

payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/GBZO 10 /000832

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.Z

Claims Nos.: 14, 15

Claims 14 and 15 are so unclear (Article 6 PCT) that no meaningful search
is possible for said claims. Indeed the word "substantially" comprised in
claims 14 and 15 is vague and a reference to the drawings introduces
unclarity (PCT Guidelines, Rule 6.2(a)).

The applicant’s attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary
examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter II procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guideline C-VI, 8.2),
should the problems which led to the Article 17(2) declaration be
overcome.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2010/000832
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2006136915 Al 22-06-2006 GB 2421328 A 21-06-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - wo-search-report
	Page 23 - wo-search-report
	Page 24 - wo-search-report
	Page 25 - wo-search-report
	Page 26 - wo-search-report

