发明名称
一种高耐腐蚀的水性车间底漆

摘要
本发明公开了一种高耐腐蚀的水性车间底漆，包括如下重量份的各原料：酸钠钾：38-100份；锌粉：20-30份；磷铁粉：40-60份；云母粉：2-5份；高岭土：1-10份；氧化铁：2-10份；纤维素：2-10份，分子量为10000-30000；硅灰石粉：20-30份。本发明所述高耐腐蚀的水性车间底漆具有良好的环保型，不产生挥发性有机化合物，即VOC为零；本发明所述高耐腐蚀的水性车间底漆的漆膜成型后，具有良好的附着力、耐候性和极强的防腐蚀、防锈性能，并具有成本低廉的优点。
1. 一种高耐腐蚀的水性车间底漆，其特征在于：包括如下重量份的各原料：
模数不小于 5 的硅酸钾：38-100 份；
锌粉：20-30 份；
磷铁粉：40-60 份；
云母粉：2-5 份；
高岭土：1-10 份；
氧化铁：2-10 份；
纤维素：2-10 份，分子量为 10000-30000；
硅灰石粉：20-30 份。

2. 根据权利要求 1 所述的高耐腐蚀的水性车间底漆，其特征在于：所述硅酸钾与其它所有原料的质量比为 1：（1-2.6）。
一种高耐腐蚀的水性车间底漆

技术领域
[0001] 本发明涉及一种水性车间底漆，尤其涉及一种高耐腐蚀的水性车间底漆。

背景技术
[0002] 车间底漆是钢铁基材处理后喷涂的一道漆膜，主要目的在于保护钢板在切割、焊接、加工过程中少受大气的腐蚀。车间底漆的市场需求量较高，历代产品包括但不限于磷化底漆、环氧系列底漆、硅酸锌车间底漆。
[0003] 目前，车间底漆的质量要求为：干燥时间5分钟，漆膜厚度15-20微米，附着力小于2级，处于海洋性气候中，至少满足3个月不生锈且满足切割与焊接需求，尤其在焊接过程中，产生的烟雾一定要小。目前市面上的车间底漆主要存在的问题是：由于为油性产品，在喷涂过程中对工人的健康造成危害，使用过程中，漆膜的耐候性差，漆膜成膜后不稳定，极大影响防腐性能，尤其对船舶的危害更大。

发明内容
[0004] 本发明的目的在于为了解决上述问题而提供一种高耐腐蚀的水性车间底漆。
[0005] 本发明通过以下技术方案来实现上述目的：
一种高耐腐蚀的水性车间底漆，包括如下重量份的各原料：
模数不小于5的硅酸钾：38-100份；
锌粉：20-30份；
磷铁粉：40-60份；
云母粉：2-5份；
高岭土：1-10份；
氧化钛：2-10份；
纤维素：2-10份，分子量为10000-30000；
硅灰石粉：20-30份。
[0006] 作为优选，所述硅酸钾与其它所有原料的质量比为1：（1-2.6）。
[0007] 更优选地，各原料的重量份为：
模数不小于5的硅酸钾：38-100份；
锌粉：20份；
磷铁粉：40份；
云母粉：2份；
高岭土：2份；
氧化钛：5份；
纤维素：7份，分子量为10000-30000；
硅灰石粉：24份。
[0008] 本发明的有益效果在于：
本发明所述高耐腐蚀的水性车间底漆具有良好的环保型，不产生挥发性有机化合物，即VOC为零。本发明所述高耐腐蚀的水性车间底漆的漆膜成型后，具有良好的附着力、耐候性和极强的防腐蚀、防锈性能，并具有成本低廉的优点。

具体实施方式
[0009] 下面结合实施例对本发明作进一步说明：

实施例1：
取以下重量份的各原料：
模数不小于5的硅酸钾：60份；
锌粉：20份；
磷铁粉：40份；
云母粉：2份；
高岭土：2份；
氧化铁：5份；
纤维素：7份，分子量为10000-30000；
硅灰石粉：24份。

[0010] 将上述原料按常规的底漆生产工艺生产得到高耐腐蚀的水性车间底漆。

[0011] 实施例2：
取以下重量份的各原料：
模数不小于5的硅酸钾：100份；
锌粉：30份；
磷铁粉：60份；
云母粉：5份；
高岭土：1份；
氧化铁：10份；
纤维素：2份，分子量为10000-30000；
硅灰石粉：20份。

[0012] 将上述原料按常规的底漆生产工艺生产得到高耐腐蚀的水性车间底漆。

[0013] 实施例3：
取以下重量份的各原料：
模数不小于5的硅酸钾：80份；
锌粉：25份；
磷铁粉：50份；
云母粉：3份；
高岭土：10份；
氧化铁：2份；
纤维素：8份，分子量为10000-30000；
硅灰石粉：21份。

[0014] 将上述原料按常规的底漆生产工艺生产得到高耐腐蚀的水性车间底漆。
实施例 4:
取以下重量份的各原料：
模数不小于 5 的硅酸钾：50 份；
锌粉：20 份；
磷铁粉：40 份；
云母粉：2 份；
高岭土：3 份；
氧化铁：8 份；
纤维素：10 份，分子量为 10000-30000；
硅灰石粉：30 份。

将上述原料按常规的底漆生产工艺生产得到高耐腐蚀的水性车间底漆。
上述实施例所得的高耐腐蚀的水性车间底漆，其防腐蚀、防锈性能略有差异，但都
远强于传统的车间底漆。
上述实施例只是本发明的较佳实施例，并不是对本发明技术方案的限制，只要是
不经过创造性劳动即可在上述实施例的基础上实现的技术方案，均应视为落入本发明专利
的权利保护范围内。