US010289557B2

12 United States Patent 10) Patent No.: US 10,289,557 B2

Duzly et al. 45) Date of Patent: May 14, 2019
(54) STORAGE SYSTEM AND METHOD FOR (56) References Cited
FAST LOOKUP IN A TABLE-CACHING
DATABASE U.S. PATENT DOCUMENTS
(71) Applicant: Western Digital Technologies, Inc., SPLESS A LS Xosioks of. Bl
San Jose, CA (US) 8,458,435 BL* 6/2013 Rainey, 11 GOGF 12/0246
’ 711/103
. 9,189,392 B1* 11/2015 Neppalli GO6F 3/064
(72) Inventors: Yacqv Duzly, Ra’anana (IL); Hadas 0.514.057 B2 12/2016 Maprgu ot al.
Oshinsky, Kfar Saba (IL) 2008/0126683 AL* 5/2008 TSUji ..ooovrrervernen, GOG6F 12/0246
711/103
(73) Assignee: Western Digital Technologies, Inc., 2011/0022819 Al 1/2011 Post et al.
San Jose, CA (US) 2011/0119455 Al 5/2011 Tsai et al.
2012/0290798 Al 11/2012 Huang et al.
("} Notice: Subject to any disclaimer the term of this 2013/0246689 Al* 9/2013 Matsudaira GOGF 12/0246
: . 711/103
palenl Ix sxisaded of adinated wkier 33 2017/0177497 Al* 6/2017 Chun GOGF 12/0802
U.S.C. 154(b) by 0 days. 2018/0189000 ALl* 7/2018 Li ccoovvvccirrrr.. GOGF 3/0661
(21) Appl. No.: 15/688,095 * cited by examiner
(22) Filed: Aug. 28, 2017 Primary Examiner — Kevin Verbrugge
(65) Prior Publication Dat (74) Attorney, Agent, or Firm — Brinks Gilson & Lione
rior Publication Data
US 2019/0065387 Al Feb. 28, 2019 (57) ABSTRACT
(51) Int. CL A storage system and method for fast lookup 1n a table-
GO6F 12/08 (2016.01) caching database are provided. In one embodiment, a stor-
GO6F 12/0884 (2016.01) age system 1s provided comprising a volatile memory, a
GO6F 3/06 (2006.01) non-volatile memory, and a controller. The controller 1s
GO6F 16/172 (2019.01) configured to store, 1n the volatile memory, a data structure
GO6F 167901 (2019.01) representing a compressed version of a logical-to-physical
(52) U.S. CL address table stored in the non-volatile memory; and search
CPC ... GO6F 12/0884 (2013.01); GO6F 3/0611 the data structure for a physical address associated with a
(2013.01); GO6F 16/172 (2019.01); GO6F logical address, wherein the controller 1s configured to find

16/9017 (2019.01) any physical address 1n the data structure 1n a fixed amount

(58) Field of Classification Search of time. Other embodiments are provided.
None
See application file for complete search history. 13 Claims, 11 Drawing Sheets

Physical Block

¢ 0
8
16 40544 148|52|56 60
24
32 4|8 |12]1%
40
48 2012428
9613236

Short Description:

Phvsical PhysicalLogical [Logical
St Jsrﬁm s |
AddressiAddress| Address| Address]

3 3 0 Q
18 23 40 60
33 36 4 16
83 57 20 36

i g M .
i} | Sublractor [Dé'ﬂdf’-l _
E] . | 1 Physical

......................................

U.S. Patent May 14, 2019

Sheet 1 of 11 US 10,289,557 B2

TO HOST
NON-VOLATILE
STORAGE SYSTEM
100
CONTROLLER|
' @—r /
- |
r o
NON-VOLATILE | |
104 MEMORY | || TO HOST
u STORAGE MODULE @
l 200 .
= \ 202[" STORAGE
- CONTROLLER

_ : —

102 ———@ 102 ﬁ —
| CONTROLLER CONTROLLER || “H CONTROLLER ||
1100 | 100 — 100
T T
[0 104 U{ s LY U{ | |4
U wm - NM 1 w1 |

B—

952 252
HOST . e e HOST " HIERARCHICAL STORAGE
. SYSTEM
I I 250
| 202 [STOGE 202 [STOAGE
CONTROWER | * * ° ~1 CONTROLLER | * °
204 204

STORAGE | . . . STORAGE | . . .

| ~—1 "SYSTEM ~—1 SYSTEM

FIG. 1

C

US 10,289,557 B2

Sheet 2 of 11

May 14, 2019

U.S. Patent

—— v e b g

SININOJNOD — i v
31340810 HIAYT INFWIOVYNYIN VIQIW —A —N | |
MIHLO | X o _,
/
e A sl) _
_ . _ —)
_ — - IINAOI M
- AMOW3W l HIAY Aul.v_ dNMOO0138vaviva |
- JTLVYTOA-NON o _ | .,om.Eoo 1m5m | | G3SSIHANOD _
vol K= | WQ\ R] J . LSOH ”
_ y — moimﬂz_‘l_ * N * _ 1) 0L
|| esr| L ASONER e | m ——
- | _ AHd T |
| | YIONIND3IS 193 1 NS 22\ _
T | , |
| o @Nw_ 1 — ek A [zovaean]l ||
. — QL Q0L | 1SOH .mwv
/ TINCON ONIYOvE o, eetud 1
o s K= f ,. B
e K- 4 JINGOW ON3 LNOYS |
Y. - ANCONENSIRoES
9Ll |
 W3LSAS IOVHOLS FTLYIOANON 201 N

US 10,289,557 B2

Sheet 3 of 11

May 14, 2019

U.S. Patent

] | _
¥300030 $SIUAAY
| \\]
>
- _
)
A
A _
AVHHY AHOWIN Z
JULYIOA-NON 2 .
Q
| ~ o K—> 5
| rl ~1 M 0 : In”v
| gyl | — Q _Ar LSOH
| M ANIHOVIA 4 m e
3LVLS |
FHOVO VLVC l S
| \\ 1 —— |
ogl iy~ AYLINONIO - 90l _
VHIHdIYEd
AHOWI TNLYTOA-NON)

 SININOGWOD : _
7| 21340 ¥3HLO < -
! oy IK——= |
811 201
/I.I.L.\\
R
a1})

NZLSAS FOVHOLS ALY IOA-NON

oom\\

U.S. Patent May 14, 2019 Sheet 4 of 11 US 10,289.557 B2

PTR

Compress
Bit
Compress
DB PTR

LZP Physical Block

afelels]e]r

-4
Q)
puia 4

NULL 0

0

i B DD nnnnnon

3 NULL 10

oo |
o) =T
oo | W T

elelwlole]s

24 NULL 48 .
28 NULL 56

32 NULL

‘.
|

36 NULL

40 NULL

44 NULL
48 NULL
52 NULL
50 NULL

60 NULL

FIG. 3

U.S. Patent May 14, 2019 Sheet 5 of 11 US 10,289.557 B2

PTR

Yes " Physical Block
N oL | ofefefe]ulw|alaln
: o []oluls]n]s|o
K Illlllll
: Al L
: JENEEEEEE
x ol L Lr
el o | [L LT
s v | [L]
| 8
J I
40 Short Description:
44 ——
ysica .
. [
:
:
1

FIG. 4

U.S. Patent

May 14, 2019
I
N
I
o[
oo
o[o
[
o[
N
o[o
o[o
o[
N
N
o[
o[o

Sheet 6 of 11 US 10,289,557 B2

Physical Block
[T =
JERNEEEDE
ol [el LT
el L] =
2| | Je] | =) |
ol el [L[]]»
of || =] | o]
wlo] | [=] | |0

Short Description:
None

FIG. 9

U.S. Patent May 14, 2019 Sheet 7 of 11 US 10,289.557 B2

PTR

' Physical Block

oL e Pl
JEEEEEEEE

Yes

Compress
DB PTR

-

o
A
a2

. m : _

0
O
4>

o oo e
I EEEEE
o e
o T
S EEEEREED
L T

Cad
o

12

Qo
O}

16

20

N
o

N
o,

24

()
N

28

32

N
g

36

-
o

40 Short Description:

—
O

44

Physical Logical
Start Start

N
<o

43
Address Address

O
w—

52

N
N

56

60

N
o

)
N
| EAd — R

PO
2
'

FIG. 6

U.S. Patent May 14, 2019 Sheet 8 of 11 US 10,289.557 B2

7
705

Get logical address for Iookp

- 710

Calculate which L2P_art conains '
this LBA

- 715

L2P Partin
cache?

720 ~
Read L2P_ Part
from NAND

~ (25

[2P Partis
Compressed? ~ 740

~ “Read Compressed |
730 NO ~ data-base

Calculate physical location
using formula and direct
lookup in L2P_Part

Read next entry from |
_database

750

s
L D>7IBANNO
5 ~ found?

755 ~ IYES

Calculate physical location |

using data fromentry |

P_ADD = (LBA- -
Start_L)*K+Start_P

.................................

735
physical address
‘ FIG. 7
(Prior Art)

US 10,289,557 B2

Sheet 9 of 11

May 14, 2019

U.S. Patent

uoleos0 |eaisAuyd

pUNO-

3 Ol

 AQ JOpIN(] 10]0ENGNS |
+

GO3

L L L R e R NN W R N N N N N N - ¥ N ¥ B N B E K B X N B N N B X B & N B _ N X A I W -

ssaIppy [evishud HelS

$saippy |2o1bo pul

$Salppy (e01607 tgw.

dnyo0j 0} SSaIPpPY ~mo_m8.

U.S. Patent May 14, 2019 Sheet 10 of 11 US 10,289.557 B2

900

| Determine That the Logical Address Is Between | - 910
the Start and End Logical Addresses of the '

Database Entry

Subtract the Start Logical Address from the 920

Logical Address

- 930

Divide by a Number of Entries in the Database

' Add the Start Physical Address

FIG. 9

U.S. Patent May 14, 2019 Sheet 11 of 11 US 10,289,557 B2

52 1000
A eSS 525' ------------------------------------- /

Lo

Physical Block

~ 0 One haot
o [T 1| | decodr
JENEEREER 1 g
16 ..@ i Physicalf | -
ZHEEEREEN 3 | \ Locasont 1),
D TR 1| | e
o TTTI | s ; 1
of |] | | [20f24)28 ; ;
se[32036] | | |] | | ~rt g 5Fo1t,md
! - { — irue
Short Description: ; | | . %
60 % . ' ¢ 1020
AddressiAddressi Address] Address - Divider : y
E O O 5 Lodaton _
| : + =01
e | : ‘
. | 5 i:':'.:'::::::..:'::::'::‘:'::::::::::::::':..'::::.:'.::.:'.:',:':::::::::.;
: e a il o
E ¢ = False
(H §/1030
33!
52 ;
20}
361 |
F'G 10 § L iPhysmal
' | 53§ > Adder f!_ocatton

....................................

US 10,289,557 B2

1

STORAGE SYSTEM AND METHOD FOR
FAST LOOKUP IN A TABLE-CACHING
DATABASE

BACKGROUND

Many storage systems use a logical-to-physical address
table to convert a logical address received from a host 1n a
read or write command to a physical address in non-volatile
memory where data 1s to be read from or written to. The
logical-to-physical address table 1s often stored in the non-
volatile memory, but as searching the table 1in non-volatile
memory can be time-consuming, some storage systems

move the table from non-volatile memory to wvolatile
memory (e.g., RAM), where the table can be searched faster.
If the non-volatile memory space being mapped 1s small
enough, the entire logical-to-physical address table can be
cached 1n the volatile memory. However, when the memory
space 1s very large, the logical-to-physical address table 1s
very large and may not be able to be loaded 1n its entirety in
volatile memory. Therefore, only a portion can be loaded,
which means that, 1n many instances, the relevant entries in
the table are still 1n non-volatile memory. This excessive
read to search the table in non-volatile memory 1s sometimes
called a control read and can degrade random read perfor-
mance, which 1s an important metric for storage devices in
general and embedded devices specifically. Additional vola-
tile memory can be added to a storage system to address this
problem, but this can increase the expense and size of the
storage system’s controller. Some storage systems use com-
pressed table caching mechanisms and algorithms that
allows almost zero control reads 1n several use cases, such
as sequential precondition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram of a non-volatile storage
system of an embodiment.

FIG. 1B 1s a block diagram 1llustrating a storage module
of an embodiment.

FIG. 1C 1s a block diagram illustrating a hierarchical
storage system of an embodiment.

FIG. 2A 1s a block diagram illustrating components of the
controller of the non-volatile storage system illustrated 1n
FIG. 1A according to an embodiment.

FIG. 2B 1s a block diagram illustrating components of the
non-volatile memory storage system illustrated 1in FIG. 1A
according to an embodiment.

FIG. 3 1s an 1illustration of a logical-to-physical address
table and an erased physical block of memory of an embodi-
ment.

FI1G. 4 1s an 1llustration showing a compressed database of
an embodiment 1n a sequential writing situation.

FIG. § 1s an 1illustration of an embodiment of a random
writing situation.

FIG. 6 1s an 1llustration showing a compressed database of
an embodiment 1n a semi-sequential writing situation.

FIG. 7 1s a flowchart of a prior art method for searching
a compressed database.

FIG. 8 1s a block diagram illustrating an example of
search circuitry of an embodiment.

FIG. 9 1s a flowchart of a method of an embodiment for
fast lookup 1n a table-caching database.

FIG. 10 1s a block diagram illustrations circuitry of an
embodiment for searching a compressed database.

DETAILED DESCRIPTION

Overview
By way of introduction, the below embodiments relate to
a storage system and method for fast lookup 1n a table-

10

15

20

25

30

35

40

45

50

55

60

65

2

caching database. In one embodiment, a storages system 1s
provided comprising a volatile memory, a non-volatile
memory, and controller in communication with the volatile
memory and the non-volatile memory. The controller 1s
configured to store, 1in the volatile memory, a data structure
representing a compressed version of a logical-to-physical
address table stored in the non-volatile memory; and search
the data structure for a physical address associated with a
logical address, wherein the controller 1s configured to find
any physical address 1n the data structure 1n a fixed amount
of time.

In some embodiments, each entry in the data structure
comprises a start physical address and start and end logical
addresses for a sequential run of logical addresses, and
wherein the controller 1s further configured to search each of
the entries of the data structure 1n parallel.

In some embodiments, the controller 1s further configured
to: determine whether the logical address 1s found 1n an entry
by determining whether the logical address 1s between the
start and end logical addresses of the entry; and in response
to determining that the logical address 1s between the start
and end logical addresses of the entry: subtract the start
logical address from the logical address; divide by a number
of entries in the data structure; and add the start physical
address.

In some embodiments, each entry in the data structure
comprises a start physical address, physical address run
length and start logical addresses for a sequential run of
logical addresses, and wherein the controller 1s further
configured to search each of the entries of the data structure
in parallel.

In some embodiments, the non-volatile memory com-
prises a three-dimensional memory.

In some embodiments, the storage system 1s embedded 1n
a host.

In some embodiments, the storage system 1s removably
connected to a host.

In another embodiment, a method for searching a cached,
compressed database representing a logical-to-physical
address table 1s provided. The method 1s performed 1n a
storage system comprising a volatile memory. The method
comprises caching, in the volatile memory, a compressed
database representing a logical-to-physical address table;
searching each entry in the cached, compressed database in
parallel for a logical address, wherein each entry requires a
same amount of time to search; and determining a physical
address associated with the logical address.

In some embodiments, each entry in the cached, com-
pressed database comprises a start physical address and start
and end logical addresses for a sequential run of logical
addresses.

In some embodiments, each entry in the cached, com-
pressed database 1s searched by: determining whether the
logical address 1s between the start and end logical addresses
of the entry; and 1n response to determining that the logical
address 1s between the start and end logical addresses of the
entry: subtracting the start logical address from the logical
address; dividing by a number of entries in the cached,
compressed database; and adding the start physical address.

In some embodiments, each entry in the data structure
comprises a start physical address, physical address run
length and start logical addresses for a sequential run of
logical addresses, and wherein the controller 1s further
configured to search each of the entries of the data structure
in parallel.

In some embodiments, the non-volatile memory com-
prises a three-dimensional memory.

In some embodiments, the storage system 1s embedded 1n
a host.

US 10,289,557 B2

3

In some embodiments, the storage system 1s removably
connected to a host.

In another embodiment, a storage system 1s provided
comprising a memory; and means for searching a data
structure stored 1n the memory for a logical address, wherein
the data structure stored 1n the memory represents a logical-
to-physical address table, and wherein the searching 1s done
in a deterministic time.

In some embodiments, the means 1s configured to search
cach entry 1n the data structure 1n parallel.

In some embodiments, each entry in the data structure
comprises a start physical address and start and end logical
addresses for a sequential run of logical addresses.

In some embodiments, each entry in the data structure
comprises a start physical address, physical address run
length and start logical addresses for a sequential run of
logical addresses, and wherein the controller i1s further
configured to search each of the entries of the data structure
in parallel.

In some embodiments, the means comprises a plurality of
search circuitry i communication with a decoder and a
multiplexor, wherein each entry of the data structure i1s
associated with 1ts own search circuitry.

In some embodiments, at least one search circuitry com-
prises a comparator, an AND gate, a subtractor, a divider,
and an adder.

In some embodiments, the non-volatile memory com-
prises a three-dimensional memory.

In some embodiments, the storage system 1s embedded 1n
a host.

In some embodiments, the storage system 1s removably
connected to a host.

Other embodiments are possible, and each of the embodi-
ments can be used alone or together in combination. Accord-
ingly, various embodiments will now be described with
reference to the attached drawings.

Embodiments

Storage systems suitable for use 1n implementing aspects
of these embodiments are shown in FIGS. 1A-1C. FIG. 1A
1s a block diagram illustrating a non-volatile storage system
100 according to an embodiment of the subject matter
described herein. Referring to FIG. 1A, non-volatile storage
system 100 includes a controller 102 and non-volatile
memory that may be made up of one or more non-volatile
memory die 104. As used herein, the term die refers to the
collection of non-volatile memory cells, and associated
circuitry for managing the physical operation of those non-
volatile memory cells, that are formed on a single semicon-
ductor substrate. Controller 102 interfaces with a host sys-
tem and transmits command sequences for read, program,
and erase operations to non-volatile memory die 104.

The controller 102 (which may be a non-volatile memory
controller (e.g., a flash, Re-RAM, PCM, or MRAM control-
ler)) can take the form of processing circuitry, a micropro-
cessor or processor, and a computer-readable medium that
stores computer-readable program code (e.g., firmware)
executable by the (micro)processor, logic gates, switches, an
application specific integrated circuit (ASIC), a program-
mable logic controller, and an embedded microcontroller,
for example. The controller 102 can be configured with
hardware and/or firmware to perform the various functions
described below and shown in the flow diagrams. Also,
some of the components shown as being internal to the
controller can also be stored external to the controller, and
other components can be used. Additionally, the phrase
“operatively 1n communication with” could mean directly 1in
communication with or indirectly (wired or wireless) 1n

10

15

20

25

30

35

40

45

50

55

60

65

4

communication with through one or more components,
which may or may not be shown or described herein.

As used herein, a non-volatile memory controller 1s a
device that manages data stored on non-volatile memory and
communicates with a host, such as a computer or electronic
device. A non-volatile memory controller can have various
functionality 1n addition to the specific functionality
described herein. For example, the non-volatile memory
controller can format the non-volatile memory to ensure the
memory 1s operating properly, map out bad non-volatile
memory cells, and allocate spare cells to be substituted for
future failed cells. Some part of the spare cells can be used
to hold firmware to operate the non-volatile memory con-
troller and 1implement other features. In operation, when a
host needs to read data from or write data to the non-volatile
memory, 1t can communicate with the non-volatile memory
controller. If the host provides a logical address to which
data 1s to be read/written, the non-volatile memory control-
ler can convert the logical address received from the host to
a physical address 1n the non-volatile memory. (Alterna-
tively, the host can provide the physical address.) The
non-volatile memory controller can also perform various
memory management functions, such as, but not limited to,
wear leveling (distributing writes to avoid wearing out
specific blocks of memory that would otherwise be repeat-
edly written to) and garbage collection (after a block 1s full,
moving only the valid pages of data to a new block, so the
full block can be erased and reused).

Non-volatile memory die 104 may include any suitable
non-volatile storage medium, including resistive random-
access memory (ReRAM), magnetoresistive random-access
memory (MRAM), phase-change memory (PCM), NAND
flash memory cells and/or NOR flash memory cells. The
memory cells can take the form of solid-state (e.g., flash)
memory cells and can be one-time programmable, few-time
programmable, or many-time programmable. The memory
cells can also be single-level cells (SLC), multiple-level
cells (MLC), triple-level cells (TLC), or use other memory
cell level technologies, now known or later developed. Also,
the memory cells can be fabricated in a two-dimensional or
three-dimensional fashion.

The interface between controller 102 and non-volatile
memory die 104 may be any suitable flash interface, such as
Toggle Mode 200, 400, or 800. In one embodiment, storage
system 100 may be a card based system, such as a secure
digital (SD) or a micro secure digital (micro-SD) card. In an
alternate embodiment, storage system 100 may be part of an
embedded storage system.

Although, 1n the example illustrated 1n FIG. 1A, non-
volatile storage system 100 (sometimes referred to herein as
a storage module) includes a single channel between con-
troller 102 and non-volatile memory die 104, the subject
matter described herein 1s not limited to having a single
memory channel. For example, in some storage system
architectures (such as the ones shown in FIGS. 1B and 1C),
2, 4, 8 or more memory channels may exist between the
controller and the memory device, depending on controller
capabilities. In any of the embodiments described herein,
more than a single channel may exist between the controller
and the memory die, even 1f a single channel 1s shown 1n the
drawings.

FIG. 1B 1illustrates a storage module 200 that includes
plural non-volatile storage systems 100. As such, storage
module 200 may include a storage controller 202 that
interfaces with a host and with storage system 204, which
includes a plurality of non-volatile storage systems 100. The
interface between storage controller 202 and non-volatile

US 10,289,557 B2

S

storage systems 100 may be a bus interface, such as a serial
advanced technology attachment (SATA), peripheral com-
ponent interface express (PCle) interface, or dual-date-rate
(DDR) interface. Storage module 200, 1n one embodiment,
may be a solid state drive (SSD), or non-volatile dual in-line
memory module (NVDIMM), such as found 1n server PC or
portable computing devices, such as laptop computers, and
tablet computers.

FIG. 1C 1s a block diagram illustrating a hierarchical
storage system. A hierarchical storage system 250 includes
a plurality of storage controllers 202, each of which controls
a respective storage system 204. Host systems 252 may
access memories within the storage system via a bus inter-
face. In one embodiment, the bus interface may be an NVMe
or fiber channel over Ethernet (FCoE) interface. In one
embodiment, the system 1llustrated in FIG. 1C may be a rack
mountable mass storage system that 1s accessible by mul-
tiple host computers, such as would be found 1n a data center
or other location where mass storage 1s needed.

FIG. 2A 1s a block diagram illustrating components of
controller 102 1in more detail. Controller 102 includes a front
end module 108 that interfaces with a host, a back end
module 110 that interfaces with the one or more non-volatile
memory die 104, and various other modules that perform
functions which will now be described in detail. A module
may take the form of a packaged functional hardware unit
designed for use with other components, a portion of a
program code (e.g., software or firmware) executable by a
(micro)processor or processing circuitry that usually per-
forms a particular function of related functions, or a seli-
contained hardware or software component that interfaces
with a larger system, for example. Modules of the controller
102 may include a compressed database lookup module 111,
which 1s discussed in more detail below, and can be 1mple-
mented 1 hardware or software/firmware. The compressed
database lookup module 111 can be configured to perform
the algorithms and methods discussed below and shown in
the attached drawings.

Referring again to modules of the controller 102, a bufler
manager/bus controller 114 manages builers in random
access memory (RAM) 116 and controls the internal bus
arbitration of controller 102. A read only memory (ROM)
118 stores system boot code. Although 1llustrated in FIG. 2A
as located separately from the controller 102, in other
embodiments one or both of the RAM 116 and ROM 118
may be located within the controller. In yet other embodi-
ments, portions of RAM and ROM may be located both
within the controller 102 and outside the controller.

Front end module 108 includes a host interface 120 and a
physical layer interface (PHY) 122 that provide the electri-
cal iterface with the host or next level storage controller.
The choice of the type of host interface 120 can depend on

the type of memory being used. Examples of host interfaces
120 include, but are not limited to, e MMC, UFS, SATA,

SATA Express, SAS, Fibre Channel, USB, PCle, and
NVMe. The host iterface 120 typically facilitates transier
for data, control signals, and timing signals.

Back end module 110 includes an error correction con-
troller (ECC) engine 124 that encodes the data bytes
received from the host, and decodes and error corrects the
data bytes read from the non-volatile memory. A command
sequencer 126 generates command sequences, such as pro-
gram and erase command sequences, to be transmitted to
non-volatile memory die 104. A RAID (Redundant Array of
Independent Drives) module 128 manages generation of
RAID parity and recovery of failed data. The RAID parity
may be used as an additional level of integrity protection for

10

15

20

25

30

35

40

45

50

55

60

65

6

the data being written into the memory device 104. In some
cases, the RAID module 128 may be a part of the ECC
engine 124. A memory interface 130 provides the command
sequences to non-volatile memory die 104 and receives
status information from non-volatile memory die 104. In one
embodiment, memory interface 130 may be a double data
rate (DDR) interface, such as a Toggle Mode 200, 400, or
800 interface. A flash control layer 132 controls the overall
operation of back end module 110.

The storage system 100 also includes other discrete
components 140, such as external electrical interfaces, exter-
nal RAM, resistors, capacitors, or other components that
may interface with controller 102. In alternative embodi-
ments, one or more of the physical layer interface 122,
RAID module 128, media management layer 138 and builer
management/bus controller 114 are optional components
that are not necessary in the controller 102.

FIG. 2B 1s a block diagram 1illustrating components of
non-volatile memory die 104 1n more detail. Non-volatile
memory die 104 includes peripheral circuitry 141 and non-
volatile memory array 142. Non-volatile memory array 142

includes the non-volatile memory cells used to store data.
The non-volatile memory cells may be any suitable non-
volatile memory cells, including ReRAM, MRAM, PCM,
NAND flash memory cells and/or NOR flash memory cells
in a two dimensional and/or three dimensional configura-
tion. Non-volatile memory die 104 further includes a data
cache 156 that caches data. Peripheral circuitry 141 includes
a state machine 152 that provides status information to the
controller 102.

As noted above, many storage systems use a logical-to-
physical address table to convert a logical address received
from a host 1n a read or write command to a physical address
in non-volatile memory where data 1s to be read from or
written to. The logical-to-physical address table 1s often
stored 1n the non-volatile memory (to allow safe power off
and power on of the storage), but as searching the table 1n
non-volatile memory can be time-consuming, some storage
systems move the table from non-volatile memory to vola-
tile memory (e.g., RAM), where the table can be searched
faster. If the non-volatile memory space being mapped 1is
small enough, the entire logical-to-physical address table
can be loaded from the non-volatile memory to the volatile
memory. However, when the memory space 1s very large,
the logical-to-physical address table 1s very large and may
not be able to be loaded 1n 1ts entirety 1n volatile memory.
So, only a portion can be loaded, which means that, 1n many
instances, the relevant entries 1in the table are still in non-
volatile memory. This excessive read to search the table in
non-volatile memory 1s sometimes called a control read and
can degrade random read performance, which 1s an 1impor-
tant metric for storage devices in general and embedded
devices specifically. Additional volatile memory can be
added to a storage system to address this problem, but this
can 1ncrease the expense and size of the storage system’s
controller. Some storage systems use compressed table
caching mechanisms and algorithms that allows almost zero
control reads 1n several use cases, such as sequential pre-
condition. However, these algorithms can be complicated,
CPU-1ntens1ive, and very slow to implement by firmware.

The following embodiments can be used to provide faster
and more-ethicient methods of searching and compressing a
table-caching database. Belore turning to the specifics of
these fast and deterministic-in-time search algorithms and
techniques, the following paragraphs discuss the use of a
compressed database.

US 10,289,557 B2

7

As discussed above, the logical-to-physical address table
1s often stored in the non-volatile memory 104, and, depend-
ing on its size, all or a part of the logical-to-physical address
table 1s stored 1n volatile memory (e.g., RAM 116) in the
memory system 100. For simplicity, the term “logical-to-
physical-address table” will be used to refer to all or part of
the “logical-to-physical-address table.” So, when 1t 1s said
that the logical-to-physical-address table 1s cached 1n vola-
tile memory 116, it should be understood that either the
entire table 1s cached 1n volatile memory 116 or that only a
part of the table 1s cached 1n volatile memory. Also, the
terms “table” and “map” will be used interchangeably
herein.

Turning again to the drawings, FIG. 3 1s an 1llustration of
a logical-to-physical address table and an erased physical
block of non-volatile memory 104 of an embodiment. In this
embodiment, each physical block in the non-volatile
memory 104 has 64 physical locations (e.g., writing units or
pages). In this example, each physical location 1s equivalent
to 4 KB. Each physical location 1s associated with a physical
address (labeled 0-63 1n the physical block shown 1n FIG. 3)
and can hold the data of four logical addresses. Of course,
this 1s just an example, and the number of physical locations
in a memory block and the granularity of logical addresses
to physical locations can vary.

FIG. 3 also shows the logical-to-physical address table
that 1s cached 1n the volatile memory 116 and 1s associated
with the physical block. FIG. 3 refers to this table as the
“L2P Part,” as the table cached in the volatile memory 116
can be only a part of the logical-to-physical address table
that 1s stored in the non-volatile memory 104. (However, as
noted above, the term “logical-to-physical address table,” as
used herein, can refer to either a part of the table or the entire
table). Because each physical location holds data of four
logical addresses 1n this example, each entry 1n the cached
logical-to-physical address table 1n this example 1s multiples
of four. As the memory block i1s erased in this example, the
logical-to-physical address table 1s empty, as there i1s no
association between logical and physical addresses yet (1.e.,
cach entry 1s null). FIG. 3 also shows a pointer to the
logical-to-physical address table, a compress bit field, and a
compress database pointer. These items will be discussed
below.

Turning now to FIG. 4, FIG. 4 shows the content of the
cached logical-to-physical address table and the physical
block of non-volatile memory 104 after logical addresses
1-64 are sequentially written in the physical block. Each
physical location in the physical block shows the starting
logical address stored in that location. Note, the numbers 1n
the physical block i FIG. 3 enumerate each of the 64
physical locations 1n the physical block, whereas the num-
bers 1n the physical block in FIGS. 4-6 represent the starting
logical address stored in each physical location in the block
(although the numbers on the sides of the physical block
represents the started physical address for each row). That 1s,
the physical block 1n FIGS. 4-6 show the reverse association
to logical addresses.

The cached logical-to-physical address table shows that
logical address 0 1s mapped to physical address 0, logical
address 4 1s mapped to physical address 1, etc. Because the
logical addresses were written sequentially 1n this example,
a compressed version of the logical-to-physical address table
can be used and cached instead of (or in addition to) the
logical-to-physical address table (in whole or 1n part). This
compressed database 1s referred to 1n FIG. 4 as the “short
description” and contains the physical start address, logical
start address, and physical length. The compressed database

5

10

15

20

25

30

35

40

45

50

55

60

65

8

can be a very eflicient way to describe the physical location
of the data. It should be noted that “compressed” in this
context refers to the fact that the database 1s a smaller
version of the logical-to-physical address table. For
example, for a 64 GB physical block, the logical-to-physical
address table can be 64 MB, whereas the compressed
version (short description) can just be several KB. It should
be noted that “compressed” does not necessarily mean that
the database 1itsellf was the result of a data compression
technique used to make the database itself smaller from an
original, larger size (although such data compression of the
“compressed database” can be performed). Also, while the
term “‘database” 1s used in these examples, it should be
understood that any appropriate data structure (e.g., table,
tree, list, chart, etc.) can be used.

Returning to the compressed database (short description)
shown 1 FIG. 4, this database shows that, starting at
physical address 0, the physical block stores 16 consecutive
logical addresses, starting at logical address 0. So, in this
illustration, the entire logical-to-physical address table 1s
compressed to a single entry in the short description (com-
pressed) database. Because a compressed database can be
used to represent what 1s stored in the physical block, the
compress bit 1s set to “yes,” and the compress database
pointer points to the compressed database. The controller
104 can use this information to determine what to use for
address translation.

FIG. 5 1s an 1llustration showing a compressed database of
an embodiment 1n a random writing situation. Because the
physical block does not store a sequential run of logical
addresses (e.g., there are no adjacent physical locations 1n
the block that store sequential logical address sets), there 1s
no practical way of having a compressed database, as the
“short description” would contain one entry for each physi-
cal location, same as the logical-to-physical address table.

FIG. 6 1s an illustration of a semi-sequential writing
situation 1n which there are several sections of consecutive
writings (four 1n this example). This situation 1s “semi-
sequential” because even though the physical block loca-
tions may have been written non-sequentially, after the
writing 1s complete, sequential runs of logical addresses can
be observed. As shown in FIG. 6, the end result of the
writing 1s that there 1s one block with one logical address set
(1.e., physical location 3 stores the data in logical addresses
0-4), and there are three sequential runs of logical addresses
(1.e., physical addresses 18-23 store the data in logical
addresses 40-64, physical addresses 33-36 store the data 1n
logical addresses 4-20, and physical addresses 53-57 store
the data 1n logical addresses 20-40). As such, the com-
pressed database representing the entire logical-to-physical
address table can be represented by database having four
entries, as shown 1n the short description 1n FIG. 6.

As mentioned above, searched a compressed version of
the logical-to-physical address table can be faster than
searching the entire logical-to-physical address table. As
also mentioned above, various search algorithms can be
used to analyze each entry in a compressed database to
determine which entry contains a logical address of interest
and then what physical address maps to that logical address.
FIG. 7 1s a flow chart 700 of a prior search algorithm, which
can be implemented, for example, in firmware of a storage
system. As shown 1n FIG. 7, various steps are first taken to
load the logical-to-physical address table (or a compressed
version of 1t) from the non-volatile memory to volatile
memory. Specifically, 1n this example, the controller of the
storage system gets the logical address (e.g., a logical block
address (LBA)) for the lookup (e.g., from a read or write

US 10,289,557 B2

9

command from a host) (act 7035), calculates which part of the
logical-to-physical address table stored in non-volatile
memory contains the logical address (act 710), and then
determines 1f that part 1s already cached in the volatile
memory (act 715). If the part 1s not already cached, the 5
controller reads that part from non-volatile memory and
caches 1t 1n volatile memory (act 720). The controller then
determines whether the cached table 1s compressed or not
(act 725). If the cached table 1s not compressed, the con-
troller calculates the physical location using a formula and 10
direct lookup 1n the table (act 730). If the cached table 1s
compressed, the controller reads the compressed table/data-
base (act 740) and then loops through the entries one-by-one
until 1t finds the logical address 1n question (acts 745 and
750). The controller then calculates the physical address 15
from the entry using a formula (act 755) and then reads the
host data from the physical address (act 735).

Because this search algorithm searches entries in the
compressed database one-by-one until it finds the logical
address, the time needed to search the compressed database 20
can vary based on where the logical address 1s stored in the
compressed database and how many entries are in the
compressed database. For example, the search algorithm
takes longer 1f the logical address 1s found 1n the last entry
of the compressed database rather than the first entry. Also, 25
the more entries in the compressed database, the longer the
search time can be. The search duration can also depend on
the type of search algorithm (e.g., one that uses a linear tree
versus a binary tree) and controller/CPU capabilities.

In one embodiment, the long and tedious search algorithm 30
discussed above 1s replaced by a more-eflicient solution that
operates on a different type of compressed database. For
example, 1mnstead of each entry in the compressed database
storing the physical start address, logical start address, and
length of a sequential run of logical addresses, each entry in 35
the compressed database of this embodiment stores a start
physical address and start and end logical addresses for a
sequential run of logical addresses. That 1s, as compared to
the compressed database discussed above, the length of the
sequential run of logical addresses 1s removed from the 40
compressed database 1n this embodiment, and the end logi-
cal addresses 1s added. Entries in the compressed database of
this embodiment can optionally contain other items of
information, such as the physical end address.

FIG. 8 1s an example of search circuitry 800 of this 45
embodiment. As shown in FIG. 8, the search circuitry 800 of
this embodiment comprises two comparators 805, 810, an
AND gate 815, a subtractor 820, a divider 825, and an adder
830. It should be understood that this 1s just an example, and
other implementations can be used. Also, while this search 50
circuitry 1s shown as hardware components 1n FIG. 8, some
or all of the functions shown therein can be implemented as
software. Also, 1n one embodiment, this search circuitry 1s
part of the controller 102 (e.g., part of the compressed
database lookup module 111 shown i FIG. 2A), while, in 55
other embodiments, the search circuitry 1s located outside of
the controller 102. The operation of this search circuitry 800
will be discussed below and in conjunction with the flow
chart 900 1n FIG. 9.

In operation, the first comparator 805 takes a logical 60
address for lookup and compares 1t to the start logical
address for a stored sequential run of logical addresses. At
the same time, the second comparator 810 compares the
logical address for lookup with the end logical address of the
sequential run. Both of these comparisons happen 1n paral- 65
lel, and the output of these comparators 805, 810 1s provided
to the AND gate 815. Essentially, these components work to

10

determine 1if the logical address for lookup 1s in the sequen-
tial run of logical addresses 1n an entry 1n the compressed
database (act 910). It 1t 15, the AND gate outputs a logical 1,
which indicates that the logical address for lookup 1s found
in that entry. As same time, the subtractor 82, divider 825,
and adder 830 operate to generate the physical address by
subtracting the start logical address from the logical address
for lookup (act 920), then dividing that amount by four
(because four 1s the level of granularity of logical addresses
to a physical storage location 1n this embodiment) (act 930),
and then adding that amount to the start physical address (act
940).

In one embodiment, the search circuitry 800 1n FIG. 8 1s
repeated for every entry in the cached database, so the
searching of the database happens in parallel. Also, because
the operations of each search circuitry happen 1n parallel and
within a fixed time, this approach provides a deterministic
search solution. That 1s, as compared to the prior search
algorithm discussed above, which has a flexible search time,
this embodiment uses a fast and deterministic-in-time search
technique because the search stages occur in parallel and
need the same amount of time. An example of this embodi-
ment will now be illustrated 1n the circuit 1000 of FIG. 10.

As shown the example in FIG. 10, the compressed data-
base contains four entries, and there are four search circuit-
ries 1010, 1020, 1030, 1040, one for each entry. The outputs
of the four search circuitries are provided to a multiplexor
1050, whose output selection 1s dictated by a one hot
decoder 1060. In operation, each search circuity 1010, 1020,
1030, 1040 operates 1n parallel and as described above with
respect to FIG. 8. As each search circuitry provides a
physical location output 1rrespective of whether the output
of the AND gate 1s true or false, the multiplexor 1050 1s used
to output only the physical address of the search circuity that
actual found the logical address of interest in an entry. This
1s done by having the outputs of all the AND gates feed into
the one hot decoder 1060, so the one hot decoder 1060 will
select the mput of the multiplexor based on which search
circuitry output a true found signal. FIG. 10 1s annotated to
show how a search for logical address 52 would be handled
for a sample compressed database.

There are several advantages associated with these
embodiments. For example, because the compressed table
caching database search of these embodiments 1s performed
in parallel (e.g., the entries are searched in parallel) and 1n
a deterministic manner (e.g., each entry 1s searched in the
same, fixed time), these embodiments can be used to
improve of random read performance of storage devices,
which 1s an important metric in mobile benchmarks. That 1s,
unlike prior search algorithms that have a tlexible searching
time, these embodiments provide a predictive searching
time.

Finally, as mentioned above, any suitable type of memory
can be used. Semiconductor memory devices include vola-
tile memory devices, such as dynamic random access
memory (“DRAM”) or static random access memory
(“SRAM”) devices, non-volatile memory devices, such as
resistive random access memory (“ReRAM”), electrically
erasable programmable read only memory (“EEPROM”),
flash memory (which can also be considered a subset of
EEPROM), f{ferroelectric random access memory
(“FRAM”), and magnetoresistive random access memory
(“MRAM”), and other semiconductor elements capable of
storing information. Each type of memory device may have
different configurations. For example, flash memory devices
may be configured in a NAND or a NOR configuration.

US 10,289,557 B2

11

The memory devices can be formed from passive and/or
active elements, 1n any combinations. By way of non-
limiting example, passive semiconductor memory elements
include ReRAM device elements, which in some embodi-
ments iclude a resistivity switching storage element, such
as an anti-fuse, phase change material, etc., and optionally a
steering element, such as a diode, etc. Further by way of
non-limiting example, active semiconductor memory ele-
ments include EEPROM and flash memory device elements,
which 1n some embodiments include elements containing a
charge storage region, such as a floating gate, conductive
nanoparticles, or a charge storage dielectric material.

Multiple memory elements may be configured so that they
are connected 1n series or so that each element 1s 1ndividu-
ally accessible. By way of non-limiting example, flash
memory devices 1n a NAND configuration (NAND
memory) typically contain memory elements connected in
series. A NAND memory array may be configured so that the
array 1s composed of multiple strings of memory 1n which a
string 1s composed of multiple memory elements sharing a
single bit line and accessed as a group. Alternatively,
memory elements may be configured so that each element 1s
individually accessible, e.g., a NOR memory array. NAND
and NOR memory configurations are examples, and
memory elements may be otherwise configured.

The semiconductor memory elements located within and/
or over a substrate may be arranged in two or three dimen-
s10ns, such as a two dimensional memory structure or a three
dimensional memory structure.

In a two dimensional memory structure, the semiconduc-
tor memory elements are arranged in a single plane or a
single memory device level. Typically, in a two dimensional
memory structure, memory elements are arranged 1n a plane
(e.g., 1n an x-z direction plane) which extends substantially
parallel to a major surface of a substrate that supports the
memory elements. The substrate may be a water over or in
which the layer of the memory elements are formed or 1t
may be a carrier substrate which 1s attached to the memory
clements after they are formed. As a non-limiting example,
the substrate may include a semiconductor such as silicon.

The memory elements may be arranged i the single
memory device level 1n an ordered array, such as i a
plurality of rows and/or columns. However, the memory
clements may be arrayed 1n non-regular or non-orthogonal
configurations. The memory elements may each have two or
more electrodes or contact lines, such as bit lines and
wordlines.

A three dimensional memory array i1s arranged so that
memory elements occupy multiple planes or multiple
memory device levels, thereby forming a structure in three
dimensions (1.e., 1 the X, y and z directions, where the y
direction 1s substantially perpendicular and the x and z
directions are substantially parallel to the major surface of
the substrate).

As a non-limiting example, a three dimensional memory
structure may be vertically arranged as a stack of multiple
two dimensional memory device levels. As another non-
limiting example, a three dimensional memory array may be
arranged as multiple vertical columns (e.g., columns extend-
ing substantially perpendicular to the major surface of the
substrate, 1.e., 1 the y direction) with each column having
multiple memory elements in each column. The columns
may be arranged 1n a two dimensional configuration, €.g., in
an x-Z plane, resulting 1n a three dimensional arrangement of
memory elements with elements on multiple vertically

10

15

20

25

30

35

40

45

50

55

60

65

12

stacked memory planes. Other configurations of memory
clements 1n three dimensions can also constitute a three
dimensional memory array.

By way of non-limiting example, 1n a three dimensional
NAND memory array, the memory elements may be coupled
together to form a NAND string within a single horizontal
(e.g., Xx-z) memory device levels. Alternatively, the memory
clements may be coupled together to form a vertical NAND
string that traverses across multiple horizontal memory
device levels. Other three dimensional configurations can be
envisioned wherein some NAND strings contain memory
clements 1n a single memory level while other strings
contain memory elements which span through multiple
memory levels. Three dimensional memory arrays may also
be designed in a NOR configuration and in a ReRAM
configuration.

Typically, in a monolithic three dimensional memory
array, one or more memory device levels are formed above
a single substrate. Optionally, the monolithic three dimen-
sional memory array may also have one or more memory
layers at least partially within the single substrate. As a
non-limiting example, the substrate may include a semicon-
ductor such as silicon. In a monolithic three dimensional
array, the layers constituting each memory device level of
the array are typically formed on the layers of the underlying
memory device levels of the array. However, layers of
adjacent memory device levels of a monolithic three dimen-
sional memory array may be shared or have intervening
layers between memory device levels.

Then again, two dimensional arrays may be formed
separately and then packaged together to form a non-
monolithic memory device having multiple layers of
memory. For example, non-monolithic stacked memories
can be constructed by forming memory levels on separate
substrates and then stacking the memory levels atop each
other. The substrates may be thinned or removed from the
memory device levels before stacking, but as the memory
device levels are mitially formed over separate substrates,
the resulting memory arrays are not monolithic three dimen-
sional memory arrays. Further, multiple two dimensional
memory arrays or three dimensional memory arrays (imono-
lithic or non-monolithic) may be formed on separate chips
and then packaged together to form a stacked-chip memory
device.

Associated circuitry 1s typically required for operation of
the memory elements and for communication with the
memory elements. As non-limiting examples, memory
devices may have circuitry used for controlling and driving
memory elements to accomplish functions such as program-
ming and reading. This associated circuitry may be on the
same substrate as the memory elements and/or on a separate
substrate. For example, a controller for memory read-write
operations may be located on a separate controller chip
and/or on the same substrate as the memory elements.

One of skill in the art will recognize that this invention 1s
not limited to the two dimensional and three dimensional
structures described but cover all relevant memory struc-
tures within the spirit and scope of the invention as described
herein and as understood by one of skill in the art.

It 1s intended that the foregoing detailed description be
understood as an 1illustration of selected forms that the
invention can take and not as a definition of the invention.
It 1s only the following claims, including all equivalents, that
are intended to define the scope of the claimed invention.
Finally, 1t should be noted that any aspect of any of the
embodiments described herein can be used alone or 1n
combination with one another.

US 10,289,557 B2

13

What 1s claimed 1s:

1. A storage system comprising:

a volatile memory;

a non-volatile memory; and

a controller in communication with the volatile memory

and the non-volatile memory, wherein the controller 1s
configured to:
store, 1n the volatile memory, a data structure repre-
senting a compressed version of a logical-to-physical
address table stored in the non-volatile memory,
wherein each entry 1n the data structure comprises a
start physical address and start and end logical
addresses for a sequential run of logical addresses;
and
search each entry in the data structure 1n parallel for a
physical address associated with a logical address,
wherein:
the searching comprises (1) simultaneously compar-
ing the logical address both to the start logical
address and to the end logical address 1n each
entry and (11) calculating a physical address asso-
ciated with the logical address, wherein (1) and (11)
are performed 1n parallel, and
cach entry in the data structure 1s searched 1n a same
amount of time.

2. The storage system of claim 1, wherein the controller
1s further configured to calculate the physical address by:

subtracting the start logical address from the logical

address;

dividing by a number of entries in the data structure; and

adding the start physical address.

3. The storage system of claim 1, wherein the non-volatile
memory comprises a three-dimensional memory.

4. The storage system of claim 1, wherein the storage
system 1s embedded 1n a host.

5. A method for searching a cached, compressed database
representing a logical-to-physical address table, the method
comprising;

performing the following 1n a storage system comprising

a volatile memory:

caching, 1n the volatile memory, a compressed database
representing a logical-to-physical address table,
wherein each entry in the compressed database com-
prises a start physical address and start and end
logical addresses for a sequential run of logical
addresses; and

searching each entry in the cached, compressed data-
base 1n parallel for a logical address, wherein the
searching comprises (1) simultaneously comparing

10

15

20

25

30

35

40

45

14

the logical address both to the start logical address
and to the end logical address 1n each entry and (11)
calculating a physical address associated with the
logical address, wherein (1) and (11) are performed 1n
parallel, wherein each entry requires a same amount
of time to search.

6. The method of claim 5, wherein the physical address 1s
calculated by:

subtracting the start logical address from the logical

address;

dividing by a number of entries in the cached, compressed

database; and

adding the start physical address.

7. The method of claim 5, wherein the storage system
further comprises a three-dimensional non-volatile memory.

8. The method of claim 5, wherein the storage system 1s
removably connectable to a host.

9. A storage system comprising:

a volatile memory;

a non-volatile memory;

means for storing, 1n the volatile memory, a data structure

representing a compressed version of a logical-to-
physical address table stored in the non-volatile
memory, wherein each entry in the data structure com-
prises a start physical address and start and end logical
addresses for a sequential run of logical addresses; and
means for searching each entry in the data structure in
parallel for a physical address associated with a logical
address, wherein the searching comprises (1) simulta-
neously comparing the logical address both to the start
logical address and to the end logical address 1n each
entry and (11) calculating a physical address associated
with the logical address, wherein (1) and (1) are per-
formed in parallel, wherein each entry in the data
structure 1s searched 1n a same amount of time.
10. The storage system of claim 9, wherein:
the means for searching comprises a plurality of search
circuitry in communication with a decoder and a mul-
tiplexor; and

cach entry of the data structure 1s associated with 1ts own

search circuitry.

11. The storage system of claim 10, wherein at least one
search circuitry comprises a comparator, an AND gate, a
subtractor, a divider, and an adder.

12. The storage system of claim 9, wherein the non-
volatile memory comprises a three-dimensional memory.

13. The storage system of claim 9, wherein the storage
system 1s embedded 1n a host.

e % e ex 7

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description/Claims

