2/48821 A2

=

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

20 June 2002 (20.06.2002)

(10) International Publication Number

WO 02/48821 A2

(51
@

(22)

29

(26)

(30

(7)

(72)

@81

International Patent Classification’: GO6F

International Application Number: PCT/IB01/02844
International Filing Date:
20 November 2001 (20.11.2001)

Filing Language: English

Publication Language: English
Priority Data:
60/255,096
Not furnished

13 December 2000 (13.12.2000)
29 October 2001 (29.10.2001)

Us
Us

Applicant: ESMERTEC AG [CH/CH]; Lagerstrasse 14,
CH-8600 Dubendorf (CH).

Inventor: HEEB, Beat; Stussistr. 66, CH-8057 Zurich
(CH).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

34

CZ, DE, DK, DM, DZ, EC, EE, ES, HI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SIL SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, M, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD TO CREATE OPTIMIZED MACHINE CODE THROUGH COMBINED VERIFICATION AND TRANS-
LATION OF JAVA BYTECODE

(57) Abstract: The present invention is a new method and apparatus to perform combined compilation and verification of platform
independent bytecode instruction listings into optimized machine code. More specifically, the present invention creates a new method
and apparatus in which bytecode compilation instructions are combined with bytecode verification instructions, producing optimized
machine code on the target system in fewer programming steps than traditionally known. The new method, by combining the steps
required for traditional bytecode verification and compilation, increases speed and applicability of platform independent bytecode
instructions.

10

15

20

25

30

WO 02/48821 PCT/1IB01/02844

METHOD TO CREATE OPTIMIZED MACHINE CODE THROUGH
COMBINED VERIFICATION AND TRANSLATION OF JAVA BYTECODE

CROSS REFERENCE TO RELATED APPLICATIONS -
This Application claims the benefit of U.S. Provisional Application No.
60/255,096 filed 12/13/2000, the disclosure of which is incorporated herein by

reference.

BACKGROUND OF INVENTION

FIELD OF INVENTION

The present invention is related to the combined compilation and verification
of platform neutral bytecode computer instructions, such as JAVA. More specifically,
the present invention relates to a new method of creating optimized machine code
from platform neutral bytecode on either the development or target system by

concurrently performing bytecode verification and compilation.

DESCRIPTION OF RELATED ART

The benefit of architecture neutral language such as JAVA is the ability to
execute such language on a wide range of systems once a suitable implementation
technique, such as a JAVA Virtual Machine, is present. The key feature of the JAVA
language is the creation and use of platform neutral bytecode instructions, which
create the ability to run JAVA programs, such as applets, applications or servelets, on
a broad range of diverse platforms. Typically, a JAVA program is compiled through
the use of a JAVA Virtual Machine (JVM) which is merely an abstract computing
machine used to compile the JAVA program (or source code) into platform neutral
JAVA bytecode instructions, which are then placed into class files. The JAVA
bytecode instructions in turn, serve as JVM instructions wherever the JVM is located.
As bytecode instructions, the JAVA program may now be transferred to and executed
by any system with a compatible JAVA platform. In addition, any other language
which may be expressed in bytecode instructions, may be used with the TVM.

Broadly speaking, computer instructions often are incompatible with other

computer platforms. Attempts to improve compatibility include “high level”

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

language software which is not executable without compilation into a machine
specific code. As taught by U.S. Patent No. 5,590,331, issued December 31, 1996 to
Lewis et al., several methods of compilation exist for this purpose. For instance, a
pre-execution compilation approach may be used to convert “high level” language
into machine specific code prior to execution. On the other hand, a runtime
compilation approach may be used to convert instructions and immediately send the
machine specific code to the processor for execution. A JAVA program requires a
compilation step to create bytecode instructions, which are placed into class files. A
class file contains streams of 8-bit bytes either alone or combined into larger values,
which contain information about interfaces, fields or methods, the constant pool and
the magic constant. Placed into class files, bytecode is an intermediate code, which is
independent of the platform on which it is later executed. A single line of bytecode
contains a one-byte opcode and either zero or additional bytes of operand information.
Bytecode instructions may be used to control stacks, the VM register arrays or
transfers. A JAVA interpreter is then used to execute the compiled bytecode
instructions on the platform.

The compilation step is accomplished with multiple passes through the
bytecode instructions, where during each pass, a loop process is employed in which a
method loops repeatedly through all the bytecode instructions. A single bytecode
instruction is analyzed during each single loop through the program and after each
loop, the next loop through the bytecode instructions analyzes the next single
bytecode instruction. This is repeated until the last bytecode instruction is reached
and the loop is ended.

During the first compilation pass, a method loops repeatedly through all the
bytecode instructions and a single bytecode instruction is analyzed during each single
loop through the program. If it is determined the bytecode instruction being analyzed
is the last bytecode instruction, the loop is ended. If the bytecode instruction being
analyzed is not the last bytecode instruction, the method determines stack status from
the bytecode instruction and stores this in stack status storage, which is updated for
each bytecode instruction. This is repeated until the last bytecode instruction is

reached and the loop is ended.

During the second compilation pass, a method loops repeatedly through all the

bytecode instructions once again and a single bytecode instruction is analyzed during

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

each single loop through the program. If it is determined the bytecode instruction
being analyzed is the last bytecode instruction, the loop is ended. If the bytecode
instruction being analyzed is not the last bytecode instruction, the stack status storage
and bytecode instruction are used to translate the bytecode instruction into machine
code. This is repeated until the last bytecode instruction is translated and the loop is
ended. w

1

A JAVA program however, also requires a verification step to ensure
malicious or corrupting code is not present. As with most programming languages,
security concerns are addressed through verification of the source code. JAVA
applications ensure security through a bytecode verification process which ensures the
JAVA code is valid, does not overflow or underflow stacks, and does not improperly
use registers or illegally convert data types. The verification process traditionally
consists of two parts achieved in four passes. First, verification performs internal
checks during the first three passes, which are concerned solely with the bytecode
instructions. The first pass checks to ensure the proper format is present, such as
bytecode length. The second pass checks subclasses, superclasses and the constant
pool for proper format. The third pass actually verifies the bytecode instructions. The
fourth pass performs runtime checks, which confirm the compatibility of the bytecode

instructions.

As stated, verification is a security process, which is accomplished through
several passes. The third pass in which actual verification occurs, employs a loop
process similar to the compilation step in which a method loops repeatedly through all
the bytecode instructions and a single bytecode instruction is analyzed during each
single loop through the program. After each loop, the next loop through the bytecode
instructions analyzes the next single bytecode instruction which is repeated until the

last bytecode instruction is reached and the loop is ended.

During the verification pass, the method loops repeatedly through all the
bytecode instructions and a single bytecode instruction is analyzed during each single
loop through the program. If it is determined the bytecode instruction being analyzed
is the last bytecode instruction, the loop is ended. If the bytecode instruction is not
the last bytecode instruction, the position of the bytecode instruction being analyzed is
determined. If the bytecode instruction is at the'beginning of a piece of code that is

executed contiguously (a basic block), the global stack status is read from bytecode

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

auxiliary data and stored. After storage, it is verified that the stored global stack
status is compliant with the bytecode instruction. If however, the location of the
bytecode instruction being analyzed is not at the beginning of a basic block, the global
stack status is not read but is verified to ensure the global stack status is compliant
with the bytecode instruction. After verifying that the global stack status is compliant
with the bytecode instruction, the global stack status is changed according to the
bytecode instruction. This procedure is repeated during each loop until the last

bytecode instruction is analyzed and the loop ended.

It may be noted that the pass through the bytecode instructions that is required
for verification closely resembles the first compilation pass. Duplicate passes during
execution can only contribute to the poor speed of JAVA programs, which in some
cases may be up to 20 times slower than other programming languages such as C.
The poor speed of JAVA programming is primarily the result of verification. In the
past, attempts to improve speed have included compilation during idle times and pre-
verification. In U.S. Patent No. 5,970,249 issued October 19,1999 to Holzle et al., a
method is taught in which program compilation is completed during identified
computer idle times. And in U.S. Patent No. 5,999,731 issued December 7, 1999 to
Yellin et al. the program is pre-verified, allowing program execution without certain
determinations such as stack overflow or underflow checks or data type checks. Both
are attempts to improve execution speed by manipulation of the compilation and
verification steps. In order to further improve speed, a method and apparatus is
needed that can combine these separate, yet similar steps, the verification pass, and
the first and second compilation pass, into a step which accomplishes the multiple

tasks in substantially less time.

BRIEF SUMMARY OF THE INVENTION

It is the object of the present invention to create a method and apparatus which
may be used to combine compilation and verification of platform independent
bytecode, either on the development system or within the target system, into
optimized machine code thereby improving execution speed. Considering the
required steps of bytecode compilation and verification, similarities between the two
may be used to combine steps thereby reducing the time required to achieve both.

The new method consists of a program instruction set which executes fewer passes

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

through a bytecode instruction listing where complete verification and compilation is

achieved, resulting in optimized machine code.

The new method loops repeatedly through all the bytecode instructions and a
single bytecode instruction is analyzed during each single loop through the program.
If it is determined the bytecode instruction being analyzed is the last bytecode
instruction, the loop is ended. If the bytecode instruction is not the last bytecode
instruction however, the position of the bytecode instruction is determined and if the
bytecode instruction being analyzed is at the beginning of a piece of code that is
executed contiguously (a basic block), the global stack status is read from bytecode
auxiliary data and stored. After storage, it is verified that the stored global stack
status is compliant with the bytecode instruction. If however, the location of the
bytecode instruction being analyzed is not at the beginning of a basic block, the global
stack status is not read, but is verified to ensure the global stack status is compliant
with the bytecode instruction. After verifying that the global stack status is compliant
with the bytecode instruction, the global stack status is changed according to the
bytecode instruction being analyzed. In addition, stack status is determined from the
bytecode instruction being analyzed and stored in stack status storage. In doing so,
the new method achieves complete verification and partial compilation (the steps

traditionally performed during separate verification and compilation in the prior art).

Next, the new method loops repeatedly through all the bytecode instructions
and if it is determined the bytecode instruction being analyzed is the last bytecode
instruction, the loop is ended, otherwise the pass is repeated for each bytecode listing
within each class file. If the bytecode instruction is not the last bytecode instruction,
the stack status storage and bytecode instruction are used to translate the bytecode
instruction being analyzed into optimized machine code and this is repeated until the

last bytecode instruction is translated and the loop is ended.

The new method achieves complete verification and compilation of the
bytecode instructions into optimized machine code on the development or target
system. Through the combined steps, compilation and verification occur

simultaneously using the new method.

WO 02/48821 PCT/IB01/02844

BRIEF DESCRIPTION OF DRAWINGS
These and other objects, features and characteristics of the present invention
will become more apparent to those skilled in the art from a study of the following
5 detailed description in conjunction with the appended claims and drawings, all of

which form a part of this specification. In the drawings:

FIG. 1A (prior art) illustrates a flowchart of traditional bytecode instruction
first pass compilation;
10 FIG. 1B (prior art) illustrates a flowchart of traditional bytecode instruction
second pass compilation;
FIG. 2 (prior art) illustrates a flowchart of traditional bytecode instruction
verification;
FIG. 3 illustrates a main flowchart of the embodiment of the new method,
15 FIG. 4A illustrates a subset flowchart of the embodiment of the new method;
and
FIG. 4B further illustrates a subset flowchart of the embodiment of the new

method.

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

DETAILED DESCRIPTION OF PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

The present invention provides an improved method and apparatus to perform
platform independent bytecode compilation and verification creating optimized
machine code on an independent platform. The present invention, by creating a new
bytecode compilation method combined with instruction verification, increases the
speed and applicability of bytecode programming.

In prior art Figures 1A and 1B, an illustrative flow diagram of traditional
bytecode compilation is shown. In prior art Figure 1A, a traditional compilation
method is shown as flow diagram 100 which loops through the bytecode instructions,
analyzing an individual bytecode instruction during each loop as stated in step 102.
After each bytecode instruction is analyzed, the method determines the stack status
from the bytecode instruction being analyzed and stores the stack status in stack status
storage as stated in step 104. When the last bytecode instruction is analyzed as stated
step 102, the loop is ended at step108 and partial compilation is completed.

In prior art Figure 1B, remaining compilation occurs in flow diagram 150
which shows further loops through the bytecode instructions analyzing an individual
bytecode instruction during each loop as stated in step 152. The stack status storage
and bytecode instruction are then used to translate the bytecode instruction into
machine code as stated in step 154. When the last bytecode instruction is translated as
stated in step 152, the loop is ended at step 158 and compilation is completed.

In prior art Figure 2, an illustrative flow diagram of traditional bytecode
verification is shown in flow diagram 200 which loops through the bytecode
instructions, analyzing each until the last instruction is reached as stated in step 202.
During each loop, the method analyzes a single bytecode instruction and if the method
determines it has reached the last bytecode instruction, the loop is ended at step 214.
Otherwise, the method determines the bytecode instruction position as stated in step
204. If the bytecode instruction being analyzed is at the beginning of a basic block,
then the method reads the global stack status from bytecode auxiliary data and stores
it as stated in step 206. After storage, the method verifies that the stored global stack
status is compliant with the bytecode instruction as stated in step 208. If the bytecode

instruction is not at the beginning of a basic block as stated in step 204, the global

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

stack status is not read, but is verified to ensure the global stack status is compliant
with the bytecode instruction as stated in step 208. In this case, step 206 is omitted.
The global stack status is then changed according to the bytecode instruction as stated
in step 210. This is repeated for each bytecode instruction until the last instruction is
analyzed as stated in step 202 and the loop is ended at step 214.

In Figures 3, 4A and 4B an illustrative flow diagram of the new method is
shown. It may be noted from earlier prior art Figures that the pass through the
bytecode instructions that is required for verification resembles compilation
procedures. In the case of verification, the effect of the bytecode instruction on the
stack must be analyzed and stored as a global stack status (i.e. a single storage
location that 1s updated for every bytecode). This global storage stack must be filled
from auxiliary data each time a basic block of data is entered. 1n the case of
compilation, a similar analysis must be performed, however the stack status must be

stored (in less detail) in stack status storage for each bytecode instruction analyzed.

The present invention provides an improved method and apparatus to perform-
platform independent bytecode compilation and verification creating optimized
machine code on an independent platform. The present invention creates a new
method in which bytecode compilation is combined with instruction verification
thereby increasing the speed and applicability of bytecode programming.

Figure 3 is a main flowchart of a method 300 for combined bytecode
verification and compilation in accordance with the new invention. In step 302, a
class file placed on the development or target system is selected and a first method
within the first class file is selected in step 304. At this point, the stack status for the
first instruction and handler targets is set up in step 306. In step 308 a first bytecode
instruction is selected and evaluated to determine if the instruction is setup in step
310. If the instruction is setup, the instruction is analyzed as outlined in Figures 4A
and 4B. If the instruction is not setup, the next setup instruction is selected in step
312 and types are loaded from the stack map in step 314.

Once the instruction has been analyzed in step 316, the following instruction is
selected in step 318. If there are no remaining instructions as determined in step 320,
the next method is selected in steps 322 and 328. If there are no remaining methods,
the next class is selected in steps 324 and 330. If there are no remaining classes, the

evaluation returns in step 326.

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

Figures 4A and 4B are subset flowcharts of a method 400 for the analyses of
each bytecode instruction from step 316 in Figure 3. In step 402, the selected
instruction is checked to determine if it is within the scope of the exception handler.
If it is, the compatibility between the actual local variable types and the exception
handler stack map entry in bytecode is verified in step 404. If not, the instruction is
set to “handled” in step 406 and the stack status of the actual instruction is copied to
the new stack status.

Next the instruction is evaluated to determine if there is a resulting pop from
the stack in step 408 or a resulting push to the stack in step 414. If there is a resulting
pop from the stack indicating an overflow condition, the compatibility between the
stack status and expected values is verified in step 410 and the new stack status is then
modified according to the instruction in step 412. If there is a resulting push to the
stack indicating an underflow condition, the new stack status is modified according to
the instruction and new actual stack types are set according to the instruction in step
416.

In steps 418 and 422 the instruction is evaluated to determine if the instruction
reads a local variable or writes to a local variable. If the instruction reads a local
variable, the compatibility between the actual local variable type and the instruction is
verified in step 420. If the instruction writes to a local variable, the variable type is
modified according to the actual instruction.

In step 426, the first successor instruction is evaluated. The instruction
immediately following the actual instruction, determined in step 428, is dealt with in
step 438 after all other successor instructions have been dealt with by step 436. Each
successor instruction other than the instruction immediately following the actual
instruction is evaluated in step 430 to determine if the instruction is marked as
“none”. If the successor instruction is marked as “none”, the stack status of the
successor instruction is initialized to the new stack status and the successor instruction
is marked as “setup” in step 432 and the compatibility between the new stack status
and the stack map for the successor instruction in the bytecode is verified. The
compatibility between the actual stack, local variable types and stack map for the
successor instruction is verified in step 434 and repeated until no further successor
instructions remain.

If the instruction is immediately following the actual instruction, step 438

determines if the instruction is a successor instruction and if so, step 440 determines if

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

the instruction is marked as “none”. If the successor instruction is marked as “’none”,
the stack status of the following instruction is initialized to the new stack status and
the following instruction is marked as “setup” in step 442. The compatibility between
the new stack status and the stack map is verified. If there is a stack map for the
successor instruction in step 444, the compatibility between the actual stack, local
variable types and stack map for the successor instruction is verified in step 446 and
types are loaded from the stack map in step 448. Once completed, step 450 returns to
the main flowchart at step 318.

Referring to Table 1, the new combined compilation and verification method
places each class file in the development or target system, at which point each method
in the class containing bytecode instructions is analyzed. The stack status for the first
instruction and handler targets is setup. Temporary storage is created for stack status
and marks for each bytecode instruction, in addition temporary storage for actual

types of stack values and local variables is created.

Next, the method initializes the stack status of the first instruction to empty
and the stack status of the exception handler target instructions is initialized to
contain the given exception. The marks of the first instruction and handler target
instructions are set to “setup” and all other marks are set to “none”. The method
signature is then used to initialize actual local variable types and the first bytecode
instruction is set to be the actual instruction. This is repeated until no further

instructions are marked as “setup”.

The next subsequent bytecode instruction in turn which is marked as "setup"” is
set to be the actual instruction. The actual stack and local variable types from the
stack map belonging to the actual instruction (each bytecode instruction) are loaded.
If the actual instruction is within the scope of the exception handler, the compatibility
between the actual local variable types and the exception handler stack map entry in
bytecode is verified. Once verified or where the actual instruction is not within the
scope of the exception handler, the selected bytecode instruction is set to “handled”

and the stack status of the actual instruction is copied to new stack status.

If the actual instruction pops one or more values from the stack, the
compatibility between the stack status and expected values is verified and the new

stack status is then modified according to the instruction. If the actual instruction

10

10

15

20

25

30

WO 02/48821 PCT/IB01/02844

pushes one or more values to the stack, the new stack status is modified according to

the instruction and new actual stack types are set according to the instruction.

A check for overflow and underflow conditions occurs next. If the actual
instruction pops one or more values from the stack, check for underflow and verify
the compatibility between the stack status and expected values and then modify the
new stack status is according to the instruction. If there is no underflow condition,
overflow conditions are evaluated. If the actual instruction pushes one or more values
to the stack, check for overflow and modify the new stack status according to the

instruction and new actual stack types are set according to the instruction.

Once overflow and underflow checks are performed, the instruction is
evaluated to determine if it reads a local variable or writes to a local variable. If the
actual instruction reads a local variable, the compatibility between the actual local
variable type and the instruction is verified. If the actual instruction writes to a local

variable, the actual local variable type is modified according to the actual instruction.

The first successor instruction is then evaluated. For each successor
instruction except the one immediately following the actual instruction, if the
successor instruction is marked as “none”, the stack status of the successor instruction
is initialized to the new stack status and the successor instruction is marked as
“setup”. The compatibility between the new stack status and the stack map for the
successor instruction in the bytecode is verified. Once the successor is “setup”, or if it
was already “setup”, the compatibility between the actual stack, local variable types

and stack map for the successor instruction in the bytecode is also verified.

If the instruction immediately following the actual instruction is a successor of
the actual instruction and the following instruction is marked as “none”, the stack
status of the following instruction is initialized to the new stack status. The following
instruction is then marked as “setup”. Once the successor is “setup”, or if it was
already “setup”, if there is a stack map in the bytecode for the following instruction,
the compatibility between new stack status and the stack map is verified. The
compatibility between actual stack, local variable types and the stack map is also
verified. The actual types are then loaded from the stack map and the actual

instruction is changed to the immediately following instruction. The process is

11

10

WO 02/48821 PCT/IB01/02844

repeated for each method within each class file, and thereafter repeated for each class

file.

Prior art improvement methods in which computer idle time is filed with
compilation steps and pre-verification, do not teach a method of combining
verification and compilation steps. Also, idle time compilation is constantly
subject to interruption and pre-verification may not eliminate all malicious
code present. The result of using the new method shown in Figures 3, 4A, 4B
and Table 1, is complete compilation and verification into optimized machine

code with fewer program operations and reduced process times.

12

10

15

20

25

WO 02/48821 PCT/IB01/02844

I Claim:

1. A computer apparatus suitable for use in the combined compilation and
verification of platform neutral bytecode instructions resulting in optimized machine

code, comprising:
a central processing unit (CPU);

a computer memory coupled to said CPU, said computer memory comprised

ofa
computer readable medium;
a compilation-verification program embodied on said computer readable
medium,
said compilation-verification program comprising:
a first code segment that receives a bytecode listing;
a second code segment that verifies said bytecode listing is free
of
malicious and improper code and compiles said
bytecode

listing into machine code; and
a third code segment that interprets and executes said machine

code.

2. A computer apparatus as recited in Claim 1 wherein said computer program
simultaneously verifies and compiles said bytecode listing into optimized machine

code.

3. A computer apparatus suitable for use in the combined compilation and
verification of platform neutral bytecode instructions resulting in optimized machine

code, comprising:

a development or target computer system, said development or target

computer

13

10

15

20

25

WO 02/48821 PCT/IB01/02844

system comprised of a computer readable storage medium containing a

compilation verification program and one or more class files, said one

or
more class files containing one or more methods containing bytecode
instruction listings;
said compilation-verification program contained on said storage medium
comprised of a first plurality of subset instructions, said first plurality
configured to execute verification of said bytecode instruction listings;

said compilation-verification program contained on said storage medium

further
comprised of a second plurality of subset instructions, said second

plurality configured to execute compilation of said bytecode

instruction
listings; and

an optimized machine code simultaneously resulting from said first and

second

subset instructions.

4. A computer apparatus as recited in Claim 3 wherein said first plurality of subset
instructions evaluates said bytecode instructions to detect improper data types and

improper stack usage.

5. A computer apparatus as recited in Claim 3 wherein said second plurality of subset
instructions evaluates said bytecode instructions for complete compilation of said

bytecode instructions into said optimized machine code.

6. A computer apparatus as recited in Claim 3 wherein said first and second plurality

of subset instructions are executed simultaneously.

14

10

15

20

25

WO 02/48821 PCT/IB01/02844

7. A computer implemented method for facilitating combined compilation and
verification of platform neutral bytecode instructions resulting in optimized machine

code, comprising the steps of:
receiving a class file onto a computer readable medium containing compilation
procedure instructions, said class file containing one or more methods
containiﬁg platform neutral bytecode listings;

executing said compilation procedure instructions on said bytecode listings,

said
compilation procedure instructions also simultaneously verifying said
bytecode listings; and

producing verified optimized machine code on said computer readable

medium.

8. A computer implemented method as recited in Claim 7 wherein said compilation
procedure creates storage for each bytecode instruction to store stack status and

marks.

9. A computer implemented method as recited in Claim 8 wherein said compilation

procedure creates storage to store actual types of stack values and local variables.

10. A computer implemented method as recited in Claim 9 wherein said compilation

procedure initializes stack status of the first bytecode instruction to empty.

11. A computer implemented method as recited in Claim 10 wherein said compilation
procedure initializes stack status of exception handler target instructions to contain a

given exception object.

15

10

15

20

25

WO 02/48821 PCT/IB01/02844

12. A computer implemented method as recited in Claim 11 wherein said compilation
procedure sets marks of said first bytecode instruction and handler target instructions

to setup.

13. A computer implemented method as recited in Claim 12 wherein said compilation

procedure sets all other marks to none.

14. A computer implemented method as recited in Claim 13 wherein said compilation

procedure initializes actual local variable types from method signature.

15. A computer implemented method as recited in Claim 14 wherein said compilation

procedure sets said first bytecode instruction to be the actual instruction.

16. A computer implemented method as recited in Claim 15 wherein said compilation

procedure repeats until there are no more instructions marked as setup.

17. A computer implemented method as recited in Claim 16 wherein said compilation
procedure determines if said actual instruction is not marked as setup and if not

marked as setup then:
selecting the next instruction in the bytecode marked as setup as said actual
instruction; and
loading actual stack and local variable types from the stack map in bytecode

belonging to said actual instruction.

18. A computer implemented method as recited in Claim 17 wherein said compilation
procedure determines if said actual instruction is in the scope of an exception handler

and if said actual instruction is in the scope then:

verify compatibility between actual local variable types and stack map for the

16

10

15

20

25

WO 02/48821 PCT/IB01/02844

exception handler entry in bytecode.

19. A computer implemented method as recited in Claim 18 wherein said compilation

procedure sets the mark of selected instruction to handled.

20. A computer implemented method as recited in Claim 19 wherein said compilation

procedure copies stack status of actual instruction to new stack status.

21. A computer implemented method as recited in Claim 20 wherein said compilation
procedure determines if said actual instruction pops one or more values from the stack

and if said actual instruction pops one or more values from said stack then:

verify compatibility between the stack status and types and the values

expected by
said actual instruction; and

modify new stack status according to said actual instruction.

22. A computer implemented method as recited in Claim 21 wherein said compilation
procedure determines if said actual instruction pushes one or more values to the stack

and if said actual instruction pushes one or more values to the stack then:
modify new stack status according to said actual instruction; and

set new actual stack types according to said actual instruction.

23. A computer implemented method as recited in Claim 22 wherein said compilation
procedure determines if said actual instruction reads a local variable and if said actual

instruction reads said local variable then:
verify compatibility between actual local variable types and said actual

instruction.

17

10

15

20

25

WO 02/48821 PCT/IB01/02844

24. A computer implemented method as recited in Claim 23 wherein said compilation
procedure determines if said actual instruction writes to a local variable and if said

actual instruction writes to said local variable then:

modify actual local variable types according to said actual instruction.

25. A computer implemented method as recited in Claim 24 wherein said compilation
procedure determines if a successor instruction is immediately following said actual
instruction and if said successor instruction is not immediately following said actual

instruction then:

if said successor instruction is marked as none, initialize the stack status of

said
successor instruction to the new stack status and mark said successor
instruction as setup;
verify compatibility between new stack status and stack map for said
successor
instruction in the bytecode; and
verify compatibility between actual stack and local variable types and stack
map

for said successor instruction in the bytecode.

26. A computer implemented method as recited in Claim 25 wherein said compilation
procedure determines if an instruction immediately following said actual instruction is
a successor of said actual instruction and if said following instruction is a successor of

said actual instruction then:

if said successor instruction is marked as none, initialize the stack status of

said
following instruction to the new stack status and mark said following
instruction as setup;

if there is a stack map in the bytecode for said following instruction, verify

18

10

15

WO 02/48821 PCT/IB01/02844
compatibility between new stack status and stack map for said
successor
instruction in the bytecode; and

verify compatibility between actual stack and local variable types and stack

map

for said successor instruction in the bytecode.

27. A computer implemented method as recited in Claim 26 wherein said compilation

procedure changes said actual instruction to the immediately following instruction.

28. A computer implemented method as recited in Claim 27 wherein said compilation

procedure repeats for each said method.

29. A computer implemented method as recited in Claim 28 wherein said compilation

" procedure repeats for each said class.

19

WO 02/48821 PCT/IB01/02844
1/6

——100

Loop through byte-code
instructions;
YES

Analyze one byte-code ‘ END
instruction; 108J

Is the byte-code instruction
the last?

J
NO 102

Determine stack status
from
byte-code instruction and
store in stack status
storage

104

Traditional Byte-
Code Compilation

Pass 1

FIGURE 1A

WO 02/48821 PCT/IB01/02844
2/6

—150

Loop through byte-code
instructions;

Analyze one byte-code E ND
instruction; 158—)

Is the byte-code instruction
the last?

NO

Use stack status storage
and byte-code instruction
to translate to machine
code

154-/

Traditional Byte-
Code Compilation

Pass 2

FIGURE 1B

WO 02/48821

FIGURE 2

Traditional Byte-
Code Verification

3/6

Loop through byte-code

instructions;

Analyze one byte-code
instruction;

Is the byte-code instruction
the last?

NO

Determine byte-code
instruction position

Not at the
beginning of a
basic block

At the
beginning of
a basic block

204 /

PCT/IB01/02844

Read global stack
status
from byte-code
auxiliary
data and store it

206J

Verify that the stored
globai
stack status is
compliant
with the byte-code

208 J

Change global stack
status
according to the
byte-code

210J

WO 02/48821

I

L 302

Select first class to compile

.
Lt

=

4

A

|
4
Setup stack status for first

instruction and handler targets.
? Initialize types from signature

¢ 308

Select first instruction

304
l Select next class Select first method
330
306
L..::J

Select next method

328

310

Is instruction setup?

PCT/IB01/02844

300

FIGURE 3

l—

A

Select next setup instruction.

312

A

Load types from stack map.

314

i A
Analyze instruction
(see B)

¢ 318

) Select following instruction

322

All methods analyzed?

316
L

All classes analyzed?

WO 02/48821

7 scope of exception handler?

Set instruction to handled ‘I

Pops from stack?

Pushes to stack?

Reads local variable?

Writes to variable?

PCT/1IB01/02844
5/6
400
A
402
l 404
Verify local types to stack map
406
408
L 410
Verify stack to instruction
¢ 412
Modify stack according to instruction
414
l 416
Set stack types according to iustruction
418
; 420
Verify variable type to instruction J
422
L 424
Set variable type according to instruction
FIGURE 4A

WO 02/48821 PCT/IB01/02844
6/6

C

l 426

Get first successor instruction FIGURE 4B

450

Is following instruction?

Is successor setup?

v e

Setup stack status of
successor instruction

Verify stack and types to stack |_434 I

map of successor instruction

il

More successors?

ollowing instruction a successo

Is successor setup?

v [@
-

Setup stack status of
successor instruction

s there a stack map for e

succeM l .
|]

Verify stack and types to stfs.<?L
map of successor instruction

v =

Load types from stack map

v |

450
Return

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

