PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

_(51) International Patent Classification 6.

GOGF 17/60 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/64973

16 December 1999 (16.12.99)

(21) International Application Number:

(22) International Filing Date: 10 June 1999 (10.06.99)

(30) Priority Data:
330675 10 June 1998 (10.06.98) NZ

(71) Applicant (for all designated States except US): AUCKLAND
UNISERVICES LIMITED [NZ/NZ]; 58 Symonds Street,
Auckland (NZ).

(72) Inventors; and
(75) Inventors/Applicants (for US only): COLLBERG, Christian,
Sven [SE/US); Apartment 25101, 6655 N. Canyon Crest

PCT/NZ99/00081 | (81) Designated States: AE, AL, AM, AT, AT (Utility model), AU,

AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ
(Utility model), DE, DE (Utility model), DK, DK (Utility
model), EE, EE (Utility model), ES, FI, FI (Utility model),
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG,
MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
SG, SJ, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA,
UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, F], FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Drive, Tucson, AZ 85750 (US). THOMBORSON, Clark, | Published

David [US/NZ]; 3/61 Fancourt Street, Meadowbanks, Auck-
land (NZ).

(74) Agents: HAWKINS, Michael, Howard et al.; Baldwin Shelston
Waters, NCR Building, 342 Lambton Quay, Wellington
(N2).

With international search report.

(54) Title: SOFTWARE WATERMARKING TECHNIQUES

(57) Abstract

A method of watermarking a software object)

whereby a watermark is stored in the state of the
software object as it is being run with a particular
input sequence. Further disclosed is a method of
watermarking software including the steps of: em-

o P

bedding a watermark in a static string; and applying
an obfuscation technique whereby this static string

is converted into executable code. Also disclosed
is a method of verifying the integrity or origin of a
program comprising embedding a watermark in the
state of a program as the program is being run with a
particular input sequence building a recognizer con-
currently with the input and watermark wherein the
recognizer is adapted to extract the watermark graph
from other dynamic structures on the heap or stack
wherein the recognizer is kept separately from the
program; wherein it is adapted to check for a number
n, n, in a preferred embodiment, being the product of
two primes and wherein n is embedded in the topol-
ogy of the watermark. Further disclosed is a method
of watermarking software wherein the watermark is

-]
o BednO
guer Neda O
é -a«-oﬁ:

chosen from a class of graphs wherein each member
has one or more properties, such as planarity, said

Figure 3: A% Alice selects two laxge primes P and Q, and

their product n. At @ she embeds

property being capable of being tested by integrity
testing software.

cmputes
nmmwd.mmmthmmnowummudplmwm
builds the graph. n@mmhmmmmwﬂmqmmmqn
Ri

run with Z as input, W is buit. Abwo, a recogniser prog: d, which is able to identify
w«mmmm:mmh.newamhmmmmw
obfascated 4o such an extent that R cannot identify it. At @ the application (incinding the &
tamperprocfing code, and ixer) is obfy d. At Q) the iner in d from the spls

O3 is the version of Alice’s program that is distributed. At @ Chacies links in the recogniser program R
with O3. At @ the application is run with Z as input, and the recognisex R xuduces n. Since Charies is
thdymmmﬁdxmhmmnmmwdwnm

AL
AM

AU
AZ
BA
BB
BE
BF
BG
BJ

BR
BY
CA
CF
CG
CH
CI

CN
CU

DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
T3
™
TR
TT
UA
uG
uUs
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 99/64973 PCT/NZ99/00081

1
SOFTWARE WATERMARKING TECHNIQUES

FIELD OF THE INVENTION

The present invention relates to methods for protecting software against theft,

establishing/proving ownership of software and validating software. More particularly,
although not exclusively, the present invention provides for methods for
watermarking what will be generically referred to as software objects. In this context,

software objects may be understood to include programs and certain types of media.

BACKGROUND TO THE INVENTION

Watermarking is the process of embedding a secret message, the watermark, into a

cover or overt message. For example, in media watermarking, the secret is
commonly a copyright notice and the cover is a digital image, video or audio
recording. Fingerprinting is a method whereby each individual software application
incorporates a, potentially, unique, watermark which aliows that particular example of
the software to be identified. Fingerprinting may be viewed as a multiple use of

watermarking techniques.

The watermark is constructed to make it difficult to remove the watermark without
damaging the software object in which it is embedded. Such watermarks may only
be removed safely by someone (or some process) in possession of one or more

secrets that were employed while constructing the watermark.

Watermarking a software object (hereafter referred to as an object) discourages
intellectual property theft. A further application is that watermarking an object can be
used to establish and/or prove evidence of ownership of an object. Fingerprinting is
similar to watermarking except a different watermark is embedded in every cover
message thus providing a unique fingerprint for every object. Watermarking is
therefore a subset of fingerprinting and the latter may be used to detect not only the
fact that a theft has occurred, but may also allow identification of the particular object
and thus establish an audit trail which can be used to reveal the infringer of

copyright.

In the context of prior art watermark techniques, the following scenario serves to

illustrate the ways in which a watermarked object may be vulnerable to attack. With

10

15

20

25

30

WO 99/64973 PCT/NZ99/00081
2

reference to figure 1, suppose that A watermarks an object O with a watermark W

and key K. If the object O is sold to B and B wishes to (illegally) on-sell O to C, there

are various types of attack to which O may be vuinerable.

Detection: initially B must try and detect the presence of the watermark in O. If there

is no watermark, no further action is necessary.

Locate and remove: once B has determined that O carries a watermark, B may try to

locate and remove W without otherwise harming the rest of the contents of O.

Distort: if some degradation in quality of O is acceptable, B may distort it sufficiently
so that it becomes impossible for A to detect the presence of the watermark W in the
object O.

Add: alternatively, if removing the watermark W s too difficult, or distorting the object
O is not acceptable, B might simply add his own watermark W' (or several such

marks) to the object O. This way, A's mark becomes just one of many.

It is considered that most media watermarking schemes are vulnerable to attack by
distortion. For example, image transforms such as cropping and lossy compression

will distort the image sufficiently to render many watermarks unrecoverable.

To the knowledge of the applicants there exists no effective watermarking scheme
which is capable of use with or appropriate for software. It would be a significant
advantage to be able to apply watermarking techniques to software in view of the
widespread occurrence of software piracy. It is estimated at software piracy costs
approximately 15 billion dollars per year. Thus the problem of software security and

protection is of significant commercial importance.

One simple way, known in the prior art, of embedding a watermark in a piece of
software is simply to include it in the initialized static data section of the object code.
In a similar, yet more complex manner, watermarks are often encoded in what is
known as an ."Easter egg". This is a piece of code, which is activated for a highly

unusual or seldom encountered input to the particular application, which displays a

10

15

20

25

35

WO 99/64973 PCT/NZ99/00081

3

watermark image, plays a watermark sound, or, in some way, alerts the user that the .

watermark code has been activated.

Thus, it is an object of the present invention to provide methods for watermarking
software objects which overcomes the limitations inherent in prior art watermarking
techniques and allows for non-media objects to be watermarked effectively. It is a
further object of the present invention to provide methods for watermarking software
objects which are resistant to the aforementioned techniques for attacking watermark

objects or to at least provide the public with a useful choice.

DISCLOSURE OF THE INVENTION

In one aspect, the invention provides for a method of watermarking a software

object whereby a watermark is stored in the state of the software object as it is being

run with a particular input sequence.

The software object may be a program or piece of program.

The state of the software object may correspond to the current values held in the

stack, heap, global variables, registers, program counter and the like.

In a preferred embodiment, the watermark may be stored in an object’s execution
state whereby a (possibly empty) input sequence / is constructed which, when fed to
an application of which the object is a part, will make the object O enter a state which
represents the watermark, the representation being validated or checked by

examining the dynamically allocated data structures of the object O.

in an alternative embodiment, the watermark could be embedded in the execution
trace of the object O whereby, as a special input / is fed to O, the address/operator

trace is monitored and, based on a property of the trace, a watermark is extracted.

In a preferred embodiment, the watermark is embedded in the state of the program

as it is being run with a particular input sequence /=/,... I,

The watermark may be embedded in the topology of a dynamically built graph

structure.

10

15

20

25

30

35

WO 99/64973 PCT/NZ99/00081

The graph structure (or watermark graph) corresponds to a representation of the
data structure of the program and may be viewed as a set of nodes together with a

set of vertices.

The method may further comprise building a recognizer R concurrently with the

input / and watermark W.

Preferably R is a function adapted to identify and extract the watermark graph from

all other dynamically allocated data structures.

In an alternative, less preferred embodiment, the watermark W may incorporate a

marker that will allow R to recognize it easily.

in a preferred embodiment, R is retained separately from the program whereby R is
dynamically linked with the program when it is checked for the existence of a

watermark.

Preferably the application of which the object forms a part is obfuscated or

incorporates tamper-proofing code.

In a preferred embodiment, R extracts a value n from the topology of the graph

comprising the watermark W.

The watermark W has a signature property s where s(W) evaluates to “true” if the
watermark W is recognisable wherein the recogniser R tests a presumed watermark

W’ by evaluating the signature property s(W’).

In a preferred embodiment, the method includes the creation of a number n which
may be embedded in the topology of a watermark graph, wherein the signature

property s(W) is a function of a number n so embedded.

In a preferred embodiment, the signature property s(W) is “true” if and only if the

number n is the product of two primes.

10

15

20

25

35

WO 99/64973 PCT/NZ99/00081

The invention further provides for a method of verifying the integrity or origin of a
program comprising:

embedding a watermark W in the state of a program as the program is being .run
with a particular input sequence /, |
building a recognizer R concurrently with the input / and watermark W wherein the
recognizer is adapted to extract the watermark graph from other dynamically
allocated data structures wherein R is kept separately from the program; wherein R
is adapted to check for a number n, n, in a preferred embodiment, being the product

of two primes and wherein n is embedded in the topology of W.
Other properties of Wmay be used to compute the signature.

The number n may be derived from any combination of numbers depending on the

context and application.

Preferably the program or code is further adapted to be resistant to tampering,

preferably by means of obfuscation or by adding tamper-proofing code.

Preferably the watermarks W are chosen from a class of graphs G wherein each
member of G has one or more properties, such as planarity, said property being

capable of being tested by integrity-testing software.

In an alternative embodiment, the watermark may be rendered tamperproof to
certain transformations, such as attacks, by expanding each node of the watermark
graph into a j~cycle, where j may be any number, in a preferred embodiment, a small

number from 1 to 5.

In a broad aspect, the recognizer R checks for the effect of the watermarking code
on the execution state of the application thereby preserving the ability to recognize
the watermark in cases where semantics-preserving transformations have been

applied to the application.

In a further aspect, the invention provides for a method of watermarking software

including the steps of:

10

15

20

25

30

WO 99/64973

PCT/NZ99/00081
6

embedding a watermark in a static string, then applying an obfuscation -

technique whereby this static string is converted into executable code.

The executable code is called whenever the static string is required by the program.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described by way of example only and with

reference to the figures in which:

Figure 1:

Figure 2;

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

illustrates methods of adding a watermark to an object and attacking

the integrity of such a watermark;
illustrates methods of embedding a watermark in a program;

illustrates an example of a function used to embed a watermark within

a static string;

illustrates insertion of a bogus predicate into a program;
illustrates splitting variables;

illustrates merging variables;

illustrates the conversion of a code section into a different virtual

machine code;

illustrates an example of a method of the watermarking scheme

according to the present invention;

illustrates a possible encoding method for embedding a number in the

topology of a graph;

10

15

20

25

WO 99/64973 - PCT/NZ99/00081

7

Figure 10: illustrates another possibie embodiment for embedding a number in
‘the topology of a graph;

Figure 11; illustrates a marker in a graph;

Figure 12: illustrates examples of obfuscating transformations;

Figure 13: illustrates examples of tamperproofing Java code;

Figure 14: illustrates enumeration encoding in a planted plane cubic tree on 2m =
8 nodes; and

Figure 15: illustrates tamperproofing against node-splitting.

Referring to Figure 1(b) a way is shown by which Bob can circumvent a
watermarking scheme by distorting the protected object. If the distortion is at "just
the right level", O will still be usable by Bob, but Charles will be unable to extract the
watermark. In Figure 1(9), the distortion is so severe that O is no longer functional,

so Bob will not be able to use it, nor is he able to on-sell it.

In the present context, tamperproofing is applied in order to prevent an adversary
from removing the watermark and to provide assurance to the software end-user that
the software object hasn't been tampered with. Thus the ‘integrity’ of the program
may be verified. The primary aim of the present invention is to allow accurate
assertion of ownership of a software object with a secondary purpose being to

ensure the integrity of the object.

10

20

25

35

WO 99/64973 PCT/NZ99/00081
8
It has been shown that there are transformations, called obfuscating transformations,
that will destroy almost any kind of program structure while preserving the semantics
(operational behaviour) of the program. Other semantics preserving transformations,
such as optimising transformations known from the prior art can be used to similar
effect. As a consequence, any software watermarking technique must be evaluated
with respect to its resilience to attack from automatic application of semantics
preserving transformations, such as obfuscation. The following discussion will survey

obfuscating transformations that can be used to destroy software watermarks.

In Figure 2a a watermark is embedded within a static string. There are several ways
of rendering watermarks unrecogisable, the most effective perhaps by converting
static strings into a program that produces the data. As an example, consider the
function G in Figure 3. This function was constructed to obfuscate the strings "AAA",
"BAAAA", and "CCB". The values produced by G are G(1)="AAA", G(2)="BAAAA",
G(3)=G(5)="CCB", and G(4)="XCB".

In Figure 2b Alice embeds a watermark within the program code itself. There are
numerous ways to attack such code. Figure 4, for example, shows how it is possible
to insert bogus predicates into a program. These predicates are called opaque since
their outcome is known at obfuscation time, but difficult to deduce otherwise. Highly
resilient opaque predicates can be constructed using hard static analysis problems

such as aliasing.

In Figure 2c a watermark is embedded within the state (global, heap, and stack data,
etc.) of the program as it is being run with a particular input /. Different obfuscation
techniques can be employed to destroy this state, depending on the type of the data.
For example, one variable can be split into several variables (Figure 5) or several

variables can be merged into one (Figure 6).

In Figure 2d a watermark is embedded within the trace (either instructions or
addresses, or both) of the program as it is being run with a special input sequence /
=1, I, ... l,.. Inan alternative embodiment, a watermark may be embedded within a
series of execution traces, said series of traces being generated as the program is
run on a special input. This special input is comprised of a series of one or more

input sequences, where each input sequence is generated by a specific process

10

15

20

25

30

WO 99/64973 PCT/NZ99/00081
9

which may incorporate a random or pseudorandom number generator. Execution
traces have many properties that may be observed by a watermark recogniser R.
One example of such a property is “if the program passes point P1 in O, then there’s
a 32% chance that it will also pass point P2". Another example of such a property is
the frequency at which some specific basic operation, such as addition, is performed.
A specific collection of (one or more) such execution-trace properties is the
watermark W. The signature property s(W) for this W is that all the property values
are within some predefined tolerance. For example, we might require that our
sample property P1-P2 have a value between 30% and 34% on a randomly-
generated series of 10000 inputs (note that we would not expect to observe an
“exact match” to our 32% estimated mean-value for this property P1-P2, because
each randomly-generated series of inputs would give us a somewhat different

measurement for this property value).

Many of the same transformations that can be used to obfuscate code will also
obfuscate an instruction trace. Figure 7 shows another, more potent, transformation.
The idea is to convert a section of code (Java bytecode in our case) into a different
virtual machine code. The new code is then executed by a virtual machine interpreter
included with the obfuscated application. The execution trace of the new virtual
machine running the obfuscated program will be completely different from that of the
original program. In Figure 2e, a watermark is embedded in an Easter Egg. Unless
the code is obfuscated, Easter Eggs may be found by straightforward techniques

such as decompilation and disassembly.

in this section, techniques for embedding software watermarks in dynamic data
structures are discussed. The inventors view these techniques as the most

promising for withstanding de-watermarking attacks by obfuscation.

The basic structure of the proposed watermarking technique is outlined in Figure 8.

The method is as follows:

1. The watermark W is embedded, not in the static structure of the program, its
code (Unix text segment), its static data (Unix initialised data segment), or its
type information (Unix symbol segment or Java's Constant Pool), but rather in

the state of the program as it is being run with a particular input sequence /

10

15

20

25

30

35

WO 99/64973 PCT/NZ99/00081

10
(of length k) whose elements are / =/, I2 l. Of course k may be 0, in which

case there is no input and the input sequence is empty.

More specifically, the watermark is embedded in the topology of a
dynamically built graph structure. it is believed that obfuscating the topology
of a graph is fundamentally more difficult than obfuscating other types of
data. Moreover, it is anticipated that tamperproofing such a structure should
be easier than tamperproofing code or static data. This is particularly true of

languages like Java, where a program has no direct access to its own code.

A Recogniser R is built along with the input / and watermark W. R is a
function that is able to identify and extract the watermark graph from among
all other dynamic allocated data structures. Since, in general, sub-graph
isomorphism is a difficult problem, it is possible that W will have some special
marker that will allow R to recognise W easily. Alternatively, W may be
formed immediately after input I, is processed, i.e. markers may not be
necessary. Markers are considered ‘unstealthy’ for the following reason. If a
marker is easily recognisable by a recogniser, an adversary might discover it
— perhaps by way of a collusive attack on a collection of fingerprinted objects.
The use of markers can be avoided by exploiting the recogniser’s knowledge
of the secret input sequence in the following way: the watermark will be
completed immediately after the k™ input (I,) of this sequence is presented to
the program. The recogniser knows the value of “k” and therefore is able to
look for the watermark graph effectively, by examining the nodes that were
allocated or modified during the processing of /.. In contrast, the adversary
would be unaware of the length of this sequence and would therefore have to
“guess’ a value of “k” as well as the values (l,, Iz..; 1) in the input sequence |,

before looking for the watermark.

An important aspect of the proposed technique is that R is not distributed
along with the rest of the program. If it were, a potential adversary could
identify and decompile it, and discover the relevant property of W. R is
employed only when we check for the watermark. R may be an extension of
the program comprised of self-monitoring code, or it may be an adjunct to a

debugger or some other external means for examining the dynamic state of

10

15

20

25

30

WO 99/64973 PCT/NZ99/00081
11

the program. R may be linked in dynamicaily with the program when we
check for the watermark. Other mechanisms are envisaged by which the

recogniser R may observe the state of the object O.

5. It is required that some signature property s(W) of W be highly resilient to
tampering. This can be achieved, for example, by obfuscation or by adding

tamperproofing code to the application.

6. In Figure 8 it is assumed that the signature that R checks for is a number n,
which has been embedded in the topology of W. n is the product of two large
primes P and Q. To prove the legal origin of the program, we link in R, run
the resulting program with / as input, and show that we can factor the number
that R produces. Alternatively, s(W) can be based on hard computational

problems other than factorisation of large integers.

The above issues will now be discussed in more detail. The first problem to be
solved is how to embed a number in the topology of a graph. There are a number of
ways of doing this, and, in fact, a watermarking tool should have a library of many
such techniques to choose from. Figure 9 illustrates one possibie encoding. The
structure is basically a linked list with an extra pointer field which encodes a base-6
digit. A null-pointer encodes a 0, a self-pointer a 0, a pointer to the next node
encodes a 1, etc. A further example is shown in figure 14 whereby. the watermark W
is chosen from a class of graphs G wherein each member of G has one or more
properties (in figure 14 — planarity) that may be tested by integrity-checking software.
The integrity checking software may be incorporated into the progfam during the

watermarking process.

In the previous paragraph, it was shown how an integer n could be encoded in the
topology of a graph. The encoding is resilient to tampering, as long as the
recogniser R is able to correctly identify the nodes containing the two pointer fields in
which we have encoded n. We now describe another encoding showing that a

recogniser R can evaluate n if it can identify only a single pointer field per node.

Using a single pointer per node, we can construct a watermark W in the form of a

parent-pointer tree. The parent-pointer tree W is a representation of a graph G

10

15

20

25

30

35

WO 99/64973 PCT/NZ99/00081
12

known as an oriented tree enumerable by the techniques described in Knuth, Vol |
3" Edition, Section 2.3.4.4.

The number a,, of oriented trees with m nodes is asymptotically a,, = ¢(1/a)*"/n** +

O((1/e)" /n*?) for ¢ ~ 0.44 and 1/a ~ 2.956. Thus we can encode an arbitrary 1000-
bit integer n in a graphic watermark W with 1000/log, 2.956 ~ 640 nodes.

We construct an index n for any enumerable graph in the usual way, that is, by
ordering the operations in the enumeration. For example, we might index the trees
with m nodes in “largest subtree first" order, in which case the path of length m-1
would be assigned index 1. Indices 2 through a,,—; would be assigned to the other
trees in which there is a single subtree connected to the root node. Indices a,, ~.; +1
through a,,, + a,—, would be assigned to the trees with exactly two subtrees
connected to the root node, such that one of the subtrees has exactly m-2 nodes.
The next a,_sa, = a, — ; indices would be assigned to trees with exactly two subtrees
connected to the root node, such that one of the subtrees has exactly m-3 nodes.

See Figure 10 for an example.

To aid the recognition of a watermark, the reccgniser may use secret knowledge of a ‘
“signal” indicating that “the next thing that follows” is the real watermark. In a

preferred embodiment, the secret is the input sequence /; the recogniser (but not the '
attacker) knows that the watermark will be constructed after the input sequence / =
I, 1,... |, has been processed. In an alternative, but less preferred embodiment, the
secret is an easily recognisable “marker” that may be present in the watermark
graph. This is similar to the signals used between baseball coaches and their

players. See Figure 11 for an example.

One advantageous consequence of the present approach is that semantics-
preserving transformations, such as those employed in optimising compilers and
those employed by obfuscation techniques which target code and static data will
have no effect on the dynamic structures that are being built. There are, however,
other techniques which can obfuscate dynamic data, and which we will need to
tamperproof against. There are three types of obfuscating transformations which will

need to be protected against:

10

15

20

25

30

WO 99/64973 PCT/NZ99/00081
13

1. An adversary can add extra pointers to the nodes of linked structures. This
will make it hard for R to recognise the real graph within a lot of extra bogus

pointer fields.

2. An adversary can rename and reorder the fields in the node, again making it

hard to recognise the real watermark.

3. Finally, an adversary can add levels of indirection, for example by splitting

nodes into several linked parts.

These transformations are illustrated in Figure 12. It is important to note here that
obfuscating linked structures has some potentially serious consequences. For
example, splitting nodes will increase the dynamic memory requirement of the
program (each cell carries a certain amount of overhead for type information etc.),
which could mean that a program which ran on, say, a machine with 32M of memory
would now not run at all. Furthermore, if we assume that an adversary does not
know in which dynamic structure our watermark is hidden, he is going to have to

obfuscate every dynamic memory allocation in the entire program.

Next will be discussed techniques for tamperproofing a dynamic watermark against

the obfuscation attacks outlined above.

The types of tamperproofing techniques that will be available will depend on the
nature of the distributed object code. If the code is strongly typed and supports
reflection (as is the case with Java bytecode) we can use these reflection capabilities
to construct the tamperproofing code. If, on the other hand, the application is shipped
as stripped, untyped, native code (as is the case with most programs written in C, for
example) this possibility is not open to us. Instead, we can insert code which
manipulates the dynamically aliocated structures in such a way that obfuscating

them would be unsafe.

ANSI C's address manipulation facilities and limited reflection capabilities allow for

some trivial tamperproofing checks:

include <stdlib.h>

10

15

20

25

30

35

WO 99/64973 PCT/NZ99/00081
14
include <stddef.h>
struct s int a; int b;;
void main ()
if (offsetof(struct s, a) >
offsetof(struct s, b)) die();

if (sizeof(struct s) |= 8) die();

These tests will cause the program to terminate if the fields of the structure are

reordered, or the structure is split or augmented.

Figure 13 (a) shows how Java's reflection package allows us to perform
similar tamperproofing checks. Note that this example code is not completely
general,

since Java does not specify the relative order of class fields.

Figure 13 (b) shows how we can also use opaque predicates and variables to
construct code which appears to (but in fact, does not) perform *“unsafe" operations
on graph nodes. A de-watermarking tool will not be able to statically determine
whether it is safe to apply optimising or obfuscating transformations on the code. In
the example in Figure 13 (b), V is an opaque string variable whose value is "car",
although this is difficult for a de-watermarker to work out statically. At 1 it appears as
if some or all (unknown to the de-watermarker) field is being set to null, although this
will never happen. The statement 2 is a redundant operation performing n.car =
n.car, although (due to the opaque variable R whose value is aiways 1) this cannot in

general be worked out statically.

For increased obscurity, the code to build the watermark should be scattered over
the entire application. The only restriction is that when the end of the input sequence
I=l,... I, is reached, the watermark W has been constructed. This watermark in a
preferred embodiment, may be composed of some or all of the components W,, ...
W.., that were constructed previously. Additionally, in a preferred embodiment, some

components W, may be composed of some of all components constructed before W.

10

15

20

25

30

35

WO 99/64973 PCT/NZ99/00081
15

W,=..;

if (input=1,) W, =...;

if input=1)W,=...;

if (input = /,.;) Wi, = ...;
if (input = /) W=...;

In order to identify the watermark structure, the recogniser must be able to
enumerate ail dynamically allocated data structures. If this is not directly supported
by the runtime environment (as, for example, is the case with Java), we have two
choices. We can either rewrite the runtime system to give us the necessary
functionality or we can provide our own memory allocator. Notice, though, that this is
only necessary when we are attempting to recognise the watermark. Under normal

circumstances the application can run on the standard runtime system.

A further technique is shown in figure 15. Here is illustrated a technique which
applies a local transformation, thereby tamperproofing the watermark against an
attack by node-splitting. Each of the nodes of the original watermark graph is
expanded into a 4-cycle. If an adversary splits two nodes, the underlying structure
ensures that these node will fall on a cycle. At (3) the recogniser shrinks the
biconnected components of the underlying graphs with the result that the graph is

isomorphic to the original watermark.

It is envisaged that local transformations, other than expansion of nodes into cycles,
may be employed to tamperproof the watermark against specific attackes other than
node-splitting. For example, redundant edges may be introduced into the watermark
in order to render the watermark tamperproof to specific attacks which invoive the

renaming and reordering of fields in nodes.

A number of techniques are known in the prior art for hiding copyright notices in the
object code of a program. It is the inventors' belief that such methods are not
resilient to attack by obfuscation -- an adversary can apply a series of
transformations that will hide or obscure the watermark to the extent that it can no

longer be reliably retrieved.

10

15

20

WO 99/64973 PCT/NZ.99/00081

16
The present invention indicates that the most reliable place to hide a watermark is
within the dynamically allocated data structures of the program, as it is being

executed with a particular input sequence.

A further application for the watermarking technique described above may be in
“fingerprinting” software. In this case, each individual program (i.e. every distributed
copy of the code) is watermarked with a different watermark. Although there is a risk
of an adversary collusively attacking the watermark, the applicant believes that
applying obfuscation may render it very difficult for the attacker to interpret the

evidence obtained by a coliusive attack.

Where in the foregoing description reference has been made to elements or integers
having known equivalents, then such equivalents are included as if they were

individually set forth.

Although the invention has been described by way of example and with reference to
particular embodiments, it is to be understood that modifications and/or
improvements may be made without departing from the scope or spirit of the

invention.

10

15

20

25

30

WO 99/64973

17

CLAIMS:

A method of watermarking a software object whereby a watermark is stored in
the state of the software object as it is being run with a particular input

sequence.

A method as claimed in claim 1 wherein the software object may be a program

or piece of program.

A method as claimed in any one of claims 1 or 2 wherein the state of the
software object may correspond to the current values held in the stack, heap,

global variables, registers, program counter and the like.

A method as claimed in any preceding claim wherein the watermark is stored in
an object’s execution state whereby an input sequence / is constructed which,
when fed to an application of which the object is a part, will make the object O
enter a state which represents the watermark, the representation being
validated or checked by examining the stack, heap, global variables, registers,

program counter and the like, of the object O.

A method as claimed in any one of claims 1 or 2 wherein the watermark is
embedded in the execution trace of the object O whereby, as a special input /
is fed to O, the address/operator trace is monitored and, based on a property

of the trace, a watermark is extracted.

A method as claimed in any one of claims 1 to 4 wherein the watermark is

embedded in the topology of a dynamically built graph structure.

A method as claimed in claim 6 wherein the graph structure (or watermark
graph) corresponds to a representation of the data structure of the program

and may be viewed as a set of nodes together with a set of vertices.

PCT/NZ99/00081

10

15

20

25

30

35

WO 99/64973

10.

11.

12.

13.

14.

15.

16.

17.

PCT/NZ99/00081
18

A method as claimed in any preceding claim further comprising building a

recognizer R concurrently with the input / and watermark W.

A method as claimed in claim 8 wherein R is a function adapted to identify and
extract the watermark graph from all other dynamically allocated data

structures.

A method as claimed in either claim 8 or 9 wherein the watermark W

incorporates a marker that will allow R to recognize it easily.

A method as claimed in any one of claims 8 to 10 wherein R is retained

separately from the program and whereby R inspects the state of the program.

A method as claimed in any one of claims 8 to 11 wherein R is dynamically

linked with the program when it is checked for the existence of a watermark.

A method as claimed in any preceding claim wherein the application of which

the object forms a part is obfuscated or incorporates tamper-proofing code.

A method as claimed in any one of claims 8 to 12 wherein R checks W for a

signature property s(W).

A method as claimed in claim 14 including the creation of a number n which
may be embedded in the topology of W, whereby the signature property may

be evaluated by testing one or more numeric properties of n.

A method as claimed in claim 15 wherein the signature property is evaluated

by testing whether n is the product of two primes.

A method of verifying the integrity or origin of a program comprising:
embedding a watermark W in the state of a program as the program is being
run with a particular input sequence /,

building a recognizer R concurrently with the input / and watermark W wherein

the recognizer is adapted to extract the watermark graph from other dynamic

10

15

20

25

30

WO 99/64973

18.

19.

20.

21.

22.

23.

24.

PCT/NZ99/00081
19
structures on the heap or stack wherein R is kept separately from the program;
wherein R is adapted to check for a number n, n, in a preferred embodiment,

being the product of two primes and wherein n is embedded in the topology of
w.

A method as claimed in claim 17 where other properties of s(W) are used to

compute the signature.

A method as claimed in either claim 17 or 18 wherein the number n is derived

from any combination of numbers depending on the context and application.

A method as claimed in any one of claims 17 to 19 wherein the program or
code is further adapted to be resistant to tampering, preferably by means of

obfuscation or by adding tamper-proofing code.

A method as claimed in any one of claims 17 to 20 wherein the recognizer R
checks for the effect of the watermarking code on the execution state of the
application thereby preserving the ability to recognize the watermark in cases
where semantics-preserving transformations have been applied to the

application.

A method of watermarking software including the steps of:
embedding a watermark in a static string; and

applying an obfuscation technique whereby this static string is converted into

executable code.

A method of fingerprinting software wherein a plurality of watermarked

programs obtained as claimed in any preceding claim are produced.

A method of fingerprinting software as claimed in claim 23 wherein the
watermarked programs each of which has a number n with a common prime

factor p.

10

15

20

WO 99/64973 PCT/NZ99/00081

25.

26.

27.

28.

20.

30.

20
A method of watermarking software wherein the watermark W is chosen from
a class of graphs G wherein each member of G has one or more properties,
such as planarity, said property being capable of being tested by integrity-

testing software.
A method of watermarking software as claimed in claim 25 wherein the
watermark may rendered tamperproof to certain transformations by

subjecting the watermark graph to one or more local transformations.

A method of watermarking software as claimed in claim 26 wherein each

node of the watermark graph is expanded into a cycle.

A method substantially as herein described with reference to the drawings.

Software written to perform the method as claimed in any preceding claim.

A computer programmed to perform the method as claimed in any one of

claims 1 to 27.

WO 99/64973 PCT/NZ99/00081

111

3 *

)

FIGURE 1

Figure 1: At@Aliceaddsawateunaszmingbyrtohsobjec:OmmkeO’ At

: : . At @ Bob steals a
m?yoif.@{;o;omm&emhm@mg&ehyxmmkamby
izmhardﬁa: snccssfullyva&mO.At@Bobaddsmmtzma&W’de’mmh
i ha ChadatopmvethatW!SAlice’san’ginalwatmuk.At@BobdistnnaO'(andW)maHng
xtc-i:ﬁcnltfnr.ChadatadetectW. At@%a&tmpﬁwmtbemﬁmmﬁmm
object, andatherfaﬂscomphtdycrmadiatartedw At ® Alice adds tamperproafing 7 to

gc.b.At@BobhﬁestomWﬁumO,hnt,dnéwthetmp&pmoﬁng,owmhemdeedmto

SUBSTITUE SHEET (Rule 26)

WO 99/64973

211

PCT/NZ99/00081

mec = "Copyxight CC)...q

.......

SC)
30)
wpl
3Y)
R?

e na

String V;

V[1]='C?;
vi2l=207;
Viel=21;

if Input == T {

VI[31='P?;
Vi4]=13;
V{5]='R3;

J

push 3G?
push ?Q?

=> push ’p°
. : push °Y?

| — push R’

(o2
IT=| ¥ Iput=I

Display(TeamPic) | =>

Alice Andrea

FIGURE 2

The Team!

Figure 2: In @ Alice embeds a watermark in the initialized data (string) section of her program. In ® the
watermark is embedded in the text (code) section of the program. In (© the watermark gets embedded in a
global variable ¥ when the program is run with input 7. In @ the watermark is embedded in the execution

(an “Easter Egg®) of the program when it is ran with input Z.

" trace when the program is run with input 7. In @ the watermark is embedded in the umexpected behavior

SUBSTITUE SHEET (Rule 26)

WO 99/64973 PCT/NZ99/00081

3

String G (int m) {
. int $=0,k;
String §;
while (1) {
11: if (p==1) {S[i++]="A";k=0;goto L6};
: if (p==2) {S[i++]1="B";k=-2;goto L6};
L3: if (n==3) {S[i++]1="C";goto L9};
: if (o==4) {S[i++]="X";goto LS};
LS: if (n==5) {S[i+~]="C";goto Li1};
if (>12) goto L1;
L8: - if (k+<=2) {S[i+]1="A";goto L6} else goto L8;
L8: retum S; .
L9: S[i++]="C"; goto L10;
L10: S[i++]1="B"; goto L8;
Li1: S[E++l="C"; goto L12;
L12: goto L10;

FIGURE 3

Figure 3: A function producing the the stmngs "AAA", YBAAAA®, "XCB", and "CCB".

L ? il
[E=t yorasd(0,09) |

(B | o
g ﬂ [m:dm.c:) {
®
[A

FIGURE 4

Figure & Inserting bogus predicates in a program. In @ an opaque predicate b > 57 is inserted. This
predicate is always true. In@anupnqueptedimerand(o,s)<57isime:ted. This predicate is sometimes
trae (in which case B is executed), and sometimes false (in which case an obfuscated version of B is
execated). In (© an opaque true predicate is inserted. This predicate appears to sometimes execute an
obfuscated buggy version of B, but, in fact, never does.

SUBSTITUE SHEET (Rule 26)

WO 99/64973 PCT/NZ99/00081

4
Q(V) f(p9) A
P gl V |%+g mwnE1fo 1 2-3
0 Of[Fase| 0 of3joJoJo
0 1| Trme | 1 B 1§3[1[2|3
1 0f True | 2. S DIFIEAE
1 1] False 3 3|3|ojo]3
(1) bool 4,B,C; (1') shart a1,32,b1,b2,cl,c2;
(2) B = False; . (2°) bi=0; b2=0;

. (3) C=False; - (3') ci=1; c2=1;
(4) C=4 &k B; :$ (4') x=AND{2+%ai+a2,2+b1+b2]; ci=x/2; c2=x%2;

(5) C=4 & B; (5%) ci=(at =~ a2) & (b1 - b2); c2=0;
(6) if QL) --+; (67) x=2+al+a2; if ((x==1) || (x==2)) .--;
(7) 3£ (B) =-+; - (7)) if (bt - b2) --o;

FIGURE 5

Figure 5: Variable splitting example. We show cne possible chaice of representation for split boclean
variables. The table indicates that boclean variable V has been split into two shart integer variables p
and ¢. Kp=g¢=0ar p=¢ =1 then V is False, otherwise, V is True. Given this new representation,
we devise substitutions for the built-in boolean operations. In the example, we provide a rux-time loaknp
table for each operator. Given two boolean variables Vi = [p,g] and V3 = [r, o], "Vi&V4" is computed as
AND(2 +- g, 27 + o]

ZEX+nrY) = 22.Y+(r+X) = ZX,Y)+7
ZX,Y+7r) = 22.(Y+r)+X = ZX,Y)+r .22
ZxnY) = 22%.Y4+Xr = ZX,V)+(r-1)-X
ZX, Y r) = 22.Y.r4+X = IZX,Y)+(r-1)-22.v
(1) int X=45; " leme 7a .
int Y=05; (1) long Z=167755086119661045;

(2 X+=5; T

;. > (2?) Z += 6;
ﬁ; i - :1’ (3') Z += 47244640256;

(5) Y = a: (4°) Z += (c~1)=(Z & 4294967296);
! (87) Z += (d-1)=(Z & 18446744069414584320) ;

FIGURE 6

Figure 6: Me:ging'two&-bﬁuﬁ&blu&?&omﬁéﬁtvﬁ&bl?o@i&t&m32hi¢st‘2f_zy
X the bottom 32 bits. If the actual range of either X or Y can be deduced from the program, less intuitive
merges could be used. First we give rules for addition and multiplication with X and Y, then show some
simpis examples.

SUBSTITUE SHEET (Rule 26)

WO 99/64973

511

PCT/NZ99/00081

int Sum(int A[0) {
int som=0, i=0, pc=0;
int s[l=pew int({5§], sp=-i;
loop: while (tzue)

int Sum(int AQD) {

case ’a’:
i 3, eo; oot
int n=A.length; T 3¢
. case ’c?:
for (i=0;idn;i++) i 333,
. case d’:
gam += A[i];
Teturn sum; case ’e¢’:
} case ?f?:
) case ‘g?:
} ;
return Eum;
}
FIGURE 7

switch("fcgabced” . chardt(pc)) {

sum += s{sp—]; pc++; break;
i++; pett; break;

s{++spl = i; pc+t; break;

if (slsp—] > sisp—1) pc —= 6;
else break loop; break;

s[++spl = A.length; pc++; break;
pc += §; break;

slspl = Als[spll; pci+; break;

Figure 7: The Java method Sum an the left is obfuscated by translating it into the bytecode ™fcgabced™.
This code is then executad by a stack-based interpreter specialized to handle this particular virtaal machine
code. This technique is similar to Proebsting’s superoperators [20].

SUBSTITUE SHEET (Rule 26)

WO 99/64973 PCT/NZ99/00081

6/11

peuew Sode()

oaw Yoda()

sididgulp,q)
w

FIGURE 8

Figure 8: At @ Alice selects-two large primes P and Q, and computes their product n. At @ she embeds
n in the topology of a graph. This graph is her watermark W. At @ W is converted to a program which
builds the graph. At @ the program is embedded into the ariginal program O, such that when Oy is
run with 7' as mput, W is bufit. Also, a recognizer program R is constructed, which is able to identify
W on the heap, and exizact n from it. At ® tamperproafing is added, to prevent the graph from being
obfuscated to such an extent that R cannot ideutify it. At © the appiication (including the watermark,
tamperprocfing code, and recognizer) is obfuscated. At) the recognizer is remaved from the application.
O, is the vession of Alice’s program that is distributed. At @ Charles links in the recognizer program R
with O3. At © the application is run with Z as input, and the recogmiser R produces n. Since Charles is
the only ore whao can factor n, he can prove the legal origin of Alice’s program.

SUBSTITUE SHEET (Rule 26)

WO 99/64973 PCT/NZ99/00081

111

(GGG

s

3.64 + 268 + 3.6 + 4.6 + 1-6°=4453=561s73

FIGURE S

F’xgu:eQ:Embeddingawatermarkintnagraphmm The structuve i i i

i 2 A 18 essentially a linkeqd I
zghummtpmnﬁ:of&mhnndensﬂm:uxtﬁdd,wﬁkthes«mmi&ddemmdesad%ﬁ.hxﬂﬁs::;gzs
0=.nn11 (/), 1=a seif-pointer, 2=a cne-step back pointer, 3=a one step forward pointer, 4=a two step back
pomte;ézld;s—-:azstepinrwa:dpaintm Thisallcwsnstoencadeavalneslt’rs=4453m as the base-§

FIGURE 10

Figure 10: The twenty-second tree in an emmmera-
tion of the ariented trees with seven vertices.

- e "T‘[@

FIGORE 11

Figure 11: A 5-clique is used to mark the beginning of an encoded value.
SUBSTITUE SHEET (Rule 26)

WO 99/64973 PCT/NZ99/00081

11

. (a: 55 | (a2 43)
class T { e i
class T { " int a; R T e TN
- int a; T cax; T
@ T carj = T bogusi; (a: &5) a: 43)
T T T edr; . = e [a= elf
} - : . T bogus2; . boguaz: @7 bogust: o4
} " cir: - P
3‘8"2:2)' Bagex2: o~
E: llﬁj [az 43/>
o ’ cxr: @ exx: 8-
) class‘r' class T { (cixz @ lcix: @ -
int a; T, T FL;
@ T car; = int F3; : : ‘U’T
- T edr; T F3;
} . } : [r1: @ Fi: .0
: 58 2: 42
¥3: e A 2 .-j
: ‘ class T {
o int a;
class T { T1 bogus; (v &5 = a3)
int 2; } car: @A = @
T cax; 7. claszs T1 { C e 2 €
} T cdr;
®eacasss } - -~ us — &j | ‘= “ w=
n = new T; ccecaa baguss @-—efcdr: O MU S e{Cir: @
2-bogus = new T1;

FIGURE 12

Figure 12: Obfoscation of dynamic structures. In @ we add bogus peinter fields to all nodes of type T. In
@ we rename and recrder fields. In @ we add a level of indirection by splitting all nodes in two.

SUBSTITUE SHEET (Rule 26)

WO 99/64973 PCT/NZ99/00081

9/11

class C {public int a; public C cax, cir;}

class C {public int a; public C car, cdr;} public static void main(Stxingl] args)

public static void main(Stringll args) {

Field[J F = C.class.getFields();

i¥ (F.length 1= 3)
aieQ;

if (F[0].getType() I="-
javs.lang.Xnxkager . TYPE)
dieQ;

if (F[1].getType(!= C.clasa)
die(); ~

if (F[2].getTypeO 1= C.class)
die(; :

@

FIGURE 13

throws NoSuchFieldExceptionm,
IllegaliccessException {

Field £; '

String V;

Cn=xew CQ; -

Clzss ¢ = n.getClassQ;

if (PF) {

£ = c.getFiald(V="="");

@ f.set(n, mall);

}
Field F = c.getFields();
int R;

@ FIR"].set(n, n.cax);

®)

Figure 13: Examples of tamperproofing Java code using the reflection interface.

SUBSTITUE SHEET (Rule 26)

WO 99/64973 _ PCT/NZ.99/00081

10/11

FI1IG 14

SUBSTITUE SHEET (Rule 26)

PCT/NZ99/00081

*9]2£0-§ B 0| 9913 YIVUWIIINM [Bu]

1/

WO 99/64973

Sk DOid

.xﬁﬁnvﬁk feuiBiio

mo m.v apydaowros ydeid e s; 3nsex oL, 'qdeid (pejoeajpun) Surfsepun oyj jo sjueuodurod paoeuuodlq sg3 BYULIYS OZUB000]
Ml @ W

*9[0£0 ® U0 [[ej [|i4 sepou @sey) JeY3 seansus YdeiB ayy Jo SINONIIE A, ‘sepou omg siyds Lresweape ue @ jJy

8120 ano jo epou yoee puedxs ea (P Jy ‘Sunijds-epou jsupede Suyoordiedmey, S1 emdyy

(]
o

SUBSTITUE SHEET (Rule 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/NZ 99/00081

A, CLASSIFICATION OF SUBJECT MATTER

Int CI6: GO6F 17/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Internet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPAT

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A "A Taxonomy of Obfuscating Transformations" Christian Collberg, Clark
Thomborson, Douglas Low, Technical Report #148 Department of Computer
Science, The University of Auckland, July 1997
(http://www.cs.arizona.edu/~collberg/Research/Publications/Collberg ThomborsonL
ow97a/index.htmi)/

P,A WO, A, 9901815 (Intertrust incorporated) 14 January 1999

P,A WO, A, 9917537 (Hewlett-Packard Company) 8 April 1999

Further documents are listed in the See patent family annex
continuation of Box C
’ Special categories of cited documents; "T" later document published after the international filing date or
"A" document defining the general state of the art which is priority date and not in conflict with the application but cited to
not considered to be of particular relevance understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after ~ "X" document of particular relevance; the claimed invention cannot
the international filing date be considered novel or cannot be considered to involve an
"L document which may throw doubts on priority claim(s) inventive step when the document is taken alone
or which is cited to establish the publication date of "Y" document of particular relevance; the claimed invention cannot
another citation or other special reason (as specified) be considered to involve an inventive step when the document is
"o" document referring to an oral disclosure, use, combined with one or more other such documents, such
exhibition or other means combination being obvious to a person skilled in the art
vpr document published prior to the international filing "&" document member of the same patent family
date but later than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
31 August 1999 U 7 SEP 1999
Name and mailing address of the ISA/AU Authorized officer
AUSTRALIAN PATENT OFFICE
PO BOX 200
WODEN ACT 2606 Stephen Lee
AUSTRALIA Telephone No.: (02) 6283 2205
Facsimile No.: (02) 6285 3929

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/NZ 99/00081

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following
reasons:

L D Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements
to such an extent that no meaningful international search can be carried out, specificaily:

3. D Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule
6.4(a)

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Claims 1 and dependent claims being for a method of watermarking a software object whereby a watermark is stored in the state of a
software object.

Claims 17 and dependent claims being for a method of verifying the integrity or origin of a program.

Claim 22 being for a method of watermarking software including the steps of embedding and applying an obfuscation technique.

Claims 25 and dependent claims being for a method of watermarking software wherein the watermark is chosen from a class of graphs and
the properties are capable of being tested by integrity testing software.

1. As all required additional search fees were timely paid by the applicant, this international search report covers
p
all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not

invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search
report covers only those claims for which fees were paid, specifically claims Nos.:

4, No required additional search fees were timely paid by the applicant. Consequently, this international search
report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant's protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members PCT/NZ 99/00081

This Annex lists the known "A" publication level patent family members relating to the patent documents cited
in the above-mentioned international search report. The Australian Patent Office is in no way liable for these
particulars which are merely given for the purpose of information.

Patent Document Cited in Search Patent Family Member
Report
WO 9901815 AU 79579/98
WO 9917537 AU 95845/98

END OF ANNEX

Form PCT/ISA/210 (citation family annex) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

