woO 2007/020082 A1 |0 0O 00 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T VOO O

International Bureau

(43) International Publication Date
22 February 2007 (22.02.2007)

(10) International Publication Number

WO 2007/020082 Al

(51) International Patent Classification:
GOGF 9/445 (2006.01) GOGF 9/45 (2006.01)

(21) International Application Number:
PCT/EP2006/008104
(22) International Filing Date: 17 August 2006 (17.08.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
05388066.2
60/710,274

18 August 2005 (18.08.2005)
22 August 2005 (22.08.2005)

EP
Us

(71) Applicant (for all designated States except US): TELE-
FONAKTIEBOLAGET L M ERICSSON (publ)

[SE/SE]; S-164 83 Stockholm (SE).

(72)
(75)

Inventors; and

Inventors/Applicants (for US only): EKER, Johan
[SE/SE]; Korsbarsvdgen 8, S-223 55 Lund (SE). VON
PLATEN, Carl [SE/SE]; Kronovallsgatan 27, S-216 19
Malmé (SE).

(74) Agent: ZACCO DENMARK A/S; Hans Bekkevolds Allé
7, DK-2900 Hellerup (DK).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: OBJECT CODE GENERATION FOR INCREASING THE PERFORMANCE OF DELTA FILES

615 306
307
302 304 305 y 308 oo
sre | 120 1T L R
301/ REP
616C514 617
413

_ 412 R 311

310

(57) Abstract: Disclosed is a method of generating updated object code of a computer program, the updated object code being
suitable for the generation of an updated memory image to be loaded into a storage medium having stored thereon a current memory
image corresponding to a current version of a computer program. The method comprises receiving at least one updated input code
module from which the updated object code is to be generated; processing at least the updated input code module to generate at least
one updated object code module adapted to be linked by a linker component as to generate the updated memory image; performing
at least one optimisation process to reduce differences between said updated object code module and a corresponding one of a set of
current object code modules, the set of current object code modules corresponding to the current version of said computer program.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

OBJECT CODE GENERATION FOR INCREASING THE PERFORMANCE OF DELTA FILES

This invention relates to the generation of updated object code of a computer
program, the updated object code being suitable for the generation of an up-
dated memory image to be loaded into a memory having stored thereon a
current memory image corresponding to a current version of a computer pro-

gram.

Many modern electronic devices, e.g. embedded devices, are controlled by
software stored in flash memory. Flash memory is a type of memory that is
frequently used in electronic devices, because it allows multiple rewrites.
However, the write operations are limited to entire memory pages, so-called
flash sectors, at a time. A typical page size of current flash memories is 64
kbyte.

When the software stored in a flash memory of an electronic device is up-
dated, e.g. in order to add new features to the software and/or to correct er-
rors in the current version of the software, some or all of the memory sectors
of the flash memory are re-written or “re-flashed”. In general, it is desirable to
minimize the number of flash pages that are re-written during a software up-
date, in order to minimize the time and energy consumption required for in-

stalling the software update.

In particular, an application where update times are of great concern is the
over-the-air (OTA) update of mobile terminals. In such applications, it is
known to distribute only modifications to the current image to the mobile ter-
minal rather than the entire updated image. The modifications are generally
referred to as delta-files. Typically, in such systems, an update agent running
on the mobile terminal applies the received modifications to the current im-
age which is thereby transformed to the updated version. Hence, it is gener-

ally desirable to reduce the size of the delta-files, in order to reduce the

CONFIRMATION COPY

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

amount of data that has to be transmitted via the communications channel
used for the OTA update.

Furthermore, it is generally desirable to reduce the amount of storage capac-
ity and computational resources required in the mobile terminal in order to

perform the software update.

It is further a general problem of such update systems that the terminal may
not be functional during the update process. Hence, it is desirable to reduce
the time required for reflashing the memory and, thus, the downtime of the

system.

However, due to the constraints of the flash memory mentioned above, even
small updates of the source code of the software may cause a large portion
of the flash pages to be updated, since changing even a single byte requires

an entire page to be completely rewritten.

Published US application 2003/0142556 discloses a method of flash memory
programming, wherein volatile information or volatile software components
are stored near the end of the respective flash memory address space of the
flash memory device to keep the need of changing or adjusting flash sectors

as slight as possible.

However, the above prior art method requires information about the antici-

pated likelihood of changing the respective information components.

EP 0472812 is related to a differential updating system comprising a com-
piler, a modified linker, and a comparator which generates a difference pro-
gram file including the differences between an updated machine code and a
previous version of the machine code. The modified linker receives compiled

segments of the current version and segment information generated by the

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

modified linker for the previous version and arranges the segments in mem-

ory according to their size compared with the previous version.

It is an object of the present invention to facilitate improved delta update pro-

cedures.

The above and other problems are solved by a method of generating up-
dated object code of a computer program, the updated object code being
suitable as an input to a linker component for the generation of an updated
memory image to be loaded into a storage medium having stored thereon a
current memory image corresponding to a current version of a computer pro-
gram, the method comprising

— receiving at least one updated input code module from which the up-
dated object code is to be generated,;

— processing at least the updated input code module to generate at
least one updated object code module adapted to be linked by a
linker component as to generate the updated memory image;

— performing at least one optimisation process to reduce differences be-
tween said updated object code module and a corresponding one of a
set of current object code modules, the set of current object code
modules corresponding to the current version of said computer pro-
gram, wherein the optimisation process is performed prior to feeding

the updated object code module to a linker component.

In particular, the invention is based on the recognition that a subsequent effi-
cient delta file generation is greatly facilitated when the compiler - or a post-
processor to a compiler — optimises the generated object code already before
the linker stage as to reduce the amount of changes in the object code intro-

duced as a consequence of an update of the corresponding source code.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

Rather than relying on the possibility of detecting source level modifications
at a later stage, e.g. at the linker stage or in the compiled and linked binary
image by essentially reverse engineering the compiler and linker processes,
the above method ensures that the generated image is generated with as few
changes as possible in the first place, thereby facilitating a more efficient
generation of the delta file that yields smaller delta files and requires fewer

memory sections to be re-written.

In particular, in some embodiments, the optimisation step includes generating
the object code module such that the object code module has a size that
does not exceed the corresponding size of the corresponding current object
code module. In some embodiments the updated object code module may
even be generated as to have the same size as the corresponding current
object code module. It is an advantage that the subsequent object code
modules in memory space do not need to be shifted/moved as a conse-

quence of the modification of the object code module.

It is a further advantage that a high performance delta file generation is pos-
sible even with simple delta file generation tools, thereby avoiding the need

for sophisticated and costly delta-file generation tools.

In some embodiments the at least one updated input code module is at least
one updated source code module, and the method further comprises compil-
ing the updated source code module. Alternatively, the updated input code
module is at least one preliminary object code module generated by a com-
piler from at least one corresponding updated source code module. Hence,
the method may be implemented as an integrated compiler process that re-
ceives source code and generates optimised object code, thereby allowing
even the compilation process to be optimised as to reduce differences in the
compiled code, thus facilitating a further improved performance of the subse-

quent delta file generation. Alternatively, the method is implemented as a

WO 2007/020082 PCT/EP2006/008104

10

16

20

25

30

post-processing step to a compiler, where the post-processing step receives
the object code from the compiler and generates an optimised object code
that is fed into the linker, thereby allowing the use of a standard compiler tool
and, thus, integration of the method into an existing code generation tool

chain.

When the method further comprises receiving control data from the linker,
e.g. requests from the linker for example as to specify a size constraint for
the size of the updated object code module, the method can be integrated
into a dedicated tool chain for generating delta files where the downstream
tools send feedback information to the upstream tools, as to provide a global

optimisation of the delta file generation.

In another preferred embodiment, the method comprises
— generating a preliminary set of object code modules
— forwarding the preliminary set of object code modules to a linker;
- receiving feedback data from at least one of the linker and a subse-
quent delta file generator; and
— generating updated object code modules in response to the feedback
data.
Consequently, in this embodiment, the object code generation is performed
in two or more passes, where feedback information received from down-
stream processing steps of the first pass is used in the second pass, thereby
further improving the suitability of the generated object code for an efficient
delta file generation. For example, the linker may generate feedback to the
compiler stage causing the compiler to re-compile at least a part of the
source code. This has the advantage that the linker can control the resulting
set of object code modules, thereby increasing the degrees of freedom of re-

arranging object code modules by the linker.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

When the method further comprises receiving processing information about a
previous processing step for generating the current object code modules
from corresponding current input code modules, the generation of object
code with minimal changes compared to the current version is facilitated. For
example, the processing information may include at least one of current lay-
out information about a current layout of different object module parts within
the current object code module and compiler information about a previous
compilation step, such as at least one of source-to-machine-code mappings
and information about which compiler optimisation steps were applied during
the previous compilation step. Alternatively or additionally, the method com-
prises receiving the set of current object code modules, thereby allowing the
process to compare the updated object modules with the current object code
modules. The term “source-to-machine-code mapping” refers to the relation-
ship between source-code constructs and the corresponding object-code en-
tities. A function (a constant, a class definition, etc.) may correspond to one
or several segments. Depending on the implementation, a single object-code
entity may also correspond to several functions (constants, class definitions,
etc.). The complexity of this mapping depends on the actual implementation.
Very simple mappings, e.g. where one source file maps to a single segment,
may not even have to be stored explicitly, while complex mappings, e.g.
where two functions in combination result in a shared segment, may have to
be stored in order to properly match segments of the installed and updated

images.

In some embodiments, the method further comprises storing updated proc-
essing information about said processing step for generating the updated
object code modules in a code repository, thereby making the processing

information available for subsequent compilations.

Hence, in some embodiments, meta-information is stored between different

compilations and made accessible to the compiler. The meta-information in-

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

cludes information on how source code elements were transformed into ob-
ject module parts so that the compiler may make similar or even identical

transformation in a subsequent translation. In some embodiments, it may

-even be possible for the compiler to reuse previously created object code.

In some embodiments the updated object code module comprises a plurality
of object module parts. For example, each object module part may comprise
at least one of a function and a variable. Generally, for the purpose of the
present description, the term object module part is intended to refer to relo-
catable entities of an object code module, in particular the smallest relocat-
able entities of an object code module, and in particular entities that can be
relocated independently of other entities. Generally, object module parts may
correspond to structural entities of the programming language, such as func-
tions, procedures, class definitions, constant definitions, variable definitions,

etc.

When the optimisation step comprises determining a sequential order of said
object module parts within the updated object code module, the process can
ensure that the relative order of object module parts in the resulting updated
object code differs as little as possible from the order of object module parts

in the current version.

In some embodiments, the optimisation step comprises placing at least one
of said object module parts that is not included in a current object code mod-
ule corresponding to a first updated object code module in a second updated
object code module different from the first object code module as to reduce
the difference between the first updated object code module and the corre-
sponding current object code module. Consequently, an increase in size of
an object code module due to additional module parts introduced in the up-

date may be avoided.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

Typically, a code generation system comprises a compiler which compiles a
source code and generates a set of object code modules, and a linker which
generates the executable code in the form of a loadable memory image. The
compiler and linker may for example be implemented as separate executable
software programs, as functional modules of an integrated software devel-

opment software application, or the like.

In particular, in a delta file updating scheme, the memory image is subse-
quently fed into a delta file generator that generates a delta file representa-
tive of differences between the current program code version and the up-
dated program code version. Hence, the resulting delta file includes the dif-
ferences between the current and updated memory images, i.e. the informa-
tion required for a device to generate the updated version from the current
version stored in that device and the delta file. Hence, the size of the file that
needs to be loaded to the device is reduced, thereby further reducing the
time required to perform a software update.

The source code typically comprises a series of statements written in some
human-readable computer programming language. In modern programming
languages, the source code which constitutes a software program is usually
generated in the form of one or more text files, the so-called source code
modules. The compiler is typically a computer program or a functional com-
ponent of a computer program that translates the source code written in a
particular programming language into computer-readable machine code.
Typically, when the source code comprises a plurality of source code mod-
ules, the compiler compiles each source code module individually and gen-
erates corresponding object code modules, i.e. one object code module cor-

responding to each source code module.

The term object code is intended to refer to a computer-readable program

code, typically expressed in binary machine language, which is normally an

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

output of a given translation process, usually referred to as compilation,
where the output is in principle ready to be executed by a computer. How-
ever, the object code may comprise symbolic references that refer to other
locations in the object code. In particular, when the object code comprises a
plurality of object code modules, references to functions or variables included
in other object code modules are stored as symbolic references. Hence, an
object code module is typically relocatable in memory space and contains
unresolved references. In particular, a relocatable object code module typi-
cally includes symbolic references and relocation information, the latter of
which instructs the linker as to how to resolve the references. One interesting
property of a relocatable object code module is that neither the start address
nor the addresses of referenced symbols are determined yet. Accordingly,
relocation is the process of replacing references to symbols with actual ad-

dresses.

The linker is typically a computer program or a functional component of a
computer program that resolves dependencies between the set of object
code modules that constitute a software development project, in particular
any symbolic references. Furthermore, the tasks of the linker generally in-
clude laying out the object code modules in memory, i.e. assigning relative
addresses to the different object code modules in a corresponding address
space. The object code modules are typically represented as respective ob-
ject files in a low-level file format that is hardware and/or platform specific.
Accordingly, in some embodiments the method further comprises feeding the
updated object code modules into a linker component for linking the updated
object code modules resulting in the updated memory image suitable for

subsequent processing by a delta file generator.

Here the term layout of the code in memory comprises the respective start or
base addresses of the different object code modules, i.e. their respective

relative addresses within the address space occupied by the program code.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

10

It is an advantage of the method described herein that it facilitates further
optimisation steps at the linker stage, thereby providing an optimised input to
a subsequent delta file generation module and, thus, facilitating an optimised
generation of the delta file. The optimisation process performed by the linker
may include determining the layout of said object code modules in memory.

Further preferred embodiments are disclosed in the dependant claims.

It is noted that the features of the method described above and in the follow-
ing may be implemented in software and carried out on a data processing
system or other processing means caused by the execution of program code
means such as computer-executable instructions. Here, and in the following,
the term processing means comprises any circuit and/or device suitably
adapted to perform the above functions. In particular, the term processing
means comprises general- or special-purpose programmable microproces-
sors, Digital Signal Processors (DSP), Application Specific Integrated Circuits
(ASIC), Programmable Logic Arrays (PLA), Field Programmable Gate Arrays
(FPGA), special purpose electronic circuits, etc., or a combination thereof.

For example, the program code means may be loaded in a memory, such as
a Random Access Memory (RAM), from a storage medium or from another
computer via a computer network. Alternatively, the described features may
be implemented by hardwired circuitry instead of software or in combination
with software.

The present invention can be implemented in different ways including the
method described above and in the following, a data processing system, and
further product means, each yielding one or more of the benefits and advan-
tages described in connection with the first-mentioned method, and each
having one or more preferred embodiments corresponding to the preferred
embodiments described in connection with the first-mentioned method.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

11

In particular, the invention relates to a data processing system for generating
updated object code of a computer program, the updated object code being
suitable as an input to a linker component for the generation of an updated
memory image to be loaded into a memory having stored thereon a current
memory image corresponding to a current version of a computer program,
the data processing system being suitably programmed to perform the steps
of the method described above and in the following.

The invention further relates to a computer program product comprising pro-
gram code means adapted to cause a data processing system to perform the
method described above and_in_the_following,—when-said—program—code-

means are executed on the data processing system. The computer program
product may be embodied as a computer-readable medium having stored

thereon said program code means.

For the purpose of the present description, the term electronic device com-
prises any device comprising a memory such as a flash memory for storing
program code. Examples of such devices include portable radio communica-
tions equipment and other handheld or portable devices. The term portable
radio communications equipment includes all equipment such as mobile tele-
phones, pagers, communicators, i.e. electronic organisers, smart phones,
personal digital assistants (PDAs), handheld computers, or the like.

The above and other aspects of the invention will be apparent and elucidated
from the embodiments described in the following with reference to the draw-

ing in which:

fig. 1 schematically shows a block diagram of an embodiment of a system for

updating software in a mobile terminal,

fig. 2 schematically shows a block diagram of an electronic device such as a

mobile terminal,

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

12

fig. 3 shows a block diagram of an embodiment of a software update proc-

ess;

fig. 4 shows a block diagram of another embodiment of a software update

process;

fig. 5 shows a block diagram of yet another embodiment of a software update

process;

fig. 6 shows a block diagram of yet another embodiment of a software update

process;

fig. 7 schematically illustrates the memory layout of a flash memory before
and after a software update where the layout is optimised via an introduction

of an overflow block;

fig. 8 schematically illustrates the generation of object code modules facilitat-
ing an optimised memory layout by the linker,

fig. 9 show flow diagrams of embodiments of an object code generation

process;

fig. 10 shows a flow diagram of an embodiment of the object module part

generation sub-process of fig. 9;
figs. 11a-b show a block diagram of another embodiment of a software up-

date process;

Fig. 1 schematically shows a block diagram of an embodiment of a system

for updating software in an electronic device such as a mobile terminal. The

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

13

system comprises a mobile terminal 101, e.g. a mobile telephone or the like,

a software updating system 102, and a communications interface 103.

The software updating system 102 may comprise a server computer having
access to the communications network. In some embodiments, the function-
ality of the server computer may be distributed among a plurality of com-
puters, e.g. computers connected via a computer network, e.g. a local area
network, a wide area network, an Internet, or the like. The software updating
system 102 comprises an interface circuit 104 allowing the software updating
system to communicate data via the communications interface 103. For ex-
ample, the interface circuit may comprise a serial port, a parallel port, a short
range wireless communications interface, e.g. an infrared port, a Bluetooth
transceiver, or the like. Further examples of interface circuits include a net-

work card, a DSL modem, a gateway computer, or the like.

The software updating system further comprises a processing unit 105, e.g.
the CPU of a server computer, suitably programmed to control and to per-
form the update process including the generation of the updated program
code as described herein. The processing unit further comprises a version
database/repository 106 having stored therein memory images of and further
information about at least a base/current version and an updated version of
the software to be updated. In some embodiments, the version database may
further comprise additional information, e.g. a plurality of base versions
and/or updated versions, e.g. for different models of mobile terminals, for dif-

ferent groups of customers, and/or the like.

The communications interface 103 may be any suitable wired or wireless
communications interface for communicating data between the software up-
dating system 102 and the mobile terminal 101. For example, in the case of a
mobile telephone adapted to communicate via a cellular communications
network, e.g. a GSM network, a UMTS network, a GPRS network, or the like,

WO 2007/020082 PCT/EP2006/008104

10

16

20

25

14

the communication between the software updating system and the mobile
terminal in connection with a software update may be performed via that cel-
lular communications network, thereby avoiding the need for additional com-

munications interfaces in the mobile terminal.

Hence, in order to update software on the mobile terminal 101, the mobile
terminal may receive updating instructions from the updating system, e.g.
including the images of the memory sectors to be rewritten.

In a differential updating system using delta files, the updating instructions
are generated such that they enable the mobile terminal to generate the up-
dated software version from the existing version already stored in the mobile
terminal and from additional information included in the updating instructions.
The delta file may be applied in-place, i.e. the changes are made by the mo-
bile terminal on the existing image, thereby requiring little additional storage.
Furthermore, since only the delta file needs to be loaded and since the delta
file typically is considerably smaller than the new version, the loading time is

reduced by the above method.

Hence, in the above, a possible scenario is described in which the code gen-
eration process described herein may be applied. However, it will be appre-
ciated that the code generation process described herein may be applied to
other update scenarios. For example, the update may be provided to the tar-
get device via other media, e.g. other communications channels, via a com-

puter-readable medium, etc.

Embodiments of the code generation process will be described in greater

detail below.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

15

Fig. 2 schematically shows a block diagram of an example of an electronic
device such as a mobile terminal. The mobile terminal 101 comprises a

communications block 210, a processing unit 211, and a memory unit 212.

The communications block 210 comprises circuitry and/or devices allowing
radio-based communication of data via a cellular communications network.
Hence, for the purpose of the present description, the communications block
210 comprises receiver circuitry and transmitter circuitry for receiving and
transmitting data signals. The communications block may further comprise
circuitry for suitably processing the signals, e.g. modulating, coding, amplify-
ing, etc., the signals by suitable techniques well known in the art of radio

communications.

The mobile terminal further comprises a processing unit 211, e.g. a suitably
programmed microprocessor. The processing unit is adapted to determine
the version of the software stored in the mobile terminal, to calculate check-
sums of the stored software, and to generate an updated version of the soft-

ware upon receipt of corresponding update instructions.

The memory unit 212 has stored thereon the software and/or other data in a
predetermined version. For example, the memory 212 may comprise the
firmware of the mobile terminal that implements the basic functions of the
mobile terminal when loaded into and executed by the processing unit 211.
The firmware may further comprise an operating system allowing application
software to be executed. Accordingly, the memory 212 may further have
stored thereon application software providing additional functionality. The
memory 212 is addressed using a suitable address space, thereby allowing
the processing unit to access selected parts of the memory. In some em-
bodiments, the memory 212 may be logically or physically divided in a plural-
ity of memory sectors. For example, the memory 212 may comprise flash

memory allowing data to be written in sectors of a predetermined size.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

16

For the purpose of the present description, it is assumed that the memory
212 is divided in a number of sectors of a predetermined size denoted P1,
P2, P3, ..., PN. However, it is understood that any other addressing of the
memory may be used, instead. It is further understood that the updating
process described herein may be applied to the entire memory 212, e.g. if
the entire image of the flash memory of a mobile phone is to be updated, or
to only predetermined parts of the memory, e.g. if one or more software ap-

plications are to be updated.

In the following, different examples of a software update process will be de-
scribed with reference to figs. 3-11. In the drawings like reference numbers

refer to like or corresponding components, features, entities, etc.

Fig. 3 shows a block diagram of an embodiment of a software update proc-
ess. Initially, a compiler 303 receives one or more source code modules 302
from a source code repository 301, e.g. a database of source codes, a ver-
sion management system, or directly from a source code editing tool. The
compiler 303 generates a set of object code modules 305 that are fed into a
linker 306. The linker 306 combines the object code modules 305 into an ab-
solute file 307 ready for execution. One of the tasks performed by the linker
module 306 is the resolution of cross-references among separately compiled
object code modules and the assigning of final addresses to create a single
executable program 307. Hence, the output 307 from the linker is a file that
can directly be loaded into e.g. the flash memory of a device that is to exe-
cute the program. The linker output 307 will also be referred to as a memory

image.

The linker output 307 is fed into a delta file generation module 308, also re-
ferred to as a delta file generator. The delta file generator 308 receives the

binary (updated) image 307 and a corresponding current memory image as

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

17

inputs and generates a delta file 309 that is sent as an update package, or as
a part of an update package, to the device whose memory is to be updated
from the current memory image to the updated memory image. The current
memory image may, for example, be stored in a repository, e.g. a suitable
database, for image files. In some embodiments the memory image is re-
trieved from a repository 310 that may be part of the same database system
as the source repository 301. In some embodiments, the delta generator 308
may receive additional inputs, e.g. from the repository 310, such as extra link

information, e.g. in the form of a so-called map file.

The generation of the delta file may schematically be illustrated by the follow-

ing operations

ﬁlenew - ﬁlebase — Afile.

Correspondingly, the actual generation of the new version may then be per-

formed by the mobile terminal according to the following operation

ﬁlebase + Af'le g filenew.

It is understood that the above operations of generating the delta file (de-
noted as “-“ in the above notation) and generating the new version on the
mobile terminal (denoted as “+” operation in the above notation) may com-
prise more or less complex operations. Examples of suitable delta file tech-
niques include the methods described in US 6,546,552 and in “Compressing
Differences of Executable Code” by Brenda Baker, Udi Manber, and Robert
Muth, in ACM SIGPLAN Workshop on Compiler Support for System Software
(WCSSS99), 1999.

In the embodiment of fig. 3, the compiler 303 further receives source file

change information 304 from the source repository. In some embodiments

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

18

the change information 304 includes information about which source code
components, e.g. which functions, methods, classes, and or the like, have
been modified during the current update, i.e. the update from the source
code corresponding to the currently installed software to the updated source
code that is to be compiled by the compiler 303. This information allows the
compiler to generate the updated object code modules 305 with as few dif-

ferences as possible.

Fig. 4 shows a block diagram of another embodiment of a software update
process, similar to the process described in connection with fig. 3. The proc-
ess of fig. 4 differs from the process of fig. 3 in {hat the compiler 303 of the
embodiment of fig. 4 receives information 413 about a previous compilation,
in particular about the compilation that resulted in the currently installed
memory image. Accordingly, according to this embodiment, the compiler 303
stores information 412 about each compilation in the repository 310, thereby
making the information available for subsequent compilations. It is under-
stood that, alternatively, the compilation information may be stored in a dif-
ferent repository. The compilation information 412 and 413 may include in-
formation about source-to-machine code mappings, object code layout, com-
piler optimisation information, and/or the like. Consequently, the compiler
may apply the same optimisation steps to the same parts of the source code,
thereby reducing the differences in the generated object code. In particular, if
the compiler receives both the information about the previous compilation
and change logs about changes in the source code, the compiler can ensure
that those parts of the source code that have not been changed are compiled
in the same way, e.g. with the same optimisation settings, as in the previous

compilation, thereby resulting in minimal changes in the object code.

In some embodiments, the result of the previous compilation may even be
stored, e.g. in the repository 310, thereby allowing a direct re-use of previ-

ously compiled components.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

19

Fig. 5 shows a block diagram of yet another embodiment of a software up-
date process, similar to the process described in connection with fig. 3. The
process of fig. 5 differs from the process of fig. 3 in that the compiler 303 of
the embodiment of fig. 5 receives feedback information 514 from the linker
306, e.g. requests/constraints on the size of the different object code mod-
ules. Consequently, the feedback signal causes the compiler to compile one
or more of the source files resulting in object code modules/files that are
more suitable for the generation of the optimised memory layout by the linker
306. For example, if the linker determines that the space available for a modi-
fied object code module has increased (e.g. because the object code module
that in the current build is positioned subsequent in memory space with re-
spect to the modified object code module is no longer present in the updated
build), the linker may send a feedback signal 514 to the compiler as to inform
the compiler that the upper size constraint for the modified object code mod-
ule is increased. This in turn may allow the compiler to avoid the splitting of
the modified object code module. In some embodiments, the process of fig. 5
may be implemented as a two-pass process where the linker generates the
feed-back signal based on the result of the linking of a first pass, i.e. a first
compilation and linking. The feedback signal 514 causes the compiler to re-
compile one or more of the source files resulting in modified object files that
are more suitable for the generation of the optimised memory layout by the
linker. In some embodiments, the feedback signal 514 may even include in-
formation about which object module parts, e.g. which functions, functions to

include in each of the object code modules.

Fig. 6 shows a block diagram of yet another embodiment of a software up-
date process, similar to the process described in connection with fig. 3. The
process of fig. 6 differs from the process of fig. 3 in that the compiler 303 of
the embodiment of fig. 6 receives information 413 about a previous compila-

tion, as described in connection with fig. 4, and in that the compiler 303 of the

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

20

embodiment of fig. 6 receives feedback information 514 from the linker 306,
as described in connection with fig. 5. Furthermore, in this embodiment, the
linker 306 receives change information 615 directly from the source reposi-

tory, e.g. information about previous linker options, or the like.

Furthermore, the linker 306 of fig. 6 receives information 616 stored in the
repository 310 about the previous memory image/build. Accordingly, the
linker 306 stores such information about the current linking process of the
updated software in the repository for future use, as indicated by data flow
arrow 617. The information stored and retrieved in the repository may include
the generated image file itself, layout information about the layout of object

code modules in the image file, source-to-machine-code mappings, etc.

It is understood that the different types of information received by the com-
piler in the above embodiments may be combined in different ways, i.e. in

some embodiments, the compiler may receive some or all of the information.

Fig. 7 schematically illustrates the memory layout of a flash memory before
and after a software update where the layout is optimised via an introduction

of an overflow block.

Fig. 7a illustrates the structure of a part of the address space of a flash
memory. The address space 701 is divided into a number of pages denoted
P1, P2, P3, P4, P5, P6, P7, and P8. The pages have a predetermined size S;
in a typical conventional flash memory the page size is 64 kbyte; however

other sizes are possible as well.

Fig. 7b illustrates an example of the memory layout of a program code ver-
sion V1, generally referred to by reference numeral 702, stored in the ad-

dress space 701. The program code version in this example comprises five

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

21

object code modules designated A, B, C, D, and E. The object code modules

have different sizes and are sequentially arranged in the address space 701.

Fig. 7c illustrates an updated version V2 of the program code, generally des-
ignated 703. In this example, it is assumed that the only change between
version V1 and version V2 is the replacement of module A by module A’
where the module A’ is assumed to be larger than the previous module A as
illustrated by the additional memory space 705 required for A’. The remaining
modules B, C, D, and E are assumed to be unchanged, i.e. identical to the
corresponding portion of version V1. However, as is illustrated by reference
numeral 706 in fig.' 7c, when sequentially arranging the updated version V2,
the entire content of memory pages P1 through P7 need to be rewritten.
Pages P1, P2, and P3 need to be rewritten, because the content of module A
has changed to A, and the remaining pages need to be rewritten because
the location of the modules B, C, D, and E is changed between versions V1
and V2.

Fig. 7d illustrates an optimised memory layout of the updated program ver-
sion V2, generally designated 704, based on an optimised compilation step.
In this example, the compiler has generated the updated modules according
to hard size constraints, causing the compiler to generate the updated object
code modules A'y, B-E of version V2 to be no larger than the corresponding
object code modules A-E of the current version V1, i.e. by using information
about the previous compilation that resulted in the current version V1. Ac-
cordingly, the compiler has generated two object code modules A’y and A’
instead of the single object code module A’ such that A’y has the same size
as the original module A of version V1. The additional object code module
part A, comprises the additional object code originating from the source
code module corresponding to A’ that cannot be placed on the size-restricted
object code module A’y. Consequently, the subsequent linker may place the

module parts A’y and A’; separately, as to reduce the differences in the re-

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

22

sulting memory image of V2 compared to the current version V1. In the ex-
ample of fig. 7d, the linker has appended the “overflow” object code module
A’; to the memory image. Hence, when updating the memory with the opti-
mised updated version V2 to replace the previous version V1, i.e. by re-
flashing the relevant pages of a flash memory, only pages P1, P2, and P7
need to be re-written, as illustrated by reference numeral 708. The remaining

pages, i.e. pages P3, P4, P5, P6, and P8 need not be re-written.

It is understood that, in some situations, the compiler may place the “over-

flow” object code A’; inside one of the other object code modules. For exam-

‘ple, T one of the other object code modules is also updated and, as a conse-

quence of the update is reduced in size such that the additional object code
A’; can be placed within that other updated object code module without vio-

lating its size constraint.

Furthermore, if the compiler, based on change information about the source
code between versions V1 and V2 and/or information about the compilation
of version V1 generates the object code module A’y to be as similar to the
original object code module A of version V1, the differences in the resulting
images may further be reduced. For example, if, as is the case in the exam-
ple of fig. 7, the object code module A spans more than one memory sections
(P1 and P2 in fig. 7), the compiler may be able to limit the changes to the
object code module A’y to be restricted to only parts of the object code mod-
ule such that not all of the memory sections P1 and P2 are affected by the
update of A to A’y. Furthermore, a reduction of differences between A and A’y
further reduces the risk that references in other object code modules that re-
fer to A’y need to be changed, which would result in changes in other object

code modules as well.

In the following, an example of a splitting of an updated object code module

will be described with reference to fig. 8.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

23

Fig. 8 schematically illustrates the generation of object code modules facilitat-

ing an optimised memory layout by the linker.

Fig. 8a illustrates the compilation of a current version V1 of a source code
module “A.c”, generally designated 801, by a compiler 303 resulting in an
object code module “A.0”, generally designated 802. In this example, it is as-
sumed that the source code module 801 defines three functions f1(), f2(), and
£3(). Accordingly, the object code module 802 comprises corresponding three
object module parts, each including the object code implementing a corre-
sponding one of the functions f1(), f2(), and f3(). The function f1() further de-
pends on the functions f2() and f3(). The placement of the different object
module parts within the object code module is determined by the compiler

303 during compilation.

Fig. 8b illustrates the compilation of an updated version V2 of the source
code module “A.c”, designated 803, by the compiler 303. In this example, it is
assumed that the updated source code module differs from the original ver-
sion V1 in that the source code now defines functions f1(), f3(), g1(), and
g2(). Furthermore, the function f1() now depends on the functions f3(), g1(),
and g2(). Hence, compared to the version V1, the definition of the function
f2() has been removed, the definition of function f1() has been changed, and

two new functions g1() and g2() have been added.

The compiler 303 receives the updated version V2 of the source code 803
and the object code 802 that was generated during the previous compilation
of version V1. Alternatively or additionally, the compiler 303 may receive lay-
out information about the layout of the object module parts within the previ-

ous version V1 rather than the entire object file 802.

WO 2007/020082 PCT/EP2006/008104

10

16

20

25

30

24

From the previous object code module 802, the compiler 303 determines a
maximum size of the updated object code module and a target layout of the
object code module parts. Accordingly, in this particular example, the com-
piler may generate an updated object code module “A’y.0" (804) that is no
larger than the previous object code module “A.o”. Furthermore, the compiler
may position the functions f1() and f3() that were already present in the pre-
vious version of the object code at the same locations, i.e. the same relative
addresses, within the object code module as in the previous version. In this
example, it is assumed that the object code module part corresponding to
function g2() is no larger than the previous function f2(). Hence, the compiler
may place the new function g2() at the same location as the previous function
f2(). Finally, the compiler places the function g1() in a separate “overflow”

object code module “A’;.0", designated 805.

Hence, the above example illustrates that the compiler 303 may generate an
object code module that is no larger than the previous version. In some em-
bodiments, the compiler may even be configured to generate an updated ob-
ject file such that its total size remains unchanged, e.g. by a suitable padding.

Hence, module displacement in the subsequent linking process is avoided.

Furthermore, the example shows how the compiler may place unchanged
and modified module parts at the same position as in the previous version,

irrespective of their position in the new source file.

Fig. 9 show flow diagrams of embodiments of an object code generation

process.

Fig. 9a shows a flow diagram of one embodiment of an object code genera-
tion process. The process starts at step 901 where it receives, e.g. from the
source repository 301 an updated version of a source code moduleffile that is

to be compiled. In subsequent step 902, the process identifies a number of

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

25

module parts, e.g. functions, class definitions, etc., within the source code
module and determines the version status of the individual module parts, e.g.
based on change information 304 received from the source repository as de-
scribed above, or based on the previous version of the source code and the
previous version of the corresponding object code. In particular, the process
determines which module parts have been modified, are unchanged, are
new, or have been deleted. In particular, object module parts that have been
deleted as compared to the previous object code module, result in free mem-
ory space within the updated object code module which may be used when
locating added or modified object module parts. In the subsequent sub-
process 903, each of the identified module parts is processed resulting in
corresponding object module parts. An embodiment of this sub-process will
be described in greater detail below. In particular, the sub-process 903 fur-
ther receives information 907 about memory slots that have become avail-

able due to deleted object module parts.

In subsequent step 904, the generated object module parts are assembled
into an updated object code module. In some embodiments, the process lo-
cates the unchanged object module parts at the same memory locations as
in the previous version, thereby further reducing the differences between the

previous and the updated version.

In step 905, the resulting size of the generated object code module is com-
pared to the size of the previous version of the corresponding object code
module (e.g. as obtained as data 413 from an object code repository 310 as
described above) and, optionally, with any size constraints/requests received
from the linker. If the generated updated object code module satisfies the
size constraint(s), the process terminates. Otherwise, if the updated object
code module is too large, in particular larger than the previous version, the

process splits the object code module into two or more modules (step 906).

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

26

An example of such splitting has been described above with reference to figs.
7 and 8.

If compatible with the subsequent linker process and the object code format,

the assembly step 904 may be omitted, as illustrated in fig. 9b.

Fig. 9b shows a flow diagram of an alternative embodiment of an object code
generation process. This process is similar to the process of fig. 9a. How-
ever, in this embodiment, the generated object module parts are not assem-
bled into larger object code modules. Hence, the process results in a number
of smaller entities that may be relocated by the linker independently of each
other, thereby allowing the linker more degrees of freedom in the generation
of an optimised memory image. It may, for example, be beneficial to post-
pone the reuse of free memory slots until link-time, since the linker can per-
form a global optimisation for the entire software application rather than for a

single source code module.

Fig. 10 shows a flow diagram of an embodiment of the object module part
generation sub-process 903 of figs. 9a and 9b. The sub-process 903 per-
forms a loop over all identified module parts. For each module part, the proc-
ess initially determines whether that module part has been modified during
the update, whether the module part is a new module part introduced during
the update, or whether the module part remains unchanged by the update. If
the module part is unchanged, the process proceeds at step 1002; if the
module part is modified, the process proceeds at step 1003; and when the
module part is a new module part, the process proceeds at step 1007.

In step 1002, the process compiles the unchanged module part(s). When the
compiler uses the same compiler options, optimisation steps, etc., as during
the compilation of the previous version, the compilation results in an updated

object module part that is very similar or even identical to the previous ver-

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

27

sion of this object module part. Accordingly, the process may receive infor-
mation about the compilation of the previous version, or even the previous

version of the object code itself, e.g. from the repository 310.

In step 1003, the process processes the modified object module parts. In par-
ticular, the process compiles the modified object module parts resulting in
modified object code. If the size of a modified object module part has de-
creased compared to the previous version, padding may be used to fill up the
remaining memory space, thereby providing a modified object module part
that has the same size as the corresponding previous version. The padding
may for example be performed by simply leaving the current memory con-

tents in the padded memory space.

In step 1004, the process determines whether the size of the modified object
module part has increased. If the size has not increased, the process contin-
ues at step 1009. Otherwise, the process continuous at step 1005, where the
module part is split in two: one part that fits in the given memory slot and one
part that may be placed elsewhere during the subsequent linking process.
Hence, the process generates an overflow module part including the second
module part (step 1006). It is noted that the splitting of an object module part,
e.g. a function, may require additional branch instructions to be introduced. In
one embodiment, the process performs a control flow analysis as to deter-
mine whether the introduction of additional branch instructions may be
avoided and, if this is not the case, to identify one or more suitable split
points. For example, it is typically desirable to avoid the busy, i.e. frequently
executed, portions of the code such as inner loops. For the purpose of de-
termining suitable split points, known control flow analysis techniques may be
employed. For example, Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: "Com-
pilers: Principles, Techniques and Tools”, p 604 Addison-Wesley, 1986, dis-

closes an algorithm for detecting loops.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

28

In step 1007, the process compiles the new module parts, i.e. the module
parts that were not present in the previous version but were added during the
update. In one embodiment, the process generates a size-constraint object
module part such that it fits in one of the available memory slots, if any, e.g.
memory slots that have been detected to be available due to the deletion of
another object module part. If all parts fit into such memory slots (step 1008),
the process continuous at step 1009. Otherwise, the process continuous at
step 1006 where the module parts that do not fit into the available memory

slots are located in an overflow module part.

Figs. 11a-b show block diagrams of further embodiments of a software up-
date process. In the embodiment of fig. 11a, the update process is performed
by a compiler module 1103 and a linker module 1106. In particular, the com-
piler module 1103 receives the updated source code 1102 from a source re-
pository 1101 and generates the updated object code modules 1105 as de-
scribed herein. Accordingly, the compiler further receives information 1104
including one or more of the following: change information about changes in
the source code, compiler information about the compilation of the previous
version of the source code, object code information about the previous object
code, etc. Based on the received information, the compiler generates up-
dated object code modules 1105 that are as similar as possible to the previ-
ous version of the object code. The updated object code is forwarded to the
linker 1106.

In the embodiment of fig. 11b, the update process is performed by a compiler
module 1113, a post-processing module 1123, and a linker module 1106. In
this embodiment, the compiler 1113 may be a conventional compiler that re-
ceives the updated source code 1102 from the repository 1101 and gener-
ates updated object code 1115. The post-processor 1123 receives the object
code 1115 and additional information 1104 as described above. The post-

processor 1123 relocates the individual object module parts in the object

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

29

code modules generated by the compiler 1113 as to minimize the differences
of the updated object code from the previous version of the object code.
Hence, the post-processor may re-arrange object-module parts, split object
code modules and/or object module parts, and generate overflow object code
modules as described herein resulting in optimised updated object code
modules 1125 which are fed into the linker 1106.

It is an advantage of the embodiment of fig. 11b that the post-processor may
be implemented as a separate software component that may be used in con-
junction with conventional compiler and/or linker. Consequently, this em-
bodiment only requires relatively little software engineering as it allows the

reuse of existing software development tools.

The embodiment of fig. 11a, on the other hand, has the advantage that the
compiler 1103 may perform additional optimisation steps for further reducing
the differences between the updated and the previous version of the object
code. For example, the compiler may be adapted to generate object code
that is similar to the object code of the previous version, e.g. by using the

same optimisation techniques, etc.

Hence, in the above a method has been described that integrates the com-
piler in the creation of a delta update package. Unnecessary changes are
thus avoided by using close to identical memory layouts in subsequent ver-
sions of the software. Unlike linkers and post-processors to linkers such as
delta-file generators, a compiler can be given the ability to generate code
under size constraints and split module parts that no longer fit into their pre-
vious slots.

It is noted that the above embodiments have mainly been described with ref-
erence to flash memory. However, it is understood that the method described
herein may also be implemented in connection with other types of memory,
including memory types that are writable in smaller units, e.g. byte-wise or
even bitwise. Furthermore, the method described herein may also be applied

WO 2007/020082 PCT/EP2006/008104

10

15

20

30

in connection with other storage media, such as optical disks, hard disks,
floppy disks, tapes, and/or other types of magnetic and/or optical storage
media. For example, the method described herein may also be applied to the
update of computers, such as desktop computers, which load programs from
a secondary memory/storage medium into RAM before execution.

The invention can be implemented by means of hardware comprising several
distinct elements, and by means of a suitably programmed computer. In the
device claims enumerating several means, several of these means can be
embodied by one and the same item of hardware, e.g. a suitably pro-
grammed_microprocessor-or-computer,-and/or-one-or-more-communications-
interfaces as described herein. The mere fact that certain measures are re-
cited in mutually different dependent claims or described in different em-
bodiments does not indicate that a combination of these measures cannot be
used to advantage.

It should be emphasized that the term "comprises/comprising" when used in
this specification is taken to specify the presence of stated features, integers,
steps or components but does not preclude the presence or addition of one

or more other features, integers, steps, components or groups thereof.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

31

CLAIMS:

1. A method of generating updated object code of a computer program, the
updated object code being suitable as an input to a linker component for the
generation of an updated memory image to be loaded into a storage medium
having stored thereon a current memory image corresponding to a current
version of a computer program, the method comprising

— receiving at least one updated input code module from which the up-
dated object code is to be generated;

— processing at least the updated input code module to generate at.
least one updated object code module adapted to be linked by a
linker component as to generate the updated memory image;

characterised in that the method further comprises

— performing at least one optimisation process to reduce differences be-
tween said updated object code module and a corresponding one of a
set of current object code modules, the set of current object code
modules corresponding to the current version of said computer pro-
gram, wherein the optimisation process is performed prior to feeding

the updated object code module to a linker component.

2. A method according to claim 1, wherein the at least one updated input
code module is at least one updated source code module, and wherein the

method further comprises compiling the updated source code module.

3. A method according to claim 1, wherein the updated input code module is
at least one preliminary object code module generated by a compiler from at

least one corresponding updated source code module.

4. A method according to any one of claims 1 through 3, further comprising

receiving control data from the linker component.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

32

5. A method according to claim 4, wherein the control data includes a size

constraint for the size of the updated object code module.

6. A method according to any one of claims 1 through 5, further comprising

receiving the set of current object code modules.

7. A method according to any one of claims 1 through 6, further comprising
receiving change information indicative of differences between the at least
one updated input code module and at least one corresponding current input
code module, the at least one current input code module corresponding to

the set ot current object code modules.

8. A method according to any one of claims 1 through 7, further comprising
receiving processing information about a previous processing step which re-
sulted in the set of current object code modules from at least one corre-

sponding current input code module.

9. A method according to claim 8, wherein the processing information in-
cludes at least one of current layout information indicative of a current layout
of a set of object module parts within the current object code module and

compiler information about a previous compilation step.

10. A method according to claim 9, wherein the compiler information includes
at least one of source-to-machine code mappings and information indicative
of which compiler optimisation steps were applied during the previous compi-

lation step.

11. A method according to any one of claims 1 through 10, further comprising
storing updated processing information about said processing step for gener-
ating the updated object code modules for use in a subsequent processing

step.

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

33

12. A method according to claim 11, wherein the updated processing infor-
mation includes at least one of layout information indicative of a layout of a
set of object module parts within the updated object code module and com-

piler information about a compilation step.

13. A method according to claim 12, wherein the compiler information in-
cludes at least one of source-to-machine code mappings and information
indicative of which compiler optimisation steps were applied during the com-

pilation step.

14. A method according to any one of claims 1 through 13, wherein the up-

dated object code module comprises a plurality of object module parts.

15. A method according to claim 14, wherein each of said object module

parts is a relocatable entity which can be relocated within a memory image.

16. A method according to claim 14 or 15, wherein each of said object mod-
ule parts comprises at least one of a function definition, a procedure defini-

tion, a class definition, a constant definition, a variable definition.

17. A method according to anyone of claims 14 through 16, wherein the op-
timisation step comprises determining a sequential order of said object mod-

ule parts within the updated object code module.

18. A method according to any one of claims 14 through 17, wherein the op-
timisation step comprises placing at least one of said object module parts
that is not included in a current object code module corresponding to a first
updated object code module in a second updated object code module differ-
ent from the first object code module as to reduce the difference between the

WO 2007/020082 PCT/EP2006/008104

10

15

20

25

30

34

first updated object code module and the corresponding current object code

module.

19. A method according to any one of claims 1 through 18, further comprising
feeding at least the updated object code module into a linker component for
linking at least the updated object code module resulting in the updated

memory image suitable for subsequent processing by a delta file generator.

20. A method according to any one of claims 1 through 19, wherein the com-
puter program is a computer program adapted to be executed by a mobile

terminal.

21. A data processing system for generating updated object code of a com-
puter program, the updated object code being suitable as an input to a linker
component for the generation of an updated memory image to be loaded into
a memory having stored thereon a current memory image corresponding to a
current version of a computer program, the data processing system being
suitably programmed to perform the steps of the method according to any
one of claims 1 through 20.

22. A computer program product comprising program code means adapted to
cause a data processing system to perform the method according to any one
of claims 1 through 20, when said program code means are executed on the

data processing system.

23. A computer program product according to claim 22, wherein the com-

puter program product comprises a compiler.

24. A computer program product according to claim 22, wherein the com-

puter program product comprises a post-processor to a compiler, the post-

WO 2007/020082 PCT/EP2006/008104

35

processor being adapted to receive object code generated by said compiler

and to generate modified object code to be fed into a linker component.

25. Use of a method according to any one of claims 1 through 20 for the re-

5 programming of portable radio communications equipment.

WO 2007/020082 PCT/EP2006/008104

1/6
103

104
105
‘\ f102// /—101

\

ﬁ/‘ 106
FIG. 1 =/

210
\ 101 o4

OF

0000
0000
0000

— 71
212
N\
204 FIG. 2
305 s0s /307
v 308 209
SRC c L N AR

REP \
\—301 302 \- 310
303\
311

FIG. 3 R

303 305 406 307
_\ 308 309
SRC c L y L

REP \
\- 301 - 302

FIG. 4 R 311

413 310

412

WO 2007/020082

2/6

PCT/EP2006/008104

305 307
303 306
T N / /[308 509
REP T C L A :
_ 301 302T
514
FIG. 5
R
311
310
—615 306
“ * -
302 304 305 308
301 — | REP 7
_ 514 617
FIG. 6 616 l/
413
R
412 311
310
. 703 704
702 / /o
;70 vi ¥ V2 V2
s| P R R 1
v — — —— 1 A L —] 1| 708
P2 705
4 B | A X - —— 4 B ‘L
P3 B
P4 c 706 C
__1 c L
P5 B D -] D
P6 D
I & |L__. L__1TE |.
P7 E A, 708
__________ -y e _ ¥
P8 b) c) d)
a) FIG. 7

WO 2007/020082 PCT/EP2006/008104
3/6
801 — A.c V1
no- o0
return x + f2()+f3(); Ao
} 303
_\ f1()
int f2() { c
. ’] 20
return i;
¥ | o
int £3() {
;éturn J;
i FIG. 8a
A.c
V2 802
int f1() { A.o
'r;-::turn x + g1()+f3() + 1() 804
i?2(); 20 Ao
f3()
int f3() { f1()
return j; l 92()
}
int g1() i 30
retum i 805
;eturn I; 303 A—B
A0
int g2() { | — 803 e 570
'r'e.turn X,
! FIG. 8b

WO 2007/020082 PCT/EP2006/008104

4/6

Read source files

901
/

‘ 304

902

907 —x-
— ldentify module part status

|
: i /~ 903

> Process module parts
Y /904

1.
Assemble module

size reqs
OK?

906
N split module

return

FIG. 9a

Read source files

901
/'

304 ‘
Identify module part status

902
/

!

Process module parts

903
/

FIG. 9b

WO 2007/020082 PCT/EP2006/008104

5/6

(Process module part)

03

1001

unchanged new
g module part status?

907
modified /_

310
free/available(
(_ repositor_y_(_ mem-
| |
y | 1003 | y
generate | : I generate size
identical |a— generate size e« — L —»| constrained
module part constrained module part module part

\ 1002 1004 1007/

K>

N
1005
split module part |~ 1008
N
OK?

P <%

generate overflow | 1006 Y
module part

1009

all parts processed?

return

FIG. 10

WO 2007/020082 PCT/EP2006/008104

6/6

1104
1101
l/ 105 1106
SRC /
REP T C L
1102\

Fig. 11a 103

1104 1125
SRC [/
REP c & P
1115

P
1113 1123

Fig. 11b

INTERNATIONAL SEARCH REPORT

international application No

PCT/EP2006/008104

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F9/445 GO6F9/45

According to International Patent Classification (IPC) or to both natlonal classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that stich documenis are included in ihe fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

column 3, 1ine 31 - line 67
column 5, Tine 29 - column 8
column 14, line 50 - column 20,
figures 1,3,4B,9,11B

Galegory* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 0 472 812 A (LANDIS & GYR BETRIEBS AG; 1,2,4-6,
LANDIS & GYR TECHNOLOGY INNOVATION AG) 8,9,11,
4 March 1992 (1992-03-04) 12,
cited in the apptication 14-17,
20-23
Y page 2, 1ine 16 - 1ine 33 3,7,10,
13,18,
19,24
page 3, line 39 - page 8, line 35; claims
1,3,4; figures 3,4
Y US 5 230 050 A (IITSUKA ET AL) 7,10,13,
20 July 1993 (1993-07-20) 18
abstract

Tine b6;

-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

A document defining the general state of the art which is not
considered 1o be of particular relevance

‘E" earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or
other means

*P" document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

'Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
me'r:ts, such combination being obvious to a person skilled
in the art,

'&" document member of the same patent family

Date of the actual completion of the international search

15 November 2006

Date of mailing of the intemational search report

24/11/2006

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel (+#31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Lelait, Sylvain

Form PCT/ISA/210 {second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

international application No

PCT/EP2006/008104

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

23 December 2004 (2004-12-23)

abstract

page 1, paragraph 20

page 2, paragraph 25 - page 7, paragraph
82

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5 469 572 A (TAYLOR ET AL) 3,19,24
21 November 1995 (1995-11-21)
abstract
column 3, Tine 58 - column 5, Tine 6;
figure 1
A US 2005/021572 Al (REN LIWEI ET AL) 1-25
27 January 2005 (2005-01-27)
abstract
page 1, paragraph 18 - page 2
page 2, paragraph 24 - paragraph 27
page 4, paragraph 51 - page 8, paragraph
95; figure 2
A WO 2004/095457 A (BITFONE COPRORATION; 1-25
O’NEILL, PATRICK; SOTOS, PETER L; JACOBI,
SIDNEY) 4 November 2004 (2004-11-04)
abstract
page 5, paragraph 15
page 10, paragraph 34
page 12, paragraph 42 - page 13
page 19, paragraph 54 - page 23, paragraph
64; claims 1,5,27
A EP 1 331 643 A (AGERE SYSTEMS INC) 1-25
30 July 2003 (2003-07-30)
abstract
column 1, paragraph 10 - column 2,
paragraph 14
column 3, paragraph 20 - column 4,
paragraph 26
column 4, paragraph 29 - column b,
paragraph 29
A US 2004/260734 Al (REN LIWEI ET AL) 1-25

Form PCT/ISA/210 (continuation of second sheet) 1 April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2006/008104
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0472812 A 04-03-1992 DE 59108978 D1 10-06-1998
US 5230050 A 20-07-1993 JP 2205929 A 15-08-1990
JP 2834171 B2 09-12-1998
US 5469572 A 21-11-1995 NONE
US 2005021572 Al 27-01-2005 US 2006101040 Al 11-05-2006
WO 2005015343 A2 17-02-2005
WO 2004095457 A 04-11-2004 EP 1614034 A2 11-01-2006
EP 1331643 A 30-07-2003 US 2003142556 Al 31-07-2003
US 2004260734 Al 23-12-2004 CN 1809818 A 26-07-2006
EP 1639472 Al 29-03-2006
KR 20060026880 A 24-03-2006
WO 2005001696 Al 06-01-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report
	Page 45 - wo-search-report

