发明名称
稳定FSH

摘要
本发明总体涉及FSH制剂的稳定领域，具体地涉及液体FSH制剂的稳定领域。通过加入包含药用碱金属阳离子，在优选的实施方案中通过加入药用盐，即钠盐或钾盐来实现所述稳定。
1. 包含药用碱金属阳离子的盐用于稳定液体 FSH 制剂的用途，其中所述盐选自药用 Na⁺盐和 K⁺盐或其组合组成的组。

2. 根据权利要求 1 的用途，其中所述盐是 Na⁺盐。

3. 根据权利要求 1 或 2 任一项的用途，其中所述盐是 NaCl 或 Na₂SO₄。

4. 根据权利要求 1 或 2 任一项的用途，其中所述盐是氯化钠。

5. 根据权利要求 1 或 2 任一项的用途，其中所述盐是 NaCl 和 Na₂SO₄的组合。

6. 根据权利要求 1-5 中任一项的用途，其中以 20-500mM 的量，或 30-300mM 的量或 50-200mM 的量包含所述盐。

7. 根据权利要求 1-6 中任一项的用途，其中所述 FSH 制剂是 rFSH 制剂。

8. 根据权利要求 1-7 中任一项的用途，其中所述制剂还包含防腐剂。

9. 根据权利要求 8 的用途，其中所述制剂包含苯酚、苯酚和 / 或间甲酚。

10. 根据权利要求 1-9 中任一项的用途，其中所述制剂是可注射制剂。

11. 用于稳定液体 FSH 制剂的方法，其中所述方法包括将包含药用碱金属阳离子的盐加入所述制剂中的步骤，其中所述盐选自药用 Na⁺盐和 K⁺盐或其组合组成的组。

12. 根据权利要求 11 的方法，其中所述盐如上述权利要求 2-6 所定义。

13. 根据权利要求 11 和 / 或 12 的方法，其中所述待稳定的 FSH 是 rFSH。

14. 根据权利要求 11-13 中任一项的方法，其中所述制剂还包含防腐剂。

15. 根据权利要求 14 的方法，其中所述防腐剂选自由苯酚、苯酚和间甲酚组成的组。
稳定 FSH

[0001] 本申请是国际申请号 PCT/EP2011/062986,国际申请日 2011 年 7 月 28 日,中国申请号 201180037221.0,发明名称为“稳定 FSH”的分案申请。

发明领域
[0002] 本发明总体涉及稳定 FSH 制剂的领域,具体地涉及稳定液体 FSH 制剂的领域。通过加入盐,在优选的实施方案中,通过加入具有药用盐的碱金属阳离子的盐,即 Na– 盐或 K– 盐或其组合来实现稳定。
[0003] 背景
[0004] 促性腺激素是这样的激素家族,其基本地主要涉及雄性和雌性中的生育周期。促性腺激素可以来自尿液,用于研究和治疗目的,然而一些促性腺激素也可以重组产生。
[0005] 具体地,促性腺激素可用于治疗不育。
[0006] 本文涉及并且都属于相同糖蛋白家族的四种主要的促性腺激素是促卵泡激素 (FSH)、促甲状腺激素 (TSH)、黄体生成素 (LH) 和绒毛膜促性腺激素 (hCG)。所有这些促性腺激素由 α 和 β 亚基组成; α 亚基是所有促性腺激素共有的,即对于所有上述四种促性腺激素是相同的,而 β 亚基则在每一种中是不同的。
[0007] 如上提及,促性腺激素是一组异源二聚糖蛋白激素,其调节雄性和雌性中的性腺功能。它们包括促卵泡激素 (FSH)、黄体生成素 (LH)、促甲状腺激素 (TSH) 和 (人) 绒毛膜促性腺激素 (hCG)
[0009] 从更年期后人尿液中纯化的 FSH 已经在不育治疗中使用了许多年;同时在自然生殖中促进排卵并且提供卵母细胞用于辅助生殖技术。FSH 的两种重组形式,Gonal-F (Merck
Serono) 和 Puregon (Schering-Plough) 在 90 年代中后期是可获得的。这些都在中国仓鼠卵巢
(CHO) 细胞中表达 (Howles, C. M. (1996), genetic engineering of human FSH(Gonal-F))
(人 FSH(Gonal-F) 的遗传改造), Hum Reprod (人类生殖). Update, 2:172-191)。CG 通常
用于不育治疗, 因为该化合物具有 LH 活性。

[0010] 人 FSH 和 hCG 都是 α 亚基和 β 亚基组成的异源二聚体。在两种激素中 α 亚基
是相同的。β 亚基赋予两种激素之间的差异。FSH 的成熟 β 亚基由 111 个氨基酸组成,
而 hCG 的成熟 β 亚基由 145 个氨基酸组成。另外, FSH 和 hCG β 亚基的一级氨基酸序
列在整个 β 链都是不同的。FSH 和 hCG 两者的 β 链都包含 6 个二硫键, 然而由于它们不同的氨
基酸序列, 它们确实在它们的更高级结构上不同, 导致了电位, 极性和疏水区域的不同折叠
和分布 (Fox 等 (2001). Three dimensional structure of human follicle-stimulating
hormone(人促卵泡激素的三维结构) Mol Endocrinol. 15(3), 379-89)

[0011] 尽管 FSH 和 hCG 的 β 亚基都是糖基化的, FSH 的 β 亚基仅包含 N- 糖基化
(N-7 和 N-24), 而 hCG 的 β 亚基包含 N- 和 O- 糖基化 (N-13, N-30, O-121, O-127, O-132
和 O-138)。在 hCG 的 β 亚基中的额外糖基化使得其比 FSH 的 β 亚基更疏水。β 亚基提
供受体相互作用的特异性。

[0012] CHO 细胞通常用于制备药物重组蛋白。结构分析已经鉴定喙状酸仅通过 α 2,3- 连
接相连。许多人糖蛋白包含喙状酸残基的 α 2,3- 和 α 2,6- 连接的混合物。因此, 使用 CHO
系统表达的重组蛋白在其末端喙状酸连接的类型上与它们的天然对应物不同。

[0013] 不育

[0014] 在本发明的语境中, “不育” 应该被限定为怀孕和生育后代的能力减低或没有。能
够怀孕但是重复流产的妇女也被认为是不育的。不育在专用名词上也被定义为无避孕的规
律性交一年怀孕失败。不育是由很多原因造成的。研究已经显示半数多一点的不育病因是
由女性疾病导致的。剩余的由精液疾病以及不可解释的因素所导致。

[0015] 目前存在治疗不育的一些可能性。

[0016] 那些可能性是定时的性质, 使用辅助生殖技术 (ARTs), 子宫内膜异位, 纤维瘤和女
性性功能障碍 (FSH) 的医药处理, 以及外科手术来校正异常。

[0017] 在辅助生殖技术中, 使用刺激排卵的药物。在 LH 和 hCG 之后, FSH 是用于该用途
的那些化合物之一。

[0018] 对于施用, 这些化合物的液体制剂是适合的。不幸的是, 在过去已经显示, 加
入液体制剂的防腐剂, 具体地, 苯酚 (BA)、苯酚和间甲酚对于蛋白施加去稳定的作用
(Maa, Y. F. 和 Chung, C. H. 1996, Aggregation of recombinant human growth hormone
induced by phenolic compounds(由酚类化合物诱导的重组人生长激素的聚集) Int. J.
benzyl alcohol on recombinant human interferon- gamma(苯醇对于重组人 γ- 干扰素的
formulations comprising benzyl alcohol as a preservative(包含苯醇作为防腐剂的
FSH 和 FSH 变体). EP0974359B1, 1-50)。

[0019] 因此重要的是提供稳定的制剂, 尤其鉴于待施用的 FSH 的剂量应该减少解离或聚
集形式副作用如免疫原性反应的风险 (如果非天然 FSH 存在的话)。然而由防腐剂导致的
不稳定事件减少了在液体制剂中的活性促性腺激素，即 FSH 的实际水平。

[0020] 因此，本发明的目的是提供稳定的 FSH 制剂，尤其是液体制剂，以及稳定它们的方法。

[0021] 发明概述

[0022] 本发明涉及使用用于稳定液体 FSH 制剂的包含药用碱金属阳离子的盐以稳定液体 FSH 制剂。待稳定的液体制剂可以是含有或不含防腐剂的制剂。

[0023] 优选下述实施方案：

[0024] 1. 包含药用碱金属阳离子的盐用于稳定液体 FSH 制剂的用途，其中所述盐选自由药用 Na⁺盐和 K⁺盐或其组合组成的组。

[0025] 2. 根据项目 1 的用途，其中所述盐是 Na⁺盐。

[0026] 3. 根据项目 1 或 2 任一项的用途，其中所述盐是 NaCl 或 Na₂SO₄。

[0027] 4. 根据项目 1 或 2 任一项的用途，其中所述盐是 Na₂SO₄。

[0028] 5. 根据项目 1 或 2 任一项的用途，其中所述盐是 NaCl 和 Na₂SO₄的组合。

[0029] 6. 根据项目 1-5 中任一项的用途，其中以 20-500mM 的量，或 30-300mM 的量或 50-200mM 的量包含所述盐。

[0030] 7. 根据项目 1-6 中任一项的用途，其中所述 FSH 制剂是 rFSH 制剂。

[0031] 8. 根据项目 1-7 中任一项的用途，其中所述制剂还包含防腐剂。

[0032] 9. 根据项目 8 的用途，其中所述制剂包含苯醇、苯醇和/or 间甲酚。

[0033] 10. 根据项目 1-9 中任一项的用途，其中所述制剂是可注射制剂。

[0034] 11. 用于稳定液体 FSH 制剂的方法，其中所述方法包括将包含药用碱金属阳离子的盐加入所述制剂中的步骤，其中所述盐选自由 Na⁺盐和 K⁺盐或其组合组成的组。

[0035] 12. 根据项目 11 的方法，其中所述盐如上述 2-6 定义。

[0036] 13. 根据项目 11 和/or 12 的方法，其中所述待稳定的 FSH 是 rFSH。

[0037] 14. 根据项目 11-13 中任一项的方法，其中所述制剂还包含防腐剂。

[0038] 15. 根据项目 14 所述的方法，其中所述防腐剂选自由苯醇、苯酚和间甲酚组成的组。

[0039] 16. 根据项目 1-10 中任一项的用途，其中所述液体制剂是重构的液体制剂，其获得自冻干的制剂。

[0040] 17. 项目 11-15 中任一项的方法，其中所述加入盐的步骤在冻干步骤之前进行。

[0041] 18. 项目 17 的方法，其中重构步骤在所述冻干步骤之后进行。

[0042] 19. 项目 17 和/or 项目 18 的方法，其中所述盐包含在冻干制剂中或其中所述盐包含在重构液体中。

[0043] 提供有稳定盐的制剂因此是以冻干状态贮存的备选实施方案。冻干以本领域技术人员通常所知的方式进行。接着可以贮存冻干制剂直到最终用于患者。在施用前，接着将冻干制剂与任一种已知的重构介质，例如无菌水重构。盐包含在冻干制剂中或包含在重构液体中。

[0044] 20. 上述项目中任一项的用途或方法，其中所述液体制剂是单次用制剂或多剂量制剂，优选地用于注射。

[0045] 在优选的实施方案中，盐包含在液体中，所述液体制剂本身不是冻干的而是在贮存
存中作为液体保存。

0046 具体地，在优选的实施方案中，本发明涉及液体 FSH 制剂的稳定，其中所述碱金属阳离子选自由 Na⁺和 K⁺组成的组。特别优选的，所述盐是 NaCl 或 Na₂SO₄。

0047 如上所述，液体 FSH 制剂适合用于治疗不育。在该方面，清楚地是，液体 FSH 制剂可以是不稳定的；对于包括用于单次使用的那些在内的所有液体 FSH 制剂，这是真实的。如果液体 FSH 制剂包括防腐剂（例如这对对于所有多剂量制剂是必须的），那么不稳定性甚至可能是更显著的。该防腐剂可以是每一种用于保存 FSH 制剂的防腐剂，因此，防腐剂可以是由 FDA 批准的用于 FSH 制剂的防腐剂，具体地，例如批准用于肠胃外 FSH 制剂的 FDA 批准的防腐剂，如例如苯甲醇，苯酚和 / 或间甲酚；然而防腐剂不限于那些实例。FSH 的稳定性例如被苯甲醇、苯酚和 / 或间甲酚减少。

0048 因此，本发明要求保护和描述的包含药用阳离子的盐用于稳定单次用 FSH 制剂。

0049 此外，本发明要求保护和描述的包含药用阳离子的盐用于稳定多剂量的 FSH 制剂；所述制剂不需要包含防腐剂但是也可以包含防腐剂。

0050 加人本发明要求保护的包含药用阳离子的盐，即 Na⁺和 K⁺，在稳定液体 FSH 制剂。在特别优选的实施方案中，所述盐是药用盐。在单次用或多剂量制剂中尤其在较长的贮存时间内实现稳定，并且在又一个可能的实施方案中，作为防腐剂（如苯甲醇，苯酚和 / 或间甲酚）的去稳定作用的反措施可以是有利的。

0051 可以根据本发明使用的盐，在优选的实施方案中，包括 NaCl 或 Na₂SO₄。

0052 优选地以 20–500mM 的量包含盐，甚至更优选地以 30–300mM 的量包含盐；在特别优选的实施方案中，以 50–200mM 的量包含盐。

0053 加入的盐的最大量被限于溶液摩尔渗透压浓度。为了使注射后的疼痛最小，溶液应该优选是等渗的或至少不是高渗的。由于在溶液中所有赋形剂都对摩尔渗透压浓度有贡献，所以可以加入溶液的盐的最大量依赖于其它存在的成分的量。

0054 优选以导致 350mosmol/kg 的最大摩尔渗透压浓度的量包含盐，甚至更优选的以导致 320mosmol/kg 的最大摩尔渗透压浓度的量包含盐；在特别优选的实施方案中，以导致 300mosmol/kg 的最大摩尔渗透压浓度的量包含盐。

0055 摩尔渗透压浓度理论

0056 摩尔渗透压浓度是一种实用手段，其给出对存在于溶液中的各种溶质对溶液渗透压的贡献的全面测量。摩尔渗透压浓度可以根据 Ph. Eur. 2. 2. 35，第 7 版，增刊 2011 (7.2)，Osmolality (摩尔渗透压浓度)，01/2008；20235 进行测量。

0057 在本发明的语境中，“盐”是通过用金属或带正电的原子团完全或部分取代氢而从酸衍生的化学化合物。

0058 “具有（或包含）药用盐的阳离子的盐” 的定义指所有那些与根据 FDA 无活性成分列表批准用于肌肉或皮下递送的阳离子形成的盐；该组的碱金属阳离子是钠 (Na⁺) 和钾 (K⁺)。

0059 发明人已经令人惊奇地发现两个非常特异性的阳离子特别适合于稳定 FSH 制剂。

0060 盐可以因此与下述药用阳离子形成：钾 (一元、二元或三元)，或钠 (一元、二元或三元)。优选地，所述盐是钠盐。

0061 特别优选的是 NaCl 和 Na₂SO₄。
可以根据本发明稳定的促性腺激素是 FSH，即促卵泡激素，其任选与其他活性成分组合。

FSH 是来源与尿或血浆的 FSH 或重组 FSH (rFSH)。在优选的实施方案中，所述 FSH 是尿 FSH 或 rFSH；特别优选的是 rFSH。

如上提及，现在可以重组产生 FSH。因此，本文提及的 FSH 一般总是包括尿液来源的促性腺激素以及重组促性腺激素。因此，本文提及的 FSH 还包括 rFSH。

在本发明的优选实施方案中，所述制剂是液体 rFSH 制剂，最优选是可注射的，其通过 Na₂SO₄ 或 NaCl 稳定。

在本发明的优选实施方案中，所述制剂是液体 rFSH 制剂，最优选是可注射的，其通过 Na₂SO₄ 或 NaCl 稳定。

在各选实施方案中，所有实施方案的 rFSH 是长效的 FSH。可以如本领域技术人员公知（例如，通过修饰 FSH 分子或通过修饰所述制剂）获得长效 FSH 制剂，

因此，此处的 FSH 涵盖所有可能的尿液来源的或重组形式的上述 FSH 以及 FSH 形式所有可能的组合。还包含用于单元用的制剂以及一种或多种用于多剂量用途的其他制剂（相同或不同促性腺激素的）。

一种可能的产品可以是包含 FSH（任选地具有 CG、LH、LH 活性等）的制剂，都在不同的瓶中。LH 活性（如果存在）可以来自 LH 或 CG。LH 可以被等效剂量的 CG 代替并且反之亦然；在该语境中，“等效剂量”可以基于 Pharmacopeia Van H11 Bioassay (Van H11, 等, Acta Endocrin. 47, 409–418, 1964) 中的 1IU 的 CG 等价于 5–7IU 的 LH 来进行计算。

优选的组合是 (r)FSH、(r)LH 和 (r)hCG 的组合，都在不同的瓶中。

在不同瓶中的可能的组合也包括：尿液 (u) FSH 和 uCG 或 uFSH 和 uLH；其他的 (rhCG 或 rLH 或 rFSH) 和 (uCG 或 uLH 或 rhCG 或 rLH)，及其所有可能的排列。

另外优选的组合是 (r)FSH 和 (r)hCG 的组合，其分别在不同的瓶中。

另外优选的组合是 (r)FSH 和 (r)LH 的组合，其分别在不同的瓶中。

本发明的 FSH 制剂是液体制剂。

优选地，所述制剂是可注射的。制剂可以作为这样的产品供应，所述产品具有一种、两种或多种包含 FSH 或 FSH/hCG 的药物组合物，其用于单独或在一起施用。如果单独施用，施用可以是顺序进行的。所述产品可以以任何适合的包装供应。例如，产品可以包含许多预先填充的注射器，其各自包含 FSH (FSH 组合物)，或另外还包含 hCG (hCG 组合物)，例如，其中所述注射器可以以泡罩包装或其他方式包装以维持无菌。产品可以任选地包含使用 FSH 制剂的说明书。根据另一个方面，本发明的 FSH 制剂作为多剂量制剂提供。然而，本发明也明确地涉及用于单次使用的制剂。本发明还涉及作为试剂盒的一部分的制剂的稳定。所述试剂盒将包含至少一个包含一个或多个剂量的 FSH 的容器；或例如两个容器（例如，小瓶），其各自包含不同的促性腺激素；以及例如另外的说明书（例如，用于施用的）和例如用于注射的其他工具。在优选的实施方案中，使用用于多次注射的注射笔，其中 FSH 溶液被填充在各个药筒中。

在优选的实施方案中，以 35–8501U/ml，优选地 50–8001U/ml，甚至更优选地 100–6001U/ml 包含 FSH。

用于例如 6001U/ml rFSH 的特别优选的制剂具有下述组成：
[0078] 600IU/ml rFSH
[0079] 0.001-0.05，优选为0.005mg/ml 聚山梨醇酯
[0080] 0.1-10，优选为1.0mg/ml L-甲硫氨酸
[0081] 0.5-50，优选为5.0mg/ml 苯酚
[0082] 1-100，优选为14mg/ml 硫酸二钠（即0.1M）
[0083] 0.1-10，优选为1mM磷酸钠缓冲液，(pH 6-8，优选为pH 6.5)。
[0084] 所述溶液摩尔渗透压浓度优选为300mOsmol/kg
[0085] (pH 指该溶液的 pH。)
[0086] 可注射贮存 (depot) 形式可以通过在可生物降解聚合物中形成 FSH（和其它药剂，如果存在的话）的微囊基质来进行制备。基于聚合物的贮存形式 / 持续释放系统可以（取决于它们的化学性质）例如是微颗粒或纳米颗粒，水凝胶，粘胶，乳状液或植入物。取决于 FSH 与聚合物的比率和使用的特定聚合物的性质，可以控制 FSH 释放的速率。可生物降解的聚合物的实例包括聚酯 / 聚乙交酯共聚物系统、聚乙烯低聚烷酮、聚（原酸酯）、聚（酸酐）、聚（乙二醇）、聚氨酯，多糖例如透明质酸钠（NaHA）或其他的半合成多糖等。可以对所有提及的聚合物进行衍生化或修饰从而使蛋白药物递送或其稳定性最优。贮存可注射制剂也可以通过将 FSH 包埋在液体系统，或聚合物脂质混合物如胶束、脂质体或微乳（其与体组织可相容）中来进行制备。
[0087] 可以例如通过经由细菌过滤器过滤的方式，或通过渗入无菌固体组合物（其可以在使用前溶解或分散在无菌水或其他无菌可注射介质中）形式的杀菌剂对可注射制剂进行灭菌。可注射的制剂可以在如上所述的任何适合的容器，例如小瓶、预先填充的注射器、注射药筒等中供应。
[0088] 可以根据本领域的常规实践来调整药物组合物中的各种成分的 pH 和精确浓度。见 GOODMAN 和 GILMAN 的 THE PHARMACOLOGICAL BASIS FOR THERAPEUTICS（治疗剂的药理学基础），第7版。在优选的实施方案中，本发明的组合物可以作为肠胃外施用的组合物进行供应。本领域中已知用于制备肠胃外制剂的一般方法并且在 REMINGTON ; THE SCIENCE AND PRACTICE OF PHARMACY（雷明顿：药物科学和实践），见上文，在780~820页中描述。肠胃外组合物可以在液体制剂中作为固体供应，所述固体可以在施用前与无菌可注射的介质混合。在尤其优选的实施方案中，以易于使用和剂量均一的剂量单位形式供应肠胃外组合物。
[0089] 本发明的 FSH 可以通过常规方式从尿液中获得或可以重组制备。对于可能的生产方法，还参考例如WO 2009/127826。
[0090] hCG 可以通过本领域任何已知的方式获得。当用于本文时 hCG 包括人来源的 hCG 和重组 hCG。人来源的 hCG 可以通过本领域任何已知的方法从任何适合的来源（例如尿液和胎盘）纯化。表达和纯化重组 hCG 的方法是本领域公知的。
[0091] LH 可以通过本领域任何已知的方式获得。当用于本文时，LH 包括人来源的 LH 和重组 LH。人来源的 LH 可以通过本领域任何已知的方法从任何适合的来源（例如，尿液）中纯化。表达和纯化重组 LH 的方法是本领域已知的。
[0092] 药物组合物可以用于治疗不育，例如用于例如辅助生殖技术 (ARTs)、诱导排卵 (O1) 或子宫内授精 (IUI)。药物组合物可以例如用于其中使用已知 FSH 制剂的医疗适应
症。本发明还提供本文描述的稳定的FSH制剂（根据本发明的方面）用于治疗不育的用途，或者制备用于治疗不育的药物中的用途。可以将药物组合物配制为已知的组合物，用于任何途径的药物施用，例如口腔、直肠、肠胃外，透皮（例如贴片技术）、静脉内、肌肉内、皮下、脑池内、阴道内、腹膜内，局部（粉末、膏剂或滴剂）或作为鼻喷雾剂。典型的组合物包含药物载体，如水溶液、非毒性赋形剂，包括盐和防腐剂，缓冲剂等，特别如在Remington’s Pharmaceutical Sciences fifteenth edition（雷明顿药物科学第15版）（Matt出版公司，1975），在1405-1412页和第1461-87页，和national formulary（国家处方集）XIV，第14版（American Pharmaceutical Association（美国药物协会），1975）中所述。

[0093] 合适的水性及非水性药物载体、稀释剂、溶剂或赋形剂的实例包括水、乙醇、多元醇（如甘油、丙二醇、聚乙二醇等）、羧甲基纤维素及其合适的混合物、植物油（如橄榄油）和可注射的有机酯如油酸乙酯。

[0094] 所述组合物还可以包含添加剂如但不限于防腐剂、湿润剂、乳化剂、缓冲剂和分散剂。可以包含抗细菌剂和抗真菌剂以防止微生物生长并且包括例如对羟基苯甲酸酯类、氯丁醇、苯酚和二氯甲烷等。此外，包含张性剂（tonicity agent）也是理想的。

[0095] 在一些情形中，为了实现延长作用，需要延缓对来自皮下或肌肉注射的FSH（和其他活性成分，如果存在的话）的吸收。这可以通过使用具有较差水溶性的晶体或无定形物质的液体混悬液来实现。例如，FSH的吸收速率取决于其解离的速率，这又可以取决于晶体大小和晶体形式。备选地，肠胃外施用的FSH组合形式的延缓吸收通过将FSH组合溶解或悬浮在油性赋形剂中来实现。

[0096] 根据本发明，发明人努力研究某些化合物对液体促性腺激素制剂的稳定性的作用。在此，研究了某些化合物的稳定以及去稳定作用。

[0097] 术语“稳定性”可以指化学稳定性，包括在蛋白质序列中的共价修饰，但是在蛋白稳定性的情况下，其还指物理稳定性，包括蛋白折叠状态（即天然状态）的变化，不包括共价键裂解。

[0098] 在本发明中，术语“稳定性”指促性腺激素，尤其是本发明的FSH的制剂的物理稳定性。蛋白制剂的物理不稳定性可能由蛋白分子聚集形成高级聚集体，通过异二聚体解离成单体，或通过任何其他构象变化（其减少包含在本发明中的FSH蛋白的至少一种生物学活性）来导致。

[0099] “稳定的”溶液或制剂是这样的溶液或制剂，其中蛋白在其中的聚集、解离、构象改变、生物学活性的损失等的程度可接受地被控制，并且不会随时间不可接受地增加。稳定性可以通过本领域公知的方法评估，所述方法包括测量样品的光散射，透明度和/或着色的视觉观察，吸光度或光密度，分子大小确定（例如，通过大小排阻色谱法或场流分级法）、体内或体内生物学活性和/或通过差示扫描量热法（DSC）。其他评估稳定性的方法是本领域公知的，并且也可以根据本发明使用。

[0100] 已知一些防腐剂对促性腺激素制剂具有显著的去稳定作用并且令人惊奇地发现，盐，具体地包含在此显示为适于稳定液体FSH制剂的药用碱金属阳离子（具体地Na+或K+）的盐，如NaCl或Na2SO4适合用于溶液需要被包含在用于医疗用途的液体多剂量FSH制剂中的防腐剂如卡洛、苯酚和间甲酚的去稳定作用。本发明要求保护的盐对液体FSH制剂
具有稳定作用，其以有利的和令人惊奇的方式，比已知稳定剂，如例如蔗糖的稳定作用甚至更显著。与已知稳定剂如蔗糖相比提高的稳定作用是特别令人惊奇的。此外，相当出人意料地，本发明的盐可以显示关于 FSH 制剂的稳定作用，而对如非常相似的 hCG 没有显示稳定作用。同样令人惊奇的是，观察到的稳定作用并没有遵守所谓的 Hofmeister 系列（也见以下），而是实际上与它相反。

[0012] 还从现有技术中已知在药物 FSH 制剂中存在 FSH 的降解并且这通过第一组本发明的实施例证实。

[0013] FSH 将作为时间的函数和温度的函数地降解。具体地，在室温以上的温度，二级结构、三级结构和四级结构被改变。

[0014] 看上去，在加热后发生的三级 FSH 结构和二级 FSH 结构的构象解折叠是两相状态
转变（当蛋白聚集受到限制时）。这种解折叠可以独立于亚基解离（四级结构变化）。

[0015] 此外，关于本发明清楚的是，包含防腐剂如苯酚或苯酚的 FSH（其中所述防腐剂是需要的，例如在液体 FSH 制剂中作为抗微生物剂）明显地以不利方式影响 FSH 多剂量制剂的稳定性。在此，FSH 的长效稳定性被降低，FSH 的变性温度降低，并且与不包含防腐剂的 FSH 制剂相比，已经变性的形式具有更低水平的二级结构。

[0016] 本发明还首次证明：包含用于稳定液体 FSH 制剂的药用碱金属阳离子（即 Na 和 K）的盐，对于液体 FSH 制剂的稳定性具有明显的作用。可以证明的是，在包含这些盐的液体 FSH 制剂中的 FSH 的二级结构在加热到 76.5°C 后不会显著改变。在存在例如 Na,S0,时，变性形式是相对地构成的，这使变性更加可逆，并且因此显著增加蛋白的动力学稳定性。这由目前显示的实时稳定数据支持，所述数据显示对 FSH 的异二聚体结构的显著的稳定作用。

[0017] 结果清楚地表明本发明要求保护的盐，例如硫酸钠和氯化钠，可以限制 FSH 分子解离的倾向并且因此显著增加贮存稳定性。

[0018] 本发明还涉及用于稳定液体 FSH 制剂的方法，其中所述方法包括将上述盐加入所述制剂中的步骤。

[0019] 通过另外进行的实时数据来证实所有的研究。

[0020] 附图简述

[0021] 图 1：显示在不同温度对于 rFSH 的作为波长（nm）函数的 CD（圆二色谱，见下）信号（mdegree）。

[0022] 图 2：显示在不同温度对于包含 Na,S0,的 rFSH 的作为波长（nm）函数的 CD 信号（mdegree）。

[0023] 图 3：显示在不同温度对于包含苯酚的 rFSH 的作为波长（nm）函数的 CD 信号（mdegree）。

[0024] 观察到在 24.0°C → 45.9°C 光谱之间没有显著的差异。将 rFSH 蛋白在 3.57mM 包含 0.0036mg/ml 聚山梨醇 20 的 pH 6.3 的磷酸盐缓冲液中。在 24.0°C（粗实线），50.3°C（虚线），54.7°C（点线），59.0°C（虚-点线），63.4°C（星），67.8°C（菱形）和 76.5°C（实线）扫描。
溶解在 3.57mM 包含 0.0036mg/ml 聚山梨醇酯 20 和 0.17mg/ml 苆醇的 pH 6.3 磷酸盐缓冲液中。在 24.0°C（粗实线）、45.9°C（圆圈）、50.3°C（虚线）、54.7°C（点迹线）、59.0°C（虚点迹线）、63.4°C（星）、67.8°C（菱形）和 76.5°C（实线）扫描。

图 4：随后对 hCG 和 rFSH 进行 DSC 扫描。对于在 0.005mg/ml 聚山梨醇酯 20, 0.5mg/ml L-甲硫氨酸, 1mL 磷酯盐缓冲液（pH 6.5）中的 5mg/ml hCG 和在 0.005mg/ml 聚山梨醇酯 20, 0.5mg/ml L-甲硫氨酸, 0.24M NaCl, 1mL 磷酯盐缓冲液（pH 6.5）中的 2.4mg/ml rFSH 的 DSC 数据。扫描速率 2.0°C/min。第一次 rFSH 扫描（虚线），第二次 rFSH 扫描（虚点迹线），第一次 hCG 扫描（虚线）和第二次 hCG 扫描（点迹线）。在第一次扫描之后，在第二次扫描之前，将样品冷却到 20°C。

图 5：具有不同的糖或盐的 hCG 的 DSC 扫描。在 0.005mg/ml 聚山梨醇酯 20, 0.5mg/ml L-甲硫氨酸和 1mL 磷酯盐缓冲液（pH 6.5）中的 5mg/ml hCG 的 DSC 数据。没有加入糖或盐（粗实线），0.1M Na₂SO₄（实线），0.1M NaCl（点迹线），0.1M NaClO₃（虚线）和 0.1M 蔗糖（虚点迹线）。扫描速率 2.0°C/min。

图 6：具有不同的糖和盐的 rFSH 的 DSC 扫描。在 0.005mg/ml 聚山梨醇酯 20, 0.5mg/ml L-甲硫氨酸和 1mL 磷酯盐缓冲液（pH 6.5）中的 2.4mg/ml rFSH 的 DSC 数据。没有加入糖或盐（粗实线），0.1M Na₂SO₄（实线），0.1M NaCl（点迹线），0.1M NaClO₃（虚线）和 0.1M 蔗糖（虚点迹线）。扫描速率 1.0°C/min。

本发明进一步通过下述实施例外来解释，然而实施例将不被视为以任何方式限制本发明的范围。

实施例

实施例 1- 同步辐射圆二色光谱学 (SRCD)

方法

通过使用在 University of Aarhus, Denmark 的同步加速器进行圆二色光谱学，使用 0.1mm 路径长度石英 supersil 池 (Hellma GmbH, Germany)，在 180-270nm 的波长范围内，在 1mm 步长中，记录所有的 CD 光谱，其中停留时间为 3 秒 / 波长。对于 rFSH 和参比（对照剂）试验的每个实验实验记录三次相同的 CD 扫描。通过从平均蛋白扫描中扣除平均的相对对照剂扫描获得在本报道中呈现的 rFSH 的 CD 光谱。对于每一组 CD 扫描，使用约 120 μl 溶液 (对应于约 112 μg rFSH)。

在研究温度对 rFSH CD 光谱的效应过程中，加热室中的温度以 5°C 的时间间隔从 25°C 到 85°C 变化，并且平衡时间为 5 分钟。从校准文件，确定实际的实验温度在（石英 supersil 池中的温度）。

CD 测量由于结构不对称性发生的左圆极化光和右圆极化光吸收的差异。可以通过 CD 光谱在远 UV 区域 (约 180-250nm) 中研究蛋白的二级结构。一般地，更有序的结构伴随更强烈的 CD 信号（正或负）。然而，不同的二级结构具有不同的 CD 光谱，并且因为 α- 螺旋具有比 β - 结构更强的 CD 信号，所以在待确定的不同蛋白之间不能对有序结构的程度进行直接比较。

由于针对结构变化的高敏感性，当研究蛋白的物理稳定性时，CD 光谱是强有力的技术。通常，通过检测 CD 光谱来进行所述研究，所述 CD 光谱作为外界因子例如温度、pH 变
性剂，表面活性剂或稳定剂的浓度变化的函数。在本发明的研究中，研究作为温度的函数的 rFSH 的 CD 光谱。另外，还研究了苯酚和硫酸钠（Na₂SO₄）对于 rFSH 二级结构的影响。

在实施例和在实施例 2 和 3 中使用的促性腺激素是重组促卵泡激素（rFSH），其是使用重组 DNA 技术从人 PER.C6® 细胞系表达的人激素。rFSH 是由两种糖基化单元：FSH、黄体生成素（LH）、人绒毛膜促性腺激素（hCG）和促甲状腺激素（TSH）共有的 92 个氨基酸的 α - 亚基，以及对于 FSH 特异的 111 个氨基酸的 β - 亚基组成的异双聚体蛋白。包含 FSH 的糖蛋白激素都在非共价偶联的单体解离后失去它们的生物学活性。以前的结果已经说明 rFSH 的不稳定性主要基于二聚体解离（四级结构的分解和伴随的免疫结合反应的减少）。

取法于意的用途，目前市售的 rFSH 制剂以不同的浓度提供，范围从 37.5IU/ml（对于 Gonal-f 对应于约 2.8μg/ml）到至少 833IU/ml（对于 Puregon 对应于约 83.3μg/ml）。

在研究中使用的 rFSH 意欲用于液体药物产品制剂，对于皮下注射是 600IU rFSH/ml。由于所述产品的目的在于多剂量注射，所以添加防腐剂是必须的。

通过混合不同成分的储液产生研究的制剂。蛋白和赋形剂的研究的浓度间隔由于所用的方法而受到限制，即与赋形剂浓度比较，蛋白浓度需要被保持得相对较高。由于芳香族化合物在研究的波长区域内的 UV 吸收，苯酚浓度需要被保持得低。下面的表概括了三种不同的制剂，所述制剂由本发明的发明人在第一次实验设计中进行检查。

该表显示了用于温度对 rFSH 的影响的 SRCD 研究的三种制剂的含量。

<table>
<thead>
<tr>
<th>系列</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rFSH 0.93 mg/ml，聚山梨醇酸 20.36 μg/ml，3.57 mM 磷酸盐缓冲液 pH 6.3</td>
</tr>
<tr>
<td>2</td>
<td>rFSH 0.93 mg/ml，聚山梨醇酸 20.36 μg/ml，Na₂SO₄ 8.6 mg/ml，3.57 mM 磷酸盐缓冲液 pH 6.3</td>
</tr>
<tr>
<td>3</td>
<td>rFSH 0.93 mg/ml，聚山梨醇酸 20.36 μg/ml，苯酚 0.17 mg/ml，3.57 mM 磷酸盐缓冲液 pH 6.3</td>
</tr>
</tbody>
</table>

样品 1

在 24℃到 77℃之间的 13 个不同温度，记录 rFSH、样品 1（见表 1）的 CD 光谱。为了清楚，这些光谱中仅有 7 个显示在图 1 中。样品 1，如从表 1 中可推出的，既不包含盐也不包含防腐剂。在图 1 中显示光谱。结果清楚地显示 CD 信号的强度作为温度的函数减少，说明在高温（> 50℃）的二级结构的分解。在 24.0℃ → 45.9℃光谱之间没有检测到明显的差异，这显示在测量的时间阶段中（约 20 分钟），在加热到约 46℃后，蛋白的二级结构是完整的。加热后 FSH 的 SRCD 光谱显示在约 193nm 的异二向色点，对于样品 2 的光谱，这也被发现了，见图 2。

样品 2

记录包含 Na₂SO₄ 的 rFSH、样品 2（见表 1）的 CD 光谱。在 24℃到 77℃的 13 个不同温度获得的光谱，并显示在图 2 中。为了清楚，这些光谱中仅有 5 个显示在图 2 中。结果显示作为温度的函数的二级结构的分解。数据揭示，在加热到约 46℃后（在实验的过程中），
样品2中的rFSH的二级结构是完整的。重要的是，数据还显示存在在Na₂SO₄时，变性形式相对地构成。

【0134】样品3

【0135】记录包含苄醇（BA）的rFSH样品3（表1）的CD光谱。苄醇是一种抗微生物防腐剂，其通常被选择用于rFSH的液体制剂。由于与例如甲醇相比的相对较弱的防腐能力，BA必须以高浓度（约10-15mg/ml）使用。因为意欲在多至1个月的时期内将rFSH用于多次注射，并且因为rFSH通常在室温进行贮存，所以防腐剂是必须的。

【0136】在24℃-77℃之间的13个不同温度获得在0.17mg/ml BA存在的rFSH的光谱，并显示在图3中。为了清楚，这些光谱中仅8个在图3中显示。由于苄醇的非常高的UV吸收（和伴随的低CD信号），不能增加研究的BA浓度，并因此甚至不能接近用于保存rFSH制剂的浓度。然而，观察到BA的明显的去稳定作用。CD结果显示样品3中的rFSH的二级结构在加热到42℃后是完整的，与样品1和2中的rFSH的开始变性温度相比稍低。

【0137】另外，重要的是，数据显示与不存在防腐剂的FSH相比，变性形式显著缺乏有序结构。

【0138】赋形剂对于温度诱导的结构变化的作用

【0140】然而，加入防腐剂对于开发多剂量制剂是关键的，并且从市场上存在的rFSH产品已知，需要开发具有甚至相对更高含量的苄醇的更稳定的制剂（Puregon®含10mg/ml苄醇）。

【0141】发现苄醇降低rFSH的稳定性并且促进在加热后失去有序的二级结构。然而，加入防腐剂是重要的。该研究显示，本发明要求保护的盐在加热的rFSH制剂中增加有序结构的水平。因此，这些盐非常适合在液体rFSH制剂中作为稳定剂，例如补偿苄醇或其他酚类防腐剂的效果。

【0142】实例2-差示扫描量热法（DSC）

【0143】在该实施例中代表性使用的FSH与在实施例1中使用的相同。一般地，蛋白的天然（生物活性）结构对于其周围环境，例如制剂的组成、容器系统、pH和温度是非常敏感的。在本发明的实施例中，已经通过液体差示扫描量热法（DSC）研究了rFSH变性温度，Tᵅ。rFSH变性温度提供了蛋白在溶液中稳定性的指示，其中更高的Tᵅ显示更稳定的蛋白。

【0144】蛋白的三级结构和四级结构主要通过非共价相互作用稳定。因为在解折叠过程中，许多的这些分子内相互作用被与水分子的非共价相互作用取代，所以不同结构形式（即，天然和变性的）之间的热力学平衡是精细的。一般地，这意味着，天然蛋白的稳定性是受到限制的。许多蛋白在约70℃热解折叠。可以通过热动力学参数描述蛋白折叠或变
性，所述热动力学参数可以使用 DSC 进行直接研究和量化。因此，DSC 是研究生物形剂对蛋白
稳定性作用的重要工具，并且因此是鉴定蛋白治疗剂的最优制剂的重要工具。

[0145] 液体差示扫描量热法 (DSC)

[0146] 理论

[0147] 液体 DSC 中加热蛋白样品（即，增加样品温度）时，仅获得稍稍增加的基线，
但是当加热继续（即，温度持续增加）时，热由蛋白吸收导致其在研究的蛋白的特征性温度
范围内解折叠。这产生吸热峰。在蛋白的解折叠过程中，由于暴露了更疏水的链，围绕蛋
白的水分子重新组织。当解折叠完成时，热吸收减少并且形成了新的基线。

[0148] 样品的热容量 C_p 的积分给出焓的变化 ΔH，其与等式 (1) 的解折叠过程相关。观
察到的焓的变化来自吸热过程，如氢键的断裂和放热过程如在蛋白和周围介质之间的氢键
的形成。热转化的中点或转化中点，T_m（通常被称为蛋白变性温度），是当一半蛋白分子折
叠，一半蛋白分子解折叠时的温度。

[0149] \[\Delta H = \int C_p dT \] (1)

[0150] 来自 DSC 测量的原始数据，即作为温度的函数的热速率（以 W 表示）可以容易地
重新计算为偏摩尔热容量（以 J/mol K 表示）（已知所用的蛋白的摩尔质量和浓度）。

[0151] 测试方法

[0152] 使用液体 DSC，来自 TA Instruments，装备了 300 µL 双毛细管池的 Nano DSC 来
测量蛋白变性温度 T_m，并使用下述参数：

[0153] 扫描速率：0.5-2.0°C / min, 如果没有另外指出，使用 1.0°C / min 的扫描速率（对
于实施例 4 为 2.0°C / min）

[0154] 起始温度：20°C

[0155] 最终温度：100°C

[0156] 平衡：900s（或对于实施例 4 为 900s (第一次扫描) 600s（第二次扫描））

[0157] 恒压：3atm

[0158] 在测量之前对于所有的样品进行脱气 15min。在每个蛋白样品后，用 50％甲酸清
洁样品池。另外，在每一次样品运行之后，用 1000ml 纯水清洗该池。将所有样品与在参比
池中的相应的对照剂一起测量。从评估之前的待测数据中扣除来自利用填充在参比和样品池中
的对照剂溶液进行的单独扫描的结果，即扣除空白。

[0159] MALDX-TOF MS

[0160] 在用酶解液酸消化和之后，通过基质辅助激光解吸 / 电离飞行时间 质谱 (Matrix Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry (MALDI-TOF MS)) 分析 rFSH 的样品以评估去唾液酸化反应的程度。在
Autoflex II MALDI ToF 质谱仪 (Bruker Daltonics) 上获得光谱。将芥子酸作为基质。以
正线性离子模式进行分析，其中提取 (extraction) 延迟。将 4000-209893Da 的扫描范围与
外标一起使用。

[0161] 该实施例的目的

[0162] 该实施例的目的是通过液相差示扫描量热法 (DSC) 研究 rFSH 的热稳定性，并且研
究在添加和不添加防腐剂（苯酚或苄醇）的情况下，各种盐对 rFSH 的稳定作用。
该研究与以前的圆二色 (CD) 光谱研究（上述实施例 1）和实时稳定性研究（下述实施例 3）一起都目标在于研究盐和防腐剂对于溶液中的 rFSH 稳定性的影响。

研究的产品

rFSH 批次信息

rFSH, 药 物 物 质 批 号 08800020 和 批 号 09PD80010 由 Bio-Technology General (BTG), Israel 生产。

根据 Ph. Eur 进行 rFSH 的生物学活性确定。分别对于所用的两个 rFSH 批次, 分别确定批次 088000020 浓度为 13,223 IU/ml（导致 9,256 IU/ml），确定批次 09PD80010 的浓度为 15,109 IU/ml（导致 10,576 IU/ml）。

材料

赋形剂

在表 2 中列出在该研究中用于 rFSH 溶液的赋形剂列表。

表 2: 赋形剂列表
<table>
<thead>
<tr>
<th>名称</th>
<th>供应商</th>
</tr>
</thead>
<tbody>
<tr>
<td>磷酸氢二钠×2H₂O，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>磷酸85%，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>氯化钠，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>硫酸二钠×10H₂O，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>氯化镁×6H₂O，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>氯化钾，p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>碘化钠，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>硫酸铵，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>碘化钾，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>氯化锌，Ph.Eur.</td>
<td>Riedel-de-Haën</td>
</tr>
<tr>
<td>柠檬酸三钠×2H₂O，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>乙酸铵，Ultra＞99.0%</td>
<td>Fluka</td>
</tr>
<tr>
<td>乙酸钠，×3H₂O，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>高氯酸钠×H₂O，p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>碘化锌，p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>硫酸锌，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>硫酸二钾，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>酒石酸二钠×2H₂O，p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>碘化铵，p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>蔗糖，Ph.Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>磷酸氢二钾×3H₂O，p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>硫酸镁×7H₂O，Ph.Eur.</td>
<td>Fluka</td>
</tr>
<tr>
<td>聚山梨醇酯20 (吐温20) Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>苯酚，Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>苯醇，Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>L-甲硫氨酸，Ph. Eur.</td>
<td>Sigma</td>
</tr>
<tr>
<td>Milli-Q水</td>
<td>Millipore</td>
</tr>
</tbody>
</table>

【0173】测试的溶液的组成
【0174】测试的rFSH和对照剂溶液的组成在表3、表4和表5中列出。基于满足Ph.Eur. A标准所需要的浓度选择测试的防腐剂的浓度,所选Ph.Eur. A标准涉及用于肠胃外用途的制剂的防腐效力。
【0175】测试的盐浓度基于在测试溶液中获得等渗性所需要的硫酸钠的浓度,即0.1M硫酸钠。以与硫酸钠相同的摩尔浓度测试所有其他的盐。另外,测试更高和更低的氯化钠浓度以评估盐浓度对rFSH变性温度 Tn 的影响。
在测试溶液中保持低的磷酸钠缓冲液浓度从而来使缓冲盐的稳定 / 去稳定作用的风险最小。

表 3: rFSH 溶液的组成

<table>
<thead>
<tr>
<th>rFSH</th>
<th>缓冲剂</th>
<th>表面活性剂</th>
<th>防腐剂</th>
<th>抗氧化剂</th>
<th>稳定剂</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 mg/ml</td>
<td>1 mM 磷酸盐缓冲液 pH 5.5 或 pH 6.5 或 pH 7.5</td>
<td>0.005 mg/ml 聚山梨醇酯 20</td>
<td>5 mg/ml 苯酚或 15 mg/ml 苯酚或无</td>
<td>0.5 mg/ml L-甲硫氨酸</td>
<td>0.1M Na₂SO₄ 或 0.24M NaCl 或 0.1M NaCl 或 0.07M NaCl 或 0.1M 乙酸钠或 0.1M 柠檬酸三钠或 0.1M 碳酸二钠或 0.1M NaI 或 0.1M NaClO₄ 或 0.1M K₂SO₄ 或 0.1M K₂HPO₄ 或 0.1M KCl 或 0.1M KI 或 100mM (NH₄)₂SO₄ 或 0.1M 乙酸铵或 0.1M NH₄I 或 0.1M MgSO₄ 或 0.1M MgCl₂ 或 0.1M ZnSO₄ 或 0.1M ZnCl₂ 或 0.1M ZnI₂ 或 0.1M 蔗糖或无</td>
</tr>
</tbody>
</table>

表 4: 去唾液酸化的 rFSH 溶液的组成

<table>
<thead>
<tr>
<th>去唾液酸化的 rFSH</th>
<th>缓冲剂</th>
<th>表面活性剂</th>
<th>抗氧化剂</th>
<th>稳定剂</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 mg/ml</td>
<td>1 mM 磷酸盐缓冲液 pH 6.5</td>
<td>0.005 mg/ml 聚山梨醇酯 20</td>
<td>0.5 mg/ml L-甲硫氨酸</td>
<td>0.1 M Na₂SO₄ 或 0.1 M NaClO₄ 或无</td>
</tr>
<tr>
<td>缓冲剂</td>
<td>表面活性剂</td>
<td>防腐剂</td>
<td>抗氧化剂</td>
<td>稳定剂</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1 mM 磷酸盐缓冲液 p H 5.5 或 pH 6.5 或 pH 7.5</td>
<td>0.005 mg/ml 聚山梨醇酯 20</td>
<td>5 mg/ml 苯酚或 15 mg/ml 苯醇或无</td>
<td>0.5 mg/ml L-甲硫氨酸</td>
<td>0.1M Na₂SO₄ 或 0.24M NaCl 或 0.1M NaCl 或 0.07M NaCl 或 0.1M 乙酸钠或 0.1M 柠檬酸三钠或 0.1M 氯化酸二钠或 0.1M NaI 或 0.1M NaClO₄ 或 0.1M K₂SO₄ 或 0.1M K₂HPO₄ 或 0.1M KCl 或 0.1M KI 或 100mM (NH₄)₂SO₄ 或 0.1M 乙酸钠或 0.1M NH₄I 或 0.1M MgSO₄ 或 0.1M MgCl₂ 或 0.1M ZnSO₄ 或 0.1M ZnCl₂ 或 0.1M ZnI₂ 或 0.1M 蔗糖或无</td>
</tr>
</tbody>
</table>

【0183】制备方法

【0184】在 Ferring Pharmaceuticals A/S, Copenhagen, Denmark 以实验室规模制备所有的溶液（表 3, 表 4 和表 5）。制备方法总结如下：

【0185】rFSH 储液制备

【0186】通过使用 rFSH 批次 08800020 或批次 09PD80010 药物物质溶液作为原材料，加入浓缩步骤，制备在磷酸盐缓冲液中的 rFSH 储液。使用来自 Vivascience 的具有 10kDa 分子量截断值 (MWCO) 的 Vivaspin 20 装置进行向上浓缩 (up concentration)。通过对 15ml 的相应对照剂溶液 (其含在 1mM 磷酸盐缓冲液 pH 5.5, 6.5 或 7.5 中的 0.5mg/ml L-甲硫氨酸, 0.005mg/ml 聚山梨醇酯 20) 进行经过过滤器的离心预先洗涤所述膜。使用甩平式 (swing-out) 转子以 3000x g 进行离心 20 分钟。

【0187】为了进行浓缩步骤, 将共 80ml 的 rFSH 样品用于填充 Vivaspin 20 装置 (20ml/装置) 并且以 3000x g 离心 15 分钟。将每个保留物转移到 20ml 容量瓶中。用所需对照剂溶液的小等分试样洗涤过滤器。将洗液转移到容量瓶中, 使用相同的对照剂溶液将其最终稀释到体积。这产生 2.8mg/ml rFSH 储液, 其含有分别在 1mM 磷酸盐缓冲液 pH 5.5, 6.5 或 7.5 中的 0.5mg/ml L-甲硫氨酸, 0.005mg/ml 聚山梨醇酯 20。

【0188】制备 rFSH 和对照剂溶液

【0189】在 Milli-Q 水中制备所有的赋形剂 (除防腐剂之外) 的储液。
说明书

[0190] 为了制备 rFSH 和对照剂溶液, 将每种赋形剂的溶液混合以获得在表 3、表 4 和表 5 中给出的需要的浓度。将防腐剂直接加入溶液。

[0191] rFSH 的去唾液酸化

[0192] 将 rFSH 浓度为 2.8mg/ml 的浓缩的 rFSH 溶液（其含有在 1mM 磷酸盐缓冲液 pH 为 6.5 中的 0.5mg/ml 1 L 甲硫氨酸，0.005mg/ml 聚山梨醉酯 20）用于从与 rFSH 结合的糖结构部分去除唾液酸。使用来自动 Sigma 的 α (2 → 3, 6, 8, 9) 神经氨酸酶 (唾液酸酶) 酶促地进行去除。在 37℃过夜搅动期间，用神经氨酸酶处理 rFSH。使用上述用于浓缩 rFSH 的 Vivaspin 装置去除所述试剂。将包含酶的 rFSH 溶液转移到预先洗涤的 Vivaspin 装置中。对装置进行离心，排出滤液并且将保留物重新悬浮在对照剂溶液中。所述对照剂溶液含有0.5mL 甲硫氨酸，0.005mg/m1 聚山梨醉酯 20。对所述溶液再次进行离心。在最终保留物转移到容量瓶中并且用对照剂稀释到体积之前，重复该方法三次。这产生了 2.8mg/ml 的去唾液酸化的 rFSH 前液，所述前液包含在 1mM 磷酸盐缓冲液 pH 6.5 中的 0.5mg/ml 1 L 甲硫氨酸，0.005mg/ml 聚山梨醉酯 20。

[0193] 结果和讨论

[0194] DSC 扫描速度对 rFSH T_m 的影响

[0195] 为了研究 DSC 扫描速度对 rFSH 变性温度的影响，用三种不同的扫描速度进行 T_m 测量，如在表 6 中所观察到的。在测量过程中，rFSH T_m 随所用 DSC 扫描速率变化。

[0196] 在比较获取用相同的扫描速率进行的测量的变性温度时，T_m 随扫描速率变化的事实不影响数据的解释，见例如表 7。

[0197] 表 6：变性温度 T_m 与含有在 1mM 磷酸钠缓冲液 pH 6.5 中的 2.4mg/ml rFSH, 0.5mg/ml 甲硫氨酸，0.005mg/ml 聚山梨醉酯 20 的 rFSH 样品的扫描速率相关

<table>
<thead>
<tr>
<th>扫描速率</th>
<th>T<sub>m</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5°C/min</td>
<td>71.9°C</td>
</tr>
<tr>
<td>1.0°C/min</td>
<td>72.9°C</td>
</tr>
<tr>
<td>2.0°C/min*</td>
<td>74.9°C</td>
</tr>
<tr>
<td>2.0°C/min*</td>
<td>74.3°C</td>
</tr>
</tbody>
</table>

[0199] *双重的样品制备和分析

[0200] 至 100°C 的重复 DSC 扫描显示 rFSH 的变性在实验条件下是部分不可逆的（见图 4）。这意味着，在两次 DSC 扫描之间的平衡时间相等，再折叠较慢，或再折叠与不可逆步骤相关，如在等式 2 中所显示。

[0201] 天然 <-> 解折叠 -> 不可逆变性（2）

[0202] 添加防腐剂对于 rFSH T_m 的影响

[0203] 在表 7 中所显示，取决于所用的防腐剂，添加防腐剂到 rFSH 溶液中降低了变性温度 T_m 达 2-6°C。这充分对应于以前报道的其它重组蛋白和尿液来源的 FSH 的数据。

[0204] 获得的含有苯酚的 rFSH 溶液的 T_m 与含有苯酚的 rFSH 溶液相比的更大增加（见表 7）可以由实验中使用的苯酚浓度（15mg/ml）高于苯酚浓度（5mg/ml）解释。

[0205] 表 7：rFSH 样品在添加和不添加防腐剂的情况下变性温度 T_m（防腐剂）和 T_m（无防腐剂）
所述rFSH样品含有2.4mg/ml rFSH, 0.5mg/ml L-甲硫氨酸, 0.005mg/ml 聚山梨醇酯20, 1mM磷酸钠缓冲液 pH 6.5 和在表中列出的赋形剂。\[\Delta T_m(无防腐剂) = T_m(防腐剂) - T_m(无防腐剂) \]

<table>
<thead>
<tr>
<th>防腐剂</th>
<th>盐</th>
<th>(T_m(无防腐剂))</th>
<th>(T_m(防腐剂))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mg/ml 苯酚</td>
<td>无盐</td>
<td>72.9°C*</td>
<td>70.2°C*</td>
</tr>
<tr>
<td>15 mg/ml 苯酚</td>
<td>无盐</td>
<td>74.9°C**</td>
<td>72.3°C**</td>
</tr>
<tr>
<td>5 mg/ml 苯酚</td>
<td>0.1 M Na(_2)SO(_4)</td>
<td>74.9°C**</td>
<td>70.1°C**</td>
</tr>
<tr>
<td>15 mg/ml 苯酚</td>
<td>0.1 M Na(_2)SO(_4)</td>
<td>78.0°C</td>
<td>75.1°C*</td>
</tr>
<tr>
<td>15 mg/ml 苯酚</td>
<td>0.1 M Na(_2)SO(_4)</td>
<td>78.9°C**</td>
<td>73.3°C</td>
</tr>
</tbody>
</table>

* 计算自用 1.0°C/min 的扫描速率进行的 DSC 测量。
** 计算自用 2.0°/min 的扫描速率进行的 DSC 测量。
[0207] 加入各种盐对 rFSH 金属离子的影响

[0208] 根据其对蛋白溶解度和稳定性的一般作用对盐进行分级被称为 Hofmeister 系列或易溶（lyoathropic）系列，下述等式（3）。已知左右侧的盐析试剂（所谓的 kosmotropic 离子）对蛋白产生稳定作用。而已知右侧的离液（chaotropic）离子或盐溶离子使蛋白去稳定。

\[SO_4^{2-} > HPO_4^{2-} > F^- > Cl^- > Br^- > NO_3^- > I^- > ClO_4^- > SCN^- \ (3) \]

[0209] 向不含防腐剂的溶液加入各种盐对 rFSH 金属离子的影响。

[0210] 当测量各种盐对于 rFSH 金属离子的作用时，相当令人惊奇的是，当改变阳离子时，没有观察到如上所述的根据 Hofmeister 系列预期的稳定 / 去稳定作用，见表 8 和表 9。不管是否使用最多的 kosmotropic 离子，硫酸盐，或离子离液，高氯酸盐，变性温度的增加大约相同。实际上，当预期对 rFSH 的去稳定作用时，对高氯酸盐离子的盐，获得 rFSH 金属离子的最大增加。对于多种无机离子如硫酸盐，氯化物和高氯酸盐，以及对于有机阴离子如柠檬酸盐、乙酸盐和酒石酸盐，Tn 的增加在相同的范围内。

[0211] 表 8：变性温度 Tn 与 rFSH 样品的盐阴离子和阳离子的组合相关，所述 rFSH 样品含有 2.4mg/ml rFSH, 0.5mg/ml L-甲硫氨酸, 0.005mg/ml 聚山梨醇酯20, 1mM 磷酸钠缓冲液 pH 6.5 和 0.1M 盐

<table>
<thead>
<tr>
<th>阴离子</th>
<th>阳离子</th>
<th>K⁺</th>
<th>Na⁺</th>
<th>NH₄⁺</th>
<th>Mg²⁺</th>
<th>Zn²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄²⁻</td>
<td>77.6°C</td>
<td>78.0°C</td>
<td>74.9°C</td>
<td>75.0°C</td>
<td>60.2°C</td>
<td></td>
</tr>
<tr>
<td>HPO₄²⁻</td>
<td>77.9°C</td>
<td>77.7°C</td>
<td>76.2°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乙酸盐</td>
<td>78.4°C</td>
<td>78.4°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>柠檬酸盐</td>
<td>77.7°C</td>
<td>77.7°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>酒石酸盐</td>
<td>78.4°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl⁻</td>
<td>77.6°C</td>
<td>77.7°C</td>
<td>74.4°C</td>
<td>59.9°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I⁻</td>
<td>78.3°C</td>
<td>78.7°C</td>
<td>76.3°C</td>
<td>57.5°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO₄⁻</td>
<td>80.9°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0212] 没有加入盐：Tn = 72.9°C, 根据表头的其它赋形剂
[0217] 0.1M 蔗糖：\(T_n = 73.3 \)℃，根据表头的其它赋形剂

[0218] 表 9，加入 0.1M 盐后，与 rFSH 样品的盐阴离子和阳离子的组合相关的变性温度的变化 \(\Delta T_n(\text{盐}) \)，所述 rFSH 样品包含 2.4mg/ml rFSH, 0.5mg/ml L- 甲硫氨酸, 0.005mg/ml 聚山梨醇酯 20, 1mM 磷酸钠缓冲液 pH 6.5。\(\Delta T_n(\text{盐}) = T_n(\text{盐}) - T_n(\text{无盐}) \)

![表格]

<table>
<thead>
<tr>
<th>阴离子</th>
<th>K⁺</th>
<th>Na⁺</th>
<th>NH₄⁺</th>
<th>Mg²⁺</th>
<th>Zn²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₄²⁻</td>
<td>4.7℃</td>
<td>5.1℃</td>
<td>2.1℃</td>
<td>2.1℃</td>
<td>-12.7℃</td>
</tr>
<tr>
<td>HPO₄²⁻</td>
<td>5.0℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乙酸盐</td>
<td>4.8℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>柠檬酸盐</td>
<td>5.5℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>酒石酸盐</td>
<td>5.5℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>4.7℃</td>
<td>4.8℃</td>
<td>1.5℃</td>
<td></td>
<td>-13.0℃</td>
</tr>
<tr>
<td>I⁻</td>
<td>5.5℃</td>
<td>5.8℃</td>
<td>3.4℃</td>
<td></td>
<td>-15.4℃</td>
</tr>
<tr>
<td>ClO₄⁻</td>
<td>8.0℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0220] 0.1M 蔗糖：0.4℃，根据表头的其它赋形剂

[0221] 观察到的趋势，即在加入不同的钠盐后，阴离子在 Hofmeister 系列中的位置并不影响 rFSH \(T_n \) 的增加，对于钾也发现了（见表 8 和表 9）。当具有相同的阳离子时，阴离子通常仅在较小的程度影响 rFSH \(T_n \) 的变化并且并不按照 Hofmeister 系列。

[0222] 另一方面，相当令人惊奇的是，钠离子影响 rFSH \(T_n \)。更具体地，与二价离子相比，具有单价阴离子的盐通常显示更高的 rFSH \(T_n \)（见表 8）。尤其地，单价碱金属离子给出高 rFSH \(T_n \)。换言之，在加入盐后观察到的稳定作用（即 rFSH \(T_n \) 的增加）相当独立于测试的阴离子（见表 8 和 9），而阳离子对于稳定的程度具有较大的影响。钾盐和钠盐显示特别大的稳定作用。

[0223] 所有上述测试的溶液具有 0.1M 的盐浓度。为了研究盐浓度对于 rFSH \(T_n \) 的作用，研究了含三种不同氯化钠浓度的 rFSH 溶液的 DSC 测量。在测试的整个盐浓度范围内观察到在将盐加入 rFSH 溶液后的稳定作用（见表 10）。

[0224] 表 10：加入不同氯化钠浓度后，rFSH 样品的变性温度的变化 \(\Delta T_n(\text{盐}) \)，所述 rFSH 样品含有 2.4mg/ml rFSH, 0.5mg/ml L- 甲硫氨酸, 0.005mg/ml 聚山梨醇酯 20, 1mM 磷酸钠缓冲液 pH 6.5。\(\Delta T_n(\text{盐}) = T_n(\text{盐}) - T_n(\text{无盐}) \)

![表格]

<table>
<thead>
<tr>
<th>NaCl 浓度</th>
<th>(\Delta T_n(\text{盐}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07M</td>
<td>4.2℃ **</td>
</tr>
<tr>
<td>0.1M</td>
<td>4.8℃ *</td>
</tr>
<tr>
<td>0.24M</td>
<td>5.4℃ **</td>
</tr>
</tbody>
</table>

[0226] * 计算自用 1.0℃ /min 的扫描速率进行的 DSC 测量。
[0227] ** 计算自用 2.0℃ /min 的扫描速率进行的 DSC 测量。
[0228] 关于 FSH 制剂的现有专利使用例如蔗糖作为 FSH 的稳定剂。将 0.1M 蔗糖加入 rFSH
溶液产生 rFSH T_m 的微小变化（见表 8 和表 9），说明在加入钾盐或钠盐后 rFSH 的稳定作用显著高于在加入蔗糖后获得的作用。

将各种盐加入含有加入的防腐剂的溶液对 rFSH T_m 的作用

充分已知的是将防腐剂加入蛋白溶液减少了溶液中的蛋白稳定性。然而，对于目的在于肠胃外用途的水性多剂量制剂，需要防腐剂。因此，非常重要的通过将向 rFSH 溶液加入稳定剂如盐，补偿加入防腐剂后的蛋白稳定性的下降。

表 11：rFSH 样品的变性温度 T_m 和变性温度的变化 $\Delta T_m(\text{防腐剂})$ 和 $\Delta T_m(\text{盐})$，所列 rFSH 样品包含 2.4mg/ml rFSH, 5mg/ml 苯酚, 0.5mg/ml L 甲硫氨酸, 0.005mg/ml 聚山梨醇酯 20, 1mM 磷酸钠缓冲液 pH 6.5 和 0.1M 盐，如表中给出。在此，$\Delta T_m(\text{防腐剂}) = T_m(\text{防腐剂}) - T_m(\text{无防腐剂})$ 并且 $\Delta T_m(\text{盐}) = T_m(\text{盐}) - T_m(\text{无盐})$

<table>
<thead>
<tr>
<th></th>
<th>T_m</th>
<th>$\Delta T_m(\text{防腐剂})$</th>
<th>$\Delta T_m(\text{盐})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>无盐</td>
<td>70.2℃</td>
<td>-2.7℃</td>
<td>-</td>
</tr>
<tr>
<td>Na$_2$SO$_4$</td>
<td>75.1℃</td>
<td>-2.9℃</td>
<td>4.9℃</td>
</tr>
<tr>
<td>NaCl</td>
<td>74.7℃</td>
<td>-2.9℃</td>
<td>4.6℃</td>
</tr>
<tr>
<td>NaClO$_4$</td>
<td>78.6℃</td>
<td>-2.3℃</td>
<td>8.4℃</td>
</tr>
</tbody>
</table>

*对于含 5mg/ml 苄酚的 rFSH 溶液

如可从表 11 中观察到的，将防腐剂加入 rFSH 溶液中导致 rFSH 变性温度降低 2-3℃。将盐加入防腐的 rFSH 溶液使 rFSH 变性温度增加约 5℃。换言之，向 rFSH 溶液加入防腐剂后观察到的去稳定作用通过加入本发明定义的盐而得到充分补偿。实际上，向包含苯酚的 rFSH 溶液加入盐不仅中和防腐剂对于 rFSH T_m 的作用，与在水溶液中不加入防腐剂或盐的 rFSH 相比，其实际上还增加了 T_m（见表 11）。

改变 pH 对 rFSH T_m 的作用

为了研究在加入和不加入稳定盐的情况下 pH 对 rFSH T_m 的作用，在 5.5, 6.5 和 7.5 的 pH 下，在加入和不加入三种不同的钠盐的情况下，在确定 rFSH 变性温度（见表 12）。

表 12：rFSH 样品在不同 pH 的变性温度 T_m，所述 rFSH 样品包含 2.4mg/ml rFSH, 0.5mg/ml L 甲硫氨酸, 0.005mg/ml 聚山梨醇酯 20, 1mM 磷酸钠缓冲液和 0.1M 盐。在此，

$\Delta T_m(\text{盐}) = T_m(\text{盐}) - T_m(\text{无盐})$

<table>
<thead>
<tr>
<th></th>
<th>T_m</th>
<th>$\Delta T_m(\text{盐})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 5.5</td>
<td>pH 6.5</td>
</tr>
<tr>
<td>无盐</td>
<td>70.5℃</td>
<td>72.9℃</td>
</tr>
<tr>
<td>Na$_2$SO$_4$</td>
<td>76.2℃</td>
<td>78.0℃</td>
</tr>
<tr>
<td>NaCl</td>
<td>75.0℃</td>
<td>77.7℃</td>
</tr>
<tr>
<td>NaClO$_4$</td>
<td>78.6℃</td>
<td>80.9℃</td>
</tr>
</tbody>
</table>
[0240] 如可在表 12 中观察到的，加入不同钠盐后的 rFSH Tₙ的一般趋势在 5.5到7.5的整个 pH 范围内是相同的，即在所有测试的 pH 观察到与根据 Hofmeister 系列的盐的稳定 /去稳定作用的偏离。

[0241] 在研究的 pH 范围内，在加入和不加入盐的情况下，观察到的 rFSH 变性温度随着溶液中 pH 的增加而增加（见表 12）。在加入盐后 rFSH 变性温度的实际增加 ΔTₙ(盐)在更高的 pH 稍微降低（见表 12）。

[0242] rFSH 唾液酸化对于 rFSH Tₙ的作用

[0243] 如上述显示，盐加入 rFSH 液体的影响根本没有遵循上述的 Hofmeister 系列，其中预期高氯酸盐离子的盐对蛋白进行去稳定(产生更低的蛋白 Tₙ)，并且预期硫酸盐离子稳定蛋白（产生更高的蛋白 Tₙ）。

[0244] 由于 rFSH 是糖基化蛋白，具有附着于糖结构部分的许多唾液酸残基，并且因此具有相当高的净负电荷，所以研究了唾液酸对于盐的未预期的稳定行为的作用。

[0245] 为了研究唾液酸对 rFSH Tₙ的作用，在加入不同的盐后，通过酶促去除唾液酸。接着，在加入和不加入盐的情况下，通过 DSC 分析去唾液酸化的 rFSH。

[0246] 为了证实成功去除唾液酸残基，通过 MALDI-ToF MS 分析在酶促去除唾液酸之前和之后的 rFSH 样品。

[0247] 在 MALDI-ToF MS 样品条件下，α-亚基和 β-亚基解离并且因此分别测量。在用唾液酸酶处理之前的 α-亚基的平均分子量是 150000Da。在用唾液酸酶处理之后，平均分子量是 140000Da。在用唾液酸酶处理之前的 β-亚基的平均分子量是 180000Da，并且在用唾液酸酶处理之后的 β-亚基的平均分子量是 170000Da。两种亚基质量上的变化是去除唾液酸的结果，这导致质量的减少。实际上，在去唾液酸化过程中，rFSH 去除了所有的唾液酸残基。

[0248] 在加入硫酸钠或高氯酸钠之后，rFSH Tₙ的增加遵循与未修饰的 rFSH 和去唾液酸化的 rFSH 相同的趋势，即，稳定作用 (rFSH Tₙ增加) 未遵循上述 Hofmeister 系列。一般地，观察到的去唾液酸化的 rFSH 的 Tₙ低 2-6°C（见表 13）。与未修饰的 rFSH 相比，在加入盐后观察到的去唾液酸化的 rFSH 的稳定作用也比未修饰的 rFSH 的稳定作用更低（见表 13）。

[0249] 预期与未修饰的 rFSH 相比，获得的去唾液酸化的 rFSH 的 Tₙ更低，因为据信在 rFSH 上的糖结构部分上存在的唾液酸增加了 rFSH 稳定性。

[0250] 未修饰的 rFSH 和去唾液酸化的 rFSH 在加入各种盐后遵循相同的趋势（偏离根据 Hofmeister 系列的稳定 / 去稳定作用）的事实，证实了并不是在 rFSH 上存在的唾液酸本身引起了这种作用。

[0251] 表 13 : rFSH 和去唾液酸化的 rFSH 样品的变性温度 Tₙ。所述样品包含 2.4mg/ml rFSH 或 2.4mg/ml 去唾液酸化的 rFSH, 0.5mg/ml 1 浓度。0.005mg/ml 聚山梨醇酯 20, 1mM 磷酸钠缓冲液 pH 6.5 和 0.1M 盐。在此，ΔTₙ(盐) = Tₙ(盐) - Tₙ(无盐)。
<table>
<thead>
<tr>
<th></th>
<th>T_m (℃)</th>
<th>$ΔT_m$ (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rFSH</td>
<td>去唾液酸化的 rFSH</td>
</tr>
<tr>
<td>无盐</td>
<td>72.9℃</td>
<td>70.7℃</td>
</tr>
<tr>
<td>NaSO_4</td>
<td>78.0℃</td>
<td>72.1℃</td>
</tr>
<tr>
<td>NaClO_4</td>
<td>80.9℃</td>
<td>75.0℃</td>
</tr>
</tbody>
</table>

[0253] 结论
[0254] 在加入防腐剂后观察到的 rFSH 的去稳定作用 (rFSH T_m 降低) 非常好地对应本领域的现有技术。
[0255] 然而，在加入具有不同阴离子的盐后，在 rFSH 变性温度上观察到的与 Hofmeister 系列的偏移是意料之外的。根据 Hofmeister 系列，（所述 Hofmeister 系列根据其对蛋白溶解度和稳定性的一般作用对盐进行分级），kosmotropic 阳离子如硫酸盐通常稳定蛋白 (产生更高的 T_m)，而阴离子如高氯酸盐则对蛋白进行去稳定 (产生更低的 T_m)。在该研究中，具有相同阴离子的所有测试的阴离子显示在 rFSH 变性温度上的相似增加。与 Hofmeister 系列的预期完全相反，阴离子的盐显示在 rFSH 变性温度上的最大增加。
[0256] 换言之，在加入盐之后观察到的稳定作用 (即 rFSH T_m 增加) 完全独立于测试的阳离子。钠盐和钾盐显示特别大的稳定作用。尤其是将高氯酸钠加入 rFSH 溶液导致 rFSH 变性温度的巨大增加。然而，高氯酸盐通常是高度反应性的，并且是氧化剂，并且因此没有批准将高氯酸盐作为药物制剂中的非活性成分。
[0257] 在加入盐后获得的 rFSH 的预料之外的稳定作用不能通过在 rFSH 的糖结构部分上存在唾液酸来解释。对去唾液酸化的 rFSH 的 rFSH 变性温度确定显示与未修饰的 rFSH 相同的在加入盐后对 rFSH 稳定作用的趋势。
[0258] 实施例 3 关于 rFSH 溶液的实时稳定性
[0259] 研究目的
[0260] 本研究的目的是确定各种制剂中的 rFSH 的实时稳定性是否遵循与下述相同的趋势，如在通过如实施例 2 中所述的液体 DSC 测量 rFSH 变性温度中所观察到的，以及如在实施例 1 中所述的如用 CD 光谱测量的在加热后 rFSH 二级结构的变化。在该研究中确定了通过 rFSH 解离为其单体的倾向测量的 rFSH 在贮存过程中的结构稳定性。
[0261] 在长期 5±3℃ / 环境 RH 以及加速的 30±2℃ / 65±5% RH 条件下做 6-12 个月，研究在两个不同的贮存温度贮存后 rFSH 600IU/ml 制剂的稳定性。将所有小瓶倒置贮存。将含有相应制剂但没有加入 rFSH 的对照剂对照在如对于活性 rFSH 所述的相同条件下贮存。
[0262] 待研究的产品
[0263] 批次信息
[0264] rFSH，药物物质批号 08800060 和批号 09800020 由 Bio-Technology General (BTG)，Israel 生产
[0265] 上述 rFSH 批次的生物学活性的确定根据 Ph. Eur. 进行
[0266] 材料
[0267] 赋形剂
[0268] 在表 14 中描述在该研究中使用的赋形剂列表。
[0269] 表 14：赋形剂列表
[0270]

<table>
<thead>
<tr>
<th>名称</th>
<th>供应商</th>
</tr>
</thead>
<tbody>
<tr>
<td>二水合磷酸氢二钠, Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>磷酸 85%, Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>蔗糖, Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>聚山梨醇酯 (polysorbate) 20, Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>苯酚, Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>L-甲硫氨酸, Ph. Eur.</td>
<td>Sigma</td>
</tr>
<tr>
<td>氯化钠, Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>硫酸二钠 × 10H2O, Ph. Eur.</td>
<td>Merck</td>
</tr>
<tr>
<td>Milli-Q 水</td>
<td>Millipore</td>
</tr>
</tbody>
</table>

[0271] 容器和密封系统

[0272] 所用的主要包装材料在表 15 中列出。

[0273] 表 15：容器 / 密封系统

[0274]

<table>
<thead>
<tr>
<th>项目</th>
<th>描述</th>
<th>供应商</th>
</tr>
</thead>
<tbody>
<tr>
<td>容器</td>
<td>1 型 Ph. Eur 无色硼硅酸盐玻璃瓶，2R</td>
<td>ISO-GmbH</td>
</tr>
<tr>
<td>橡胶</td>
<td>13 mm 氟丁基塞 4432/50 B2-40 膨胀的, FluoroTec</td>
<td>West Pharmaceutical Services</td>
</tr>
<tr>
<td>帽</td>
<td>铝箔和塑料盖 (flip-off)</td>
<td>West Pharmaceutical Services</td>
</tr>
</tbody>
</table>

[0275] rFSH 储液和不同的制剂 (rFSH 和对照剂) 的组成在表 16、表 17 和表 18 中列出。除了不含有任何稳定剂 / 张性剂的制剂之外, 调节稳定剂 / 张性剂的浓度以提供等渗溶液。

[0276] 表 16：rFSH 储液的组成

[0277]

<table>
<thead>
<tr>
<th>批次</th>
<th>rFSH 浓度</th>
<th>赋形剂</th>
</tr>
</thead>
<tbody>
<tr>
<td>08800060</td>
<td>16235 IU/mg 0.7 mg/ml</td>
<td>0.5 mg/ml L-甲硫氨酸，0.005 mg/ml 聚山梨醇酯 20，在 1 mM 磷酸氢二钠 pH 6.7-6.8 中</td>
</tr>
<tr>
<td>09800020</td>
<td>13223 IU/mg 0.7 mg/ml</td>
<td>0.5 mg/ml L-甲硫氨酸，0.005 mg/ml 聚山梨醇酯 20，在 1 mM 磷酸氢二钠 pH 6.7-6.8 中</td>
</tr>
</tbody>
</table>

[0278] 表 17：rFSH 制剂的组成

[0279]
表 18 对照剂制剂的组成

<table>
<thead>
<tr>
<th>缓冲剂</th>
<th>表面活性剂</th>
<th>防腐剂</th>
<th>抗氧化剂</th>
<th>稳定剂/稀释剂</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mM 磷酸盐 pH 6.5*</td>
<td>0.005 mg/ml 聚山梨醇 20</td>
<td>-</td>
<td>0.5 mg/ml L-甲硫氨酸</td>
<td>15 mg/ml Na₂SO₄</td>
</tr>
<tr>
<td>1 mM 磷酸盐 pH 6.5*</td>
<td>0.005 mg/ml 聚山梨醇 20</td>
<td>5 mg/ml 苯酚</td>
<td>1 mg/ml L-甲硫氨酸</td>
<td>14 mg/ml Na₂SO₄</td>
</tr>
<tr>
<td>1 mM 磷酸盐 pH 6.5*</td>
<td>0.005 mg/ml 聚山梨醇 20</td>
<td>5 mg/ml 苯酚</td>
<td>1 mg/ml L-甲硫氨酸</td>
<td>7 mg/ml NaCl</td>
</tr>
</tbody>
</table>

pH 指最终溶液的 pH

[0286] 在 Ferring Pharmaceuticals A/S, Copenhagen, Denmark 以实验室规模制备所有的溶液（表 17 和表 18）。如下总结制备方法。

制备方法

[0288] 在 Milli-Q 水中制备所有赋形剂的储液。

制备对照剂制剂

[0289] 对于制备对照剂制剂，将每种赋形剂的储液混合以获得在表 18 中给出的浓度。在稀释到体积之前，如果必要，调节每种制剂的 pH。

制备 rFSH 制剂

[0290] 对于制备 rFSH 制剂，从每种赋形剂的储液制备稀释溶液。调节稀释溶液的 pH，将稀释溶液与 rFSH 储液（见表 16）混合以产生在表 17 中列出的最终浓度。

无菌过滤和无菌填充

[0291] 使用 0.22 μm PVDF 滤器（Millipore）无菌过滤最终制剂。使用 Stericut 滤器将对照剂制剂无菌过滤到高压灭菌的玻璃瓶中。使用 Sterivex-GV 滤器和无菌的 20ml Luer Lock 注射器（Braun）将 rFSH 制剂无菌过滤到高压灭菌的玻璃大口瓶中。使用高压灭菌的小瓶和橡胶塞在 LAF 台中进行无菌过滤、填充和密封小瓶。在填充之前和之后，用通过 0.20 μm Millex-FGPFTE 滤器（Millipore）的氮气冲洗小瓶至少 6 秒。以 1.5ml 样品 / 小
瓶填充小瓶。对所有的小瓶进行无菌填充并且立即用橡胶塞和铝制 flip-off 盖密封。

[0293] 贮存条件

[0294] 将包含 rFSH 600IU/ml 和对照剂的样品在 5±3℃ / 环境 RH 贮存 6-18 个月。此外，在加速的条件，30±2℃ /65±5% RH 将样品贮存 6-18 个月。在每个贮存温度，将小瓶倒置贮存。避光保存所有的小瓶。

[0295] 稳定性程序

[0296] rFSH 600IU/ml 和对照剂的稳定性程序描述在下述表 19 中。

[0297] 表 19:倒置贮存的 rFSH 水体制剂 600IU/ml 和对照剂的稳定性程序

<table>
<thead>
<tr>
<th>贮存条件</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>12*</th>
<th>18*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ± 3℃/环境 RH</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>30 ± 2℃/65 ± 5% RH</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

[0299] - 根据稳定性程序计划的，没有测试

[0300] * 仅对一些制剂测试

[0301] 分析方法

[0302] 在该研究中使用的分析方法在下述描述。在每个测试情形，对于每种制剂分析 2 瓶 rFSH 和 1 瓶相应的对照剂。

[0303] 低分子量 (LMW) 形式

[0304] 通过在大小排阻（SEC）柱上利用等度洗脱的 LC-UV 确定 rFSH 的 LMW 形式。使用基于硅的柱子用 TRIS 缓冲液作为移动相和 UV 检测进行分析。rFSH 的 LMW 形式是具有比 rFSH 主峰的分子量更低（在之后）的分子量的洗脱峰。将 LMW 形式确定为总峰面积的百分比峰面积。

[0305] 对于包含防腐剂的样品，在进入大小排阻柱之前，将防腐剂从样品溶液中去除。

[0306] 结果和讨论

[0307] rFSH 在贮存过程中的解离

[0308] 由于非共价偶联的单体解离后 rFSH 失去其生物活性，所以追踪由于单体解离导致的 rFSH 活性丧失的直接方法是测量溶液中的 rFSH LMW 形式的量。该信息可以由 SEC 色谱法重新获得，其中已知在 rFSH 主峰之后的 LMW 形式的洗脱峰来自解离的 rFSH。

[0309] 表 20: 在 30±2℃ /65±5% RH 贮存后通过 SEC 确定的 LMW 形式的 rFSH 相对量（%）。所有制剂的完全描述在表 17 中列出。

[0310]
<table>
<thead>
<tr>
<th>稳定剂</th>
<th>防腐剂</th>
<th>贮存时间 (月)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mg/ml Na₂SO₄</td>
<td>-</td>
<td>0.1</td>
<td>1.5</td>
<td>2.5</td>
<td>1.7</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>14 mg/ml Na₂SO₄</td>
<td>5 mg/ml 苯酚</td>
<td>1.7</td>
<td>3.5</td>
<td>3.1</td>
<td>3.9</td>
<td>6.5</td>
<td>6.0</td>
</tr>
<tr>
<td>7 mg/ml NaCl</td>
<td>5 mg/ml 苯酚</td>
<td>1.8</td>
<td>1.7</td>
<td>3.1</td>
<td>3.1</td>
<td>4.4</td>
<td>N.P.</td>
</tr>
<tr>
<td>75 mg/ml 蔗糖</td>
<td>5 mg/ml 苯酚</td>
<td>1.9</td>
<td>6.2</td>
<td>7.3</td>
<td>10.1</td>
<td>N.P.</td>
<td>N.P.</td>
</tr>
<tr>
<td></td>
<td>5 mg/ml 苯酚</td>
<td>2.0</td>
<td>7.7</td>
<td>16.9</td>
<td>23.4</td>
<td>32.2</td>
<td>N.P.</td>
</tr>
</tbody>
</table>

[0311] N. P. 未进行。

[0312] 表 21：在 5±3°C / 环境 RH 贮存后通过 SEC 确定的 LMW 形式的 rFSH 相对量 (%)。所有制剂的贮存均在表 17 中列出。

[0313]

<table>
<thead>
<tr>
<th>稳定剂</th>
<th>防腐剂</th>
<th>贮存时间 (月)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mg/ml Na₂SO₄</td>
<td>-</td>
<td>0.1</td>
<td>1.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>14 mg/ml Na₂SO₄</td>
<td>5 mg/ml 苯酚</td>
<td>1.7</td>
<td>2.0</td>
<td>1.6</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 mg/ml NaCl</td>
<td>5 mg/ml 苯酚</td>
<td>1.8</td>
<td>1.1</td>
<td>1.3</td>
<td>N.P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 mg/ml 蔗糖</td>
<td>5 mg/ml 苯酚</td>
<td>1.9</td>
<td>1.9</td>
<td>N.P.</td>
<td>N.P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 mg/ml 苯酚</td>
<td>2.0</td>
<td>1.1</td>
<td>1.7</td>
<td>N.P.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0314] N. P. 未进行。

[0315] 如可从表 20 中所见，含有不同稳定剂，添加和不添加防腐剂的新鲜制备的 rFSH 溶液显示类似相对量的解离的 rFSH（LMW 形式）。由于 SEC 方法的定量限制是 3%，所以在该限制以下不能进行制剂之间的明确区分，意味着在起始时间点观察到的 LMW 形式的差异在方法变化的限制内。

[0316] 在 30±2°C / 65±5% RH 贮存一个月后，对于含有苯酚以及蔗糖但是无稳定剂的样品，解离的 rFSH 的相对量减小，而包含硫酸钠或氯化钠的样品并未显示在解离的 rFSH 上的任何显著增加（见表 20）。

[0317] 在 30±2°C / 65±5% RH 贮存六个月后，苯酚而未添加稳定剂的 rFSH 样品包含超过 20% 的解离的 rFSH（LMW 形式）。包含苯酚，具有蔗糖作为稳定剂的 rFSH 样品也显示解离的 rFSH 的显著增加。包含苯酚，被用氯化钠或硫酸钠稳定样品仅显示在解离的 rFSH 上的微小增加（见表 20）。在贮存过程中，不包含任何防腐剂的样品针对解离是最稳定的；然而对于目标在肠胃外使用的水性多抗体制剂，需要加入防腐剂，因此这种制剂仅加入作为比较。

[0318] 在 5±3°C / 环境 RH 贮存六个月后，测试的 rFSH 制剂没有显示在解离的 rFSH 相对量上的增加（见表 21）。可是，在 5°C 至少贮存 24 个月和伴随的在室温贮存 1 个月，优选 3-4 个月，是 rFSH 的商业产品成功所需要的时间。

[0319] rFSH 变性温度，二级结构的变化和解离的程度

[0320] 由于该实施例的目的是确定实时稳定性研究数据，通过 DSC 的 rFSH 变性温度测定和通过 CD 光谱，部分 DSC 数据（见实施例 2）和部分 CD 数据（见实施例 1）(如以下列出的) 测定的 rFSH 二级结构数据之间的相关性，。在实施例 2 中给出关于显示的 DSC 结果的所有详情，并且在实施例 1 中给出关于 CD 数据的详情。
表 22：在 30±2°C /65±5% RH 贮存 6 个月后通过 SEC 确定的 LMW 形式的 rFSH 相对量 (%) 和及通过 DSC 测量的 rFSH 变性温度 Tm。在 DSC 研究中，与在表中给出的实时稳定性研究中所用的量比较，所有测试溶液的稳定剂的浓度保持在 0.1M。

<table>
<thead>
<tr>
<th>稳定剂</th>
<th>防腐剂</th>
<th>SEC, LMW 在 30±2°C/65±5% RH 6 个月</th>
<th>DSC Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mg/ml Na2SO4</td>
<td>-</td>
<td>2.3</td>
<td>78.0°C</td>
</tr>
<tr>
<td>14 mg/ml Na2SO4</td>
<td>5 mg/ml 苯酚</td>
<td>3.9</td>
<td>75.1°C</td>
</tr>
<tr>
<td>7 mg/ml NaCl</td>
<td>5 mg/ml 苯酚</td>
<td>3.1</td>
<td>74.7°C</td>
</tr>
<tr>
<td>75 mg/ml 蔗糖</td>
<td>5 mg/ml 苯酚</td>
<td>10.1</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>5 mg/ml 苯酚</td>
<td>23.4</td>
<td>70.2°C</td>
</tr>
</tbody>
</table>

如可从表 22 中看出，在 30±2°C /65±5% RH 贮存 6 个月后，通过 DSC 获得的 rFSH 变性温度与实时稳定性数据良好相关，对于重组抗体和重组糖蛋白之前已经提出了 DSC 和通过 SEC 分析的实时稳定性之间的类似相关（如例如，Burton 等 (2007)，Pharm. Dev. Technol. 12:265-273 和 Remmele 等 (1998), Pharm. Res. 15:200-208）。未加入防腐剂、用硫酸钠稳定的 rFSH 溶液在 6 个月贮存后仅显示低程度的解离的 rFSH，与包含防腐剂的溶液相比显著显示显著更高的变性温度。进一步观察到，与包含蔗糖或不包含稳定剂的溶液相比，在 6 个月的贮存后，对于包含防腐剂（苯酚）的溶液，加入盐，氯化钠或硫酸钠，产生明显更低程度的解离的 rFSH。与包含盐的溶液的 rFSH Tm 相比，未加入稳定剂的 rFSH 的变性温度也明显更低。尚未确定包含蔗糖、添加有苯酚的溶液的 rFSH 变性温度，然而，如可从表 23 中观察到的，在 30±2°C /65±5% RH 贮存 6 个月后，对未添加防腐剂的溶液的 rFSH Tm 进行测量，显示与实时稳定性数据相同的趋势（见表 22）。结论是，针对结构降解，NaCl 和 Na2SO4 是比蔗糖明显更好的稳定剂。这通过 Tm 测量（见表 23）和实时稳定性数据（见表 22）显示。

表 23：通过 DSC 测定未加入防腐剂的溶液的 rFSH 变性温度 Tm; 关于详情见实施例 2。

<table>
<thead>
<tr>
<th>稳定剂</th>
<th>DSC, Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1M Na2SO4</td>
<td>78.0°C</td>
</tr>
<tr>
<td>0.1M NaCl</td>
<td>77.7°C</td>
</tr>
<tr>
<td>0.1M 蔗糖</td>
<td>73.3°C</td>
</tr>
</tbody>
</table>

表 24：当加入在表中列出的防腐剂或盐时，rFSH 样品的变性温度的变化 ΔTm，所述 rFSH 样品包含 2.4mg/ml rFSH, 0.5mg/ml L- 甲硫氨酸，0.005mg/ml 槟山梨醇酯 20, 1mM 磷酸钠缓冲液 pH 6.5。扫描速率 2°C /min。ΔTm = Tm（防腐剂 / 盐）- Tm（无影响）

<table>
<thead>
<tr>
<th>防腐剂</th>
<th>盐</th>
<th>ΔTm</th>
</tr>
</thead>
</table>
尚未测定包含冬醇作为防腐剂的溶液的实时稳定性数据，然而，当比较如通过 DSC 确定的 rFSH 变性温度与如利用 CD 光谱测定的加热后的 rFSH 二级结构的变化时，观察到相同的趋势（见表 24）。已经确定不同蛋白样品的 rFSH 的二级结构；可以将在 24°C 测定的二级结构视为天然结构，并且在此，对于加入冬醇（以 0.17mg/ml) 或硫酸钠后的 rFSH 溶液，观察不到在 rFSH 二级结构上的差异。尽管，当将溶液加热到 76.5°C 时，观察到的 rFSH 二级结构的损失随加入的赋形剂而变化。与不包含任何防腐剂的 rFSH 溶液相比，加入赋形剂（冬醇）导致 rFSH 二级结构的更大损失，同时与不加入盐的 rFSH 溶液相比，加入盐（硫酸钠）产生更少的 rFSH 二级结构的损失。可以将有序的 rFSH 二级结构的损伤解释为蛋白的局部或完全变性。

实施例 4-hCG 的差示扫描量热法（DSC）数据

人绒毛膜促性腺激素（hCG）是由以下两种糖基化单体组成的异二聚体蛋白：hCG、促卵泡激素（FSH）、黄体生成素（LH）和促甲状腺激素（TSH）共有的 92 个氨基酸的 α-亚基，和 hCG 特异的 145 个氨基酸的 β-亚基。包括 FSH 和 hCG 在内的糖蛋白激素，在非共价偶联的单体解离后都失去了它们的生物学活性。来自稳定性分析的结果显示重组 FSH(rFSH) 的不稳定性主要基于二聚体解离（四级结构的分解），和伴随的免疫结合反应的减少。

该实施例的目的是确定：对于非常相似的蛋白 hCG 是否也观察到以前观察到的如利用 DSC 测定以及在上述实施例 1-3 中所述的各种糖和盐与 rFSH 变性温度的相关性。另外，将该研究中确定的 hCG 的 DSC 变性温度与以前公开的实时稳定性数据（Samaritani, F. 1995, hCG liquid formulations (hCG 液体制剂）, EP 0 814,841）进行比较。

在含 0.5mg/ml L- 甲硫氨酸和 0.055mg/ml 聚山梨醇酯 20 的 1mM 磷酸盐缓冲液中，在存在和不存在 0.1M 的各种钠盐或蔗糖的情况下，研究 hCG 的变性温度。研究了四种不同的糖和盐：蔗糖、硫酸钠、氯化钠和高氯酸钠。

尿液来源的人绒毛膜促性腺激素（hCG）

使用从来自 Massone S.A., Argentina 的人尿液中纯化的 hCG, 药物物质, 批号 2823287510 (70591U/mg)。将材料冷冻贮存在 2–8°C。

根据 Ph.Eur. 进行上述 hCG 批次的生物学活性的测定。

如在实施例 2-3 中所述，使用 rFSH 和其他材料。

表 25: 赋形剂列表

<table>
<thead>
<tr>
<th>名称</th>
<th>供应商</th>
</tr>
</thead>
<tbody>
<tr>
<td>二水合磷酸氢二钠, Ph.Eur.</td>
<td>Merck</td>
</tr>
</tbody>
</table>
说明 书

磷酸 85%, Ph. Eur. Merck
L- 甲硫氨酸, Ph. Eur. Sigma
聚山梨酯酯 (吐温) 20 Ph. Eur. Merck
蔗糖, Ph. Eur. Merck
硫酸钠 ×10H₂O, Ph. Eur. Merck
氯化钠, Ph. Eur. Merck
高氯酸钠 ×H₂O, p. a. Merck
Milli-Q 水 Millipore

[0339] 不同的 hCG 制剂的组成在表 26 中列出。

[0340] 表 26 : hCG 制剂的组成

<table>
<thead>
<tr>
<th>hCG</th>
<th>缓冲剂</th>
<th>表面活性剂</th>
<th>抗氧化剂</th>
<th>糖/盐</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mg/ml*</td>
<td>1 mM 磷酸盐 pH 6.5 0.005 mg/ml 聚山梨酯酯 20</td>
<td>0.5 mg/ml L- 甲硫氨酸</td>
<td>0.1M Na₂SO₄</td>
<td></td>
</tr>
<tr>
<td>5 mg/ml*</td>
<td>1 mM 磷酸盐 pH 6.5 0.005 mg/ml 聚山梨酯酯 20</td>
<td>0.5 mg/ml L- 甲硫氨酸</td>
<td>0.1M NaCl</td>
<td></td>
</tr>
<tr>
<td>5 mg/ml*</td>
<td>1 mM 磷酸盐 pH 6.5 0.005 mg/ml 聚山梨酯酯 20</td>
<td>0.5 mg/ml L- 甲硫氨酸</td>
<td>0.1M NaClO₄</td>
<td></td>
</tr>
<tr>
<td>5 mg/ml*</td>
<td>1 mM 磷酸盐 pH 6.5 0.005 mg/ml 聚山梨酯酯 20</td>
<td>0.5 mg/ml L- 甲硫氨酸</td>
<td>0.1M 蔗糖</td>
<td></td>
</tr>
</tbody>
</table>

[0342] * 关于该批次, 对应于 35 3001U/ml.

[0343] 制备方法

[0344] 在 Ferring Pharmaceuticals A/S, Copenhagen, Denmark 以实验室规模制备所有
的溶液 (表 26)。

[0345] 制备 hCG 制剂

[0346] 在 Milli-Q 水中制备所有赋形剂的储液。从储液制备具有不同赋形剂的对照剂溶
液。将 hCG 药物物质溶解在对照剂溶液中以获得在表 26 中给出的浓度。由于未获得这些制
剂的稳定性数据, 所以总是在自样晶制备后的 1 小时内, 对新鲜制备的样品进行 DSC 分析。

[0347] 如可从图 4 和表 27 观察的, hCG 的变性温度 Tm 低于 rFSH 的 Tm。另外, hCG 的变性
过程的过程的焓 (即变性峰的大小) 显著小于 rFSH。与 rFSH(其中在将 rFSH 样品加热到 100℃
后, 变性过程几乎完全是不可逆的) 不同, 在将 hCG 加热到 100℃后变性过程在更大程度上,是可逆的 (2)。

[0348] 天然的 ⇔ 解折叠的 ⇔ 不可逆变性的 (2)
[0349] 对 hCG 变性过程在 DSC 测量的时间框架内在很大程度上是可逆的，而 rFSH 却不是如此的事实的解释可能是：与 rFSH 相比，hCG 中的两个亚基解离的倾向要少。如果在加热 hCG 样品时所述亚基不分解，则在冷却到室温时天然结构可能更易于再次形成。与 hCG 相比，rFSH 在加热到 100°C 后转变的 ΔH 的量级显然要更大，而在伴随的扫描（即将样品加热到 100°C，冷却到 25°C 并进行第二次扫描至 100°C）中，对于 rFSH 和 hCG，转变的 ΔH 的量级在相同的大小范围内。

[0350] 加入糖或盐对 hCG 和 rFSH Tm 的影响

[0351] 预期将盐加入蛋白质水溶液中影响蛋白质在溶液中的稳定性并且因此影响蛋白变性温度，

[0352] 当测量各种钠盐对 hCG 和 rFSH Tm 的影响时，相当令人惊奇的是，当改变阴离子时，未观察到根据 Hofmeister 系列预期的稳定 / 去稳定作用，见图 5、图 6 和表 27。关于 hCG，硫酸钠和氯化钠实际上都使蛋白去稳定，而对于 rFSH，这些盐稳定蛋白。对于 hCG 和 rFSH，预期对蛋白具有去稳定作用的高氢酸钠实际上增加了所有测试的糖和盐中的大部分的 Tm。

[0353] 表 27：在加入 0.1M 糖或盐后 hCG 样品（包含 5mg/ml hCG，0.5mg/ml L- 甲硫氨酸，0.005mg/ml 聚山梨醇酯 20，1M 磷酸钠缓冲液 pH 6.5）和在加入 0.1M 糖或盐后 rFSH 样品（包含 2.4mg/ml rFSH，0.5mg/ml L- 甲硫氨酸，0.005mg/ml 聚山梨醇酯 20，1M 磷酸钠缓冲液 pH 6.5）的变性温度 Tm 和变性温度的变化 ΔTm（糖 / 盐）。ΔTm（糖 / 盐） = Tm（糖 / 盐）- Tm（无糖 / 盐）。

<table>
<thead>
<tr>
<th>糖/盐</th>
<th>hCG</th>
<th></th>
<th>rFSH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tm</td>
<td>ΔTm</td>
<td>Tm</td>
<td>ΔTm</td>
</tr>
<tr>
<td>无糖或盐</td>
<td>72.1°C</td>
<td>-</td>
<td>72.9°C</td>
<td>-</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>69.8°C</td>
<td>-2.3°C</td>
<td>78.0°C</td>
<td>5.1°C</td>
</tr>
<tr>
<td>NaCl</td>
<td>69.3°C</td>
<td>-2.7°C</td>
<td>77.7°C</td>
<td>4.8°C</td>
</tr>
<tr>
<td>NaClO₄</td>
<td>75.0°C</td>
<td>2.9°C</td>
<td>80.9°C</td>
<td>8.0°C</td>
</tr>
<tr>
<td>蔗糖</td>
<td>72.4°C</td>
<td>0.3°C</td>
<td>73.3°C</td>
<td>0.4°C</td>
</tr>
</tbody>
</table>

[0354] 加入糖或盐对 hCG 和 rFSH 纯度的影响。

[0355] 脱存过程中 rFSH 亚基的解离，rFSH 纯度

[0358] 在研究的制备中，没有观察到其他蛋白相关化合物，如 rFSH 聚集体，因此，可以将 rFSH 蛋白纯度计算为，

[0359] 纯度 (%) = 100% - LMW 形式 (%) (4)

[0360] 表 28：在 30±2°C / 65±5% RH 脱存后通过 SEC 确定的 rFSH 纯度 (%)
<table>
<thead>
<tr>
<th>糖/盐</th>
<th>防腐剂</th>
<th>储存时间(月)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>15 mg/ml Na₂SO₄</td>
<td>5 mg/ml 苯酚</td>
<td>98.3%</td>
</tr>
<tr>
<td>14 mg/ml Na₂SO₄</td>
<td>5 mg/ml 苯酚</td>
<td>98.2%</td>
</tr>
<tr>
<td>7 mg/ml NaCl</td>
<td>5 mg/ml 苯酚</td>
<td>98.1%</td>
</tr>
<tr>
<td>75 mg/ml 蔗糖</td>
<td>5 mg/ml 苯酚</td>
<td>98.0%</td>
</tr>
</tbody>
</table>

[0362] 如可从表 28 中观察到的，含有不同的糖或盐、加入和未加入防腐剂的新鲜制备的 rFSH 溶液显示类似的纯度，即，相似的解离的 rFSH（LMW 形式）的相对量。

[0363] 在 30℃贮存一个月后，含有苯酚以及蔗糖或无糖或盐的样品的 rFSH 纯度下降，而包含苯酚和硫酸钠或氯化钠的样品以及未加入苯酚的样品未显示 rFSH 纯度的任何显著下降（见表 28）。在 30℃贮存 6 个月后，包含苯酚、未加入糖或盐的 rFSH 样品产生少于 80% 的 rFSH 纯度。包含苯酚、具有蔗糖作为稳定剂的 rFSH 样品也显示 rFSH 纯度的显著下降，而包含苯酚、用氯化钠或硫酸钠稳定的样品仅显示 rFSH 纯度的微小下降（见表 28）。不包含任何防腐剂的样品针对贮存过程中的解离是最稳定的，即，它们显示最高的纯度，然而，用于用于肠胃外用途的多剂量性水针剂，需要加入防腐剂。

[0364] hCG 在贮存过程中的纯度

[0365] 将以前公开的关于贮存后 hCG 纯度的变化的数据用于与上述显示的 rFSH 稳定性数据进行比较（Samaritani, 同上）。在 50℃贮存一个月后，hCG 纯度显著下降。与含有蔗糖的样品相比，含有氯化钠的样品的下降显著更高（见表 29）。在 50℃贮存 6 周后，与含有蔗糖的样品相比，含有氯化钠的样品的 hCG 纯度低超过 10%。

[0366] 表 29：在 50℃贮存后通过 SEC 测定的 hCG 纯度（%）。在专利 EP 0814841 的第 11 页上列出制剂的全面描述。

[0367]
<table>
<thead>
<tr>
<th>糖/盐</th>
<th>防腐剂</th>
<th>贮存时间(周)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 mg/ml NaCl</td>
<td>5 mg/ml 苯酚</td>
<td>100% 89.7% 85.6% 71.7%</td>
</tr>
<tr>
<td>75 mg/ml 蔗糖</td>
<td>5 mg/ml 苯酚</td>
<td>100% 94.1% 90.3% 83.0%</td>
</tr>
</tbody>
</table>

[0368] hCG 和 rFSH Tₜ的纯度的比较
[0369] 如表30中观察到的，通过DSC获得的rFSH和hCG变性温度与如从实时稳定性数据获得的rFSH和hCG纯度充分相关。对于重组抗体和重组糖蛋白，以前已经提出了DSC和如通过SEC分析的实时稳定性之间的类似相关。

[0370] 在30°C测定rFSH的实时稳定性数据。因为rFSH产品目的是用于冷冻长期贮存，所以对于加速的稳定性研究，25-30°C是合适的范围。仅获得针对以下的hCG的实时稳定性数据；在50°C贮存达12周，在25°C和40°C贮存11周以及在50°C贮存6周。对于40°C以下的温度，在贮存过程中，对于具有蔗糖和氯化钠的制剂后者，hCG纯度的下降少于6%，并且因此在贮存11-12周后难以在各种糖和盐的作用之间进行区分。仅在50°C，可以清楚地区分各种制剂，虽然在更低的温度观察到的趋势与在50°C相同。

[0371] 表30：hCG和rFSH的通过SEC测定的纯度和用DSC测定的变性温度。在50°C贮存6周后测定hCG的纯度，并且在30°C贮存6个月后确定rFSH的纯度。

<table>
<thead>
<tr>
<th>糖/盐</th>
<th>hCG</th>
<th>rFSH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>纯度*</td>
<td>ΔTₜ**</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>-</td>
<td>-2.3°C</td>
</tr>
<tr>
<td>NaCl</td>
<td>71.7%</td>
<td>-2.7°C</td>
</tr>
<tr>
<td>蔗糖</td>
<td>83.0%</td>
<td>0.3°C</td>
</tr>
</tbody>
</table>

[0373] *样品，含有10000IU/ml hCG，154mM NaCl或300mM蔗糖，10mM磷酸盐缓冲液pH 7。

[0374] **样品，含有5mg/ml(35-300IU/ml)hCG，0.1M糖或盐，0.5mg/ml L-甲硫氨酸，0.005mg/ml聚山梨酯20，1mM磷酸钠缓冲液pH 6.5。

[0375] #样品，含有600IU/ml rFSH，43mM Na₂SO₄或120mM NaCl或219mM蔗糖，1.0mg/ml L-甲硫氨酸，0.005mg/ml聚山梨酯20，5mg/ml苯酚，1mM磷酸钠缓冲液pH 6.5。

[0376] ##样品，含有2.4mg/ml(36-300IU/ml) rFSH，0.1M糖或盐，0.5mg/ml L-甲硫氨酸，0.005mg/ml聚山梨酯20，1mM磷酸钠缓冲液pH 6.5。
说明 书

[0377] 结论

[0378] 在升高的温度贮存后通过 hCG 和 rFSH 变性温度以及 hCG 和 rFSH 纯度产生了关于不同的糖和盐对溶液中 hCG 和 rFSH 稳定性的影响的明确证据。所用的两种技术，液体 DSC 和 SEC 色谱法，都显示了一致的结果。这些结果已经通过本发明的实时稳定性数据明确证实。

[0379] 通过 rFSH 二级结构的变化（CD 光谱 - 实施例 1），rFSH 变性温度（通过 DSC 的三级结构和四级结构的变化 - 实施例 2）或在 30±2°C / 65±5% RH 贮存后形成的解离的 rFSH 的相对量（通过 SEC 的四级结构的变化 - 实施例 3）在各种溶液中研究 rFSH 稳定性产生了关于防腐剂和稳定剂对溶液中 rFSH 稳定性影响的明确证据。所用的三种技术，CD、DSC 和 SEC 色谱法都显示了结果的一致。

[0380] 对来自所有的实施例 1-3 的结果下结论，清楚地看出加入防腐剂（苯酚或苯醇）减少了溶液中的 rFSH 稳定性。预期其他的酚类防腐剂，如同甲醇和氯化甲醇产生类似的去稳定作用。在加入防腐剂后观察到的对 rFSH 的去稳定作用充分对应于本领域的现有技术常识。

[0381] 加入药用碱金属 Na⁺或 K⁺盐到 rFSH 溶液中中和了防腐剂对 rFSH 的去稳定作用并且 - 最有利地 - 与不含有防腐剂也不含有盐的 rFSH 溶液相比，增加了 rFSH 在溶液中的稳定性。所有测试的钠盐和钾盐导致与所用的阴离子无关的增加的 rFSH 稳定性；所述阴离子例如无机阴离子如硫酸盐、氯化物和高氯酸盐并且还使用有机阴离子如柠檬酸盐、乙酸盐和酒石酸盐。改变盐的阴离子产生了对 rFSH 稳定程度的较大影响；单价阳离子，具体地具有阴离子钠或钾的盐导致对 rFSH 的显著的稳定作用。将高氯酸钠加入 rFSH 溶液中导致最稳定的 rFSH 溶液，然而，高氯酸盐通常具有高度反应性并且是氧化剂，因此不批准高氯酸盐作为药物制剂中的非活性成分。因此，硫酸和氢的钠盐或钾盐是最有利的稳定剂。

[0382] 对于 hCG 和 rFSH，向 hCG 或 rFSH 溶液加入蔗糖导致蛋白稳定性的稍微增加，而加入氯化钠具有对 hCG 的去稳定作用和对 rFSH 的稳定作用（见实施例 4）。向 hCG 和 rFSH 溶液加入高氯酸钠对 hCG 和 rFSH 具有稳定作用（实施例 4）。这些盐对 rFSH 溶液的稳定作用令人惊奇地明显好于观察到的蔗糖的稳定作用。

[0383] 这些结果的结论如下：

[0384] 1) 在研究的条件下,盐对 hCG 和 rFSH 稳定性的作用并不遵循 Hofmeister 系列。

[0385] 2) 尽管 hCG 和 FSH 在结构上非常相似（即，它们属于相同类的蛋白，它们是糖基化的并且它们都由两个亚基组成，其中 α - 亚基在两种蛋白中是相同的），各种糖和盐如蔗糖和氯化钠对蛋白稳定性的作用对于 hCG 和 rFSH 是不同的。非常令人惊奇的是，对于非常相似的蛋白如 hCG 和 rFSH，盐并不显示相同的稳定作用。

[0386] 3) Na⁺和 K⁺盐对 FSH 溶液显示它们的稳定作用，与所用的阴离子无关。

[0387] 4) Na⁺和 K⁺盐对 FSH 溶液的稳定作用可以抵消防腐剂的去稳定作用。

[0388] 缩写和定义：

[0389] 下述缩写和定义贯穿全文和实施例使用：

[0390] ΔTn，加入防腐剂或盐后变性温度的变化，还见 Tn。

[0391] ARTs 辅助生殖技术

[0392] BA 芳醇
[0393] BTG Bio-Technology General
[0394] CD 圆二色谱
[0395] CHO 中国仓鼠卵巢
[0396] CoA 分析证书
[0397] DNA 脱氧核糖核酸
[0398] DSC 差示扫描量热法
[0399] FSD 雌性性功能障碍
[0400] FSH 促卵泡激素
[0401] hCG 人绒毛膜促性腺激素
[0402] IU 国际单位

对 rFSH 生物活性的测量，如根据 Ph.Eur. 和 USP 通过 Steelman-Pohley 生物测定法确定的

[0403] IUI 子宫内授精
[0404] LC-UV 具有紫外线检测的液相色谱
[0405] LH 黄体生成素
[0406] LMW 低分子量形式，主要或仅由解析的单体蛋白组成
[0407] LDI 排卵诱导
[0408] p. a. 分析前
[0409] Ph.Eur. 欧洲药典
[0410] RH 相对湿度
[0411] rFSH 重组人促卵泡激素
[0412] SEC 大小排阻色谱法
[0413] SRSR 同步辐射圆二色谱
[0414] Tm 热转变中点或转变中点或变性温度

当一半蛋白分子折叠而另一半蛋白分子解折叠时的温度。
[0415] TRIS 2- 氨基-2- 羟甲基- 丙-1, 3- 二醇
[0416] TSH 促甲状腺激素
[0417] USP 美国药典
[0418] UV 紫外线
图 1
图 2
图 3
图 6