wO 20147209848 A1 I 10N OO OO O A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

—~
é

\\

(43) International Publication Date
31 December 2014 (31.12.2014)

(10) International Publication Number

WO 2014/209848 A1l

WIPOIPCT

(51) International Patent Classification:
GO6F 17/30 (2006.01)
(21) International Application Number:
PCT/US2014/043599
(22) International Filing Date:
23 June 2014 (23.06.2014)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/841,045 28 June 2013 (28.06.2013) Us
14/226,557 26 March 2014 (26.03.2014) Us
(71) Applicant: ORACLE INTERNATIONAL CORPORA-

TION [US/US]; 500 Oracle Parkway, M/S 50P7, Red-
wood Shores, California 94065-1677 (US).

(72) Inventors: HARDY, Alexandre; 21 York Close, Howard
Hamlet, University Drive, 7405 Pinelands (ZA). TILAK,
Omkar; 1883 Hillebrant Place, Santa Clara, California
95050 (US).

Agents: NICHOLES, Christian A. et al.; KILPATRICK
TOWNSEND & STOCKTON LLP, Two Embarcadero
Center, Eighth Floor, San Francisco, California 94111

(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(74

(8D

[Continued on next page]

(54) Title: NAIVE, CLIENT-SIDE SHARDING WITH ONLINE ADDITION OF SHARDS

302
] DETERMINE SOURCE SHARD FOR PARTICULAR DATA ITEM

(57) Abstract: Multiple clients can be enabled to perform
] operations relative to data items in a shard system asyn-

chronously to each other without the use by those clients of

¥
304
DETERMINE DESTINATION SHARD FOR PARTICULAR DATA [TEM

] exclusive locks. A rebalancing event, in which data items

. A
/—/ K —
0] SOURCE AND DESTINATION SHARDS =

Nwm,)
YES

are redistributed automatically among a set of shards due to
a modification of the quantity of shards in the system, can
be performed without the use of exclusive locks by clients.
Clients can continue to perform operations relative to at

208
] ADD PARTICULAR DATA ITEM TO DESTINATION SHARD NORMALLY

least some of the data items in the shard system even while
] rebalancing processes are redistributing at least some of the

e,

. it

SHARD?
\m/

G WITH PRIVARY KEY ON SOURN

data items asynchronously during a system-wide rebalan-
cing event. All of these benefits can be obtained without
sacrificing data consistency within the shard system.

kil
} FAIL ADD OPERATION DUE TO DUPLICATION

e,

e

T ——
—

314
NQ = TTEM WITH PRIMARY KEY AND TRUE TOMBSTONE ON ~

\\&cﬂmﬂow SHARD? """
VES
36

HAVING SAME PRIMARY KEY ON DESTINATION SHARD

ASSIGN PARTICULAR DATAITEMS ATTRIBUTE VALUES TO ATTRIBUTES OF [TEM

218

SHARD TO FALSE

SET TOMBSTONE OF ITEM HAVING SAME PRIMARY KEY ON DESTINATION

¥

320
] INSERT PARTICULAR DATA ITEM INTO DESTINATION SHARD

w300

FIG. 3

WO 2014/209848 A1 |IWAK 00TV 000 000 00O OO

(84) Designated States (unless otherwise indicated, for every SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
kind of regional protection available): ARTIPO (BW, GH, GW, KM, ML, MR, NE, SN, TD, TG).
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, .
UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU, TJ, 'ublished:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — with international search report (Art. 21(3))
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

W

ig

J—
(3]

20

B
(4]

30

WO 2014/209848 PCT/US2014/043599

NAIVE, CLIENT-SIDE SHARDING WITH ONLINE ADDITION OF
SHARDS

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subiect {0 copyright protection. The copyright
owner has no objection 1o the facsimile reproduction by anyone of
the pateni document or the patent disclosure, as ii appears in the
Fatent and Trademark Office patent file or records, but ctherwise
reserves all copyright rights whaisosver.

CROSS-REFERENCES TO RELATED APPLICATIONS; PRIORITY CLAIM
{0661} The present application claims priority under 35 U.S.C. § 119 to UK. Provisional
Patent Application Serial No. 61/841,045, titled NAIVE, CLIENT-SIDE SHARDING WITH
ONLINE ADDITION OF SHARDS, filed on Junce 28, 2013, the entire contents of which are
incorporated by reference herein; and U.S. Patent Application Serial No. 14/226,557, titled
NAIVE, CLIENT SIDE SHARDING WITH ONLINE ADDITION OF SHARDS, filed on

March 26, 2014, the entire contents of which are incorporated by reference herein.

BACKGROUND
{8862] In asystem of database shards, data items, such as records or rows or documents, can
be distributed among multiple separate, independeont databases, called shards. In such a system,
data ttems typically are not, and are not permitted to be, duplicated among the shards. Thus, in
such a system, a particular data item will be located on only onc of the several shards at any
given time. In order for a client to determine which of the several shards contains the particular
data ttem, the client can input the data item’s primary key—which uniguely identifics the
particular data item—into a hash function. The hash function computes, based on the primary
key, the identity of the shard on which the particular data item is currently stored. For cxample,
a hash function might divide a numeric primary key by the quantity of shards in the system and

then take the remainder {essentially a modulo operation) to be the identifier for the shard that

W

10

5

30

WO 2014/209848 PCT/US2014/043599

contains the particular data item. Using such a hash function to determine, in the first place, the
shard on which each data item will be stored typically causes data items to be distributed

relatively evenly among the shards.

{8863] Once the client has identified the shard upon which a particular data item is located, the
client can perform operations, such as read, delete, or update operations, relative to the data item,
Usually, a shard system will serve numerous clients concurrently, and these clients may cach
perform, asynchronously to ecach other, operations relative to separate data items. Potentially,
multiple clients could inadvertently atterapt to perform operations relative to the same data tem
simultancously. If this scenario were permitted to occur unhindered, then the data item could
become corrupted, making the state of the shard system inconsistent. Under one approach, in
order to guarantee that multiple clients will not concurrently perform operations relative to the
same data item, a client that seeks to perform an operation relative o a particular data item can
first be required to acquire an exclusive lock on that particular data item. Each data itern can be
associated with a separate lock. A client 1s prevented from acquiring the exclusive lock on the
particular data tem if another client already holds that exclusive lock; under such circumstances,
the client seeking to obtain the exclusive lock must wait for the lock-holding client to release the
exclusive lock. While a client 1s holding the exclusive lock on a particular data stem, that client
alone can perform operations relative to the particular data item. When the client has firushed
performing operations relative to the particular data item, the client can release the exclusive
lock on the particular data item, thereby making the particular data item available for access by

other clients.

{B084] As the quantity of data stored within the shard system grows, the capacity of the
existing shards in the system might become inadequate to contain all of the data that is going to
be stored in the system. It can be desirable, under those circumstances, to add one or more new
shards to the system. The addition of new shards can invoive the addition of new hardware
computing and storage devices to contain and manage new databases. In order to attempt to
balance the client access load among the shards, so that no one subset of shards becomes
disproportionately burdened with client reguests, the addition of new shards to the system can
precipitate a redistribution of the system’s stored data items among the augmented group of

shards. The redistribution event, or rebalancing cvent, can cause data items that were formerly

W

10

5

30

WO 2014/209848 PCT/US2014/043599

stored on one shard to be re-located to another shard—potentially, but not necessarily, to a newly
added shard. Under one approach, rebalancing processes can obtain exclusive locks on the data
itemns that are to be moved. After obtaining the exclusive locks on the data itoms, the rebalancing
processes can move those data items from old shards to the new shards that have bee

determined by a revised hash function to be the destination for those data items. Afier moving

the data items, the rebalancing processes can release the exclusive locks on those data items.

{0005] For as long as exclusive locks have existed, some drawbacks have atiended their uses.
One drawback is that while a data iten’s exclusive lock is held by a process, no other process
can access that data item. Thus, under the lock-using rebalancing approach discussed above,
clients may be largely unable to perform operations relative to the shard system while the
rebalancing event proceeds; no client can obtain an exclusive lock on a data item whilc a
rebalancing process holds that exclusive lock. Even when the rebalancing event is not ongoing,
the overhead involved in clients’ acquisition, maintenance, and release of locks—to guard
against concurrent multiple client access—can be significant and burdensome. Even ignoring
the ctfects of rebalancing events, the use of locks within a shard system can negatively impact
system efficiency and performance. Perhaps worse still, unexpected failores within the shard
system can cause a lock-holding process (which could be, for example, a chient or a rebalancing
process) to freeze up or otherwise quit functioning properly. Under such circurstances, the non-
functional process may retain an exclusive lock on a particular data item until some timer
expires, at which time the non-functional process may be terminated, and the locks it held
forcibly released. Other processes, inchuding clients and rebalancing processes, are consequently
forced to wait for the timer’s expiration before proceeding with their intended tasks relative to
that particular data item. Especially if the operations to be performed relative to the particular
data item are just one step within a strictly ordered sequence of operations to be performed
relative to multiple separate data items, such forced waiting can cause the performance of the
entire shard system to degrade noticeably. Dependencics imposed by orders in which operations

often need to be performed can cause these kinds of complications o cascade.

BRIEF DESCRIPTION OF THE DRAWINGS

{B086] FIG. 1 is a block diagram illustrating an example of a scalable shard system in which

(V8]

W

ig

28

b
W

WO 2014/209848 PCT/US2014/043599

multiple clients can access data items that have been distributed among muitiple database shards,

according to an ¢mbodiment of the invention;

{G087] FIG. 2 is a state diagram that illustrates the various states in which system can exist at
various moments in time, and the possible transitions between those states, according to an

embodiment of the invention;

{8088} FIG. 3 is a flow diagram that iilustrates an example of a technique for performing an

add operation while in the rebalancing state, according to an embodiment of the invention;

{8089] FIG. 4 is a flow diagram that iilustrates an example of a technique for performing an

update operation while in the rebalancing state, according to an embodiment of the invention;

{8010} FIG. 5 is a flow diagram that illustrates an example of a technique for performing a

delete operation while in the rebalancing state, according to an embodiment of the invention;

{0011} FIGs. 6A-6B are flow diagrams that illustrate an example of a technigue for performing

a get operation while in the rebalancing state, according to an embodiment of the invention;

{8012} FIG. 7 is a flow diagram that illustrates an cxample of a technique for performing a
rebalancing operation while in the rebalancing state (initially), according to an embodiment of

the invention;

{G013] FIG. 8 is a flow diagram that illustrates an example of a technique for performing a

query operation while in the rebalancing state, according o an embodiment of the invention;

{0014] FIG. 9 depicts a simplified diagram of a distributed system for implementing one of the
embodiments.

{B015] FIG. 1015 a simplified block diagram of componcents of a system environment by which
serviges provided by the components of an embodiment system may be offered as cloud services,
in accordance with an embodiment of the present disclosure.

{0016] FIG. 11 illustrates an example of a computer system in which various embodiments of

the present invention may be implomented.

DETAILED DESCRIPTION
{0017] In the following description, for the purposes of explanation, specific details are set

4

W

10

5

20

WO 2014/209848 PCT/US2014/043599

forth in order to provide a thorough understanding of embodiments of the invention. However, it

will be apparent that the invention may be practiced without these specific details.

{G018] According to an embodiment of the invention, multiple clients can be enabled to
perform operations relative to data items in a shard system asynchronously to each other without
the use by those clients of exclusive locks. Furthermore, according to an embodiment of the
invention, a rebalancing event, in which data items are redistributed automatically among a set of
shards due to a modification {addition or impending removal) of the quantity of shards in the
system, can be performed without the use of exclusive locks by clients. Additionally, in an
embodiment of the invention, clicnts can continue to perform operations relative to at lcast some
of the data ttems in the shard system cven while rebalancing processes are redistributing at least
some of the data items asynchronously during a system-wide rebalancing event. The
programmatic code that provides these featares can be located exclasively on the clients rather
than the shard servers. All of these benefits can be obtained without sacrificing data consistency

within the shard system.

EXAMPLE SCALABLE SHARD SYSTEM

{6019] FIG. | is a block diagram illustrating an example of a scalable shard system 100 in
which multiple clients can access data items that have been distributed among multiple database
shards, according to an cmbodiment of the invention. Shard system 100 includes clients 102A-N
and shards 104A-N. The quantitics of clicnts and shards in system 100 can vary. Each of shards
104 A-N can be a separaie and independent database that does not need to be aware of any other
shard within system 100, Each of shards 104A-N can include a separate database server and
relational database, for example. Although databases are discussed herein as a concrete example,
embodiments of the invention can be applied 1o a variety of kinds of data repositories (e.g.,
Lightweight Directory Access Protocol (LDAP) directories, tlat files, associative memories, ete.)
other than databases. Each of clients 102A-N can be a separate computing system that can
operate independently of each other of clients 102A-N. For example, clients 102A-N can be

desktop computers, laptop computers, mobile devices, ete.

[B02¢] Clients 102A-N can interact with shards 104A-N throagh a network 106, Network 106

(92

W

10

i3

30

WO 2014/209848 PCT/US2014/043599

can be, or can include, a local area network (LAN), a wide area network { WAN}, and/or the
Internet. Communication over network 106 can be achieved through a suite of network
communication protocols such as Fthernet, Transmission Conirol Protocol/Internet Protocol
(TCP/1P), Hypertext Transfer Protocol (HTTP), Simple Object Access Protocol (SOAP), Ope
Database Connectivity {ODBC), ctc. Each of clicnts 102A-N can execute a separate instance of
a software program that utilizes a hash function in order to calculate, based on the primary key of
a particular data item, the identity of a particular shard, among shards 104 A-N, on which that
particular data item cither has been stored or is to be stored. Such data items can be separate
records possessing different values for similar attribute sets. At least in one embodiment, such
data items can be stored within shards 104A-N as separate rows within one or more relational
database tables. With very specific exceptions discussed below that are applicable to system 100
during rebalancing events, cach data item is located on only one of shards 104A-N at any
particular moment in time. A rebalancing ¢vent can potentially cause various data items to be
relocated from one shard to another shard. In an embodiment of the invention, the sequence of
activitics involved in a client’s performance of an operation doring a rebalancing event can differ
from the sequence of activities involved in that client’s performance of that same type of

operation during “normal” system states occurring outside of a rebalancing event.

[8021] Generally, 1o order to perform an operation relative to a data item that already is stored
on a particular one of shards 104A-N, a particular client of clients 102A-N can first determine
{e.g., based on the hash function} the shard on which that data item is currently stored. During a
rebalancing event, the particular client can perform checks to ensure that the particular client will
be operating on the correct copy of the data item, to compensate for the possibility that the data
itern mught have been relocated or deleted asynchronously to the particular client’s activities,
Although during normal system states only one copy of a data itom can exist anywhere in system
100, doring a rebalancing event it is possible for multiple copies—different versions—of a data
item to be present temporarily within system 130, In performing these checks, the particular
client can make use of version information {discussed in greater detail below) that is stored with
cach copy of cach data item. Based at least in part on such version information, the particular
clicnt can ensure that the operation, if performed, will be performed relative to the copy of the
data item stored on the shard on which the data item was most recently placed. The particular

client’s performance of the operation during a rebalancing event can involve the creation of a

6

W

10

5

WO 2014/209848 PCT/US2014/043599

new copy of the data item on a shard separate from the shard on which another copy of the data
item previously existed. In an embodiment, the operation can involve the exccution of one or
more instructions relative to the data item. For example, such instructions can take the form of
query language instructions—=Structured Query Language (SQLU) instructions being just one
specttic possibility. After the particular client’s performance of the operation relative to a newest
copy of the data item, a cleanup operation can be performed to remove old and outdated versions
of the data item from shards on which the data itom should no longer exist. Generally, data
consistency within system 100 can be maintained in this manner without the use of locks by

clients 102A-N.

{0022} According to an embodiment of the invention, system 100 is scalable becausce shards
can be added to {or removed from) system 100, The modification of the quantity of shards

104 A-N can cause a rebalancing event to occur within system 100, During the rebalancing
event, rebalancing processes can re-hash cach data ttem’s primary key based on the new quantity
of shards instcad of the old quantity, thereby determining the identity of the shard {different or
the sarue) on which that data item should be located as of the conclusion of the rebalancing
event. The rebalancing processes can then relocate data items from shard to shard using
techniques discussed in greater detail below. The relocation can involve the creation and
deletion of copies of the data items that would not exist within systern 100 outside of the
rebalancing event. The rebalancing processes can execute asynchronously to software executing
on clients 102A-N. Beuneficially, clients 102A-N can continue to perform operations relative to
data ttems during the rebalancing operation, at least in part by adjusting the sequence of activities

that clients 102A-N perform during the rebalancing operation.

VERSIONS AND TOMBSTONE ATTRIBUTES

{0023} As s mentioned above, in an embodimuent of the invention, cach copy of a particular
data iterm can be stored in association with version information. In an embodiment, such version
information can take the form of a systern-wide version number that is increroented cach time
that rebalancing event occurs in system 100, Thus, for example, if an existing data item’s
version number is 3, and if the system’s current version number is 4 at the time a new copy of the
data item is created on a different shard during a rebalancing eveut, then the new copy of that

~
7
I

W

10

5

WO 2014/209848 PCT/US2014/043599

data item will have version number 4. By cxamining the version information of two separate
copics of a data item, which may exist during a rebalancing event, a client can determine which
copy is the newer version, and can perform operations relative to that copy. Additionally, by
exarnining the version information of two separate copies of a dats item, which may cxist during
a rebalancing event, a rebalancing process can determine which copy s the older version, and

therefore ought to be removed from the shard on which that copy is located.

{6024] Operations that a clicnt performs can involve deleting a data itern from a shard. Inan
cmbodiment, a client’s performance of a delction operation relative to a data item does not
instantly remove all traces of that data itom trom the shard on which it was located. Instead, in
an embodiment, cach dats item has an atiribute called a “tombstone” whose value can be set to
true {if that copy of the data item on that shard has been deleted) or false (if that copy of the data
item on that shard has not been deleted). The setting of a data itew’s tombstone atiribute to
“true” avoids ambiguous situations that otherwise might occur when a data ew’s absence ona
shard could be due ¢ither to deletion or to movement to another shard as part of a rebalancing
event. In an embodiment, only rebalancing processes {and not clients) are permitted to remove

data items from shards completely.

SYSTEM STATE TRANSITIONS

{0025] As is discussed above, at different moraents of tirae, system 1060 could be in a state in
which it is performing a rebalancing event, or system 100 could be in a state outside of such a
rebalancing cvent. Also as is discussed above, the sequences of activities that clients 102A-N
perform as part of operations relative to data items during a rebalancing event can differ from the
sequences of activities that clients 102A-N perform as parts of operations of the same type
during states in which an rebalancing event is not occurring. Viewed in a simphified manner,
during the “normal” state that exists while system 100 is not undergoing a rebalancing event,
clients 102A-N may perform operations relative to data items using simple, highly efficient
“naive” techniques that may lack safeguards that protect against certain kinds of inconsisiencies.
In contrast, during a state that exists while system 100 is undergoing a rebalancing event, clients
[02A-N may perform the same types of operations using more complex, more cantious
techniques that timpose such safegnards. Such safeguards, which might be unnecessary outside

S

W

10

5

30

WO 2014/209848 PCT/US2014/043599

of rebalancing events, can be suitable during rebalancing cvents.

{0826] FIG. 2 is a state diagram that iHustrates the various states 200 in which clients 102A-N
can ¢xist at various moments in time, and the possible transitions between those states, according
to an embodiment of the invention. States 200 can include a normal state 202, an enter rebalance
state 204, a rebalancing state 206, an cnter cleanup state 208, a cleanup state 210, and a leave
rchalance state 212, In one embodiment, clicnts 102A-N are pormitted to perform operations
relative to data ttems stored within shards 104A-N only during normal state 202 and rebalancing
state 206, which are likely to be the states in which clients 102A-N are during the vast majority
of the time. Although clients 102A-N will usually be in the same state, scparatc ones of those
clients can briefly be in different states during state transitions, as will be scen from the

discussion below,

{8027] According to an embodiment, clients 102A-N can initialize in normal state 202, Clients
102 A-N can begin new operations while in normal state 202, A notification mechanism can
inform each of clients 102A-N that one or more shards have been added to or are going to be
removed from system 100, In response to such a votification, cach of clicnts 102A-N can wait
for its pending operations to complete, and then that client can transition to enter rebalance state
204, Chents 102A-N do not begin new operations while in enter rebalance state 204; clicnts

102 A-N can queuc up operations to be performed. When all of clients 102A-N have transitioned
to enter rebalance state 204, each of clients 102A-N can transition to rebalancing state 206.
Once clicnts 102A-N have entered rebalancing state 206, rebalancing processes can proceed o
move data ttems from source shards o destination shards. Ion an embodiment of the invention,
the current version number, with which new data itern copies will become associated from that
moment onward, can be incremented upon the entry of clients 102A-N into rebalancing state
206, Chients 102A-N can begin new operations (potentially including gueued up operations)
while in rebalancing state 206, When the rebalancing processes have moved all data items that
are 1o be relocated, a notification mechanism can inform cach of clients 102A-N of this fact. In
response to such a notification, cach of clients 102ZA-N can wait for its pending operations to
complete, and then that client can transition to enter cleamup state 208, Clients 132A-N do not
begin new operations while in enter cleanup state 208; clients 102A-N can queuc up opcrations

to be performed. When all of clients 102A-N have transitioned to enter cleanup state 208, cach

W

10

i3

30

WO 2014/209848 PCT/US2014/043599

of clients 102A-N can transition to cleanup state 210, Once clients 102A-N have entered
cleanup state 210, rebalancing processes can procecd to remove, from the shards, data item
copies that should no longer exist on any shard. In an embodiment, while clients 102A-N are in
cleamup state 210, rebalancing processes can remove, from the shards, all data item copics
having a “truc” tombstone attribute value. Additionally, in an embodiment, while clients 102A-
N are in cleanup state 210, rebalancing processes can remove, from the shards, all data item
copies having a version number attribute value that is less than the system’s current version
number, Clients 102A-N do not begin new operations while in cleanup state 210; clients 102A-
N can qucue up operations to be performed. When the rebalancing processes have removed all
data item copies that are to be removed, a notification mechanism can inform each of chients
102A-N of this fact. In response to such a notification, each of clients 102A-N can transition to
leave rebalance state 212, Clients [02A-N do not begin new operations while in leave rebalance
state 212; clients 102 A-N can queue up operations to be performed. When all of clients 102A-N
have transitioned to leave rebalance state 212, cach of chients 102A-N can transttion back to
normal state 202, Chents 102A-N can begin new operations {potentially including queved up

operations) while in normal state 202,

[B028] Asis discussed above, while clients 102A-N are in rebalancing state 206, clients 102A-
N can perform operations in a more cautious manner than then manver 1o which clients 102A-N
would perform the same types of operations while in normal state 202, The manner in which
clients 102A-N can perform operations while in rebalancing state 206 can guarantee data
consistency in spite of the concurrent asynchronous execution of rebalancing processes that may
be relocating data items from shard to shard-—a concern that does not exist in normal state 202,
Discussed below are techniques for performing various different types of operations in this more

cautious, consistency-guarantecing manner while in rebalancing state 206.

ADD OPERATIONS

[8029] FIG. 3 1s a flow diagram that tlustrates an example of a technique 300 for performing
an add operation while in the rebalancing state, according to an embodiment of the invention.
Although technique 300 s illustrated as including specific activities performed in a specific
order, alternative embodiments of the invention can involve techniques having additional, fewer,

1¢

W

10

5

WO 2014/209848 PCT/US2014/043599

or different activitics. Any of clients 102ZA-N can perform technique 300. In block 302, a client
can determine the identity of the source shard on which a particular data item would have been
located prior to the change in shard quantity. This determination can be achieved, for example,
by calculating the particular data ttem’s primary key modulo the old shard quantity, In block
304, the client can determinge the identity of the destination shard on which the particular data
item is to be located following the change in shard quantity, This determination can be achicved,
for example, by calculating the particular data itonm’s primary key modulo the new shard
quantity. In block 306, the client can determine whether the identity of the source shard is the
sam¢ as the identity of the destination shard. If the identitics are the same, then control passes to

block 308, Otherwise, control passes to block 310,

{0036] In block 308, the chient can add the particular data item to the destination shard in the
normal, naive, highly efficient standard manner for performing an add operation. At this point,

technique 300 terminates.

{0031} Alicrnatively, in block 310, the client can determine whether a data item having the
particular data tem’s primary key already exists on the source shard. If a data item having the
particular data iterm’s prirary key already exists on the source shard, then control passes to block

312, Otherwise, control passes to block 314.

{0032] In block 312, the client can conclude that the particular data item duplicates a data item
already existing in the shard system, and can refrain from performing the add operation. The
client can signify to a user that the add operation was prevented due to doplication. At this point,

technigue 300 terminates.

[B033] Alternatively, in block 314, the client can determine whether there already exists, on the
destination shard, a data item having both (a) the particular data ttem’s primary key and (b} a
tombstone attribute value of “true.” If there already exists, on the destination shard, a data item
having both {a} the particular data item’s primary key and (b} a tombstone attribute value of

“true,” then control passes to block 316, Otherwise, control passes to block 320,

[0034] TIn block 316, as part of an atonuc action, the client can assign, to the attribute valoes of
the data item having the particolar data item’s primnary key (on the destination shard}, the

attribute values of the particolar data item. This assignment essentially updates the data item

i1

W

10

5

20

WO 2014/209848 PCT/US2014/043599

existing on the destination shard, The client can assign the system’s current version number to
the data item’s version number attribute. In block 318, as part of the same atomic action, the
clicnt can st the tombstonc attribute value of the data item having the particular data ttem’s
primary key {on the destination shard) to “false.” In an embodiment, the attribute value
assignment of block 316 achieves the same result as that achicved by the activity of block 318,
since the particular data item’s tombstone atiribute value will alrcady be “false” prior to the
assignment. The clicnt can signify to a user that the add operation succeeded. At this point,

techuigue 300 terminates,

{0035] Alternatively, in block 320, the clicnt can insert the particular data item into the
destination shard. The client can assign the system’s current version number to the particular
data ttem’s version number attribute. The client can signify to a user that the add operation
succeeded. At this point, technique 300 termunates. Tn an embodiment of the invention, the

activitics of blocks 314-320 arc performed as a single atomic operation.

UPDATE OPERATIONS

{0036} FIG. 4 is g flow diagram that illustrates an example of a technigue 400 for performing
an update operation while in the rebalancing state, according to an embodiment of the invention,
Although technique 400 ts illustrated as including specific activitics performed in a specific
order, alternative embodiments of the invention can involve techniques having additional, fower,
or different activitics. Any of chients 102A-N can perform technique 400, In block 402, a client
can determine the wdentity of the source shard on which a particular data itern would have been
located prior to the change i shard quantity. This determination can be achieved, for example,
by calculating the particular data item’s primary key modulo the old shard quantity. Tn block
404, the client can determine the identity of the destination shard on which the particular data
itern s to be located following the change in shard guantity. This determination can be achieved,
for example, by calculating the particolar data item’s privoary key modulo the new shard
quantity. In block 406, the client can determine whether the wdentity of the source shard is the
same as the identity of the destination shard. If the identitics are the same, then control passes to

block 408. Otherwise, control passes to block 410.

W

10

5

20

WO 2014/209848 PCT/US2014/043599

{60371 1o block 408, the client can update the particular data item on the destination shard in
the normal, naive, highly efficient standard manner for performing an update operation. At this

point, technigue 400 terminates,

{B038] Alternatively, in block 410, the client can determine whether a data item having the
particular data ttem’s primary key already exists on the source shard. If a data item having the
particular data item’s primary key alrcady cxists on the source shard, then control passes to block

416, Otherwise, control passes to block 422,

{003%9] In block 416, the client can determine whether there alrcady cxists, on the destination
shard, a data item having the particular data item’s primary key. If there already cxists, on the
destination shard, a data item having the particular data item’s primary ko, then control passes

to block 418, Otherwise, control passes to block 420,

{0048] In block 418, the client can assign, to the attribute values of the data item having the
particular data item’s primary key {on the destination shard), the attribute vahlues of the particular
data item. This assignment cssentially updates the data itom cxisting on the destination shard.
The client can assign the system’s current version number to the data item’s version number
attribute. The client can signify to a user that the update operation succecded. At this point,

technique 400 terminates.

{0041] Aliernatively, in block 420, the client can insert the particular data item into the
destination shard. The clicnt can assign the system’s current version nurmber to the particular
data itenm’s version number attribute. The client can signify to a uscr that the update operation

succceded. At this point, technique 400 terminates.

{0042] Aliernatively, in block 422, the client can determine whether there already exists, on the
destination shard, a data item having both (a) the particular data ttem’s primary key and (b} a
tombstone attribute value of “false.” If theve already exists, on the destination shard, a data item
having both {a} the particular data item’s primary key and (b} a tombstone attribute value of

“false,” then control passes to block 418, Otherwise, control passes to block 428,

[0043] Alternatively, in block 428, the clicnt can refrain from performing the update operation.
The client can signify to a user that the update operation failed (because there was no data tem

to update). At this point, technique 400 terminates,

i3

W

ig

5

WO 2014/209848 PCT/US2014/043599

DELETE OPERATIONS

{0044] FIG. 5 is a flow diagram that illustrates an example of a technique 500 for performing a
delete operation while in the rebalancing state, according to an embodiment of the invention.
Although technigue 500 is illustrated as including specific activities performed in a specific
order, alternative embodiments of the invention can involve techniques having additional, fewer,
or different activitics. Any of clients 102ZA-N can perform technigue 500. In block 502, a client
can determing the identity of the source shard on which a particular data ttem would have been
located prior to the change in shard quantity. This determination can be achieved, for example,
by calculating the particular data ttem’s primary key modulo the old shard quantity, In block
504, the client can determine the identity of the destination shard on which the particular data
item is to be located following the change in shard quantity, This determination can be achicved,
for example, by calculating the particular data itonm’s primary key modulo the new shard
quantity. In block 506, the client can determine whether the identity of the source shard is the
saroe as the identity of the destination shard, If the identities are the same, then control passes to

block 508. Otherwise, control passes to block 510,

{0045] In block 508, the chient can delete the particular data itern on the destination shard in
the normal, naive, highly efficient standard manner for performing a delete operation. At this

point, techuigue 5300 terminates.

{0046} Alicrnatively, in block 510, as part of an atomic action, the clicnt can determinge
whether a data itermn having the particular data ttem’s primary key already exists on the source
shard. If a data tiem having the particular data iten’s primary key already exists on the source

shard, then control passes to block 512, Otherwise, control passes to block 516.

[8047] In block 512, as part of the atomic action, the client can upsert the particular data em
into the destination shard. An upsert is defined as: (1) an insert if the object 1dentified by the
primary key does not exist in the database (i.¢., the destination shard), or (2) an update if the
object identified by the primary key does exist in the database (1.¢., the destination shard). In
block 514, as part of the atomic action, the client can set the valae of the particular data ttem’s

tombstone attribute to “troe.” The client can assign the system’s current version nomber to the

i4

W

ig

28

WO 2014/209848 PCT/US2014/043599

particular data item’s version number attribute. The client can signify to a user that the delete

operation succeeded. At this point, technique 500 terminates,

{0G48] Alternatively, in block 516, the client can determine whether a data item having the
particuiar data item’s primary key alrcady cxists on the destination shard. If a data item having
the particular data item’s primary key already exists on the destination shard, then control passes

to block 51&8. Otherwise, control passes to block 520,

{0049] In block 518, the client can sct the value of the data item’s tombstone atiribute to “true”
{on the destination shard). The clicnt can assign the system’s current version number to the data
itemn’s version number attribute. The client can signify to a user that the delete operation

succeeded. At this point, technique 500 terminates.

{6056] Altornatively, in block 520, the client can refrain from performing the delete operation.
The client can signify to a uscr that the delete operation fatled (because there was no data item to

delete}. At this point, technique 500 terminates.

GET OPERATIONS

{8051} FIGs. 6A-6B are flow diagrams that illustrate an example of a technigue 600 for
performing a get operation while in the rebalancing state, according to an embodiment of the
invention. fn an embodiment, the get operation can read and return the attribute values of a data
itern having a client-specified primary key. Although technigue 600 is llustrated as including
specific activities performed in a specific order, alternative embodiments of the invention can
involve techniques having additional, fower, or different activities. Any of clicnts 102A-N can
perform technique 600, Referring fivst to FIG. 6A, in block 602, a client can determine the
identity of the source shard on which a particular data item having a specified primary key would
have been located prior to the change in shard quantity. This determination can be achieved, for
example, by calculating the specificd primary key modulo the old shard quantity. In block 604,
the client can determune the identity of the destination shard on which the particular data itern
having the specified primary key 18 to be located following the change in shard guantity. This
determination can be achieved, for example, by calculating the specified primary key modulo the

new shard quantity. In block 606, the client can determine whether the identity of the source

i5

W

ig

20

WO 2014/209848 PCT/US2014/043599

shard is the same as the identity of the destination shard. If the identities are the same, then

control passes to block 638, Otherwise, control passes to block 610,

{6052] 1o biock 608, the client can perform a get operation relative to a particular data item
having the specified primary key on the destination shard in the normal, naive, highly efficient

standard manner for performing a get operation. At this point, technique 60 terminates.

{8853] Alternatively, in block 610, the client can determine whether a data item having the
specified primary key alrcady exists on the destination shard. If a data item having the specified
primary key alrcady exists on the destination shard, then control passes to block 612, Otherwise,

control passes to block 618,

{0054} In block 612, the client can determine whether the data itom having the specified
primary key on the destination shard has a “truc” tombstone attribute value. If the data item
having the specified primary key on the destination shard has a “truc” tombstone attribute value,

then control passes to block 614, Otherwise, control passes to block 616.

{0055] In biock 614, the client can refrain from performing the get operation. The client can
signify to a user that the get operation failed (because no data itern having the specified primary

key was found). At this point, technique 600 terminates.

{0056] Alternatively, in block 616, the client can read the attribute values of the data having
the specified primary key on the destination shard. The client can present these attribute values
to a user, coincidentally signifving that the get operation succeeded. At this point, technique 600

terminates.

[0057] Alternatively, in block 618, the client can determine whether a data item having the
specified primary key already exists on the source shard. If a data itern having the specified
primary key already exists on the source shard, then control passes to block 620. Gtherwise,
control passes to block 626 on FIG. 6B,

{0058] Alternatively, in block 620, the client can determine whether the data item having the
specified primary koy on the source shard has a “true” tombstone attribute value, If the data item
having the specified primary key on the source shard has a “true” tormbstone attribute value, then

control passes to block 622, Otherwise, control passes to block 624,

16

W

10

5

20

WO 2014/209848 PCT/US2014/043599

{6059] 1o block 622, the client can refrain from performing the get operation. The client can
signify to a uscr that the get operation fatled (because no data item having the specificd primary

key was found). At this point, technique 6{{ tcrminates.

{0068] Alternatively, in block 624, the client can read the attribute values of the data having
the spectfied primary key on the source shard, The client can present these atiribute values to a
uscr, coincidentally signifying that the get operation succeeded. At this point, technique 600

terminates.,

{0061] Referring now to FIG. 6B, alternatively, in block 626, the client can determine {again)
whether a data item having the specified primary key now cxists on the destination shard. fa
data item having the specified primary key now cxists on the destination shard (c.g., as a
conscquence of a rebalancing process having recently moved that data item to the destination

shard}, then control passes to block 628. Otherwise, control passes to block 630.

{6062] In block 628, the client can determine whether the data item having the specified
primary Key on the destination shard has a “truc” tombstone atiribute value. If the data tem
having the specified primary key on the destination shard has a “true” tombstone atiribute value,

then control passes to block 630, Otherwise, control passes to block 632,

{6063} In block 630, the client can refrain from performing the get operation. The client can
signify to a uscr that the get operation fatled (because no data itom having the specified primary
key was found). At this point, technique 600 tcrminates,

{0064] Aliernatively, in block 632, the client can read the attribute valuces of the data having
the spectfied primary key on the destination shard. The clicnt can present these attribute values
to a user, coincidentally signifying that the get operation succceded. At this point, technigue 600

terminates.,

REBALANCING OPERATIONS

{0065} FIG. 7 is g flow diagram that illustrates an cxample of a technique 700 for performing a
recbalancing operation while clients 102A-N arc in the rebalancing state (initially), according to

an cmbodiment of the invention. Although technique 700 is illustrated as including specific

17

W

10

5

WO 2014/209848 PCT/US2014/043599

activitics performed in a specific order, alternative embodiments of the invention can involve
technigques having additional, fewer, or different activitics. Rebalancing processes can perform
technique 700 asynchronously to the performance of other types of operations by clients 102A-

N.

{0066] In block 702, the system’s current version number is incremented. In block 704, a
rchalancing process can determine whether any shard still contains a data item whose version
number atiribute value 18 less than the system’s current version number. I a shard contains a
particular data item whose version number atiribute value is less than the system’s current
version number, then control passes to block 706. Otherwise, the rebalancing processes have
finished relocating data items for this particular rebalancing event, and control passes to block

714.

{0067} In block 706, the rebalancing process can determine the identity of the destination shard
on which the particular data itom is to be located following the change in shard quantity. This
determination can be achieved, for example, by calculating the particular data item’s primary key
rnodulo the new shard quantity. In block 708, the rebalancing process can determine whether the
wdentity of a source shard, on which the particular data item is currently located, is the same as
the 1dentity of the destination shard. If the 1dentities are the same, then control passes to block

710, Otherwise, control passes to block 712.

{0068] In block 710, the rebalancing process can assign the system’s current version number to
the particular data itero’s version number attribute. Under such circumstances, the particular data

itern does not need to be relocated to a different shard, Control passes back to block 704,

[0069] Alternatively, in block 712, the rebalancing process can insert the particular data item
into the destination shard. In one embaodiment, potential contlicts can be ignored. The
rebalancing process can assign the system’s current version number to the particular data itera’s
version number attribute. Significantly, in an embodiment, an old copy of the particular data
item can remain on the source shard until the activities of blocks 716 and 718 are performed.

Conirol passes back to block 704,

[B070] Alternatively, in block 714, the rebalancing process can determine whether any queries

{c.g., from chients 102A-N) that had been executing as of the time that the rebalancing processes

18

W

10

5

20

WO 2014/209848 PCT/US2014/043599

finished relocating data items arc currently executing against any of the shards {¢.g., shards
104A-Nj. If at least one query that had been executing as of the time that the rebalancing
processes finished relocating data items is currently exccuting against at least one shard, the

control passes back to block 714, Otherwise, control passes to block 716.

{6071} Aficr all queries that were pending as of the conclusion of the data itern relocation have
completed, in block 716, the rebalancing processes can remove, from all shards, all data item
copics whose version number attribute value is less than the system’s current version number. In
block 718, the rebalancing processes can remove, from all shards, all data item copics whose
tombstone atiribute values are “true.” In an cmbodiment, the activitics of blocks 716 and 718

can be performed during cleanup phase 210 discussed above in connection with FIG. 2.

QUERY OPERATIONS

{0072} FIG. 8 is a flow diagram that illustrates an example of a technique 800 for performing a
query operation while in the rebalancing state, according to an embodiment of the invention.
Although technigue 800 is illustrated as including specific activitics performed in a specific
order, alternative embodiments of the invention can involve techniques having additional, fower,
or different activitics. Any of chicnts 102A-N can perform technigue 800, for example.
Technigue 800 can be performed concurrently with technigue 700. In block 802, for cach
particular shard of shards 104A-N, all of the particular shard’s data itoms that satisty query-
specified filicring criteria can be placed in a separate preliminary result queue for that particular
shard. Each such preliminary result queue can start out empty. Thus, a separate preliminary
result quene may be populated for cach of shards 104 A-N. Tn block 804, for cach particular
shard of shards 104A-N, the data items contained within that particular shard’s preliminary vesult
queue can be sorted based at least in part on those data items’ primary keys, As a result, for
example, each prelimunary result queue can contain data items that are sorted such that the data
item having the smallest privoary key of data items in that preliminary vesult queue can be at the
front of that preliminary result queue. In block 806, a determination can be roade as 1o whether
all of the shards” preliminary result queues are empty. If all of the shards” preliminary result

queucs are empty, then control passes to block 818, Otherwise, countrol passes to block 808,

W

10

5

20

WO 2014/209848 PCT/US2014/043599

{0¢73] In block 808, from the set of data items that are currently at the top of cach shard’s
preliminary result gucue, a subset of one or more data items having the smallest primary key
among data tiems in that set can be selected. In block 810, from the subset of one or more data
items sclected in block 808, a particular data item having the largest version number attribute
value can be selected. In block 812, a determination can be madce as to whether the particular
data iten’s tombstone attribute value is “false.” If the particular data item’s tombstone atiribute

vahae is “false,” then control passes to block 814, Otherwise, control passes to block 816,

{0074] In block 814, the particular data ittem can be added to a final result set. The final result
set can start out empty. Control passes to block 816, In block 8§16, all data item copies having
the same primary key as the particular data item {including the particular data ttem itself) can be
removed from all of the shards’ preliminary result queucs. This removal potentially can cause
other data items to rise to the top of one or more of those queues. Coutrol passes back to block

a6,

{0075] Aliernatively, in block 818, the data items in the final resuli set can be returned as the

final results of the query operation.

HARDWARE OVERVIEW

{0076} FIG. 9 depicts a simplified diagram of a distributed system 900 for implementing one
of the embodiments. In the Hllustrated ermbodiment, distributed system 900 includes one or more
client computing devices 202, 904, 906, and 908, which arc configured to exccute and operate a
client application such as a web browser, proprictary client {c.g., Oracle Forms), or the like over
onec or more network(s} 910, Server 912 may be communicatively coupled with remote client
computing devices 302, 904, 906, and 908 via network 310,

{80771 In various erobodiments, server 912 may be adapted to run one or more services or
software applications provided by one or more of the components of the systern. In some
embodiments, these services may be offered as web-based or cloud services or under a Software
as a Service (SaaS) model to the users of client computing devices 902, 304, 906, and/or 908,

Users operating chient computing devices 902, 904, 906, and/or 908 may in turn utilize one or

W

10

i3

25

30

|98
L

WO 2014/209848 PCT/US2014/043599

more client applications to interact with server 912 to utilize the services provided by these
components.

{6078] In the configuration depicted in the figure, the software components 918, 920 and 922
of system 900 arc shown as being implemented on server 912, In other embodiments, one or
more of the components of system 900 and/or the services provided by these components may
also be implemented by one or more of the client coraputing devices 902, 904, 906, and/or 908.
Users operating the clicnt computing devices may then utilize one or more clicnt applications to
usc the services provided by these components. These components may be implemented in
hardware, firmware, software, or combinations thereof. It should be appreciated that various
different system configurations are possible, which may he different from distributed system
900. The embodiment shown 1n the figure 1s thus one example of a distributed system for
wuplementing an embodiment systers and s not intended to be hmiting.

[8879] Chent computing devices 902, 904, 906, and/or 908 may be portable handheld devices
{e.g., an Phone®, cellular telephone, an 1Pad®, coroputing tablet, a personal digital assistant
(PDA}) or wearable devices (e.g., a Google Glass® head mounted display), running software
such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems such as 108,
Windows Phone, Android, BlackBerry 10, Palm OS, and the like, and being Internet, e~mail,
short message service (SMS), Blackberry®, or other communication protocol enabled. The
client computing devices can be gencral purpose personal computers including, by way of
example, personal computers and/or laptop computers running various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating systems. The client computing devices
can be workstation computers running any of a variety of commercially-available UNIX® or
UNIX-like operating systems, including without limitation the variety of GNU/Linux operating
systems, such as for example, Google Chrome OS. Alternatively, or in addition, client
computing devices 902, 904, 906, and 908 may be any other electronic device, such as a thin-
client computer, an Internct-cnabled gaming system {¢.g., a Microsoft Xbox gaming console with
or without a Kinect® gesture input device}, and/or a personal messaging device, capable of
communicating over network(s) 910,

{0080} Although cxemplary distributed system 200 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, ¢te., may interact with server 912,

21

W

10

i3

30

|98
L

WO 2014/209848 PCT/US2014/043599

{0081} Network(s) 910 in distributed system 900 may be any type of network familiar to those
skilled in the art that can support data communications using any of a variety of commercially-
available protocols, including without limitation TCP/AP (transmission control protocol/Internct
protocol), SNA (systems network architecture), IPX (Internet packet exchange}, AppleTalk, and
the like. Merely by way of example, network(s) 910 can be g local arca network (LAN), such as
one bascd on Ethernet, Token-Ring and/or the like. Network(s} 910 can be a wide-arca network
and the Internct. 1t can include a virtual network, inchuding without limitation a virtual private
network {VPN), an infranet, an extranct, a public switched telephone network (PSTN), an infra-
red network, a wircless network (2.2, a network operating under any of the Institute of Electrical
and Blectronics (IEEE) 902,11 suite of protocols, Bluetooth®, and/or any other wireless
protocol); and/or any combination of these and/or other networks,

[B082] Server 912 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, PC (personal computer) servers, UNIX®
servers, mid-range servers, mainframe computers, rack-mounted servers, ete.), server farms,
server clusters, or any other appropriate arrangement and/or combination. In various
embodiments, server 912 may be adapted to run one or more services or software applications
described in the foregoing disclosure. For example, server 912 may correspond to a server for
performing processing described above according to an embodiment of the present disclosure.
{B083] Server 912 may run an operating system inchuding any of those discussed above, as
well as any commercially available server operating system. Server 912 may also nm any of a
variety of additional server applications and/or mid-tier applications, including HTTP (hypertext
transport protocol) servers, FTP (file transfer protocol) servers, CGH {common gateway interface)
servers, JAVA® servers, database servers, and the like. Exemplary database servers include
without limitation those commercially available from Oracle, Microsoft, Sybase, IBM
(International Business Machines), and the like.

{0G84] In some implementations, server 912 may inchide one or more applications to analyze
and consolidate data feeds and/or event updates received from users of client computing devices
9012, 904, 906, and 908, As an example, data feeds and/or event updates may include, but are not
limited to, Twitter® feeds, Facebook® updates or real-time updates received from one or more
third party information sources and continuous data streams, which may include real-time cvents

e
related to sensor data applications, financial tickers, network performance measuring tools {c.g.,

3

ety

W

10

i3

25

30

WO 2014/209848 PCT/US2014/043599

network monitoring and traffic management applications), clickstream analysis tools, automaobile
traffic monitoring, and the like. Server 912 may also include one or more applications to
display the data feeds and/or real-time ¢vents via one or more display devices of clicnt
computing devices 302, 904, 906, and 908,

{0085] Distributed system 900 may also include one or more databases 914 and 916, Databases
914 and 916 may reside in a varicty of locations. By way of example, one or more of databases
914 and 916 may reside on a non-transitory storage medium local to (and/or resident in) server
912. Alternatively, databases 914 and 916 may be remote from server 912 and in communication
with server 912 via a network-based or dedicated connection. In one set of embodiments,
databases 914 and 916 may reside in a storage-area network (SAN). Sunilarly, any necessary
files for performing the functions attributed to server 912 may be stored locally on server 912
and/or remotely, as appropriate. In one set of embodirents, databases 914 and 916 may mclude
refational databases, such as databases provided by Oracle, which are adapted to store, update,
and refricve data in response to SQL-formatted commands.

[0086] FIG. 10 is a suoplified block diagram of one or more cowponents of a system
envirorwnent 1000 by which services provided by one or moore components of an embodiment
system may be offered as cloud services, in accordance with an embodiment of the present
disclosure. In the illustrated embodiment, system environment 1300 includes one or more client
computing devices 1004, 1006, and 1008 that may be used by users to interact with a cloud
nfrastructure system 1002 that provides cloud services. The client computing devices may be
configured to operate a client application such as a web browser, a proprietary client application
{c.g., Uracle Forms), or some other application, which may be used by a user of the client
computing device to interact with cloud infrastructure system 1002 to use services provided by
cloud infrastructure system 1002,

{8087} It should be appreciated that cloud infrastructure system 1002 depicted in the figure
may have other components than those depicted. Further, the embodiment shown in the figure is
only onc example of a cloud infrastructure system that may incorporate an cmbodiment of the
invention. In some other embodiments, cloud infrastructure system 1002 may have more or
fewer components than shown in the figure, may combine two or more components, or may have

a different configuration or arrangement of components.

W

10

i3

30

WO 2014/209848 PCT/US2014/043599

{GG88] Client computing devices 1004, 1006, and 1008 may be devices similar to those
described above for 902, 904, 906, and 908,

{0089] Although exemplary system environment 1000 is shown with three client computing
devices, any number of client computing devices may be supported. Other devices such as
devices with sensors, cte. may interact with cloud infrastructure system 1002,

[0096] Network(s) 1010 may facilitate communications and exchange of data between clients
1004, 1006, and 1008 and cloud infrastructure system 1002, Each network may be any type of
network familiar to those skilled in the art that can support data communications using any of a
variety of commercially-available protocols, including those described above for network{(s) 910,
[0091] Cloud infrastructure systerm 1002 may comprise one or more computers and/or servers
that may include those described above for server 912,

[B092] In certain cmbodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system on
demand, such as online data storage and backup sohutions, Web-based e-mail services, hosted
office suites and document collaboration services, database processing, managed technical
support services, and the hike. Services provided by the cloud infrastracture system can
dynamically scale to meet the needs of its users. A specific instantiation of 8 service provided by
cloud infrastructure system is referred to herein as a “service instance.” In general, any sgrvice
made avaifable {0 a user via a communication network, such as the Internet, from a cloud service
provider's system is referred to as a “cloud service.” Typically, in a public cloud environment,
servers and systems that make up the cloud serviee provider's system are different from the
customer's own on-premises servers and systems, For example, a cloud service provider's
system may host an application, and a user may, via a communication network such as the
Internet, on demand, order and usc the application.

{0093} In somc examples, a service in a computer network cloud infrastructure may include
protected computer network access to storage, a hosted database, a hosted web server, a software
application, or other service provided by a cloud vendor to a user, or as otherwise known in the
art. For cxample, a service can include password-protected access to remote storage on the cloud
through the Internet. As another example, a service can include a web service-based hosted

relational databasc and a script-language middleware engine for private use by a networked

W

10

i3

25

30

|98
L

WO 2014/209848 PCT/US2014/043599

developer. As another example, a scrvice can include access to an email software application
hosted on a cloud vendor's web site.

{6094] In certain embodiments, cloud infrastructure system 1002 may include a suite of
applications, middicware, and database service offerings that arc delivered to a customer in a
self-service, subscription-based, clastically scalable, reliable, highly available, and secure
manner. An example of such a cloud infrastructure system is the Oracle Public Cloud provided
by the present assignee.

{0095} In various embodiments, cloud infrastructure system 1002 may be adapted to
automatically provision, manage and track a customer’s subscription to services offered by cloud
mfrastructure systern 1002, Cloud infrastructure system 1002 may provide the cloud services via
different deployment models. For example, services may be provided under a public cloud
model in which cloud infrastracture system 1002 is owned by an organization selling clond
services {e.g., owned by Oracle) and the services are made available to the general public or
different industry enterprises. As another example, services roay be provided under a private
cloud rmodel in which cloud infrastructure system 1002 is operated solely for a single
organization and may provide services for one or more enfitics within the organization. The
cloud services may also be provided under a community cloud model in which cloud
infrastructure system 1002 and the services provided by cloud infrastructure system 1002 are
shared by several organizations in a related commuunity, The clond serviees may also be
provided under a hvbrid cloud model, which is a combination of two or more different models.
[8096] In some embodiments, the services provided by cloud infrastructure system 1002 may
include one or more serviees provided under Software as a Service {SaaS) category, Platform as
a Service (PaaS) category, Infrastructirre as a Scrvice (laaS) category, or other categories of
services including hybrid services. A customer, via a subscription order, may order one or more
serviges provided by cloud infrastructure system 1002, Cloud infrastructure system 1002 then
performs processing to provide the services in the customer’s subscription order.

{8097} In some embodiments, the services provided by cloud infrastructure system 1002 may
include, without limitation, application services, platform services and infrastructure services. In
some examples, application services may be provided by the cloud infrastructure sysiem via a
Saal platform. The SaaS platform may be configured to provide cloud services that fall under

the SaaS category. For example, the SaaS platform may provide capabilitics to build and deliver

25

W

10

i3

25

30

|98
L

WO 2014/209848 PCT/US2014/043599

a suite of on-demand applications on an integrated development and deployment platform. The
Saa8 platform may manage and control the underlying software and infrastructure for providing
the Saas services. By utilizing the services provided by the SaaS platform, customers can utilize
applications executing on the cloud infrastructure system. Customers can acquire the application
services without the need for customers to purchase separate licenses and support. Various
different SaaS services may be provided. Examples include, without imitation, services that
provide solutions for sales performance management, enterprise integration, and business
flexibility for large organizations.

{0098] In some embodiments, platform services may be provided by the cloud infrastructure
system via a PaaS platform. The PaaS platform may be configured to provide cloud services that
fall under the Paa$ category. Examples of platform services may include without himitation
services that enable organizations (such as Oracle) to consohidate existing applications on a
shared, common architecture, as well as the ability to build new applications that leverage the
shared services provided by the platform. The Paal platformo may manage and control the
underlying software and infrastructure for providing the PaaS services. Cuostomers can acquire
the PaaS services provided by the cloud infrastructure system without the need for custorners to
purchase separate licenses and support. Examples of platform serviees include, without
fimitation, Oracle Java Cloud Service {(JCS}, Oracle Database Cloud Service (DBCS), and others.
[6098] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also control
the deployed services. In some embodiments, platform services provided by the eload
infrastructure system may include database cloud services, middleware cloud services (e.g.,
Oracle Fusion Middleware services}, and Java cloud services. In one embodiment, database
cloud services may support shared serviee deployment models that enable organizations to pool
databasc resources and offer customers a Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for customers to develop and deploy various
business applications, and Java cloud services may provide a platform for customers to deploy
Java applications, in the clond infrastructure systen.

{0180} Various different infrastructure services may be provided by an faaS platform in the
cloud infrastructure system. The infrastructure services facilitate the management and control of

the underlying computing resources, such as storage, networks, and other fundarnental

26

W

10

i3

25

30

|98
L

WO 2014/209848 PCT/US2014/043599

computing resources for customers utilizing services provided by the SaaS platform and the PaaS
platform.

{0161] In certain embodiments, cloud infrastructure system 1002 may also include
infrastructure resources 1030 for providing the resources used to provide various services o
customers of the cloud infrastructure system. In one embodiment, infrastructure resources 1030
may include pre-integrated and optimized combinations of hardware, such as scrvers, storage,
and networking resources to exccute the services provided by the PaaS platform and the SaaS
platform.

{0162] In some embodiments, resources in cloud infrastructure system 1002 may be shared by
multiple users and dynamically re-allocated per demand. Additionally, resources may be
allocated to users in different time zones, For example, cloud infrastrocture system 1030 may
enable a first set of asers in a first time zone to utilize resources of the cloud infrastructure
system for a specified mumber of hours and then enable the re-allocation of the same resources fo
another set of users located in a different time zone, thereby maximizing the utilization of
FESOUICEs.

[{0183] In certain cmbodiments, a murnber of internal shared services 1032 way be provided
that are shared by different components or modules of cloud infrastructure system 1002 and by
the services provided by cloud infrastructure system 1002, These internal shared services may
inclunde, without limitation, a security and identity service, an integration service, an enterprise
repostiory service, an enferprise manager servige, a virus scanning and white list service, a high
availability, backup and recovery service, service for enabling cloud support, an email servige, a
notification service, a file transfer service, and the like.

{8164] In certain ecmbodiments, cloud infrastructure system 1002 may provide comprehensive
management of cloud services {£.g., Saas, PaaS, and laaS scrvices} in the cloud infrastructure
system. in one cmbodiment, cloud management functionality may include capabilities for
provisioning, managing and tracking a customer’s subscription received by cloud infrastructure
system 1002, and the like.

{0165] In onc embodiment, as depicted in the figure, cloud management functionality may be
provided by one or more modules, such as an order management module 1020, an order
orchestration module 1022, an order provisioning module 1024, an order management and

monitoring module 1026, and an identity management module 1028, These modules may

27

W

10

i3

30

|98
L

WO 2014/209848 PCT/US2014/043599

include or be provided using one or more computers and/or servers, which may be general
purpose computers, specialized server computers, server farms, server clusters, or any other
appropriate arrangement and/or combination.

{0186] In cxemplary operation 1034, a customer using a client device, such as client device
1004, 1006 or 1008, may interact with cloud infrastructure system 1002 by requesting one or
more services provided by cloud infrastructure system 1002 and placing an order for a
subscription for one or more services offered by cloud infrastructure system 1002, In certain
embodiments, the customer may aceess a cloud User Interface (U, cloud UL 1012, cloud Ul
1614 and/or cloud Ul 1016 and place a subscription order via these Uls. The order information
received by cloud infrastructure system 1002 in response to the customer placing an order may
include information wdentifying the customer and one or more services offered by the cloud
infrastructure systern 1002 that the customer intends to subscribe to.

[0167] After an order has been placed by the customer, the order information is received via
the cloud Uls, 1012, 1814 and/or 1016.

[B168] At operation 1036, the order is stored in order database 1018, Order database 1018 can
be one of several databases operated by cloud infrastructure system 1018 and operated in
conjunction with other system ¢lements.

{B189] At operation 103§, the order information is forwarded to an order management modale
1020, In some instances, order management module 1020 may be configured to perform billing
and accounting functions related to the order, such as verifying the order, and upon verification,
booking the order.

{0118] At operation 1040, information regarding the order is communicated to an order
orchestration module 1022, Order orchestration module 1022 may utilize the order information
to orchestrate the provisioning of services and resources for the order placed by the customer. In
some instances, order orchestration module 1022 may orchestrate the provisioning of resources
to support the subscribed services using the services of order provisioning module 1024,

{8111} In certain cmbodiments, order orchestration module 1022 cnables the management of
business processes associated with cach order and applies business logic to determine whether an
order should proceed to provisioning. At operation 1042, upon receiving an order for a new
subscription, order orchestration module 1022 sends a request to order provisioning module 1024

to allocate resources and configure those resources needed to fulfill the subscription order.

28

W

10

i3

25

30

|98
L

WO 2014/209848 PCT/US2014/043599

Order provisioning module 1024 enables the allocation of resources for the services ordered by
the customer. Order provisioning module 1024 provides a fevel of abstraction between the cloud
services provided by cloud infrastructure system 1000 and the physical implementation layer that
15 used to provision the resources for providing the requested services. Order orchestration
module 1022 may thus be isolated from implementation details, such as whether or not services
and resources are actually provisioned on the fly or pre-provisioned and only allocated/assigned
upon request.

{0112} At operation 1044, once the services and resources are provisioned, a notification of the
provided service may be sent to customers on client devices 1004, 1006 and/or 1008 by order
provisioning module 1024 of cloud infrastrocture system 1002,

{01131 At operation 1046, the custorner’s subscription order may be managed and tracked by
an order management and monttoring module 1026, In some nstances, order management and
roonttoring module 1026 may be configured to collect usage statistics for the services in the
subscription order, such as the amount of storage used, the amount data transterred, the number
of users, and the amount of system up tie and system down time,

[0114] In certain embodiments, cloud infrastructure system 1000 may include an identity
management module 1028, Identity management module 1028 may be configured to provide
identity services, such as access management and anthorization services in cloud mfrastructare
system 1000, In some embodiments, identity management module 102& may control
nformation about customers who wish to utilize the serviees provided by cloud infrastructure
system 1002, Such mformation ¢an include information that authenticates the identities of such
customers and information that describes which actions those customers are authorized to
perform relative to various system resources {€.g., files, directorics, applications, communication
ports, memory segments, ¢te.) Identity management module 1028 may also include the
management of descriptive information about cach customer and about how and by whom that
deseriptive information can be accessed and modified.

{0115] FIG. 11 illustrates an example computer system 1180 in which various embodiments of
the present invention may be implemented. The system 1100 may be used to implement any of
the computer systems described above. As shown in the figure, computer system 1100 includes
a processing unit 1104 that communicates with a number of peripheral subsystems via a bus

subsystemn 1102, These peripheral subsystems may inclade a processing acceleration unit 1106,

W

10

i3

30

(O]
(941

WO 2014/209848 PCT/US2014/043599

an /O subsystem F108, a storage subsystem 1118 and a communications subsystom 1124,
Storage subsystem 1118 includes tangible computer-readable storage media 1122 and a system
memory 1110

{0116] Bus subsystem 1102 provides a mechanism for letting the various components and
subsystems of computer system 1100 communicate with cach other as intended. Although bus
subsystermn 1102 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 1102 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architcctures. For example, such architectures may inchude an Industry
Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral
Component Interconnect {PCI) bus, which can be ioplemented as a Mezzanine bus
rnanufactured to the IEEE P1386.1 standard.

{01171 Processing unit 1104, which can be implemented as one or more integrated circuits
{c.g., a conventional microprocessor or microconiroller), controls the operation of computer
system 1100, One or more processors ray be included in processing unit 1104, These
processors may include single core or mutlticore processors. In certain embodiments, processing
unit 1104 may be implemented as one or more independent processing units 1132 and/or 1134
with single or multicore processors included in each processing umit. In other erbodiments,
processing unit {104 may also be implemented as a quad-core processing unit formed by
integrating two dual-core processors into a single chip.

{0118} 1o various embodiments, processing unit 11{4 can execute a varicty of programs in
response to program code and can maintain multiple concurrently executing programs or
processes. At any given time, some or all of the program code to be executed can be resident in
processor{s} 1104 and/or in storage subsystem 1118, Through suitable programming,
processor{s} 1104 can provide various functionalities described above. Computer system 1100
may additionally include a processing acceleration unit 1106, which can include a digital signal
processor {DSP), a special-purpose processor, and/or the like.

{0119] VO subsystom 1108 may include user interface input devices and uscr interface output
devices. User interface input devices may include a kevboard, pointing devices such as a mouse

or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a chick wheel,

30

W

10

i3

30

|98
L

WO 2014/209848 PCT/US2014/043599

a dial, a button, a switch, a keypad, audio input devices with voice command recognition
systems, microphones, and other types of input devices. User interface input devices may
include, for example, motion sensing and/or gesture recognition devices such as the Microsoft
Kincect® motion sensor that enables users to control and interact with an input device, such as the
Microsoft Xbox® 360 game controller, through a natural user interface using gestures and
spoken commands. User interface input devices may also inchude eye gesture recognition
devices such as the Google Glass® blink detector that detects eye activity {c.g., "blinking’ while
taking pictures and/or making a menu sclection) from users and transforms the cyc gestures as
input into an input device (e.g., Google Glass®). Additionally, uscr interface input devices may
include voice recognition sensing devices that cnable users to interact with voice recognition
systems {e.g., Sin® navigator), through voice commands.

[{01208] User interface input devices may also include, without limitation, three dimensional
(3D} mice, joysticks or pointing sticks, gamcpads and graphic tablets, and audio/visual devices
such as speakers, digital cameras, digital camcorders, portable media players, webcams, image
scanners, flogerprint scanners, barcode reader 31 scanners, 3D printers, laser rangefinders, and
eve gaze tracking devices. Additionally, user interface input devices may include, for example,
medical imaging input devices such as computed tomography, magnetic resonance imaging,
position emission tomography, medical ultrasonography devices. User interface input devices
may also include, for example, andio input devices such as MIDI keyboards, digital musical
instruments and the like.

{0121} User interface output devices may include a display subsystem, indicator lights, or non-
visual displays such as andio output devices, ete. The display subsystem may be a cathode ray
tube (CRT), a flat-panel device, such as that using a liguid crystal display (LCD} or plasma
display, a projection device, a touch screen, and the like. In general, use of the term "output
device" is intended to include all possible types of devices and mechanisms for outputting
information from computer system 1100 to a user or other computer. For example, user interface
output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monitors, printers, speakers, headphones,
automotive navigation systems, plotiers, voice output devices, and modems.

{6122} Computer system 1100 may comprise a storage subsystem 1118 that compriscs

softwarce clements, shown as being currently located within a system memory 1110, System

31

W

10

i3

30

WO 2014/209848 PCT/US2014/043599

memory 1110 may store program instructions that are loadable and executable on processing unit
1104, as well as data generated during the execution of these programs.

{6123] Depending on the configuration and type of computer system 1100, systern memory
1110 may be volatile {such as random access memory (RAM}) and/or non-volatile (such as rcad-
only memory (ROM), flash memory, ¢tc.} The RAM typically contains data and/or program
modules that are imnmediately accessible to and/or presently being operated and exccuted by
processing unit 1104, In some implementations, systern memory 1110 may include multiple
different types of memory, such as static random access memory (SRAM) or dynamic random
access memory {DRAM). In some implementations, a basic input/output system (BIOS),
containing the basic routines that help to transfer information between elements within computer
system 1100, such as during start-up, may typically be stored in the ROM. By way of example,
and not limitation, system memory 1110 also llusirates application programs 1112, which may
include chient applications, Web browsers, mid-tier applications, relational database manageroent
systems (RDBMS), ete., program data 1114, and an operating system 1116, By way of example,
operating system 1116 may include various versions of Microsoft Windows®, Apple
Macintosh®), and/or Linux operating systems, a variety of commercially-available UNIX® or
UNIX-like operating systems (including without limitation the variety of GNU/Linux operating
systems, the Google Chrome® (8, and the like} and/or mobile operating systems such as 108,
Windows® Phone, Android® OS, BlackBerry® 11 OF, and Palm® OS operating systems,
{#124] Storage subsystem 1118 may also provide a tangible computer-readable storage
medinm for storing the basic programming and data constructs that provide the functionality of
some embodiments. Software (programs, code modules, instructions) that when executed by a
processor provide the functionality deseribed above may be stored in storage subsystem 1118,
These sottware modules or instructions may be executed by processing unit 1104, Storage
subsystem 1118 may also provide a repository for storing data used in accordance with the
present invention.

{01258} Storage subsystem 1100 may also inchide a computer-recadable storage media reader
1120 that can further be connected to computer-readable storage media 1122, Together and,
optionally, in combination with system memory 1110, computer-readable storage media 1122

may comprehensively represent remote, local, fixed, and/or removable storage devices plus

WO 2014/209848 PCT/US2014/043599

storage media for temporarily and/or more permanently containing, storing, transmitting, and

W

retrieving computer-readable information.
{0126] Computer-readable storage media 1122 containing code, or portions of code, can also
include any appropriate media known or used in the art, including storage media and
communication media, such as but not limited to, volatile and non-volatile, removable and non-
10 removable media implemented in any method or technology for storage and/or transmission of
information. This can include tangiblec computer-readable storage media such as RAM, ROM,
clectronically erasable programmable ROM (EEPROM), flash memory or other memory
technology, CD-ROM, digital versatile disk (DVD), or other optical storage, magnetic casseties,
magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible
iS5 computer readable media, This can also include nontangible computer-readable media, such as
data signals, data transmissions, or any other medium which can be used to trarsmuit the desired
information and which can be accessed by computing systern 1100,
{01277 By way of example, computer-readable storage media 1122 may include a hard disk
drive that reads from or writes to non-removable, nonvolatile magoetic media, a magnetic disk
20 drive that reads from or wrifes to a removable, nonvolatile magnetic disk, and an optical disk
drive that reads from or writes 1o a removable, nonvolatile optical disk such as a CD ROM,
DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage media 1122 may
inclnde, but 1s not limited to, Zip® drives, flash memory cards, universal serial bus {1JSB} flash
drives, seenre digital (SD} cards, DVD disks, digital video tape, and the like. Computer-readable
25 storage media 1122 may also include, solid-state drives (85D} based on non-volatile memory
such as flash-memory based 85Ds, enterprise flash drives, solid state ROM, and the like, S8Ds
based on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based
SS8Ds, magnetoresistive RAM (MRAM) SSBs, and hybrid SSDs that usc a combination of
DRAM and flash memory based S8Ds. The disk drives and their associated computer-readable
30 media may provide non-volatile storage of computer-readable instructions, data structures,
program modules, and other data for computer system 1100,
{0128] Communications subsystem 1124 provides an interface to other computer systems and
networks, Communications subsystern 1124 serves as an interface for reeeiving data from and

transmitting data to other systems from computer system 11060, For example, communications

(O]
(941

subsystem 1124 may enable computer system 1100 to connect to one or more devices via the

33

W

10

i3

25

30

WO 2014/209848 PCT/US2014/043599

Internet. In some embodiments communications subsystem 1124 can include radio frequency
(RF) ransceiver components for accessing wireless voice and/or data networks {(¢.g., using
cellular telephone technology, advanced data network technology, such as 3G, 4G or EDGE
(enhanced data rates for global cvolution), WiF: (IEEE §02.11 family standards, or other mobile
communication technologies, or any combination thereof), global positioning system (GFS)
reeetver components, and/or other components. In some embodiments communications
subsystem 1124 can provide wired network connectivity {¢.g., Ethernct) in addition to or instead
of a wireless interface.

{0129] In some cmbodiments, comanunications subsystem 1124 may also receive input
comruntcation in the form of siructured and/or unsiructured data feeds 1126, event streams
1128, event updates 1130, and the like on behalf of one or more users who may use computer
system OO,

[01308] DBy way of cxample, cormmunications subsystem 1124 may be configured to receive
data feeds 1126 inreal-time from users of social networks and/or other cornmunication serviees
such as Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summnary (RSS) feeds,
and/or real-tiroe updates from one or more third party information sources.

{0131} Additionally, communications subsysteny 1124 may also be configured to receive data
in the form of continuous data streams, which may include event streams 1128 of real-time
events and/or event updates 1130, which may be continuous or unbounded in nature with no
explicit end. Examples of applications that generate continuous data may include, for example,
sensor data applications, financial tickers, network performance measuring tools (e.g. network
monitoring and traffic management applications), clickstream analysis tools, automobile traffic
monitoring, and the like. Communications subsystem 1124 may also be configured to cutput the
structured and/or unstructured data feeds 1126, event streams 112&, event updates 1130, and the
like to one or more databases that may be in communication with onc or more streaming data
source computers coupled to computer system 1100

{0132} Computer system 1100 can be one of various types, including a handheld portable
device {¢.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device
(e.g., a Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a

server rack, or any other data processing system,

34

W

10

i3

WO 2014/209848 PCT/US2014/043599

{0133} Due to the ever-changing nature of computers and networks, the description of
computer system 1100 depicted in the figure is intended only as a specific example. Many other
configurations having more or fewer components than the system depicted in the figure arc
possible. For example, customized hardware might also be used and/or particular clements
might be implemented in hardware, firmware, software {including applets), or a combination.
Further, connection to other computing devices, such as network input/output devices, may be
cmployed. Bascd on the disclosure and teachings provided herein, a person of ordinary skill in
the art will appreciate other ways and/or mcthods to implement the various embodiments.

In the foregoing specification, aspects of the invention are described with reference to specific
embodiments thereof, but those skilled in the art will recogruze that the invention s not limited
thereto. Various features and aspects of the above-described invention may be used individually
or jointly. Further, embodiments can be utilized in any nomber of environments and applications
beyvond those described herein without departing from the broader spirit and scope of the
specification. The specification and drawings are, accordingly, to be regarded as ilustrative

rather than restrictive.

35

b

€.
[

N

[F) 3

£

(3]

oo w1 O

o]

WO 2014/209848 PCT/US2014/043599

WHAT 15 CLAIMED §5:

i. A computer-implemented method comprising:

determining that a guantity of shards in a muiti-shard system has changed;

in response o determining that the quantity of shards has changed, transitioning a
client from a normal state, in which the client performs a particular type of operation relative to
data ttems stored in the system in a first manner, to a rebalancing state, in which the client
performs the particular type of operation relative to data iterns stored in the system in a second
manner that differs from the first manner and without the client acquiring exclusive locks relative
to any data items;

whilc the client is in the rcbalancing state, determining, for one or more particular
data ttems, destination shards that are separate from source shards on which the onc or more
particular data iterns were stored prior to the client’s transition to the rebalancing state; and

moving the onc or more data iterus from the source shards to the destination

shards while the client 18 in the rebalancing state.

2. The computer-implemented method of Claim 1, further comprising:

whilc the one or morce data items arc being moved from the source shards to the
destination shards, the client performing, asynchronously to the moving of the one or more data
items, and relative to a data item, an operation of the particular type in the second manner

without acquiring an exclusive lock.

3. The computer-itaplermented method of Claim 1 or Claim 2, further
comprising:

determining the destination shards for the one or more particular data items by
hashing primary keys of the data iteros based at least in part on the quantity of shards in the
multi-shard system following the shard gqoantity change; and

in response {0 deterroining that the one or more data items have been moved from
the source shards to the destination shards, transitioning the clicnt from the rebalancing state to

the normal state.

4. The computer-implemented method of any of Claims 1-3, further

comprising:

36

SN e e

~

9
10
i1
12

14
i3
16

3

[TV, P S

~3

WO 2014/209848 PCT/US2014/043599

while the one or more data items are being moved from the source shards to the
destination shards, the client performing an add type of operation in the second manner relative
o a first data itom having a primary key at least in part by:

determining, based at least in part on a guantity of shards in the multi-shard
system preceding the shard guantity change, a particular source shard on which the first data item
would have been added prior to the shard quantity change;

determining, based at lcast in part on a quantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which the first data
itern 1s to be added after the shard quantity change;

determining that no data ttem on the source shard has the first data item’s primary
key;

determining that no data tiem on the destination shard has both a true tombstone
atiribute value and the first data ttew’s primary key; and

inserting the first data ttem nto the destination shard.

5. The computer-implemented method of any of Claims 1-4, further
comprising:

while the one or more data iteros are being moved from the source shards to the
destination shards, the client performuing an add type of operation in the second manner relative
to a first data item having a primary key at least in part by:

determining, based at least in part on a quantity of shards in the multi-shard
system preceding the shard quantity change, a particalar source shard on which the first data item
would have been added prior to the shard quantity change;

determining, based at least in part on a quantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which the first data
item is to be added after the shard quantity change;

determining that no data item on the source shard has the first data item’s primary
key;

determining that a sccond data ttem on the destination shard has both a true
tombstone attribute value and the first data item’s primary key;

assigning, to attributes of the second data item, attribute values of the first data
item; and

37

ig

b

€.
[

N

3

[TV, P S

~3

il

WO 2014/209848 PCT/US2014/043599

setting the second data item’s tombstone atiribute value to false.

6. The computer-implemented method of any of Claims 1-5, further
comprising:

while the one or more data items are being moved from the source shards to the
destination shards, the client performing an update type of operation in the second manner
relative to a first data item having a primary key at least in part by:

detcrmining, based at lcast in part on a quantity of shards in the multi-shard
system preceding the shard quantity change, a particular source shard on which the first data ttem
would have been located prior to the shard quantity change;

determining, based at least in part on a guantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which the first data
ttem is to be located after the shard quantity change;

determining that no data item on the source shard has the first data ttem’s primary
key;

determining that a second data item on the destination shard has both a false
tombstone attribute value and the first data item’s primary key; and

assigning, to attributes of the second data ttem, attribute values of the first data

Hem.

:~3

The computer-implemented method of any of Claims 1-6, further
comprising:

while the one or more data iteros are being moved from the source shards to the
destination shards, the client performing an update type of operation in the second manner
relative to a first data item having a primary key at least in part by

determining, based at least in part on a quantity of shards in the multi-shard
system preceding the shard quantity change, a particalar source shard on which the first data item
would have been located prior to the shard quantity change;

determining, based at least in part on a quantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which the first data

itern is to be located after the shard quantity change;

38

o R R " o)

~3

9

EESER S]

W

WO 2014/209848 PCT/US2014/043599

determining that a second data item on the source shard has both the first data
item’s primary key and a false tombstone attribute valug;

determining that a third data itern on the destination shard has the first data item’s
primary key;

assigning, to attributes of the third data item, atiribute values of the first data item;
and

setting a version number of the third data item to a value different from a version

number of the second data item.

8. The computer-implemented method of any of Claims 1-7, further
Comprising:

while the one or more data iterns are being moved from the source shards to the
destination shards, the client performuing an update type of operation in the sccond manner
relative to a first data item having a primary key at least in part by:

determining, based at least in part on a guantity of shards in the multi-shard
system preceding the shard quantity change, a particalar source shard on which the first data item
would have been located prior to the shard quantity change;

determining, based at least i part on a quantity of shards in the moulti-shard
system following the shard quantity change, a particular destination shard on which the first data
itern s to be located after the shard quantity change;

determining that a second data iteny on the source shard has both the first data
itemy’s primary key and a false tombstone attribute value;

determining no data item on the destination shard has the first data item’s primary
key; and

inserting the first data item into the destination shard with a version mumber that

differs from a version number of the second data item.

g, The computer-implemented method of any of Claims 1-&, further
comprising:

while the one or more data items are being moved from the sowurce shards to the
destination shards, the client performing a delete type of operation in the second manner relative

to a first data itom having a primary key at least in part by:

)

~3}

i bt et
e e A

o (¥4] AN (]

~3

WO 2014/209848 PCT/US2014/043599

determining, basced at lcast in part on a quantity of shards in the multi-shard
system preceding the shard quantity change, a particular source shard on which the first data item
would have been located prior to the shard quantity change;

determining, based at least in part on a guantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which the first data
tem is to be located after the shard quantity change;

determining that a second data item on the source shard has the first data ttem’s
primary key;

upserting the first data item into the destination shard with a version number that
differs from a version number of the second data item; and

setting a tombstone attribute value of the first data item on the destination shard to

troe.

10. The computer-implemented method of any of Claims 1-9, furthe
comprising:

while the one or more data iteros are being moved from the source shards to the
destination shards, the client performing a delete type of operation in the second manner relative
to a first data item having a primary key at least in part by:

determining, based at least in part on a guantity of shards in the multi-shard
system preceding the shard quantity change, a particalar source shard on which the first data item
would have been located prior to the shard quantity change;

determining, based at least in part on a quantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which the first data
item is to be located after the shard quantity change;

determining that no data ttem on the source shard has the first data item’s primary
key:

determining that a sccond data ttem on the destination shard has the first data
item’s primary key; and

sctting a tombstone attribute value of the second data item to true.

11, The computer-implemented method of any of Claims 1-18, further

comprising:

SN e e

~

o (¥4] AN (]

~3

3

WO 2014/209848 PCT/US2014/043599

while the one or more data items are being moved from the source shards to the
destination shards, the client performing a get type of operation in the sccond manner relative to
a pritnary key at least in part by:

determining, based at least in part on a guantity of shards in the multi-shard
system preceding the shard quantity change, a particular source shard on which a data item
having the primary key would have been located prior to the shard quantity change;

determining, based at lcast in part on a quantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which a data item
having the primary koy is to be located after the shard quantity change;

determining that a first data item on the destination shard has the primary key and
a false torbstone attribute value; and

reading attribute values of the first data item.

12. The computer-implemented method of any of Claims 1-11, further
comprising:

while the one or more data iteros are being moved from the source shards to the
destination shards, the client performing a get type of operation in the second manner relative to
a privaary key at least in part by:

determining, based at least in part on a guantity of shards in the multi-shard
system preceding the shard quantity change, a particular source shard on which a data item
having the primary key would have been located prior to the shard quantity change;

determining, based at least in part on a quantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which a data item
having the primary key is to be located after the shard quantity change;

determining that no data item on the destination shard has the primary key;

determining that a first data item on the souree shard has the primary key and a
false tombstone attribute value; and

reading attribute values of the first data item.

i3, The computer-implemented method of any of Claims 1-12, further

comprising:

SN e e

~

[F) 3

£

W

WO 2014/209848 PCT/US2014/043599

while the one or more data items are being moved from the source shards to the
destination shards, the client performing a get type of operation in the sccond manner relative to
a pritnary key at least in part by:

determining, based at least in part on a guantity of shards in the multi-shard
system preceding the shard quantity change, a particular source shard on which a data item
having the primary key would have been located prior to the shard quantity change;

determining, based at lcast in part on a quantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which a data item
having the primary koy is to be located after the shard quantity change;

determining, at a first moment in time, that no data item oo the destination shard
has the primary key;

determining that no data tiem on the source shard has the privary key;

determining, at a second moment tn fime, that a first data tem on the destination
shard has the primary key and a {alse torabstone atiribute value; and

reading attribute values of the first data tem.

14. The computer-implemented method of any of Claims 1-13, wherein
moving the one or more data ttems from the source shards to the destination shards coruprises:

incrementing a system-wide version namber; and

for cach first data tiem having a version number that 15 less than the sysicm-wide
version number, determining, based at least in part on a quantity of shards in the multi-shard
system following the shard quantity change, a first destination shard on which the first data item
is 1o be located after the shard quantity change;

for each second data item that (a) has a version number that is less than the
system-wide version number and (b) is located on a source shard that differs from a second
destination shard on which the second data item is to be located after the shard quantity change,
inserting, into the second destination shard, a copy of the second data item having the system-
wide version number;

for cach third data itom that (a) has a version number that is less than the system-
wide version number and (b} is already located on a third destination shard on which the third
data item is to be located after the shard quantity change, changing a version number of the third

data item to the system-wide version number.

EXNER TS

N

~

9
10
i1

W b

L

-}

e

g e
W = 2

[
o

i8
19

WO 2014/209848 PCT/US2014/043599

i5. The computer-implemented method of any of Claims 1-14, wherein
moving the one or more data items from the source shards to the destination shards comprises
incrementing a system-wide version number, and further comprising:

determining a set of queries that are pending against one or more shards in the
multi-shard system as of a time that the movement of the one or more data items completes;

waiting for all queries in the set of queries to finish;

after all queries in the set of queries have finished, removing, from all shards in
the multi-shard system, all data item copics having version nurnber atiribute values that differ
from the system-wide version nurnber; and

after all querics in the sct of guerics have finished, removing, from al shards in

the mulii-shard system, all data tem copies having truc tombstone atiribute values.

16, The computer-imaplemented method of any of Claims 1-15, further
comprising:

while the one or more data items arc being moved from the source shards to the
destination shards, and for cach particular shard in the multi-shard system, populating a
preliminary result queue for that particular shard with data items that both {a} arc located on that
particular shard and (b) satisfy specificd query criteria;

for cach particular shard’s preliminary result queue, sorting data items in that
shard’s preluminary result queue based at least in part on primary keys of the data item in that
shard’s preliminary result queune;

until every shard’s preliminary result queue is empty, repeatedly performing
operations comprising:

selecting a first data e from a set comprising data items currently located at
tops of preliminary result queues of all of the shards in the multi-shard system,

adding, to a final result set, each first data item that does not have a true
iombstone attribute value, and

removing, from every shard’s preliminary result queue, all data itom copies
having a primary key that matches a primary key of the first data item; and

after every shard’s preliminary result gueue is empty, réturning data items in the

final result set as query result.

EXNER TS

N

~d

RN V] [

(4]

WO 2014/209848 PCT/US2014/043599

17. The computer-implemented method of Claim 16, whercin selecting the
first data item from the set comprising data items currently located at tops of preliminary result
queucs of all of the shards in the multi-shard system comprises:

selecting, from the set, a subsct of data items having a smallest primary key of
primary keys of data items in the sot; and

selecting, as the first data item, a data item having a largest version number

atiribute value of version number attribute values of data item in the subset,

1&. The computer-implemented method of any of Claims 1-17, further
comprising:

while the one or more data items are being moved from the source shards to the
destination shards, the client attempting and failing to perform a delete type of operation in the
seccond manner relative to a first data item having a primary key at lcast in part by:

determining, based at lcast in part on a quantity of shards in the multi-shard
system preceding the shard quantity change, a particular source shard on which the first data ttem
would have been located prior to the shard quantity change;

determining, based at least in part on a guantity of shards in the multi-shard
system following the shard quantity change, a particular destination shard on which the first data
ttem is to be located after the shard quantity change;

determining that no data item on the souree shard has the first data itewy’s primary
kev;

determining that no data item on the destination shard has the first data item’s
primary key; and

generating data that indicates that the delete operation failed due to the first data

item not existing.

19, A sysiem comprising:

a phurality of database shards that store data iteros;

a plurality of clients that are configured to transition, in response to a change ina
quantity of the plurality of database shards, from a normal state, in which cach client of the

phurality of clients is configured to perform a particular type of operation relative to the data

44

)

~}

~d

9

[\

WO 2014/209848 PCT/US2014/043599

items in a first manner, to a rebalancing state, in which cach client of the plurality of clicnts is
configured to perform the particular type of operation relative to the data items in a second
manner that differs from the first manner and without the client acquiring exclusive locks relative
to any data ttems; and

at least one computing device configured to (a) determine, while the plurality of
clients arc in the rebalancing state, and for one or more particular data items, destination shards
that are scparate from source shards on which the on¢ or more particular data iterms were stored
while cach client of the plurality of clients was in the normal state, and (b} move the onc or more
data tiems from the source shards to the destination shards while each client of the plurality of

clients is in the rebalancing state.

20. A computer-readable storage memory storing processor-executable
nstructions comprising:

nstructions to cause one of more processors to determine that a quantity of shards
in a multi-shard system has changed,;

nstroctions to Cause one or MOTe processors to transition a client, in responsc to a
determination that the quantity of shards has changed, from a normoal state, in which the chient
performs a particular type of operation relative to data items stored in the system n a first
manner, to a rebalancing state, in which the client performs the particular type of operation
relative to data ttems stored in the systern in a second manner that differs from the first manner
and without the client acquiring exchusive tocks relative to any data items;

instructions to ¢ause one or More processors to determine, while the client is in
the rebalancing state, and for one or more particular data ttems, destination shards that are
separate from source shards on which the one or more particular data items were stored prior to
the client’s transition to the rebalancing state; and

instructions {0 Cause one or IMOTS Processors to move the one or more data items

from the source shards to the destination shards while the client is in the rebalancing state.

21, A system comprising mweans for performing operations as recited in any of

Claims 1-18.

WO 2014/209848 PCT/US2014/043599

22, A computer program product storing processor-cxecutable instructions for

erforming operations as recited in anv of Claims 1-18.
p g 3

WO 2014/209848

102A
CLIENT

1028
CLIENT

102N
CLIENT

1/12

FIG. 1

PCT/US2014/043599

104A
SHARD

104B
SHARD

104N
SHARD

WO 2014/209848

2/12

PCT/US2014/043599

202
NORMAL

¥

204
ENTER REBALANCE

v

206
REBALANCING

v

208
ENTER CLEANUP

¥

210
CLEANUP

¥

212
LEAVE REBALANCE

FiG. 2

WO 2014/209848 PCT/US2014/043599

3/12

302
DETERMINE SOURCE SHARD FOR PARTICULAR DATA ITEM

L]

304
DETERMINE DESTINATION SHARD FOR PARTICULAR DATA ITEM

SOURCE AND DESTINATION SHA
SAME?
YES

RDS

208

ADD PARTICULAR DATA ITEM TO DESTINATION SHARD NORMALLY

318
A— [TEM WITH PRIMARY KEY ON SOURCE NQ
SHARD?

YES

312
FAIL ADD OPERATION DUE TO DUPLICATION

314
NO TEM WITH PRIMARY KEY AND TRUE TOMBSTONE O
DESTINATION SHARD?

YES

316
ASSIGN PARTICULAR DATAITEM'S ATTRIBUTE VALUES TO ATTRIBUTES OF ITEM
HAVING SAME PRIMARY KEY ON DESTINATION SHARD

v

318
SET TOMBSTONE OF ITEM HAVING SAME PRIMARY KEY ON DESTINATION
SHARD TO FALSE

¥

320
INSERT PARTICULAR DATA ITEM INTO DESTINATION SHARD

300

FiG. 3

WO 2014/209848 PCT/US2014/043599

4/12

402
DETERMINE SOURCE SHARD FOR PARTICULAR DATA ITEM

v
404

DETERMINE DESTINATION SHARD FOR PARTICULAR DATAITEM

0
SQURCEANDDESHNANONSHARDS
SAME? _—
LYES

108
UPDATE PARTICULAR DATA ITEM ON DESTINATION SHARD NORMALLY

410
FTEM WITH PRIMARY KEY ON SOURCE
SHARD?

YES

416
ITEM WITH PRIMARY KEY ON DESTINATION
SHARD?
YES
418
ASSIGN PARTICULAR DATAITEM'S ATTRIBUTE VALUES TO ATTRIBUTES OF
ITEM HAVING SAME PRIMARY KEY ON DESTINATION SHARD

¥

420
INSERT PARTICULAR DATA ITEM INTO DESTINATION SHARD

422
ETEM WITH PRIMARY KEY AND FALSE TQMBSTONE B
ON {)ESTiNATEON SHARD?

FAIL UPDATE OPERATION DUE TO LACK OF UPDATE TARGET

400
FIG. 4

WO 2014/209848 PCT/US2014/043599

5/12

502
DETERMINE SOURCE SHARD FOR PARTICULAR DATA ITEM

v
504

DETERMINE DESTINATION SHARD FOR PARTICULAR DATAITEM

505
SOURCE AND DESTINATION SHARDS
SAME? _—
LYES

508
DELETE PARTICULAR DATA ITEM FROM DESTINATION SHARD NORMALLY

E10
L . TEM WITH PRIMARY KEY ON SOURCE NO
SHARD?
YES
512
UPSERT PARTICULAR DATA [TEM INTO DESTINATION SHARD

v
914

SET TOMBSTONE OF ITEM HAVING SAME PRIMARY KEY ON DESTINATION
SHARD TO TRUE

518
_ITEM WITH PRIMARY KEY ON DESTINATION i
| - __SHARD?
YES ¢
18
SET TOMBSTONE OF [TEM HAVING SAME PRIMARY KEY ON DESTINATION
SHARD TO TRUE

y

520
FAIL BELETE OPERATION DUE TO LACK OF DELETE TARGET

500

FiG. 5

WO 2014/209848 PCT/US2014/043599

6/12

602
DETERMINE SOURCE SHARD FOR PRIMARY KEY

v
604

DETERMINE DESTINATION SHARD FOR PRIMARY KEY

505
SQURCEANDDESHNANONSHARDS
SAME? _—
LYES

508
GET DATA ITEM FROM DESTINATION SHARD NORMALLY

10

ITEM WITH PRIMARY KEY ON DESTINATION
—___SHARD?

7 VES

: 612
,,,,,,,,,,,,,,,,,,,,, NO__ ~TTEM WiTH PRIMARY KEY AND TRUE TOMBSTONE ON

DESTENATEON SHARD'P

NO

, YES

614
FAIL GET OPERATION DUE TO LACK OF GET TARGET

616
READ VALUES OF ITEM HAVING PRIMARY KEY ON DESTINATION SHARD

618

___ITEMWITH PRIMARY KEY ON SOURCE
- SHARD?

TYES

820
TITEM WiTH PRIMARY KEY AND TRUE TOMBQTONE ON_~
A SQURCE SHARD?

NO

%YES

622
FAIL GET OPERATION DUE TO LACK OF GET TARGET

¥
624
READ VALUES OF ITEM HAVING PRIMARY KEY ON SOURCE SHARD

FlG. 6A 600

WO 2014/209848 PCT/US2014/043599

7112

5
ITEM WITH PRIMARY KEY ON DESTINATION
—— SHARD?

NO

‘ 628
“TTEM WiTH PRIMARY KEY AND TRUE TQMBSTONE ONT
DESTENATEON SHARD'P

NO

FAIL GET OPERATION DUE TO LACK OF GET TARGET

L

632
READ VALUES OF ITEM HAVING PRIMARY KEY ON DESTINATION SHARD

600

FlG. 6B

WO 2014/209848 PCT/US2014/043599

8/12

102
INCREMENT SYSTEM'S CURRENT VERSION NUMBER

‘ 704 T —
fffffffffffffffffffffff NQ 7Ry DATA ITEMS HAVING VERSION NUMBER LESS e
THAN SYSTEM'S?

L YES

708
DETERMINE DESTINATION SHARD FOR PARTICULAR DATA ITEM HAVING
VERSION NUMBER LESS THAN SYSTEM'S CURRENT VERSION NUMBER

708
777777777777777777 NQ o SOURCE AND DESTINATION SHARDS
T e SAME?
IVES
710
ASSIGN SYSTEM'S CURRENT VERSION NUMBER TO PARTICULAR DATA |
ITEM'S VERSION NUMBER ATTRIBUTE

¥
712
INSERT PARTICULAR DATA ITEM INTO DESTINATION SHARD

B 714
ffffffffffffffffffffffff >~ "QUERIES PENDING AT RELOCATION'S CONCLUSION
————__STILL PENDING?

7NO

716
REMOVE, FROM ALL SHARDS, ALL DATA ITEM COPIES HAVING VERSION
NUMBER ATTRIBUTE VALUES LESS THAN SYSTEM'S CURRENT VERSION

NUMBER
¥
718
REMOVE, FROM ALL SHARDS, ALL DATAITEM COPIES HAVING TRUE
TOMBSTONES

700

FiG. 7

WO 2014/209848 PCT/US2014/043599

9/12

802
FOR EACH SHARD, PLACE ALL OF THAT SHARD'S DATAITEMS THAT SATISFY
QUERY CRITERIAINTO THAT SHARD'S PRELIMINARY RESULT QUEUE

¥

804
FOR EACH SHARD, SORT ALL OF THE DATAITEMS IN THAT SHARD'S

PRELIMINARY RESULT QUEUE BASED AT LEAST IN PART ON PRIMARY KEYS

o 806 AA
fffffffffffffffffffffff > ALL PRELIMINARY RESULT QUEUES = SYES
- EMPTY? |

SELECT, FROM SET OF DATAITEMS AT TOPS OF PRELIMINARY RESULT
QUEUES, SUBSET OF DATAITEMS HAVING SMALLEST PRIMARY KEY AMONG
DATAITEMS IN THAT SET

¥
810
SELECT, FROM SUBSET OF DATA ITEMS, PARTICULAR DATA ITEM HAVING
LARGEST VERSION NUMBER ATTRIBUTE VALUE AMONG DATA [TEMS IN THAT
SUBSET

| 812‘ |
ES PART?CULAR DATA ITEM'S TOMBSTONE == NO
| FALSE? ‘

7 VES

814
ADD PARTICULAR DATA ITEM TO FINAL RESULT SET

S8
e

816
REMOVE, FROM ALL PRELIMINARY RESULT QUEUES, ALL DATAITEM COPIES
HAVING PARTICULAR DATAITEM'S PRIMARY KEY

¥

818
RETURN DATAITEMS IN FINAL RESULT SET AS FINAL RESULTS OF QUERY

800

FiG. 8

WO 2014/209848 PCT/US2014/043599

10/12

WQQ

DATABASE
218

[COMPONENT] E COMPONENT]

He 920
SERVER
242

NETWORK(S)
910

FIG. 8

PCT/US2014/043599

WO 2014/209848

11/12

Q00 L

0L "Old

el
SHECIAYIG UZUVHES TYNMILN]

¥yoL
IoIANEG

QU

Celt
SITUNOSTH FUNLINLLSVHIN]

ame\/Om&J

IDAIC
NI

82O
LNINIDYNYYY ALILNZG]

9201
DNIHOLINOW GNY
ANINIOYNYIN d3QH0

@ET\%

| pon) 1S3N0EY
I0IANIS

ProL
I0IAEES

GACACH /J

83001

3iAZ
ININD

AN p—
NOLLYHLSIHOMO) FZ41]
MG ININCISIACH o HIACHD
201
SE\W
TANTA giuL

A ISYEYLY(HAOHUO
INZWZOYNYIN ¥30HD

.
gEt %E\%

S0} | SENTENY
IDIAHAS

¥voL
YOIAHES

QAAIACH A

voO1L

i ancto

414!

L0
TaReialonte;

\

NG

a0l
WNALSAS ZHNLONALSYHEN GNCI1D

e wmmw 1sANDIY ADAEIS

ININD

PCT/US2014/043599

WO 2014/209848

12/12

1aIE

b b
S3LVEAN
LNIAZ

Qo
SNYINLE
LNZAT

y

Y

Ad

0oL

243

NILSASENS SNOLLVOINA

“$iiL

WIELSASHNG FOVHOLSY

44N}
i VIQEW 3DVHOLS
W
WILSAS DONLLYN30 MHMnHMwomu
!
YLYCE NV
R oLl
chit MBOVEY VIGEN
SHYHOO™E NOILYOddY JOVIOLS
GBIt 218vavay
AHOWIN WALSAS Y3LNdWOD

cOb

8017
WIALSASENS O

SOLL

LING
NOILYSII300
ONISSID0HG

LIND ONISESEO0™ A

129481 Seil
LiNn LINF
ONISSIVCH BN ONISSIDOHL SNS
N IHOVD IHOVD IHOYD
SR FHOD O MO}
POLL

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/043599

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

abstract; figure 1
paragraphs [0002] - [0008],
[6041] - [0045],

X US 2011/282832 Al (RISHEL WILLIAM S [US] 1-22
ET AL) 17 November 2011 (2011-11-17)

[0015],
[0050] - [0063]

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

1 October 2014

Date of mailing of the international search report

14/10/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Hackelbusch, Richard

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/043599
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X Baron Schwartz ET AL: "High Performance 1,2,
MySQL: Optimization, Backups, Replication, 19-22

and More",

June 2008 (2008-06), pages 428-429,
XP055138428,

ISBN: 978-0-59-610171-8

Retrieved from the Internet:
URL:http://books.google.de/books?id=BLONNo
FPuAQC&printsec=frontcover&hl=de#v=onepage
&qdf=Ffalse

[retrieved on 2014-09-05]

section "Rebalancing shards";

page 428 - page 429

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2014/043599
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2011282832 Al 17-11-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - wo-search-report
	Page 62 - wo-search-report
	Page 63 - wo-search-report

