
*DE60032181T220070329*
(19)
Bundesrepublik Deutschland 
Deutsches Patent- und Markenamt
(10) DE 600 32 181 T2 2007.03.29
 

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 281 118 B1
(21) Deutsches Aktenzeichen: 600 32 181.9
(86) PCT-Aktenzeichen: PCT/US00/27221
(96) Europäisches Aktenzeichen: 00 965 559.8
(87) PCT-Veröffentlichungs-Nr.: WO 2001/088694
(86) PCT-Anmeldetag: 03.10.2000
(87) Veröffentlichungstag

der PCT-Anmeldung: 22.11.2001
(97) Erstveröffentlichung durch das EPA: 05.02.2003
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 29.11.2006
(47) Veröffentlichungstag im Patentblatt: 29.03.2007

(51) Int Cl.8: G06F 7/72 (2006.01)
H03M 7/18 (2006.01)

(54) Bezeichnung: VERFAHREN UND ANORDNUNG ZUR AUSFÜHRUNG VON BERECHNUNGEN MIT RESIDUENA-
RITHMETIK

(30) Unionspriorität:
569944 12.05.2000 US

(73) Patentinhaber: 
The Athena Group, Inc., Gainesville, Fla., US

(74) Vertreter: 
Barz, P., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 80803 
München

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, 
LI, LU, MC, NL, PT, SE

(72) Erfinder: 
MELLOTT, D., Jonathon, Gainsville, FL 32605, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch 
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde 
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/27



DE 600 32 181 T2    2007.03.29
Beschreibung

[0001] Die vorliegende Erfindung erfolgte mit Unter-
stützung der Regierung unter einem von dem Natio-
nal Institute Standards and Technology Cooperative 
Agreement Nr. F0NANB7H3021 unterstützten For-
schungsprojekt. Die Regierung kann bestimmte 
Rechte an der vorliegenden Erfindung besitzen.

Allgemeiner Stand der Technik

[0002] Die vorliegende Erfindung betrifft ein Verfah-
ren und eine Vorrichtung zur Durchführung von Be-
rechnungen unter Verwendung der Restklassenarith-
metik/Residuumarithmetik. Das vorliegende Verfah-
ren und die vorliegende Vorrichtung können das 
Restklassensystem/Residuumsystem (RNS) zur Im-
plementierung von Maschinerie zur automatischen 
Berechnung verwenden. Die Verwendung des RNS 
wurde vorgeschlagen in Garner, H. L., „The Residue 
Number System", IRE Transactions on Electronic 
Computers, Band EL-8, Nr. 6, Juni 1959, Seiten 
140–147, und in Taylor, F. J., „Residue Arithmetic: A 
Tutorial with Examples", IEEE Computer, Band 17, 
Nr. 5, Mai 1984, Seiten 50–61. Mit dem RNS imple-
mentiert man im Allgemeinen automatische Berech-
nungsmaschinerie für die digitale Signalbearbeitung. 
Die digitale Signalverarbeitung (DSP) wird durch die 
sich wiederholende Berechnung von Summen von 
Produkten dominiert. Das RNS eignet sich gut für die 
Durchführung von Berechnungen dieser Art, was in 
den folgenden Literaturstellen demonstriert wurde: 
Mellott, J. D., Lewis, M. P., Taylor, F. J., „A 2D DFT 
VLSI Processor and Architecture", Proceedings of 
IEEE International Conference on Acoustics, Speech 
and Signal Processing, Atlanta, 1996 und Mellott, J. 
D., Smith, J. C., Taylor, F. J., „The Gauss Machine –
A Galois-Enhanced Quadratic Residue Number Sys-
tem Systolic Array", Proceedings of IEEE 11th Sym-
posium on Computer Arithmetic, Windsor Ontario, 
1993, Seiten 156–162.

[0003] Die Implementierung von digitalen Signal-
prozessoren auf großem Maßstab unter Verwendung 
eines einzigen Halbleiterbausteins war in der Vergan-
genheit häufig aufgrund der Beschränkungen bezüg-
lich der Menge an Logik, die auf einem solchen Bau-
stein platziert werden kann, nicht praktikabel. Statt-
dessen wurde die Implementierung von digitalen Sig-
nalprozessoren auf großem Maßstab in der Regel 
unter Verwendung diskreter Logik durchgeführt. Das 
RNS eignet sich gut für diese Implementierungsme-
thodologie, da seine Erfordernis von kleinen Addie-
rern und Tabellennachschlagefunktionen der großen 
Verfügbarkeit diskret gekapselter kleinerer Addierer 
und kleiner programmierbarer Nurlesespeicher 
(PROMs) entspricht. Ein Beispiel für diese Implemen-
tierungsmethodologie ist die in der oben erwähnten 
Literaturstelle von Mellott et al. besprochene 
Gauß-Maschine. Da es möglich wurde, digitale Sig-

nalprozessoren auf großem Maßstab auf einen einzi-
gen Halbleiterbaustein zu integrieren, wurde die Me-
thodologie der Verwendung kleiner Addierer und 
Speicher weitergeführt. Ein Beispiel für einen sol-
chen digitalen Signalprozessor findet sich in Smith, J. 
C., Taylor, F. J., „The Design of a Fault Tolerant GE-
QRNS Processing Element for Linear Systolic Array 
DSP Applications", Proceedings of IEEE Great Lakes 
Symposium on VLSI, Notre Dame, Indiana, 1994. 
Weitere Beispiele für digitale RNS-Signalprozesso-
ren finden sich in dem US-Patent Nr. 5,117,383 (Fuji-
ta et al.), ausgegeben am 26.5.1992; in dem US-Pa-
tent Nr. 5,008,668 (Takayama, et al.), ausgegeben 
am 16.4.1991, in dem US-Patent Nr. 4,949,294 
(Wambergue), ausgegeben am 14.8.1990; und in 
dem US-Patent Nr. 4,281,391 (Huang), ausgegeben 
am 28.7.1981.

[0004] Die obigen Beispiele beschreiben die Ver-
wendung von ROMs zur Implementierung von Tabel-
lennachschlagefunktionen. Für die typischerweise 
bei digitalen RNS-Signalprozessorimplementierun-
gen anzutreffenden kleinen Tabellennachschlage-
funktionen sind ROMs attraktiv, weil sie leicht zu pro-
grammieren sind und bekannte Geschwindigkeits-, 
Flächen- und Stromversorgungskenngrößen aufwie-
sen. Im Gegensatz dazu kann der manuelle Entwurf 
einer Ansammlung von Logikgattern zur Realisierung 
einer Tabellennachschlagefunktion eine enorme Auf-
gabe sein, und die Geschwindigkeits-, Flächen- und 
Stromversorgungskenngrößen sind im Allgemeinen 
erst nach dem Entwurf der Schaltung voll bekannt. 
Ein weiteres mit der vorbekannten Verwendung von 
ROMs in integrierten im Gegensatz zu diskreten digi-
talen RNS-Signalprozessorimplementierungen asso-
ziiertes Merkmal besteht darin, dass ROMs im Ver-
gleich zu anderen möglichen Mitteln zur Implemen-
tierung kleiner Nachschlagetabellen vorzuziehende 
Chipfläche bieten.

[0005] Vorbekannte Techniken zur Durchführung 
von Berechnungen unter Verwendung des RNS ha-
ben einen oder mehrere Nachteile in Bezug auf die 
Verwendung von Speichern (gewöhnlich ROMs) zur 
Implementierung der Tabellennachschlagefunktio-
nen. Zu diesen Nachteilen sind die folgenden zu zäh-
len: Speicher mit den erforderlichen Eigenschaften 
für die Verwendung bei RNS-Berechnungen sind 
nicht in allen ASIC-Implementierungstechnologien in 
ausreichender Menge verfügbar; Speicher enthalten 
häufig analoge Schaltkreise, die signifikant viel Strom 
verbrauchen, auch wenn keine Schaltaktivität in der 
Schaltung besteht; die in den meisten Speicherbau-
steinen anzutreffenden analogen Schaltkreise kön-
nen nicht gut auf tiefe Submikrometer-Halbleiterher-
stellungstechnologien skaliert werden; da sie von 
analogen Schaltungen (z.B. Differenzverstärkern) 
abhängen, können Speicher schwieriger als digitale 
Logikschaltungen zu prüfen sein, können separate 
Prüfungen und Prüfmechanismen im Vergleich zu di-
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gitalen Logikschaltungen erfordern und sind im Allge-
meinen nicht mit Testmethodologien für Leckstrom 
(IDDQ) kompatibel; es besteht wenig oder keine Flexi-
bilität zur Optimierung eines Speichers mit Bezug auf 
Geschwindigkeit, Stromversorgung und/oder Fläche; 
der Pipeline-Betrieb von Speichern kann schwierig 
sein, und in vielen Implementierungstechnologien 
besteht keine realistische Möglichkeit für einen Pipe-
line-Betrieb von Speicher; die Größe des Speichers 
wird in der Regel durch die Anzahl der Eingänge und 
Ausgänge festgelegt und ist im Wesentlichen vom In-
halt des Speichers unabhängig; aus Zuverlässig-
keitsgründen dürfen nicht mit einem Speicher zusam-
menhängende Leitungen gewöhnlich nicht über ei-
nen Speicher auf einem Halbleiterbaustein verlaufen, 
sodass die Anwesenheit vieler kleiner Speicher auf 
einem Speicherbaustein, so wie sie in einer Vorrich-
tung zur Durchführung von Berechnungen unter Ver-
wendung des RNS verwendet würden, die Möglich-
keit zur Verbindung verschiedener Funktionen (so-
wohl Speicher als auch Nicht-Speicher) auf dem Bau-
stein beeinträchtigen kann.

[0006] Eine vorbekannte Technik, die die Verwen-
dung von Volladdierern anstelle von ROMs oder 
PLAs zur Durchführung von Berechnungen unter 
Verwendung des RNS lehrt, findet sich in Seon Wook 
Kim et al., „New Implementations of Converters for 
the Residue and Quadratic Residue Number Sys-
tem", Proceedings of the International Symposium on 
Circuits and Systems, US, New York, IEEE, Band. 
Symp. 24, 11.6.1991 (1991-06-11), Seiten 
2959–2962, XP000299331 ISBN: 0-7803-0050-5.

Kurzfassung der Erfindung

[0007] Die vorliegende Erfindung betrifft ein Verfah-
ren und eine Vorrichtung zum Durchführen von Be-
rechnungen unter Verwendung des Residuumsys-
tems (RNS). Gemäß einem ersten Aspekt der Erfin-
dung wird ein Verfahren zum Durchführen mathema-
tischer Berechnungen nach Anspruch 1 der angefüg-
ten Ansprüche bereitgestellt. Entsprechende Vorrich-
tungen gemäß einem zweiten Aspekt der Erfindung 
werden nach Anspruch 75 der angefügten Ansprü-
che bereitgestellt. In einer spezifischen Ausführungs-
form kann eine Vielzahl von Logikgattern verwendet 
werden, um Berechnungen unter Verwendung des 
RNS zu implementieren. Im Hinblick auf neuere Än-
derungen der Halbleiterbausteinskalierung und Ent-
wurfsmethodologie kann die vorliegende Erfindung 
gegenüber der Verwendung von ROMs für kleine Ta-
bellennachschlagefunktionen in integrierten digitalen 
RNS-Signalprozessorimplementierungen Vorteile 
bieten. Einige dieser Vorteile wären zum Beispiel: Lo-
gikgatter können besser als analoge Teile der 
ROM-Schaltkreise, wie zum Beispiel der Differenzle-
severstärker, größenmäßig herunterskaliert werden; 
für integrierte RNS-Implementierungen erfordern mit 
Gattern implementierte kleine Tabellennachschlage-

funktionen weniger Chipfläche als die selben, mit 
ROMs implementierten Funktionen; im Allgemeinen 
sind Logikgatter mit Ruhestrom-Prüfmethodologien 
kompatibel, während Speicherbausteine mit derzeiti-
gen Prüfmethodologien für Ruhe- oder Leckstrom 
(die auch als IDDQ-Prüfung bekannt sind) nicht kompa-
tibel sind; Logikgatter sind im Allgemeinen scan-prüf-
bar, während Speicherbausteine spezielle Prüfstruk-
turen erfordern können und in der Regel nicht direkt 
mit Scan-Prüfmethodologien kompatibel sind; und Si-
gnalleitungen können über Logikgatter geroutet wer-
den, während die meisten Entwurfsmethodologien 
nicht erlauben, Signalleitungen über Onchip-Spei-
cher zu routen, sodass die Anwesenheit vieler kleiner 
Speicher in einem Entwurf die Leitungsführung stau-
en kann, was potentiell zu größeren Entwurfskosten, 
langsamerem Schaltungebetrieb, größerem Strom-
verbrauch, größerem Silizium-Chipflächenverbrauch 
und somit größeren Herstellungskosten führt.

[0008] Die vorliegende Erfindung kann einen oder 
mehrere der folgenden Vorteile liefern: Bereitstellung 
eines Mittels zum Implementieren von Residuuma-
rithmetik-Rechenschaltkreisen mit verringerter Ver-
wendung oder ganz ohne Verwendung von Spei-
chern für Tabellennachschlageoperationen, sodass 
die Schaltkreise leicht unter Verwendung vielfältiger 
Technologien implementiert werden können, darun-
ter u.a. angepasste digitale Logik, Standardzellenlo-
gik, auf Zellen basierende Logik-Arrays, Gate-Arrays, 
am Einsatzort programmierbare Gate-Arrays und 
programmierbare Logikbausteine; Bereitstellung ei-
nes Mittels zur Implementierung von Residuumarith-
metik-Rechenschaltkreisen, die bei Abwesenheit von 
Schaltaktivität in der Schaltung keinen signifikanten 
Strom verbrauchen; Bereitstellen eines Mittels zum 
Implementieren von Residuumarithmetik-Rechen-
schaltkreisen, die direkt auf tiefe Submikrome-
ter-Halbleiterherstellungstechnologien skaliert wer-
den können; Bereitstellen eines Mittels zum Imple-
mentieren von Residuumarithmetik-Rechenschalt-
kreisen, die mit Standard-Logikprüfmethodologien 
(z.B. Scan, IDDQ) kompatibel sind; Bereitstellen eines 
Mittels zum Optimieren der mathematischen Funktio-
nen in den Residuumarithmetik-Rechenschaltkreisen 
für Geschwindigkeit, Strom und/oder Fläche; Bereit-
stellen eines Mittels zum Implementieren der mathe-
matischen Funktionen in Residuumarithmetik-Re-
chenschaltkreisen, das Pipelining ermöglicht und völ-
lig mit Methodologien der elektronischen Entwurfsau-
tomatisierung (EDA) für automatisches Pipelining 
kompatibel ist; Bereitstellen eines Mittels zum Imple-
mentieren der mathematischen Funktionen in Resi-
duumarithmetik-Rechenschaltkreisen, das die Struk-
tur der sich aus einer mathematischen Funktion re-
sultierenden Werte ausnutzt, um eine Implementie-
rung zu produzieren, die kleiner und schneller als mit 
einer beliebigen auf Speicher basierenden Imple-
mentierung möglich ist; und Bereitstellen eines Mit-
tels zum Implementieren von mathematischen Funk-
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tionen in den Residuumarithmetik-Rechenschaltkrei-
sen, das das Routen von Leitungen auf dem Halblei-
terbaustein nicht zu sehr stört.

Kurze Beschreibung der Zeichnungen

[0009] Fig. 1 zeigt ein Blockschaltbild einer Vorrich-
tung zur digitalen Signalverarbeitung, die Residu-
umarithmetik zum Operieren an reellen Operanden 
verwendet und reelle Ergebnisse produziert.

[0010] Fig. 2 zeigt ein Blockschaltbild einer Vorrich-
tung zur digitalen Signalverarbeitung, die Residu-
umarithmetik zum Operieren an komplexen Operan-
den verwendet und reelle Ergebnisse produziert.

[0011] Fig. 3 zeigt ein Blockschaltbild eines modu-
laren Produkttabellennachschlagens für einen Kon-
stanten-Multiplizierer.

[0012] Fig. 4 zeigt eine Tabelle für das Produkt von 
zwei und einer modulo-5-Variablen modulo 5, der Mi-
nimierung der Gleichungen für die Tabelle unter Ver-
wendung von Karnaugh-Abbildungen, wobei eine 
Vielzahl von Logikgattern die reduzierten Gleichun-
gen implementiert, und die resultierende Tabelle.

[0013] Fig. 5 zeigt eine zahlentheoretische Loga-
rithmus-Nachschlagetabelle.

[0014] Fig. 6 zeigt ein Blockschaltbild eines Multip-
lizierers, der Produkte unter Verwendung der zahlen-
theoretischen Logarithmen der Operanden berech-
net.

[0015] Fig. 7 zeigt eine Struktur zur Berechnung 
des Residuums einer vorzeichenlosen N-Bit- oder 
Zweierkomplementzahl.

[0016] Fig. 8 zeigt ein Blockschaltbild eines Mehr-
fachoperanden-Modular-Addiererbaums.

[0017] Fig. 9 zeigt eine Struktur zum Umsetzen ei-
nes Werts aus der RNS-Darstellung in die Binärdar-
stellung unter Verwendung des chinesischen Residu-
umtheorems.

[0018] Fig. 10 zeigt eine Struktur zum Umsetzen ei-
nes Werts aus der RNS-Darstellung in die Binärdar-
stellung unter Verwendung des L-CRT-Algorithmus.

[0019] Fig. 11 zeigt eine Struktur zum Umsetzen ei-
nes komplexen RNS-Werts in einen QRNS-Wert.

[0020] Fig. 12 zeigt eine Struktur zum Umsetzen ei-
nes QRNS-Werts in einen komplexen RNS-Wert.

Ausführliche Beschreibung der Erfindung

Ermöglichende mathematische Theorie

[0021] Die folgenden Unterabschnitte präsentieren 
die Mathematik, die für die Funktionsweise der Erfin-
dung relevant ist. Obwohl die Mathematik wohlbe-
kannt ist, wird die Theorie hier präsentiert, um so ei-
nen einheitlichen Rahmen der Notation und Symbole 
bereitzustellen.

Das chinesische Residuumstheorem

[0022] Es sei S = {p0, p1, p2, ..., pL-1} mit gcd(p1, pj) = 
1 für alle i, j ∊ {0, 1, 2, ..., L – 1} und i ≠ j, wobei gcd 
für den größten gemeinsamen Nenner steht. Es sei M 
= Π Pi, und es sei X ∊ Z/MZ, wobei Z den Ring der 
ganzen Zahlen bedeutet. Nach dem chinesischen 
Residuumstheorem existiert ein Isomorphismus 

ϕ: Z/MZ → Z/p0Z × Z/p1Z × Z/p2Z × ... × Z/pL-1Z.

[0023] Die Abbildung ϕ wird gegeben durch 

ϕ(X) → (x0, x1, x2, ..., xL-1)

mit (x0, x1, x2, ..., xL-1) ∊ Z/p0Z × Z/p1Z × Z/p2Z × ... ×
Z/pL-1Z, und xi ≡ X (mod pi) für alle i ∊ {0, 1, 2, ..., L –
1}. Die Umkehrabbildung wird gegeben durch 

ϕ–1[(x0, x1, x2, ..., XL-1)] → X

mit 

mi = M/pi, mimi
–1 ≡ 1 (mod pi) und (x)p bedeutet den 

Wert in der Menge {0, 1, 2, ..., p – 1}, der zu x modulo 
p kongruent ist.

Zahlentheoretische Logarithmen

[0024] Wenn pi prim ist, existiert ein Generator ai ∊
Z/piZ, sodass 

{α |k = 0, 1, 2, ..., pi – 2} = {1, 2, 3, ..., pi – 1}

im Ring Z/piZ. Im Fall xi ∊ (Z/piZ)\{0} existiert ein ein-
deutiges

sodass

[0025] Man sagt, dass der Wert

i=0
L-1

l
k
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der zahlentheoretische Logarithmus von xi mit der 
Basis αi modulo pi ist.

[0026] Der zahlentheoretische Logarithmus kann 
ausgenutzt werden, um Produkte in dem Ring Z/piZ 
zu berechnen. Im Fall xi, yi ∊ (Z/piZ)\{0} existiert ein 
eindeutiges 

sodass

[0027] Wenn xi, yi oder beide null sind, ist das Pro-
dukt xiyi null.

Komplexe Arithmetik

[0028] Es sei Z[j]/(j2 + 1) der Ring der Gaußschen 
ganzen Zahlen unter den gewöhnlichen Operationen 
von Addition und Multiplikation, und Zahlen der Form 
a + jb mit a, b ∊ Z und j2 = –1. Dann bedeutet (Z[j]/(j2

+ 1))/piZ den Ring der Gaußschen ganzen Zahlen 
modulo pi und im Fall a + jb ∊ Z[j]/(j2 + 1) wird die Ab-
bildung ϕ: Z[j]/(j2 + 1) → (Z[j]/(j2 + 1))/piZ gegeben 
durch 

ϕ((a + jb)) → ai + jbi,

mit ai ≡ a (mod pi) und bi ≡ b (mod pi). Die Menge 
(Z[j]/(j2 + 1))/piZ ist ein Ring unter den gewöhnlichen 
komplexen arithmetischen Operationen der Multipli-
kation und Addition. Das heißt, im Fall (ai + jbi), (ci + 
jdi) ∊ (Z[j]/(j2 + 1))/piZ, gilt 

(ai + jbi) + (ci + jdi) = ((ai + ci) + j(bi + di))

(ai + jbi) × (ci + jdi) = ((aici – bidi) + j(aidi + bici)).

[0029] Man nehme an, dass pi eine Primzahl ist und 
pi = 4ki + 1 mit ki ∊ Z. Dann existiert ein Isopmorphis-
mus zwischen den Gaußschen ganzen Zahlen mo-
dulo pi unter den gewöhnlichen komplexen arithmeti-
schen Operationen wie oben gezeigt und den Gauß-
schen ganzen Zahlen modulo pi unter komponenten-
weiser Addition und Multiplikation Ψ: (Z[j]/(j2 + 1))/piZ 
→ (Z[j]/(j2 + 1))/piZ, mit der Abbildung 

Ψ((ai + jbi)) → (zi, zi*)

mit zi = ai + ĵbi, zi* = ai – ĵbi und ĵ2 ≡ –1 (mod pi).

[0030] Die Umkehrabbildung wird gegeben durch 

Ψ–1((zi, zi*) → (ai + jbi)

mit ai = 2–1(zi + zi*), bi = ĵ2–1(zi – zi*) und 2·2–1 ≡ 1 (mod 
pi).

[0031] Das chinesische Residuumtheorem (CRT) 
kann ausgenutzt werden, um Addition, Subtraktion 
und Multiplikation von Werten im Ring der ganzen 
Zahlen modulo M, Z/MZ durchzuführen, indem man 
die Berechnung in L unabhängige Berechnungen in 
Z/piZ, für i ∊ {0, 1, 2, ..., L – 1} zerlegt. Wenn jedes pi

∊ S prim ist, kann man die zahlentheoretischen Log-
arithmen ausnutzen, um die Komplexität der Multipli-
kation zu verringern. Wenn ferner jedes pi ∊ S prim 
und pi = 4ki + 1 mit ki ∊ Z ist, ist es möglich, den Iso-
morphismus Ψ auszunutzen, um die Anzahl der er-
forderlichen arithmetischen Operationen zur Imple-
mentierung der komplexen Multiplikation von vier re-
ellen Multiplikationen und zwei reellen Additionen auf 
zwei reelle Multiplikationen zu reduzieren.

[0032] Fig. 1 zeigt eine spezifische Ausführungs-
form der vorliegenden Erfindung, die zur Durchfüh-
rung von Summen von Produkten an reellen binären 
vorzeichenlosen oder Zweierkomplement-, Einer-
komplement-, Vorzeichen-Betrag- oder anderen 
Operanden mit fester Basis oder Fließbasis unter 
Verwendung von Residuumarithmetik verwendet 
werden kann. Das in Fig. 1 gezeigte System kann 
eine Schaltung 1 zum Umsetzen von Daten aus einer 
herkömmlichen Darstellung wie zum Beispiel, aber 
ohne Einschränkung, Einerkomplement, Vorzei-
chen-Betrag, vorzeichenlose Binärdarstellung oder 
Zweierkomplement, in eine Menge von L-Residuum 
aufweisen. Wenn Multiplikation benötigt wird, kann 
das Residuum der Eingangsoperanden durch eine 
Schaltung 3 mit einem oder mehreren Koeffizienten 
multipliziert werden. Die Schaltung 3 kann entfernt 
werden, wenn nur Addition erzielt werden soll. Diese 
Koeffizienten können feste und/oder programmierte 
Koeffizienten sein. Die von der Schaltung 3 produ-
zierten modularen Produkte können dann durch eine 
Schaltung 4 addiert werden, um modulare Summen 
von Produkten zu produzieren. Die modularen Sum-
men von Produkten können dann durch eine Schal-
tung 6 in eine herkömmliche Darstellung umgesetzt 
werden. Die spezifische Anordnung der modularen 
Produkte und Summen ist von dem Algorithmusent-
wurf abhängig und kann nach Wunsch optimiert wer-
den.

[0033] Mit Bezug auf Fig. 1 ist eine Ausführungs-
form gezeigt, die reelle Operanden verarbeiten kann. 
Datenoperanden zum Beispiel in einem herkömmli-
chen Format wie etwa Zweierkomplement können in 
die Schaltung 1 (deren Einzelheiten in der Bespre-
chung von Fig. 7 zusammengefasst werden) einge-
geben werden, um die Operanden in RNS-Form um-
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zusetzen. Wenn der Algorithmus Multiplikation erfor-
dert, können die Produkte als nächstes durch eine 
Schaltung 3 berechnet werden, die ein oder mehrere 
Elemente aus Fig. 3 und/oder Fig. 5 und Fig. 6 um-
fassen kann. Etwaige erforderliche Summen können 
als nächstes durch eine Schaltung 4 berechnet wer-
den, die zwei Operanden-Modularaddierer und wahl-
weise einen oder mehrere Modular-Addierer-Bäume 
aus Fig. 8 umfasst. Die spezifische Anordnung der 
arithmetischen Elemente und Zwischenspeicherele-
mente, darunter, aber ohne Einschränkung, Register, 
Haltespeicher und Direktzugriffsspeicher (RAMs) 
kann abhängig von der Situation variiert werden. Zum 
Beispiel können die arithmetischen Elemente und 
Zwischenspeicherelemente dafür angeordnet wer-
den, Funktionen wie zum Beispiel, aber ohne Ein-
schränkung, Faltung, Korrelation, nichtrekursive Fil-
ter, schnelle Fouriertransformationen, diskrete Kosi-
nustransformationen, Wavelet-Transformationen, Fil-
terbanken, kaskadierte Integrierer-Kammfilter, digita-
le Empfänger und digitale Sender zu implementieren. 
Die Ergebnisse der Berechnung können durch eine 
Schaltung 6, die zum Beispiel eine CRT-Umsetzung 
wie in Fig. 9 gezeigt oder eine L-CRT-Umsetzung wie 
in Fig. 10 gezeigt umfassen kann, in ein herkömmli-
ches Format wie etwa Zweierkomplement umgesetzt 
werden.

[0034] Fig. 2 zeigt eine weitere spezifische Ausfüh-
rungsform der vorliegenden Erfindung, die zur Durch-
führung von Summen von Produkten an komplexen 
binären vorzeichenlosen oder Zweierkomple-
ment-Operanden unter Verwendung der Residuuma-
rithmetik verwendet werden kann. Das System in 
Fig. 2 kann eine Schaltung 1 aufweisen, um Daten 
aus einer herkömmlichen Darstellung wie etwa, aber 
ohne Einschränkung, Einerkomplement, Vorzei-
chen-Betrag; vorzeichenlos binär oder Zweierkomp-
lement, in eine Menge von L-Residuum für jede der 
reellen und imaginären Komponenten jedes Operan-
den umzusetzen. Das komplexe Residuum kann 
dann durch eine Schaltung 2 in die quadratische Re-
siduumdarstellung umgesetzt werden. Das quadrati-
sche Residuum der Eingangsoperanden kann durch 
eine Schaltung 3 mit einem oder mehreren Koeffizi-
enten multipliziert werden. Diese Koeffizienten kön-
nen feste und/oder programmierte Koeffizienten sein. 
Die von der Schaltung 3 produzierten modularen Pro-
dukte können dann durch eine Schaltung 4 addiert 
werden, um modulare Summen von Produkten zu 
produzieren. Die quadratischen modularen Summen 
von Produkten können dann durch eine Schaltung 5
in komplexe Residuen umgesetzt werden. Die kom-
plexen Summen von Produkten können dann durch 
eine Schaltung 6 in eine herkömmliche Darstellung, 
wie zum Beispiel komplexvorzeichenlos binär oder 
Zweierkomplement, umgesetzt werden. Die spezifi-
sche Anordnung der modularen Produkte und Sum-
men hängt von dem Algorithmusentwurf ab und kann 
nach Wunsch optimiert werden. In bestimmten Fällen 

kann ein Algorithmus dafür ausgelegt werden, reelle 
Eingaben als Operanden anzunehmen und komple-
xe Ergebnisse zu produzieren, oder komplexe Einga-
ben anzunehmen und reelle Ergebnisse zu produzie-
ren. In einem solchen Fall können Schaltung 2
und/oder Schaltung 5 nach Wunsch entfernt werden.

[0035] Mit Bezug auf die in Fig. 2 gezeigte Ausfüh-
rungsform kann die vorliegende Erfindung komplexe 
Operanden verarbeiten. Zum Beispiel können Daten-
operanden in herkömmlicher Form, wie etwa Zweier-
komplement, in die Schaltung 1 (deren Einzelheiten 
in der Besprechung von Fig. 7 zusammengefasst 
werden) eingegeben werden, um die Operanden in 
CRNS-Form umzusetzen. Die CRNS-Operanden 
können zu einer Schaltung 2 geleitet werden, um die 
Operanden in das QRNS-Format umzusetzen. Ein 
Beispiel für eine solche Schaltung 2 ist in Fig. 11 ge-
zeigt. Wenn der Algorithmus Multiplikation erfordert, 
können die Produkte als nächstes durch eine Schal-
tung 3 berechnet werden, die ein oder mehrere Ele-
mente aus Fig. 3 und/oder aus Fig. 5 und Fig. 6 um-
fassen kann. Etwaige erforderliche Summen können 
als nächstes durch eine Schaltung 4 berechnet wer-
den, die zwei Operanden-Modularaddierer und wahl-
weise einen oder mehrere modulare Addiererbäume 
wie in Fig. 8 gezeigt umfassen kann. Die spezifische 
Anordnung der arithmetischen Elemente und Zwi-
schenspeicherelemente, darunter, aber ohne Ein-
schränkung, Register, Haltespeicher und RAMs, 
kann abhängig von der Situation variiert werden. Zum 
Beispiel können die arithmetischen Elemente und 
Zwischenspeicherelemente dafür angeordnet wer-
den, Funktionen wie etwa, aber ohne Einschränkung, 
Faltung, Korrelation, nicht rekursive Filter, schnelle 
Fourier Transformationen, diskrete Kosinustransfor-
mationen, Wavelength-Transformationen, Filterban-
ken, kaskadierte Integrierer-Kammfilter, digitale 
Empfänger und digitale Sender zu implementieren. 
Die QRNS-Ergebnisse der Berechnung können dann 
durch eine Schaltung 5, wie zum Beispiel in Fig. 12
gezeigt, wieder in die CRNS-Darstellung umgesetzt 
werden. Die CRNS-Ergebnisse können durch eine 
Schaltung 6, die zum Beispiel eine in Fig. 9 gezeigte 
CRT-Umsetzung oder eine in Fig. 10 gezeigte 
L-CRT-Umsetzung umfassen kann, in ein herkömm-
liches Format wie etwa Zweierkomplement umge-
setzt werden.

[0036] Fig. 3 zeigt eine Ausführungsform zur Be-
rechnung modularer Produkte einer Konstanten und 
eines modularen Datenoperanden. Das Produkt 
kann durch eine Schaltung 7 erzeugt werden, die ei-
nen Ni-Bitoperanden annimmt und das Produkt des 
Operanden und einer Konstanten ci modulo pi produ-
ziert, wodurch ein Ni-Bit-Ergebnis produziert wird. 
Fig. 3 zeigt ein Blockschaltbild einer Ausführungs-
form einer Schaltung 7 zum Produzieren des modu-
laren Produkts eines Operanden und einer Konstan-
ten, wobei eine solche Konstante durch den Entwurf 
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der Schaltung festgelegt wird. Die Schaltung 7 kann 
eine Vielzahl von Logikgattern verwenden, die aus-
gewählt wird, indem man zuerst den Wert einer Funk-
tion der Multiplikation mit einer Konstanten für jeden 
möglichen modularen Datenoperanden berechnet 
und die logischen Gleichungen, extrahiert, die die be-
rechneten Werte der Funktion der Multiplikation mit 
einer Konstanten repräsentieren. Die logischen Glei-
chungen können dann auf eine Vielzahl von Logik-
gattern abgebildet werden. Gegebenenfalls können 
die logischen Gleichungen vor der Abbildung auf eine 
Vielzahl von Logikgattern zum Beispiel unter Verwen-
dung wohlbekannter Logikminimierungstechniken, 
die den Umstand ausnutzen, dass für eine beliebige 
ungültige Eingabe der Wert der Ausgabe ein beliebi-
ger Wert sein darf, minimiert werden. Nachdem die 
Logikgleichungen auf eine minimierte logische Funk-
tion reduziert wurden, können sie auf eine Implemen-
tierung abgebildet werden, die eine Vielzahl von Lo-
gikgattern verwendet. Die Abbildung auf eine Vielzahl 
von Logikgattern kann zum Beispiel manuell durch-
geführt werden, oder unter Verwendung von Softwa-
re, wie etwa DESIGN COMPILER, erhältlich von Sy-
nopsys, Inc. in Mountain View, Kalifornien.

[0037] Fig. 4 zeigt ein Beispiel für eine Produkt-
nachschlagetabelle für den Konstanten-Multiplizierer 
2 und einen modulo-5-Wert x (die Bit x2, x1 und x0

werden von höchstwertig zu niedrigstwertig geord-
net). Eine Wahrheitstabelle 33 zeigt alle möglichen 
Eingaben in die Tabelle sowie die Ausgabe der Tabel-
le y (die Bit y2 y1 und y0 werden von höchstwertig zu 
niedrigstwertig geordnet). Die „x"-Einträge in der Ta-
belle geben an, dass der Wert der Ausgabe beliebig 
sein kann. Die Tabelle wird unter Verwendung von 
Karnaugh-Abbildungen 34A, 34B und 34C auf eine 
minimale Menge logischer Gleichungen 35A redu-
ziert. Ein Beispiel für eine Vielzahl von Logikgattern 
35B, womit die logischen Gleichungen 35A imple-
mentiert werden können, ist in Fig. 4 gezeigt. Für 
größere Moduli und somit größere Tabellen kann die 
Minimierung der logischen Gleichungen für die Tabel-
le durch manuelle Mittel impraktikabel sein, sodass 
ein Computerprogramm verwendet werden kann, um 
die logischen Gleichungen zu minimieren. Die Ergeb-
nisse der minimierten logischen Gleichungen, wenn 
alle möglichen Eingaben gegeben sind, sind in einer 
Wahrheitstabelle 36 gezeigt.

[0038] Fig. 5 zeigt eine Ausführungsform zur Be-
rechnung zahlentheoretischer Logarithmen für eine 
gegebene Basis αi und einen Modul pi. Um zwei Ope-
randen im RNS zu multiplizieren, kann eine Schal-
tung 8 wie in Fig. 5 gezeigt die Logarithmen der Ope-
randen berechnen. Der Logarithmus kann durch eine 
Schaltung 8 erzeugt werden, der einen Ni-Bit-Ope-
randen annimmt und den Ni-Bit-Logarithmus des 
Operanden produziert. Wenn der Eingangsoperand 
null ist, ist die Ausgabe der Schaltung 8 ein Symbol, 
das kein gültiger zahlentheoretischer Logarithmus 

ist.

[0039] Fig. 5 zeigt ein Blockschaltbild einer Ausfüh-
rungsform einer Schaltung 8 zum Produzieren des 
zahlentheoretischen Logarithmus eines Residuums 
oder eines speziellen Nullsymbols, wenn der Ein-
gangsoperand null ist. Für eine gegebene Basis αi

und einen gegebenen Modul pi ist der zahlentheore-
tische Logarithmus des Werts in der Menge {1, 2, 3, 
..., pi – 1} in der Menge {1, 2, 3, ..., pi – 2}. Bei der be-
vorzugten Ausführungsform der Schaltung 8 ist das 
spezielle Symbol, das resultiert, wenn die Eingabe 
null ist, das Binärwort, das aus nur Einsen besteht. 
Die Tabellennachschlagefunktion 8 kann unter Ver-
wendung der in der Beschreibung von Fig. 3 bespro-
chenen Prozedur auf eine Schaltung reduziert wer-
den.

[0040] Fig. 6 zeigt ein Blockschaltbild einer Ausfüh-
rungsform einer Schaltung zur Berechnung des Pro-
dukts zweier Residuen modulo pi unter Verwendung 
der Summe der zahlentheoretischen Logarithmen 
der Operanden. Die Schaltung von Fig. 6 kann zwei 
Operanden annehmen, die zahlentheoretischen Log-
arithmen der Residuen, die multipliziert werden sol-
len, oder das Symbol für null, das von einer Schal-
tung 8 produziert wird, wenn sie eine Eingabe von 
null erhält. Die Operanden können einer modularen 
Addiererschaltung 9 zugeführt werden, die die Sum-
me der Operanden modulo pi – 1 produziert, deren 
Ausgabe nur dann gültig ist, wenn keiner der Operan-
den das Nullsymbol ist. Die Operanden können auch 
einer Schaltung 10 zum Detektieren des Symbols für 
null zugeführt werden. Die durch die Schaltung 9 pro-
duzierte Summe der Logarithmen kann dann in eine 
zahlentheoretische Exponentiierungs-Tabellennach-
schlageschaltung 11 eingegeben werden. Die Tabel-
lennachschlagefunktion 11 kann unter Verwendung 
der in der Beschreibung von Fig. 3 besprochenen 
Prozedur auf eine Schaltung reduziert werden. Die 
Ausgabe der Nulldetektionsschaltungen 10 kann 
zum Beispiel durch ein OR-Gatter 12 dann logisch 
OR-verknüpft werden. Wenn die Ausgabe des 
OR-Gatters 12 anzeigt, dass einer der Eingangsope-
randen das Nullsymbol war, kann die Ausgabe eines 
Multiplexers 13 auf null gesetzt und andernfalls die 
Ausgabe der Exponentiierungsschaltung 11 zu dem 
Ausgang des Multiplexers geleitet werden. Bei den 
meisten Implementierungen der in Fig. 1 und Fig. 2
gezeigten Systeme ist die zahlentheoretische Expo-
nentiierungstabellen-Nachschlageschaltung 11 der 
häufigste Tabellennachschlag in dem System. Im all-
gemeinen gibt es für ein spezifisches (Z/piZ)\0 viele 
mögliche Generatoren. Für einen beliebigen Modul pi

gibt es sogar zwanzig Prozent Variation der Größe 
der Exponentiierungsschaltung über die gesamte 
Menge möglicher Generatoren. Folglich können Ge-
neratoren auf der Basis eines oder mehrerer Fakto-
ren ausgewählt werden. Bei einer bevorzugten Aus-
führungsform der vorliegenden Erfindung kann für je-
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den Modul pi ein optimaler Generator αi auf der Basis 
eines oder mehrerer Kriterien, wie zum Beispiel Grö-
ße, Geschwindigkeit, Strom oder einer bestimmten 
anderen Kostenfunktion ausgewählt werden. Diese 
optimale Erzeugung kann dann zur Erzeugung der 
zahlentheoretischen Exponentiierungsschaltung 11
und/oder der zahlentheoretischen Logarithmusschal-
tung 8 verwendet werden.

[0041] Bei den in Fig. 6 gezeigten Ausführungsfor-
men werden die Logarithmen der Operanden durch 
eine Nulldetektionsschaltung 10 geprüft; wenn eine 
der Logarithmuseingaben das spezielle Symbol für 
null ist, was durch das logische OR-Gatter 12 be-
stimmt wird, wird das ausgegebene Produkt durch ei-
nen Multiplexer 13 auf null gesetzt. Andernfalls kön-
nen die Logarithmen modulo pi – 1 durch eine modu-
lare Addiererschaltung 9 addiert werden, deren Aus-
gabe in eine Exponentiierungsschaltung 11 eingege-
ben werden kann. Die Ausgabe der Exponentiie-
rungsschaltung 11 kann dann zu dem Multiplexer 13
geleitet werden, und wenn keiner der Operanden das 
spezielle Nullsymbol war, was durch die Ausgabe des 
OR-Gatters 12 bestimmt wird, kann die Ausgabe des 
Multiplexers 13 auf die Ausgabe der Exponentiie-
rungsschaltung 11 gesetzt werden.

[0042] Fig. 7 zeig ein Blockschaltbild einer Ausfüh-
rungsform zur Reduktion eines N-Bit-Binäroperan-
den auf sein Residuum modulo pi. Dieser Binärope-
rand kann zum Beispiel vorzeichenlos oder Zweier-
komplement sein. Eine Nullerweiterung 14 kann die 
niedrigstwertigen Ni – 1 Bit des Eingangsoperanden 
nehmen und sein Ni-Bit-Residuum modulo pi produ-
zieren. Der herkömmliche N-Bit-Operand kann in qi + 
1 Gruppen von Bit aufgeteilt werden. Die Ni – 1 
niedrigstwertigen Bit sind bereits modulo pi reduziert, 
werden aber durch eine Nullerweiterung 14 auf Ni Bit 
nullerweitert. Die übrigen N – Ni + 1 Bit des Eingangs-
operanden können in qi Gruppen von Bit aufgeteilt 
werden, die in qi Tabellennachschläge 15A, 15B und 
15C eingegeben werden. Jede Aufteilung von Bit Qij

für j ∊ {0, 1, 2, ..., qi – 1} kann in eine Tabellennach-
schlageschaltung 15A, 15B und 15C eingegeben 
werden. Die Tabellennachschlagungen 15A, 15B
und 15C können dann die Residuen der gewichteten 
Eingaben produzieren. Die von den Tabellennach-
schlagungen 15A, 15B und 15C durchgeführten ma-
thematischen Funktionen können unter Verwendung 
der in der Beschreibung von Fig. 3 besprochenen 
Prozedur auf Schaltungen reduziert werden. Die qi + 
1 Residuen können durch einen modularen Addierer 
16 mit qi + 1 Operanden addiert werden, um das Re-
siduum des ursprünglichen Eingangsoperanden mo-
dulo pi zu produzieren. Zum Beispiel kann die Ausga-
be des Aufteilers 14 und der Tabellennachschlage-
schaltungen 15A, 15B, 15C durch eine modulare Rd-
diererschaltung 16 mit qi + 1 Operanden addiert wer-
den, deren Summe der ursprüngliche N-Bit-Operand, 
reduziert modulo pi, ist.

[0043] Fig. 8 zeigt ein Blockschaltbild einer Ausfüh-
rungsform einer Schaltung zur Berechnung der Sum-
me von L > 2 Operanden (L Residuum) modulo pi. Die 
L Operanden können durch einen Binäraddierer-
baum 17 addiert werden, um die volle Summe der L 
Operanden zu produzieren. Zum Beispiel kann der 
Binäraddierer 17 die vorzeichenlose Summe mit Ni + 
⌈log2L⌉ Bit produzieren. Die Ni – 1 niedrigstwertigen 
Bit können durch einen Aufteiler 20 aus der vollen 
Summe abgeteilt und durch eine Nullerweiterung 21
auf Ni Bit nullerweitert werden. Wie gezeigt, kann die 
Ausgabe des Binäraddierers 17 durch einen Busauf-
teiler 20 aufgeteilt werden und die höchstwertigen 
⌈log2L⌉ + 1 Bit zu einer modulo-pi-Tabellennachschla-
geschaltung 18 geleitet werden, während die 
niedrigstwertigen Ni – 1 Bit zu einer Nullerweiterung 
21 geleitet werden. Die Tabellennachschlagefunktion 
18 kann unter Verwendung der mit Bezug auf die 
Ausführungsform von Fig. 3 besprochenen Prozedur 
auf eine Schaltung reduziert werden. Die Ausgaben 
der modulo-pi-Tabellennachschlageschaltung 18 und 
der Nullerweiterung 21 werden durch einen modu-
lo-pi-Addierer 19 kombiniert, der die Summe der L 
Operanden modulo pi produziert.

[0044] Eine Ausführungsform der vorliegenden Er-
findung kann zur Umsetzung eines L-Operan-
den-RNS-Werts in einen herkömmlichen Wert unter 
Verwendung des chinesischen Residuumtheorems 
verwendet werden. Fig. 9 zeigt ein Blockschaltbild ei-
ner Ausführungsform einer Schaltung zum Umsetzen 
der L-Residuumdarstellung eines Werts in seine vor-
zeichenlose Binärdarstellung durch das chinesische 
Residuumtheorem. Die L Residuen {x0, x1, x2, ..., xL-1} 
können in L separate CRT-Funktions-Tabellennach-
schlageschaltungen 22A, 22B, 22C und 22D einge-
geben werden, die L Ergebnisse produzieren. Die Ta-
bellennachschlagefunktionen 22A, 22B, 22C und 
22D können unter Verwendung der in der Beschrei-
bung von Fig. 3 besprochenen Prozedur auf Schal-
tungen reduziert werden. Diese Ergebnisse (modula-
re Addiererschaltung 23) zum Beispiel zum Produzie-
ren der vorzeichenlosen Binärdarstellung des Ein-
gangswerts.

[0045] Eine Ausführungsform der vorliegenden Er-
findung kann zur Umsetzung eines L-Operan-
den-RNS-Werts in einen herkömmlichen Wert unter 
Verwendung von L-CRT verwendet werden. Fig. 10
zeigt ein Blockschaltbild einer Ausführungsform einer 
Schaltung zum Umsetzen der L-Residiuumdarstel-
lung eines Werts in eine skalierte vorzeichenlose Bi-
när- oder Zweierkomplementdarstellung unter Ver-
wendung der L-CRT-Umsetzung. Die L Residuen {x0, 
x1, x2, ..., xL-1} können in L separate L-CRT-Funkti-
ons-Tabellennachschlageschaltungen 24A, 24B, 
24C und 24D eingegeben werden, die L skalierte Er-
gebnisse produzieren. Die Tabellennachschlagefunk-
tionen 24A, 24B, 24C und 24D können unter Verwen-
dung der in der Beschreibung von Fig. 3 besproche-
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nen Prozedur auf Schaltungen reduziert werden. Die-
se von den Tabellennachschlageschaltungen 24A, 
24B, 24C und 24D produzierten Ergebnisse können 
dann durch eine Binäraddiererschaltung 25 addiert 
werden, um zum Beispiel die skalierte vorzeichenlo-
se Binär- oder Zweierkomplementdarstellung des 
Eingangswerts zu produzieren.

[0046] Eine Ausführungsform der vorliegenden Er-
findung kann zur Umsetzung von CRNS-Operanden 
in QRNS-Form verwendet werden. Fig. 11 zeigt ein 
Blockschaltbild einer Ausführungsform einer Schal-
tung zum Umsetzen eines Werts des komplexen Re-
siduumsystems (CRNS) in einen Wert des quadrati-
schen Residuumsystems (QRNS). Die imaginäre 
Komponente der CRNS-Eingabe bi kann in eine 
Schaltung 26 zur Konstanten-Multiplikation mit ĵ ein-
gegeben werden. Zum Beispiel kann der imaginäre 
Residuumoperand bi in eine Schaltung 26 eingege-
ben werden, die das Produkt des Operanden mit ĵ
nachschlägt. Die Tabellennachschlagefunktion 26
kann unter Verwendung der mit Bezug auf die Aus-
führungsform von Fig. 3 besprochenen Prozedur auf 
eine Schaltung reduziert werden. Die Ausgabe der 
Tabellennachschlagefunktion 26 und der Realteil der 
CRNS-Eingabe ai können durch eine modulare Ad-
diererschaltung 27 modulo pi addiert werden, um die 
QRNS-Komponente zi zu produzieren. Die Ausgabe 
der Tabellennachschlageschaltung 26 kann dann 
durch eine modulare Subtrahiererschaltung 28 mo-
dulo pi von dem Realteil der CRNS-Eingabe subtra-
hiert werden, um die QRNS-Komponente zi* zu pro-
duzieren.

[0047] Eine Ausführungsform der vorliegenden Er-
findung kann für die Umsetzung von QRNS-Operan-
den in CRNS-Form verwendet werden. Fig. 12 zeigt 
ein Blockschaltbild einer Ausführungsform einer 
Schaltung zum Umsetzen eines Werts des quadrati-
schen Residuumsystems in einen Wert des komple-
xen Residuumsystems. Die QRNS-Komponenten zi

und zi* können durch eine modulare Addiererschal-
tung 29 modulo pi addiert werden. Die QRNS-Kom-
ponente zi* kann durch eine modulare Subtrahierer-
schaltung 30 modulo pi von der Komponente z sub-
trahiert werden. Die Ausgabe der modularen Addier-
erschaltung 29 kann in eine Tabellennachschlage-
schaltung 31 der Konstanten-Multiplikation mit 2–1

eingegeben werden, deren Ausgabe die reelle Kom-
ponente der CRNS-Darstellung der Daten ist. Die 
Ausgabe des modularen Addierers 29 kann in eine 
Schaltung 31 eingegeben werden, die das Produkt 
der Summe mit 2–1 nachschlägt. Die Ausgabe der 
modularen Subtrahiererschaltung 30 kann in eine Ta-
bellennachschlageschaltung 32 der Konstanten Mul-
tiplikation mit ĵ–12–1 eingegeben werden, deren Aus-
gabe die imaginäre Komponente der CRNS-Darstel-
lung der Daten ist. Die Ausgabe des modularen Sub-
trahierers 30 kann in eine Schaltung 32 eingegeben 
werden, die das Produkt der Summe mit ĵ–12–1 nach-

schlägt. Die Produkttabellennachschlagefunktionen 
31 und 32 können unter Verwendung der mit Bezug 
auf die Ausführungsform von Fig. 3 besprochenen 
Prozedur auf Schaltungen reduziert werden.

[0048] Die Verwendung von Logikgattern zur Imple-
mentierung verschiedener Tabellennachschlageope-
rationen gemäß der vorliegenden Erfindung kann ge-
genüber dem vorherigen Verfahren der Verwendung 
von Speicherbausteinen vielfältige Vorteile ergeben. 
Die Verwendung von Logikgattern kann eine effizien-
te Implementierung von RNS-Rechenschaltkreisen in 
vielfältigen Technologien erlauben, von denen eini-
gen die Verwendung von RNS-Techniken zuvor nicht 
zugänglich war. Zusätzlich kann die Verwendung von 
Logikgattern anstelle von Speichern für RNS-Re-
chenschaltkreise einen oder mehrere der folgenden 
Vorteile ergeben: Logikgatter, die in die statischer 
CMOS-Logik (Complimentary Metal Oxide Semicon-
ductor) implementiert werden, können bei Fehlen von 
Schaltaktivität in der Schaltung sehr viel weniger 
Strom verbrauchen; Logikgatter können direkt auf 
Tief-Submikrometer-Halbleiterherstellungstechnolo-
gien skaliert werden; Logikgatter können mit Stan-
dard-Logikprüfmethodologien kompatibel sein; Grup-
pen von Logikgattern können auf Geschwindigkeit, 
Strom und Fläche optimiert werden; Gruppen von Lo-
gikgattern können leicht durch manuelle oder auto-
matische Mittel im Pipeline-Verfahren behandelt wer-
den; und Logikgatter können Störungen der Führung 
von Leitungen auf einem Halbleiterbaustein im Ver-
gleich zu Speichern reduzieren.

[0049] Im Gegensatz zu Speichern, die für eine be-
liebige gegebene Tabellennachschlagefunktion einer 
gegebenen Eingangs- und Ausgangsgröße feste Flä-
che und Geschwindigkeit aufweisen, können Grup-
pen von Logikgattern für die zu implementierenden 
spezifischen Tabellennachschlagefunktionen mini-
miert werden. In vielen Fällen kann die zu minimie-
rende Logikfunktion eine gewisse zugrundeliegende 
Struktur aufweisen, die aus einer Betrachtung der Ta-
belle nicht offensichtlich ist. Diese Struktur kann für 
Gruppen von Logikgattern gegenüber Speichern zu 
signifikanten Flächen- und Geschwindigkeitsvortei-
len führen. Ein Tabellennachschlagen für das Pro-
dukt einer Acht-Bit-Eingabe modulo 241 und 2–1 mo-
dulo 241, die in einem Nurlesespeicher (ROM) in ei-
nem 0,2-Mikrometer-Standardzellenprozeß für an-
wendungsspezifische integrierte Schaltungen (ASIC) 
produziert wird, erfordert zum Beispiel die äquivalen-
te Fläche von 2250 Gattern und weist bei 100 MHz 
eine Verlustleistung von 3,6 mW auf, während diesel-
be Tabelle, die als Gatter produziert wird, nur die Flä-
che von 36 Gattern erfordert und bei derselben Ge-
schwindigkeit eine Verlustleistung von 0,23 mW auf-
weist. Eine weitere Tabelle derselben Größe (eine 
Exponentiationstabelle modulo 241) erfordert nur 
eine Fläche von 675 Gattern und weist bei derselben 
Geschwindigkeit eine Verlustleistung von 1,3 mW 
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auf.

[0050] Diese Ergebnisse wurden unter Verwendung 
des zuvor mit Bezug auf die Ausführungsform von 
Fig. 3 beschriebenen Prozesses erhalten. Der oben 
erwähnte ROM hat eine minimale Taktperiode von 
3,0 ns, während das oben erwähnte, als Gatter imp-
lementierte Produktnachschlagen eine maximale 
Verzögerung vom Eingang zum Ausgang von 1,0 ns 
aufweist und die Exponentiationsnachschlagung, die 
als Gatter implementiert wird, eine maximale Verzö-
gerung von 3,0 ns aufweist. Im Fall des Exponentia-
tionsnachschlagens kann eine Verzögerung von 1,2 
ns erzielt werden, obwohl die Fläche der Funktion auf 
957 Gatter vergrößert wird. Dieses Beispiel ist eine 
beeindruckende Demonstration der Fähigkeit der 
vorliegenden Erfindung, die Optimierung des Gleich-
gewichts zwischen Geschwindigkeit, Fläche und 
Strom zu erlauben, indem man RNS-Tabellennach-
schlagevorgänge unter Verwendung von Logikgat-
tern implementiert, anstelle von Speichern wie etwa 
ROMs. Für eine gegebene Implementierungstechno-
logie besitzen ROMs die höchste Speicherdichte al-
ler Arten von Speicher. Zum Beispiel erfordert ein sta-
tischer RAM, der in derselben Technologie wie der 
oben erwähnte ROM und mit denselben Größen- und 
Geschwindigkeitskenngrößen implementiert wird, die 
äquivalente Fläche von 3660 Gattern. Dieses Bei-
spiel zeigt außerdem, dass durch Verwendung von 
Logikgattern zur Implementierung von Tabellennach-
schlagefunktionen ein Kompromiss zwischen Fläche 
und Geschwindigkeit erzielt werden kann, um den 
Bedürfnissen eines bestimmten Entwurfs am besten 
zu genügen.

[0051] Es versteht sich, dass die hier beschriebe-
nen Beispiele und Ausführungsformen lediglich zur 
Veranschaulichung dienen und dass Fachleuten ver-
schiedene Modifikationen oder Änderungen im Hin-
blick dieser einfallen werden, die in den Schutzum-
fang der angefügten Ansprüche aufgenommen wer-
den sollen.

Patentansprüche

1.  Verfahren zum Durchführen mathematischer 
Berechnungen unter Verwendung der Residuuma-
rithmetik, mit einem oder mehreren der folgenden 
Schritte:  
Umsetzen von Daten in Binärcode in Residuen, wo-
bei das Umsetzen von Daten in Binärcode in Residu-
en folgendes umfasst:  
Empfangen von Eingangsdaten in Binärcode; und  
Umsetzen der Eingangsdaten in Binärcode in Resi-
duen, wobei die Eingangsdaten in Binärcode binäre 
Operanden mit einer Vielzahl von Bit umfassen, wo-
bei das Umsetzen der Eingangsdaten in Binärcode in 
Residuen das Berechnen von Werten des Residu-
ums modulo pi mindestens einer Untergruppe der 
Vielzahl von Bit der binären Operanden umfasst,  

wobei das Berechnen von Werten des Residuums 
modulo pi mindestens einer Untergruppe der Vielzahl 
von Bit der binären Operanden unter Verwendung ei-
ner Vielzahl von Logikgattern implementiert wird, wo-
bei die Vielzahl von Logikgattern durch die folgenden 
Schritte ausgewählt werden:  
Berechnen von Werten des Residuums modulo pi für 
die mindestens eine Untergruppe der Vielzahl von Bit 
der binären Operanden;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte des Residuums modulo pi der min-
destens einen Untergruppe der Vielzahl von Bit der 
binären Operanden repräsentieren; und  
Abbilden der logischen Gleichungen auf die Vielzahl 
von Logikgattern;  
Umsetzen von Residuen aus dem komplexen Rest-
klassensystem in das quadratische Restklassensys-
tem, wobei das Umsetzen von Residuen aus dem 
komplexen Restklassensystem in das quadratische 
Restklassensystem folgendes umfasst:  
Empfangen von Eingangsdaten im Residuumformat 
des komplexen Restklassensystems; und Umsetzen 
der Residuen aus dem komplexen Restklassensys-
tem in das quadratische Restklassensystem, wobei 
jedes Residuum des komplexen Restklassensys-
tems einen imaginären Residuumoperanden bi um-
fasst, wobei das Umsetzen der Residuen aus dem 
komplexen Restklassensystem in das quadratische 
Restklassensystem das Multiplizieren des imaginä-
ren Residuumoperanden des eingegebenen komple-
xen Restklassensystems, bi, mit ĵ umfasst, wobei das 
Multiplizieren des imaginären Residuumoperanden 
des eingegebenen komplexen Restklassensystems, 
bi, mit ĵ unter Verwendung einer zweiten Vielzahl von 
Logikgattern implementiert wird, wobei die zweite 
Vielzahl von Logikgattern durch die folgenden Schrit-
te ausgewählt wird:  
Berechnen eines Werts des Produkts von bi und ĵ mo-
dulo pi für jeden möglichen modularen Datenoperan-
den;  
Extrahieren von logischen Gleichungen, die berech-
nete Werte der Multiplizierer mit der ĵ-Funktion reprä-
sentieren; und  
Abbilden der logischen Gleichungen auf die zweite 
Vielzahl von Logikgattern;  
Berechnen modularer Produkte von Residuen, wobei 
das Berechnen modularer Produkte von Residuen 
folgendes umfasst:  
Empfangen von Eingangsdaten im Residuumformat; 
und Berechnen modularer Produkte der Residuen, 
wobei das Berechnen modularer Produkte der Resi-
duen folgendes umfasst: Berechnen eines zahlen-
theoretischen Logarithmus modulo pi für jede der Re-
siduen, wovon das modulare Produkt berechnet wird, 
und Berechnen eines zahlentheoretischen Exponen-
ten modulo pi der Summe der zahlentheoretischen 
Logarithmen der Residuen,  
wobei das Berechnen eines zahlentheoretischen Lo-
garithmus modulo pi für jede der Residuen, wovon 
das modulare Produkts berechnet wird, und das Be-
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rechnen eines zahlentheoretischen modulo pi der 
Summe der zahlentheoretischen Logarithmen der 
Residuen unter Verwendung einer dritten Vielzahl 
von Logikgattern implementiert wird,  
wobei die dritte Vielzahl von Logikgattern durch die 
folgenden Schritte ausgewählt wird:  
Berechnen des zahlentheoretischen Logarithmus 
modulo bi für jedes mögliche Residuum;  
Berechnen des zahlentheoretischen Exponenten 
modulo pi für jede mögliche Summe;  
Extrahieren logischer Gleichungen, die berechnete 
Werte des zahlentheoretischen Logarithmus und der 
Exponentenfunktionen repräsentieren; und  
Abbilden der logischen Gleichung auf die dritte Viel-
zahl von Logikgattern;  
Berechnen modularer Summen von Residuen, wobei 
das Berechnen modularer Summen von Residuen 
folgendes umfasst:  
Empfangen von Eingangsdaten im Residuumformat; 
und  
Berechnen modularer Summen der Residuen, wobei 
das Berechnen modularer Summen der Residuen 
das Produzieren einer vollen Summe der Produkte 
von Residuen umfasst, wobei die volle Summe der 
Residuen eine Vielzahl von Bit aufweist, die der vol-
len Summe der Residuen entspricht, und Berechnen 
von Werten mindestens einer Untergruppe der Viel-
zahl von Bit, die der vollen Summe der Residuen ent-
spricht, modulo pi,  
wobei das Berechnen von Werten mindestens einer 
Untergruppe der Vielzahl von Bit, die der vollen Sum-
me der Residuen entspricht, modulo pi unter Verwen-
dung einer vierten Vielzahl von Logikgattern imple-
mentiert wird, wobei die vierte Vielzahl von Logikgat-
tern durch die folgenden Schritte ausgewählt wird:  
Berechnen der Werte des Residuums modulo pi für 
die mindestens eine Untergruppe der Vielzahl von 
Bit, die der vollen Summe der Residuen entspricht;  
Extrahieren logischer Gleichungen, die die berechne-
ten Residuumwerte modulo pi der mindestens einen 
Untergruppe der Vielzahl von Bit, die der vollen Sum-
me der Residuen entspricht, repräsentieren; und  
Abbilden der logischen Gleichungen auf die vierte 
Vielzahl von Logikgattern;  
Umsetzen von Residuen aus dem quadratischen 
Restklassensystem in das komplexe Restklassen-
system, wobei das Umsetzen von Residuen aus dem 
quadratischen Restklassensystem in das komplexe 
Restklassensystem folgendes umfasst:  
Empfangen von Eingangsdaten im Residuumformat 
des quadratischen Restklassensystems; und  
Umsetzen der Residuen aus dem quadratischen 
Restklassensystem in das komplexe Restklassen-
system, wobei das Umsetzen der Residuen aus dem 
quadratischen Restklassensystem in das komplexe 
Restklassensystem das Berechnen des Produkts 
von 2–1 und der Summe des Residuums zi des qua-
dratischen Restklassensystems und zi* umfasst, wo-
bei das Produkt von 2–1 und der Summe des Residu-
ums zi des quadratischen Restklassensystems und 

zi* die reelle Komponente des Residuums des kom-
plexen Restklassensystem ist, und Berechnen des 
Produkts von ĵ–12–1 und der Differenz modulo pi von zi

minus zi*, wobei das Produkt von ĵ–12–1 und der Diffe-
renz modulo pi von zi minus zi* die imaginäre Kompo-
nente des Residuums des komplexen Restklassen-
systems ist,  
wobei das Berechnen des Produkts von 2–1 und der 
Summe des Residuums des quadratischen Restklas-
sensystems, zi und zi*, und das Berechnen des Pro-
dukts von ĵ–12–1 und der Differenz modulo pi von zi mi-
nus zi* unter Verwendung einer fünften Vielzahl von 
Logikgattern implementiert wird, wobei die fünfte 
Vielzahl von Logikgattern durch die folgenden Schrit-
te ausgewählt wird:  
Berechnen eines Werts des Produkts von zi minus zi* 
und ĵ–12–1 modulo pi für jede mögliche Differenz;  
Berechnen eines Werts des Produkts der Summe 
von zi und zi* und 2–1 für jede mögliche Summe;  
Extrahieren von logischen Gleichungen, die berech-
nete Werte der Multiplizieren-mit-ĵ–12–1 und Multipli-
zieren-mit-2–1-Funktionen repräsentieren; und  
Abbilden der logischen Gleichungen auf die fünfte 
Vielzahl von Logikgattern; und  
Umsetzen von Residuen in Daten in Binärcode, wo-
bei das Umsetzen von Residuen in Daten in Binär-
code folgendes umfasst:  
Empfangen von Eingangsdaten im Residuumformat; 
und  
Umsetzen der Residuen in Daten in Binärcode, wobei 
jedes Residuum ein L-Residuum-Restklassensys-
temwert ist, wobei das Umsetzen der Residuen in 
Daten in Binärcode das Anwenden der Funktion des 
chinesischen Restklassentheorems oder der Funkti-
on des chinesischen L-Restklassentheorems auf 
jede der L Residuen jedes Residuums, um L Ergeb-
nisse zu produzieren, und das modulare Addieren 
der L Ergebnisse umfasst,  
wobei das Anwenden der Funktion des chinesischen 
Restklassentheorems oder der Funktion des chinesi-
schen L-Restklassentheorems auf jede der L Residu-
en jedes Residuums unter Verwendung einer sechs-
ten Vielzahl von Logikgattern implementiert wird, wo-
bei die sechste Vielzahl von Gattern durch die folgen-
den Schritte ausgewählt wird:  
Berechnen eines Werts einer Funktion des chinesi-
schen Restklassentheorems oder des chinesischen 
L-Restklassentheorems für jede mögliche Resi-
duumeingabe;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte des chinesischen Restklassentheo-
rems oder des chinesischen L-Restklassentheorems 
repräsentieren; und  
Abbilden der logischen Gleichungen auf die sechste 
Vielzahl von Logikgatter.

2.  Verfahren nach Anspruch 1, wobei das Verfah-
ren die folgenden Schritte umfasst:  
Empfangen von Eingangsdaten in Binärcode; und  
Umsetzen der Eingangsdaten in Binärcode in Resi-
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duen, wobei die Eingangsdaten in Binärcode binäre 
Operanden mit einer Vielzahl von Bit umfassen; wo-
bei das Umsetzen der Eingangsdaten in Binärcode in 
Residuen das Berechnen von Werten des Residu-
ums modulo pi mindestens einer Untergruppe der 
Vielzahl von Bit der binären Operanden umfasst,  
wobei das Berechnen von Werten des Residuums 
modulo pi mindestens einer Untergruppe der Vielzahl 
von Bit der binären Operanden unter Verwendung ei-
ner Vielzahl von Logikgattern implementiert wird, wo-
bei die Vielzahl von Logikgattern durch die folgenden 
Schritte ausgewählt wird:  
Berechnen der Werte des Residuums modulo pi für 
die mindestens eine Untergruppe der Vielzahl von Bit 
der binären Operanden;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte des Residuums modulo pi der min-
destens einen Untergruppe der Vielzahl von Bit der 
binären Operanden repräsentieren; und  
Abbilden der logischen Gleichungen auf die Vielzahl 
von Logikgattern.

3.  Verfahren nach Anspruch 2, wobei das Verfah-
ren die folgenden Schritte umfasst:  
Umsetzen der Residuen aus dem komplexen Rest-
klassensystem in das quadratische Restklassensys-
tem, wobei jedes Residuum des komplexen Rest-
klassensystems einen imaginären Residuumoperan-
den bi umfasst, wobei das Umsetzen der Residuen 
aus dem komplexen Restklassensystem in das qua-
dratische Restklassensystem das Multiplizieren des 
imaginären Residuumoperanden des eingegebenen 
komplexen Restklassensystems, bi, mit ĵ umfasst,  
wobei das Multiplizieren des imaginären Residuumo-
peranden des eingegebenen komplexen Restklas-
sensystems, bi, mit ĵ unter Verwendung der zweiten 
Vielzahl von Logikgattern implementiert wird.

4.  Verfahren nach Anspruch 3, wobei das Verfah-
ren die folgenden Schritte umfasst:  
Berechnen modularer Produkte der Residuen des 
quadratischen Restklassensystems, wobei das Be-
rechnen modularer Produkte von Residuen des qua-
dratischen Restklassensystems das Berechnen ei-
nes zahlentheoretischen Logarithmus modulo pi für 
jede der Residuen des quadratischen Restklassen-
systems, wovon das modulare Produkt berechnet 
wird, und das Berechnen eines zahlentheoretischen 
Exponenten modulo pi der Summe der zahlentheore-
tischen Logarithmen der Residuen des quadrati-
schen Restklassensystems umfasst,  
wobei das Berechnen eines zahlentheoretischen Lo-
garithmus modulo pi für jede der Residuen des qua-
dratischen Restklassensystems, wovon das modula-
re Produkt berechnet wird, und das Berechnen eines 
zahlentheoretischen Exponenten modulo pi der Sum-
me der zahlentheoretischen Logarithmen der Resi-
duen des quadratischen Restklassensystems unter 
Verwendung der dritte Vielzahl von Logikgattern imp-
lementiert wird.

5.  Verfahren nach Anspruch 4, wobei das Verfah-
ren die folgenden Schritte umfasst:  
Berechnen modularer Summen der Produkte von 
Residuen, wobei das Berechnen modularer Summen 
der Produkte von Residuen das Produzieren einer 
vollen Summe der Produkte der Residuen umfasst, 
wobei die volle Summe der Produkte eine Vielzahl 
von Bit aufweist, die der vollen Summe der Produkte 
entspricht, und Berechnen von Werten mindestens 
einer Untergruppe der Vielzahl von Bit, die der vollen 
Summe der Produkte entspricht, modulo pi,  
wobei das Berechnen von Werten mindestens einer 
Untergruppe der Vielzahl von Bit, die der vollen Sum-
me der Produkte entspricht, modulo pi, unter Verwen-
dung der vierten Vielzahl von Logikgattern implemen-
tiert wird.

6.  Verfahren nach Anspruch 5, wobei das Verfah-
ren die folgenden Schritte umfasst:  
Umsetzen der modularen Summen aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei das Umsetzen der modularen Summen aus 
dem quadratischen Restklassensystem in das kom-
plexe Restklassensystem das Berechnen des Pro-
dukts von 2–1 und der Summe des Residuums zi des 
quadratischen Restklassensystems und zi* umfasst, 
wobei das Produkt von 2–1 und der Summe des Resi-
duums zi des quadratischen Restklassensystems 
und zi* die reelle Komponente des Residuums des 
komplexen Restklassensystems ist, und Berechnen 
des Produkts von ĵ–12–1 und der Differenz von zi minus 
zi* modulo pi, wobei das Produkt von ĵ–12–1 und der 
Differenz von zi minus zi*, modulo pi, die imaginäre 
Komponente des Residuums des komplexen Rest-
klassensystems ist,  
wobei das Berechnen des Produkts von 2–1 und der 
Summe des Residuums zi des quadratischen Rest-
klassensystems und zi* und das Berechnen des Pro-
dukts von ĵ–12–1 und der Differenz von zi minus zi*, mo-
dulo pi, unter Verwendung der fünften Vielzahl von 
Logikgattern implementiert wird.

7.  Verfahren nach Anspruch 6, wobei das Verfah-
ren die folgenden Schritte umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei jedes Residuum des komplexen Restklassen-
systems ein L-Residuum-Restklassensystemwert ist, 
wobei das Umsetzen der Residuen des komplexen 
Restklassensystems in Daten in Binärcode das An-
wenden der Funktion des chinesischen Restklassen-
theorems oder der Funktion des chinesischen 
L-Restklassensystem auf jede der L Residuen jedes 
Residuums des komplexen Restklassensystems, um 
L Ergebnisse zu produzieren, und das modulare Ad-
dieren der L Ergebnisse umfasst,  
wobei das Anwenden der Funktion des chinesischen 
Restklassentheorems oder der Funktion des chinesi-
schen L-Restklassentheorems auf jede der L Residu-
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en jedes Residuums des komplexen Restklassen-
systems unter Verwendung der sechsten Vielzahl 
von Logikgattern implementiert wird.

8.  Verfahren nach Anspruch 5, wobei das Verfah-
ren die folgenden Schritte umfasst:  
Umsetzen der Residuen des quadratischen Rest-
klassensystems in Daten in Binärcode,  
wobei jedes Residuum des komplexen Restklassen-
systems ein L-Residuum-Restklassensystemwert ist, 
wobei das Umsetzen der Residuen des komplexen 
Restklassensystems in Daten in Binärcode das An-
wenden der Funktion des chinesischen Restklassen-
theorems oder der Funktion des chinesischen 
L-Restklassentheorems auf jede der L Residuen je-
des Residuums des komplexen Restklassensys-
tems, um L Ergebnisse zu produzieren, und das mo-
dulare Addieren der L Ergebnisse umfasst,  
wobei das Anwenden der Funktion des chinesischen 
Restklassentheorems oder der Funktion des chinesi-
schen L-Restklassentheorems auf jede der L Residu-
en jedes Residuums des komplexen Restklassen-
systems unter Verwendung der sechsten Vielzahl 
von Logikgattern implementiert wird.

9.  Verfahren nach Anspruch 4, wobei das Verfah-
ren den folgenden Schritt umfasst:  
Umsetzen der modularen Produkte aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen Pro-
dukte aus dem quadratischen Restklassensystem in 
das komplexe Restklassensystem unter Verwendung 
der fünften Vielzahl von Logikgattern implementiert 
wird.

10.  Verfahren nach Anspruch 9, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung einer sechsten Vielzahl von 
Logikgattern implementiert wird.

11.  Verfahren nach Anspruch 4, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Produkte in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen Pro-
dukte in Daten in Binärcode unter Verwendung der 
sechsten Vielzahl von Logikgattern implementiert 
wird.

12.  Verfahren nach Anspruch 3, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Berechnen modularer Summen der Residuen des 
quadratischen Restklassensystems, wobei der 
Schritt des Berechnens modularer Summen der Re-
siduen des quadratischen Restklassensystems unter 

Verwendung der vierten Vielzahl von Logikgattern im-
plementiert wird.

13.  Verfahren nach Anspruch 12, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen 
Summen aus dem quadratischen Restklassensys-
tem in das komplexe Restklassensystem unter Ver-
wendung der fünften Vielzahl von Logikgattern imple-
mentiert wird.

14.  Verfahren nach Anspruch 13, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

15.  Verfahren nach Anspruch 12, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen 
Summen in Daten in Binärcode unter Verwendung 
der sechsten Vielzahl von Logikgattern implementiert 
wird.

16.  Verfahren nach Anspruch 3, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des quadratischen Rest-
klassensystems aus dem quadratischen Restklas-
sensystem in das komplexe Restklassensystem,  
wobei der Schritt des Umsetzens der Residuen des 
quadratischen Restklassensystems aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem unter Verwendung der fünften Viel-
zahl von Logikgattern implementiert wird.

17.  Verfahren nach Anspruch 16, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

18.  Verfahren nach Anspruch 3, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des quadratischen Rest-
klassensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
quadratischen Restklassensystems in Daten in Bi-
närcode unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.
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19.  Verfahren nach Anspruch 2, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Berechnen modularer Produkte der Residuen,  
wobei der Schritt des Berechnens modularer Produk-
te der Residuen unter Verwendung der dritten Viel-
zahl von Logikgattern implementiert wird.

20.  Verfahren nach Anspruch 19, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Berechnen modularer Summen der modularen Pro-
dukte von Residuen,  
wobei der Schritt des Berechnens modularer Sum-
men der modularen Produkte von Residuen unter 
Verwendung der vierten Vielzahl von Logikgattern im-
plementiert wird.

21.  Verfahren nach Anspruch 20, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen aus dem quadra-
tischen Restklassensystems in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen 
Summen aus dem quadratischen Restklassensys-
tem in das komplexe Restklassensystem unter Ver-
wendung der fünften Vielzahl von Logikgattern imple-
mentiert wird.

22.  Verfahren nach Anspruch 21, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

23.  Verfahren nach Anspruch 20, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen 
Summen in Daten in Binärcode unter Verwendung 
der sechsten Vielzahl von Logikgattern implementiert 
wird.

24.  Verfahren nach Anspruch 19, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Produkte aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen Pro-
dukte aus dem quadratischen Restklassensystem in 
das komplexe Restklassensystem unter Verwendung 
der fünften Vielzahl von Logikgattern implementiert 
wird.

25.  Verfahren nach Anspruch 24, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  

wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

26.  Verfahren nach Anspruch 19, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Produkte in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen Pro-
dukte in Daten in Binärcode unter Verwendung der 
sechsten Vielzahl von Logikgattern implementiert 
wird.

27.  Verfahren nach Anspruch 2, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Berechnen modularer Summen der Residuen,  
wobei der Schritt des Berechnens modularer Sum-
men der Residuen unter Verwendung der vierten 
Vielzahl von Logikgattern implementiert wird.

28.  Verfahren nach Anspruch 27, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen 
Summen aus dem quadratischen Restklassensys-
tem in das komplexe Restklassensystem unter Ver-
wendung der fünften Vielzahl von Logikgattern imple-
mentiert wird.

29.  Verfahren nach Anspruch 28, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

30.  Verfahren nach Anspruch 27, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen 
Summen in Daten in Binärcode unter Verwendung 
der sechsten Vielzahl von Logikgattern implementiert 
wird.

31.  Verfahren nach Anspruch 2, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen aus dem quadratischen 
Restklassensystem in das komplexe Restklassen-
system,  
wobei der Schritt des Umsetzens der Residuen aus 
dem quadratischen Restklassensystem in das kom-
plexe Restklassensystem unter Verwendung der 
fünften Vielzahl von Logikgattern implementiert wird.
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32.  Verfahren nach Anspruch 31, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

33.  Verfahren nach Anspruch 2, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen in Da-
ten in Binärcode unter Verwendung der sechsten 
Vielzahl von Logikgattern implementiert wird.

34.  Verfahren nach Anspruch 1, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Empfangen von Eingangsdaten im Residuumformat 
des komplexen Restklassensystems; und  
Umsetzen der Residuen aus dem komplexen Rest-
klassensystem in das quadratische Restklassensys-
tem, wobei jedes Residuum des komplexen Rest-
klassensystems einen imaginären Residuumoperan-
den bi umfasst, wobei das Umsetzen der Residuen 
aus dem komplexen Restklassensystem in das qua-
dratische Restklassensystem das Multiplizieren des 
imaginären Residuumoperanden des eingegebenen 
komplexen Restklassensystems, bi, mit ĵ umfasst, 
wobei das Multiplizieren des imaginären Residuumo-
peranden des eingegebenen komplexen Restklas-
sensystems, bi, mit ĵ unter Verwendung der fünften 
Vielzahl von Logikgattern implementiert wird, wobei 
die fünfte Vielzahl von Logikgattern durch die folgen-
den Schritte ausgewählt wird:  
Berechnen eines Werts des Produkts von bi und ĵ, 
modulo pi, für jeden möglichen modularen Datenope-
randen;  
Extrahieren von logischen Gleichungen, die berech-
nete Werte der Multiplizieren mit-ĵ-Funktion repräsen-
tieren; und  
Abbilden der logischen Gleichungen auf die fünfte 
Vielzahl von Logikgattern.

35.  Verfahren nach Anspruch 4, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Berechnen modularer Produkte der Residuen des 
quadratischen Restklassensystems,  
wobei der Schritt des Berechnens modularer Produk-
te der Residuen des quadratischen Restklassensys-
tems unter Verwendung der dritten Vielzahl von Lo-
gikgattern implementiert wird.

36.  Verfahren nach Anspruch 35, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Berechnen modularer Summen der Produkte von 
Residuen,  
wobei der Schritt des Berechnens modularer Sum-
men der Produkte von Residuen unter Verwendung 
der vierten Vielzahl von Logikgattern implementiert 

wird.

37.  Verfahren nach Anspruch 36, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen 
Summen aus dem quadratischen Restklassensys-
tem in das komplexe Restklassensystem unter Ver-
wendung der fünften Vielzahl von Logikgattern imple-
mentiert wird.

38.  Verfahren nach Anspruch 37, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

39.  Verfahren nach Anspruch 36, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des quadratischen Rest-
klassensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
quadratischen Restklassensystems in Daten in Bi-
närcode unter Verwendung der fünften Vielzahl von 
Logikgattern implementiert wird.

40.  Verfahren nach Anspruch 35, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen modularer Produkte aus 
dem quadratischen Restklassensystem in das kom-
plexe Restklassensystem,  
wobei der Schritt des Umsetzens der Residuen mo-
dularer Produkte aus dem quadratischen Restklas-
sensystem in das komplexe Restklassensystem un-
ter Verwendung der fünften Vielzahl von Logikgattern 
implementiert wird.

41.  Verfahren nach Anspruch 40, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

42.  Verfahren nach Anspruch 35, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Produkte in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen Pro-
dukte in Daten in Binärcode unter Verwendung der 
sechsten Vielzahl von Logikgattern implementiert 
wird.
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43.  Verfahren nach Anspruch 34, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Berechnen modularer Summen der Residuen des 
quadratischen Restklassensystems,  
wobei der Schritt des Berechnens modularer Sum-
men der Residuen des quadratischen Restklassen-
systems unter Verwendung der vierten Vielzahl von 
Logikgattern implementiert wird.

44.  Verfahren nach Anspruch 43, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen 
Summen aus dem quadratischen Restklassensys-
tem in das komplexe Restklassensystem unter Ver-
wendung der fünften Vielzahl von Logikgattern imple-
mentiert wird.

45.  Verfahren nach Anspruch 44, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

46.  Verfahren nach Anspruch 43, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen 
Summen in Daten in Binärcode unter Verwendung 
der sechsten Vielzahl von Logikgattern implementiert 
wird.

47.  Verfahren nach Anspruch 34, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des quadratischen Rest-
klassensystems aus dem quadratischen Restklas-
sensystem in das komplexe Restklassensystem,  
wobei der Schritt des Umsetzens der Residuen des 
quadratischen Restklassensystems aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem unter Verwendung der fünften Viel-
zahl von Logikgattern implementiert wird.

48.  Verfahren nach Anspruch 47, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

49.  Verfahren nach Anspruch 34, wobei das Ver-
fahren den folgenden Schritt umfasst:  

Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

50.  Verfahren nach Anspruch 1, wobei das Ver-
fahren die folgenden Schritte umfasst:  
Empfangen von Eingangsdaten im Residuumformat; 
und  
Berechnen modularer Produkte der Residuen,  
wobei das Berechnen modularer Produkte der Resi-
duen das Berechnen eines zahlentheoretischen Log-
arithmus modulo pi für jede der Residuen, wovon das 
modulare Produkt berechnet wird, und das Berech-
nen eines zahlentheoretischen Exponenten modulo 
pi der Summe der zahlentheoretischen Logarithmen 
der Residuen umfasst,  
wobei das Berechnen eines zahlentheoretischen Lo-
garithmus modulo pi für jede der Residuen, wovon 
das modulare Produkt berechnet wird, und das Be-
rechnen eines zahlentheoretischen Exponenten mo-
dulo pi der Summe der zahlentheoretischen Logarith-
men der Residuen unter Verwendung einer dritten 
Vielzahl von Logikgattern implementiert wird,  
wobei die Vielzahl von Logikgattern durch die folgen-
den Schritte ausgewählt wird:  
Berechnen des zahlentheoretischen Logarithmus 
modulo pi für jedes mögliche Residuum;  
Berechnen des zahlentheoretischen Exponenten 
modulo pi für jede mögliche Summe;  
Extrahieren logischer Gleichungen, die berechnete 
Werte der Funktionen des zahlentheoretischen Log-
arithmus und des Exponenten repräsentieren; und  
Abbilden der logischen Gleichung auf die dritte Viel-
zahl von Logikgattern.

51.  Verfahren nach Anspruch 50, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Berechnen modularer Summen der Produkte von 
Residuen,  
wobei der Schritt des Berechnens modularer Sum-
men der Produkte von Residuen unter Verwendung 
der vierten Vielzahl von Logikgattern implementiert 
wird.

52.  Verfahren nach Anspruch 51, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen 
Summen aus dem quadratischen Restklassensys-
tem in das komplexe Restklassensystem unter Ver-
wendung der vierten Vielzahl von Logikgattern imple-
mentiert wird.

53.  Verfahren nach Anspruch 52, wobei das Ver-
fahren den folgenden Schritt umfasst:  
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Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

54.  Verfahren nach Anspruch 51, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Summen in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen 
Summen in Daten in Binärcode unter Verwendung 
der sechsten Vielzahl von Logikgattern implementiert 
wird.

55.  Verfahren nach Anspruch 50, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Produkte aus dem quadra-
tischen Restklassensystem in das komplexe Rest-
klassensystem,  
wobei der Schritt des Umsetzens der modularen Pro-
dukte aus dem quadratischen Restklassensystem in 
das komplexe Restklassensystem unter Verwendung 
der fünften Vielzahl von Logikgattern implementiert 
wird.

56.  Verfahren nach Anspruch 55, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

57.  Verfahren nach Anspruch 50, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der modularen Produkte in Daten in Binär-
code,  
wobei der Schritt des Umsetzens der modularen Pro-
dukte in Daten in Binärcode unter Verwendung der 
sechsten Vielzahl von Logikgattern implementiert 
wird.

58.  Verfahren nach Anspruch 1, wobei das Ver-
fahren die folgenden Schritte umfasst:  
Empfangen von Eingangsdaten im Residuumformat; 
und  
Berechnen modularer Summen der Residuen,  
wobei das Berechnen modularer Summen der Resi-
duen das Produzieren einer vollen Summe der Pro-
dukte der Residuen umfasst, wobei die volle Summe 
der Residuen eine Vielzahl von Bit aufweist, die der 
vollen Summe der Residuen entspricht, und Berech-
nen von Werten mindestens einer Untergruppe der 
Vielzahl von Bit, die der vollen Summe der Residuen 
entspricht, modulo pi,  
wobei das Berechnen von Werten mindestens einer 
Untergruppe der Vielzahl von Bit, die der vollen Sum-

me der Residuen entspricht, modulo pi, unter Ver-
wendung einer Vielzahl von Logikgattern implemen-
tiert wird, wobei die Vielzahl von Logikgattern durch 
die folgenden Schritte ausgewählt wird:  
Berechnen der Werte des Residuums modulo pi für 
die mindestens eine Untergruppe der Vielzahl von 
Bit, die der vollen Summe der Residuen entspricht;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte des Residuums modulo pi der min-
destens einen Untergruppe der Vielzahl von Bit, die 
der vollen Summe der Residuen entspricht, reprä-
sentieren; und  
Abbilden der logischen Gleichungen auf die vierte 
Vielzahl von Logikgattern.

59.  Verfahren nach Anspruch 58, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen aus dem quadratischen 
Restklassensystem in das komplexe Restklassen-
system,  
wobei der Schritt des Umsetzens der Residuen aus 
dem quadratischen Restklassensystem in das kom-
plexe Restklassensystem unter Verwendung der 
fünften Vielzahl von Logikgattern implementiert wird.

60.  Verfahren nach Anspruch 59, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

61.  Verfahren nach Anspruch 58, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen in Da-
ten in Binärcode unter Verwendung der sechsten 
Vielzahl von Logikgattern implementiert wird.

62.  Verfahren nach Anspruch 1, wobei das Ver-
fahren die folgenden Schritte umfasst:  
Empfangen von Eingangsdaten im Residuumformat 
des quadratischen Restklassensystems; und  
Umsetzen der Residuen aus dem quadratischen 
Restklassensystem in das komplexe Restklassen-
system, wobei das Umsetzen der Residuen aus dem 
quadratischen Restklassensystem in das komplexe 
Restklassensystem das Berechnen des Produkts 
von 2–1 und der Summe des Residuums zi des qua-
dratischen Restklassensystems und zi* umfasst, wo-
bei das Produkt von 2–1 und der Summe des Residu-
ums zi des quadratischen Restklassensystems und 
zi* die reelle Komponente des Residuums des kom-
plexen Restklassensystems ist, sowie das Berech-
nen des Produkts von ĵ–12–1 und der Differenz von zi

minus zi*, modulo pi, wobei das Produkt von ĵ–12–1 und 
der Differenz von zi minus zi*, modulo pi, die imaginä-
re Komponente des Residuums des komplexen 
17/27



DE 600 32 181 T2    2007.03.29
Restklassensystems ist,  
wobei das Berechnen des Produkts von 2–1 und der 
Summe des Residuums zi des quadratischen Rest-
klassensystems und zi* und das Berechnen des Pro-
dukts von ĵ–12–1 und der Differenz von zi minus zi*, mo-
dulo pi, unter Verwendung der fünften Vielzahl von 
Logikgattern implementiert wird, wobei die fünfte 
Vielzahl von Logikgattern durch die folgenden Schrit-
te ausgewählt wird:  
Berechnen eines Werts des Produkts von zi minus zi* 
und ĵ–12–1, modulo pi, für jede mögliche Differenz;  
Berechnen eines Werts des Produkts der Summe 
von zi und zi* und 2–1 für jede mögliche Summe;  
Extrahieren von logischen Gleichungen, die berech-
nete Werte der Multiplizieren-mit-ĵ–12–1- und Multipli-
zieren-mit-2–1-Funktionen repräsentieren; und  
Abbilden der logischen Gleichungen auf die fünfte 
Vielzahl von Logikgattern.

63.  Verfahren nach Anspruch 62, wobei das Ver-
fahren den folgenden Schritt umfasst:  
Umsetzen der Residuen des komplexen Restklas-
sensystems in Daten in Binärcode,  
wobei der Schritt des Umsetzens der Residuen des 
komplexen Restklassensystems in Daten in Binär-
code unter Verwendung der sechsten Vielzahl von 
Logikgattern implementiert wird.

64.  Verfahren nach Anspruch 1, wobei das Ver-
fahren die folgenden Schritte umfasst:  
Empfangen von Eingangsdaten im Residuumformat; 
und  
Umsetzen der Residuen in Daten in Binärcode,  
wobei jedes Residuum ein L-Residuum-Restklassen-
systemwert ist, wobei das Umsetzen der Residuen in 
Daten in Binärcode das Anwenden der Funktion des 
chinesischen Restklassentheorems oder der Funkti-
on des chinesischen L-Restklassentheorems auf 
jede der L Residuen jedes Residuums, um L Ergeb-
nisse zu produzieren, und das modulare Addieren 
der L Ergebnisse umfasst,  
wobei das Anwenden der Funktion des chinesischen 
Restklassentheorems oder der Funktion des chinesi-
schen L-Restklassentheorems auf jede der L Residu-
en jedes Residuums unter Verwendung der sechsten 
Vielzahl von Logikgattern implementiert wird, wobei 
die sechste Vielzahl von Gattern durch die folgenden 
Schritte ausgewählt wird:  
Berechnen eines Werts einer Funktion des chinesi-
schen Restklassentheorems oder des chinesischen 
L-Restklassentheorems für jede mögliche Resi-
duumeingabe;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte des chinesischen Restklassentheo-
rems oder des chinesischen L-Restklassentheorems 
repräsentieren; und  
Abbilden der logischen Gleichungen auf die sechste 
Vielzahl von Logikgattern.

65.  Verfahren nach Anspruch 1, wobei die Viel-

zahl von Logikgattern aus der folgenden Gruppe aus-
gewählt wird:  
angepasste digitale Logik, Standardzellenlogik, auf 
Zellen basierende Logik-Arrays, Gate-Arrays, am 
Einsatzort programmierbare Gate-Arrays und pro-
grammierbare Logikbausteine.

66.  Verfahren nach Anspruch 2, wobei der Binär-
code aus der folgenden Gruppe ausgewählt wird:  
Einerkomplement, Vorzeichen-Betrag, vorzeichenlos 
binär, Zweierkomplement, Festbasis und Gleitbasis.

67.  Verfahren nach Anspruch 1 zum Berechnen 
des Produkts zweier Residuen, modulo pi, mit den fol-
genden Schritten:  
Empfangen eines ersten zahlentheoretischen Loga-
rithmus eines ersten Residuums, die einem ersten 
Eingangsoperanden entspricht, wobei die erste Zah-
lentheoretische ein Nullsymbol ist, wenn das erste 
Residuum null ist;  
Empfangen eines zweiten zahlentheoretischen Loga-
rithmus eines zweiten Residuums, die einem zweiten 
Eingangsoperanden entspricht, wobei die zweite 
Zahlentheoretische das Nullsymbol ist, wenn des 
zweiten Residuums null ist;  
Addieren des ersten zahlentheoretischen Logarith-
mus und des zweiten zahlentheoretischen Logarith-
mus modulo pi – 1 zu dem Produkt einer Summe des 
ersten Eingangsoperanden und des zweiten Ein-
gangsoperanden modulo pi – 1;  
Erzeugen einer Exponentiierung der Summe des ers-
ten Eingangsoperanden und des zweiten Eingangso-
peranden modulo pi – 1, wobei der Schritt des Erzeu-
gens einer Exponentiierung durch Eingeben der 
Summe modulo pi – 1 in die dritte Vielzahl von Logik-
gattern erzielt wird, wobei die dritte Vielzahl von Lo-
gikgattern durch die folgenden Schritte ausgewählt 
wird:  
Berechnen eines Werts einer zahlentheoretischen 
Expontiierungsfunktion für jede mögliche Eingabe;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte der zahlentheoretischen Exponenti-
ierungsfunktion repräsentieren;  
Abbilden der logischen Gleichung auf die dritte Viel-
zahl von Logikgattern;  
wobei die Ausgabe der dritten Vielzahl von Logikgat-
tern das Produkt des ersten Residuums und des 
zweiten Residuums, modulo pi, ist.

68.  Verfahren nach Anspruch 67, wobei der 
Schritt des Addierens des ersten und des zweiten 
zahlentheoretischen Logarithmus unter Verwendung 
einer modularen Addiererschaltung erzielt wird.

69.  Verfahren nach Anspruch 67, ferner mit dem 
folgenden Schritt:  
Setzen der Ausgabe der dritten Vielzahl von Logik-
gattern auf Null, wenn der erste zahlentheoretische 
Logarithmus und/oder der zweite zahlentheoretische 
Logarithmus ein Nullsymbol ist.
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70.  Verfahren nach Anspruch 1 zur Reduktion ei-
nes N-Bit-Binäroperanden auf ein Residuum, modulo 
pi, mit den folgenden Schritten:  
Empfangen eines N-Bit-Operanden, der in qi + 1 
Gruppen von Bit aufgeteilt wird;  
Nullerweitern der Ni – 1 niedrigstwertigen Bit;  
Eingeben jeder der übrigen qi Aufteilungen von Bit Qij

für j ∊ {0, 1, 2, ..., qi – 1} in entsprechende qi Vielzah-
len von Logikgattern, wobei jede der qi Vielzahlen von 
Logikgattern ein Residuum der Eingangsaufteilung 
produziert;  
Addieren der nullerweiterten Ni – 1 niedrigstwertigen 
Bit und der qi Residuen der qi Aufteilungen, modulo 
pi, um ein Residuum modulo pi des N-Bit-Operanden 
zu produzieren.

71.  Verfahren nach Anspruch 70, wobei die qi

Vielzahlen von Logikgattern durch die folgenden 
Schritte ausgewählt werden:  
Berechnen eines Werts einer modularen Reduktions-
funktion für jede mögliche Eingabe für jede der übri-
gen qi Aufteilungen;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte der modularen Reduktionsfunktion 
repräsentieren; und  
Abbilden der logischen Gleichungen auf qi Vielzahlen 
von Logikgattern.

72.  Verfahren nach Anspruch 71, ferner mit dem 
Schritt des Minimierens der logischen Gleichungen 
vor dem Schritt des Abbildens der logischen Glei-
chungen auf die qi Vielzahlen von Logikgattern.

73.  Verfahren nach Anspruch 1 zum Umsetzen 
eines L-Operanden-RNS-Werts in eine binäre Dar-
stellung unter Verwendung des chinesischen Rest-
klassentheorems (CRT), mit den folgenden Schritten:  
Eingeben von L Residuen in entsprechende L Viel-
zahlen von Logikgattern, um L Ergebnisse zu produ-
zieren;  
Addieren der L Ergebnisse modulo M, um eine binäre 
Darstellung eines L-Operanden-RNS-Werts zu pro-
duzieren,  
wobei die sechste Vielzahl von Logikgattern durch 
die folgenden Schritte ausgewählt wird:  
Berechnen eines Werts einer CRT-Funktion für jede 
mögliche Eingabe;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte der CRT-Funktion repräsentieren; 
und  
Abbilden der logischen Gleichung auf die sechste 
Vielzahl von Logikgattern.

74.  Verfahren nach Anspruch 73, ferner mit dem 
Schritt des Minimierens von logischen Gleichungen 
vor dem Schritt des Abbildens der logischen Glei-
chung auf die Vielzahl von Logikgattern.

75.  Vorrichtung zur Durchführung mathemati-
scher Berechnungen unter Verwendung von Residu-

umarithmetik, mit einem oder mehreren der folgen-
den:  
ein Mittel zum Umsetzen von Daten in Binärcode in 
Residuen, wobei die Eingangsdaten in Binärcode bi-
näre Operanden mit einer Vielzahl von Bit umfassen, 
wobei das Mittel zum Umsetzen der Daten in Binär-
code in Residuen ein Mittel zum Berechnen von Wer-
ten des Residuums modulo pi mindestens einer Resi-
duumuntergruppe der Vielzahl von Bit der binären 
Operanden umfasst,  
wobei das Mittel zum Berechnen von Werten des Re-
siduums modulo pi mindestens einer Untergruppe 
der Vielzahl von Bit der binären Operanden eine ent-
sprechende Vielzahl von Logikgattern umfasst, wobei 
die Vielzahl von Logikgattern durch die folgenden 
Schritte ausgewählt wird:  
Berechnen der Werte des Residuums modulo pi für 
die mindestens eine Untergruppe der Vielzahl von Bit 
der binären Operanden;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte des Residuums modulo pi der min-
destens einen Untergruppe der Vielzahl von Bit der 
binären Operanden repräsentieren; und  
Abbilden der logischen Gleichungen auf die Vielzahl 
von Logikgattern;  
ein Mittel zum Umsetzen von Residuen aus dem 
komplexen Restklassensystem in das quadratische 
Restklassensystem, wobei jedes Residuum des 
komplexen Restklassensystems einen imaginären 
Residuumoperanden bi umfasst, wobei das Mittel 
zum Umsetzen der Residuen aus dem komplexen 
Restklassensystem in das quadratische Restklas-
sensystem ein Mittel zum Multiplizieren des imaginä-
ren Residuumoperanden des eingegebenen komple-
xen Restklassensystems, bi, mit ĵ umfasst, wobei das 
Mittel zum Multiplizieren des imaginären Residuumo-
peranden des eingegebenen komplexen Restklas-
sensystems, bi, mit ĵ eine zweite Vielzahl von Logik-
gattern umfasst, wobei die zweite Vielzahl von Logik-
gattern durch die folgenden Schritte ausgewählt wird:  
Berechnen eines Werts des Produkts von bi und ĵ mo-
dulo pi für jeden möglichen modularen Datenoperan-
den;  
Extrahieren von logischen Gleichungen, die berech-
nete Werte der Multiplizieren-mit-ĵ-Funktion reprä-
sentieren; und  
Abbilden der logischen Gleichungen auf die zweite 
Vielzahl von Logikgattern;  
ein Mittel zum Berechnen modularer Produkte von 
Residuen, wobei das Mittel zum Berechnen modula-
rer Produkte der Residuen des quadratischen Rest-
klassensystems ein Mittel zum Berechnen eines zah-
lentheoretischen Logarithmus modulo pi für jede der 
Residuen des quadratischen Restklassensystems, 
wovon das modulare Produkt berechnet wird, und ein 
Mittel zum Berechnen eines zahlentheoretischen Ex-
ponenten modulo pi der Summe der zahlentheoreti-
schen Logarithmen der Residuen des quadratischen 
Restklassensystems umfasst, wobei das Mittel zum 
Berechnen eines zahlentheoretischen Logarithmus 
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modulo pi für jede der Residuen des quadratischen 
Restklassensystems, wovon das modulare Produkt 
berechnet wird, und ein Mittel zum Berechnen eines 
zahlentheoretischen Exponenten modulo pi der Sum-
me der zahlentheoretischen Logarithmen der Resi-
duen des quadratischen Restklassensystems eine 
dritte Vielzahl von Logikgattern umfassen, wobei die 
dritte Vielzahl von Logikgattern durch die folgenden 
Schritte ausgewählt wird:  
Berechnen des zahlentheoretischen Logarithmus 
modulo pi für jedes mögliche Residuum;  
Berechnen des zahlentheoretischen Exponenten 
modulo pi für jede mögliche Summe;  
Extrahieren von logischen Gleichungen, die berech-
nete Werte der Funktionen des zahlentheoretischen 
Logarithmus und des Exponenten repräsentieren; 
und  
Abbilden der logischen Gleichungen auf die dritte 
Vielzahl von Logikgattern;  
ein Mittel zum Berechnen modularer Summen von 
Residuen, wobei das Mittel zum Berechnen modula-
rer Summen der Produkte von Residuen ein Mittel 
zum Produzieren einer vollen Summe der Produkte 
von Residuen umfasst, wobei die volle Summe der 
Produkte eine Vielzahl von Bit aufweist, die der vollen 
Summe der Produkte entspricht, und ein Mittel zum 
Berechnen von Werten mindestens einer Untergrup-
pe der Vielzahl von Bit, die der vollen Summe der 
Produkte entspricht, modulo pi, wobei das Mittel zum 
Berechnen von Werten mindestens einer Untergrup-
pe der Vielzahl von Bit, die der vollen Summe der 
Produkte entspricht, modulo pi, eine vierte Vielzahl 
von Logikgattern umfasst, wobei die vierte Vielzahl 
von Logikgattern durch die folgenden Schritte ausge-
wählt wird:  
Berechnen von Werten des Residuums modulo pi für 
die mindestens eine Untergruppe der vierten Vielzahl 
von Bit, die der vollen Summe der Residuenprodukte 
entspricht;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte des Residuums modulo pi der min-
destens einen Untergruppe der Vielzahl von Bit, die 
der vollen Summe der Residuenprodukte entspricht, 
repräsentieren und  
Abbilden der logischen Gleichungen auf die vierte 
Vielzahl von Logikgattern;  
ein Mittel zum Umsetzen von Residuen aus dem qua-
dratischen Restklassensystem in das komplexe 
Restklassensystem, wobei das Mittel zum Umsetzen 
der modularen Summen aus dem quadratischen 
Restklassensystem in das komplexe Restklassen-
system ein Mittel zum Berechnen des Produkts von 
2–1 und der Summe des Residuums zi des quadrati-
schen Restklassensystems und zi* umfasst, wobei 
das Produkt von 2–1 und der Summe des Residuums 
zi des quadratischen Restklassensystems und zi* die 
reelle Komponente des Residuums des komplexen 
Restklassensystems ist, und Berechnen des Pro-
dukts von ĵ–12–1 und der Differenz von zi minus zi* mo-
dulo pi, wobei das Produkt von ĵ–12–1 und der Differenz 

von zi minus zi* modulo pi die imaginäre Komponente 
des Residuums des komplexen Restklassensystems 
ist, wobei das Mittel zum Berechnen des Produkts 
von 2–1 und der Summe des Residuums zi des qua-
dratischen Restklassensystems und zi* und das Mit-
tel zum Berechnen des Produkts von ĵ–12–1 und der 
Differenz von zi minus zi* modulo pi eine fünfte Viel-
zahl von Logikgattern umfassen, wobei die fünfte 
Vielzahl von Logikgattern durch die folgenden Schrit-
te ausgewählt wird:  
Berechnen eines Werts des Produkts von zi minus zi* 
und ĵ–12–1 modulo pi für jede mögliche Differenz;  
Berechnen eines Werts des Produkts der Summe 
von zi und zi* und 2–1 für jede mögliche Summe;  
Extrahieren von logischen Gleichungen, die berech-
nete Werte der Multiplizieren-mit-ĵ–12–1- und Multipli-
zieren-mit-2–1-Funktionen repräsentieren; und  
Abbilden der logischen Gleichungen auf die fünfte 
Vielzahl von Logikgattern; und  
ein Mittel zum Umsetzen von Residuen in Daten in 
Binärcode, wobei jedes Residuum ein L-Residu-
um-Restklassensystemwert ist, wobei das Mittel zum 
Umsetzen der Residuen in Daten in Binärcode ein 
Mittel zum Anwenden der Funktion des chinesischen 
Restklassentheorems oder ein Mittel zum Anwenden 
der Funktion des chinesischen L-Restklassentheo-
rems auf jede der L Residuen jedes Residuums zum 
Produzieren von L Ergebnissen und zum modularen 
Addieren der L Ergebnisse umfasst,  
wobei das Mittel zum Anwenden der Funktion des 
chinesischen Restklassentheorems oder das Mittel 
zum Anwenden der Funktion des chinesischen 
L-Restklassentheorems auf jede der L Residuen je-
des Residuums des komplexen Restklassensystems 
eine sechste Vielzahl von Logikgattern umfasst, wo-
bei die sechste Vielzahl von Gattern durch die folgen-
den Schritte ausgewählt wird:  
Berechnen eines Werts einer Funktion des chinesi-
schen Restklassentheorems oder des chinesischen 
L-Restklassentheorems für jede mögliche Resi-
duumeingabe;  
Extrahieren von logischen Gleichungen, die die be-
rechneten Werte des chinesischen Restklassentheo-
rems oder des chinesischen L-Restklassentheorems 
repräsentieren; und  
Abbilden der logischen Gleichungen auf die sechste 
Vielzahl von Logikgattern.

Es folgen 7 Blatt Zeichnungen
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