Title: FLUID FLOW INDUCED OSCILLATING ENERGY HARVESTER WITH VARIABLE DAMPING BASED UPON OSCILLATION AMPLITUDE

Abstract: An energy harvester including a stand supporting the energy harvester in a fluid flow, i.e. a stream or current; at least one bluff body extending from the stand and positioned substantially perpendicular to the fluid flow; wherein each bluff body moves relative to the stand at least in a direction perpendicular to the fluid flow, wherein sufficient flow causes oscillating movement of the bluff body; and an electrical generator coupled to the stand and coupled to at least one bluff body converting the oscillating movement to electrical power, wherein the rate of electrical power generation per movement of the bluff body (or harvesting) is varied throughout a range of amplitudes of the oscillation of the bluff body and wherein the harvesting rate of at least one amplitude of the body oscillation is greater than the harvesting rate of at least one lower amplitude of the body oscillation.
FLUID FLOW INDUCED OSCILLATING ENERGY HARVESTER WITH VARIABLE DAMPING BASED UPON OSCILLATION AMPLITUDE

RELATED APPLICATIONS

BACKGROUND INFORMATION

[0002] 1. Field of the invention

[0003] The present invention relates to fluid flow induced oscillating energy harvesters, particularly to maximizing power output in fluid flow induced oscillating energy harvesters.

[0004] 2. Background Information

[0005] Energy harvesters converting ambient energy into electrical energy have attracted much interest in both the military and commercial sectors. For example, some energy harvesters convert motion of ocean waves into electricity to be used by oceanographic monitoring sensors for autonomous operation. Applications may include high power output devices (or arrays of such devices) deployed at remote locations to serve as reliable power stations for large systems. These energy harvesters generally must be sufficiently robust to endure long-term exposure to hostile environments and it is preferable if they have a broad range of dynamic sensitivity to exploit the entire spectrum of wave motions.

[0006] Energy harvesters in the form of conventional hydro-electric power generators usually comprise large rotating water turbines requiring extensive civil engineering works, and which require a large pressure head to be effective. This, in turn, often demands a high dam for creating the necessary potential energy. None of these large conventional hydro-electric power generators are suitable for operating in the shallow waters found in most rivers and tidal flows. As a result, hydroelectric water projects that utilize the entire river flow tend to be quite large thereby consuming large amounts of real estate and capital, while displacing whole populations of people with wholesale disruption of the local environment and the natural migration of fish.

[0007] There are many locations where a large mass of relatively shallow water flows in a constant and reliable manner under a relatively low pressure head, generally in areas of
relatively flat terrain, which may not be suitable for efficiently driving a conventional water turbine. Often these locations are conveniently near large inland and some coastal cities, which are the major consumers of electric power. These locations include the fresh water currents in various rivers and streams throughout the world such as, for example, the Mississippi and Amazon Rivers, as well ocean currents such as Gulf Stream and the tidal currents in places like the Bay of Fundy.

[0008] Thus, there is a need for a fluid responsive energy harvester which can economically and safely extract useful power from relatively low head shallow waters and to use that power to perform useful work, such as the generation of electricity, nearer the point of consumption, thereby saving the environmentally degradation as well as the capitol expense and losses of power transmission systems.

[0009] PRIOR ART REVIEW

[0010] The prior art has disclosed a number of fluid responsive energy harvesting methods, both theoretical and practical, for similar applications such as disclosed in U.S. Patent 8,648,480. The ‘480 patent discloses an energy harvester configured to harness flow energy in a submerged platform having a support member located external to the housing and directly exposed to the fluid flow and lengthwise positioned in the direction of the fluid flow. The system provides for arraying a plurality of narrow diameter cantilevered cylinders to facilitate high frequency oscillations and tip displacements to drive the energy harvesters.

[0011] U.S. Patent 8,610,304, and related patents 8,432,057 and 7,863,768 and 7,839,007 and 7,696,634, all disclose mechanisms for creating undulating motion, such as for propulsion, and for harnessing the energy of moving fluid. The mechanisms receive and transfer forces via transducers having one or more persistent deformations in changeable locations. Actuator or propulsion embodiments are powered by elastic or variable length transducers that exert forces on the deformed members which in turn exert forces onto ambient fluid such as air or water.

[0012] U.S. Patent 8,604,634 discloses an energy harvester operating from flow-induced vibrations in which electrical energy is produced at a remote site by converting kinetic energy from fluid flow to electrical energy using a down-hole energy harvester, also called a borehole energy harvester.

[0013] U.S. Patent 8,534,057 discloses an energy harvester for a waterway with a plurality of blades fixed between wheels or linkages, wherein each blade “stabs” orthogonally into and
out of the flow of water edge first, minimizing the displacement and disruption of the water upon entering.

[0014] U.S. Patent 8,288,883 discloses an energy harvester for capturing energy from a fluid flow including a base and an oscillating member in the fluid flow pivotally connected relative to the base about a substantially vertical first pivotal axis.

[0015] U.S. Patent 8,142,154 discloses an oscillating energy harvester in which two or more pivots are mounted onto a platform, and between these pivots, a flexible sheet of material is suspended in the fluid flow. The mechanism operates via oscillation of the pivots that result from the upwind or upstream pivot determining the side of the flexible sheet the low-pressure (lift) area favors.

[0016] U.S. Patent 8,047,232 discloses an energy harvester designed to enhance vortex induced forces and motion through surface roughness control, whereby roughness is added to the surface of a bluff body in a relative motion with respect to a fluid.

[0017] U.S. Patent 8,026,619, and related patents 7,821,144, and 7,573,143, all disclose an energy harvester utilizing fluid-induced oscillations in which the harvester includes a flexible membrane in the fluid flow having at least two fixed ends.

[0018] U.S. Patent 7,989,973 discloses an energy harvester including a wing-shaped blade in the fluid flow in which a lift differential producing device in the blade produces a lift differential at the opposite sides of the blade and that device is switched so that one blade side or the other produces the greater lift for generating an oscillation in the moving blade.

[0019] U.S. Patent 7,986,054 discloses an energy harvester capable of providing motion from fluid flow includes a magnus-rotor defined by a cylinder driven by a motor causing the cylinder to rotate so that lift is created by the fluid flowing past the cylinder.

[0020] U.S. Patent 7,884,490 and 7,633,175 disclose an energy harvester with a resonating blade exposed to a fluid flow.

[0021] U.S. Patent 7,493,759 discloses an energy harvester including at least one movable element immersed in a fluid medium and supported externally on a support structure such that the movable element can move relatively to the structure in response to a fluid motion by vortex induced motion, galloping or combination thereof, and at least one power device supported on the support structure and coupled to the movable element.

[0022] U.S. Patent 6,153,944 discloses a fluid flow based energy harvester generating electricity from Aeolian oscillations caused by the flow of a fluid. An inmobile beam
extends between two piers, and a movable vane is disposed around the beam in parallel relation thereto.

[0023] U.S. Patent 5,548,956 discloses an energy harvester having cable restrained reciprocating blades for energy extraction from moving body of water.

[0024] U.S. Patent 5,324,169 discloses an oscillating, “lateral thrust” energy harvester for power production from low velocity fluid flow which includes a lateral support arm assembly extending from a vertical drive shaft. A power blade is pivotally secured to the distal end of the support arm, and constrained to pivot within a defined operating angle.

[0025] U.S. Patent 4,476,397 discloses an energy harvester utilizing a sail and a mast pivotably mounted to a support configured to provide power from a relatively large volume of fluid moving at a relatively low speed.

[0026] U.S. Patents 4,347,036 and 4,184,805 disclose an energy harvester implementing a “cascade” of thin airfoils. In one embodiment, the airfoils are provided with at least two degrees of freedom and adjacent airfoils are movable out of phase. The airfoils are subjected to the aerodynamically induced oscillations caused by the aero-elastic phenomenon known as flutter and the oscillatory movement is then harnessed to do useful work. In an alternate embodiment, the cascade of airfoils is mechanically oscillated within a moving fluid stream to increase the propulsion of the fluid. Where the fluid is a liquid, the cascade includes a plurality of hydrofoils.

[0027] U.S. Patent 4,024,409 discloses an energy harvester which utilizes a member which oscillates in response to movement of a fluid past it and a means for utilizing the energy generated by the oscillation. In one embodiment the oscillating member is a cable utilizing wind or water as generator or pump. In a second embodiment, the oscillating member is an airfoil having either pitch control or active circulation control.

[0028] U.S. Patent Application Publication Number 2007-0176430 discloses a fluid powered energy harvester with an oscillating member in which the magnitude of the oscillations is controlled “by the degree of mechanical resonance between the oscillation rate of the fluidic thrusting and the structures resonance frequency.”

[0030] The above identified patents and published patent applications, which are incorporated herein by reference, are a representative sample of fluid responsive energy harvesting including fluid flow induced oscillating energy harvesters.
There is a need to simply and efficiently maximize energy harvesting in fluid flow induced oscillating energy harvesters. It is an object of the present invention to address this deficiency in the prior art fluid flow induces oscillating energy harvesters.

SUMMARY OF THE INVENTION

This invention is directed to cost effective, efficient, fluid flow induced oscillating energy harvesters that overcome at least some of the drawbacks of the existing designs by providing variable damping based upon oscillation amplitude. This invention provides a cost effective, efficient approach to maximizing power output in fluid flow induced oscillating energy harvesters.

One aspect of the present invention provides an energy harvester including a stand supporting the energy harvester and configured to support the energy harvester in a fluid flow, i.e. a stream or current; at least one bluff body extending from the stand configured to be positioned substantially perpendicular to the direction of fluid flow, wherein each bluff body is mounted for movement relative to the stand at least in a direction perpendicular to the direction of fluid flow, wherein sufficient fluid flow causes an oscillating movement of the bluff body relative to the stand; and an electrical generator coupled to at least one bluff body, wherein the electrical generator is configured to convert oscillating movement of the bluff body to electrical power, and wherein the electrical generator is configured such that the rate of electrical power generation per movement of the bluff body is varied throughout a range of amplitudes of the oscillation of the bluff body and wherein a rate of electrical power generation per movement of the bluff body of at least one amplitude of the oscillation of the bluff body is greater than a rate of electrical power generation per movement of the bluff body of at least one lower amplitude of the oscillation of the bluff body.

One embodiment of the invention provides a fluid flow induced oscillating energy harvester including a stand supporting the energy harvester and configured to support the energy harvester in a fluid flow; at least one bluff body extending from the stand configured to be positioned substantially perpendicular to the direction of fluid flow, wherein each bluff body is mounted for movement relative to the stand at least in a direction perpendicular to the direction of fluid flow, wherein sufficient fluid flow causes an oscillating movement of the bluff body relative to the stand; and an electrical generator coupled to at least one bluff body, wherein the electrical generator is configured to convert oscillating movement of the bluff body to electrical power, and wherein the electrical generator is configured such that a harvesting rate is defined as the electrical power generation per movement of the bluff body.
and wherein the harvesting rate is varied throughout a range of oscillation amplitudes and is lower at small amplitudes than greater amplitudes.

[0035] The fluid flow induced oscillating energy harvester according to the invention may be provided wherein the harvesting rate is varied through at least one of i) varying a gap between magnets of the electrical generator and associated coils of the electrical generator; ii) varying the magnet density of the electrical generator at varying amplitudes of the bluff body oscillation; iii) varying the coil density of the electrical generator at varying amplitudes of the bluff body oscillation; and iv) the rate of rotation generated in the electrical generator per oscillation displacement is higher at a higher amplitude of the oscillation of the at least one bluff body than at a lower amplitude of the oscillation of the at least one bluff body.

[0036] These and other aspects of the present invention will be clarified in the description of the preferred embodiment of the present invention described below in connection with the attached figures in which like reference numerals represent like elements throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] Figure 1 is a schematic view of a fluid flow induced oscillating energy harvester with variable damping based upon oscillation amplitude according to the present invention;

[0038] Figure 2A is a schematic view of a fluid flow induced oscillating energy harvester with variable damping based upon oscillation amplitude according to one embodiment of the present invention;

[0039] Figure 2B is an enlarged schematic view of a stand and an electrical generator of the fluid flow induced oscillating energy harvester of Figure 2A;

[0040] Figure 3 is a schematic view of a fluid flow induced oscillating energy harvester with variable damping based upon oscillation amplitude according to another embodiment of the present invention;

[0041] Figures 4A and B are schematic views of a stand and an electrical generator of a fluid flow induced oscillating energy harvester with variable damping based upon oscillation amplitude according to another embodiment of the present invention;

[0042] Figure 5 is a schematic view of a fluid flow induced oscillating energy harvester with variable damping based upon oscillation amplitude according to another embodiment of the present invention;
Figures 6A-C are schematic views of alternative linkage arrangements fluid flow induced oscillating energy harvester with variable damping based upon oscillation amplitude according to further embodiments of the present invention; and

Figure 7 is a perspective view of a fluid flow induced oscillating energy harvester formed according to the present invention.

BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENTS

This invention is directed to a cost effective, efficient, fluid flow induced oscillating energy harvester 10 that maximizes power output and overcomes at least some of the drawbacks of the existing proposed designs. The up and down orientations in the figures is arbitrary. The harvester 10 may be supported in a fluid flow 16 extending vertically upwards generally as viewed in the figures or may be supported downward in the flow 16, such as being suspended from a barge or deck structure on the surface of a river.

One embodiment of the energy harvester 10 of the present invention is shown in figures 1 and 2A and B and 7. The currently proposed oscillating energy harvester 10 includes a stand 12 supporting the oscillating energy harvester 10 in a fluid stream or current 16, such as a river bed. The stand 12 may also be called a base, a housing, a support and/or a piling. The construction of the stand 12, such as the shape shown in figure 7, is generally known in the art and need not be described in detail herein.

The stand 12 supports at least one, and generally a plurality of spaced bluff bodies 14. Each bluff body 14 may also be referenced as a prism or a beam. In the preferred embodiment each bluff body 14 is extending from the stand 12 in a cantilevered fashion as shown in figures 1 or 7. Further figure 7 shows a pair of bodies 14 extending from the side of the stand 12, which may be more common arrangement while the remaining figures suggest a placement of the bodies 14 above the stand 12 mainly to simplify the schematic illustration of the components of the harvester 10. Both arrangements are possible, as is suspending the bodies 14 below the stand 12 where the stand 12 is mounted above the primary flow 16, such as to a floating platform or barge and which surface location may represent a simpler easier location for the electrical generator and associated elements. Alternatively, each bluff body 14 may be supported between a pair of stands 12 at opposed ends thereof, however the cantilevered arrangement shown in figures 1 and 7 is believed to be more economical. Each bluff body 14 is configured to be positioned substantially perpendicular to the direction of fluid flow (shown at 16). The particular construction of the bluff bodies 14 is believed to be
known to those of ordinary skill in the art and the shape and surface of the bluff body 14 may be optimized for maximizing oscillation.

[0048] In the harvester 10, each bluff body 14 is mounted for movement relative to the stand 12 at least in a direction perpendicular to the direction of fluid flow 16. As shown each bluff body 14 is coupled to a support 18 which extends into the stand 12 to an electrical generator 20 within the stand 12. The support member 18 may take a number of forms and can include several elements, but can be generally described as the coupling between the moveable elements of the electrical generator 20 and the oscillating bluff bodies 14. The schematic figures form a representational image of the function of the support member 18. Conventional bearing, packing and sealing structures 22 can maintain and restrict the movement of the support 18 and associated bluff body 14 to a constrained oscillation motion. The details of constructing the support 18 and the bearing, packing and sealing structures 22 are generally known in the art. The form of the sealing structures 22 is dictated by the particulars of the support member 18.

[0049] Oscillation of the bluff body 14 is driven by fluid flow 16 past the bluff body 14, wherein sufficient fluid flow 16 causes an oscillating movement of the bluff body 14 relative to the stand 12. The oscillating support 18 and bluff body 14 is suspended or supported by a spring 24. The spring 24 establishes a zero-displacement or rest position. If there is no flow, the structure formed of support 18 portion of the electrical generator 20 coupled thereto and body 14 will rest at this position and when there is sufficient flow, the structure will oscillate about this rest position.

[0050] Harvesting electrical power in the harvester 10 damps the motion of the oscillating structure. At lower flow rates, it is possible to prevent oscillation if too much damping is imposed (i.e. if the rate of power generation per movement of the structure is too high), however, at higher flow rates, there is more energy available to harvest, so a higher rate of harvesting is desirable. Since the oscillation amplitude of the bluff body 14 varies with the flow rate 16, harvesting rates that varies with the flow rate 16 can be achieved in a simple, cost effective, passive design in the energy harvester 10 by varying the rate of harvesting with the position of the oscillating structure. In other words, the electrical generator 20 is configured such that the rate of electrical power generation per movement of the bluff body 14 (i.e. the harvesting rate) is varied throughout a range of amplitudes of the oscillation of the bluff body 14 and wherein a rate of electrical power generation per movement of the bluff body 14 of at least one amplitude of the oscillation of the bluff body 14 is greater than a
rate of electrical power generation per movement of the bluff body 14 of at least one lower amplitude of the oscillation of the bluff body 14.

[0051] Figure 2A is a schematic view of a fluid flow induced oscillating energy harvester 10 with variable damping based upon oscillation amplitude according to one embodiment of the present invention and figure 2B is an enlarged schematic view of a stand 12 and an electrical generator 20 of the fluid flow induced oscillating energy harvester 10 of Figure 2A. In this embodiment of the invention the electrical generator 20 includes coils 26 mounted to the stand 12 and a magnet 28 (a plurality of magnets 28 may be implemented) coupled to the support 18 of the associated bluff body 12, wherein oscillation of the bluff body 12 will move the magnet 28 relative to the coils 26 to generate electricity in generator 20 in a manner generally known in the art.

[0052] The embodiment of figures 2A and 2B the gap between coils 26 and magnet 14 varies with the amplitude of the oscillation of the body 14 in this linear generator. Near the zero-displacement or rest point, the gap would be large and for higher displacements the gap could be smaller. In other words the gap between the magnet 28 and an immediately adjacent coil 26 will vary with the amplitude of the oscillation of the at least one bluff body 14. The term immediately adjacent coil 26 in this context will be the coils 26 that are the same vertical height/horizontal level of the magnet 28 (assuming the stand 12 is positioned vertically). With this configuration the gap between the magnet 14 and an immediately adjacent coil 26 is lower at a higher amplitude of the oscillation of the bluff body 14 than at a lower amplitudes of the oscillation of the at least one bluff body 14 as generally shown. The fluid flow induced oscillating energy harvester 10 as shown in figures 2A and B may be provided such that there are no coils 26 immediately adjacent the magnet 28 with the bluff body 14 in the rest position.

[0053] It is possible to reverse the position of the coils 26 and the magnet 28 in the embodiment of figures 2A and B such that one or more coils 26 are carried on the support 18 and a plurality of magnets 28 are coupled to the stand 12 and wherein the gap between the coil 26 mounted to the support 18 and an immediately adjacent magnet 28 mounted to the inside of the stand 12 will vary with the amplitude of the oscillation of the at least one bluff body 14. Specifically, the gap between the coil 26 mounted to the support 18 and an immediately adjacent magnet 14 mounted to the inside of the stand 12 is lower at a higher amplitude of the oscillation of the at least one bluff body 14 than at a lower amplitude of the oscillation of the at least one bluff body 14.
[0054] Figure 3 is a schematic view of a fluid flow induced oscillating energy harvester 10 with variable damping based upon oscillation amplitude according to another embodiment of the present invention. As with the described inverse of the embodiment of figures 2A and B, this embodiment provides wherein the electrical generator 10 includes magnets 28 mounted to the inside of the stand 12 and at least one coil 26 coupled to the support 18 of the at least one bluff body 14, wherein oscillation of the at least one bluff body 14 will move the at least one coil 26 relative to the magnets 28 to generate electricity via generator 20. In this embodiment the gap between coil 26 and adjacent magnets 28 is constant. In this embodiment the distribution of the magnets 28, also called the density of the magnets 28, varies with height as shown here. No magnets 28 are placed near the zero displacement or rest point and the magnet density increases at higher amplitudes, as shown thereby increasing the harvesting rate at higher amplitudes.

[0055] As with the embodiment of figures 2A and B, it is possible to reverse the respective position of the coils 26 and magnets 28 in the embodiment of figure 3 such that the coils 26 are coupled to the stand 12 and the magnet 14 is coupled to the support 12 and wherein the coil density of coils (via more coils 26 per length of stand 12) attached to the stand 12 in the vicinity of the magnet 14 will increase with the amplitude of the oscillation of the at least one bluff body 14.

[0056] Figures 4A and B are schematic views of a stand 12 and an rotary electrical generator 20 (represented by dual pinions 32 and 34) of a fluid flow induced oscillating energy harvester 10 with variable damping based upon oscillation amplitude according to another embodiment of the present invention in which the electrical generator 20 converts oscillation of the at least one bluff body to rotation via pinions 32 and 34 which are coupled to a rotor of a rotor-stator (not shown) generator. The specifics of the rotary generator 20 are well known and need not be described in detail herein.

[0057] In the embodiment of figures 4A and B, a dual rack 36 and 38 is attached to the support 18 of the oscillating structure and meshes with and drives respective pinions 32 and 34 that would in turn drive the rotary generator 20, for example. In this form, when the oscillation is near the zero-displacement or rest point, the rotary generator 20 would turn few revolutions per length of travel (via large pinion 32 and associated engaged rack 36) and relatively many revolutions per length of travel (via smaller pinion 34 and associated engaged rack 38) at higher displacements. In other words, the rack 36 engages the larger diameter pinion 32 to drive the generator near the zero-displacement position and at larger
displacements, rack(s) 38 could engage smaller diameter pinion 34, achieving a higher generator rotation per length of oscillator movement. It should be apparent that more than two rates of harvesting may be provided and the schematic figures are merely for illustration.

[0058] It is apparent that many variations to the present invention may be made without departing from the spirit and scope of the invention. For example, Figure 5 is a schematic view of a fluid flow induced oscillating energy harvester 10 with variable damping based upon oscillation amplitude according to another embodiment of the present invention in which a rack 36 is mounted to a linkage 42 coupled to the support 18 and meshes with a pinion 32 driving a rotary generator with the pinion 32 mounted on a separate linkage 44 coupled to the stand 12. The compound motion of the support 18 and the linkages 42 and 44 provides for the variable harvesting rate. Specifically as the amplitude of the motion of the body 14 increases the motion of the rack 36 relative to the pinion 32 increases thereby increasing the rotation rate of the pinion 32.

[0059] Figures 6A and B are schematic views of a fluid flow induced oscillating energy harvester 10 with variable damping based upon oscillation amplitude according to further embodiments of the present invention. In figure 6A the support 18 is replaced with a four bar linkage 46 and the rotary generator 20 is moved outside of the stand 12 to a position between the four bar linkage 46 as shown using the linkages 42 and 44 similar to figure 5. Analogous to figure 5 the compound motion of the four bar linkage 46 and the linkages 42 and 44 provides for the variable harvesting rate. Specifically as the amplitude of the motion of the body 14 increases the motion of the rack 36 relative to the pinion 32 increases thus increasing the rotation rate of the pinion 32. The spring 24 can be replaced with torsional springs to maintain the rest position of the body 14.

[0060] Figure 6B is analogous to the embodiment of figure 6A except the four bar linkage 46 is replaced with a Peaucellier-Lipkin linkage 48, wherein the compound motion of the Peaucellier-Lipkin linkage 48, and the linkages 42 and 44 provides for the variable harvesting rate. Specifically as the amplitude of the motion of the body 14 increases the motion of the rack 36 relative to the pinion 32 increases thus increasing the rotation of the pinion 32. Figure 6C shows an alternative harvester 10 linkage arrangements (with the generator removed for clarity) that may be more applicable for a suspended harvester 10 described herein and is merely illustrating further linkage possibilities.
[0061] It should be apparent that other alternatives are possible within the spirit and scope of the present invention. The present invention is defined by the appended claims and equivalents thereto.
What is claimed is:

1. A fluid flow induced oscillating energy harvester comprising:
 a stand supporting the energy harvester and configured to support the energy harvester in a fluid flow;
 at least one bluff body extending from the stand configured to be positioned substantially perpendicular to the direction of fluid flow, wherein each bluff body is mounted for movement relative to the stand at least in a direction perpendicular to the direction of fluid flow, wherein sufficient fluid flow causes an oscillating movement of the bluff body relative to the stand;
 an electrical generator coupled to at least one bluff body, wherein the electrical generator is configured to convert oscillating movement of the bluff body to electrical power, and wherein the electrical generator is configured such that the rate of electrical power generation per movement of the bluff body is varied throughout a range of amplitudes of the oscillation of the bluff body and wherein a rate of electrical power generation per movement of the bluff body of at least one amplitude of the oscillation of the bluff body is greater than a rate of electrical power generation per movement of the bluff body of at least one lower amplitude of the oscillation of the bluff body.

2. The fluid flow induced oscillating energy harvester according to claim 1 wherein the electrical generator includes coils mounted to the stand and at least one magnet coupled to the at least one bluff body, wherein oscillation of the at least one bluff body will move the at least one magnet relative to the coils.

3. The fluid flow induced oscillating energy harvester according to claim 2 wherein the gap between the magnet and an immediately adjacent coil will vary with the amplitude of the oscillation of the at least one bluff body.

4. The fluid flow induced oscillating energy harvester according to claim 3 wherein the gap between the magnet and an immediately adjacent coil is lower at a higher amplitude of the oscillation of the at least one bluff body than at a lower amplitude of the oscillation of the at least one bluff body.
5. The fluid flow induced oscillating energy harvester according to claim 4 further including a spring supporting the at least one bluff body for oscillation about a rest position.

6. The fluid flow induced oscillating energy harvester according to claim 5 wherein no coils are immediately adjacent the at least one magnet with the bluff body in the rest position.

7. The fluid flow induced oscillating energy harvester according to claim 2 wherein the coil density of coils in the vicinity of the at least one magnet will vary with the amplitude of the oscillation of the at least one bluff body.

8. The fluid flow induced oscillating energy harvester according to claim 2 wherein the coil density of coils in the vicinity of the at least one magnet will increase with the amplitude of the oscillation of the at least one bluff body.

9. The fluid flow induced oscillating energy harvester according to claim 1 wherein the electrical generator includes magnets mounted to the stand and at least one coil coupled to the at least one bluff body, wherein oscillation of the at least one bluff body will move the at least one coil relative to the magnets.

10. The fluid flow induced oscillating energy harvester according to claim 9 wherein the magnet density of magnets in the vicinity of the coil will vary with the amplitude of the oscillation of the at least one bluff body.

11. The fluid flow induced oscillating energy harvester according to claim 9 wherein the magnet density of magnets in the vicinity of the coil will increase with the amplitude of the oscillation of the at least one bluff body.

12. The fluid flow induced oscillating energy harvester according to claim 11 further including a spring supporting the at least one bluff body for oscillation about a rest position.

13. The fluid flow induced oscillating energy harvester according to claim 12 wherein no magnets are immediately adjacent the coil with the bluff body in the rest position.
14. The fluid flow induced oscillating energy harvester according to claim 9 wherein the gap between the coil and an immediately adjacent magnet will vary with the amplitude of the oscillation of the at least one bluff body.

15. The fluid flow induced oscillating energy harvester according to claim 12 wherein the gap between the coil and an immediately adjacent magnet is lower at a higher amplitude of the oscillation of the at least one bluff body than at a lower amplitude of the oscillation of the at least one bluff body.

16. The fluid flow induced oscillating energy harvester according to claim 1 wherein the electrical generator converts oscillation of the at least one bluff body to rotation.

17. The fluid flow induced oscillating energy harvester according to claim 16 wherein the rate of rotation per oscillation displacement is higher at a higher amplitude of the oscillation of the at least one bluff body than at a lower amplitude of the oscillation of the at least one bluff body.

18. A fluid flow induced oscillating energy harvester comprising:
 a stand supporting the energy harvester and configured to support the energy harvester in a fluid flow;
 at least one bluff body extending from the stand configured to be positioned substantially perpendicular to the direction of fluid flow, wherein each bluff body is mounted for movement relative to the stand at least in a direction perpendicular to the direction of fluid flow, wherein sufficient fluid flow causes an oscillating movement of the bluff body relative to the stand;
 an electrical generator coupled to the stand and coupled to at least one bluff body, wherein the electrical generator is configured to convert oscillating movement of the bluff body to electrical power, and wherein the electrical generator is configured such that a harvesting rate is defined as the electrical power generation per movement of the bluff body and wherein the harvesting rate is varied throughout a range of oscillation amplitudes and is lower at small amplitudes than greater amplitudes.

19. The fluid flow induced oscillating energy harvester according to claim 18 further including a spring supporting the at least one bluff body for oscillation about a rest position.
20. The fluid flow induced oscillating energy harvester according to claim 18 wherein the harvesting rate is varied through at least one of i) varying a gap between magnets of the electrical generator and associated coils of the electrical generator, ii) varying the magnet density of the electrical generator at varying amplitudes of the bluff body oscillation; iii) varying the coil density of the electrical generator at varying amplitudes of the bluff body oscillation; and iv) the rate of rotation generated in the electrical generator per oscillation displacement is higher at a higher amplitude of the oscillation of the at least one bluff body than at a lower amplitude of the oscillation of the at least one bluff body.
INTERNATIONAL SEARCH REPORT

International application No. PCT/US 2015/031331

A. CLASSIFICATION OF SUBJECT MATTER

F03B 17/06 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F03B 13/00-13/26, 17/00-17/06, F03D 5/00, 5/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DEPATISnet, DWPI, EAPATIS, Espacenet, JPO, PAJ, PatFT, PatSearch (RUPTO internal), RUPAT, RUABRU, RUPAT-OLD, RUABU1, USPTO, Patentscope

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RU 2341679 C2 (TERENTIEV ALEKSEY GRIGORIEVICH) 20.12.2008</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>DE 102008063340 A1 (FREUDENAU GUNTER) 01.07.2010</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 27 July 2015 (27.07.2015)

Date of mailing of the international search report: 13 August 2015 (13.08.2015)

Name and mailing address of the ISA/RU:

Berezhkovskaya nab., 30-1, Moscow, G-59, GSP-3, Russia, 125993

Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Authorized officer: E. Vakhnina

Telephone No. (495)531-64-81

Form PCT/ISA/210 (second sheet) (January 2015)