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PROTEIN ENGINEERING OF MONOACYLGLYCEROL LIPASE (MGLL)

TECHNICAL FIELD

[0001 ] The present invention generally pertains to the fields of molecular biology,
protein purification, high-throughput screening, protein crystallization, X-ray diffraction
analysis, three-dimensional structural determination, molecular modelling, and structure
based rational drug design. The present invention provides a number of soluble
engineered forms of MGLL that are suitable for high-throughput screening and protein
crystallization, as well as a crystallized form of monoacylglycerol lipase protein (MGLL)

and descriptions of the X-ray diffraction patterns.

[0002] The forms of MGLL provided by the present invention permit the expression
and purification of protein suitable for high-throughput screening and crystallography.
Thus forms of MGLL of the present invention have applications to the screening of
MGLL to identify active agents which include, but are not limited to, those that find use
as inhibitors of MGLL.

[0003 ] The X-ray diffraction patterns of the crystal of the present invention are of
sufficient resolution so that the three-dimensional structure of MGLL can be determined
at atomic resolution, ligand-binding sites on MGLL can be identified, and the interactions
of ligands with amino acid residues of MGLL can be modeled. The high resolution maps
provided by the present invention and the models prepared using such maps permit the
design of ligands which can function as active agents. Thus, the three-dimensional
structure of MGLL of the present invention has applications to the design of active

agents, which include, but are not limited to, those that find use as inhibitors of MGLL.
BACKGROUND OF THE INVENTION

[0004] Various publications, which may include patents, published applications,
technical articles and scholarly articles, are cited throughout the specification in
parentheses, and full citations of each may be found at the end of the specification. Each

of these cited publications is incorporated by reference herein, in its entirety.

[0005] A’-Tetrahydrocannabinol (THC) is the main psychoactive substance found in

the cannabis plant. THC activates two distinct G protein-coupled receptors, cannabinoid 1
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receptor (CB1) and cannabinoid 2 receptor (CB2) (Matsuda et al. 1990; Munro et al.
1993). CBI is primarily expressed in the central nervous system (CNS) (Hohmann and
Herkenham 1999; Farquhar-Smith et al. 2000; Rice et al. 2002; Walczak et al. 2005).
CB2 expression, however, seems to be restricted to only peripheral tissues (Munro et al.

1993; Galiegue et al. 1995).

[0006] CNS mediated analgesic effects of cannabinoids have been well documented,
but there is also accumulating evidence suggesting that cannabinoids can produce
antinociception through peripheral mechanisms involving CB1 or CB2 (Hohmann 2002)
(Malan et al. 2002). Richardson et al. demonstrated that cannabinoid antihyperalgesic
effects were predominantly mediated by CB1 (Richardson et al. 1998; Richardson 2000).
Hanus et al. showed that intraperitoneal injection of a CB2 selective agonist could
suppress the late-phase response in the formalin test (Hanus et al. 1999). It was also
shown that a CB2 selective agonist could attenuate thermal nociception and hyperalgesia
(Malan et al. 2001; Malan et al. 2002; Quartilho et al. 2003) or suppress hyperalgesia
evoked by intradermal administration of capsaicin (Hohmann et al. 2004). Ibrahim et al.
showed that activation of CB2 with a selective CB2 agonist inhibited experimental
neuropathic pain (Ibrahim et al. 2006). Taken together, the accumulating evidence clearly
suggests great potential therapeutic value in targeting CB2 as a peripheral target for the
treatment of pain. It should be noted that a significant advantage of this approach is that it

would preclude unwanted CNS side effects caused by targeting CB1.

[0007] An arachidonic acid derivative, 2-arachidonyl glycerol (2-AG), is one of the
two major and most well studied endogenous ligands for CB1 and CB2 (Gonsiorek et al.
2000). It has been shown that 2-AG acts as a potent and full-efficacy agonist of CB2
(Gonsiorek et al. 2000; Sugiura et al. 2000; Maresz et al. 2005) and that 2-AG is primarily
hydrolysed by monoacylglycerol lipase (MGLL) (Dinh et al. 2002; Dinh et al. 2004;
Saario et al. 2004). A non-competitive MGLL inhibitor that blocked 2-AG hydrolysis was
found to enhance 2-AG levels and antinociception in stress models (Hohmann et al. 2005;
Makara et al. 2005). It was also demonstrated that local administration of either 2-AG or a
selective MGLL inhibitor induced a dose-dependent antinociceptive effect in an
inflammatory pain model. Furthermore, local administration of the selective MGLL

inhibitor in combination with 2-AG produced an additive antinociceptive effect (Guindon
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et al. 2007). Thus selective inhibition of MGLL may provide a novel therapeutic approach
for the treatment of pain. Hitting this target, however, is inconceivable without good

knowledge of the enzyme (Vandevoorde and Lambert 2005).

[ 0008 ] Lipases are lipolytic enzymes that have been differentiated from
carboxylesterases by the fact that lipases have improved kinetics of hydrolysis for
emulsions formed in oversaturated solutions. Carboxylesterases have been shown to have
maximal activity using solutions of short-chain esters, with half-maximal activity at
substrate concentrations far below the solubility limit. Exceeding the solubility limit was
shown to have no effect on carboxylesterase activity. Lipases, on the other hand, were
shown to have maximal activity using emulsified substrates, with half-maximal activity at
substrate concentrations near the solubility limit (Chahinian et al. 2002). Early work with
porcine pancreatic lipase showed that activity was low using a solution of ester substrates
and abruptly increased as soon as an emulsion was formed. It was speculated that the
porcine pancreatic lipase was activated by a conformational change of the enzyme as it
bound to its water-insoluble substrate. The work with porcine pancreatic lipase was

reviewed by Nini et al. (Nini et al. 2001).

[0009 ] In general, lipases share a similar o/f hydrolase fold with a catalytic Ser-His-
Asp triad buried beneath a flexible cap-domain which is also referred to as a “lid” or
“flap” (Brady et al. 1990; Winkler et al. 1990; Schrag et al. 1991). Although there is little
conservation in the primary sequence of the cap-domain, it is generally formed of loops
and one or more amphipathic helices. The cap-domains of human and dog gastric lipase
are composed of intricate mixtures of 8 helices, turns, and random coils (Roussel et al.
1999; Roussel et al. 2002). In the crystal structure of human pancreatic lipase the lid
adopts a helix-turn helix motif composed of two short amphipathic helices (van Tilbeurgh

ctal. 1992),

[0010] It has long been proposed that higher lipase activity for substrates presented as
multimolecular aggregates (interfacial activation) is due to a conformational change in the
cap-domain. It has also been proposed that changes from a closed to an open
conformation of the lid is triggered by interaction with the substrate or lipid membrane
(Brzozowski et al. 1991; van den Berg et al. 1995; van den Berg et al. 1995; Nini et al.

2001). Several other reports have also indicated that the loop covering the active site
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mediates lipase substrate specificity (Dugi et al. 1992; Dugi et al. 1995). It was
demonstrated that movement of the helical lid results in a change in the hydrophobic-
hydrophilic balance of the exterior surface of the lipase with the hydrophobic side of the
lid becoming completely exposed in the active enzyme (Faustinella et al. 1992). Some
lipases, such as guinea pig pancreatic lipase and bile salt-activated lipase, do not have a
lid domain. Their active sites are freely accessible to solvent. As expected, based on the
lack of the a cap-domain, these lipases are not activated by a lipid/water interface (Wang

et al. 1997) (Carriere et al. 1997).

[0011] Although much has been learned about the structure of lipases through
determination of three-dimensional structures of several microbial lipases and mammalian
lipases, the three-dimensional structure of MGLL is unknown and its mechanism of
action is not well understood. Furthermore, MGLL shows very little sequence similarity
with other mammalian lipases and is unique among lipases in having monoglycerides as
its only substrates. MGLL seems to be only distantly related to microbial proteins that
include esterases, lysophospholipases, and haloperoxidases (Karlsson et al. 1997). A
virtual molecular model of MGLL was built based on the crystal structure of
chloroperoxidase (Saario et al. 2005; Saario et al. 2006). The model shows an alpha beta
hydrolase fold with a lid domain comprised of four helices. The model, however, is only a

virtual model and gives little insight into the actual mechanism of action of MGLL.

[0012] A crystal structure of MGLL would greatly facilitate the effort to discover
MGLL selective inhibitors. A potential problem for crystallization experiments with
MGLL is that detergents have been required to purify and stabilize MGLL in solution for
both recombinant MGLL and MGLL from endogenous sources. (Tornqvist and Belfrage
1976; Somma-Delpero et al. 1995; Karlsson et al. 2000). Without detergent the purified
MGLL protein was prone to aggregation. Crystallizing a detergent-solubilized protein
into a structure of sufficient regularity to enable high-resolution X-ray crystallography
can be problematic because well-ordered protein crystals can be difficult to obtain

(US6172262B1).

[0013] The present invention provides a number of soluble engineered forms of
monoacylglycerol lipase protein (MGLL) that do not require detergent for purification.

The forms of MGLL provided by the present invention permit the expression and
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purification of protein suitable for identifying active agents in high-throughput screening
and for crystallography. The present invention also provides a crystallized form of MGLL
and descriptions of the X-ray diffraction patterns. Selective point mutations of
hydrophobic residues in the cap-domain of MGLL generated soluble protein that did not
require detergent for purification and stability. The protein displayed monomeric
behaviour by gel filtration and was suitable for crystallization and high-throughput
screening. In addition, selective mutation of surface lysine residues produced protein that
generated crystals of improved quality. The crystal structure of MGLL was determined at
atomic resolution. The forms of MGLL provide protein that can be used to identify
inhibitors in high-throughput screens and the crystal structure of MGLL provides an
important tool for structure-based drug design of MGLL inhibitors.

SUMMARY OF THE INVENTION

[0014] According to a first aspect of the present invention, there is provided a
composition comprising a form of MGLL, or a fragment, or target structural motif or
derivative thereof, wherein one or more hydrophobic residues of the cap-domain is

mutated to improve solubility.

[0015] The present invention also provides a composition comprising a form of
MGLL, or a fragment, or target structural motif or derivative thereof, wherein one or

more hydrophobic Leucine residues of the cap-domain is mutated to improve solubility.

[0016] The present invention further provides a composition comprising a form of
MGLL comprising one or more mutated hydrophobic Leucine residues of the cap-
domain, wherein said one or more mutated hydrophobic Leucine residues of the cap-
domain is selected from the group consisting of Leucine 162, Leucine 167, Leucine 169,
Leucine 171, Leucinel74, Leucine 176, and Leucine 184, numbering based on the

reference sequence for human MGLL Isoform 2 (SEQ ID NO: 1).

[0017] The present invention provides a composition comprising a form of MGLL,
comprising one or more mutated hydrophobic residues of the cap-domain, wherein said
one or more hydrophobic residues of the cap-domain is mutated to Serine, Glutamine, or

Arginine.
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[0018 ] In another aspect of the invention, the present invention includes a form of
MGLL comprising one or more mutated hydrophobic Leucine residues of the cap-domain

further comprising a Lysine mutated to an Alanine.

[0019] The present invention also includes a form of MGLL comprising one or more
mutated hydrophobic Leucine residues of the cap-domain further comprising a Lysine
mutated to an Alanine, wherein said Lysine residue is selected from the group consisting
of Lysine 36, Lysine 160, Lysine 165, Lysine 188, Lysine 206, Lysine 226, Lysine 259

and Lysine 269, numbering based on the reference sequence for human MGLL Isoform 2.

[0020] The present invention further includes a method of identifying an agent that
binds to the forms of MGLL of the present invention, comprising the steps of contacting
the form of MGLL with the agent; measuring the binding of the agent to the form of
MGLL; and, determining that the agent binds to the form of MGLL; thereby identifying
an agent that binds to the form of MGLL.

[0021] In a preferred embodiment, the present invention includes a method of
identifying an agent that binds to the forms of MGLL, wherein the form of MGLL has an
amino acid sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO:
5, SEQ ID NO: 6, and SEQ ID NO: 7.

[0022] In another preferred embodiment, the present invention includes a method of
identifying an agent that binds to the forms of MGLL, wherein the binding is measured
by the thermal stability of the form of MGLL.

[0023 ] The present invention further includes a method of identifying an agent that
inhibits the activity of the forms of MGLL of the present invention comprising the steps
of contacting the form of MGLL with the agent; measuring the biological activity of the
form of MGLL in the presence of the agent; measuring the biological activity of the form
of MGLL without the agent; and, comparing the biological activity of the form of MGLL
measured in the presence of the agent and without the agent; thereby identifying the agent
that decreases the biological activity the biological activity of the form of MGLL, when
the activity measured in the presence of the agent is less than the activity measured

without the agent.
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[0024] In a preferred embodiment, the present invention includes a method of
identifying an agent that inhibits the activity of the forms of MGLL, wherein the form of
MGLL has an amino acid sequence selected from the group consisting of SEQ ID NO: 4,
SEQ ID NO: §, SEQ ID NO: 6, and SEQ ID NO: 7.

[0025] In another preferred embodiment, the present invention includes a method of
identifying an agent that inhibits the activity of the forms of MGLL of the present

invention, wherein the biological activity is measured with an enzyme assay.

[0026] The present invention further includes methods of producing and using three-
dimensional structure information derived from the crystal structure of monoacylglycerol

lipase protein (MGLL).

[0027] The present invention also includes specific crystallization conditions to obtain
crystals of the inhibitor-MGLL complex. The crystals are subsequently used to obtain a 3-
dimensional structure of the complex using X-ray crystallography. The obtained data is
used for rational drug discovery with the aim to design compounds that are inhibitors of
MGLL.

[0028] The present invention includes a crystal comprising monoacylglycerol lipase
(MGLL), or a fragment, or target structural motif or derivative thereof, and a ligand,
wherein the ligand is a small molecule inhibitor. In another embodiment, the crystal has a

spacegroup of C222;.

[0029 ] In another aspect of the invention, the present invention includes a crystal
comprising a form of MGLL which comprises a peptide having at least 95% sequence

identity to SEQ ID NO: 7.

[0030] In another aspect of the invention, the invention includes a computer system
comprising: (a) a database containing information on the three dimensional structure of a
crystal comprising MGLL, or a fragment or a target structural motif or derivative thereof,
and a ligand, wherein the ligand is a small molecule inhibitor, stored on a computer

readable storage medium; and, (b) a user interface to view the information.

[0031] The present invention also includes a method of evaluating the potential of an
agent to associate with MGLL comprising: (a) exposing MGLL to the agent; and (b)
detecting the association of said agent to MGLL amino acid residues SER48-HIS54,
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ARGS7, TYRSS, HIS77, HIS80, MET&8, PHE93, PHE96, GLY120-ILE127, ILE145-
VALI161, ALA163, SER176-ASN195, ASP197, ILE200, CYS201, ALA203, LEU205-
VAL207, PHE209-SER218, ASP239-ASP243, TYR268-LEU275, THR279 thereby

evaluating the potential of the agent.

[0032] The invention further includes a method of evaluating the potential of an agent
to associate with the peptide having the sequence of SEQ ID NO: 7, comprising: (a)
exposing SEQ ID NO: 7 to the agent; and (b) detecting the level of association of the
agent to SEQ ID NO: 7, thereby evaluating the potential of the agent.

[0033 ] Further included in the present invention is a method of identifying a potential
agonist or antagonist against monoacylglycerol lipase comprising: (a) employing the three
dimensional structure of MGLL cocrystallized with a small molecule inhibitor to design

or select said potential agonist or antagonist.

[0034] The invention comprises a method of locating the attachment site of an
inhibitor to monoacylglycerol lipase, comprising: (a) obtaining X-ray diffraction data for
a crystal of MGLL; (b) obtaining X-ray diffraction data for a complex of MGLL and an
inhibitor; (c) subtracting the X-ray diffraction data obtained in step (a) from the X-ray
diffraction data obtained in step (b) to obtain the difference in the X-ray diffraction data;
(d) obtaining phases that correspond to X-ray diffraction data obtained in step (a); (e)
utilizing the phases obtained in step (d) and the difference in the X-ray diffraction data
obtained in step (c) to compute a difference Fourier image of the inhibitor; and, (f)
locating the attachment site of the inhibitor to MGLL based on the computations obtained
in step (e).

[0035] The present invention further comprises a method of obtaining a modified
inhibitor comprising: (a) obtaining a crystal comprising MGLL and an inhibitor; (b)
obtaining the atomic coordinates of the crystal; (c) using the atomic coordinates and one
or more molecular modelling techniques to determine how to modify the interaction of
the inhibitor with MGLL; and, (d) modifying the inhibitor based on the determinations

obtained in step (c¢) to produce a modified inhibitor.

[0036] In another aspect of the invention, the invention includes an isolated protein

fragment comprising a binding pocket or active site defined by structure coordinates of
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MGLL amino acid residues SER48-HIS54, ARGS57, TYRS58, HIS77, HISR0, METSS,
PHE93, PHE96, GLYI120-ILE127, ILE145-VAL161, ALA163, SERI176-ASNI195,
ASP197, ILE200, CYS201, ALA203, LEU205-VAL207, PHE209-SER218, ASP239-
ASP243, TYR268-LEU275, THR279.

[0037] In another aspect of the invention, the invention includes an isolated nucleic
acid molecule encoding the fragment which comprises a binding pocket or active site
defined by structure coordinates of MGLL amino acid residues SER48-HIS54, ARGS57,
TYRS8, HIS77, HIS80, MET88, PHE93, PHE96, GLY120-ILE127, ILE145-VAL161,
ALA163, SER176-ASN195, ASP197, ILE200, CYS201, ALA203, LEU205-VAL207,
PHE209-SER218, ASP239-ASP243, TYR268-LEU275, THR279. In another aspect of
the invention, the invention includes a method of screening for an agent that associates
with MGLL, comprising: (a) exposing a protein molecule fragment to the agent; and (b)
detecting the level of association of the agent to the fragment. In another aspect of the

invention, the invention includes a kit comprising a protein molecule fragment.

[0038] The invention additionally comprises a method for the production of a crystal
complex comprising a MGLL polypeptide-ligand comprising: (a) contacting the MGLL
polypeptide with said ligand in a suitable solution comprising PEG MME 5K, Na Citrate
pHS5.5 and n-Octyl-Beta-D-Glucopyranoside; and b) crystallizing said resulting complex
of MGLL polypeptide-ligand from said solution.

[0039] The invention further includes a method for the production of a crystal
comprising MGLL and a ligand wherein the ligand is a small molecule inhibitor

comprising crystallizing a peptide comprising SEQ ID NO: 7 with a potential inhibitor.

[0040] The invention includes a method for identifying a potential inhibitor of
monoacylglycerol lipase comprising: a) using a three dimensional structure of MGLL as
defined by atomic coordinates according to Table 5; b) replacing one or more MGLL
amino acids selected from SER48-HIS54, ARGS57, TYRSE, HIS77, HIS80, METSS,
PHE93, PHE96, GLYI120-ILE127, ILE145-VAL161, ALA163, SERI176-ASNI195,
ASP197, ILE200, CYS201, ALA203, LEU205-VAL207, PHE209-SER218, ASP239-
ASP243, TYR268-LEU275, THR279 in said three-dimensional structure with a different
amino acid to produce a modified MGLL; ¢) using said three-dimensional structure to

design or select said potential inhibitor; d) synthesizing said potential inhibitor; and, ¢)
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contacting said potential inhibitor with said modified MGLL in the presence of a substrate
to test the ability of said potential inhibitor to inhibit MGLL or said modified MGLL.

Also included in the invention is an inhibitor identified by the method.
BRIEF DESCRIPTION OF THE DRAWINGS

[0041 ] A preferred embodiment of the present invention will now be described, by

way of an example only, with reference to the accompanying drawings wherein:

[0042 ] Figure 1: A. Shown is SEQ ID NO: 1, the amino acid sequence of human
monoglyceride lipase isoform 2 (Karlsson et al. 2001), accession NP_001003794,
version NP_001003794.1, GI1:51242953. B. Shown is SEQ ID NO: 2, the amino acid
sequence of human monoglyceride lipase isoform 1 (Wall et al. 1997), Accession
NP_009214, Version NP_009214.1, GI:6005786. C. Shown is the sequence alignment for
SEQ ID NO: 1 and SEQ ID NO: 2, which are human monoglyceride lipase isoform 2 and
isoform 1, respectively. Sequence alignment was done with the online BLAST 2

SEQUENCES software (Tatusova and Madden 1999).

[0043 ] Figure 2: A. Shown is the sequence alignment of human MGLL isoform 2
(SEQ ID NO: 1) and crystallized RsbQ (RsbQ, PDB IWOM). Sequence alignment was
done with the ClustalW software. Homologous residues are shown in black. Identical
residues are shown in green. Position of helices and 3 sheets are indicated by red stars
and green columns, respectively. The active site residues are highlighted in red. Leu 169
and Leu 176 are indicated by blue arrows. B. Shown is ribbon diagram representation of
a homology model of human MGLL isoform 2 based on RsbQ (Pdb 1bro). Leu 169 and
Leu 176 are shown in magenta. The active site residues are shown in green. C. Shown
is surface representation of a homology model of human MGLL isoform 2 based on RsbQ
(Pdb 1bro). Leu 169 and Leu 176 are shown in magenta. The active site residues are

shown in green.

[ 0044 ] Figure 3: A. Shown is SEQ ID NO: 3, the amino acid sequence of the
construct used to express wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3) . The N-terminal
His tag is shown in non-capitalized text and the TEV cleavage site is shown in bold non-
capitalized text with an arrow over the site of cleavage. B. Shown is SEQ ID NO: 4, the

amino acid sequence of the construct used to express a form of mut-MGLL (hMGLL 1-
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303 L169S, L176S). The N-terminal His tag is shown in non-capitalized text, the TEV
cleavage site is shown in bold non-capitalized text with an arrow over the site of
cleavage, and the mutations are shown in bold non-capitalized text. C. Shown is SEQ ID
NO: 5, the amino acid sequence of mut-MGLL (hMGLL 1-303 L1698, L.176S) after TEV
cleavage of the N-terminal His tag. The one amino acid from the TEV cleavage site that
remains after TEV cleavage is shown in bold non-capitalized text and the mutations are
shown in bold non-capitalized text. D. Shown is SEQ ID NO: 6, the amino acid sequence
of the construct used to express a form of mut-MGLL (hMGLL 1-303 L169S, L1768,
K36A). The N-terminal His tag is shown in non-capitalized text, the TEV cleavage site is
shown in bold non-capitalized text with an arrow over the site of cleavage, and the
mutations are shown in bold non-capitalized text. E. Shown is SEQ ID NO: 7, the amino
acid sequence of mut-MGLL (hMGLL 1-303 L169S, L176S, K36A) after TEV cleavage
of the N-terminal His tag. The one amino acid from the TEV cleavage site that remains
after TEV cleavage is shown in bold non-capitalized text and the mutations are shown in

bold non-capitalized text.

[0045] Figure 4: A. Shown are size exclusion elution profiles for wt-MGLL (hMGLL
1-303) (SEQ ID NO: 3) (magenta dotted lines) and TEV cleaved mut-MGLL (hMGLL 1-
303 L1698, L176S) (SEQ ID NO: 5) (blue solid line) purified in the absence of detergent
showing 100% aggregation for wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3) and 90%
monomer for TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L.176S) (SEQ ID NO: 5).
B. Shown is circular dichroism structural analysis of wt-MGLL (hMGLL 1-303) (SEQ
ID NO: 3) and TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L176S) (SEQ ID NO:
5). Far UV scans from 200 to 260 nm are shown in (i) and temperature melts from 25 to

80 °C monitored at 210 nm are shown in (ii).

[0046 ] Figure 5: Shown are duplicate Michaelis-Menten curves for the hydrolysis of
TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L176S) (SEQ ID NO: 5).

[ 0047 ] Figure 6: Shown are thermal shift data of the melting transitions for wt-MGLL
(hMGLL 1-303) (SEQ ID NO: 3) (green line) and TEV cleaved mut-MGLL (hMGLL 1-
303 L1698, L176S) (SEQ ID NO: 5) (red line). The midpoint of the melting transition
was 58 °C for wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3) and 56.7 °C for TEV cleaved
mut-MGLL (hMGLL 1-303 L169S, L176S) (SEQ ID NO: 5).
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[ 0048 ] Figure 7: A. Shown is the structure of Compound 1. B. Shown is the structure

of Compound 2.

[0049 ] Figure 8: Shown is a ribbon diagram of the structure of the complex of TEV
cleaved mut-MGLL (hAMGLL 1-303 L169S, L176S, K36A) (SEQ ID NO: 7) and
Compound 2. Color-coding is according to secondary structure (a-helices: magenta, -
sheets: yellow). The ligand (Compound 2) is drawn in ball-and-stick representation
(green). The protein adopts a typical o/f hydrolase fold comprised of 8 -sheets, with 32
being antiparallel to the other sheets. The inhibitor is located in the active site, which is

capped by loops connecting a4 to a.6.

[ 0050 ] Figure 9: Shown is a surface representation of the structure for the complex of
TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L176S, K36A) (SEQ ID NO: 7) and
Compound 2.

[0051] Figure 10: A. Shown is a ribbon diagram of MGLL with the cap-domain
(residues 145-206) colored cyan to illustrate the location of the cap-domain. B. Shown is
an overlay of the ribbon diagram of MGLL (orange) onto Bromoperoxidase Al (salmon)
and Chloroperoxidase L (green); C. Shown is an overlay of the ribbon diagram of MGLL
(orange) onto P.putida Esterase (grey) and Gamma Lactamase (yellow). The cap-domain
was omitted for clarity to show the good alignment between the core o/p-hydrolase in all
structures. D. Shown is a ribbon diagram of the MGLL cap-domain. Superposition of
different cap-domains highlighting the different arrangement between MGLL and other
hydrolases. E. Shown is an overlay of the ribbon diagrams of the cap-domains of
Bromoperoxidase Al (salmon) and Chloroperoxidase L (green); F. Shown is an overlay
of the ribbon diagrams of the cap-domains of P.putida Esterase (grey) and

GammalLactamase (yellow).

[0052] Figure 11: Shown is a ribbon diagram of MGLL showing the location of
mutations L169S and L1768 in the cap-domain that prevented protein aggregation and
K36A on the loop between 2 and 4 that would make interactions with a symmetry mate

if present in the wild-type protein.

[ 0053 ] Table 1: Shown is a table of the forms of MGLL of the present invention and

the purification yield in mg/liter.



WO 2009/132260 PCT/US2009/041646

10

15

20

25

~13 -

[ 0054 ] Table2: Shown is a table of the kinetic constants of the various MGLL
constructs using 4MC-B or C-A as substrates. Values for the 4MC-B substrate are the
average of 2 or 4 separate assays. The k.,/ Ky values for the C-A substrate are the

average values for the hydrolysis of five different substrate concentrations at [S]<<Ky.

[0055] Table 3: Shown are the data collection and refinement statistics for the
complex of TEV cleaved mut-MGLL (hMGLL 1-303 L1698S, L.176S, K36A) (SEQ ID
NO: 7) and Compound 2.

[0056] Table 4: Shown is are the superposition statistics for selected o/p hydrolases

without the cap-domain superimposed onto MGLL without the cap-domain

[0057] Table 5: Shown are the coordinates for the complex of TEV cleaved mut-
MGLL (hMGLL 1-303 L169S, L1768, K36A) (SEQ ID NO: 7) and Compound 2.

DEFINITIONS

[0058] As is generally the case in biotechnology and chemistry, the description of the
present invention has required the use of a number of terms of art. Although it is not
practical to do so exhaustively, definitions for some of these terms are provided here for
ease of reference. Unless defined otherwise, all technical and scientific terms used herein
have the same meaning as commonly understood by one of ordinary skill in the art to
which this invention belongs. Definitions for other terms may also appear elsewhere
herein. However, the definitions provided here and elsewhere herein should always be
considered in determining the intended scope and meaning of the defined terms. Although
any methods and materials similar or equivalent to those described herein can be used in

the practice of the present invention, the preferred methods and materials are described.

[0059] The term “comprising” means “including principally, but not necessarily
solely”. Furthermore, variations of the word “comprising”, such as “comprise” and

“comprises”, have correspondingly varied meanings.

[0060] As used herein, the terms "containing”, “having” and “including” are used in

their open, non-limiting sense.
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[0061 ] Asused herein, “sequence” means the linear order in which monomers occur in
a polymer, for example, the order of amino acids in a polypeptide or the order of

nucleotides in a polynucleotide.

[0062] The terms "polypeptide,” "protein,” and "peptide” are wused herein
interchangeably to refer to amino acid chains in which the amino acid residues are linked
by peptide bonds or modified peptide bonds. The amino acid chains can be of any length
of greater than two amino acids. Unless otherwise specified, the terms "polypeptide,”
"protein,” and "peptide” also encompass various modified forms thereof. Such modified
forms may be naturally occurring modified forms or chemically modified forms.
Examples of modified forms include, but are not limited to, glycosylated forms,
phosphorylated forms, myristoylated forms, palmitoylated forms, ribosylated forms,
acetylated forms, ubiquitinated forms, etc. Modifications also include intra-molecular
crosslinking and covalent attachment to various moieties such as lipids, flavin, biotin,
polyethylene glycol or derivatives thercof, etc. In addition, modifications may also
include cyclization, branching and cross-linking. Further, amino acids other than the
conventional twenty amino acids encoded by the codons of genes may also be included in

a polypeptide.

[ 0063 ] As used herein, a protein or nucleic acid molecule is said to be "isolated" when
the protein or nucleic acid molecule is substantially separated from contaminants from the

source of the protein or nucleic acid.

[0064] As used herein, the term "native protein” refers to a protein comprising an
amino acid sequence identical to that of a protein isolated from its natural source or

organism.

[0065] As used herein, the term "amino acids” refers to the L-isomers of the naturally
occurring amino acids. The naturally occurring amino acids are glycine, alanine, valine,
leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan,
cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, 7-
carboxylglutamic acid, arginine, ornithine, and lysine. Unless specifically indicated, all

amino acids are referred to in this application are in the L-form.
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[ 0066 ] As used herein, the term "nonnatural amino acids" refers to amino acids that are

not naturally found in proteins. For example, selenomethionine.

[0067 ] As used herein, the term "positively charged amino acid” includes any amino
acids having a positively charged side chain under normal physiological conditions.
Examples of positively charged naturally occurring amino acids are arginine, lysine, and

histidine.

[0068 ] As used herein, the term "negatively charged amino acid" includes any amino
acids having a negatively charged side chains under normal physiological conditions.
Examples of negatively charged naturally occurring amino acids are aspartic acid and

glutamic acid.

[0069 ] As used herein, the term "hydrophobic amino acid” includes any amino acids
having an uncharged, nonpolar side chain that is relatively insoluble in water. Examples
of naturally occurring hydrophobic amino acids are alanine, leucine, isoleucine, valine,

proline, phenylalanine, tryptophan, and methionine.

[0070 ] As used herein, the term "hydrophilic amino acid” refers to any amino acids
having an uncharged, polar side chain that is relatively soluble in water. Examples of
naturally occurring hydrophilic amino acids are serine, threonine, tyrosine, asparagine,

glutamine and cysteine.

[0071 ] As used herein, "nucleic acid" is defined as RNA or DNA that encodes a
protein or peptide as defined herein, or is complementary to nucleic acid sequence
encoding such peptides, or hybridizes to such nucleic acid and remains stably bound to it
under appropriate stringency conditions. Nucleic acid sequences can be composed of
natural nucleotides of the following bases: thymidine, adenine, cytosine, guanine, and
uracil; abbreviated T, A, C, G, and U, respectively, and/or synthetic analogs of the natural

nucleotides.

[0072] The term “oligonucleotide” or “oligo” refers to a single-stranded DNA or RNA
sequence of a relatively short length, for example, less than 100 residues long. For many
methods, oligonucleotides of about 16-25 nucleotides in length are useful, although
longer oligonucleotides of greater than about 25 nucleotides may sometimes be utilized.

Some oligonucleotides can be used as “primers” for the synthesis of complimentary
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nucleic acid strands. For example, DNA primers can hybridize to a complimentary
nucleic acid sequence to prime the synthesis of a complimentary DNA strand in reactions
using DNA polymerases. Oligonucleotides are also useful for hybridization in several
methods of nucleic acid detection, for example, in Northern blotting or in situ

hybridization.

[0073 ] “Recombinant” refers to a nucleic acid, a protein encoded by a nucleic acid, a
cell, or a viral particle, that has been modified using molecular biology techniques to
something other than its natural state. For example, recombinant cells can contain
nucleotide sequence that is not found within the native (non-recombinant) form of the cell
or can express native genes that are otherwise abnormally, under- expressed, or not
expressed at all. Recombinant cells can also contain genes found in the native form of the
cell wherein the genes are modified and re-introduced into the cell by artificial means.
The term also encompasses cells that contain an endogenous nucleic acid that has been
modified without removing the nucleic acid from the cell; such modifications include

those obtained, for example, by gene replacement, and site-specific mutation.

[0074 ] The term “high stringency” as used herein refers to the conditions under which
two nucleic acids may be hybridized, and may include, for example, the concentration of
salts and/or detergents in a solution, the temperature of a solution that is used during the
hybridization of the two nucleic acids and time period of the hybridization. Accordingly,
the term “high stringency” as used herein refers to conditions in a solution that are
conducive to hybridization of two nucleic acids only where such nucleic acids share a
high degree of complementarity. The degree of complementarity may include, but not be
limited to, a range of from about 90% to 100%. Thus, “high stringency” conditions may
involve, but are not limited to, the use of a varying temperature and a buffer comprising

various concentrations of detergents, salts, and divalent cations.

[0075] As used herein, “vector” refers to a nucleic acid molecule into which a
heterologous nucleic acid can be or is inserted. Some vectors can be introduced into a
host cell allowing for replication of the vector or for expression of a protein that is
encoded by the vector or construct. Vectors typically have selectable markers, for
example, genes that encode proteins allowing for drug resistance, origins of replication

sequences, and multiple cloning sites that allow for insertion of a heterologous sequence.
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Vectors are typically plasmid-based and are designated by a lower case “p” followed by a
combination of letters and/or numbers. Starting plasmids disclosed herein are either
commercially available, publicly available on an unrestricted basis, or can be constructed
from available plasmids by application of procedures known in the art. Many plasmids
and other cloning and expression vectors that can be used in accordance with the present
invention are well-known and readily available to those of skill in the art. Moreover,
those of skill readily may construct any number of other plasmids suitable for use in the
invention. The properties, construction and use of such plasmids, as well as other vectors,
in the present invention will be readily apparent to those of skill from the present

disclosure.

[0076] As used herein, the term “activity” refers to an activity exerted by MGLL as
determined in vivo or in vitro, according to standard techniques. Examples of such
activity include, but are not limited to, direct activity such as the ability to bind to a ligand
or an analog thereof, enzymatic activity, or functional changes of cell physiology that

result from changes in activity.

[0077] The term “high-throughput assay” or “high-throughput screening” refers to
assay designs that allow easy screening of multiple samples simultaneously and/or in
rapid succession, and may include the capacity for robotic manipulation. Another desired
feature of high-throughput assays is an assay design that is optimized to reduce reagent
usage, or minimize the number of manipulations in order to achieve the analysis desired.
Examples of high-throughput assay formats include, but are not limited to, formats that
utilize 96-well, 384-well, and 1536-well plates, or “lab on a chip” microchannel chips
used for liquid handling experiments. It is well known by those in the art that as
miniaturization of plastic molds and liquid handling devices are advanced, or as improved
assay devices are designed, greater numbers of samples can be processed using the forms
of the present invention. Any high-throughput screening may be utilized to test new
compounds, which are identified or designed for their ability to interact with MGLL. For
general information on high-throughput screening see, for example, (Devlin (editor)

1998); and U.S. Pat. No. (US5763263).

[0078] By the term "selecting” or "select” compounds it is intended to encompass both

(a) choosing compounds from a group previously unknown to be modulators of a protein
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complex or interacting protein members thercof; and (b) testing compounds that are
known to be capable of binding, or modulating the functions and activities of, a protein
complex or interacting protein members thereof. The compounds encompass numerous
chemical classes, including but not limited to, small organic or inorganic compounds,
natural or synthetic molecules, such as antibodies, proteins or fragments thercof, antisense
nucleotides, interfering RNA (iRNA) and ribozymes, and derivatives, mimetics and
analogs thereof. Preferably, they are small organic compounds, i.e., those having a
molecular weight of no greater than 10,000 daltons, more preferably less than 5,000

daltons.

[0079] As used herein, the term "atomic coordinates” or "structure coordinates” refers
to mathematical coordinates that describe the positions of atoms in crystals of MGLL in
Protein Data Bank (PDB) format, including X, Y, Z and B, for each atom. The diffraction
data obtained from the crystals are used to calculate an clectron density map of the
repeating unit of the crystal. The electron density maps may be used to establish the
positions (i.e. coordinates X, Y and Z) of the individual atoms within the crystal. Those of
skill in the art understand that a set of structure coordinates determined by X-ray
crystallography is not without standard error. For the purpose of this invention, any set of
structure coordinates for MGLL from any source having a root mean square deviation of
non-hydrogen atoms of less than about 1.5 A when superimposed on the non-hydrogen
atom positions of the corresponding atomic coordinates of Table 5 are considered
substantially identical or homologous. In a more preferred embodiment, any set of
structure coordinates for MGLL from any source having a root mean square deviation of
non-hydrogen atoms of less than about 0.75 A. when superimposed on the non-hydrogen
atom positions of the corresponding atomic coordinates of Table 5 are considered

substantially identical or homologous.

[0080] The term "atom type" refers to the chemical element whose coordinates are

measured. The abbreviations in column 3 of Table 5 identifies the element.

[0081 ] The terms "X," "Y" and "Z" refer to the crystallographically-defined atomic
position of the element measured with respect to the chosen crystallographic origin. The
term "B" refers to a thermal factor that measures the mean variation of an atom's position

with respect to its average position.
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[0082] As used herein, the term "crystal” refers to any three-dimensional ordered array

of molecules that diffracts X-rays.

[ 0083 ] As used herein, the term "carrier" in a composition refers to a diluent, adjuvant,

excipient, or vehicle with which the product is mixed.

[0084] As used herein, the term "composition" refers to the combining of distinct
elements or ingredients to form a whole. A composition comprises more than one element
or ingredient. For the purposes of this invention, a composition will often, but not always

comprise a carrier.

[0085] As used herein, "MGLL" is used to mean a protein obtained as a result of
expression of monoacylglycerol lipase. Within the meaning of this term, it will be
understood that human MGLL encompasses all proteins encoded by monoacylglycerol
lipase, mutants thereof, conservative amino acid substitutions, alternative splice proteins
thereof, and phosphorylated proteins thereof. Additionally, as used herein, it will be
understood that the term "MGLL" includes monoacylglycerol lipase and homologues
from other animals. As an example, MGLL includes the protein comprising SEQ 1D NO:
7 and variants thereof comprising at least about 70% amino acid sequence identity to SEQ
ID NO: 7, or preferably 80%, 85%, 90% and 95% sequence identity to SEQ ID NO: 7, or
more preferably, at least about 95% or more sequence identity to SEQ ID NO: 7.

[0086] As used herein, the term "SAR,” an abbreviation for Structure-Activity
Relationships, collectively refers to the structure-activity/structure property relationships
pertaining to the relationship(s) between a compound's activity/properties and its

chemical structure.

[0087 ] As used herein, the term "molecular structure” refers to the three dimensional
arrangement of molecules of a particular compound or complex of molecules (e.g., the

three dimensional structure of MGLL and ligands that interact with MGLL.

[0088 ] As used herein, the term "molecular modeling" refers to the use of
computational methods, preferably computer assisted methods, to draw realistic models
of what molecules look like and to make predictions about structure activity relationships
of ligands. The methods used in molecular modeling range from molecular graphics to

computational chemistry.
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[0089 ] As used herein, the term "molecular model” refers to the three dimensional
arrangement of the atoms of a molecule connected by covalent bonds or the three
dimensional arrangement of the atoms of a complex comprising more than one molecule,

e.g., a protein-ligand complex.

[0090 ] As used herein, the term "molecular graphics" refers to three dimensional (3D)
representations of the molecules; for instance, a 3D representation produced using

computer assisted computational methods.

[0091 ] As used herein, "computer readable medium” refers to any medium, which can
be read and accessed directly by a computer. Such media include, but are not limited to:
magnetic storage media, such as floppy discs, hard disc storage media, and magnetic tape;
optical storage media such as optical discs or CD-ROM; electrical storage media such as

RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

[0092] As used herein, "recorded" refers to a process for storing information on
computer readable media. A skilled artisan can readily adopt any of the presently known
methods for recording information on computer readable media to generate manufactures
comprising an amino acid sequence and/or atomic coordinate/X-ray diffraction data

information of the present invention.

[0093 ] As used herein, "a computer-based system”" refers to the hardware means,
software means, and data storage means used to analyze the sequence and/or X-ray
diffraction data of the present invention. The minimum hardware means of the computer-
based systems of the present invention comprises a central processing unit (CPU), input
means, output means, and data storage means. A skilled artisan can readily appreciate
which of the currently available computer-based systems are suitable for use in the
present invention. A visualization device, such as a monitor, is optionally provided to

visualize structure data.

[0094 ] As stated above, the computer-based systems of the present invention comprise
a data storage means having stored therein sequence and/or atomic coordinate/X-ray
diffraction data of the present invention and the necessary hardware means and software
means for supporting and implementing an analysis means. As used herein, "data storage

means" refers to memory which can store sequence or atomic coordinate/X-ray diftraction
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data of the present invention, or a memory access means which can access manufactures

having recorded thereon the sequence or X-ray data of the present invention.

[0095] As used herein, "secarch means” or "analysis means” refers to one or more
programs which are implemented on the computer-based system to compare a target
sequence or target structural motif with the sequence or X-ray data stored within the data
storage means. Search means are used to identify fragments or regions of a protein which
match a particular target sequence or target motif. A variety of known algorithms are
disclosed publicly and a variety of commercially available software for conducting search
means are and can be used in the computer-based systems of the present invention. A
skilled artisan can readily recognize that any one of the available algorithms or
implementing software packages for conducting computer analyses can be adapted for use

in the present computer-based systems.

[0096] As used herein, "a target structural motif," or "target motif," refers to any
rationally selected sequence or combination of sequences in which the sequence(s) are
chosen based on a three-dimensional configuration or electron density map which is
formed upon the folding of the target motif. There are a variety of target motifs known in
the art. Protein target motifs include, but are not limited to, enzymatic active sites,
inhibitor binding sites, structural subdomains, epitopes, functional domains and signal
sequences. Similar motifs are known for RNA. A variety of structural formats for the
input and output means can be used to input and output the information in the computer-

based systems of the present invention.

[0097 ] As used herein, the term "computational chemistry” refers to calculations of the

physical and chemical properties of the molecules.

[0098 ] As used herein, the term "molecular replacement” refers to a method that
involves generating a preliminary model of a crystal of MGLL whose coordinates are
unknown, by orienting and positioning the said atomic coordinates described in the
present invention so as best to account for the observed diffraction pattern of the
unknown crystal. Phases can then be calculated from this model and combined with the
observed amplitudes to give an approximate Fourier synthesis of the structure whose

coordinates are unknown. (Rossmann 1972)
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[0099 ] As used herein, the term "homolog" refers to the MGLL protein molecule or
the nucleic acid molecule which encodes the protein, or a functional domain from said
protein from a first source having at least about 70% or 75% sequence identity, or at least
about 80% sequence identity, or more preferably at least about 85% sequence identity, or
even more preferably at least about 90% sequence identity, and most preferably at least
about 95%, 97% or 99% amino acid or nucleotide sequence identity, with the protein,
encoding nucleic acid molecule or any functional domain thereof, from a second source.
The second source may be a version of the molecule from the first source that has been
genetically altered by any available means to change the primary amino acid or nucleotide

sequence or may be from the same or a different species than that of the first source.

[00100] As used herein, the term "active site" refers to regions on MGLL or a
structural motif of MGLL that are directly involved in the function or activity of human

MGLL.

[00101 ] As used herein, the terms "binding site” or "binding pocket" refer to a region
of human MGLL or a molecular complex comprising MGLL that, as a result of the
primary amino acid sequence of human MGLL and/or its three-dimensional shape,
favourably associates with another chemical entity or compound including ligands,
cofactors, or inhibitors. For the purpose of this invention, any active site, binding site or
binding pocket defined by a set of structure coordinates for MGLL or for a homolog of
MGLL from any source having a root mean square deviation of non-hydrogen atoms of
less than about 1.5 A. when superimposed on the non-hydrogen atom positions of the
corresponding atomic coordinates of Table 5 are considered substantially identical or
homologous. In a more preferred embodiment, any set of structure coordinates for MGLL
or a homolog of MGLL from any source having a root mean square deviation of non-
hydrogen atoms of less than about 0.75 A. when superimposed on the non-hydrogen atom
positions of the corresponding atomic coordinates of Table 5 are considered substantially

identical or homologous.

[00102 ] The tem "root mean square deviation" means the square root of the arithmetic

mean of the squares of the deviations from the mean.
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[00103 ] As used herein, the term "hydrogen bond" refers to two hydrophilic atoms
(either O or N), which share a hydrogen that is covalently bonded to only one atom, while

interacting with the other.

[00104 ] As used herein, the term "hydrophobic interaction" refers to interactions made

by two hydrophobic residues or atoms (such as C).

[00105] As used herein, the term "conjugated system" refers to more than two double
bonds adjacent to each other, in which electrons are completely delocalized with the

entire system. This also includes aromatic residues.

[00106] As used herein, the term "aromatic residue” refers to amino acids with side
chains having a delocalized conjugated system. Examples of aromatic residues are

phenylalanine, tryptophan, and tyrosine.

[00107] As used herein, the phrase "inhibiting the binding" refers to preventing or
reducing the direct or indirect association of one or more molecules, peptides, proteins,
enzymes, or receptors, or preventing or reducing the normal activity of one or more
molecules, peptides, proteins, enzymes or receptors, e.g., preventing or reducing the

direct or indirect association with human MGLL.

[00108 ] As used herein, the term "competitive inhibitor" refers to inhibitors that bind
to human MGLL, thus directly competing with them. Competitive inhibition may, in

some instances, be reversed completely by increasing the substrate concentration.

[00109 ] As used herein, the term "uncompetitive inhibitor" refers to one that inhibits
the functional activity of human MGLL by binding to a different site than does its
substrate(s). As used herein, the term "non-competitive inhibitor” refers to one that can
bind to either the free or bound form of MGLL. Those of skill in the art may identify
inhibitors as competitive, uncompetitive, or non-competitive by computer fitting enzyme

kinetic data using standard methods. See, for example, (Segel 1975)

[00110] As used herein, the term "R or S-isomer” refers to two possible stereoisomers
of a chiral carbon according to the Cahn-Ingold-Prelog system adopted by International
Union of Pure and Applied Chemistry (IUPAC). Each group attached to the chiral carbon
is first assigned to a preference or priority a, b, ¢, or d on the basis of the atomic number

of the atom that is directly attached to the chiral carbon. The group with the highest
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atomic number is given the highest preference a, the group with next highest atomic
number is given the next highest preference b, and so on. The group with the lowest
preference (d) is then directed away from the viewer. If the trace of a path fromatobtoc
is counter clockwise, the isomer is designated (S); in the opposite direction, clockwise,

the isomer is designated (R).

[00111] As used herein, the term "stereoisomers" is a general term for all isomers of
individual molecules that differ only in the orientation of their atoms in space. It includes
enantiomers and isomers of compounds with more than one chiral center that are not

mirror images of one another (diastereomers).

[00112 ] As used herein, the term "chiral center” refers to a carbon atom to which four

different groups are attached.

[00113 ] As used herein, the term "enantiomer" or "enantiomeric” refers to a molecule
that is nonsuperimposable on its mirror image and hence optically active wherein the
enantiomer rotates the plane of polarized light in one direction and its mirror image

rotates the plane of polarized light in the opposite direction.

[00114] As used herein, the term "racemic" refers to a mixture of equal parts of

enantiomers and which is optically active.

[00115] As used herein, the term "resolution” refers to the separation or concentration
or depletion of one of the two enantiomeric forms of a molecule. In the context of this
application. The term "resolution" also refers to the amount of detail, which can be
resolved by the diffraction experiment. Or in other terms, since the inherent disorder of a
protein crystal diffraction pattern fades away at some diffraction angle theta,,, the
corresponding distance dmin Of the reciprocal lattices is determined by Bragg's law. In
practice in protein crystallography it is usual to quote the nominal resolution of a protein
clectron density in terms of dpin, the minimum lattice distance to which data is included in

the calculation of the map.

[00116] As used herein, the term "ligand" refers to any molecule, or chemical entity,
which binds with or to MGLL, a subunit of MGLL, a domain of MGLL, a target
structural motif of MGLL, or a fragment of MGLL. Thus, ligands include, but are not

limited to, small molecule inhibitors, for example.
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[00117] As used herein, the term "small molecule inhibitor" refers to compounds
useful in the present invention having measurable MGLL inhibiting activity. In addition
to small organic molecules, peptides, antibodies, cyclic peptides and peptidomimetics are
contemplated as being useful in the disclosed methods. Preferred inhibitors are small
molecules, preferably less than 10,000 daltons, and more preferably less than 5,000

daltons.

[00118 ] As used herein the terms "bind," "binding,” "bond," or "bonded” when used in
reference to the association of atoms, molecules, or chemical groups, refer to any physical

contact or association of two or more atoms, molecules, or chemical groups.

[00119] As used hercin, the terms "covalent bond" or "valence bond" refer to a
chemical bond between two atoms in a molecule created by the sharing of electrons,

usually in pairs, by the bonded atoms.

[00120 ] As used herein, "noncovalent bond" refers to an interaction between atoms

and/or molecules that does not involve the formation of a covalent bond between them.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[00121] Tt is to be understood at the outset, that the figures and examples provided

herein are to exemplify, and not to limit the invention and its various embodiments.

[00122] The present invention includes a crystal comprising the monoacylglycerol
lipase (MGLL), or a fragment, or target structural motif or derivative thereof, and a
ligand, wherein the ligand is a small molecule inhibitor. In one embodiment, the fragment

or derivative thereof is a peptide comprising SEQ ID NO: 7

[00123 ] In another embodiment, the crystal has a spacegroup of C222;. In a different
embodiment, the crystal effectively diffracts X-rays for determination of atomic
coordinates to a resolution of at least about 3.2 A. In a preferred embodiment, the ligand
is in crystalline form. In a highly preferred embodiment, the ligand is the structure

depicted in Figure 7A or Figure 7B, and, derivatives thercof.

[00124] The present invention also includes a crystal comprising MGLL, which
comprises a peptide having at least 95% sequence identity to SEQ ID NO. 6. In a

preferred embodiment, the crystal comprising SEQ ID NO: 7 comprises an atomic
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structure characterized by the coordinates of Table 5. In another preferred embodiment,
the crystal comprises a unit cell selected from the group consisting of: a cell having

dimensions of a=93.95, b =128.45, ¢ = 60.6.

[00125] In another aspect of the invention, the invention includes a computer system
comprising: (a) a database containing information on the three dimensional structure of a
crystal comprising MGLL, or a fragment or a target structural motif or derivative thereof,
and a ligand, wherein the ligand is a small molecule inhibitor, stored on a computer
readable storage medium; and, (b) a user interface to view the information. In one
embodiment, the information comprises diffraction data obtained from a crystal

comprising SEQ ID NO: 7.

[00126 ] In another embodiment, the information comprises an electron density map of
a crystal form comprising SEQ ID NO: 7. In a different embodiment, the information
comprises the structure coordinates of Table 5 or homologous structure coordinates
comprising a root mean square deviation of non-hydrogen atoms of less than about 1.5 A
when superimposed on the non-hydrogen atom positions of the corresponding atomic
coordinates of Table 5. In a preferred embodiment, the information comprises structure
coordinates comprising a root mean square deviation of non-hydrogen atoms of less than
about 0.75 A when superimposed on the non-hydrogen atom positions of the
corresponding atomic coordinates of Table 5. In a highly preferred embodiment, the
information comprises the structure coordinates for amino acids SER48-HIS54, ARGS57,
TYRS8, HIS77, HIS80, MET88, PHE93, PHE96, GLY120-ILE127, ILE145-VAL161,
ALA163, SER176-ASN195, ASP197, ILE200, CYS201, ALA203, LEU205-VAL207,
PHE209-SER218, ASP239-ASP243, TYR268-LEU275, THR279 according to Table 5 or
similar structure coordinates for said amino acids comprising a root mean square
deviation of non-hydrogen atoms of less than about 1.5 A to 0.75 A when superimposed

on the non-hydrogen atom positions of the corresponding atomic coordinates of Table 5.

[00127] The present invention also includes a method of evaluating the potential of an
agent to associate with MGLL comprising: (a) exposing MGLL to the agent; and (b)
detecting the association of said agent to MGLL amino acid residues SER48-HIS54,
ARGS57, TYRSS, HIS77, HIS80, MET&8, PHE93, PHE96, GLY120-ILE127, ILE145-
VALI161, ALA163, SER176-ASN195, ASP197, ILE200, CYS201, ALA203, LEU205-
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VAL207, PHE209-SER218, ASP239-ASP243, TYR268-LEU275, THR279 thereby
evaluating the potential. In one embodiment of the invention, the agent is a virtual
compound. In another embodiment of the invention, step (a) comprises comparing the
atomic structure of the compound to the three dimensional structure of MGLL. In a
different embodiment, the comparing of step (a) comprises employing a computational
means to perform a fitting operation between the compound and at least one binding site
of MGLL. In a preferred embodiment, the binding site is defined by structure coordinates
for amino acids SER48-HIS54, ARGS57, TYRS58, HIS77, HIS80, METR8, PHE93,
PHE96, GLYI120-ILE127, ILE145-VALI161, ALA163, SER176-ASN195, ASP197,
ILE200, CYS201, ALA203, LEU205-VAL207, PHE209-SER218, ASP239-ASP243,
TYR268-LEU275, THR279 according to Table 5 or similar structure coordinates for said
amino acids comprising a root mean square deviation of non-hydrogen atoms of less than
about 1.5 A when superimposed on the non-hydrogen atom positions of the corresponding
atomic coordinates of Table 5. In a highly preferred embodiment, step (a) comprise
exposing the agent to crystalline SEQ ID NO: 7 and the detecting of step (b) comprises

determining the three dimensional structure of the agent-SEQ ID NO: 7 complex.

[00128 ] The present invention includes a method of identifying a potential agonist or
antagonist against MGLL comprising: (a) employing the three dimensional structure of
MGLL cocrystallized with a small molecule inhibitor to design or select said potential
agonist or antagonist. In one embodiment, the three dimensional structure corresponds to
the atomic structure characterized by the coordinates of Table 5 or similar structure
coordinates comprising a root mean square deviation of non-hydrogen atoms of less than
about 1.5 A when superimposed on the non-hydrogen atom positions of the corresponding
atomic coordinates of Table 5. In a different embodiment, the method further comprises
the steps of: (b) synthesizing the potential agonist or antagonist; and (c) contacting the

potential agonist or antagonist with MGLL.

[00129 ] The instant invention comprises a method of locating the attachment site of an
inhibitor to MGLL, comprising: (a) obtaining X-ray diffraction data for a crystal of
MGLL; (b) obtaining X-ray diffraction data for a complex of MGLL and an inhibitor; (c)
subtracting the X-ray diffraction data obtained in step (a) from the X-ray diffraction data
obtained in step (b) to obtain the difference in the X-ray diffraction data; (d) obtaining
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phases that correspond to X-ray diffraction data obtained in step (a); (e) utilizing the
phases obtained in step (d) and the difference in the X-ray diffraction data obtained in
step (c) to compute a difference Fourier image of the inhibitor; and, (f) locating the

attachment site of the inhibitor to MGLL based on the computations obtained in step (e).

[00130] The present invention further comprises a method of obtaining a modified
inhibitor comprising: (a) obtaining a crystal comprising MGLL and an inhibitor; (b)
obtaining the atomic coordinates of the crystal; (c) using the atomic coordinates and one
or more molecular modeling techniques to determine how to modify the interaction of the
inhibitor with MGLL; and, (d) modifying the inhibitor based on the determinations
obtained in step (c) to produce a modified inhibitor. In one embodiment, the crystal
comprises a peptide having a sequence comprising SEQ ID NO: 7. In a different
embodiment, the one or more molecular modeling techniques are selected from the group
consisting of graphic molecular modeling and computational chemistry. In a preferred
embodiment, step (a) comprises detecting the interaction of the inhibitor to MGLL amino
acid residues SER48-HIS54, ARGS57, TYRSS, HIS77, HIS80, METS8S, PHE93, PHE96,
GLY120-ILE127, ILE145-VALI161, ALA163, SER176-ASN195, ASP197, ILE200,
CYS201, ALA203, LEU205-VAL207, PHE209-SER218, ASP239-ASP243, TYR268-
LEU275, THR279. In another embodiment of the invention, the invention includes an

MGLL inhibitor identified by this method.

[00131 ] In another aspect of the invention, the invention includes an isolated protein
fragment comprising a binding pocket or active site defined by structure coordinates of
MGLL amino acid residues SER48-HIS54, ARGS57, TYRS58, HIS77, HISR0, METSS,
PHE93, PHE96, GLYI120-ILE127, ILE145-VAL161, ALA163, SERI176-ASNI195,
ASP197, ILE200, CYS201, ALA203, LEU205-VAL207, PHE209-SER218, ASP239-
ASP243, TYR268-LEU275, THR279. In one embodiment, the isolated fragment is linked
to a solid support.

[00132] In another aspect of the invention, the invention includes an isolated nucleic
acid molecule encoding the fragment, which comprises a binding pocket or active site
defined by structure coordinates of MGLL. In one embodiment, a vector comprises the
nucleic acid molecule. In another embodiment, a host cell comprises the vector. In yet

another aspect of the invention, the invention includes a method of producing a protein
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fragment, comprising culturing the host cell under conditions in which the fragment is
expressed. In another aspect of the invention, the invention includes a method of
screening for an agent that associates with MGLL, comprising: (a) exposing a protein
molecule fragment to the agent; and (b) detecting the level of association of the agent to
the fragment. In another aspect of the invention, the invention includes a kit comprising a

protein molecule fragment.

[00133 ] In another aspect of the invention, the invention includes a method for the
production of a crystal complex comprising an MGLL polypeptide-ligand comprising: (a)
contacting the MGLL polypeptide with said ligand in a suitable solution comprising PEG
MME 5K, M Na Citrate pH 5.5, and n-Octyl-Beta-D-Glucopyranoside; and, b)
crystallizing said resulting complex of MGLL polypeptide-ligand from said solution. In
one embodiment, the MGLL polypeptide is a polypeptide SEQ ID NO: 7. In another
embodiment, PEG MME has an average molecular weight range from 2000 to 10000,
wherein said PEG MME is present in solution at a range from about 1% w/v to about 5%
w/v and said n-Octyl-Beta-D-Glucopyranoside is present in solution at a range of from
about 0.2% to 2%. In a preferred embodiment, PEG MME has an average molecular
weight of about 5000 and is present in solution at about 2.4% w/v and said n-Octyl-Beta-

D-Glucopyranoside is present in solution at about 0.6%.

[00134] The invention further includes a method for the production of a crystal
comprising MGLL and a ligand wherein the ligand is a small molecule inhibitor

comprising crystallizing a peptide comprising SEQ ID NO: 7 with a potential inhibitor.

[00135] The invention includes a method for identifying a potential inhibitor of MGLL
comprising: a) using a three dimensional structure of MGLL as defined by atomic
coordinates according to Table 5; b) replacing one or more MGLL amino acids selected
from SER48-HIS54, ARGS57, TYRS8, HIS77, HIS80, METS88, PHE93, PHE96, GLY 120-
ILE127, ILE145-VALI161, ALA163, SER176-ASN195, ASP197, ILE200, CYS201,
ALA203, LEU205-VAL207, PHE209-SER218, ASP239-ASP243, TYR268-LEU27S,
THR279 in said three-dimensional structure with a different amino acid to produce a
modified MGLL; c) using said three-dimensional structure to design or select said
potential inhibitor; d) synthesizing said potential inhibitor; and, e) contacting said

potential inhibitor with said modified MGLL in the presence of a substrate to test the
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ability of said potential inhibitor to inhibit MGLL or said modified MGLL. In another
embodiment, the potential inhibitor is selected from a database. In a preferred
embodiment, the potential inhibitor is designed de novo. In another preferred
embodiment, the potential inhibitor is designed from a known inhibitor. In a highly
preferred embodiment, the step of employing said three-dimensional structure to design
or select said potential inhibitor comprises the steps of: a) identifying chemical entities or
fragments capable of associating with modified MGLL; and b) assembling the identified
chemical entities or fragments into a single molecule to provide the structure of said
potential inhibitor. In one embodiment, the potential inhibitor is a competitive inhibitor of
SEQ ID NO: 7. In a different embodiment, the potential inhibitor is a non-competitive or
uncompetitive inhibitor of SEQ ID NO: 7. In yet another embodiment, an inhibitor is

identified by the method.

Engineered Forms and Fragments

[00136] Engineered forms of MGLL or fragments thereof, for instance engineered
forms or fragments comprising active sites defined by two or more amino acids selected
from the group consisting of: SER48-HIS54, ARGS57, TYRS8, HIS77, HIS80, METSS,
PHE93, PHE96, GLYI120-ILE127, ILE145-VAL161, ALA163, SERI176-ASNI195,
ASP197, ILE200, CYS201, ALA203, LEU205-VAL207, PHE209-SER218, ASP239-
ASP243, TYR268-LEU275, THR279 may be prepared by any available means including
synthetic or recombinant means. Such fragments may then be used in the assays as
described herein, for example, but not limited to, high-throughput assays to detect

interactions between prospective agents and the active site within the fragment.

[00137] For recombinant expression or production of the forms or fragments of the
invention, nucleic acid molecules encoding the form or fragment may be prepared.
Nucleic acid molecules encoding engineered forms or fragments of the invention may
differ in sequence because of the degeneracy in the genetic code or may differ in
sequence as they encode proteins or protein fragments that differ in amino acid sequence.
Homology or sequence identity between two or more such nucleic acid molecules is
determined by BLAST (Basic Local Alignment Search Tool) analysis using the algorithm
employed by the programs blastp, blastn, blastx, tblastn and tblastx (Karlin and Altschul
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1990) and (Altschul 1993), fully incorporated by reference, which are tailored for

sequence similarity searching.

[00138 ] The approach used by the BLAST program is to first consider similar
segments between a query sequence and a database sequence, then to evaluate the
statistical significance of all matches that are identified and finally to summarize only
those matches which satisfy a preselected threshold of significance. For a discussion of
basic issues in similarity searching of sequence databases, see (Altschul et al. 1994)
which is fully incorporated by reference. The search parameters for histogram,
descriptions, alignments, expect (i.e., the statistical significance threshold for reporting
matches against database sequences), cutoff, matrix and filter are at the default settings.
For a discussion of default scoring matrix used by blastp, blastx, tblastn, and tblastx, see

(Henikoff 1992).

[00139] The encoding nucleic acid molecules of the present invention or fragments
thereof (i.e., synthetic oligonucleotides) and those that are used as probes or specific
primers for polymerase chain reaction (PCR) or to synthesize gene sequences encoding
proteins of the invention can easily be synthesized by chemical techniques, for example,
the phosphotriester method of (Matteucci and Caruthers 1981) or using automated
synthesis methods. In addition, larger DNA segments can readily be prepared by well-
known methods, such as synthesis of a group of oligonucleotides that define various
modular segments of the gene, followed by ligation of oligonucleotides to build the

complete modified gene.

[00140 ] The encoding nucleic acid molecules of the present invention may further be
modified so as to contain a detectable label for diagnostic and probe purposes. A variety
of such labels are known in the art and can readily be employed with the encoding
molecules herein described. Suitable labels include, but are not limited to, biotin,
radiolabeled nucleotides and the like. A skilled artisan can employ any of the art-known

labels to obtain a labeled encoding nucleic acid molecule.

[00141] The present invention further provides recombinant DNA molecules (rDNA)
that contain a coding sequence for a protein or protein fragment as described herein. As
used herein, an rDNA molecule is a DNA molecule that has been subjected to molecular

manipulation. Methods for generating rDNA molecules are well known in the art, for



WO 2009/132260 PCT/US2009/041646

10

15

20

25

30

—32_

example, see (Sambrook et al. 1989). In the preferred rDNA molecules, a coding DNA

sequence is operably linked to expression control sequences and/or vector sequences.

[00142 ] The choice of vector and expression control sequences to which one of the
protein encoding sequences of the present invention is operably linked depends directly,
as is well known in the art, on the functional properties desired (e.g., protein expression,
and the host cell to be transformed). A vector of the present invention may be capable of
directing the replication or insertion into the host chromosome, and preferably also

expression, of the structural gene included in the rDNA molecule.

[00143 ] Expression control elements that are used for regulating the expression of an
operably linked protein encoding sequence are known in the art and include, but are not
limited to, inducible promoters, constitutive promoters, secretion signals, and other
regulatory elements. Preferably, the inducible promoter is readily controlled, such as

being responsive to a nutrient in the host cell's medium.

[00144 ] The present invention further provides host cells transformed with a nucleic
acid molecule that encodes a protein or protein fragment of the present invention. The
host cell can be either prokaryotic or eukaryotic. Eukaryotic cells useful for expression of
a protein of the invention are not limited, so long as the cell line is compatible with cell
culture methods and compatible with the propagation of the expression vector and
expression of the gene product. Preferred cukaryotic host cells include, but are not limited
to, insect, yeast, and mammalian cells. Preferred eukaryotic host cells include Spodoptera

frugiperda (SPor Sf21) insect cells.

[00145] Transformed host cells of the invention may be cultured under conditions that
allow the production of the recombinant protein. Optionally the recombinant protein is
isolated from the medium or from the cells; recovery and purification of the protein may

not be necessary in some instances where some impurities may be tolerated.

[00146] Kits may also be prepared with any of the above described nucleic acid
molecules, proteins, protein fragments, vector and/or host cells optionally packaged with
the reagents needed for a specific assay, such as those described above. In such kits, the
protein, protein fragments, or other reagents may be attached to a solid support, such as

glass or plastic beads.
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High-throughput Assays
[00147] Compound identification methods can be performed using conventional
laboratory assay formats or in high-throughput assays, including, but not limited to, those

described below.

[00148 ] Immunoassays are a group of techniques used for the measurement of specific
biochemical substances, commonly at low concentrations in complex mixtures such as
biological fluids. The assays depend upon suitably prepared and selected antibodies with
specificity and high affinity for their complementary antigens. A substance to be
measured must, of necessity, be antigenic, either an immunogenic macromolecule or a
haptenic small molecule. To each sample a known limited amount of specific antibody is
added and the fraction of the antigen combining with it, often expressed as the bound:free
ratio, is estimated by quantifying the signal from the antibody. Quantification can be
achieved with a number of readily identifiable labels and used for various types of assays,
including, but not limited to, radioisotopes for radioimmunoassays (RIA), fluorescent
molecules for fluoroimmunoassays (FIA), stable free radicals for spin immunoassays,
chemiluminescent molecules for chemiluminescent immunoassays (CLIA), colloidal gold
particles for immunogold assays, and enzymes for enzyme-linked immunosorbent assays

(ELISA).

[00149 ] A common immunoassay format is the ELISA, which avoids the hazards of
radiochemicals and the expense of fluorescence detection systems. Instead, an ELISA is a
form of quantitative immunoassay based on the use of antibodies (or antigens) that may
be linked to an insoluble carrier surface, which is then used to "capture” the relevant
antigen (or antibody) the test solution. The antigen-antibody complex is then detected by
measuring the activity of an appropriate enzyme that can be covalently attached to the
capture antigen (or antibody) or to a subsequent “detection” antibody (or antigen). For
more information on ELISA techniques, see, for example, (Crowther 1995); (Kemeny

(editor) and Challacombe (editor) 1988), (Kemeny 1991), and (Ishikawa 1999).

[00150] Colorimetric assays for enzymes are methods of quantitative chemical
analysis in which the concentration or amount of a compound is determined by comparing
the color produced by the reaction of a reagent with both standard and test amounts of the

compound, often using a colorimeter. A colorimeter is a device for measuring color
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intensity or differences in color intensity, either visually or photoelectrically. Standard
colorimetric assays of beta-galactosidase enzymatic activity are well known to those
skilled in the art, see for example, (Norton and Coffin 1985). A colorimetric assay can be
performed on whole cell lysates using O-nitrophenyl-beta-D-galacto-pyranoside (ONPG,
Sigma) as the substrate in a standard colorimetric beta-galactosidase assay (Sambrook et
al. 1989). Automated colorimetric assays are also available for the detection of beta-

galactosidase activity, as described in U.S. Patent Number (US5733720).

[00151] Enzymatic substrates that become fluorescent after being acted upon by an
enzyme generally are well known. Such fluorescent substrates typically have two
components that are bound to one another through, for example, a covalent chemical
bond. One component is a fluorescent molecule that is capable of fluorescing by first
accepting light energy and then emitting light energy. The other component is an entity
that prevents the fluorescent molecule from accepting or emitting light energy when the
two components are covalently bound to one another. In the presence of an appropriate
enzyme, the enzyme cleaves the covalent bond between the two components and
separates one component from the other to permit the fluorescent molecule to accept and
emit light energy. In other words, the enzyme frees the fluorescent molecule and allows it
to fluoresce. Ideally, fluorescent substrates should be soluble and stable in aqueous
buffers, should have a high affinity for the enzymes that act upon them, and should yield
a strong signal upon enzymatic action (US5998593A).

[00152] Detecting fluorescence emitted from the fluorescent component of a
fluorescent enzyme substrate is typically achieved in two steps. In particular, the
fluorescent molecule is first excited with light energy and subsequently the fluorescence
emitted from the fluorescent component is then detected. Generally, fluorescent
molecules can be excited with light energy from, for example, a laser or another suitable
light source. Fluorescence is detected with a device designed to detect light energy of a
wavelength that is emitted by the fluorescent molecule. Such excitation and emission
detection systems generally are designed to operate at particular wavelength ranges

(US5998593A).

[00153] Thermofluor® assays detect small changes in the intrinsic melting

temperature of proteins based on binding of ligands. Compounds that interact
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preferentially with the native form of the protein will increase the T,,, the temperature at
which half of the protein is unfolded (Pantoliano et al. 2001). The technique monitors
changes in the fluorescent intensity of dyes such as 1-anilinonaphthalene-8-sulfonic acid
(1,8-ANS). The fluorescent dyes are quenched in aqueous environments but increase in

fluorescence on binding to the hydrophobic core of denatured proteins.

Modeling the Three-Dimensional Structure of MGLL

[00154 ] The atomic coordinate data provided in Table 5, or the coordinate data derived
from homologous proteins may be used to build a three-dimensional model of MGLL.
Any available computational methods may be used to build the three dimensional model.
As a starting point, the X-ray diffraction pattern obtained from the assemblage of the
molecules or atoms in a crystalline version of MGLL or an MGLL homolog can be used
to build an clectron density map using tools well known to those skilled in the art of
crystallography and X-ray diffraction techniques. Additional phase information extracted
either from the diffraction data and available in the published literature and/or from

supplementing experiments may then be used to complete the reconstruction.

[00155] For basic concepts and procedures of collecting, analyzing, and utilizing X-
ray diffraction data for the construction of electron densities see, for example, (Campbell
1984), (Cantor and Schimmel 1980), (Brunger 1993), (Woolfson 1997), (Drenth 1999),
(Tsirelson and Ozerov 1996), and U.S. Patent Numbers (US5942428A); (US6037117A);
(US5200910A); and (US5365456A), each of which is herein specifically incorporated by

reference in their entirety.

[00156] For basic information on molecular modeling, see, for example, (Schlecht
1998); (Gans et al. 1996); (Cohen (editor) 1996); and (Smith 1996). U.S. Patents which
provide detailed information on molecular modeling include U.S. Patent Numbers
(US4906122A;  USS030103A;  USS583973A;  USS5612894A;  USS5994503A;
US6071700A; US6075014A; US6075123A; US6080576A; US6093573A), each of which

are incorporated by reference herein in their entirety.

Methods of Using the Atomic Coordinates to Identify and Design Ligands of Interest
[00157 ] The atomic coordinates of the invention, such as those described in Table 5, or

coordinates substantially identical to or homologous to those of Table 5 may be used with
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any available methods to prepare three dimensional models of MGLL as well as to
identify and design MGLL ligands, inhibitors or antagonists or agonist molecules. Such a
method provides the amino acid sequence and/or X-ray diffraction data in a form which
allows a skilled artisan to analyze and molecular model the three-dimensional structure of

MGLL or related molecules, including a subdomain thereof.

[00158 ] For instance, three-dimensional modeling may be performed using the
experimentally determined coordinates derived from X-ray diffraction patterns, such as
those in Table 5, for example, wherein such modeling includes, but is not limited to,
drawing pictures of the actual structures, building physical models of the actual
structures, and determining the structures of related subunits and MGLL/ligand and
MGLL subunit/ligand complexes using the coordinates. Such molecular modeling can
utilize known X-ray diffraction molecular modeling algorithms or molecular modeling
software to generate atomic coordinates corresponding to the three-dimensional structure

of MGLL.

[00159 ] As described above, molecular modeling involves the use of computational
methods, preferably computer assisted methods, to build realistic models of molecules
that are identifiably related in sequence to the known crystal structure. It also involves
modeling new small molecule inhibitors bound to MGLL starting with the structures of
MGLL and or MGLL complexed with known ligands or inhibitors. The methods utilized
in ligand modeling range from molecular graphics (i.e., 3D representations) to
computational chemistry (i.e., calculations of the physical and chemical properties) to
make predictions about the binding of ligands or activities of ligands; to design new
ligands; and to predict novel molecules, including ligands such as drugs, for chemical

synthesis, collectively referred to as rational drug design.

[00160] One approach to rational drug design is to search for known molecular
structures that might bind to an active site. Using molecular modeling, rational drug
design programs can look at a range of different molecular structures of drugs that may fit
into the active site of an enzyme, and by moving them in a three-dimensional

environment it can be decided which structures actually fit the site well.
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[00161 ] An alternative but related rational drug design approach starts with the known
structure of a complex with a small molecule ligand and models modifications of that

small molecule in an effort to make additional favourable interactions with MGLL.

[00162 ] The present invention includes the use of molecular and computer modeling
techniques to design and select and design ligands, such as small molecule agonists or
antagonists or other therapeutic agents that interact with MGLL. For example, the
invention as herein described includes the design of ligands that act as competitive
inhibitors of at least one MGLL function by binding to all, or a portion of, the active sites

or other regions of MGLL.

[00163] This invention also includes the design of compounds that act as
uncompetitive inhibitors of at least one function of MGLL. These inhibitors may bind to
all, or a portion of, the active sites or other regions of MGLL already bound to its
substrate and may be more potent and less non-specific than competitive inhibitors that
compete for MGLL active sites. Similarly, non-competitive inhibitors that bind to and
inhibit at least one function of MGLL whether or not it is bound to another chemical
entity may be designed using the atomic coordinates of MGLL or complexes comprising

MGLL of this invention.

[00164 ] The atomic coordinates of the present invention also provide the needed
information to probe a crystal of MGLL with molecules composed of a variety of
different chemical features to determine optimal sites for interaction between candidate
inhibitors and/or activators and MGLL. For example, high resolution X-ray diffraction
data collected from crystals saturated with solvent allows the determination of where each
type of solvent molecule sticks. Small molecules that bind to those sites can then be

designed and synthesized and tested for their inhibitory activity (Travis 1993).

[00165] The present invention also includes methods for computationally screening
small molecule databases and libraries for chemical entities, agents, ligands, or
compounds that can bind in whole, or in part, to MGLL. In this screening, the quality of
fit of such entities or compounds to the binding site or sites may be judged either by shape

complementarity or by estimated interaction energy (Meng et al. 1992).
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[00166] The design of compounds that bind to, promote or inhibit the functional
activity of MGLL according to this invention generally involves consideration of two
factors. First, the compound must be capable of physically and structurally associating
with MGLL. Non-covalent molecular interactions important in the association of MGLL
with the compound include hydrogen bonding, van der Waals and hydrophobic
interactions. Second, the compound must be able to assume a conformation that allows it
to associate with MGLL. Although certain portions of the compound may not directly
participate in the association with MGLL, those portions may still influence the overall
conformation of the molecule. This, in turn, may have a significant impact on binding
affinities, therapeutic efficacy, drug-like qualities and potency. Such conformational
requirements include the overall three-dimensional structure and orientation of the
chemical entity or compound in relation to all or a portion of the active site or other
region of MGLL, or the spacing between functional groups of a compound comprising

several chemical entities that directly interact with MGLL.

[00167] The potential, predicted, inhibitory agonist, antagonist or binding effect of a
ligand or other compound on MGLL may be analyzed prior to its actual synthesis and
testing by the use of computer modeling techniques. If the theoretical structure of the
given compound suggests insufficient interaction and association between it and MGLL,
synthesis and testing of the compound may be obviated. However, if computer modeling
indicates a strong interaction, the molecule may then be synthesized and tested for its
ability to interact with MGLL. In this manner, synthesis of inoperative compounds may
be avoided. In some cases, inactive compounds are synthesized predicted on modeling
and then tested to develop a SAR (structure-activity relationship) for compounds

interacting with a specific region of MGLL.

[00168 ] One skilled in the art may use one of several methods to screen chemical
entities fragments, compounds, or agents for their ability to associate with MGLL and
more particularly with the individual binding pockets or active sites of MGLL. This
process may begin by visual inspection of, for example, the active site on the computer
screen based on the atomic coordinates of MGLL or MGLL complexed with a ligand.
Selected chemical entities, compounds, or agents may then be positioned in a variety of

orientations, or docked within an individual binding pocket of MGLL. Docking may be
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accomplished using software such as QUANTA, available from Accelrys, Inc., San
Diego, CA.; and SYBYL, available for Tripos, St. Louis, Missouri; followed by energy
minimization and molecular dynamics with standard molecular mechanics forcefields,
such as CHARMm; available from Accelrys, Inc., San Diego, CA; and AMBER,

University of California, San Francisco.

[00169 ] Specialized computer programs may also assist in the process of selecting
chemical entities. These include but are not limited to: GRID (Goodford 1985), available
from Oxford University, Oxford, UK); MCSS (Miranker and Karplus 1991), available
from Molecular Simulations, Burlington, Mass.; AUTODOCK (Goodsell and Olsen
1990), available from Scripps Research Institute, La Jolla, CA; and DOCK (Kuntz et al.

1982), available from University of California, San Francisco, California.

[00170] The use of software such as GRID, a program that determines probable
interaction sites between probes with various functional group characteristics and the
macromolecular surface, is used to analyze the surface sites to determine structures of
similar inhibiting proteins or compounds. The GRID calculations, with suitable inhibiting
groups on molecules (e.g., protonated primary amines) as the probe, are used to identify
potential hotspots around accessible positions at suitable energy contour levels. The
program DOCK may be used to analyze an active site or ligand-binding site and suggest

ligands with complementary steric properties.

[00171 ] Once suitable chemical entities, compounds, or agents have been selected,
they can be assembled into a single ligand or compound or inhibitor or activator.
Assembly may proceed by visual inspection of the relationship of the fragments to each
other on the three-dimensional image. This may be followed by manual model building

using software such as QUANTA or SYBYL.

[00172] Useful programs to aid in connecting the individual chemical entities,
compounds, or agents include but are not limited to: CAVEAT (Bartlett et al. 1989); 3D
Database systems such as MACCS-3D (Martin 1992), available from MDL Information
Systems, San Leandro, CA; and HOOK, available from Molecular Simulations,

Burlington, Massachusetts.
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[00173 ] Several methodologies for searching three-dimensional databases to test
pharmacophore hypotheses and select compounds for screening are available. These
include the program CAVEAT (Bacon and Moult 1992). For instance, CAVEAT uses
databases of cyclic compounds which can act as "spacers” to connect any number of
chemical fragments already positioned in the active site. This allows one skilled in the art
to quickly generate hundreds of possible ways to connect the fragments already known or

suspected to be necessary for tight binding.

[00174] Instead of proceeding to build an inhibitor activator, agonist or antagonist of
MGLL in a step-wise fashion one chemical entity at a time as described above, such
compounds may be designed as a whole or "de novo" using either an empty active site or
optionally including some portion(s) of a known molecule(s). These methods include:
LUDI (Bohm 1992), available from Biosym Technologies, San Diego, CA; LEGEND
(Nishibata and Ttai 1991), available from Molecular Simulations, Burlington, Mass.; and

LeapFrog, available from Tripos Associates, St. Louis, Mo,. USA.

[00175] For instance, the program LUDI can determine a list of interaction sites into
which to place both hydrogen bonding and hydrophobic fragments. LUDI then uses a
library of linkers to connect up to four different interaction sites into fragments. Then
smaller "bridging" groups such as --CH2- and --COO-- are used to connect these
fragments. For example, for the enzyme DHFR, the placements of key functional groups
in the well-known inhibitor methotrexate were reproduced by LUDI. See also, (Rotstein

and Murcko 1993).

[00176] Other molecular modeling techniques may also be employed in accordance

with this invention. See, e.g., (Cohen et al. 1990). See also, (Navia and Murcko 1992).

[00177] Once a compound has been designed or selected by the above methods, the
affinity with which that compound may bind or associate with MGLL may be tested and
optimized by computational evaluation and/or by testing biological activity after
synthesizing the compound. Inhibitors or compounds may interact with the MGLL in
more than one conformation that is similar in overall binding energy. In those cases, the
deformation energy of binding is taken to be the difference between the energy of the free
compound and the average energy of the conformations observed when the compound

binds to MGLL.
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[00178 ] A compound designed or selected as binding or associating with MGLL may
be further computationally optimized so that in its bound state it would preferably lack
repulsive electrostatic interaction with MGLL. Such non-complementary (e.g.,
clectrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-
dipole interactions. Specifically, the sum of all electrostatic interactions between the
inhibitor and MGLL when the inhibitor is bound, preferably make a neutral or favourable
contribution to the enthalpy of binding. Weak binding compounds will also be designed
by these methods so as to determine SAR.

[00179 ] Specific computer software is available in the art to evaluate compound
deformation energy and electrostatic interaction. Examples of programs designed for such
uses include: Gaussian 92, revision C (Frisch et al. 1992); AMBER, University of
California, San Francisco; QUANTA and CHARMm, available from Accelrys, Inc., San
Diego, CA.; and Insight II/Discover, from Biosysm Technologies Inc., San Diego, CA,
USA. Other hardware systems and software packages will be known to those skilled in

the art.

[00180] Once a compound that associates with MGLL has been optimally selected or
designed, as described above, substitutions may then be made in some of its atoms or side
groups in order to improve or modify its binding properties. Generally, initial
substitutions are conservative, i.e., the replacement group will have approximately the
same size, shape, hydrophobicity and charge as the original group. It should, of course, be
understood that components known in the art to alter conformation may be avoided. Such
substituted chemical compounds may then be analyzed for efficiency of fit to MGLL by

the same computer methods described in detail, above.

Use of Homology Structure Modeling to Design Ligands with Modulated Binding or
Activity to MGLL.

[00181 ] The present invention includes the use of the atomic coordinates and
structures of MGLL and/or MGLL complexed with an inhibitor to design modifications
to starting compounds and derivatives thereof that will bind more tightly or interact more

specifically to the target enzyme.

[00182] The structure of a complex between the MGLL and the starting compound can

be used to guide the modification of that compound to produce new compounds that have
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other desirable properties for applicable industrial and other wuses (e.g., as
pharmaceuticals), such as chemical stability, solubility or membrane permeability.

(Lipinski et al. 1997).

[00183 ] Binding compounds, agonists, antagonists and such that are known in the art.
Such compounds can be diffused into or soaked with the stabilized crystals of MGLL to
form a complex for collecting X-ray diffraction data. Alternatively, the compounds,
known and unknown in the art, can be cocrystallized with MGLL by mixing the
compound with MGLL before precipitation.

[00184 ] To produce custom high affinity and very specific compounds, the structure of
MGLL can be compared to the structure of a selected non-targeted molecule and a hybrid
constructed by changing the structure of residues at the binding site for a ligand for the
residues at the same positions of the non-target molecule. The process whereby this
modeling is achieved is referred to as homology structure modeling. This is done
computationally by removing the side chains from the molecule or target of known
structure and replacing them with the side chains of the unknown structure put in
sterically plausible positions. In this way it can be understood how the shapes of the
active site cavities of the targeted and non-targeted molecules differ. This process,
therefore, provides information concerning how a bound ligand can be chemically altered
in order to produce compounds that will bind tightly and specifically to the desired target
but will simultancously be sterically prevented from binding to the non-targeted
molecule. Likewise, knowledge of portions of the bound ligands that are facing to the
solvent would allow introduction of other functional groups for additional pharmaceutical
purposes. The use of homology structure modeling to design molecules (ligands) that bind
more tightly to the target enzyme than to the non-target enzyme has wide spread

applicability.

Databases and Computer Systems

[00185] An amino acid sequence or nucleotide sequence of MGLL and/or X-ray
diffraction data, useful for computer molecular modeling of MGLL or a portion thereof,
can be provided in a variety of mediums to facilitate use thereof. In one application of this
embodiment, databases comprising data pertaining to MGLL, or at least one subdomain

thereof, amino acid and nucleic acid sequence and/or X-ray diffraction data of the present
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invention is recorded on computer readable medium. A skilled artisan can readily
appreciate how any of the presently known computer readable media can be used to
create a manufacture comprising computer readable medium having recorded thereon an

amino acid sequence and/or X-ray diffraction data of the present invention.

[00186] A variety of data storage structures are available to a skilled artisan for
creating a computer readable medium having recorded thereon an amino acid sequence
and/or atomic coordinate/X-ray diffraction data of the present invention. The choice of
the data storage structure will generally be based on the means chosen to access the stored
information. In addition, a variety of data processor programs and formats can be used to
store the sequence and X-ray data information of the present invention on computer
readable media. The sequence information can be represented in a word processing text
file, formatted in commercially-available software such as WordPerfect and
MICROSOFT Word, or represented in the form of an ASCII file, stored in a database
application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt
any number of dataprocessor structuring formats (e.g., text file or database) in order to
obtain computer readable media having recorded therecon the information of the present

invention.

[00187 ] By providing computer readable media having sequence and/or atomic
coordinates based on X-ray diffraction data, a skilled artisan can routinely access the
sequence and atomic coordinate or X-ray diffraction data to model a related molecule, a
subdomain, mimetic, or a ligand thereof. Computer algorithms are publicly and
commercially available which allow a skilled artisan to access this data provided in a
computer readable medium and analyze it for molecular modeling and/or RDD (rational

drug design). See, e.g., (Mary Ann Liebert (Publishers) 1995).

[00188 ] The present invention further provides systems, particularly computer-based
systems, which contain the sequence and/or diffraction data described herein. Such
systems are designed to do structure determination and RDD for MGLL or at least one
subdomain thereof. Non-limiting examples are microcomputer workstations available
from Silicon Graphics Incorporated and Sun Microsystems running UNIX based,

Windows NT or IBM OS/2 operating systems.
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[00189 ] A variety of comparing means can also be used to compare a target sequence
or target motif with the data storage means to identify structural motifs or electron density
maps derived in part from the atomic coordinate/X-ray diffraction data. A skilled artisan
can readily recognize that any one of the publicly available computer modeling programs

can be used as the search means for the computer-based systems of the present invention.

Integrated Procedures Which Utilize the Present Invention

[00190] Molecular modeling is provided by the present invention for rational drug
design (RDD) of mimetics and ligands of MGLL. As described above, the drug design
paradigm uses computer-modeling programs to determine potential mimetics and ligands
which are expected to interact with sites on the protein. The potential mimetics or ligands
are then screened for activity and/or binding and/or interaction. For MGLL-related
mimetics or ligands, screening methods can be selected from assays for at least one

biological activity of MGLL, e.g., such as hydrolysis by MGLL.

[00191 ] Thus, the tools and methodologies provided by the present invention may be
used in procedures for identifying and designing ligands which bind in desirable ways
with the target. Such procedures utilize an iterative process whereby ligands are
synthesized, tested and characterized. New ligands can be designed based on the
information gained in the testing and characterization of the initial ligands and then such
newly identified ligands can themselves be tested and characterized. This series of
processes may be repeated as many times as necessary to obtain ligands with the desirable

binding properties.
The following steps (1-7) serve as an example of the overall procedure:

1. A biological activity of a target is selected (e.g., hydrolysis by MGLL).

2. A ligand is identified that appears to be in some way associated with the chosen
biological activity (e.g., the ligand may be an inhibitor of a known activity). The
activity of the ligand may be tested by in vivo and/or in vitro methods. A ligand of the
present invention can be, but is not limited to, at least one selected from a lipid, a
nucleic acid, a compound, a protein, an clement, an antibody, a saccharide, an isotope,
a carbohydrate, an imaging agent, a lipoprotein, a glycoprotein, an enzyme, a

detectable probe, and antibody or fragment thereof, or any combination thereof, which
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can be detectably labeled as for labeling antibodies. Such labels include, but are not
limited to, enzymatic labels, radioisotope or radioactive compounds or elements,
fluorescent compounds or metals, chemiluminescent compounds and bioluminescent
compounds. Alternatively, any other known diagnostic or therapeutic agent can be
used in a method of the invention. Suitable compounds are then tested for activities in
relationship to the target. Complexes between MGLL and ligands are made either by
co-crystallization or more commonly by diffusing the small molecule ligand into the
crystal. X-ray diffraction data from the complex crystal are measured and a difference
electron density map is calculated. This process provides the precise location of the
bound ligand on the target molecule. The difference Fourier is calculated using
measure diffraction amplitudes and the phases of these reflections calculated from the
coordinates.

3. Using the methods of the present invention, X-ray crystallography is utilized to
create electron density maps and/or molecular models of the interaction of the ligand
with the target molecule. The entry of the coordinates of the target into the computer
programs discussed above results in the calculation of most probable structure of the
macromolecule. These structures are combined and refined by additional calculations
using such programs to determine the probable or actual three-dimensional structure
of the target including potential or actual active or binding sites of ligands. Such
molecular modeling (and related) programs useful for rational drug design of ligands
or mimetics are also provided by the present invention.

4. The electron density maps and/or molecular models obtained in Step 3 are
compared to the electron density maps and/or molecular models of a non-ligand
containing target and the observed/calculated differences are used to specifically
locate the binding of the ligand on the target or subunit.

5. Modeling tools, such as computational chemistry and computer modeling, are
used to adjust or modify the structure of the ligand so that it can make additional or
different interactions with the target. The ligand design uses computer-modeling
programs which calculate how different molecules interact with the various sites of
the target, subunit, or a fragment thereof. Thus, this procedure determines potential

ligands or ligand mimetics.
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6. The newly designed ligand from Step 5 can be tested for its biological activity
using appropriate in vivo or in vitro tests, including the high-throughput screening
methods discussed above. The potential ligands or mimetics are then screened for
activity relating to MGLL, or at least a fragment thereof. Such screening methods are
selected from assays for at least one biological activity of the native target. The
resulting ligands or mimetics, provided by methods of the present invention, are
useful for treating, screening or preventing diseases in animals, such as mammals
(including humans).

7. Of course, each of the above steps can be modified as desired by those of skill in
the art so as to refine the procedure for the particular goal in mind. Also, additional X-
ray diffraction data may be collected on MGLL, MGLL/ligand complexes, MGLL
structural target motifs and MGLL subunit/ligand complexes at any step or phase of
the procedure. Such additional diffraction data can be used to reconstruct electron
density maps and molecular models, which may further assist in the design and

selection of ligands with the desirable binding attributes.

[00192] Tt is to be understood that the present invention is considered to include
stereoisomers as well as optical isomers, e.g., mixtures of enantiomers as well as
individual enantiomers and diastereomers, which arise as a consequence of structural

asymmetry in selected compounds, ligands or mimetics of the present series.

[00193] Some of the compounds or agents disclosed or discovered by the methods
herein may contain one or more asymmetric centers and thus give rise to enantiomers,
diasterecomers, and other stereoisomeric forms. The present invention is also meant to
encompass all such possible forms as well as their racemic and resolved forms and
mixtures thereof. When the compounds described or discovered herein contain olefinic
double bonds or other centers of geometric asymmetry, and unless otherwise specified, it
is intended to include both E and Z geometric isomers. All tautomers are intended to be

encompassed by the present invention as well.

Examples
[00194 ] Without further description, it is believed that one of ordinary skill in the art

can, using the preceding description and the following illustrative examples, make and

utilize the present invention and practice the claimed methods. The following working
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examples therefore, specifically point out preferred embodiments of the present invention,

and are not to be construed as limiting in any way the remainder of the disclosure.

BLAST search and sequence alignment

[00195] The reference sequences for MGLL Isoform 2 (Karlsson et al. 2001) and
Isoform 1 (Wall et al. 1997) are shown in Figure 1: A and Figure 1: B, respectively . Note
that the sequences of MGLL Isoform 2 and MGLL Isoform 1 are 100% identical, except
that MGLL Isoform 1 has an additional 10 amino acids at the N-terminus. The alignment
for MGLL Isoform 2 and MGLL Isoform 1 is shown in Figure 1: C. The numbering of
amino acids for MGLL Isoform 2 (SEQ ID NO: 1) was used throughout the following

description to refer to amino acids in the engineered constructs of the present invention.

[00196] A BLAST search (Altschul et al. 1990) against the sequence data set
deposited in the Protein Data Bank (Sussman et al. 1998) was conducted to identify a
protein of known crystal structure with reasonable sequence homology to MGLL. The
closest relative to MGLL found in the Protein Data Bank was RsbQ, a stress-response
regulator in Bacillus subtilis (Kaneko et al. 2005). RsbQ shares 25 % sequence identity
with human MGLL. RsbQ also had the highest sequence identity and smallest insertions
and deletions relative to MGLL of any structure available in the PDB at the time of this
work. The protein RsbQ, PDB ID 1wom (Kaneko et al. 2005), was used as a template.
The sequences of RsbQ and MGLL isoform 2 were aligned using the ClustalW software
(Thompson et al. 1994; Higgins et al. 1996). RsbQ is a a/p hydrolase with a catalytic
triad composed of Ser96, His247 and Asp219. The Asp-His-Ser catalytic triad of MGLL
matched the corresponding residues in RsbQ. This alignment was duplicated within the
GeneMine software (Lee and Irizarry 2001) and adjusted to eliminate insertions or
deletions within elements of secondary structure without disturbing the alignment of the
catalytic residues. The final alignment of human MGLL isoform 2 and RsbQ is shown in
Figure 2A. Although the sequence identity between MGLL and RsbQ is low for
generating a homology model for MGLL, it was estimated that a low accuracy model
would be sufficient to identify hydrophobic residues in the outside of the molecule that

could trigger aggregation.
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Homology model

[00197] A homology model of MGLL was created using RsbQ as a template and the
“quick refine” option in GeneMine software (Figure 2A) (Levitt 1992) (Lee and Irizarry
2001). The model shows a a/p hydrolase domain and a cap-domain composed of 4
helices. Helix 151-185 of the cap-domain shows amphiphilic properties, characteristic of
proteins involved in lipid binding. The helix contains a slight bend due to the presence of
a proline residue at position 172. 14 out of the 32 residues constituting the helix are
hydrophobic (Figure 2A). 7 of the hydrophobic residues are Leucines (Leu 152, 157,
159, 171, 174, 176, 184). In the model, the side chains of Leu 159 and 176 point towards
the solvent, possibly constituting a recognition site for the interaction of MGLL with the
membrane. It should be noted that because of the low accuracy of the model, other
Leucine residues, whose side chains appear to point toward the core of the molecule in
the homology model, may also contribute to the hydrophobic properties of MGLL and
trigger the need for detergent.

Construct design

[00198 ] A library of constructs was designed in an effort to generate MGLL protein
that would be less prone to aggregation, not require detergent for purification, and be
more suitable for high-throughput screening and crystallization. A total of 52 mut-MGLL
constructs were generated by mixing and matching the cap-domain mutations, surface
mutations, and truncations (Table 1). Seven different hydrophobic Leucine residues
(designated as Leu or L) of the cap-domain were selected for mutations (Leu 162, 167,
169, 171, 174, 176, and 184). The Leucine residues were replaced by Serine (designated
as Ser or S), Glutamine (designated as Gln, or Q), or Arginine (designated as Arg or R).
In addition, eight Lysine residues (designated as Lys or K) were identified at the surface
of the MGLL homology model (Lys 36, 160, 165, 188, 206, 226, 259 and 269) and were
mutated to Alanine (designated as Ala or A) to increase crystal contacts, promote
crystallization, and improve crystal quality. The surface mutations were introduced into
the mut-MGLL (hMGLL 1-303 L169S, 176S) double cap-domain mutant construct either
independently or in combination with other surface mutations. N-terminal and C-terminal
truncation constructs were also designed (Table 1). The N-terminus was truncated at

amino acid 9, 19, 26, and 33. The C-terminus was truncated at 297 and 292. The N-
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terminal and C-terminal truncations were introduced independently or combined with
other truncations and were introduced into the mut-MGLL (hMGLL 1-303 L1698, 176S)
double cap-domain mutant construct (Table 1). All constructs, including the wt-MGLL
(hMGLL 1-303) (SEQ ID NO: 3) construct, were engineered with an N-terminal histidine
tag (His tag) followed by a TEV protease cleavage site so that the tag could be cleaved
after purification. TEV is highly site-specific protease that is found in the Tobacco Etch

Virus (Invitrogen).

Cloning

[00199 ] The cDNA for MGLL was cloned from human brain DNA and used as a
template to generate a PCR fragment of full-length wt-MGLL corresponding to amino
acids 1-303 of the reference sequence for human MGLL Isoform 2 (SEQ ID NO: 1) The

sequences for the 3” and 5’ PCR primers are shown below.
5’ primer: gagaatttggtattttcaaggtatgccagaggaaagttccce
3’ primer: tggatgtgtatgtttctatcagggtggggacgaagttce

[00200] The PCR product was purified (GENECLEAN SPIN kits, Qbiogene, Inc),
treated with T4 polymerase (New England Biolabs), ligated into the modified
pENTR.11cLIC vector, and transformed into TOP10 one shot competent cells
(Invitrogen). After sequence confirmation, the mutations were added by Quickchange
mutagenesis, (Stratagene). The sequence confirmed plasmids were purified for
transfection into insect cells using the BaculoDirect Baculovirus Expression System
(Invitrogen). All of the resulting proteins contained an N-terminal His tag followed by a
TEV cleavage site and the amino acids of the different MGLL constructs. Viral stock
was propagated for two more amplifications at a low multiplicity of infection (MOI) to

render a P2 virus stock.

Recombinant production of wt-MGLL and mut-MGLL

[ 00201 ] Large-scale expression was carried out in 2-liter shake flasks or WAVE
bioreactors (WAVE Products Group, GE Healthcare). The P2 virus was expanded to
generate a high titer P3 stock by infecting Sf9 cells in suspension at MOI of 0.3 and
harvesting the virus after 72 hours. Cell paste for wt-MGLL (hMGLL 1-303) (SEQ ID
NO: 3) and mut-MGLL were obtained by infecting Sf9 cells at a density of 1.5 x 10°
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cells/ml with a MOI of 1. Infected cultures were maintained at 27 °C under constant
shaking at 140 rpm. Cells were harvested 65-72 hours post-infection by centrifugation at
1000 X g for 10 minutes at 4°C. Cell viability were determined by Guava ViaCount or
Trypan Blue and routinely were between 60 and 80% at time of harvest. Cell pellets were
washed once in phosphate-buffered saline with broad range protease inhibitors and stored

at —80 °C.

Purification of wild-type MGLL (wt-MGLL)

[00202] A pilot purification of wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3),
performed in the complete absence of detergent, generated no protein (data not shown).
A second purification of wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3) was done with
detergent in the lysis buffer only. Frozen cell pellets for wt-MGLL (hMGLL 1-303)
(SEQ ID NO: 3) were thawed, resuspended, and lysed in Bugbuster® lysis buffer for 1
hour at 4 °C. Bugbuster® lysis buffer is a proprietary lysis buffer from Invitrogen that
contains detergent. The lysate was clarified by centrifugation at 40,000 x g for 1 hr. No
detergent was added at this point or during the rest of the purification. From this point
forward, the purification protocol and buffers were the same as described below for mut-
MGLL. An average of 2.2 mg of wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3) per liter of
cell culture was obtained. Further analysis by size exclusion chromatography showed
complete aggregation of the purified wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3), which
confirmed the need for detergent for wt-MGLL purification as previously described in the

literature.

Purification of mut-MGLL

[00203 ] Mutant MGLL (mut-MGLL) constructs were purified in the absence of
detergent. Frozen cell pellets were thawed and resuspended in buffer A (50 mM Hepes
buffer pH 7.5, 400 mM NaCl, 5 % glycerol, 0.05% BME, 1 X Complete EDTA-free
protease inhibitor cocktail tablets (Roche)), dounce homogenized and mechanically lysed
with a microfluidizer processor (Microfluidics). The extract was clarified by
centrifugation at 40,000 x g for 1 hr. The cleared lysate was loaded on a 1 ml His-Trap
FF Crude column (GE-Healthcare) at 4°C using the AktaXpress system. For larger
preparations, a 5 ml His-Trap FF Crude column was used. The column was washed with

10-15 column volumes (CV) of buffer A containing 30 mM imidazole and mut-MGLL
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was eluted with 5 CV of 50 mM Hepes buffer pH 7.5, 400 mM NaCl, 5 % glycerol,
0.05% BME, 400 mM imidazole. In most preparations, 30 mM imidazole was included
in Buffer A from the beginning of thepreparation to reduce non-specific binding on the
His-Trap column. In addition, a slightly lower imidazole concentration of 350 mM was
used in the final elution during later preparations to further improve purity. Glycerol
concentration was also reduced to 4% to avoid back pressure problems on the
AktaXpress, afer it wasdetermined that mut-MGLL constructs were stable in 2% glycerol.
The elution peak was directly loaded on a Superdex 200 HR 16/60 preequilibrated with
50 mM Hepes pH7.5 buffer containing 200 mM NaCl, 2 % glycerol, 2mM DDT, 2mM
EDTA.DTT. Fractions were analysed by SDS-PAGE. Fractions containing mut-MGLL
were pooled. Purification yields were determined by Bradford assay using the protein
assay kit from BioRad according to manufacturer’s instruction with BSA as a standard

(Bradford 1976).

[ 00204 ] The majority of constructs containing N-terminal and/or C-terminal
truncations did not have high enough expression to allow for purification of soluble

protein (Table 1).

[00205] Constructs that were evaluated containing just the cap-domain mutations
generated between 0.7 and 4.5 mg/L, except the mut-MGLL construct containing the
L174Q mutation, which showed no expression (Tablel). Analysis by size exclusion
chromatography showed that the purified mut-MGLL proteins were 90% monomeric and
only 10% aggregated compared to 100% aggregation for wt-MGLL (hMGLL 1-303)
(SEQ ID NO: 3) (Figure 1A), which indicated that the mutations significantly improved

protein solubility and eliminated the need for detergent during purification.

[ 00206 ] Constructs that were evaluated with a combination of cap-domain and surface
mutations showed expression levels between 0.5 and 3.6 mg/L and were also ~ 90%

monomeric on SDS Page as well (data not shown).

TEYV Cleavage

[ 00207 ] To remove the N-terminal His tag, 0.2 units of TEV Protease for each ug of
mut-MGLL were added to the mut-MGLL pool. The reaction was done overnight at 4°C.
Cleavage of the histidine tag was monitored by SDS-PAGE.
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Complex formation

[ 00208 ] For crystallization trials, compounds were added in a 1:2 molar ratio (mut-
MGLL: compound). TEV cleaved mut-MGLL was first diluted to 0.3 mg/ml with buffer
containing 50 mM Hepes pH 7.5, 200mM NacCl, 2% Glycerol, 2 mM DTT, and 2 mM
EDTA. Compounds were added to the diluted protein and the mixture was incubated
overnight at 4°C. After the overnight incubation, the mixture was concentrated to a final
protein concentration of 6.0 mg/ml using a Ultrafree membrane (10KDa cut-off). At this
stage the purity was > 98% as determined by SDS-PAGE and the protein was ready for

crystallization trials.

Circular Dichroism (CD)

[ 00209 ] One construct, TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L176S)
(SEQ ID NO: 5), was selected for further characterization by CD to ensure that the
mutations introduced did not adversely affect protein conformation and activity. Circular
dichroism experiments were performed on a Circular Dichroism Spectrometer Model 202
from Aviv Instruments Inc. The CD scans of wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3)
and TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L176S) (SEQ ID NO: 5) (5 uM
protein in 10 mM cacodylic acid pH 7 and 140 mM NaCl) were measured from 200 to
260 nm. Temperature melts were monitored at 210 nm. The CD spectra were converted to

molar ellipticity and are shown in Figure 1B.

[00210] The CD scans for the wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3) purified in
the presence of detergent and TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L176S)
(SEQ ID NO: 5) were similar indicating that the two enzymes had a similar conformation
(Figure 1B). The scans were characteristic of proteins with high alpha-helical content as

expected for a lipase.

Kinetic Analysis

[00211] To ensure that the mutations engineered did not adversely affect protein
activity, a number of the newly generated MGLL mutants were analyzed using by
enzyme assay and then compared to wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3). A small
fluorescent substrate, 4-methyl coumarin butyrate (4MC-B) was used to compare the
activity of the engineered mutants to the activity of wt-MGLL (hMGLL 1-303) (SEQ ID
NO: 3). The catalytic efficiency (ke./Ky) for the hydrolysis of the 4MC-B was similar
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for wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3) and all MGLL mutants tested (Table 2).
A larger more aliphatic fluorescent substrate, Coumarin Arachidonate (C-A), structurally
more closely related to the MGLL natural substrate, 2-AG, was used to compare the
activity of wt-MGLL (hMGLL 1-303) (SEQ ID NO: 3) to TEV cleaved mut-MGLL
(hMGLL 1-303 L169S, L176S) (SEQ ID NO: 5). The catalytic efficiency for the
hydrolysis of the C-A substrate was equivalent between wt-MGLL (hMGLL 1-303) (SEQ
ID NO: 3)and TEV cleaved mut-MGLL (hMGLL 1-303 L1698, L.176S) (SEQ ID NO:
5), which confirmed that the mutations did not affect MGLL activity (Table 2).

[00212] The Michaelis-Menten parameters for the hydrolysis of 4-methylcoumarin
butyrate (4MC-B) and coumarin arachidonate (C-A) substrate were determined using 4-5
nM of MGLL in 20 mM Pipes pH 7 and 150 mM NaCl at 37 °C. The change in
fluorescence due to substrate hydrolysis was monitored using excitation/emission
wavelengths of 335/440 in a Safire II instrument from Tecan. The hyperbolic rates versus
substrate concentration curves for the hydrolysis of 4MC-B were fit to the Michaelis-

Menten equation using Excel.

max

Vo ¥IS]
K, +[S]

v

[00213 ] The solubility limit of coumarin arachidonate (C-A) substrate did not allow
for the determination of Ky and kes. The apparent ke./Ky ratio for the hydrolysis of C-A
was determined at [S]<<Ky;. The apparent Ky for C-A was estimated to be >30 uM. The
kea/Ky values reported are the average from independent values determined from five

substrate concentrations ranging from 700 to 40 nM.

Thermal stability

[00214] The Thermofluor® assay is a powerful tool to screen for small molecule
inhibitors interacting with a protein’s active site or allosteric site. The assay detects small
changes in the intrinsic melting temperature of proteins based on binding of ligands.
Compounds that interact preferentially with the native form of the protein will increase
the Tp, the temperature at which half of the protein is unfolded (Pantoliano et al. 2001).
The technique monitors changes in the fluorescent intensity of dyes such as 1-

anilinonaphthalene-8-sulfonic acid (1,8-ANS). The fluorescent dyes are quenched in



WO 2009/132260 PCT/US2009/041646

10

15

20

25

30

—54 —

aqueous environments but increase in fluorescence on binding to the hydrophobic core of

denatured proteins.

[00215] Thermofluor® assays were conducted to characterize wt-MGLL (hMGLL 1-
303) (SEQ ID NO: 3) and mut-MGLL (hMGLL 1-303 L169S, L176S) and evaluate if the
MGLL mutants could be used for high-throughput screening using Thermofluor®. Three
microliters of protein at a concentration of 0.05 mg/ml in 50 mM Pipes pH 7, 200 mM
NaCl, 100 uM 1,8-ANS, and 0.001% Tween was added to pre-dispensed compound
plates. Wells were overlaid with silicone oil (1 gL, Fluka, type DC 200) to prevent
evaporation. Final compound concentrations varied from 150 to 0.15 uM. Assay plates
were heated at a rate of 1°C/min for all experiments over a temperature range sufficient to
measure protein unfolding. Fluorescence was measured by continuous illumination with
UV light (Hamamatsu LC6) supplied via fiber optic and filtered through a custom band-
pass filter (380-400 nm; >6 OD cutoff). Fluorescence emission was detected by
measuring light intensity using a CCD camera (Sensys, Roper Scientific) filtered to detect
emission at 500 = 25 nm, resulting in simultaneous and independent readings of all 384
wells. One or more images were collected at each temperature, and the sum of the pixel
intensity in a given area of the assay plate was recorded vs temperature, and fit to

standard equations to yield the 7,.

[00216] The study using Thermofluor® showed that wt-MGLL (hMGLL 1-303) (SEQ
ID NO: 3) had a very poor transition, characteristic for aggregated or unfolded proteins
(Figure 5). TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L176S) (SEQ ID NO: 5),
however, gave a strong transition with a Ty, value of 56.7 °C, indicating that the
engineered mutation produced a more soluble MGLL protein that was suitable for high-

throughput screening.

Crystallization

[00217 ] All mutants were purified according to the procedure described above and
submitted for crystallization trials. Purity greater than 95% as determine by SDS Page
was achieved for all constructs. Combinations of high-throughput and manual
crystallization screens were used. Several constructs generated crystals but only

crystallization conditions containing detergent yielded crystals (data not shown). Apo
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proteins generated crystals diffracting between 8.0 A and 9.0 A only, despite extensive
optimization trials. Co-crystallization with methyl arachidonyl fluorophosphonate

(MAFP) did not significantly improve diffraction.

[00218 ] Co-crystallization of TEV cleaved mut-MGLL (hMGLL 1-303 L169S,
L1768, K36A) (SEQ ID NO: 7) with Compound 1 generated crystals that diffracted to 2.3
A, but with diffused scattering in one orientation. Further optimization experiments did
not improve data quality with that complex. High quality diffraction was achieved by co-
crystallization of TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L1768S, K36A) (SEQ
ID NO: 7) with Compound 2, a compound that was 10 fold more potent than Compound
1. Crystallization of the TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L176S, K36A)
(SEQ ID NO: 7) and Compound 2 complex was achieved at 22°C with a hanging droplet
containing 6 mg/ml protein solution combined with a modified well solution containing
8% polyethylene glycol monomethyl ether 5000 molecular weight (PEG MME 5K),
100mM Na Citrate pH 5.5 and 2% n-Octyl-Beta-D-Glucopyranoside (OBG), which was
suspended over a well solution containing 6% PEG MME 5K, 100mM Na Citrate pH 5.5
and 2% OBG. Crystals, however, were not generated spontancously. A seed solution
gencrated from poor quality crystals obtained previously was used to seed crystallization
droplets. The optimal volume ratios for obtaining good quality crystals were 1 ul protein
solution, 0.5 ul modified well solution, and 0.2 ul diluted seed stock solution. Any
increase in protein concentration resulted in heavy showers and stacked plate crystals
despite adjustments in crystallization reagent concentration. Protein supplied at
concentrations higher than 6 mg/ml and diluted to 6 mg/ml before crystallization trials
also resulted in heavy crystal showers. Final resolution was 1.3 A for the TEV cleaved
mut-MGLL (hMGLL 1-303 L169S, L1768, K36A) (SEQ ID NO: 7) and Compound 2

complex.

Structure Determination

[00219 ] Crystals were harvested, transferred to 16% PEG MME 5K, 100 mM Na-MES
pH 6.0, 25% glycerol and flash frozen in liquid nitrogen. Datasets were collected on a
Rigaku MOO7HF generator at 100K or at the ID19 beamline at IMCA-CAD at the
Advanced Photon Source, Chicago. A summary of the data-collection statistics is in Table

3. The data was processed in the HKL2000 suite (Otwinowski and Minor 1997) and the
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structure was solved by molecular replacement using a modified structure of “Non-haem
bromoperoxidase BPO-A1"” (PDB ID 1A8Q) as search model in PHASER (McCoy et al.
2007). The initial rebuilding was performed using the default protocol in the AutoBuild
Wizard in PHENIX (Adams et al. 2002; Adams et al. 2004; Terwilliger ct al. 2008),
refinement and automated water picking was carried out in PHENIX.refine (Adams et al.
2002; Adams et al. 2004; Terwilliger et al. 2008); Coot (Emsley and Cowtan 2004) was
employed for model building, ligand placement and manual assignment of water
molecules. Ligand restraints were generated in PHENIX. elbow (Adams et al. 2002;
Adams et al. 2004) and the final model validated using tools implemented in Cooft;
Figures were generated in PyMol (DeLano 2002). Coordinates for the structure of the
complex of TEV cleaved mut-MGLL (hMGLL 1-303 L1698S, L.176S, K36A) (SEQ ID
NO: 7) with Compound 2 are included as Table 5.

Overall Structure of MGLL
[00220 ] MGLL is part of the sub-family of lipid hydrolases, which in turn is part of a

larger family of a/B-hydrolases with diverse catalytic functions. Members of this super-
family include: ester hydrolases, lipid hydrolases, thioester hydrolases, peptide
hydrolases, haloperoxidases, dehalogenases epoxide hydrolases and C-C bond breaking
enzymes (Holmquist 2000). All of these enzymes share a common folding motif called
the o/B-hydrolase fold (Ollis et al. 1992; Heikinheimo et al. 1999). This fold is
characterized by eight B-sheets flanked on both sides by a-helices. B-sheet 2 is
antiparallel to the other sheets and the first and last helix (al or oA and a6 or oF) are
located on one side of the sheets, whereas the remainder of the helices are present on the
opposite side. The a/B-hydrolase fold tolerates a vide variety of inserts without losing the
core folding motif. These inserts serve to modify and regulate the catalytic activity of the
respective proteins. They can occur in several locations, but are mostly located in a loop

region between strand 6 and helix a6.

[ 00221 ] Herein is described the structure of the inhibitor bound form of human MGLL
Isoform 2 (TEV cleaved mut-MGLL (hMGLL 1-303 L169S, L1768, K36A) (SEQ ID
NO: 7) with Compound 2), which has been determined by molecular replacement to a
resolution of 1.3 A. The structure of MGLL conforms very closely to the canonical o/p-

hydrolase fold. The structure is characterized by eight B-sheets, which form a partial -
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barrel adorned on both sides with eight a-helices. MGLL contains two additional helices
(o4 (ocD’l) and a5 D’z)), which are part of the cap-domain and are inserted in the protein
sequence between sheet 36 and helix a6 (aD). Helices al (aA) and a8 (oF) are located
on the concave side of the barrel and helices a2 (aB), a3 (aC), a6(D) and a7(E) are on
the convex side. Both cap-domain helices are oriented in front of the molecule

perpendicular to the plane of the B-barrel.

[ 00222 ] Interestingly the overall structure of this mammalian MGLL is closer to
bacterial lipases than any mammalian lipase when the structure is compared to the latest
release of the Protein Databank using the protein structure-matching tool (SSM) at the
European Institute of Bioinformatics (EBI) (Boutselakis et al. 2003). The 3D-alignment
produces several close hits against bacterial Bromoperoxidases, Chloroperoxidases and
Arylesterases. The same hits were also produced by a PHI-blast search of the Protein
Databank against the protein sequence alone. Since no similar 3D-hits were found against
any diacylglycerol lipases or triacylglycerol lipases, it can be inferred that the structural
requirements for cleavage of triacylglycerol and diacylglycerol esters are substantially
different from those required for the cleavage of mono-glycerol esters. It appears as if
these classes of proteins, even though they perform similar functions, represent a different

branch on the evolutionary tree of lipases.

[ 00223 ] Superposition of several hits from the 3D-alignment (Chloroperoxidase L,
PDBID:1A88; Bromoperoxidase Al, PDBID:1A8Q; P. putida Esterase, PDBID:1Z0];
Gamma Lactamase, PDBID:1HKH) shows that the o/p-hydroxylase core without the cap-
domain superimposes very well (Table 4 and Figure 10). The largest differences are seen
in the first 20 residues of the N-terminus of MGLL, for which there is no complement in
the other proteins. Further differences are evident in helix a6 (D). In MGLL a6
continuously spans approximately 20 residues, whereas in the other structures it is

partially unraveled and split into two pieces connected by a short loop.

MGLL Binding Pocket
[ 00224 ] Compound 2 is bound in an extended and closed binding pocket, which is

located between helices a4, a6, a7 and a.5. Even though the solvent accessible surface

area of the compound (712A%) is fairly large, it is almost completely enclosed by the
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protein. The protein accomplishes this by employing a so-called “cap-domain”, “lid”, or
“flap”, which regulates access to the binding site based on the membrane bound state of
the protein. The cap-domain is compromised of residues from helices a4 to a5 (also
referred to as aD’; and aD’;, throughout the literature). The catalytic triad of MGLL
consists of residues Ser122, Asp239, His269 and is located in the center of the binding
pocket. The catalytic nucleophile Ser122 resides on a tight turn between strand B5 and
helix a3, which is also commonly referred to as the “nucleophilic elbow”. The
structurally conserved network of hydrogen-bond donors, which comprises the
nucleophilic elbow and the loop connecting a1l and B3 (Gly50, AlaS1, Met123 and
Gly124) is called the oxyanion hole and serves to stabilize the anionic transition state of
the catalytic reaction. The amide carbonyl of Compound 2 points into the oxyanion hole
and forms a critical hydrogen bond with the backbone amide nitrogen of Met123 adjacent
to the catalytic Serine. The azetidine-piperazine-pyrazine part of the ligand projects into a
narrow amphiphilic pocket and fills the available space almost completely. This portion
of the ligand does not participate in hydrogen bond interactions with the protein, but one
of the pyrazine nitrogens forms an H-bond to a water-network involving two buried water
molecules and the side-chains of residues Glu53, Arg57 and His272. A face-to-face -
stacking interaction with of the pyrazine ring with Tyr194 provides further interaction

energy.

[00225] The binding pocket on the benzoxazole-cyclohexane site of the ligand is less
occluded than its counter part on the opposite site. The benzoxazole portion of the ligand
is located in a hydrophobic environment constituted mainly from side chains of aliphatic
residues. The cyclohexane portion projects into a more spacious void, and along with the
benzoxazole, is the only part of the inhibitor, which is accessible by solvent in the protein
bound state. These parts of the ligand form mostly van der Waals interactions with the
protein. The cyclohexane part of the molecule is less well ordered than the remainder of
the ligand. This can be explained by the fact that this region of the cap-domain (a4 and
part of the loop connecting to a5) with which the inhibitor interacts, is displays
significantly higher temperature factors as compared to the rest of the protein. The

elevated temperature factors signify the inherent flexibility of this region, which probably
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facilitates its displacement from the surface of the protein during ligand binding and

release.

Enabling mutations

[ 00226 ] In order to obtain the MGLL structure several enabling mutations were
required. Two mutations in the lid sub-domain (L169S and L176S) helped to increase
solubility of the protein enough to prevent aggregation and to eliminate the need for
detergents in protein purification. L1698 is located at the C-terminal end of helix a4
(aD’1) and L1768 on a loop connecting a4 to a5. Interestingly, the cap-domain in the
engineered protein still contains quite a few surface exposed aliphatic residues, but the
mutations are apparently sufficient to reverse the inherent lipophilic character of the

protein enough to prevent aggregation in solution.

[00227] The K36A surface mutation was inspired by a series of reports indicating that
the replacement of flexible residues with high conformational entropy present on the
surface of proteins helps to promote crystallization under certain circumstances
(Longenecker et al. 2001; Mateja et al. 2002). The K36A mutation is present on a loop
connecting sheets B2 and B3. This loop interacts with the cap-domain of a neighboring
symmetry related molecule between Vall 70 and Prol72. Analysis of this packing
interaction reveals that the Lysine would have fit snugly into this packing interface, so the

immediate reason necessitating its absence for crystallization is not obvious.

[ 00228 ] The mutation appears nevertheless to be beneficial, since this particular part
of the cap-domain exhibits relatively high temperature factors and is less well ordered
than other parts of the molecule. It is conceivable that this high dynamic mobility would
cause the lid to clash into Lys36 in certain parts of the conformational pool. The K36A
mutation would eliminate this potential for clashes and may thus contribute to the

successful crystallization of the molecule.
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TABLES
Table 1;
5
Engineered forms of MGLL
Purification Purification

Cap Mutations yield mg/L |]Cap Mutations + Surface Mutations yield mg/L
mut-MGLL (1-303) L169S, L176S 4.5 mut-MGLL (1-303) L169S, L176S, K36A 36
mut-MGLL (1-303) L167Q 2.3 mut-MGLL (1-303) L169S, L176S, K160A 0.7
mut-MGLL (1-303) L171Q 0.7 mut-MGLL (1-303) L169S, L176S, K165A 0.5
mut-MGLL (1-303) L174Q 0 mut-MGLL (1-303) L169S, L176S, K226A 2.3
mut-MGLL (1-303) L167Q, L171Q 5 mut-MGLL (1-303) L169S, L176S, K36A, K226A 1.5
mut-MGLL (1-303) L167Q, L174Q 7 mut-MGLL (1-303) L169S, L176S, K36A, K188A *N.D.
mut-MGLL (1-303) L171Q, L174Q 1.5 mut-MGLL (1-303) L169S, L176S, K36A, K206A *N.D.
mut-MGLL (1-303) L167Q, L171Q, L174Q 0 mut-MGLL (1-303) L169S, L176S, K36A, K269A *N.D.
mut-MGLL (1-303) L169Q, L176Q *N.D. mut-MGLL (1-303) L169S, L176S, K188A *N.D.
mut-MGLL (1-303) L169S *N.D. mut-MGLL (1-303) L169S, L176S, K206A *N.D.
mut-MGLL (1-303) L176S *N.D. mut-MGLL (1-303) L169S, L176S, K259A *N.D.
mut-MGLL (1-303) L162S *N.D.
mut-MGLL (1-303) L162Q *N.D. Purification
mut-MGLL (1-303) L162R *N.D. Cap Mutations + Truncations yield mg/L |
mut-MGLL (1-303) L184S *N.D. mut-MGLL (9-303) L169S, L1765 2
mut-MGLL (1-303) L184Q *N.D. mut-MGLL (9-297) L169S, L1765 1
mut-MGLL (1-303) L184R *N.D. mut-MGLL (1-292) L169S, L176S 0.5
mut-MGLL (1-303) L169S *N.D. mut-MGLL (19-303) L169S, L176S 0
mut-MGLL (1-303) L169Q *N.D. mut-MGLL (19-297) L169S, L176S 0
mut-MGLL (1-303) L169R *N.D. mut-MGLL (19-292) L169S, L176S 0
mut-MGLL (1-303) L176S *N.D. mut-MGLL (26-303) L169S, L176S 0
mut-MGLL (1-303) L176Q *N.D. mut-MGLL (26-297) L169S, L176S 0
mut-MGLL (1-303) L176R *N.D. mut-MGLL (26-292) L169S, L176S 0
mut-MGLL (1-303) L167S *N.D. mut-MGLL (33-303) L169S, L176S 0
mut-MGLL (1-303) L167R *N.D. mut-MGLL (33-297) L169S, L176S 0
mut-MGLL (1-303) L171S *N.D. mut-MGLL (33-292) L169S, L176S 0
mut-MGLL (1-303) L171R *N.D.
mut-MGLL (1-303) L174S *N.D.
mut-MGLL (1-303) L174R *N.D.

*N.D. is Not Determined
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Table 2:
oo 4MC-B
KM Kcat Kcat/KM
Construct (uM) (uM'1min'1) (uM'1min'1)
wt-MGLL.1-303 162 68 0.42
CAP MUTANTS
KM Kcat Kcat/KM
Construct (uUM) (uM'1min'1) (uM'1min'1)
mut-MGLL. 1-303, L169S, L176S 136 48 0.35
mut-MGLL 9-303, L169S, L176S 88 27 0.31
mut-MGLL 9-297, L169S, L176S 126 26 0.21
mut-MGLL 1-303, L171Q 105 51 0.48
mut-MGLL 1-303, L167Q, L171Q 84 59 0.71
mut-MGLL. 1-303, L167Q, L174Q 84 70 0.83
mut-MGLL 1-303, L171Q, L174Q 89 47 0.52
CAP + SURFACE MUTANTS
KM Kcat Kcat/KM
Construct (uUM) (uM'1min'1) (uM'1min'1)
mut-MGLL 1-303, L169S, L176S, K36A 124 51 0.41
mut-MGLL. 1-303, L169S, L176S, K160A 90 30 0.33
mut-MGLL. 1-303, L169S, L176S, K165A 137 27 0.2
mut-MGLL 1-303, L169S, L176S, K226A 110 38 0.35
mut-MGLL 1-303, L169S, L176S, K36A, K226A 123 30 0.25
CCC U 0
x 4 0 0”0
C-A
Kcat/KM
Construct (uM'1min'1
wt-MGLL 1-303 0.09
mut-MGLL 1-303, L169S, L176S 0.1
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mut-MGLL complex with Compound 2

Data collection

Wavelength (A) 1.0

Resolution (A) 1.3

Space group €222,

Unit cell parameters (A) a=93.95,b=128.45,¢c=60.6

No. of reflections 336035

No. of unique reflections 79954

Redundancy 4.2 (1.8)

Completeness (%) 89.2 (53.3)

Rimerge 6.2 (31.9)

1/o(1) 19.0 (1.75)
Refinement

No. of reflections 75577

No. of reflections in R, set 1896

Total No. of non H atoms 2720

No. of protein atoms 2320

No. of ligand atoms 33

No. of solvent molecules 377

R-factor (%) 17.8

Rfree (%) 20.6
R.M.S. Deviation from ideal geometry

Bonds (A) 0.006

Angles (°) 1.050
B-factors (A%)

Protein 14.8

Ligand 10.2
Ramachandran Plot

Preferred Regions (%) 96.6

Allowed regions (%) 3.0

Disallowed regions (%) 0.4
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Table 4:
Chloroperoxidase | Bromoperoxidase | P.fluorescens Gamma
L Al Arylesterase | Lactamase
Distance [A] 1.23 1.27 1.29 1.44
No. of
matching 168 165 175 173
residues
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Table 5:

CRYST1
SCALEL
SCALE2
SCALE3
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

93

O ~J oy U Lo

.947 128.
0.010644
0.000000
0.000000
N PRO
CA PRO
C PRO
CB PRO
CG PRO
CD PRO
¢} PRO
N ARG
CA ARG
C ARG
CB ARG
CG ARG
CD ARG
NE ARG
CZ ARG
NH1 ARG
NH2 ARG
0 ARG
N ARG
CA ARG
C ARG
0 ARG
CB ARG
CG ARG
CD ARG
NE ARG
CZ ARG
NH1 ARG
NH2 ARG
N THR
CA THR
C THR
¢} THR
CB THR
0G1 THR
CG2 THR
N PRO
CA PRO
C PRO
¢} PRO
CB PRO
CG PRO
CD PRO
N GLN
CA GLN
C GLN
¢} GLN
CB GLN
CG GLN
CD GLN
OE1 GLN
NE2 GLN
N SER
CA BSER
C SER
¢} SER
CB SER
0G SER
N ILE
CA AILE
C ILE
¢} ILE
CB AILE
CGlAILE

145 60.602 90.00
-0.000000 -0.000000
0.007804 0.000000
0.000000 0.016501

A 7 -24.135
A 7 -24.819
A 7 -23.834
A 7 -25.762
A 7 -25.901
A 7 -24.588
A 7 -23.163
A 8 -23.737
A 8 -22.858
A 8 -23.445
A 8 -22.696
A 8 -22.085
A 8 -20.586
A 8 -19.862
A 8 -19.479
A 8 -19.744
A 8 -18.816
A 8 -24.639
A 9 -22.589
A 9 -23.017
A 9 -22.202
A 9 -21.048
A 9 -22.851
A 9 -23.745
A 9 -23.339
A 9 -24.116
A 9 -25.269
A 9 -25.782
A 9 -25.911
A 10 -22.815
A 10 -22.103
A 10 -21.025
A 10 -21.064
A 10 -23.056
A 10 -23.504
A 10 -24.260
A 11 -20.050
A 11 -19.002
A 11 -19.595
A 11 -18.911
A 11 -18.166
A 11 -18.376
A 11 -19.814
A 12 -20.857
A 12 -21.559
A 12 -22.422
A 12 -23.222
A 12 -22.396
A 12 -21.571
A 12 -21.138
A 12 -20.084
A 12 -21.951
A 13 -22.250
A 13 -22.858
A 13 -24.332
A 13 -24.984
A 13 -22.605
A 13 -21.220
A 14 -24.847
A 14 -26.217
A 14 -26.235
A 14 -25.442
A 14 -26.824
A 14 -26.665
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90.00

.110
.812
.683
.987
.460
.041
.709
.710
.567
.739
.715
.452
.608
.389
.080
.894
.959
.451
.386
.667
.401
.328
.558
.788
711
.949
.098
.087
.259
.422
.220
.604
.705
.216
.739
.949
.708
.977
.202
.714
.692
.133
.445
.834
.039
.311
.573
.797
.496
.897
.261
.096
.082
.409
.457
.492
.294
.583
.350
.289
.614
.063
.881
.422

90.00 C 2 2
0.00000
0.00000
0.00000
-0.751 1.00
-0.835 1.00
-1.121 1.00
-2.031 1.00
-2.210 1.00
-1.797 1.00
-2.152 1.00
-0.219 1.00
-0.448 1.00
-1.589 1.00

0.818 1.00

2.003 1.00

1.857 1.00

2.217 1.00

3.453 1.00

4.472 1.00

3.671 1.00
-1.605 1.00
-2.546 1.00
-3.747 1.00
-3.960 1.00
-3.554 1.00
-4.984 1.00
-5.019 1.00
-6.167 1.00
-6.182 1.00
-6.824 1.00
-7.507 1.00
-6.786 1.00
-4.621 1.00
-5.047 1.00
-6.058 1.00
-6.620 1.00
-5.709 1.00
-6.972 1.00
-4.824 1.00
-6.288 1.00
-7.280 1.00
-8.6603 1.00
-9.553 1.00
-7.201 1.00
-5.880 1.00
-5.561 1.00
-8.837 1.00

-10.095 1.00
-10.049 1.00
-10.953 1.00
-10.439 1.00
-10.571 1.00
-9.229 1.00
-9.130 1.00
-8.198 1.00
-8.974 1.00
-8.801 1.00
-8.369 1.00
-8.496 1.00
-10.028 1.00
-10.147 1.00
-7.835 1.00
-7.340 0.50
-5.846 1.00
-5.084 1.00
-7.537 0.50
-8.991 0.50
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107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

CG2AILE
CD1AILE
CA BILE
CB BILE
CG1BILE
CG2BILE
CD1BILE
N PRO
CA PRO
C PRO
0 PRO
CB PRO
CG PRO
CD PRO
N TYR
CA TYR
C TYR
¢} TYR
CB TYR
CG TYR
CD1 TYR
CD2 TYR
CE1 TYR
CE2 TYR
Cz TYR
OH TYR
N GLN
CA GLN
C GLN
¢} GLN
CB GLN
CG GLN
CD GLN
OE1 GLN
NE2 GLN
N ASP
CA ASP
C ASP
¢} ASP
CB ASP
CG ASP
OD1 ASP
0OD2 ASP
N LEU
CA LEU
C LEU
0 LEU
CB LEU
CG LEU
CD1 LEU
CD2 LEU
N PRO
CA PRO
C PRO
0 PRO
CB PRO
CG PRO
CD PRO
N HIS
CA HIS
C HIS
0 HIS
CB HIS
CG HIS
ND1 HIS
CD2 HIS
CE1 HIS
NE2 HIS
N LEU
CA LEU
C LEU
0 LEU
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14
14
14
14
14
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15
16
16
16
16
16
16
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-28
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-28
=27
=27
=27
=27
-28
-28
-28

-28.
-26.
.138
.503
-29.
-26.
-24.
-24.
-23.
-23.
.515
.587
.451

=27
-28

-22
-22
-21

-28.
.280
.422
.478
.581
.565

-30
-31
-32
-30
-30

-30.
-31.
.142
.190
.195
-32.
-32.
-32.
.228

-30
-31
-32

-32

-32.
-31.
-31.
-30.
.589
.294

-30
-30

-29.
-29.
-27.
-30.
-30.
.533
-29.
.221

-30

-28

-30.
-31.
.355
-28.
.255
-27.
-27.
-26.
.346
.470

-31

=27

=27
-28

-27.
-28.
-27.
-25.
-25.
-23.
-23.

.283
.420
-26.
-26.
-26.
.261
.766
.141
.184
.555
.517
.292
.364

216
875
944

069
805

123
052
826
876
633
765

983

822
628

059
862
0e8

980
604
041
671

303
136
694
080
821

035

996
910

659

013
963
707

033
819
966
747
311
982
294
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.859
L2777
.309
.935
.644
.883
.427
.507
.839
.632
.925
.898
.482
.335
.419
.352
.516
.536
.183
.476
L1117
.153
.465
.516
.168
.558
.753
.981
.262
.023
.479
.205
.694
.121
.492
.907
.258
.734
.029
.765
.271
.855
.873
.233
.821
.165
.835
.700
.357
L2777
.710
.844
.158
.204
.932
.714
.798
.929
.564
.688
.531
.527
.044
.212
.836
.852
.819
.847
.406
.446
.170
.247
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.120
.991
.341
.587
.088
.973
.436
.417
.985
.125
.421
.903
.283
.209
.048
.097
.436
.034
.025
.542
.866
.724
.346
.210
.531
.013
.314
.326
.388
.195
.434
.895
.755
.072
.572
.648
.480
.474
.085
.922
.029
.221
.928
.785
.885
.5l6
.469
.550
.924
.394
.927
.446
.818
.093
.209
.551
.652
L4711
.315
.652
.145
.940
.193
.880
.386
.032
.200
.206
.502
.895
.920
.898
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CB
CG
CD1
CD2

CA

Q

CB
CG1
CcG2
CA
CB
CG
oDl
ND2

CA

CB

CA

Q

CB
CG
oDl
0D2

CB
CG
CD
CE1l
NE2

CA

CB
CG
CD1
CD2
CE1l
CE2
Ccz
OH

CA

Q

CB
CG
CD1
CD2

CA

CB

CG
CD1

LEU
LEU
LEU
LEU
VAL
VAL
VAL
VAL
VAL
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VAL
ASN
ASN
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ALA
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ASP
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TYR
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LEU
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LEU
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LEU
LEU
LEU
LEU
PHE
PHE
PHE
PHE
PHE
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PHE
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-25.
-24.
-22.
.349

-24

-23.
.341
.464
-21.
.500
.163
-23.
.288
-19.
-18.
.799
.509
.357
.116
-l6.
-17.
.137
-l6.
-15.
-l6.
-15.
.794

-22
-21

-22
-21

-20

-18
-18
-17
-17

-17

-14

-15.
-14.
-13.
-12.
.372
-12.
-l6.
-17.
-17.
.324

-12

-18

-17.
-17.
-19.
-19.
-l6.
-15.
.370
-13.
.409
-19.
.250
.135
.410

-14
-14
-21

-21
-20

-22.
-22.
-21.
-23.
.413
.582
-23.
. 344
-21.
-21.
-23.
.333

-22
-24

-24

-24

-21.
.300

-20

-20.
-19.
-23.
-24.
-25.
.484
.508
-25.
-26.

-24
-24

178
073
694

620

885

538

422
643

601
824

101
619
497
737

527
896
840
891

657
847
647
901

66l
881
263
725
833
413

533

950

002
628
838
999

773

853
936
334

629

093
126
418
692
241

711
739

— 66 —

.038
.100
.547
.688
. 746
.409
.555
.200
.837
.562
.638
172
.309
.082
.308
.447
.219
.389
.553
.369
.971
.007
777
.897
.019
.998
.170
.025
.328
.357
.694
.258
.201
.275
.175
.148
.998
776
.219
.332
.810
.318
.258
.414
177
.742
.230
.937
.886
.271
.389
.288
.536
.307
.56l
.435
.451
.911
.654
.514
.704
.462
.501
171
.807
.168
.900
.543
.573
.934
.500
.395
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-0
-0
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.483
.000
.456
.5l6
.058
176
.079
.196
772
.798
.977
.603
.392
.467
.611
.496
.885
.213
.007
.233
.376
.966
.803
.238
. 687
.162
.504
.867
.166
.840
.930
.288
. 644
L0901
.598
.976
.021
.588
.330
.051
.037
.197
.910
.005
. 668
.326
.942
.139
.130
.106
.924
.634
.983
.381
.725
.413
.158
.585
.848
.280
.975
.760
.519
.263
.603
-0.
-0.
.202
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-2.
-3.
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262
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265
266
267
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270
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272
273
274
275
276
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279
280

CD2
CE1l
CE2
Ccz

CA

CB
SG

CA

CB
CG
CD
NE
Ccz
NH1
NH2

CA

CB
CG
CD1
CD2
CE1l
CE2
Ccz
OH

CA

CB

CG

CD1
CD2
NE1
CE2
CE3
Cz2
Cz3
CH2

0G1
CcG2

CA

O

CA

PHE
PHE
PHE
PHE
CYS
CYS
CYS
CYS
CYS
CYS
ARG
ARG
ARG
ARG
ARG
ARG
ARG
ARG
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ARG
ARG
TYR
TYR
TYR
TYR
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TYR
TYR
TYR
TYR
TYR
TYR
TRP
TRP
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TRP
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ALA
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THR
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THR
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-26.
-27.
-26.
173
.256

=27
-28

-28.
.782
-26.
.524
-29.
.301

=27

-28

-30

-29.
.790
-29.
.543
-27.
-28.
-29.
.172
-31.
.485
-33.
-33.
-33.
.366
.785

-28

-28

=27

-32

-32
-31

-32.
-30.
.212
-30.
-29.
-33.
.792

-31

-34

-35.
-35.
.206
-33.
-33.
-31.
.500
.421
-30.
-30.
-29.
-29.
-36.
-37.
-38.
-37.
-39.
-39.
.460

-34

-32
-31

-40

-41.
.540
.315
-39.
.444
-42.
-44.
.415

-41
-40

-38

-44

-44.
-45.
-45.
-45.
.169
.489
-43.
.160
-43.
.392

-44
-44

=42
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835
869
955
974
527

868

589

521

699

458

652
037
287

619

474
998
270

066
933

651
795
742

623
197

285
609
879

959
091
643
218
793
613
871
990
523
221

685

457

872
096

878
298
5le
039
270

481
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.185
.984
L7778
.674
.483
.252
.757
.533
.476
.940
.455
.801
.808
.074
.056
.057
.396
.315
.049
.978
.848
773
.905
.170
.735
722
.475
.835
.820
.511
.505
.838
.492
.916
.152
.508
.524
.065
.499
.625
777
.988
.082
.791
.403
.108
.414
.077
.643
.927
.850
.383
.807
.101
.874
.811
.769
L1111
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.479
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.224
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.363
.895
.049
.321
.110
.594
L343
.082
.982
.264
.263
.095
.238
.576
.217
.570
.608
.317
.361
.788
.972
.405
.388
.498
.466
.427
.366
.453
.157
.301
.005
.072
.921
.154
.817
.286
.909
.721
.831
.160
.736
.884
.041
.677
.310
.943
.254
.554

1.682

.209
.559
.274
.859
.510
.015
.801
.257
.431
.875
.572
.923
.413
.002
.127
.455
.365
.019
.423
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.914
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ATOM 1577 N LEU A 205 -5.053 27.838 -10.394 1.00 12.15 N

ATOM 1578 CA ALEU A 205 -5.000 27.763 -8.938 0.50 12.52 c

ATOM 1579 C LEU A 205 -3.877 28.430 -8.323 1.00 12.12 c

ATOM 1580 O LEU A 205 -2.738 28.073 -8.617 1.00 14.37 0

5 aToM 1581 CB ALEU A 205 -5.233 26.317 -8.455 0.50 21.10 c
ATOM 1582 CG ALEU A 205 -6.675 25.832 -8.280 0.50 22.60 c

ATOM 1583 CD1ALEU A 205 -7.347 25.614 -9.629 0.50 46.72 c

ATOM 1584 CD2ALEU A 205 —6.729 24.565 -7.437 0.50 21.86 c

ATOM 1585 CA BLEU A 205 -5.003 27.740 -8.941 0.50 14.43 c

10 aToM 1586 CB BLEU A 205 -5.152 26.271 -8.524 0.50 15.12 c
ATOM 1587 CG BLEU A 205 -5.569 25.980 -7.083 0.50 25.82 c

ATOM 1588 CD1BLEU A 205 -6.333 24.666 -6.994 0.50 50.50 c

ATOM 1589 CD2BLEU A 205 -4.358 25.965 -6.180 0.50 39.57 c

ATOM 1590 N LYS A 206 -4.119 29.419 -7.467 1.00 10.85 N

15  aTtoM 1591 cA 1YS A 206 -3.027 30.161 ~-6.853 1.00 11.66 c
ATOM 1592 C  LYS A 206 -2.265 29.295 -5.866 1.00 12.14 c

ATOM 1593 0O LYS A 206 -2.852 28.446 -5.188 1.00 11.48 0

ATOM 1594 CB 1LYS A 206 -3.563 31.409 -6.157 1.00 15.47 c

ATOM 1595 CG LYS A 206 -4.079 32.451 =-7.138 1.00 20.12 c

20  aToM 1596 <D LYS A 206 -4.787 33.588 -6.426 1.00 37.03 c
ATOM 1597 CE 1LYS A 206 -5.080 34.727 ~-7.388 1.00 51.15 c

ATOM 1598 NZ LYS A 206 -3.843 35.225 -8.052 1.00 92.27 N

ATOM 1599 N VAL A 207 -0.959 29.503 =-5.774 1.00 10.91 N

ATOM 1600 CA VAL A 207 -0.145 28.709 -4.867 1.00 11.61 c

25  aAToM 1601 C VAL A 207 -0.645 28.809 =-3.421 1.00 12.70 c
ATOM 1602 O VAL A 207 -0.680 27.816 =-2.702 1.00 12.20 0

ATOM 1603 CB VAL A 207 1.347 29.092 -4.957 1.00 13.57 c

ATOM 1604 CG1 VAL A 207 2.124 28.508 -3.785 1.00 16.27 c

ATOM 1605 CG2 VAL A 207 1.918 28.614 -6.280 1.00 15.13 c

30 aTom 1606 N CYS A 208 -1.043 30.001 -2.988 1.00 10.56 N
ATOM 1607 CA CYS A 208 -1.537 30.138 ~-1.619 1.00 12.51 c

ATOM 1608 C CYS A 208 -2.766 29.252 ~-1.368 1.00 12.06 c

ATOM 1609 O CYS A 208 -2.927 28.698 -0.284 1.00 12.63 0

ATOM 1610 CB CYS A 208 -1.844 31.602 ~-1.287 1.00 13.86 c

35 aToM 1611 SG CYS A 208 -3.147 32.334 -2.291 1.00 19.08 s
ATOM 1612 N PHE A 209 -3.620 29.107 =-2.378 1.00 10.09 N

ATOM 1613 CA PHE A 209 -4.827 28.297 -2.226 1.00 10.18 c

ATOM 1614 C PHE A 209 -4.474 26.817 -2.261 1.00 9.52 c

ATOM 1615 O PHE A 209 —4.999 26.045 ~-1.466 1.00 9.70 0

40 aToM 1616 CB PHE A 209 -5.862 28.632 -3.208 1.00 8.96 C
ATOM 1617 CG PHE A 209 -7.213 28.020 =-3.047 1.00 10.85 c

ATOM 1618 CD1 PHE A 209 -7.979 28.421 ~-1.965 1.00 15.24 c

ATOM 1619 CD2 PHE A 209 -7.721 27.055 ~-3.904 1.00 11.35 c

ATOM 1620 CE1 PHE A 209 -9.230 27.863 -1.737 1.00 19.47 c

45  aToM 1621 CE2 PHE A 209 -8.967 26.493 -3.680 1.00 13.97 c
ATOM 1622 CZ PHE A 209 -9.722 26.901 =-2.603 1.00 16.68 c

ATOM 1623 N CGLY A 210 -3.596 26.423 -3.179 1.00 10.17 N

ATOM 1624 CA CGLY A 210 -3.119 25.054 =-3.215 1.00 10.27 c

ATOM 1625 C  GLY A 210 -2.520 24.619 -1.887 1.00 9.64 c

50 atom 1626 0 GLY A 210 -2.727 23.483 -1.453 1.00 10.94 0
ATOM 1627 N ILE A 211 -1.798 25.525 ~-1.246 1.00 9.76 N

ATOM 1628 CA TILE A 211 -1.219 25.237 0.060 1.00 10.73 c

ATOM 1629 C ILE A 211 -2.334 24.946 1.064 1.00 9.63 c

ATOM 1630 0 TILE A 211 -2.225 24.023 1.872 1.00 11.27 0

55 ATOM 1631 CB ILE A 211 -0.326 26.394 0.547 1.00 10.51 C
ATOM 1632 CG1 ILE A 211 0.968 26.424 -0.264 1.00 14.10 c

ATOM 1633 CG2 IIE A 211 -0.019 26.260 2.051 1.00 15.16 c

ATOM 1634 D1 ILE A 211 1.777 27.688 -0.060 1.00 19.74 c

ATOM 1635 N CGIN A 212 -3.415 25.716 0.999 1.00 8.87 N

60 aTom 1636 CA CIN A 212 -4.550 25.457 1.887 1.00 9.46 c
ATOM 1637 C CIN A 212 -5.228 24.114 1.579 1.00 10.55 c

ATOM 1638 O CGIN A 212 -5.725 23.448  2.492 1.00 10.09 0

ATOM 1639 CB CGIN A 212 -5.549 26.618 1.865 1.00 8.41 c

ATOM 1640 CG CIN A 212 —4.979 27.899  2.496 1.00 9.42 c

65 aATOM 1641 CD CIN A 212 -4.434 27.662  3.902 1.00 10.45 c
ATOM 1642 OE1 GIN A 212 -5.011 26.906 4.686 1.00 11.66 0

ATOM 1643 NE2 GIN A 212 -3.323 28.311 4.222 1.00 14.57 N

ATOM 1644 N LEU A 213 -5.241 23.704  0.306 1.00 9.40 N

ATOM 1645 CA LEU A 213 -5.764 22.378 -0.036 1.00 10.49 c

70  aToM 1646 C  LEU A 213 -4.854 21.266 0.505 1.00 9.28 c
ATOM 1647 © LEU A 213 -5.343 20.236 0.962 1.00 10.04 0

ATOM 1648 CB LEU A 213 -5.973 22.236 -1.546 1.00 9.58 c
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HETATM 2730 O  HOH W 377 -4.253 13.777 -12.953 1.00 51.97 0

END



WO 2009/132260 PCT/US2009/041646

10

15

20

25

30

35

40

45

-103 -

REFERENCES

Patents:

US4906122A. Coupling for molecular models

US5030103A. Dynamic molecular model

US5200910A. Method for modelling the electron density of a crystal

US5365456A. Method for modelling the electron density of a crystal

US5583973A. Molecular modeling method and system

US5612894A. System and method for molecular modeling utilizing a sensitivity factor

US5733720A. Genetically engineered cell lines for detecting infectious herpesvirus and
methods therefor

US5763263A. Method and apparatus for producing position addressable combinatorial
libraries

US5942428A. Crystals of the tyrosine kinase domain of non-insulin receptor tyrosine
kinases

US5994503A. Nucleotide and protein sequences of lats genes and methods based thereon

US5998593A. Fluorescent enzyme substrates

US6037117A. Methods using the Staphylococcus aureus glycyl tRNA synthetase
crystalline structure

US6071700A. Heterologous polypeptide production in the absence of nonsense- mediated
MRNA decay functions

US6075014A. Inhibitors of &bgr:-lactamases and uses therefor

US6075123A. Cyclin-C variants. and diagnostic and therapeutic uses thereof

US6080576A. Vectors for gene trapping and gene activation

US6093573A. Three-dimensional structure of bactericidal/permeability- increasing

protein (BPT)

US6172262B1. Amphiphilic agents for membrane protein solubilization

Other References:

Adams, P. D, K. Gopal, et al. (2004). "Recent developments in the PHENIX software for
automated crystallographic structure determination.” J Synchrotron Radiat 11(Pt
1): 53-5.

Adams, P. D., R. W. Grosse-Kunstleve, et al. (2002). "PHENIX: building new software
for automated crystallographic structure determination.” Acta Crystallogr D Biol
Crystallogr S8(Pt 11): 1948-54.

Altschul, S. F. (1993). "A protein alignment scoring system sensitive at all evolutionary
distances." J. Mol. Evol. 36: 290-300.

Altschul, S. F., M. S. Boguski, et al. (1994). "Issues in searching molecular sequence
databases." Nature Genetics 6: 119-129.

Altschul, S. F., W. Gish, et al. (1990). "Basic local alignment search tool." J Mol Biol
215(3): 403-10.

Bacon, D. J. and J. Moult (1992). "Docking by Least-squares Fitting of Molecular Surface
Patterns.” J.Mol.Biol. 225: 849-858.

Bartlett, P. A., G. T. Shea, et al. (1989). ""CAVEAT: A Program to Facilitate the
Structure-Derived Design of Biologically Active Molecules."” In Molecular




WO 2009/132260 PCT/US2009/041646

10

15

20

25

30

35

40

45

~ 104 -

Recognition in Chemical and Biological Problems, Special Pub., Royal Chem.
Soc. 78: 82-196.

Bohm, H.-J. (1992). "The Computer Program LUDI: A New Method for the De Novo
Design of Enzyme Inhibitors." J. Computer-Aided Molecular Design 6: 61-78.

Boutselakis, H., D. Dimitropoulos, et al. (2003). "E-MSD: the European Bioinformatics
Institute Macromolecular Structure Database.” Nucleic Acids Res 31(1): 458-62.

Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding." Anal Biochem
72: 248-54.

Brady, L., A. M. Brzozowski, et al. (1990). "A serine protease triad forms the catalytic
centre of a triacylglycerol lipase." Nature 343(6260): 767-70.

Brunger, A. T. (1993). X-Flor Version 3.1: A system for X-ray crystallography and NMR.
New Haven, Conn, Yale Univ. Pr.

Brzozowski, A. M., U. Derewenda, et al. (1991). "A model for interfacial activation in
lipases from the structure of a fungal lipase-inhibitor complex." Nature 351(6326):
491-4.

Campbell (1984). Biological Spectroscopy. Menlo Park, Calif., The Benjamin/Cummings
Publishing Co., Inc.

Cantor, C. R. and P. R. Schimmel (1980). Biophysical Chemistry, Part I1, "Techniques for
the Study of Biological Structure and Function", W. H. Freeman & Co.

Carriere, F., K. Thirstrup, et al. (1997). "Pancreatic lipase structure-function relationships
by domain exchange." Biochemistry 36(1): 239-48.

Chahinian, H., L. Nini, et al. (2002). "Distinction between esterases and lipases: a kinetic
study with vinyl esters and TAG." Lipids 37(7): 653-62.

Cohen (Editor), N. C. (1996). Guidebook on Molecular Modeling in Drug Design,
Academic Press.

Cohen, N., J. Blaney, et al. (1990). "Molecular Modeling Software and Methods for
Medicinal Chemistry." J. Med. Chem. 33: 883-894.

Crowther, J. R. (1995). ELISA: Theory and Practice (Methods in Molecular Biology),
Humana Press.

Delano, W. L. (2002). The PyMOL Molecular Graphics System. Palo Alto, CA, USA.

Devlin (Editor), J. P. (1998). In High Throughput Screening: The Discovery of Bioactive
Substances. New York, Marcel Dekker Inc.

Dinh, T. P., T. F. Freund, et al. (2002). "A role for monoglyceride lipase in 2-
arachidonoylglycerol inactivation." Chem Phys Lipids 121(1-2): 149-58.

Dinh, T. P., S. Kathuria, et al. (2004). "RNA interference suggests a primary role for
monoacylglycerol lipase in the degradation of the endocannabinoid 2-
arachidonoylglycerol." Mol Pharmacol 66(5): 1260-4.

Drenth, J. (1999). Principles of Protein X-ray Crystallography (Springer Advanced Texts
in Chemistry). Berlin, Springer Verlag.

Dugi, K. A., H. L. Dichek, et al. (1995). "Human hepatic and lipoprotein lipase: the loop
covering the catalytic site mediates lipase substrate specificity." J Biol Chem
270(43): 25396-401.

Dugi, K. A., H. L. Dichek, et al. (1992). "Human lipoprotein lipase: the loop covering the
catalytic site is essential for interaction with lipid substrates." J Biol Chem
267(35): 25086-91.




WO 2009/132260 PCT/US2009/041646

10

15

20

25

30

35

40

45

- 105 -

Emsley, P. and K. Cowtan (2004). "Coot: model-building tools for molecular graphics."
Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1): 2126-32.

Farquhar-Smith, W. P., M. Egertova, et al. (2000). "Cannabinoid CB(1) receptor
expression in rat spinal cord." Mol Cell Neurosci 15(6): 510-21.

Faustinella, F., L. C. Smith, et al. (1992). "Functional topology of a surface loop shielding
the catalytic center in lipoprotein lipase.” Biochemistry 31(32): 7219-23.

Frisch, M. J., G. W. Trucks, et al. (1992). "Gaussian 92, Revision C." Gaussian, Inc.

Galiegue, S., S. Mary, et al. (1995). "Expression of central and peripheral cannabinoid
receptors in human immune tissues and leukocyte subpopulations.” Eur J Biochem
232(1): 54-61.

Gans, W., A. Amann, et al. (1996). Fundamental Principals of Molecular Modeling,
Plenum Pub. Corp.

Gonsiorek, W., C. Lunn, et al. (2000). "Endocannabinoid 2-arachidonyl glycerol is a full
agonist through human type 2 cannabinoid receptor: antagonism by anandamide."
Mol Pharmacol 57(5): 1045-50.

Goodford, P. J. (1985). "A Computational Procedure for Determining Energetically
Favorable Binding Sites on Biologically Important Macromolecules." J. Med.
Chem. 28: 849-857.

Goodsell, D. S. and A. J. Olsen (1990). "Automated Docking of Substrates to Proteins by
Simulated Annealing." Proteins: Structure. Function, and Genetics 8: 195-202.

Guindon, J., J. Desroches, et al. (2007). "The antinociceptive effects of intraplantar
injections of 2-arachidonoyl glycerol are mediated by cannabinoid CB2
receptors.” Br J Pharmacol 150(6): 693-701.

Hanus, L., A. Breuer, et al. (1999). "HU-308: a specific agonist for CB(2), a peripheral
cannabinoid receptor.” Proc Natl Acad Sci U S A 96(25): 14228-33.

Heikinheimo, P., A. Goldman, et al. (1999). "Of barn owls and bankers: a lush variety of
alpha/beta hydrolases." Structure 7(6): R141-6.

Henikoff, J. G. (1992). "Amino acid substitution matrices from protein blocks."_Proc.
Natl. Acad. Sci. USA(89): 10915-10919.

Higgins, D. G., J. D. Thompson, et al. (1996). "Using CLUSTAL for multiple sequence
alignments." Methods Enzymol 266: 383-402.

Hohmann, A. G. (2002). "Spinal and peripheral mechanisms of cannabinoid
antinociception:  behavioral, = neurophysiological and  neuroanatomical
perspectives." Chem Phys Lipids 121(1-2): 173-90.

Hohmann, A. G., J. N. Farthing, et al. (2004). "Selective activation of cannabinoid CB2
receptors suppresses hyperalgesia evoked by intradermal capsaicin.” J Pharmacol
Exp Ther 308(2): 446-53.

Hohmann, A. G. and M. Herkenham (1999). "Cannabinoid receptors undergo axonal flow
in sensory nerves." Neuroscience 92(4): 1171-5.

Hohmann, A. G., R. L. Suplita, et al. (2005). "An endocannabinoid mechanism for stress-
induced analgesia." Nature 435(7045): 1108-12.

Holmquist, M. (2000). "Alpha/Beta-hydrolase fold enzymes: structures, functions and
mechanisms.” Curr Protein Pept Sci 1(2): 209-35.

Ibrahim, M. M., M. L. Rude, et al. (2006). "CB2 cannabinoid receptor mediation of
antinociception.” Pain 122(1-2): 36-42.

Ishikawa, E. (1999). Ultrasensitive and rapid enzyme immunoassay, In: Laboratory
Techniques in Biochemistry and Molecular Biology. Amsterdam, Elsevier.




WO 2009/132260 PCT/US2009/041646

10

15

20

25

30

35

40

45

- 106 -

Kaneko, T., N. Tanaka, et al. (2005). "Crystal structures of RsbQ, a stress-response
regulator in Bacillus subtilis.”" Protein Sci 14(2): 558-65.

Karlin, S. and S. F. Altschul (1990). "Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes." Proc. Natl. Acad.
Sci. USA 87: 2264-2268.

Karlsson, M., J. A. Contreras, et al. (1997). "¢cDNA cloning, tissue distribution, and
identification of the catalytic triad of monoglyceride lipase. Evolutionary
relationship to esterases, lysophospholipases, and haloperoxidases." J Biol Chem
272(43): 27218-23.

Karlsson, M., K. Reue, et al. (2001). "Exon-intron organization and chromosomal
localization of the mouse monoglyceride lipase gene." Gene 272(1-2): 11-8.
Karlsson, M., H. Tornqvist, et al. (2000). "Expression, purification, and characterization
of histidine-tagged mouse monoglyceride lipase from baculovirus-infected insect

cells." Protein Expr Purif 18(3): 286-92.

Kemeny (Editor), D. M. and S. J. Challacombe (Editor) (1988). Elisa and Other Solid
Phase Immunoassays: Theoretical and Practical Aspects,. New York, John Wiley
and Sons.

Kemeny, D. M. (1991). A Practical Guide to ELISA, Pergamon Press.

Kuntz, 1. D., J. M. Blaney, et al. (1982). "A geometric approach to macromolecule-ligand
interactions." J Mol Biol 161(2): 269-88.

Lee, C. and K. Irizarry (2001). "The GeneMine system for genome/proteome annotation
and collaborative data-mining." IBM Systems Journal 40(2).

Levitt, M. (1992). "Accurate modeling of protein conformation by automatic segment
matching." J Mol Biol 226(2): 507-33.

Lipinski, C., F. Lombardo, et al. (1997). "Experimental and computational approaches to
estimate solubility and permeability in drug discovery and development settings "
Advanced Drug Delivery Reviews 23(1-3): 3-25.

Longenecker, K. L., S. M. Garrard, et al. (2001). "Protein crystallization by rational
mutagenesis of surface residues: Lys to Ala mutations promote crystallization of
RhoGDL." Acta Crystallogr D Biol Crystallogr 57(Pt 5): 679-88.

Makara, J. K., M. Mor, et al. (2005). "Selective inhibition of 2-AG hydrolysis enhances
endocannabinoid signaling in hippocampus.”" Nat Neurosci 8(9): 1139-41.

Malan, T. P., Jr.,, M. M. Ibrahim, et al. (2001). "CB2 cannabinoid receptor-mediated
peripheral antinociception." Pain 93(3): 239-45.

Malan, T. P., Jr., M. M. Ibrahim, et al. (2002). "Inhibition of pain responses by activation
of CB(2) cannabinoid receptors." Chem Phys Lipids 121(1-2): 191-200.

Maresz, K., E. J. Carrier, et al. (2005). "Modulation of the cannabinoid CB2 receptor in
microglial cells in response to inflammatory stimuli." J Neurochem 95(2): 437-45.

Martin, Y. C. (1992). "3D Database Searching in Drug Design.” J. Med. Chem. 35: 2145-
2154.

Mary Ann Liebert (Publishers), 1. (1995). The BIOTECHNOLOGY SOFTWARE
DIRECTORY, A Buyer's Guide. Larchmont, NY Mary Ann Liebert, Inc.,
Publishers.

Mateja, A., Y. Devedjiev, et al. (2002). "The impact of Glu-->Ala and Glu-->Asp
mutations on the crystallization properties of RhoGDI: the structure of RhoGDI at
1.3 A resolution." Acta Crystallogr D Biol Crystallogr 58(Pt 12): 1983-91.




WO 2009/132260 PCT/US2009/041646

10

15

20

25

30

35

40

45

-107 -

Matsuda, L. A., S. J. Lolait, et al. (1990). "Structure of a cannabinoid receptor and
functional expression of the cloned cDNA." Nature 346(6284): 561-4.

Matteucci and J. Caruthers (1981). J. Am. Chem. Soc. 103(3): 185-3191.

Mccoy, A. J., R. W. Grosse-Kunstleve, et al. (2007). "Phaser crystallographic software.”
Journal of Applied Crystallography 40(4): 658-674.

Meng, E. C., B. K. Shoichet, et al. (1992). "Automated docking with grid-based energy
evaluation." J. Comp. Chem. 13: 505-524.

Miranker, A. and M. Karplus (1991). "Functionality Maps of Binding Sites: A Multiple
Copy Simultaneous Search Method." Proteins: Structure, Function and Genetics
11: 29-34.

Munro, S., K. L. Thomas, et al. (1993). "Molecular characterization of a peripheral
receptor for cannabinoids.” Nature 365(6441): 61-5.

Navia, M. A. and M. A. Murcko (1992). "The Use of Structural Information in Drug
Design." Current Opinions in Structural Biology 2: 202-210

Nini, L., L. Sarda, et al. (2001). "Lipase-catalysed hydrolysis of short-chain substrates in
solution and in emulsion: a kinetic study." Biochim Biophys Acta 1534(1): 34-44.

Nishibata, Y. and A. Itai (1991). "Automatic creation of drug candidate structures based
on receptor structure. Starting point for artificial lead generation." Tetrahedron 47:
8985-8990.

Norton, P. A. and J. M. Coffin (1985). "Bacterial beta-galactosidase as a marker of Rous
sarcoma virus gene expression and replication.” Mol Cell Biol 5(2): 281-90.

Ollis, D. L., E. Cheah, et al. (1992). "The alpha/beta hydrolase fold." Protein Eng 5(3):
197-211.

Otwinowski, Z. and W. Minor (1997). Processing of X-ray Diffraction Data Collected in
Oscillation Mode. Methods in Enzymology. C. W. Carter and R. M. Sweet. New
York, Academic Press. 276: 307-326.

Pantoliano, M. W., E. C. Petrella, et al. (2001). "High-density miniaturized thermal shift
assays as a general strategy for drug discovery." J Biomol Screen 6(6): 429-40.

Quartilho, A., H. P. Mata, et al. (2003). "Inhibition of inflammatory hyperalgesia by
activation of peripheral CB2 cannabinoid receptors.” Anesthesiology 99(4): 955-
60.

Rice, A. S., W. P. Farquhar-Smith, et al. (2002). "Endocannabinoids and pain: spinal and
peripheral analgesia in inflammation and neuropathy." Prostaglandins [eukot
Essent Fatty Acids 66(2-3): 243-56.

Richardson, J. D. (2000). "Cannabinoids modulate pain by multiple mechanisms of
actions.” The Journal of Pain 1(1): 2-14.

Richardson, J. D., S. Kilo, et al. (1998). "Cannabinoids reduce hyperalgesia and
inflammation via interaction with peripheral CB1 receptors." Pain 75(1): 111-9.

Rossmann, M. G. (1972). The molecular replacement method: a collection of papers on
the use of non-crystallographic symmetry. , Gordon & Breach, New York.

Rotstein, S. H. and M. A. Murcko (1993). "GroupBuild: a fragment-based method for de
novo drug design." ] Med Chem 36(12): 1700-10.

Roussel, A., S. Canaan, et al. (1999). "Crystal structure of human gastric lipase and model
of lysosomal acid lipase, two lipolytic enzymes of medical interest."” J Biol Chem
274(24): 16995-7002.

Roussel, A., N. Miled, et al. (2002). "Crystal structure of the open form of dog gastric
lipase in complex with a phosphonate inhibitor." J Biol Chem 277(3): 2266-74.




WO 2009/132260 PCT/US2009/041646

10

15

20

25

30

35

40

45

- 108 -

Saario, S. M., A. Poso, ct al. (2006). "Fatty acid amide hydrolase inhibitors from virtual
screening of the endocannabinoid system." J Med Chem 49(15): 4650-6.

Saario, S. M., O. M. Salo, et al. (2005). "Characterization of the sulfhydryl-sensitive site
in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat
cerebellar membranes.” Chem Biol 12(6): 649-56.

Saario, S. M., J. R. Savinainen, et al. (2004). "Monoglyceride lipase-like enzymatic
activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar
membranes.” Biochem Pharmacol 67(7): 1381-7.

Sambrook, J., E. F. Fritsch, et al. (1989). Molecular cloning. 2nd ed. . New York: . Cold
Spring Harbor Laboratory Press.

Schlecht, M. (1998). Molecular Modeling on the PC, John Wiley & Sons.

Schrag, J. D., Y. G. Li, et al. (1991). "Ser-His-Glu triad forms the catalytic site of the
lipase from Geotrichum candidum.” Nature 351(6329): 761-4.

Segel, 1. H. (1975). Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and
Steady-State Enzyme Systems, J. Willey & Sons.

Smith, W. B. (1996). Introduction to Theoretical Organic. Chemistry and Molecular
Modeling. New York, VCH Publishers.

Somma-Delpero, C., A. Valette, et al. (1995). "Purification and properties of a
monoacylglycerol lipase in human erythrocytes.” Biochem J 312 ( Pt 2): 519-25.

Sugiura, T., S. Kondo, et al. (2000). "Evidence that 2-arachidonoylglycerol but not N-
palmitoylethanolamine or anandamide is the physiological ligand for the
cannabinoid CB2 receptor. Comparison of the agonistic activities of various
cannabinoid receptor ligands in HL-60 cells." J Biol Chem 275(1): 605-12.

Sussman, J. L., D. Lin, et al. (1998). "Protein Data Bank (PDB): database of three-
dimensional structural information of biological macromolecules." Acta
Crystallogr D Biol Crystallogr 54(Pt 6 Pt 1): 1078-84.

Tatusova, T. A. and T. L. Madden (1999). "BLAST 2 Sequences, a new tool for
comparing protein and nucleotide sequences.” FEMS Microbiol Lett 174(2): 247-
50.

Terwilliger, T. C., R. W. Grosse-Kunstleve, et al. (2008). "Iterative model building,
structure refinement and density modification with the PHENIX AutoBuild
wizard." Acta Crystallogr D Biol Crystallogr 64(Pt 1): 61-9.

Thompson, J. D., D. G. Higgins, et al. (1994). "CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice." Nucleic Acids Res 22(22): 4673-
0.

Tornqvist, H. and P. Belfrage (1976). "Purification and some properties of a
monoacylglycerol-hydrolyzing enzyme of rat adipose tissue." J Biol Chem 251(3):
813-9.

Travis, J. (1993). "Proteins and Organic Solvents Make an Eye-Opening Mix." Science
262: 1374

Tsirelson, V. G. and R. P. Ozerov (1996). Electron Density and Bonding in Crystals:
Principles, Theory and X-ray Diffraction Experiments in Solid State Physics and
Chemistry, Inst. of Physics Pub.

Van Den Berg, B., M. Tessari, et al. (1995). "NMR structures of phospholipase A2 reveal
conformational changes during interfacial activation." Nat Struct Biol 2(5): 402-6.




WO 2009/132260 PCT/US2009/041646

10

15

20

—-109 -

Van Den Berg, B., M. Tessari, et al. (1995). "Solution structure of porcine pancreatic
phospholipase A2 complexed with micelles and a competitive inhibitor." J Biomol
NMR 5(2): 110-21.

Van Tilbeurgh, H., L. Sarda, et al. (1992). "Structure of the pancreatic lipase-procolipase
complex." Nature 359(6391): 159-62.

Vandevoorde, S. and D. M. Lambert (2005). "Focus on the three key enzymes
hydrolysing endocannabinoids as new drug targets." Curr Pharm Des 11(20):
2647-68.

Walczak, J. S., V. Pichette, et al. (2005). "Behavioral, pharmacological and molecular
characterization of the saphenous nerve partial ligation: a new model of
neuropathic pain.” Neuroscience 132(4): 1093-102.

Wall, E. M., J. Cao, et al. (1997). "A novel poxvirus gene and its human homolog are
similar to an E. coli lysophospholipase." Virus Res 52(2): 157-67.

Wang, X., C. S. Wang, et al. (1997). "The crystal structure of bovine bile salt activated
lipase: insights into the bile salt activation mechanism." Structure 5(9): 1209-18.

Winkler, F. K., A. D'arcy, et al. (1990). "Structure of human pancreatic lipase.” Nature
343(6260): 771-4.

Woolfson, M. M. (1997). An Introduction to X-ray Crystallography. Cambridge, UK,
Cambridge Univ. Pr.




WO 2009/132260 PCT/US2009/041646

10

15

20

-110-

What is claimed is:

1. A composition comprising a form of monoacylglycerol lipase (MGLL), or a fragment,
or structural motif, or derivative thereof, wherein one or more hydrophobic residues of the

cap-domain is mutated to improve solubility.

2. A composition comprising the form of MGLL of Claim 1, wherein said one or more

hydrophobic residues of the cap-domain is a Leucine.

3. A composition comprising the form of MGLL Claim 1, wherein said one or more
hydrophobic residues of the cap-domain is selected from the group consisting of Leucine
162, Leucine 167, Leucine 169, Leucine 171, Leucinel 74, Leucine 176, and Leucine 184,
wherein said amino acid numbering is based on the reference sequence for human MGLL

Isoform 2 (SEQ ID NO: 1).

4. A composition comprising the form of MGLL of Claim 1, wherein said one or more

hydrophobic residues of the cap-domain is mutated to Serine, Glutamine, or Arginine.

5. A composition comprising the form of MGLL as in any of the preceding claims, further

comprising a Lysine mutated to an Alanine.

6. A composition comprising the form of MGLL of Claim 1, wherein said one or more
hydrophobic residues is a Lysine residue selected from the group consisting of: Lysine
36, Lysine 160, Lysine 165, Lysine 188, Lysine 206, Lysine 226, Lysine 259 and Lysine
269, wherein said amino acid numbering is based on the reference sequence for human

MGLL Isoform 2 (SEQ ID NO: 1).

7. A method of identifying an agent that binds to the form of MGLL of Claiml,

comprising the steps of:

a. contacting the form of MGLL with the agent;

b. determining whether the agent binds to the form of MGLL;
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c. thereby identifying an agent that binds to the form of MGLL.

8. The method of claim 7, wherein the form of MGLL has an amino acid sequence
selected from the group consisting of: SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6,
and SEQ ID NO: 7.

9. The method of claim 7, wherein the binding is determined by measuring the thermal

stability of the form of MGLL.

10. A method of identifying an agent that inhibits the activity of the form of MGLL of

Claiml, comprising the steps of:

a. contacting the form of MGLL with the agent;

b. measuring the biological activity of the form of MGLL in the presence of the

agent;

c. measuring the biological activity of the form of MGLL in the absence of the

agent; and,

d. comparing the biological activity measured in step (b) with the biological activity
measured in step (c); thereby identifying an agent that inhibits the biological
activity of the form of MGLL, when the biological activity measured in step (b) is

less than the biological activity measured in step (c).

11. The method of claim 10, wherein the form of MGLL has an amino acid sequence
selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, and
SEQ ID NO: 7.

12. The method of claim 10, wherein the biological activity is measured with an enzyme

assay.
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Figure 1:

A.SEQID NO: 1

1 mpeessprrt pgsipygdlp hlvnadgqyl fcrywkptgt pkalifvshg agehsgryee

PCT/US2009/041646

1/11

larmlmglldl 1lvfahdhvgh ggsegermvv sdfhvfvrdv lghvdsmgkd ypglpvillg

taaerpghfa gmvlisplvl anpesattfk vlaakvlinlv lpnlslgpid
vdiynsdpli craglkvcfg igllnavsrv eralpkltvp flllggsadr
melaksgdkt lkiyegayhv lhkelpevtn svfheinmwv sqrtatagta

mpeessprrt pgsipygdlp hlvnadgqgyl fcrywkptgt pkalifvshg
larmlmglldl lvfahdhvgh ggsegermvv sdfhvivrdv lghvdsmgkd
hsmggaiail taaerpghfa gmvlisplvl anpesattfk vlaakvlinlv
ssvlsrnkte vdiynsdpli craglkvcfg iqgllnavsrv eralpkltvp
lcdskgayll melaksqgdkt lkiyegayhv lhkelpevtn svfheinmwv

spp

(100%), Positives = 303/303 (100%), Gaps = 0/303 (0%)

MPEESSPRRTPQSIPYQDLPHLVNADGQYLFCRYWKPTGTPKALIFVSHGAGEHSGRYEE 60
MPEESSPRRTPQSIPYQDLPHLVNADGQYLFCRYWKPTGTPKALIFVSHGAGEHSGRYEE
MPEESSPRRTPQSIPYQDLPHLVNADGQYLFCRYWKPTGTPKALIFVSHGAGEHSGRYEE 70

LARMLMGLLDLLVFAHDHVGHGQSEGERMVVSDFHVFVRDVLQHVDSMQKDYPGLPVFLLG 120
LARMLMGLLDLLVFAHDHVGHGQSEGERMVVSDFHVFVRDVLQHVDSMQKDYPGLPVFLLG
LARMLMGLLDLLVFAHDHVGHGQSEGERMVVSDFHVFVRDVLQHVDSMQKDYPGLPVFLLG 130

HSMGGAIAILTAAERPGHFAGMVLISPLVLANPESATTFKVLAAKVLNLVLPNLSLGPID 180
HSMGGAIAILTAAERPGHFAGMVLISPLVLANPESATTFKVLAAKVLNLVLPNLSLGPID
HSMGGAIAILTAAERPGHFAGMVLISPLVLANPESATTFKVLAAKVLNLVLPNLSLGPID 190

SSVLSRNKTEVDIYNSDPLICRAGLKVCFGIQLLNAVSRVERALPKLTVPFLLLQGSADR 240
SSVLSRNKTEVDIYNSDPLICRAGLKVCFGIQLLNAVSRVERALPKLTVPFLLLQGSADR
SSVLSRNKTEVDIYNSDPLICRAGLKVCFGIQLLNAVSRVERALPKLTVPFLLLQGSADR 250

LCDSKGAYLLMELAKSQDKTLKIYEGAYHVLHKELPEVITNSVFHEINMWVSQRTATAGTA 300
LCDSKGAYLLMELAKSQDKTLKIYEGAYHVLHKELPEVINSVFHEINMWVSQRTATAGTA
LCDSKGAYLLMELAKSQDKTLKIYEGAYHVLHKELPEVITNSVFHEINMWVSQRTATAGTA 310

61
121 hsmggaiail
181 ssvlsrnkte
241 lcdskgayll
301 spp
B. SEQ ID NO: 2
1 METGPEDPSS
61 agehsgryee
121 ypglpvillg
181 lpnlslgpid
241 flllggsadr
301 sgrtatagta
Identities = 303/303
Iso 1
Iso 11
Iso 61
Iso 71
Iso 121
Iso 131
Iso 181
Iso 191
Iso 241
Iso 251
Iso 301 SPP 303
SPP

Iso 1 311 SPP 313
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Figure 2:
A.
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A.
SEQ ID NO: 3, wt-MGLL (hMGLL 1-303)

TEV Cleavage Site

MvVDhhhhhhEnlyfggMPEESSPRRTPQSIPYQDLPHLVNADGQYLFCRYWKPTGTPKALIFVSHGAGEHSG
RYEELARMLMGLDLLVFAHDHVGHGQSEGERMVVSDFHVFVRDVLOHVDSMQKDYPGLPVFLLGHSMGGATIA
ILTAAERPGHFAGMVLISPLVLANPESATTFKVLAAKVLNLVLPNLSLGPIDSSVLSRNKTEVDIYNSDPLI
CRAGLKVCFGIQLLNAVSRVERALPKLTVPFLLLOGSADRLCDSKGAYLLMELAKSQDKTLKIYEGAYHVLH
KELPEVINSVFHEINMWVSQRTATAGTASPP

B.
SEQ ID NO: 4, mut-MGLL (hMGLL 1-303 L169S, L176S)
TEV Cleavage Site

MvVDhhhhhhEnlyfggMPEESSPRRTPQSIPYQDLPHLVNADGQYLFCRYWKPTGTPKALIFVSHGAGEHSG
RYEELARMLMGLDLLVFAHDHVGHGQSEGERMVVSDFHVFVRDVLOHVDSMQKDYPGLPVFLLGHSMGGATIA
ILTAAERPGHFAGMVLISPLVLANPESATTFKVLAAKVLNSVLPNLSSGPIDSSVLSRNKTEVDIYNSDPLI
CRAGLKVCFGIQLLNAVSRVERALPKLTVPFLLLOGSADRLCDSKGAYLLMELAKSQDKTLKIYEGAYHVLH
KELPEVINSVFHEINMWVSQRTATAGTASPP

C.
SEQ ID NO: 5, TEV Cleaved mut-MGLL (hMGLL 1-303 L169S, L176S)

gMPEESSPRRTPQSIPYQDLPHLVNADGQYLFCRYWKPTGTPKALIFVSHGAGEHSGRYEELARMLMGLDLL
VFAHDHVGHGQSEGERMVVSDFHVFVRDVLQHVDSMQKDYPGLPVFLLGHSMGGAIAILTAAERPGHFAGMV
LISPLVLANPESATTFKVLAAKVLNSVLPNLSsSGPIDSSVLSRNKTEVDIYNSDPLICRAGLKVCFGIQLLN
AVSRVERALPKLTVPFLLLQGSADRLCDSKGAYLLMELAKSODKTLKIYEGAYHVLHKELPEVINSVFHEIN
MWVSQRTATAGTASPP

D.
SEQ ID NO: 6, mut-MGLL (hMGLL 1-303 L.169S, L.176S, K36A)
TEV Cleavage Site

MVDhhhhhhEnlyfggMPEESSPRRTPQSIPYQDLPHLVNADGQYLFCRYWaPTGTPKALIFVSHGAGEHSG
RYEELARMLMGLDLLVFAHDHVGHGQSEGERMVVSDFHVFVRDVLOHVDSMQKDYPGLPVFLLGHSMGGATIA
ILTAAERPGHFAGMVLISPLVLANPESATTFKVLAAKVLNSVLPNLSSGPIDSSVLSRNKTEVDIYNSDPLI
CRAGLKVCFGIQLLNAVSRVERALPKLTVPFLLLOGSADRLCDSKGAYLLMELAKSQDKTLKIYEGAYHVLH
KELPEVINSVFHEINMWVSQRTATAGTASPP

E.
SEQ ID NO: 7, TEV Cleaved mut-MGLL (hMGLL 1-303 L169S, L176S, K36A)

gMPEESSPRRTPQSIPYQDLPHLVNADGQYLFCRYWaPTGTPKALIFVSHGAGEHSGRYEELARMLMGLDLL
VFAHDHVGHGQSEGERMVVSDFHVFVRDVLQHVDSMQKDYPGLPVFLLGHSMGGAIAILTAAERPGHFAGMV
LISPLVLANPESATTFKVLAAKVLNSVLPNLSsSGPIDSSVLSRNKTEVDIYNSDPLICRAGLKVCFGIQLLN
AVSRVERALPKLTVPFLLLQGSADRLCDSKGAYLLMELAKSODKTLKIYEGAYHVLHKELPEVINSVFHEIN
MWVSQRTATAGTASPP
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Figure 7:
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