
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0174252 A1

Besbris et al.

US 2006O174252A1

(43) Pub. Date: Aug. 3, 2006

(54)

(76)

(21)

(22)

(60)

SERVICE VERSIONING

Inventors: David G. Besbris, Reston, VA (US);
Richard A. Doerksen, Irvine, CA (US);
John D. Robinson, South Riding, VA
(US)

Correspondence Address:
FSH & RICHARDSON P.C.
P.O. BOX 1022
MINNEAPOLIS, MN 55440-1022 (US)

Appl. No.: 11/281.939

Filed:

Provisional application No. 60/628,555, filed on Nov.

Nov. 18, 2005

Related U.S. Application Data

18, 2004.

Publication Classification

(51) Int. Cl.
G06F 9/46 (2006.01)
G06F 9/44 (2006.01)

(52) U.S. Cl. .. 719/330; 71.9/313

(57) ABSTRACT

An appropriate version of a service for use by a service
requestor is selected based on metadata. A request for a
service object provided by a service is received from a
service requestor. Multiple, different versions of the service
are determined, and metadata associated with the multiple,
different versions of the service is examined to select a
version of the service that is compatible with the service
requestor. The requested service object is instantiated from
the version of the service that is compatible with the service
requester. The service requestor is enabled to access the
instantiated service object.

Host manager reviews service manifest of 672 O
the correct version to determine context in

which service is to loaded

Host manager generates
package moniker

Host manager determines a
service host based on context

attribute

Host manager locates or creates
the service host indicated by the

context attribute

Host manager instructs service
host to load code module of

service

Service host loads module and
instantiates service object

30,

a 6

to

-)

Host manager returns filname of
Service manifest to service
manager object of client

Service manager object loads
Code module of Service into

client process

32.

Service manager object
instantiates service object using
code module and returns object

to client

7- -

Service host returns object to
host manager

Host manager returns object to
client

Patent Application Publication Aug. 3, 2006 Sheet 1 of 14 US 2006/017.4252 A1

0. - 100

86

Computer

Memory / O Unit

Operating
System CPU

Runtime
Environment

Application/ | Communication
Services Card

F.G. 1

US 2006/0174252 A1 Patent Application Publication Aug. 3, 2006 Sheet 2 of 14

Patent Application Publication Aug. 3, 2006 Sheet 3 of 14 US 2006/0174252 A1

17 O 2OO 312.
S

M. With
Mail App Mail Alerts

QY

3O2
Mail

Service

M

Preferences

2Ou 3O. 3O8

FIG. 3

230},

Patent Application Publication Aug. 3, 2006 Sheet 4 of 14

Patent Application Publication Aug. 3, 2006 Sheet 5 of 14 US 2006/0174252 A1

EE/
Services/
- MailApp?

Version 1 0 1/
Servicemanifest.xml
mailapp.dll-1 Cole
resources/

en-US/
i logo.png

navbarElements.xml
content/-1 TN to

N mainU.box-N 402b

|

FIG. 6

SO2
go ervices/

Mail1 5066 - 504, ea
Version 12 l/ MS Oc OO service? arrest.xml/

mailservice.d-1N 50
Sole -el- Sol A en-US

strings.xml1 SOCs

604 -

F.G. 5

Patent Application Publication Aug. 3, 2006 Sheet 6 of 14 US 2006/0174252 A1

O

<?xml version="1.0" encoding="UTF-8"?>

package version="1.4.6.1" service="boxelyRenderer">
modules> 70th a 702

module context="inProc" file"boxelyRenderer.dll">
<class clsName="view"/>-TN 7o 6
<class clsName="shell"/>N 17o

clientFilter default="allowAI">
<!-- block all versions of mailApp up to 1.1.4.18 inclusive. -->
override moniker="eellaol/mailApp" to="1.1.4.18">

folientFilter)

FIG.7

US 2006/0174252 A1 Patent Application Publication Aug. 3, 2006 Sheet 7 of 14

Patent Application Publication Aug. 3, 2006 Sheet 8 of 14 US 2006/0174252 A1

- a OO

Client instantiates Service manager object 1d.

(4 of Client passes class moniker to service
manager object

Service manager object passes class 1O.
moniker and client moniker to host manager

Host manager searches service manifests 4 Og
to locate manifests corresponding to

different Versions of Service

Host manager reviews located manifest 9 O
files to determine Correct Version for the

Patent Application Publication Aug. 3, 2006 Sheet 9 of 14 US 2006/0174252 A1

91O

Host manager accesses service manifest of - gif 2.
most recent version of Service

G fed

Host manager determines whether service
manifest indicates the version of the service

requestor is incompatible with service

More
Versions?

Return Error

Service manager accesses service manifest
of next most recent version

fia 3

Patent Application Publication Aug. 3, 2006 Sheet 10 of 14 US 2006/0174252 A1

Host manager reviews service manifest of ap O
the Correct version to determine Context in

which service is to loaded

Host manager returns filname of
Service manifest to service
manager object of client

Host manager generates
package moniker

30,

Service manager object loads
Code module of Service into

client process

Host manager determines a
Service host based on Context

attribute

a 6 9 32.
Service manager object

instantiates service object using
code module and returns object

to client

Host manager locates or creates
the service host indicated by the

Context attribute

40
Host manager instructs service
host to load Code module of 7ef f

Service

Service host returns object to
host manager

Service host loads module and
instantiates service object 7 ty4

Host manager returns object to
client

Patent Application Publication Aug. 3, 2006 Sheet 11 of 14 US 2006/0174252 A1

OO Co

Host manager accesses service manifests
for installed Services and application

Services

Host manager selects a service

Host manager reviews service manifests of
Service to determine newest Version that

doesn't block any clients

Host manager deletes older versions

Host manager selects another service, if

Another
Service?

Patent Application Publication Aug. 3, 2006 Sheet 12 of 14 US 2006/017.4252 A1

(O - OO

Client sends a query message to the host
manager

Ol?
Y N Apply

version
logic? lot. II (2.

Host manager determines the
best versions of the installed

Services for the client

Host manager searches the
Service manifests of all installed

Services for the nodes that

match the query criteria

Host manager searches for
nodes in the service manifests of
best versions that match query

Host manager returns matching
nodes and identifications of

Corresponding services to client
(10

Host manager returns matching
nodes and identifications of

corresponding services to client

Patent Application Publication Aug. 3, 2006 Sheet 13 of 14 US 2006/0174252 A1

I). OO
Y).O. ?

2 of
From execution

environment Code
From Native Platform

Platform-neutral Code
Interop

Native Object Interop
(COM, Obj-C, SOAP)

Object's Logic

|)0).

Patent Application Publication Aug. 3, 2006 Sheet 14 of 14 US 2006/0174252 A1

Develop object using operating system
neutral APIs

3 of Designate an operating System

306
Compile object

US 2006/0174252 A1

SERVICE VERSONING

0001. This application claims priority under 35 USC S
119(e) to U.S. Provisional Patent Application Ser. No.
60/628,555, filed on Nov. 18, 2004, the entire contents of
which is hereby incorporated by reference.

TECHNICAL FIELD

0002 This disclosure relates to a software development
platform.

BACKGROUND

0003 Software development platforms generally provide
a framework to assist developers in developing applications.
Software development platforms may include a runtime
environment that Supports the execution programs designed
for the environment and provides common capabilities to
those programs, and a static library that provides the func
tions and application programming interfaces (APIs) for
designing programs for the environment.

SUMMARY

0004. In one aspect, an appropriate version of a service
for use by a service requestor is selected based on metadata.
A request for a service object provided by a service is
received from a service requestor. When multiple, different
versions of the service are available, metadata associated
with the multiple, different versions of the service is exam
ined to select a version of the service that is compatible with
the service requestor. The requested service object is instan
tiated from the version of the service that is compatible with
the service requester. The service requestor is enabled to
access the instantiated service object.
0005 Implementations may include one or more of the
following features. For example, the selected version of the
service may be the newest version of the service that is
compatible with the service requestor. To select the newest
version of the service that is compatible, for example, the
metadata file associated with a newest version may be
accessed and examined to determine if the version is com
patible with the service requester. If it is determined that the
version is not compatible, then the metadata file associated
with a next newest version may be examined to determine if
that version is compatible with the service requestor. If so,
the next newest version of the service is selected.

0006 The request may include an indication of a version
of the service requestor and the metadata may be examined
to select a version of the service that is compatible with the
version of the service requestor. The service requestor may
be an application, or may be another service.
0007. The metadata may include multiple metadata files.
Each metadata file may be associated with one of the
multiple, different versions of the service and contain meta
data for the associated version of the service. The metadata
for the associated version of the service may indicate which
service requesters are compatible with the associated version
of the service. The metadata files may be XML documents.
The XML documents may contain XML tags indicating
which service requestors are not compatible with the asso
ciated version of the service, and/or may contain XML tags
indicating which service requesters are compatible with the
associated version of the service.

Aug. 3, 2006

0008. The service may be any one of an instant messag
ing (IM) service; a mail service; a common local storage
service; a notification manager; a preferences service; or a
sequencer service.
0009 Implementations of the described techniques may
include hardware, a method or process, or computer soft
ware on a computer-accessible medium.

0010. The details of one or more implementations are set
forth in the accompanying drawings and the description
below. Other features will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

0011 FIG. 1 shows exemplary components of a comput
ing System.

0012 FIG. 2 illustrates a software model that includes an
execution environment runtime.

0013 FIG. 3 illustrates an example of software that
includes applications and services.
0014 FIG. 4 is an example of a runtime architecture for
the execution environment runtime.

0015 FIG. 5 is an illustration that shows an example of
a directory structure containing a service package.

0016 FIG. 6 is an illustration that shows an example of
a directory structure containing a application service pack
age.

0017 FIGS. 7 and 8 show examples of an implementa
tion of manifest files expressed in XML.
0018 FIGS. 9A-9C are flowcharts showing an example
of a process implemented by the runtime architecture of
FIG. 4 for service versioning and grouping.
0019 FIG. 10 is a flowchart showing an example of a
process implemented by the runtime architecture of FIG. 4
for service clean-up.

0020 FIGS. 11 is a flowchart showing an example of a
process implemented by the runtime architecture for service
discovery when the service manifest files are implemented
in XML.

0021 FIG. 12 is a diagram showing a compiled object.

0022 FIG. 13 is a process for creating an object such as
the one shown in FIG. 12.

DETAILED DESCRIPTION

Overview

0023 FIG. 1 shows, exemplary components 100 of a
computing system. The hardware setup may include various
input/output (I/O) devices (e.g., mouse 102, keyboard 104,
and display 106) and a central processing unit (CPU) 108.
CPU 108 may include a processor 110, an I/O unit 112,
memory 114, and storage 116. CPU 108 also may include
Some sort of communications card or device 116 (e.g., a
modem or a network adapter) for exchanging data with a
network 118 via a communications link 120 (e.g., a tele
phone line, a wireless network link, or a cable network).

US 2006/0174252 A1

System 100 may be implemented, for example, as a personal
computer, a workstation, a server, a cellular telephone, or a
personal digital assistant.

0024 Storage 116 stores data and various programs such
as an operating system (OS) 122. The OS 122 is a program
that controls the functioning and interaction of the hardware
components of system 100 and facilitates the operation of
other programs executing on system 100. Windows Me,
Windows XP, Linux, and MacOS are examples of common
operating systems for personal computers. Windows CE or
Windows Embedded are examples of common embedded
operating systems used in cellular telephones or personal
digital assistants.

0.025 Storage 116 also stores a runtime environment 124
and one or more applications and/or services 126. The
runtime environment 124 is a collection of code that controls
the execution of programs specifically designed for it, Such
as applications or services 126, and provides common
functions or capabilities to those programs.

0026. In general, the runtime environment software
resides between the programs designed for it and the OS
122. In other words, programs designed for the runtime
environment 124 call routines of the runtime environment to
perform input/output, graphical interface and other func
tions, and the runtime environment calls routines of the OS
122 to implement those functions. In contrast, programs that
are not designed for the runtime environment 124 call
directly upon routines of the OS 122 to perform input/
output, graphical interface and other functions.
0027. Referring to FIG. 2, a software model 200 includes
an operating system (OS) 202 and a runtime environment
204 layered on top of the OS 202. The runtime environment
204 includes a basic runtime 204a and an execution envi
ronment runtime 204b. The basic runtime 204a provides
basic utilities that are used by the execution environment
runtime 204b and are not otherwise provided for by OS 202.
For example, the basic runtime 204a may provide a com
pression utility, an extensible markup language (XML)
parsing utility, and a language runtime.

0028. The execution environment runtime 204b is lay
ered on top of the basic runtime 204a. The execution
environment runtime 204b controls the execution of pro
grams and services designed for the runtime environment
204, and provides common functionalities and capabilities
for the execution of those programs and services. For
example, runtime components of the execution environment
204 may provide for service versioning, service discovery,
service clean-up, and service grouping, as described further
below.

0029. In general, services 206 and applications 208 run
on top of the execution environment runtime 204b. A service
is a collection of logically related code and functions to
perform a particular task or set of related tasks. A service is
generally used by an application or other service to accom
plish the task or tasks, and usually does not interact with the
end-user. When a service is used by an application or other
service, at least a portion of the service's code and functions
becomes part of the code of the application or other service,
either by being loaded directly into the process containing
the application or service, or by being loaded into another
process and using an interprocess communications mecha

Aug. 3, 2006

nism provided by the execution environment runtime 204b
to handle the passing of calls to the service's code and
functions and the results of those calls between the pro
cesses. In other words, the service's code is linked to the
service requestors code at runtime, and is executable by the
requestors code.
0030) A service implements one or more classes of
objects that provide the functionality of the service. An
object is a piece of compiled code that provides functionality
to other compiled code (e.g., an application or other service)
on the system 100 (as opposed to a source code object).
Thus, to access particular functionality of a service, another
service or application makes a request to the execution
environment runtime 204b for the appropriate object from
the service. The execution environment runtime 204b then
controls instantiating the service object, and connecting the
requestor of the object to the object so that the requestor can
access the service object’s functionality. The functionality of
an object is accessed by one or more methods of the object.
For example, a mail service may have a mail object class that
provides a SendMail method and a ReadMail method. The
SendMail and ReadMail methods are used to send an e-mail
and retrieve an e-mail, respectively.
0031 Examples of services include:
0032 an instant messaging (IM) service (which pro
vides functionality related to instant messaging);

0033 a mail service (which provides functionality
related to e-mail);

0034 a common local storage service (used by ser
vices or applications to access stored data);

0035 a notification manager (which manages the dis
patching of system-wide events to services or applica
tions that are registered to receive them);

0036) a preferences service (used by applications and
other services to access a user's preferences); and

0037 a sequencer service (which paces system-wide
actions) Applications 208 are the programs that provide
a set of features to the end-user. For example, an e-mail
program allows a user to view the e-mails in his or her
mailbox, compose new e-mails, and send e-mails. An
IM application allows a user to exchange instant mes
Sages with other users. Applications 208 are generally
divided into an application interface portion 208a and
an application logic portion 208b. In general, the inter
face 208a allows the user to interact with the applica
tion, provides a view of data (e.g., e-mails or instant
messages) to the user, and allow the user to provide
input to the application. The application logic 208b
implements particular functionality based on user
inputs by implementing certain logic and accessing
services 206, and updates the interface 208a based on
changes to the data. For example, if a user selects a
send button on a mail application, the application logic
translates that input into a send operation by calling the
appropriate functions of a mail service, and updates the
user interface 208a to reflect a sent e-mail once the
e-mail is sent.

0038 FIG. 3 illustrates an example of software 300 that
includes applications and services designed for the execu
tion environment runtime 204b. A mail service 302 provides

US 2006/0174252 A1

functionality related to e-mail. Such as sending and retriev
ing e-mail, checking for new e-mail, obtaining a list of new
e-mails, and obtaining a list of read e-mails. Mail service
302 uses other services 304-308 to implement some of its
functions. For example, mail service 302 uses the prefer
ences service 304 to obtain user preferences related to
e-mail, and uses the common local storage service 306 to
access stored e-mails. Mail service also may use an anti
virus service to scan new e-mail for viruses.

0039. A mail application 310 allows a user to view the
e-mails in his or her mailbox, compose new e-mails, and
send e-mails. To this end, mail application 310 uses the
functionality provided by mail service 310 to send and
receive e-mails, check for new e-mails, obtain a list of new
e-mails, and/or obtain a list of read e-mails. An IM appli
cation 312 provides instant messaging capabilities to a user.
To do so, the IM application 312 uses an IM service (not
shown). In addition, the IM application 312 alerts a user
when the user receives a new e-mail. To provide the user
with such alerts, the IM application uses the mail service 302
to check for new e-mail and, if there is new e-mail, alerts the
USC.

0040. Referring again to FIG. 2, the execution environ
ment runtime 204b provides for the interoperability of the
applications and services, and reuse of services. To provide
for interoperability and reuse, the execution environment
runtime 204b controls the instantiating of service objects
and their connection them to service requesters. As part of
this, the execution environment runtime 204b provides
service versioning. In general, when an application or ser
Vice wants to use a particular service object, the execution
environment discovers the correct version and implementa
tion of the service for the requesting application or service,
instantiates the service object, and facilitates a connection
between the application or service and the service object.
This may allow for side-by-side versioning or services.
0041. In addition, as part of instantiating service objects,
the execution environment 204b provides for service group
ing. When the execution environment runtime instantiates a
service object, it instantiates the object in a particular
process based on the metadata for the service. Thus, where
the service is activated can be controlled by changing the
metadata associated with the service. This may allow a
developer to change between the service being loaded
in-process and out-of-process, and may allow certain ser
vices or classes of objects to be grouped in a particular
process by designating the process in the metadata.

0.042 Also, the execution environment runtime 204b may
provide for other functionality, Such as service clean-up, in
which the execution environment runtime 204b discovers
and removes versions of services that are no longer used by
applications or other services. The execution environment
runtime 204b also may provide for service discovery, in
which the execution environment runtime 204b, at the
request of an application or service, discovers services
meeting particular criteria.
0043. To develop applications and services for execution
environment runtime 204b, a developer uses a library that
provides an API for developing applications or services that
run on top of the execution environment runtime 204b. The
library is statically linked into applications and services, and
provides a model object for objects running in the execution

Aug. 3, 2006

environment runtime 204b. The library APIs allow the
developer to develop objects according to the object model,
so that those objects are exposed to other applications and
services running on the execution environment runtime
204b. The API also allows the developer to develop appli
cations and services running on the execution environment
runtime 204b that access the objects developed according to
the object model. Also as described further below, in addi
tion to being accessed by the API, objects developed using
the API can be accessed as native objects (i.e., objects
natively supported by the OS 202).

0044) Thus, the runtime environment 204 and the stati
cally linked library provide for a software development
platform that defines an object model, and provides for
service versioning, service grouping, service clean-up, and
service discovery. In addition, objects developed for the
Software development platform are accessible as native
objects, and through the API of the platform.

Execution Environment Runtime

Runtime Architecture

0045. The runtime components of the execution environ
ment runtime 204b control the execution of applications and
services. In general, one of the runtime components is a
service manager Subsystem that manages available services
and applications, and facilitates the connection between
services and consumers of the services, such as applications
or other services. The service manager also may facilitate
service versioning, service grouping, service discovery, and
service clean-up.
0046) With respect to service versioning, a service
requester may request a service object from the service
manager. The service manager then locates the service,
determines the appropriate version of the service for the
requester, instantiates the service object from the located
service, and returns a reference to the object to the requester,
which can then access the service object's functionality
using the reference. To provide service grouping, the service
manager reviews the metadata associated with the service
when the service manager instantiates the service object to
determine the process in which to instantiate the object.
0047. In addition, with respect to service discovery, a
service requestor may request that the service manager
identify services that meet particular criteria. As described
further below, services have meta-data associated with them
that describes their properties and capabilities (in the form of
a service manifest file), and other information about the
service. The service manager may search the meta-data of
the services to determine which ones meet the criteria
requested by the requestor. The service manager then returns
an identification of the service, and also may return the
meta-data describing the criteria.
0048 Also, to provide service clean-up, the service man
ager may review the meta-data to determine which versions
of services are no longer used by other services or applica
tions. The service manager then removes those versions of
services that are no longer used.
0049 FIG. 4 shows one implementation of a runtime
architecture 400 for execution environment runtime 204b.
Runtime architecture 400 includes a service requestor 402
(e.g., an application or service), which is also referred to as

US 2006/0174252 A1

a client or consumer. Architecture 400 also includes a host
manager processes 404, service host processes 406a-406c,
services 412a-412e, and an application launcher process
414.

0050 Also, in the implementation shown, the service
manager Subsystem is implemented as a dynamic link
library (DLL), shown as SvcMgr.dll. The service manager
DLL contains the code that implements a service manager
object. Copies 408a-408e of the service manager DLL are
loaded into the client 402, the host manager process 404, and
the service host processes 406a-406c. These processes can
then instantiate service manager objects, which enable locat
ing services, instantiating service objects, and connecting
service requestors to those objects, along with providing
service versioning, service grouping, service clean-up and
service discovery functions.
0051. The service host processes 406a-406c host out-of
process service objects. In the implementation shown, Ser
vices also are implemented as dynamic link libraries. Thus,
in general, requested service objects need a host process in
which to run. A requested service object may be loaded
in-process with the client, such that it is hosted by the client
process, or the service object may be loaded out-of-process.
When a service object is loaded out-of-process, it is hosted
by a service host process. For example, the service object
from service 412a is loaded in-process with the client 402,
while service objects from services 412b and 412c are
loaded out-of-process in the service host process 406a.
When a service object is an out-of-process object, the
execution environment runtime 204b provides an interpro
cess communications mechanism to pass calls to the object,
and results from the object, between the client process 402,
and the service host process hosting the object, Such as, for
example, service host 406a.
0.052 The host manager process 404 controls the start-up
and shutdown behavior of the service host processes 406a
406c, and, when a service object is loaded out-of-process,
determines the appropriate service host process that will host
the service object. The host manager 404 then instructs the
service host to load the service's DLL into the service host,
and instantiate the object, which the service host does using
a service manager object instantiated from the service man
ager DLL loaded into the service host (e.g., service manager
DLL 408c-408e). A reference to the object is then passed
from the service host back to the client 402 through the host
manager 404.
0053 Also, through its service manager object 408b, the
host manager process performs service versioning, service
grouping, service discovery, and service clean-up. To per
form Such functions, the host manager process 404 reads and
caches the service manifest files (described below) associ
ated with each installed service.

0054) Application launcher 414 starts the execution of
client 402 when client 402 is an application that is designed
like a service. Applications may be standalone executables
that are designed to be executed in the execution environ
ment runtime 204b, or applications may be designed like a
service. To be designed like a service for runtime architec
ture 400, the application is implemented as a DLL, packaged
in the manner described below, and includes a service
manifest file as described below. Such applications are
referred to as application services. Implementing an appli

Aug. 3, 2006

cation like a service allows the application to be discovered
and updated using the same execution environment mecha
nisms as are used to discover and update services. In general,
the term service and refers to both a service and an appli
cation service.

0055. The application launcher 414 is an executable
application that receives an identifier (e.g., a moniker as
described below) for the application as a command line
parameter. To start the execution of the application service,
the application launcher 414 executes a shim executable,
loads the application service DLL into the shim executable,
instantiates the application object from the DLL, and hands
over the run loop to the application object.

Packaging of Services and Application Services

0056 Services and application services designed for the
execution environment runtime 204b have a particular on
disk structure (e.g., a particular directory structure) referred
to as a "package.” This package contains the code and
resources used to implement the service or application
service, and includes meta-data describing the service or
application service. Packages may be stored in specific
locations of the directory structure that contains the code for
the execution environment runtime 204b.

0057 FIG. 5 shows an example of a directory structure
500 containing a service package. At the top level of the
directory structure is the EE folder 502, which contains the
code modules that implement the runtime 204a and execu
tion environment runtime 204b. Also contained in the EE
folder 502 is a Services folder 504. The Services folder 504
includes the packages of the various installed services and
application services. In the example shown, a mail service
package 506 is included in the Services folder 504.

0.058 Package 506 includes a top-level service folder
506a, and various sub-folders containing the code and
resources of the service. The name of the top-level service
folder 506a is the name of the service. In the top-level
service folder 506a is a version folder 506b, which is named
after the version number of the service, and contains the
code and resources for that version of the service. Generally,
the code and resources of a service or application service is
the unit that is versioned, not just the code. While not shown,
multiple, different versions of the service may be installed.
In this case, each version is stored in its own version folder.

0059. In the version folder 506b is a service manifest file
506c that is named “servicemanifest.xml.” In general, a
service manifest contains meta-data that richly describes the
service. Service manifest files are discussed in more detail
below.

0060 Also in the version folder 506b is at least one
service code module 506d that contains the code for the
service. In the example shown, the code module is “mailser
vice.dll. The code modules generally may be implemented
as dynamic link libraries, as shown.

0061 The version folder 506b also contains a resources
folder 506c. Resources folder 506C contains resources,
which are generally non-code items used by the service. For
example, resources folder contains a region folder 506f,
which contains resources used by the service for a particular
locale. In this case, region folder 506f is for a United States

US 2006/0174252 A1

locale, and contains a “strings.xml file 506g, which con
tains strings in English that are returned by the service for
display to the user.
0062 FIG. 6 shows an example of a directory structure
600 containing an application service package 602. Direc
tory structure 600 is similar to structure 500, except that
application service package 602 contains a content folder
602a that contains one or more user interface definition files
602b. User interface definition files 602b may contain mark
up language (e.g., extended mark-up language (XML))
definitions of the user interface for the application service.
User interface definition files 602b may be used by a
rendering service to generate the appropriate user interface
for the application service. While the example of FIG. 6
depicts an application service that uses user interface defi
nition files 602b and a rendering service to generate the user
interface for the application, some application services may
implement the user interface in the code module of the
application service.
Service Monikers

0063. In execution environment runtime 204b, services
(including application services), clients, and service objects
may be identified by monikers. Thus, there generally may be
three types of monikers: (1) a service moniker; (2) a client
moniker; and (3) a class moniker.
0064. A service moniker identifies a service or applica
tion service, and does not specify a specific version number
of the service. A service moniker may have a form Such as
ee://<servicename>, where the <servicename> is the name
of the service, and matches the name of the services folder
for the service (e.g., folder 506a) and the name in the service
attribute of the <packaged tag in the service manifest for the
service (described further below). The following is an
example of a moniker for a mail service with a service name
of “mail: ee://mail.

0065. A client moniker is used to identify a client to the
service manager Subsystem so that the service manager
Subsystem can make decisions based on that identity. A
client moniker may have a form Such as ee://<client
name>:<version number>, where <client name> is the name
of the client and <version numbers is the version of the
client. The following is an example of a moniker for version
1.0.1 of a mail application with a client name of “mailapp'
ee://mailapp: 1.0.1.

0066. A class moniker identifies a specific class of object
exported by the specified service. A class moniker may have
a form such as ee://<servicename>|<class>, where the <ser
Vicename> is the name of the service, and matches the name
of the services folder for the service and the name in the
service attribute of the <packaged tag in the service manifest
for the service (described further below), and the <class> is
the specific class of object that can be exported from the
service. For example, for an inbox class in a mail service, the
class monitor may look like: ee://mail/inbox.
Service Manifests

0067 Services and application services designed for the
execution environment runtime 204b have a service mani
fest file associated with them. As described above, the
service manifest file contains meta-data that richly describes
the service or application service. A portion of the service

Aug. 3, 2006

manifest file is used to describe the code modules that
comprise the service as well as the classes that those
modules export. The service manifest file also can describe
the properties and capabilities of the service, and provide
any other static information that describes the service to
potential consumers (e.g., other services or applications) of
the service.

0068. In one implementation, service manifest files are
expressed in XML, and may have a number of XML tags
that describe the code modules and exportable classes, as
well as the capabilities of the service, and other static
information of use to potential consumers of the service or
application service. In general, the host manager process 404
reads the service manifest files of the installed services and
application services, and caches the document object model
(DOM) of the service manifest files. The host manager
process 404, through the service manager object 408b, uses
the cached DOMs to control the start-up and shutdown of
services, and to provide service versioning, service group
ing, service discovery, and service clean-up.
0069 FIGS. 7 and 8 show examples of one implemen
tation of manifest files in which the manifest files are
expressed in XML. FIG. 7 shows a manifest file 700 for a
rendering service, while FIG. 8 shows a manifest file 800 for
a mail application implemented as a service.
0070 The following are the basic tags that are used in
service manifest files in the implementation shown: (1) a
<packaged tag; (2) an <app> tag; (3) a <modules> tag; (4)
a <module> tag; (5) a <class> tag; and (6) a <clientFilter->
tag.

0.071) The <packages tag (labeled 702 in FIG. 7 and 802
in FIG. 8) is the root element of the manifest file. The
<packaged tag contains two attributes—a version attribute
and a service attribute. The value of the service attribute is
set to the service's or application service's name, and
matches the <servicename> portion of the service moniker,
as well as the service folder in which the service is stored.
The value of the version attribute is set to the version
number of the particular instance of the service or applica
tion service with which the service manifest file is associated
(by virtue of being stored in the package), and matches the
name of the version folder.

0072 Referring to FIG. 7, for example, the <packages
tag 702 in manifest file 700 (FIG. 7) has a version attribute
702a with a value of “1.4.6.1 and a service attribute 702b
with a value of “boxelyRenderer.”

0073. The <app> tag (labeled 816 in FIG. 8) is used in
the manifest file of application services. A file attribute of the
<app> tag has a value set to the file name of the code module
that contains the code for the application service. The app
tag also has a name attribute. The value of the name attribute
represents the class of the application object. A customHost
attribute designates the name of the executable shim that is
launched and into which the code module is loaded. A
singlelinstance attribute may be specified with a value of
“true' to indicate that the application service can only have
one instance running at a time.
0074 Referring to FIG. 8, as an example, the <app> tag
816 contains a file attribute 816a with a value of "mail
AppService.dll, a name attribute 816b with a value of
“amail, a customHost attribute 816c with a value of

US 2006/0174252 A1

“amail.” and a singlelinstance attribute 816d with a value of
“true.” Thus, to execute the application service associated
with manifest file 800, the application launcher 414 reviews
manifest file 800 to determine that the customHost attribuite
816c has a value of “amail and locates the executable shim
with the name amail.exe. The application launcher 414
executes the shim, causes the mail AppService.dll code to be
loaded into the shim process, and causes an object of the
class amail to be instantiated to control the application.

0075) The <modules> tag (labeled 704 in FIG. 7, and 804
in FIG. 8) has no attributes. It is used as a container for one
or more <module> tags (labeled 706 in FIG. 7, and 806 in
FIG. 8) that define the code modules and corresponding
classes for the service or application service. Each <mod
ule> tag corresponds to a code module, and there may be
multiple <module> tags within a <modules> tag. The code
module associated with a <module> tag is designated by the
file attribute of the <module> tag.
0.076 The <module> tag also contains a context attribute
that defines whether the service object is loaded in-process
or out-of-process. The value of the context attribute specifies
where the code from the corresponding module is to be
loaded: (1) in-process or (2) out-of-process in a service host.
If the value of the context attribute is assigned “inProc, then
the code is loaded into the process that is asking for it. If the
context attribute is not specified, or has a value other than
“inProc, then the code is loaded out-of-process. If the
context attribute is not specified, or is set to "defaultGrp.”
then the service is loaded out-of-process into a service host
process with the default name (e.g., servicehost.exe). If the
value of the attribute is set to another string besides “inProc'
or “defaultGrp, then the code is loaded out-of-process into
a service host process having a process group name equal to
the string (e.g., mystuff.exe).

0.077 Referring to FIG. 7, as an example, the <module>
tag 706 has a context attribute 706a with a value of “in Proc.”
and a file attribute 706b with a value of “boxelyRen
derer.dll.” Thus, the code from the boxelyRenderer.dll file
will be loaded in-process with any requesters that request the
rendering service.

0078. One or more <class> tags (labeled as 708 in FIG.
7, and 808 in FIG. 8) are contained in a <module> tag and
are used to designate the classes of objects that are export
able from the code module corresponding to the <module>
tag. The <class> tag contains a clsName attribute. The value
assigned to the clsName designates the name of an export
able object class. As an example, the first <class> tag 808 in
manifest file 800 has a clsName attribute 808a with a value
of “utilities.

0079. The <clientFilters tag (labeled as 712 in FIG. 7) in
the manifest file offers a way of controlling which clients
and specific versions of clients can access the modules
contained in the package. Inside of the <clientFiltere tag is
one or more <override> tags (labeled 714 in FIG. 7) that
specify clients to block or allow.
0080. The <clientFilters tag has an optional default
attribute that specifies a default type of filter. The default
atttibute may take one of two values: either “allow All' or
“revoke All.' If the default attribute is not present, its value
is assumed to be “allow All.' If the default attribute has a
value of “allow All,” then the override tags specify clients

Aug. 3, 2006

and versions of clients to be blocked. If the default attribute
is “revoke All then the override tags specify the only clients
and versions of clients that have permission to use this
package.

0081. Each <override> tag contains a moniker attribute
that has a value set to a client moniker, but excludes the
version (e.g., ee://clientName). The override tag may con
tain a from attribute and a to attribute, which specify a range
of versions, or a version attribute that designates a single
version to be affected by the override tag. If the version
string in the “to” or “from' attribute is preceded by the “-”
character (e.g. “-1.7), then the “to’ or “from' attributed is
non-inclusive. If the version string is not preceded by the
'-' character, then the from attribute and to attribute are
considered to be inclusive. If the to attribute is present, but
not a from attribute, all versions through the to attribute will
be affected. Similarly, if a from attribute is present, but not
a to attribute, all versions after the from attribute will be
governed by the override tag.
0082 Referring to FIG. 7, as an example, the <client
Filtered tag 712 in manifest file 700 has a default attribute
with a value of “allow All.' The <override> tag 714 in
manifest file 700 has a moniker attribute 714a with a value
of “ee://mailApp' and a to attribute 714b with a value of
“1.1.4.18.” Thus, all versions of the client corresponding to
“mailApp” up to and including version 1.1.4.18 are blocked
from using the rendering service corresponding to manifest
file 7OO.

0083 Service manifests also may have other tags that
describe properties or capabilities of the service. For
example, referring to FIG. 8, a <navbar> tag 818 indicates
that the mail application has a navigation bar element that
can be loaded by a navigation bar application to provide a
button on the navigation bar application that can be selected
by a user to launch the mail application. Also, <preference
Defaultd tags indicate default preferences for the mail
application.

Service Versioning and Service Grouping

0084. The execution environment runtime 204b, through
the service manager Subsystem, may provide for service
versioning. In general, a client requests a service object
using the class moniker for the corresponding class. By
examining the service manifest files, the service manager
subsystem determines the correct version of the service for
the client (i.e., the newest version that the client is permitted
to use), and the code module of the correct version that
contains the class. The service manager Subsystem then
instantiates the service object and returns a reference to the
service object to the client. This may allow different versions
of the same service to exist side-by-side, with the most
recent version that is compatible with a client being used by
the client.

0085. In addition, the execution environment may pro
vide for service grouping. In general, when the service
manager Subsystem instantiates a service object, the service
manager Subsystem examines the service manifest file for
the corresponding service to determine whether the code
module is to be loaded in-process or out-of-process, and, if
out-of-process, which service host the code should be loaded
into. The service manager Subsystem then loads the code
into the appropriate service host and instantiates the service

US 2006/0174252 A1

object in the service host. Thus, services can be grouped in
specific service hosts, depending on the information in the
service manifest. This may allow a developer to quickly and
easily change whether a service runs in-process or out-of
process by simply changing the context attribute in the
service manifest (as opposed to changing it in the Source
code and recompiling). This also may allow a developer to
easily run certain services together as a group in the same
service host process.
0.086 FIGS. 9A-9C show an example of a process 900
implemented by the runtime architecture 400 for service
versioning and grouping. Referring specifically to FIG. 9A,
when the client 402 wants to request a service object, client
402 creates an in-process service manager object using the
code from the SvcMgr.dll 408a loaded into the client 402
(902). The client 402 then passes the class moniker for the
service object to the service manager object (904). The
service manager object then passes the class moniker and a
client moniker of the client to the host manager process 408b
(906). The host manager process 408b, through a service
manager object created using the code from the SvcMgr.dll
408b loaded in host manager 404, searches the service
manifests to locate the service manifests for the different
versions of the service (908), and then reviews those service
manifests to identify the correct version of the service for the
client 402 (910). For example, if the service manifests are in
an XML format, host manager 404 may have cached ver
sions of the Document Object Models (DOMs) of the
service manifests, which the host manager 404 uses to
identify the correct version of the requested service.
0087. Referring to FIG. 9B, to identify the correct ver
sion of the service for use with the client 402, after the host
manager 404 has located the service manifests for the
different versions of the service, the host manager accesses
the service manifest of the most recent version of the service
(912). The host manager 404 then inspects the service
manifest to determine whether the manifest indicates that the
service is incompatible with the client version (914). If a
<clientFilter-> tag and/or an <override> tag indicates that the
client 402 (identified by its client moniker) is not permitted
to use that version of the service (916), and there are more
versions of the service (918), then the host manager 404
accesses the service manifest of the next most recent version
of the service (920) to determine if the client 402 is
permitted to use that version of the service (914). If not
(916), then the host manager 404 continues to progressively
inspect the service manifests of earlier versions until the host
manager 404 discovers a version that the client 402 is
permitted to use, or until there are no more versions left to
review (914-920). If there are no more versions of the
service (918), and the host manager 404 has not identified
one that is compatible with the client, then the host manager
404 returns an error to the client 402 (922).
0088 Referring to FIG. 9C, once the host manager 404
has identified the correct version of the service (916), the
host manager 404 reviews the corresponding service mani
fest to determine the context in which to load the code
module (924). To do so, the host manager 404 reviews the
service manifest to locate the requested class in the manifest.
The host manager 404 then inspects the context attribute of
the <module> tag enclosing the <class> tag that contains the
name of the corresponding class. If the context attribute
indicates that code module is to be loaded in-process (926),

Aug. 3, 2006

the host manager returns the filename of the appropriate
service manifest to the service manager object created by
client 402 (928). The service manager object created by the
client 402 is then responsible for accessing the manifest file,
determining the appropriate code module from the file
attribute of the <module> tag, loading the code module into
the client’s address space (930), instantiating a service
object of the requested class, and returning a reference to the
object to the client 402 (932).

0089. On the other hand, if the context attribute indicates
that the code module is to be loaded out-of-process (926),
the host manager 404 forms a package moniker from the
service attributes and the version attribute of the <packages
tag in the service manifest (934). The host manager 404 then
uses the context attribute to determine the service host into
which the code module is to be loaded (936). If the context
attribute is set to a string value other than “defaultGrp.’ the
host manager 404 looks for a service host with a name equal
to the string value. If one is not executing, the host manager
404 creates a service host with a name equal to the string
value to start executing. Similarly, if the context attribute is
set to “defaultGrp.’ or there is no context attribute at all, the
host manager 404 looks for a service host with the default
name and, if one is not executing, the host manager 404
creates one with the default name.

0090. If an executing service host with the appropriate
name is found, or after the host manager 404 causes one to
start executing (938), the host manager 404 sends a request
to the service host (e.g., service host 406a) to load the code
module for the service, and create a service object of the
requested class (940). The request to the service host 406a
includes the file name of the code module that must be
loaded, the package name, and the class to be instantiated.
The service host 406a then uses a service manager object
created (e.g., from the service manager DLL 408c loaded
into service host 406a) to load the code module into its
address space and instantiate a service object of the
requested class (942). The service manager object then
returns a reference to the service object to the host manager
404 (944), which returns the reference to the client 402
through the service manager object created by client 402
(946).
Service Cleanup

0091. The execution environment runtime 204b, through
the service manager Subsystem, may provide for service
clean-up. In general, the service manager Subsystem deter
mines and removes versions of services or application
services that are no longer reachable by other services or
applications. To perform service clean-up, the service man
ager Subsystem inspects the service manifests for a service
to determine the newest version of the service that does not
block any clients from using it.
0092 FIG. 10 shows an example of a process 1000
implemented by the runtime architecture 400 for service
clean-up. The host manager 404, upon startup, loads the
service manager DLL 408b and creates a service manager
object. Using the service manager object, the host manager
404 then performs service clean-up.
0093. In general, to perform service clean-up, the host
manager 404, through the service manager object, accesses
the service manifests for installed services and application

US 2006/0174252 A1

services (1002). For example, if the service manifests are
implemented in XML, then host manager 406 may load and
parse the service manifests, and then cache the DOMs of the
service manifests. The host manager 404 then selects a
service (1004) and proceeds to review the service manifests
of the different versions of the service, from the newest to
the oldest to determine the newest version of the service that
does not block any clients (1006). The host manager 404
then deletes all versions of the service that are older than the
newest version that does not block any clients (1008). Once
the host manager 404 determines the newest version of the
service that doesn’t block any clients, or reviews all of the
version of the service, host manager 404 selects another
service to review, if there are any left (1010). If so 1012),
then host manager repeats the process on the new service. If
there are no services left to review (1012), process 1000
ends (1014).
0094 Specifically, the host manager 404 identifies the
newest version of the service and inspects the service
manifest of that version to determine if the service manifest
blocks any clients from using the service. The host manager
404 may, for instance, inspect any <clientFilter> and <over
ride> tags located in the service manifest to determine if any
clients are blocked. If there are no blocked clients, the
service manager deletes the earlier versions of the service.
0.095 If any clients are blocked, the host manager 404
then determines if there are any earlier versions of the
service or application service. If there are not any earlier
versions of the service, then the host manager 404 selects
another service, or the host manager 404 ends the review if
there are no more services to review.

0096. If there are earlier versions of the service, the host
manager 404 then identifies the next newest version of the
service, and inspects the service manifest of that version to
determine if the service manifest blocks any clients from
using the service. If there are no blocked clients, the service
manager deletes earlier versions of the service. If there are
blocked clients, then this process continues until there are no
more versions to review, in which case, no versions are
deleted.

0097. Once the host manager 404 completes the review
of a service, the host manager 404 selects another service, if
there are any left that have not been previously reviewed by
the host manager 404 for clean-up. The process then reviews
the versions of the newly selected service. Otherwise, the
host manager 404 ends the review of the services.
Service Discovery

0098. The execution environment runtime 204b, through
the service manager Subsystem, may provide for service
discovery, in which a client can request identification of
services meeting particular criteria. As described above,
service manifest files describe the properties and capabili
ties, and other information about the services or application
services. A client may send a search query to the service
manager Subsystem. The search query specifies particular
criteria. The service manager Subsystem then searches the
service manifests of the installed services or application
services to determine which service manifest files contain
meta-data meeting the specified criteria. The service man
ager Subsystem then returns an identification of the services
or application services that have manifest files that contain

Aug. 3, 2006

the specified metadata, and may return the specified meta
data. The client can then use one of the returned services, or
use the returned meta-data. The service manager Subsystem
also may limit the service manifests searched to those
corresponding to the newest versions of the services that are
compatible with the client.
0099. In implementations in which the service manifests
are implemented in XML, the clients may be able to submit
queries for particular tags, or particular tags with particular
attribute values. The service manager then searches for those
tags in the service manifests, and returns an identifier of the
matching services and the matching tags.
0.100 FIG. 11, shows is an example of a process 1100
implemented by the runtime architecture 400 for service
discovery when the service manifest files are implemented
in XML. In Such an implementation, host manager 404.
through a service manager object, may parse the service
manifests to generate their DOMs, and cache the DOMs. In
Such a situation, queries are performed against the nodes of
the DOM, and nodes of the DOM may be returned in
addition to the identification of the matching services.
0.101) When the client 402 wants to search for services
matching particular criteria, client 402, through a service
manager object, sends a query message to the host manager
404 (1102). The query message contains a query, a best
version parameter, and a client moniker.
0102) The query designates the matching criteria for
nodes and attributes. The query may be expressed in a query
language that is a Subset of the XML Path Language
(XPATH), which may allow for arbitrary queries of the
tags/nodes in the service manifests. XPATH is a language for
addressing parts of an XML document. An example of a
subset of XPATH that may be used is as follows (expressed
in Backus-Naur Form (BNF)):

AbsoluteLocationPath
RelativeLocationPath

RelativeLocationPath
Step
RelativeLocationPath / Step

1 LocationPath

2 AbsoluteLocationPath
3 RelativeLocationPath

4 Step := NameTest PredicateCption
5 PredicateCoption : Empty

Predicate
6 Predicate := PredicateExpr I
7. PredicateExpr := Expr
8 Expr := OrExpr
9 OrExpr : AndExpr

OrExpr or AndExpr
10 AndExpr : EqualityExpr

AndExpr and EqualityExpr
11 EqualityExpr ::= PrimaryExpr

AttributeName = StringLiteral
AttributeName = StringLiteral

12 PrimaryExpr : (Expr)
AttributeName

13 AttributeName := “(a) NodeName
14 NameTest : G:

NodeName

0103) The following are examples of queries that may be
performed using this subset of XPATH:

0.104 /package
0105 Query for all the nodes that have package as the
root node

US 2006/0174252 A1

0106 ?package(service="helloworldservice'

0.107 Query for all nodes that have package as the root
node and a service attribute with a value of “hel
loworldservice'

0.108 ?package (a service="helloworldservice' and
(aversion=2.1.0/modules/module

0.109 Query for all nodes that have package as a root
with a service attribute that has a value of “helloworld
service' and version attribute with a value of 2.1.

0110. The best version parameter designates whether
version logic should be applied. If the best version parameter
indicates version logic should be applied, then only the best
version of a given service (the newest version that is
compatible with the client) will be considered for the query.
The client moniker is used to determine the best version of
a given service. If the best version parameter indicates that
version logic should not be applied, then all versions of a
given service will be queried for a match.
0111. Accordingly, when the host manager 404 receives
the query request, the host manager, through a service
manager object, determines whether the best version param
eter indicates that version logic should be applied and, if so
(1104), determines the best versions of the installed services
for the client using, for example, process 910 (1106). Based
on the criteria specified in the query, the host manager 404
then searches the DOMs of the service manifests of the best
versions of the installed services or application services for
the nodes that match the query criteria (1108). The host
manager 404 then returns the matching nodes and the
identifications of the corresponding services (e.g., a package
moniker) to the client through the service manager object of
the client (1110).
0112) If the best version parameter indicates that version
logic should not be applied (1104), the host manager 404
searches the service manifests of all installed services or
application services for the nodes that match the query
criteria (1112). The host manager 404 then returns the
matching nodes and an identification of the corresponding
service (e.g., a package moniker) to the client through the
service manager object of the client (1114).
0113. Using the service discovery mechanism, clients can
determine whether services having certain properties or
capabilities are installed, and then use those services or the
meta-data describing the properties or capabilities. For
example, clients can determine whether a particular version
of a service is installed, and then use that version of the
service.

0114. As another example, service discovery may allow
a preferences manager application to discover which appli
cation services have default preferences, and what those
default preferences are. The preferences manager may man
age preferences for multiple applications. To do so, the
preferences manager may query which application services
have default preferences (e.g., by Submitting a query for
service manifests that contain an <app> tag and <prefer
enceDefaults tags). When the default preferences tags are
returned, along with an identification of the services, the
preferences manager may then display the default prefer
ences for the multiple applications to the user, and allow the
user to change the default preferences.

Aug. 3, 2006

0.115. As another example, a navigation bar application
may display a navigation bar that contains different buttons
for launching different applications. To determine the appli
cation services that can be launched from the navigation bar,
and the resource that defines their buttons, the navigation bar
application may search for service manifests that contain a
<navbar> tag. The <navbar> tag may have an attribute that
indicates where the resource defining the application ser
vice's button is located. The navigation bar application uses
the location to review the resource and implement a button
on the navigation bar according to the resource. The navi
gation bar application also associates the application service
identifier with the button so that the application service can
be launched if the button is selected.

0116. In general, implementing the service manifests in
XML, and using a query language Such as XPATH, allows
for arbitrary queries to be performed on the meta-data in the
service manifest files. This provides extensibility to the
service discovery mechanism, by allowing developers to add
new tags to describe additional information regarding a
service, while having a mechanism for searching for the new
tags.

Execution Environment API and Objects
0117. As described above, the execution environment
library provides the APIs for developing objects exposed by
the execution environment runtime 204b, and applications
and services that call those objects. The APIs are an abstrac
tion of the platform specific APIs for developing and calling
objects native to the platform. In general, many operating
system platforms have a native object model (i.e., a model
for objects that are natively supported by the operating
system). In other words, many operating systems include
code that directly supports a particular object model. For
example, a Windows operating system natively supports
Component Object Model (COM) objects, while a Macin
tosh operating system natively supports Distributed Objects.
Normally, a set of APIs is available for accessing the native
objects of a particular operating system platform.

0118. However, the APIs of the execution environment
library provide an abstraction layer above the platform
specific APIs, which allows a developer to develop objects
without regard to the platform on which the objects will run.
Accordingly, the APIs of the execution environment library
are operating system neutral APIs. The underlying imple
mentation for a given operating system platform, however,
uses the platform specific APIs and code. Thus, when objects
developed using the execution environment library are com
piled for a specific operating system platform, they are
compiled as native objects. For instance, when compiled for
a Windows operating system, the objects are COM objects,
but are Distributed Objects when compiled for a Macintosh
operating system. Therefore, these objects are accessible
using the APIs for the natively supported objects.
0119) However, even though the objects are compiled to
native objects, they are still accessible by the operating
system neutral APIs. To accomplish this, the execution
environment library includes a platform-neutral interop in
compiled objects.
0120) Thus, referring to FIG. 12, a compiled object 1200
developed using the execution environment library includes
the objects logic code 1202. On top of the objects logic

US 2006/0174252 A1

code 1202 is a native object interop 1204 that allows the
objects logic code to be accessed using the APIs for
accessing native objects of the operating system. On top of
the native object interop is a platform-neutral interop 1206
that allows the objects logic code 1202 to be accessed by
the platform-neutral APIs. To allow the object's logic to be
accessed, the platform neutral interop 1206 translates
between the API calls from the platform neutral APIs to the
APIs used for accessing the native objects.
0121 Referring to FIG. 13, a process 1300 for creating
an object such as object 1200 includes developing the object
using the operating system neutral API of the execution
environment library (1302) and designating an operating
system for which the object is to be compiled (1304). The
operating system includes native objects and APIs for
accessing the native objects of the operating system. The
process also includes compiling the object for the designated
operating system to generate a compiled object (1306). The
compiled object includes logic code; a native object interop
for accessing the logic code using the APIs for accessing
native objects of the operating system; and a platform
neutral interop for accessing the logic code using the oper
ating system neutral API.
0122) The techniques described above are not limited to
any particular hardware or Software configuration. Rather,
they may be implemented using hardware, Software, or a
combination of both. The methods and processes described
may be implemented as computer programs that are
executed on programmable computers comprising at least
one processor and at least one data storage system. The
programs may be implemented in a high-level programming
language and may also be implemented in assembly or other
lower level languages, if desired.
0123. Any such program will typically be stored on a
computer-usable storage medium or device (e.g., CD-Rom,
RAM, or magnetic disk). When read into the processor of
the computer and executed, the instructions of the program
cause the programmable computer to carry out the various
operations described above.
0.124. A number of implementations have been described.
Nevertheless, it will be understood that various modifica
tions may be. Accordingly, other implementations are within
the scope of the following claims.

What is claimed is:
1. A method for selecting a version of a service for use by

a service requester, the method comprising:
receiving, from a service requestor, a request for a service

object provided by a service;
determining whether multiple, different versions of the

service are available;

when multiple, different versions of the service are avail
able, examining metadata associated with the multiple,
different versions of the service to select a version of
the service that is compatible with the service
requestor,

instantiating the requested service object from the
selected version of the service; and

enabling the service requestor to access the instantiated
service object.

Aug. 3, 2006

2. The method of claim 1 wherein the version of the
service that is compatible with the service requestor is a
newest version of the multiple, different versions of the
service that is compatible with the service requestor such
that examining metadata comprises examining the metadata
to select the newest version of the multiple, different ver
sions of the service that is compatible with the service
requester.

3. The method of claim 1 wherein the metadata includes
multiple metadata files, each of which is associated with one
of the multiple, different versions of the service and contains
metadata for the associated version of the service, with the
metadata for the associated version of the service indicating
which service requestors are compatible with the associated
version of the service.

4. The method of claim 3 wherein examining metadata
associated with the multiple, different versions of the service
to select the version of the service that is compatible with the
service requestor comprises:

accessing the metadata file associated with a newest
version of the multiple, different versions of the ser
vice;

examining the metadata contained in the metadata file
associated with the newest version of the service;

determining whether the service requestor is compatible
with the newest version of the service based on the
review of the metadata contained in the metadata file
for the newest version of the service:

when the service requestor is not compatible with the
newest version of the service, accessing the metadata
file associated with a next newest version of the mul
tiple, different versions of the service;

examining the metadata contained in the manifest file for
the next newest version of the service;

determining whether the service requestor is compatible
with the next newest version of the service based on the
review of the metadata contained in the metadata file
for the next newest version of the service; and

when the service requestor is compatible with the newest
version of the service, selecting the next newest version
of the service.

5. The method of claim 3 wherein the metadata files are
XML documents that contain XML tags indicating which
service requesters are not compatible with the associated
version of the service.

6. The method of claim 3 wherein the metadata files are
XML documents that contain XML tags indicating which
service requestors are compatible with the associated ver
sion of the service.

7. The method of claim 1 wherein the request includes an
indication of a version of the service requester.

8. The method of claim 7 wherein examining metadata
associated with the multiple, different versions of the service
to select the version of the service that is compatible with the
service requestor comprises examining the metadata asso
ciated with the multiple, different versions of the service to
select a version of the service that is compatible with the
version of the service requestor.

9. The method of claim 1 wherein the service requestor is
an application Such that receiving, from the service
requestor, the request for the service object provided by the

US 2006/0174252 A1

service comprises receiving, from the application, the
request for the service object provided by the service.

10. The method of claim 1 wherein the service requestor
is another service Such that receiving, from the service
requestor, the request for the service object provided by the
service comprises receiving, from the other service, the
request for the service object provided by the service.

11. The method of claim 1 wherein the service comprises
any one of an instant messaging (IM) service; a mail
service; a common local storage service; a notification
manager; a preferences service; or a sequencer service.

12. A system comprising:

multiple, different versions of a service:
metadata associated with the multiple, different versions

of the service;
a service requestor that requests a service object from the

service; and
a service manager Subsystem that:

examines the metadata associated with the multiple,
different versions of the service to select a version of
the service that is compatible with the service
requestor;

instantiates the requested service object from the
selected version of the service; and

enables the service requester to access the instantiated
service object.

13. The system of claim 12 wherein the version of the
service that is compatible with the service requestor is a
newest version of the multiple, different versions of the
service that is compatible with the service requestor.

14. The system of claim 12 wherein the metadata includes
multiple metadata files, each of which is associated with one
of the multiple, different versions of the service and contains
metadata for the associated version of the service, with the
metadata for the associated version of the service indicating
which service requesters are compatible with the associated
version of the service.

15. The system of claim 14 wherein, to examine metadata
associated with the multiple, different versions of the service
to select the version of the service that is compatible with the
service requester, the service manager Subsystem:

accesses the metadata file associated with a newest ver
sion of the multiple, different versions of the service;

examines the metadata contained in the metadata file
associated with the newest version of the service;

determines whether the service requestor is compatible
with the newest version of the service based on the
review of the metadata contained in the metadata file
for the newest version of the service;

when the service requestor is not compatible with the
newest version of the service, accesses the metadata file
associated with a next newest version of the multiple,
different versions of the service;

examine the metadata contained in the manifest file for
the next newest version of the service;

determine whether the service requestor is compatible
with the next newest version of the service based on the

Aug. 3, 2006

review of the metadata contained in the metadata file
for the next newest version of the service; and

when the service requestor is compatible with the newest
version of the service, selects the next newest version
of the service.

16. The system of claim 14 wherein the metadata files are
XML documents that contain XML tags indicating which
service requestors are not compatible with the associated
version of the service.

17. The system of claim 14 wherein the metadata files are
XML documents that contain XML tags indicating which
service requesters are compatible with the associated version
of the service.

18. The system of claim 12 wherein the request includes
an indication of a version of the service requester.

19. The system of claim 18 wherein, to examine metadata
associated with the multiple, different versions of the service
to select the version of the service that is compatible with the
service requestor, the service manager Subsystem examines
the metadata associated with the multiple, different versions
of the service to select a version of the service that is
compatible with the version of the service requester.

20. The system of claim 12 wherein the service requestor
is an application.

21. The system of claim 12 wherein the service requestor
is another service.

22. The system of claim 12 wherein the service comprises
any one of an instant messaging (IM) service; a mail
service; a common local storage service; a notification
manager; a preferences service; or a sequencer service.

23. A medium usable by a computing device, the medium
having code embodied thereon for selecting a version of a
service for use by a service requestor, the code comprising
instructions for causing the computing device to perform the
following operations:

receive, from a service requester, a request for a service
object provided by a service;

determine whether multiple, different versions of the
service are available;

when multiple, different versions of the service are avail
able, examine metadata associated with the multiple,
different versions of the service to select a version of
the service that is compatible with the service
requestor,

instantiate the requested service object from the selected
version of the service; and

enable the service requestor to access the instantiated
service object.

24. The medium of claim 23 wherein the version of the
service that is compatible with the service requestor is a
newest version of the multiple, different versions of the
service that is compatible with the service requester.

25. The medium of claim 23 wherein the metadata
includes multiple metadata files, each of which is associated
with one of the multiple, different versions of the service and
contains metadata for the associated version of the service,
with the metadata for the associated version of the service
indicating which service requestors are compatible with the
associated version of the service.

26. The medium of claim 25 wherein, to examine meta
data associated with the multiple, different versions of the

US 2006/0174252 A1

service to select the version of the service that is compatible
with the service requestor, the code further comprises
instructions for causing the computing device to:

access the metadata file associated with a newest version
of the multiple, different versions of the service:

examine the metadata contained in the metadata file
associated with the newest version of the service;

determine whether the service requestor is compatible
with the newest version of the service based on the
review of the metadata contained in the metadata file
for the newest version of the service;

when the service requestor is not compatible with the
newest version of the service, access the metadata file
associated with a next newest version of the multiple,
different versions of the service;

examine the metadata contained in the manifest file for
the next newest version of the service;

determine whether the service requestor is compatible
with the next newest version of the service based on the
review of the metadata contained in the metadata file
for the next newest version of the service; and

when the service requestor is compatible with the newest
version of the service, select the next newest version of
the service.

Aug. 3, 2006

27. The medium of claim 25 wherein the metadata files
are XML documents that contain XML tags indicating
which service requesters are not compatible with the asso
ciated version of the service.

28. The medium of claim 25 wherein the metadata files
are XML documents that contain XML tags indicating
which service requesters are compatible with the associated
version of the service.

29. The medium of claim 23 wherein the request includes
an indication of a version of the service requestor.

30. The medium of claim 29 wherein, to examine meta
data associated with the multiple, different versions of the
service to select the version of the service that is compatible
with the service requestor, the code comprises instructions
for causing the computing device to examine the metadata
associated with the multiple, different versions of the service
to select a version of the service that is compatible with the
version of the service requester.

31. The medium of claim 23 wherein the service requestor
is an application.

32. The medium of claim 23 wherein the service requestor
is another service.

33. The medium of claim 23 wherein the service com
prises any one of an instant messaging (IM) service; a mail
service; a common local storage service; a notification
manager; a preferences service; or a sequencer service.

k k k k k

