(12) STANDARD PATENT (11) Application No. AU 2017327823 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Test case generator built into data-integration workflow editor

(61) International Patent Classification(s)
GOG6F 9/44 (2006.01) GO6F 11/36 (2006.01)

(21) Application No: 2017327823 (22) Date of Filing: 2017.09.08
(87) WIPO No: WO18/052813

(30) Priority Data

(31) Number (32) Date (33) Country
62/395,179 2016.09.15 us
15/386,930 2016.12.21 us
62/402,880 2016.09.30 us

(43) Publication Date: 2018.03.22

(44) Accepted Journal Date: 2021.03.11

(71) Applicant(s)
Talend, Inc.

(72) Inventor(s)
Hirt, Michaél Guillaume Maurice;Dynes, Ciaran

(74) Agent/ Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
US 2015/0278393 A1
US 2015/0261824 A1
US 2007/0033443 A1

wo 20187052813 A1 | 00000 OO R0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3

Organization
=

International Bureau

(43) International Publication Date
22 March 2018 (22.03.2018)

(10) International Publication Number

WO 2018/052813 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 9/44 (2018.01) GO6F 11/36 (2006.01)

(21) International Application Number:
PCT/US2017/050784

(22) International Filing Date:

08 September 2017 (08.09.2017)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

62/395,179 15 September 2016 (15.09.2016) US
62/402,880 30 September 2016 (30.09.2016) US
15/386,930 21 December 2016 (21.12.2016) US

(71) Applicant: TALEND, INC. [US/US]; 800 Bridge Park-
way, Suite 200, Redwood City, California 94065 (US).

(72) Inventors: HIRT, Michaél Guillaume Maurice; 4
Allee de Chamonix, 78180 Montigny-Le-Bretonneux (FR).
DYNES, Ciaran; Blainroe Lower, Wicklow (IE).

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

(74) Agent: ROBERTS, Steven E.; Patterson & Sheridan,
L.L.P., 24 Greenway Plaza, Suite 1600, Houston, Texas
77046 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(54) Title: TEST CASE GENERATOR BUILT INTO DATA-INTEGRATION WORKFLOW EDITOR

(57) Abstract: Embodiments presented herein provide techniques for generating test
cases for transformation modules that are part of a larger data-integration workflow
for an extract, transfer, and load (ETL) project. A test case generated according to the
present disclosure can be executed independently of the application that generated it
and independently of data sources and destinations referenced in the data- integration
workflow. To achieve this independence, the test case can include code that simu-
lates data sources and destinations that interact with the transformation module in
the data-integration workflow. Furthermore, the test case can be a unit test based on
a unit testing framework and can be compatible with a selected software framework.

S S
o

Computing System 108

Data-Integration Workflow Cditor

110

| Gu

-

w |

| Code Generator

|

Graphical Modcl

)

I

01

|

2l
=

Data-lntegration Workflow

X}

| Translormation Module

i
=

| Unit Testing Framewark

=

| Test Case

| Display

E

FIG. 2

WO 2018/052813 PCT/US2017/050784

TEST CASE GENERATOR BUILT INTO DATA-INTEGRATION WORKFLOW
EDITOR

BACKGROUND

Field

[0001] The present disclosure generally relates to generating unit tests for
elements of a data-integration workflow. More specifically, the present disclosure
provides techniques for a data-integration workflow editor to generate code to test

user-selected program modules within a user-selected software framework.
Related Art

[0002] Technology for gathering and storing data has greatly improved in recent
decades. In particular, data collection rates, data access speeds, and data storage
capacities have all advanced considerably. In addition, computer processor speeds
have also increased by several orders of magnitude and large numbers of computing
resources have become readily available through the cloud. As a result, large-scale

data analysis that would have been impractical a few decades ago is now possible.

[0003] Many modern businesses, universities, governments, and other entities
collect data for accounting, research, intelligence, marketing, inventory, quality
control, transactions, and other purposes. The term “big data” has been coined to
refer to the large amounts of data (e.g., terabytes) that such an entity may possess.
This big data can be statistically analyzed to determine trends and can be used to
create useful predictive models (e.g., machine-learning models). An entity can use
such analyses and models to inform decision-making and to identify trends,

problems, and potential opportunities.

[0004] Often, the big data an entity possesses is distributed across many different
data stores. Different data stores, in turn, may contain different types of data stored
in different formats. As a result, data may have to be extracted from different
locations, reformatted, combined, and loaded into a single data repository so that
statistical analyses can be performed and predictive models can be created. This

process is often referred to as extract, transform, and load (ETL).

26 Nov 2020

2017327823

SUMMARY

[0004a] It is an object of the present invention to substantially overcome or at least

ameliorate one or more disadvantages of existing arrangements.

[0004b] In a first aspect, the present invention provides a method for generating a test case
for a transformation module of a data-integration workflow, the method comprising:
receiving a request to create the test case for the transformation module of the data-
integration workflow that is compatible with a software framework; identifying a first network
path from an input data source to the transformation module in the data-integration
workflow; identifying a second network path from the transformation module to an output
data source in the data-integration workflow; generating code that defines the test case for
the transformation module; executing the test case in the software framework by: sending
input data from a simulated input data source of the test case to the transformation module
without accessing the input data source, and receiving output data at a simulated output
data source of the test case from the transformation module without accessing the output
data source; determining the transformation module has been changed to generate a
changed module; and re-executing the test case in the software framework, wherein re-
execution of the test case verifies functionality of the changed module.

[0004c] In a second aspect, the present invention provides a system for generating a test
case for a transformation module of a data-integration workflow comprising: one or more
processors; and a memory storing one or more applications that, when executed on the
one or more processors, perform an operation, the operation comprising: receiving a
request to create the test case for the transformation module of the data-integration
workflow that is compatible with a software framework; identifying a first network path
from an input data source to the transformation module in the data-integration workflow;
identifying a second network path from the transformation module to an output data
source in the data-integration workflow; generating code that defines the test case for the
transformation module; executing the test case in the software framework by: sending
input data from a simulated input data source of the test case to the transformation
module without accessing the input data source; and receiving output data at a simulated
output data source of the test case from the transformation module without accessing the

26 Nov 2020

2017327823

2a

output data source; determining the transformation module has been changed to
generate a changed module; and re-executing the test case in the software framework,
wherein re-execution of the test case verifies functionality of the changed module.

[0004d] In a third aspect, the present invention provides computer-readable medium
containing instructions that, when executed by one or more processors, perform an
operation for generating a test case for a transformation module of a data-integration
workflow, the operation comprising: receiving a request to create the test case for the
transformation module of the data-integration workflow that is compatible with a software
framework; identifying a first network path from an input data source to the transformation
module in the data-integration workflow; identifying a second network path from the
transformation module to an output data source in the data-integration workflow;
generating code that defines the test case for the transformation module; executing the
test case in the software framework by: sending input data from a simulated input data
source of the test case to the transformation module without accessing the input data
source; and receiving output data at a simulated output data source of the test case from
the transformation module without accessing the output data source; determining the
transformation module has been changed to generate a changed module; and re-
executing the test case in the software framework, wherein re-execution of the test case

verifies functionality of the changed module.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] Figure 1 illustrates an example computing environment that may be used to apply

techniques of the present disclosure, according to one embodiment.

[0006] Figure 2 illustrates a more detailed view of a computing system, according to one

embodiment.

[0007] Figure 3 illustrates a graphical model of a data-integration workflow as shown on a

display, according to one embodiment.

[0008] Figure 4 is a flow chart illustrating a method for creating a test case for a

transformation module of a data-integration workflow, according to one embodiment.

26 Nov 2020

2017327823

2b

[0009] Figure 5 is a flow chart illustrating a method for executing a test case for a

transformation module of a data-integration workflow, according to one embodiment.

[0010] Figure 6 illustrates an example data integration system that generates code for test

cases, according to one embodiment.
DETAILED DESCRIPTION

[0011] Embodiments described herein describe techniques for generating a unit test case
for a component of a data transformation workflow. A data-integration workflow editor
displays a graphical model of the data transformation workflow to a user. The user selects
at least one icon of the graphical model that represents a transformation module within
data transformation workflow. The user selects an option to create a test case for the
transformation module. The user also requests that the test case be compatible with a
specified software framework. The data-integration workflow editor identifies input paths to
the transformation module and an output path from the transformation module in the data
transformation workflow. A code generator creates a test case for the transformation

module. The test case can be executed using the software framework.

[0012] When executed, the test case executes the transformation module using test input
data (e.g., provided by the user). The test case then compares actual output data from
the transformation module to target output data (e.g., provided by the user). If the actual
output data matches the target output data, the test case

WO 2018/052813 PCT/US2017/050784

indicates the test succeeded. Otherwise, the test case indicates the test failed and

may optionally provide additional details about the failure.

[0013] In order to manage software for ETL effectively, continuous integration can
be used. The term “continuous integration” refers to a software development practice
where computer programmers on a team integrate their work frequently and verify

each integration by an automated build so that integration errors can be detected

promptly.

[0014] A data-integration workflow for an ETL project may specify sources of
input data, modules (e.g., of programming code) that process the input data, and
destinations where module output is sent, as well as the relationships between the
sources, the modules, and the destinations. The term “data transformation module”
refers to a component of a data-integration workflow that receives input data from
one or more input sources, performs at least one operation on the input data to

produce output data, and sends the output data to a destination.

[0015] The programmers on a software development team working on an ETL
project may change over time. Oftentimes, team members may be obliged to modify
unfamiliar components of an existing data-integration workflow. The correct structure
or operation of these unfamiliar components may not be obvious. Under such
circumstances, a team member can inadvertently introduce errors into the computer
code of these components. Some of these errors may go undetected until the ETL
project delivers incorrect results in production. Unit testing allows developers to test
expected behavior or known error states, but manually coding unit tests can be time

consuming and complex.

[0016] Embodiments described herein provide techniques to generate a test case
for a transformation module without requiring manual coding. The test case can be
executed independently of the application that generated it. The test case can be
executed without accessing data sources that provide input to the transformation
module in the data-integration workflow. In addition, the test case can be executed
without accessing destinations that receive output from the transformation module in

the data-integration workflow. For these reasons, the test case is highly portable and

3

WO 2018/052813 PCT/US2017/050784

is independent of data sources and destinations referenced in the data-integration

workflow.

[0017] A test case can accurately simulate a variety of data sources and
structures, thereby enabling a developer to test the transformation module virtually
against dummy or mock input data sets without setting up or maintaining actual
database systems for testing purposes. A developer can validate each change in a
transformation module against the test case (e.g., by clicking on a button or selecting
an option to run the test case automatically each time the transformation module is

changed).

[0018] The test case can also be associated with a version of the data-integration
workflow. If the intended functionality of the transformation module changes in later
versions, a developer may determine that the test case is obsolete by observing that

the test case is associated with a previous version.

[0019] Figure 1 illustrates an example computing environment 100 that may be
used to apply techniques of the present disclosure, according to one embodiment. A
computing system 108, a data store 104, and a data store 106 are connected to a
network 102. The data-integration workflow editor 110 displays a graphical model of

the data-integration workflow 112 on the display 118.

[0020] A user selects at least one icon in the graphical model and requests that a
test case using the unit testing framework 114 be created for a transformation
module represented by the selected icon. The data-integration workflow editor 110
determines that the transformation module in the data-integration workflow 112 is
configured to receive input from data store 104 and send output to data store 106.

The data-integration workflow editor 110 then generates the test case 116.

[0021] The test case 116, when run, executes the transformation module on test
input. The test case 116 can receive the test input from a source other than the data
store 104, yet provide the test input to the transformation module in way that mimics
the data store 104. As a result, the data store 104 does not have to be accessed

when the test case 116 is executed. Similarly, the test case 116 can receive output

4

WO 2018/052813 PCT/US2017/050784

from the transformation module in a way that mimics the data store 106. As a result,
the data store 106 does not have to be accessed when the test case 116 is

executed.

[0022] The test case 116 uses to the unit testing framework 114 and can be
executed in a software framework designated by the user. The unit testing
framework 114 (e.g., such as Junit) may be associated with a programming
language (e.g., such as Java). The software framework may be Apache Hadoop or
some other framework. The test case 116 can be executed using the software
framework even if the data-integration workflow editor 110 is not running.
Furthermore, the test case 116 is portable to other computing systems that can use
the unit testing framework 114 and the software framework. In other words, the test

case 116 is free of dependencies on the data-integration workflow editor 110.

[0023] The user can also designate that the test case is to be executed
automatically using specified test input and specified target output each time the
transformation module is changed. Using the test case in this manner allows
software developers to verify that the transformation module still functions properly

after changes are made.

[0024] Figure 2 illustrates a more detailed view of the computing system 108,
according to one embodiment. The computing system 108, a data store 104, and a
data store 106 are connected to a network 102. The data-integration workflow editor
110 includes a graphical user interface (GUI) 202, a code generator 204, and a
graphical model 206 of the data-integration workflow 112. The graphical model 206
includes icons 208. The data-integration workflow editor 110 displays a graphical
model 206 of the data-integration workflow 112 in the GUI 202 on the display 118.

[0025] A user can select one or more of the icons 208 in the graphical model 206
to designate a transformation module 210 of the data-integration workflow 112 for
testing. The data-integration workflow editor 110 determines that the transformation
module 210 is configured to receive input from data store 104 and send output to
data store 106. The code generator 204 then generates the test case 116 using to

the unit testing framework 114.

WO 2018/052813 PCT/US2017/050784

[0026] The test case 116, when run, executes the transformation module 210 on
test input. The test case 116 can receive the test input from a source other than the
data store 104, yet provide the test input to the transformation module in way that
mimics the data store 104. As a result, the data store 104 does not have to be
accessed when the test case 116 is executed. Similarly, the test case 116 can
receive output from the transformation module in a way that mimics the data store
106. As a result, the data store 106 does not have to be accessed when the test

case 116 is executed.

[0027] The test case 116 uses to the unit testing framework 114 and can be
executed in a software framework designated by the user. The unit testing
framework 114 may be associated with a programming language (e.g., such as
Junit, which is associated with Java). For example, the software framework may be
Apache Hadoop or the Spark framework. The test case 116 can be executed using
the software framework even if the data-integration workflow editor 110 is not
running. Furthermore, the test case 116 is portable to other computing systems that
can use the unit testing framework 114 and the software framework. In other words,
the test case 116 is free of dependencies on the data-integration workflow editor
110.

[0028] Figure 3 illustrates a graphical model 300 of a data-integration workflow as
shown on a display 302, according to one embodiment. Icon 304 represents a
transformation module. Icon 306 and icon 310 represent data sources from which
the transformation module receives input in the data-integration workflow. For
example, icon 306 may represent a database, while icon 310 may represent a flat
file. Icon 314 represents a data source to which the transformation module provides

output.

[0029] Arrow 312 is displayed in the graphical model 300 to indicate to a user that
the transformation module represented by icon 304 receives input from the data
source represented by icon 310. Similarly, arrow 308 is displayed in the graphical
model 300 to indicate to the user that the transformation module represented by icon
304 also receives input from the data source represented by icon 306. Arrow 316 is

displayed in the graphical model 300 to indicate to the user that the transformation
6

WO 2018/052813 PCT/US2017/050784

module represented by icon 304 provides output to the data source represented by
icon 314.

[0030] The user may select icon 304 using the cursor 318. Once the icon 304 is
selected, a drop-down window can appear to provide an option to create a test case.
The user can select the option and provide additional details for the test case, such
as a version of the data-integration workflow to associate with the test and a
software framework for the test case. Based on these inputs from the user, a code
generator creates a test case for the transformation module using a unit testing

framework.

[0031] Code included in the test case is designed to receive test input data from
sources other than the data repositories represented by icon 306 and icon 310.
However, when the test case is executed, it provides the test input data to the
transformation module being tested in a manner that still allows the transformation
module to execute normally. For example, if the transformation module is designed
to receive the input in a certain format or in a certain data structure, the test case
includes code that can provide the test input data in the format or data structure.
Similarly, if the transformation module provides output to the data repository
represented by icon 314 in a certain format or data structure, the test case includes
code to receive the output seamlessly in the format or data structure. The test case
also includes code that compares output from the transformation module to target

output.

[0032] Figure 4 is a flow chart illustrating a method 400 for creating a test case for
a transformation module of a data-integration workflow, according to one
embodiment. At step 402, a data-integration workflow editor displays a graphical

model of a data-integration workflow in a graphical user interface.

[0033] At step 404, the data-integration workflow editor identifies a transformation
module selected by a user in the graphical model. One or more icons in the graphical

model may represent the transformation module.

WO 2018/052813 PCT/US2017/050784

[0034] At step 406, the data-integration workflow editor identifies an input path to
the transformation module in the data-integration workflow. The input path may be
represented by an arrow pointing toward an icon representing the transformation
module in the graphical model. At step 408, the data-integration workflow editor
determines whether there are additional input paths to the transformation module

and repeats step 406 for each additional input path.

[0035] At step 410, the data-integration workflow editor identifies an output path
from the transformation module in the data-integration workflow. The output path
may be represented by an arrow pointing away from an icon representing the
transformation module in the graphical model. At step 412, the data-integration
workflow editor determines whether there are additional output paths from the

transformation module and repeats step 410 for each additional output path.

[0036] At step 414, the data-integration workflow editor identifies a software
framework selected by the user. At step 416, a code generator generates code that
defines a test case for the selected transformation module. The test case includes
code to receive the test input data for each input path identified in steps 406—408
from a user-specified data source rather than the actual data sources connected to
the input paths in the data-integration workflow. The test case also includes code for
providing the test input data to the transformation module in a manner that mimics

the actual data sources when the test case executes the transformation module.

[0037] Furthermore, the test case includes code to receive target output data for
each output path identified in steps 410-412. The test case also includes code to
receive actual output data from the transformation module for each output path when
the test case executes the transformation module as part of the testing process. The
test case includes code to compare the target output data and the actual output data
for each path. If there are any discrepancies between the target output data and the
actual output data, the test case indicates the transformation module failed at least

part of the test.

[0038] Figure 5 is a flow chart illustrating a method 500 for executing a test case

for a transformation module of a data-integration workflow, according to one

8

WO 2018/052813 PCT/US2017/050784

embodiment. The test case may be a unit test that employs a unit testing framework

and is compatible with a software framework.

[0039] At step 502, the test case receives test input data for the transformation
module. The test input data may be received in a flat file or in some other format. At
step 504, the test case receives target output data. Like the test input data, the target
input data may be received in a flat file or in some other format. The target output
data indicates what the transformation module is supposed to output when the

transformation module is executed using the test input data as input.

[0040] At step 506, the test case simulates a first data source to provide the test
input data to the transformation module (which the test case is executing as part of
the test process). Within the data-integration workflow, the transformation module is
configured to receive input from the first data source. However, when the
transformation module is executed by the test case, the test case does not allow the
transformation module to access the first data source. Instead, the test case
simulates the first data source by interfacing with the transformation module in the
same way that the first data source would if providing the test input data to the
transformation module. This allows the test case to be independent from the first

data source.

[0041] At step 508, the test case simulates a second data source to receive
actual output data from the transformation module. Within the data-integration
workflow, the transformation module is configured to send output to the first data
source. However, when the transformation module is executed by the test case, the
test case does not allow the transformation module to access the second data
source. Instead, the test case simulates the second data source by interfacing with
the transformation module in the same way that the second data source would if
receiving the actual output data from the transformation module. This allows the test

case to be independent from the second data source.

[0042] At step 510, the test case compares the actual output data to the target
output data. At step 512, the test case provides test results based on the

comparison. If the actual output data matches the output data, the test results

9

WO 2018/052813 PCT/US2017/050784

indicate that the transformation module passed the test. Otherwise, the test results
indicate that the transformation module failed the test. An indication of whether the

test passed or failed can be associated with the test and stored.

[0043] At step 514, a data-integration workflow editor in which the test case was
created determines whether the transformation module has been changed since the
last time the test case was executed. If the transformation module has changed,
steps 502-512 are repeated. Otherwise, the method 500 terminates. In one
embodiment, step 514 is optional. A user may select an option in the data-integration
workflow editor requesting that the test case be executed each time the

transformation module is changed.

[0044] Figure 6 illustrates an example data-integration system 600 that generates
code for test cases, according to one embodiment. As shown, the data-integration
system 600 includes a central processing unit (CPU) 602, one or more input/output
(I/0O) device interfaces 604 which may allow for the connection of various I/0 devices
614 (e.g., keyboards, displays, mouse devices, pen input, etc.) to the data-
integration system 600, network interface 606, a memory 608, storage 610, and an

interconnect 612.

[0045] CPU 602 may retrieve and execute programming instructions stored in the
memory 608. Similarly, the CPU 602 may retrieve and store application data residing
in the memory 608. The interconnect 612 transmits programming instructions and
application data, among the CPU 602, /0O device interface 604, network interface
606, memory 608, and storage 610. CPU 602 can represent a single CPU, multiple
CPUs, a single CPU having multiple processing cores, and the like. Additionally, the
memory 606 represents random access memory. Furthermore, the storage 610 may
be a disk drive. Although shown as a single unit, the storage 610 may be a
combination of fixed and/or removable storage devices, such as fixed disc drives,
removable memory cards or optical storage, network attached storage (NAS), or a

storage area-network (SAN).

[0046] As shown, memory 608 includes the data-integration workflow editor 110.

The data-integration workflow editor 110 displays a graphical model of the data-

10

WO 2018/052813 PCT/US2017/050784

integration workflow 112. A user may select one or more icons in the graphical
model that represent a transformation module within the data-integration workflow
112. The user may also request that the data-integration workflow editor 110
generate code to define a unit test for the transformation model. In response, the
data-integration workflow editor 110 creates the test case 116 based on the unit

testing framework 114.

[0047] The descriptions of the various embodiments of the present invention have
been presented for purposes of illustration, but are not intended to be exhaustive or
limited to the embodiments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing from the scope and
spirit of the described embodiments. The terminology used herein was chosen to
best explain the principles of the embodiments, the practical application or technical
improvement over technologies found in the marketplace, or to enable others of

ordinary skill in the art to understand the embodiments disclosed herein.

[0048] Additional examples of generating a unit test case for a component of a

data transformation workflow are provided in the attached appendix.

[0049] While the foregoing is directed to embodiments of the present disclosure,
other and further embodiments of the disclosure may be devised without departing
from the basic scope thereof, and the scope thereof is determined by the claims that

follow.

11

26 Nov 2020

2017327823

12

CLAIMS

1. A method for generating a test case for a transformation module of a data-
integration workflow, the method comprising:
receiving a request to create the test case for the transformation module of the
data-integration workflow that is compatible with a software framework;
identifying a first network path from an input data source to the transformation
module in the data-integration workflow;
identifying a second network path from the transformation module to an output
data source in the data-integration workflow;
generating code that defines the test case for the transformation module;
executing the test case in the software framework by:
sending input data from a simulated input data source of the test case to
the transformation module without accessing the input data source, and
receiving output data at a simulated output data source of the test case
from the transformation module without accessing the output data source;
determining the transformation module has been changed to generate a changed
module; and
re-executing the test case in the software framework, wherein re-execution of the

test case verifies functionality of the changed module.

2. The method of claim 1, further comprising:

displaying a graphical model of the data-integration workflow in a graphical user
interface (GUI), wherein at least one icon of the graphical model represents the
transformation module; and

receiving the request via the graphical user interface, wherein selection of the at

least one icon identifies the transformation module.

3. The method of claim 1, further comprising:

receiving test input data for the test case; and

26 Nov 2020

2017327823

13

receiving target output data for the test case, wherein executing the test case

comprises:
executing the transformation module using the test input data,
receiving actual output data from the transformation module, and
comparing the actual output data to the target output data.

4. The method of claim 3, further comprising:

determining, based on the comparison of the actual output data to the target

output data, whether the transformation module passed or failed a test defined by the test

case, the test input data, and the target output data; and

storing an indication of the determination.

5. The method of claim 3, wherein executing the test case includes simulating the

input data source to provide the test input data to the transformation module.

6. The method of claim 1, wherein the test case is associated with a version of the

data-integration workflow.

7. A system for generating a test case for a transformation module of a data-
integration workflow comprising:
one or more processors; and
a memory storing one or more applications that, when executed on the one or
more processors, perform an operation, the operation comprising:
receiving a request to create the test case for the transformation module of
the data-integration workflow that is compatible with a software framework;
identifying a first network path from an input data source to the
transformation module in the data-integration workflow;
identifying a second network path from the transformation module to an
output data source in the data-integration workflow;
generating code that defines the test case for the transformation module;

executing the test case in the software framework by:

26 Nov 2020

2017327823

14

sending input data from a simulated input data source of the test
case to the transformation module without accessing the input data source;
and

receiving output data at a simulated output data source of the test
case from the transformation module without accessing the output data
source;
determining the transformation module has been changed to generate a

changed module; and

re-executing the test case in the software framework, wherein re-execution

of the test case verifies functionality of the changed module.

The system of claim 7, wherein the operation further comprises:
displaying a graphical model of the data-integration workflow in a graphical user

interface (GUI), wherein at least one icon of the graphical model represents the
transformation module; and
receiving the request via the graphical user interface, wherein selection of the at

least one icon identifies the transformation module.

9. The system of claim 7, wherein the operation further comprises:
receiving test input data for the test case; and
receiving target output data for the test case, wherein executing the test case
comprises:
executing the transformation module using the test input data,
receiving actual output data from the transformation module, and

comparing the actual output data to the target output data.

10. The system of claim 9, wherein the operation further comprises:
determining, based on the comparison of the actual output data to the target

output data, whether the transformation module passed or failed a test defined by the test

case, the test input data, and the target output data; and

storing an indication of the determination.

26 Nov 2020

2017327823

15

11. The system of claim 9, wherein executing the test case comprises:

simulating the input data source to provide the test input data to the transformation
module; and

simulating the output data source to receive the actual output data from the

transformation module.

12. A computer-readable medium containing instructions that, when executed by one
or more processors, perform an operation for generating a test case for a transformation
module of a data-integration workflow, the operation comprising:
receiving a request to create the test case for the transformation module of the
data-integration workflow that is compatible with a software framework;
identifying a first network path from an input data source to the transformation
module in the data-integration workflow;
identifying a second network path from the transformation module to an output
data source in the data-integration workflow;
generating code that defines the test case for the transformation module;
executing the test case in the software framework by:
sending input data from a simulated input data source of the test case to
the transformation module without accessing the input data source; and
receiving output data at a simulated output data source of the test case
from the transformation module without accessing the output data source;
determining the transformation module has been changed to generate a changed
module; and
re-executing the test case in the software framework, wherein re-execution of the

test case verifies functionality of the changed module.

13. The computer-readable medium of claim 12, wherein the operation further

comprises:

26 Nov 2020

2017327823

16

displaying a graphical model of the data-integration workflow in a graphical user
interface (GUI), wherein at least one icon of the graphical model represents the
transformation module; and

receiving the request via the graphical user interface, wherein selection of the at

least one icon identifies the transformation module.

14. The computer-readable medium of claim 12, wherein the operation further
comprises:
receiving test input data for the test case; and
receiving target output data for the test case, wherein executing the test case
comprises:
executing the transformation module using the test input data,
receiving actual output data from the transformation module, and

comparing the actual output data to the target output data.

15. The computer-readable medium of claim 14, wherein the operation further
comprises:

determining, based on the comparison of the actual output data to the target
output data, whether the transformation module passed or failed a test defined by the test
case, the test input data, and the target output data; and

storing an indication of the determination.

16. The computer-readable medium of claim 14, wherein executing the test case
includes:
simulating the input data source to provide the test input data to the transformation
module; and
simulating the output data source to receive the actual output data from the
transformation module.
Talend, Inc.

Patent Attorneys for the Applicant/Nominated Person

SPRUSON & FERGUSON

WO 2018/052813 PCT/US2017/050784

1/6

100
W

Data Store 106

Data Store 104

Network 102

Computing System 108
Data-Integration Workflow Editor 110
Data-Integration Workflow 112
Unit Testing Framework 114
Test Case 116
Display 118

FIG. 1

WO 2018/052813

2/6

Data Store 104 Data Store 106

Network 102

Computing System 108

Data-Integration Workflow Editor 11

GUI 202
Code Generator 204
Graphical Model 206
Icons 208
Data-Integration Workflow 112
Transformation Module 210
Unit Testing Framework 114
Test Case 116
Display 118

FIG. 2

PCT/US2017/050784

WO 2018/052813 PCT/US2017/050784

3/6

302

FIG. 3

WO 2018/052813 PCT/US2017/050784

4/6

400 \
D

Y

Display a graphical model of a data-integration | ~_, 402
workflow

Y

Identify a transformation module selected by a user in ~ 404
the graphical model

Y

» Identify an input path to the transformation module ™\ 406

408

More input paths

Yes

Identify an output path from the transformation model ™\ 410

412

More output
paths?

Yes

Identify a software framework selected by the user [414

Y

Generate code that defines a test case for the selected L~ 416
transformation module

Y

)

FIG. 4

WO 2018/052813

500 "\

5/6

=

\ 4

PCT/US2017/050784

Y

Receive test input data

Y

Receive target output data

I~ 504

Yy

Simulate first data source to provide test
input data to transformation module

~ 506

Y

Simulate second data source to receive
actual output data from transformation
module

L~ 508

Y

Compare actual output data to target
output data

I~ 510

Y

Provide test results

A 512

Transformation module

Yes changed?

FIG. 5

WO 2018/052813 PCT/US2017/050784

6/6
14
s 6
1/O DEVICES TO NETWORK
102
A
602 l 604 606
/- - /-
NETWORK
CPU IO DEVICE INTERFACE INTERFACE
\ 612
1
Ve 608 / 610
MEMORY STORAGE
Data-Integration Workflow Editor 110 Unit Testing Framework 114
Data-Integration Workflow 112
Test Case 116

DATA-INTEGRATION SYSTEM 600

FIG. 6

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

