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video data, a video coder may set, in response to determining that the respective
CU is the first CU of a coding tree block (CTB) row of the picture or the respect-
ive CU is the first CU of the slice, a derived disparity vector (DDV) to an initial
value. Furthermore, the video coder may perform a neighbor-based disparity vec -
tor derivation (NBDV) process that attempts to determine a disparity vector for
the respective CU. When performing the NBDV process does not identify an
available disparity vector for the respective CU, the video coder may determine
that the disparity vector for the respective CU is equal to the DDV.
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PARALLEL DERIVED DISPARITY VECTOR FOR 3D VIDEO CODING WITH
NEIGHBOR-BASED DISPARITY VECTOR DERIVATION

[0001] This application claims the benefit of U.S. Provisional Patent Application
61/829,821, filed May 31, 2013, the entire content of which is incorporated herein by

reference.

TECHNICAL FIELD
[0002] This disclosure relates to video coding (i.e., encoding and/or decoding of video

data).

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard, and extensions of such standards. The video devices
may transmit, receive, encode, decode, and/or store digital video information more
efficiently by implementing such video compression techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks. Video blocks in an intra-coded
(D) slice of a picture are encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video blocks in an inter-coded (P or
B) slice of a picture may use spatial prediction with respect to reference samples in

neighboring blocks in the same picture or temporal prediction with respect to reference
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samples in other reference pictures. Pictures may be referred to as frames, and
reference pictures may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicates the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual coefficients, which then may be
quantized. The quantized coefficients, initially arranged in a two-dimensional array,
may be scanned in order to produce a one-dimensional vector of coefficients, and
entropy coding may be applied to achieve even more compression.

[0006] A multi-view coding bitstream may be generated by encoding views, e.g., from
multiple perspectives. Some three-dimensional (3D) video standards that have been
developed, or are under development, make use of multiview coding aspects. For
example, different views may transmit left and right eye views to support 3D video.
Alternatively, some 3D video coding processes may apply so-called multiview plus
depth coding. In multiview plus depth coding, a 3D video bitstream may contain not
only texture view components, but also depth view components. For example, each

view may comprise one texture view component and one depth view component.

SUMMARY
[0007] In general, this disclosure is related to multiview video coding based on
advanced codecs, including the coding of two or more views with the 3D-AVC or 3D-
HEVC codecs. Specifically, this disclosure describes techniques related to disparity
vectors.
[0008] In some examples (e.g., examples for 3D-HEVC coding), for each respective
coding unit (CU) of a slice of a picture of the video data, a video coder may set a
derived disparity vector (DDV) to a value, in response to determining that the respective
CU is the first CU of a coding tree block (CTB) row of the picture or the respective CU
is the first CU of the slice. Furthermore, the video coder may perform a neighbor-based

disparity vector derivation (NBDV) process that attempts to determine a disparity vector
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for the respective CU. When performing the NBDV process does not identify an
available disparity vector for the respective CU, the video coder may determine that the
disparity vector for the respective CU is equal to the DDV. If the video coder is a video
encoder, the video coder may generate, based in part on the disparity vector for the
respective CU, an encoded representation of a coding block for the respective CU. If
the video coder is a video decoder, the video coder may reconstruct, based in part on the
disparity vector for the respective CU, a coding block for the respective CU.

[0009] Similarly, in some examples (e.g., examples for 3D-AVC coding), for each
respective macroblock of a slice of a picture of the video data, a video coder may set a
DDV to an initial value, in response to determining that the respective macroblock is the
first macroblock of a macroblock row of the picture or the respective macroblock is the
first macroblock of the slice. In such examples, the video coder may perform an NBDV
process that attempts to determine an available disparity vector for the respective
macroblock. When performing the NBDV process does not determine an available
disparity vector for the respective macroblock, the video coder may determine that the
disparity vector for the respective macroblock is equal to the DDV. If the video coder is
a video encoder, the video coder may generate, based in part on the disparity vector for
the respective macroblock, an encoded representation of a coding block for the
respective CU. If the video coder is a video decoder, the video coder may reconstruct,
based in part on the disparity vector for the respective macroblock, a coding block for
the respective macroblock.

[0010] In one example, this disclosure describes a method of decoding video data. The
method comprises, for each respective CU of a slice of a picture of the video data, in
response to determining that the respective CU is the first CU of a CTB row of the
picture or the respective CU is the first CU of the slice, setting a DDV to an initial
value. The method also comprises performing an NBDV process that attempts to
determine an available disparity vector for the respective CU. Furthermore, the method
comprises, when performing the NBDV process does not determine an available
disparity vector for the respective CU, determining that the disparity vector for the
respective CU is equal to the DDV. In addition, the method comprises reconstructing,
based in part on the disparity vector for the respective CU, a coding block for the

respective CU.
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[0011] In another example, this disclosure describes a method of encoding video data.
The method comprises, for each respective CU of a slice of a picture of the video data,
in response to determining that the respective CU is the first CU of a CTB row of the
picture or the respective CU is the first CU of the slice, setting a DDV to an initial
value. Furthermore, the method comprises performing an NBDV process that attempts
to determine an available disparity vector for the respective CU. In addition, the
method comprises, when performing the NBDV process does not determine an available
disparity vector for the respective CU, determining that the disparity vector for the
respective CU is equal to the DDV. The method also comprises generating, based in
part on the disparity vector for the respective CU, an encoded representation of a sample
block for the respective CU.

[0012] In another example, this disclosure describes a device comprising a buffer
storing decoded pictures and one or more processors configured such that, for each
respective CU of a slice of a picture of video data, the one or more processors: in
response to determining that the respective CU is the first CU of a CTB row of the
picture or the respective CU is the first CU of the slice, set a DDV to an initial value;
perform an NBDV process that attempts to determine an available disparity vector for
the respective CU; and when performing the NBDV process does not determine an
available disparity vector for the respective CU, determine that the disparity vector for
the respective CU is equal to the DDV.

[0013] In another example, this disclosure describes a device comprising, for each
respective CU of a slice of a picture of the video data: means for setting, in response to
determining that the respective CU is the first CU of a CTB row of the picture or the
respective CU is the first CU of the slice, a DDV to an initial value; means for
performing an NBDV process that attempts to determine an available disparity vector
for the respective CU; and means for determining, when performing the NBDV process
does not determine an available disparity vector for the respective CU, that the disparity
vector for the respective CU is equal to the DDV.

[0014] In another example, this disclosure describes a computer-readable data storage
medium (e.g., a non-transitory computer-readable data storage medium) having
instructions stored thercon that when executed cause one or more processors to, for each
respective CU of a slice of a picture of video data, in response to determining that the

respective CU is the first CU of a CTB row of the picture or the respective CU is the
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first CU of the slice, set a DDV to an initial value; perform an NBDV process that
attempts to determine an available disparity vector for the respective CU; and when
performing the NBDV process does not determine an available disparity vector for the
respective CU, determine that the disparity vector for the respective CU is equal to the
DDV.

[0015] In another example, this disclosure describes a method of decoding video data.
The method comprises, for each respective macroblock of a slice of a picture of the
video data: in response to determining that the respective macroblock is the first
macroblock of a macroblock row of the picture or the respective macroblock is the first
macroblock of the slice, setting a DDV to an initial value. The method also comprises
performing an NBDV process that attempts to determine an available disparity vector
for the respective macroblock. Furthermore, the method comprises when performing
the NBDV process does not determine an available disparity vector for the respective
macroblock, determining that the disparity vector for the respective macroblock is equal
to the DDV. In addition, the method comprises reconstructing, based in part on the
disparity vector for the respective macroblock, a sample block for the respective
macroblock.

[0016] In another example, this disclosure describes a method of encoding video data.
The method comprises, for each respective macroblock of a slice of a picture of the
video data, in response to determining that the respective macroblock is the first
macroblock of a macroblock row of the picture or the respective macroblock is the first
macroblock of the slice, setting a DDV to an initial value. Furthermore, the method
comprises performing an NBDV process that attempts to determine an available
disparity vector for the respective macroblock. In addition, the method comprises, when
performing the NBDV process does not determine an available disparity vector for the
respective macroblock, determining that the disparity vector for the respective
macroblock is equal to the DDV. The method also comprises generating, based in part
on the disparity vector for the respective macroblock, an encoded representation of a
sample block for the respective macroblock. One or more devices, such as video
encoders or decoders, may be configured to perform this method.

[0017] In another example, this disclosure describes a device comprising a buffer
storing decoded pictures and one or more processors configured such that, for each

respective macroblock of a slice of a picture of video data, the one or more processors:
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in response to determining that the respective macroblock is the first macroblock of a
macroblock row of the picture or the respective macroblock is the first macroblock of
the slice, set a DDV to an initial value (e.g., zero); perform an NBDV process that
attempts to determine an available disparity vector for the respective macroblock; and
when performing the NBDV process does not determine an available disparity vector
for the respective macroblock, determine that the disparity vector for the respective
macroblock is equal to the DDV.

[0018] In another example, this disclosure describes a device comprising: for each
respective macroblock of a slice of a picture of video data, means for setting, in
response to determining that the respective macroblock is the first macroblock of a
macroblock row of the picture or the respective macroblock is the first macroblock of
the slice, a DDV to an initial value (e.g., zero); means for performing an NBDV process
that attempts to determine an available disparity vector for the respective macroblock;
and means for determining, when performing the NBDV process does not determine an
available disparity vector for the respective macroblock, that the disparity vector for the
respective macroblock is equal to the DDV.

[0019] In another example, this disclosure describes a computer-readable data storage
medium (e.g., a non-transitory computer-readable data storage medium) having
instructions stored thercon that when executed cause, for each respective macroblock of
a slice of a picture of video data, one or more processors: in response to determining
that the respective macroblock is the first macroblock of a macroblock row of the
picture or the respective macroblock is the first macroblock of the slice, set a DDV to an
initial value (e.g., zero); perform an NBDV process that attempts to determine an
available disparity vector for the respective macroblock; and when performing the
NBDYV process does not determine an available disparity vector for the respective
macroblock, determine that the disparity vector for the respective macroblock is equal to
the DDV.

[0020] The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and

advantages will be apparent from the description, drawings, and claims.
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BRIEF DESCRIPTION OF DRAWINGS

[0021] FIG. 1 is a block diagram illustrating an example video coding system that may
utilize the techniques described in this disclosure.

[0022] FIG. 2 is a conceptual diagram illustrating an example multi-view coding
decoding order.

[0023] FIG. 3 is a conceptual diagram illustrating an example prediction structure for
multi-view coding.

[0024] FIG. 4 is a conceptual diagram of an example visualization of block-based view
synthesis prediction (B-VSP) based on backward warping.

[0025] FIG. 5 is a conceptual diagram that illustrates an example of wavefront parallel
processing (WPP).

[0026] FIG. 6 is a conceptual diagram illustrating spatial neighboring blocks for
neighbor-based disparity vector derivation (NBDV).

[0027] FIG. 7 is a conceptual diagram illustrating example temporal neighboring blocks
for NBDV.

[0028] FIG. 8 is a block diagram illustrating an example video encoder that may
implement one or more techniques described in this disclosure.

[0029] FIG. 9 is a block diagram illustrating an example video decoder that may
implement one or more techniques described in this disclosure.

[0030] FIG. 10 is a flowchart illustrating an example operation of a video coder, in
accordance with one or more techniques of this disclosure.

[0031] FIG. 11A is a flowchart illustrating an example operation of a video encoder, in
accordance with one or more techniques of this disclosure.

[0032] FIG. 11B is a flowchart illustrating an example operation of a video decoder, in
accordance with one or more techniques of this disclosure.

[0033] FIG. 12A is a flowchart illustrating an example operation of a video encoder, in
accordance with one or more techniques of this disclosure.

[0034] FIG. 12B is a flowchart illustrating an example operation of a video decoder, in

accordance with one or more techniques of this disclosure.
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DETAILED DESCRIPTION
[0035] In general, this application describes techniques for determining disparity
vectors in multi-view video coding (e.g. 3-dimensional video coding). In multi-view
video coding, the video content of different views may represent different perspectives.
For example, a video block in a picture in a first view may include video content that is
similar to a video block in a picture in a second view. In this example, the location of
the video block in the picture in the first view and the location of the video block in the
picture in the second view may be different. For example, there may be some
displacement (i.e., disparity) between the locations of the video blocks in the different
views. In multi-view video coding, inter-view prediction based on the reconstructed
view components from different views may be enabled. Inter-view prediction may
achieve coding gains by exploiting the fact that the pictures of each view that represent
the same time instance of video may include similar video content.
[0036] When a video block of a current picture is coded using inter-view prediction, the
block may have a motion vector that indicates a location in an inter-view reference
picture. An inter-view reference picture may be a reference picture that is in (i.e.,
associated with) the same time instance as a current picture, but is in (i.c., associated
with) a different view than the current picture. If a motion vector of a block indicates a
location in an inter-view reference picture, the motion vector may be referred to as a
disparity motion vector. A video coder (e.g., a video encoder or a video decoder) may
use a disparity motion vector of a current block to determine a predictive block for the
current block. If the video coder is a video encoder, the video coder may use the
predictive block for the current block to generate residual data for the current block. If
the video coder is a video decoder, the video coder may use the predictive block for the
current block and residual data for the current block to reconstruct sample values for the
current video block.
[0037] Furthermore, a block in a particular picture may have motion information or
residual data that is similar to the motion information or residual data of a
corresponding block in an inter-view reference picture. Accordingly, a video coder may
predict the motion information or residual data of a current block in a current picture
based on motion information or residual data of a corresponding block in an inter-view
reference picture. The video coder may determine a disparity vector for the current

block in order to determine a location of the corresponding block within the inter-view
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reference picture. The video coder may predict the motion information or residual data
of the current block based on the motion information or residual data of the
corresponding block in the inter-view reference picture regardless of whether the current
block has a disparity motion vector. Thus, if the motion information or residual data of
a current block is predicted based on the motion information or residual data of a
corresponding block in an inter-view reference picture, the current block is said to have
a disparity vector. The disparity vector may be referred as to an implicit disparity
vector (IDV) when the disparity vector is used for disparity vector derivation process of
blocks coded later. The disparity vector for the current block may be equal to the
disparity vector for one of the previous blocks.

[0038] The video coder may use a neighboring block-based disparity vector (NBDV)
derivation process to derive a disparity vector for a current block. In the NBDV
derivation process, the video coder may check blocks that neighbor the current block.
The neighboring blocks may include spatial neighboring blocks and temporal
neighboring blocks. The spatial neighboring blocks are in the same picture as the
current block (i.¢., the current picture). The temporal neighboring blocks are in one or
more pictures other than the current picture. When the video coder checks a
neighboring block, the video coder may determine whether the neighboring block has a
disparity motion vector. When the video coder determines that one of the neighboring
blocks has a disparity motion vector, the video coder may stop checking neighboring
blocks and may convert the disparity motion vector of the neighboring block into the
disparity vector for the current block. Furthermore, if none of the neighboring blocks
has a disparity motion vector, the video coder may determine whether any of the spatial
neighboring blocks has an IDV. When the video coder determines that one of the
spatial neighboring blocks has an IDV, the video coder may stop checking neighboring
blocks and may convert the IDV of the neighboring block into the disparity vector for
the current block.

[0039] The use of IDVs in the NBDV derivation process may require a significant
increase in storage requirements and number of memory accesses. To address this and
other issues, the use of derived disparity vectors (DDVs) was proposed. In at least some
such proposals, a single DDV is stored for a slice. A video coder may set the disparity
vector of a block to the DDV for the slice when none of the temporal or spatial

neighboring blocks of the block has a disparity motion vector. After coding the block,
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the video coder may update the DDV for the slice to the disparity vector for the block.
In this way, the DDV for the slice may be updated in coding (e.g., decoding) order.
Thus, the DDV used for a coding a next block may depend on the disparity vector
determined for the previous block.

[0040] This dependency may give rise to several issues. For example, in some video
coding standards (e.g., H.264/AVC), if context-adaptive variable length coding
(CAVLC) entropy coding is used, some types of decoders may be able to decode
multiple macroblock rows in parallel, with a particular delay. In this example, updating
the DDV for the slice in coding order may prevent the decoders from decoding multiple
macroblock rows in parallel. In another example, when wavefront parallel processing
(WPP) is enabled in some video coding standards (e.g., High Efficiency Video Coding),
a coding unit (CU) should not depend on a last CU in a previous coding tree block
(CTB) row. Updating the DDV for the slice in coding order (e.g., a raster scan order)
may create a dependency on a CU in a previous CTB row. In another example, it may
be less efficient to use a DDV derived from a block (e.g., a CU) of a previous row if the
block is horizontally distant from a current block of a current row. Updating the DDV
for the slice in coding order may result in the use of a DDV derived from a block that is
horizontally distance from the current block.

[0041] One or more of the techniques described in this disclosure may address one or
more of the issues mentioned above. For example, a video coder may perform the
following actions for each respective block (e.g., CU, macroblock, etc.) of a slice of a
picture of video data. In response to determining that the respective block is the first
block of a block row (e.g., CTB row, macroblock row, etc.) of the picture or the
respective block is the first block of the slice, the video coder may set a DDV to an
initial value (e.g., zero). Additionally, the video coder may perform an NBDV process
that attempts to determine a disparity vector for the respective block. When performing
the NBDV process does not identify an available disparity vector for the respective
block, the video coder may determine that the disparity vector for the respective block is
equal to the DDV. In some examples, the video coder may generate, based in part on
the disparity vector for the respective CU, an encoded representation of a coding block
for the respective CU. Furthermore, in some examples, the video coder may
reconstruct, based in part on the disparity vector for the respective CU, a coding block

for the respective CU.
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[0042] FIG. 1 is a block diagram illustrating an example video coding system 10 that
may utilize the techniques of this disclosure. As used herein, the term “video coder”
refers generically to both video encoders and video decoders. In this disclosure, the
terms “video coding” or “coding” may refer generically to video encoding or video
decoding.

[0043] As shown in FIG. 1, video coding system 10 includes a source device 12 and a
destination device 14. Source device 12 generates encoded video data. Accordingly,
source device 12 may be referred to as a video encoding device or a video encoding
apparatus. Destination device 14 may decode the encoded video data generated by
source device 12. Accordingly, destination device 14 may be referred to as a video
decoding device or a video decoding apparatus. Source device 12 and destination
device 14 may be examples of video coding devices or video coding apparatuses.

[0044] Source device 12 and destination device 14 may comprise a wide range of
devices, including desktop computers, mobile computing devices, notebook (e.g.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, televisions, cameras, display devices, digital media players, video
gaming consoles, in-car computers, or the like.

[0045] Destination device 14 may receive encoded video data from source device 12 via
a channel 16. Channel 16 may comprise one or more media or devices capable of
moving the encoded video data from source device 12 to destination device 14. In one
example, channel 16 may comprise one or more communication media that enable
source device 12 to transmit encoded video data directly to destination device 14 in real-
time. In this example, source device 12 may modulate the encoded video data
according to a communication standard, such as a wireless communication protocol, and
may transmit the modulated video data to destination device 14. The one or more
communication media may include wireless and/or wired communication media, such
as a radio frequency (RF) spectrum or one or more physical transmission lines. The one
or more communication media may form part of a packet-based network, such as a local
areca network, a wide-area network, or a global network (e.g., the Internet). The one or
more communication media may include routers, switches, base stations, or other
equipment that facilitate communication from source device 12 to destination device 14.
[0046] In another example, channel 16 may include a storage medium that stores

encoded video data generated by source device 12. In this example, destination device
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14 may access the storage medium, ¢.g., via disk access or card access. The storage
medium may include a variety of locally-accessed data storage media such as Blu-ray
discs, DVDs, CD-ROMs, flash memory, or other suitable digital storage media for
storing encoded video data.

[0047] In a further example, channel 16 may include a file server or another
intermediate storage device that stores encoded video data generated by source device
12. In this example, destination device 14 may access encoded video data stored at the
file server or other intermediate storage device (e.g., via streaming or download). The
file server may be a type of server capable of storing encoded video data and
transmitting the encoded video data to destination device 14. Example file servers
include web servers (e.g., for a website), hypertext transfer protocol (HTTP) streaming
server, file transfer protocol (FTP) servers, network attached storage (NAS) devices,
and local disk drives.

[0048] Destination device 14 may access the encoded video data through a standard
data connection, such as an Internet connection. Example types of data connections
may include wireless channels (e.g., Wi-Fi connections), wired connections (e.g., DSL,
cable modem, etc.), or combinations of both that are suitable for accessing encoded
video data stored on a file server. The transmission of encoded video data from the file
server may be a streaming transmission, a download transmission, or a combination of
both.

[0049] The techniques of this disclosure are not limited to wireless applications or
settings. The techniques may be applied to video coding in support of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satellite television transmissions, streaming video transmissions, €.g., via
the Internet, encoding of video data for storage on a data storage medium, decoding of
video data stored on a data storage medium, or other applications. In some examples,
video coding system 10 may be configured to support one-way or two-way video
transmission to support applications such as video streaming, video playback, video
broadcasting, and/or video telephony.

[0050] FIG. 1 is merely an example and the techniques of this disclosure may apply to
video coding settings (e.g., video encoding or video decoding) that do not necessarily
include any data communication between the encoding and decoding devices. In other

examples, data (e.g., video data) is retrieved from a local memory, streamed over a
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network, or the like. A video encoding device may encode and store data (e.g., video
data) to memory, and/or a video decoding device may retrieve and decode data (e.g.,
video data) from memory. In many examples, the encoding and decoding is performed
by devices that do not communicate with one another, but simply encode data (e.g.,
video data) to memory and/or retrieve and decode data from memory.

[0051] In the example of FIG. 1, source device 12 includes a video source 18, a video
encoder 20, and an output interface 22. In some examples, output interface 22 may
include a modulator/demodulator (modem) and/or a transmitter. Video source 18 may
include a video capture device, e.g., a video camera, a video archive containing
previously-captured video data, a video feed interface to receive video data from a video
content provider, and/or a computer graphics system for generating video data, or a
combination of such sources of video data.

[0052] Video encoder 20 may encode video data from video source 18. In some
examples, source device 12 directly transmits the encoded video data to destination
device 14 via output interface 22. In other examples, the encoded video data may also
be stored onto a storage medium or a file server for later access by destination device 14
for decoding and/or playback.

[0053] In the example of FIG. 1, destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some examples, input interface 28
includes a receiver and/or a modem. Input interface 28 may receive encoded video data
over channel 16. Display device 32 may be integrated with or may be external to
destination device 14. In general, display device 32 displays decoded video data.
Display device 32 may comprise a variety of display devices, such as a liquid crystal
display (LCD), a plasma display, an organic light emitting diode (OLED) display, or
another type of display device.

[0054] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application-specific integrated circuits (ASICs), field-programmable
gate arrays (FPGAs), discrete logic, hardware, or any combinations thereof. If the
techniques are implemented partially in software, a device may store instructions for the
software in a suitable, non-transitory computer-readable storage medium and may
execute the instructions in hardware using one or more processors to perform the

techniques of this disclosure. Any of the foregoing (including hardware, software, a
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combination of hardware and software, etc.) may be considered to be one or more
processors. Each of video encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be integrated as part of a combined
encoder/decoder (CODEC) in a respective device.

[0055] This disclosure may generally refer to video encoder 20 “signaling” certain
information to another device, such as video decoder 30. The term “signaling” may
generally refer to the communication of syntax elements and/or other data used to
decode the compressed video data. Such communication may occur in real- or near-
real-time. Alternately, such communication may occur over a span of time, such as
might occur when storing syntax elements to a computer-readable storage medium, such
as, e.g., a storage medium remotely accessible via a file server or streaming server or a
locally accessible storage device, in an encoded bitstream at the time of encoding, which
then may be retrieved by a decoding device at any time after being stored to this
medium.

[0056] In some examples, video encoder 20 and video decoder 30 operate according to
a video compression standard, such as ISO/IEC MPEG-4 Visual and ITU-T H.264 (also
known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)
extension, Multiview Video Coding (MVC) extension, and MVC-based 3DV extension.
A joint draft of the MVC extension of H.264/AVC is described in “Advanced video
coding for generic audio visual services,” ITU-T Recommendation H.264, Mar. 2010.
Furthermore, there is an ongoing effort to generate a three-dimensional video (3DV)
coding extension to H.264/AVC, namely AVC-based 3DV. In other examples, video
encoder 20 and video decoder 30 may operate according to ITU-T H.261, ISO/IEC
MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC
MPEG-4 Visual, and ITU-T H.264, ISO/IEC Visual.

[0057] In some examples (e.g., the example of FIG. 1), video encoder 20 and video
decoder 30 may operate according to the High Efficiency Video Coding (HEVC)
standard developed by the Joint Collaboration Team on Video Coding (JCT-VC) of
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture Experts
Group (MPEG). A draft of the HEVC standard, referred to as “HEVC Working Draft
10” is described in Bross et al., “High Efficiency Video Coding (HEVC) text
specification draft 10,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 12 Meeting, Geneva, Switzerland,
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January 2013. At least as of May 9, 2014, HEVC Working Draft 10 is available from
http://phenix.it-sudparis.eu/jct/doc_end user/documents/12_ Geneva/wgl1/JCTVC-
L1003-v34.zip.

[0058] Furthermore, there are ongoing efforts to produce scalable video coding, multi-
view coding, and 3DV extensions for HEVC. The SVC extension of HEVC may be
referred to as SHEVC. The 3DV extension of HEVC may be referred to as HEVC-
based 3DV or 3D-HEVC. 3D-HEVC is based, at least in part, on solutions proposed in
Schwarz et al, “Description of 3D Video Coding Technology Proposal by Fraunhofer
HHI (HEVC compatible configuration A), ISO/IEC JTC1/SC29/WG11, Doc.
MPEG11/M22570, Geneva, Switzerland, November/December 2011, hereinafter
“m22570” and Schwarz et al, “Description of 3D Video Coding Technology Proposal
by Fraunhofer HHI (HEVC compatible configuration B), ISO/IEC JTC1/SC29/WG11,
Doc. MPEG11/M22571, Geneva, Switzerland, November/December 2011, hereinafter
“m22571.” A reference software description for 3D-HEVC is available at Schwarz et
al, “Test Model under Consideration for HEVC based 3D video coding,” ISO/IEC
JTC1/SC29/WG11 MPEG2011/N12559, San Jose, USA, Feb. 2012. Reference
software, namely HTM version 3.0 is available, at least as of May 9, 2014, from
https://hevc.hhi.fraunhofer.de/svn/svn 3DV CSoftware/tags/HTM-3.0/.

[0059] In H.264/AVC, HEVC, and other video coding standards, a video sequence
typically includes a series of pictures. Pictures may also be referred to as “frames.” A
picture may include three sample arrays, denoted Sy, Scp and S¢;. Sy is a two-
dimensional array (i.e., a block) of luma samples. Scy, is a two-dimensional array of Cb
chrominance samples. S is a two-dimensional array of Cr chrominance samples.
Chrominance samples may also be referred to herein as “chroma” samples. In other
instances, a picture may be monochrome and may only include an array of luma
samples.

[0060] In H.264/AVC, cach picture may be partitioned into a set of macroblocks (MBs).
A macroblock is a 16x16 block of luma samples and two corresponding blocks of
chroma samples of a picture that has three sample arrays, or a 16x16 block of samples
of a monochrome picture or a picture that is coded using three separate color planes.
[0061] Video encoder 20 may encode macroblocks using inter predictor or intra
prediction. When video encoder 20 encodes a macroblock using inter prediction, video

encoder 20 generates one or more predictive blocks for the macroblock based on
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samples of one or more pictures other than the current picture (i.e., the picture
containing the macroblock). A macroblock encoded using inter prediction may be
referred to as an inter macroblock. When video encoder 20 encodes a macroblock using
intra prediction, video encoder 20 generates one or more predictive blocks for the
macroblock based on samples in the current picture. A macroblock encoded using intra
prediction may be referred to as an intra macroblock.
[0062] In H.264/AVC, cach inter macroblock may be partitioned in one of four different
ways:

e One 16x16 macroblock partition

e Two 16x8 macroblock partitions

e Two 8x16 macroblock partitions

¢ Four 8x8 macroblock partitions
[0063] Different macroblock (MB) partitions in one MB may have different reference
index values for each direction (i.c., RefPicList0 or RefPicListl). A reference index
value may be a value indicating a reference picture in a reference picture list. When an
MB is not partitioned into four 8x8 MB partitions, the MB may have only one motion
vector for the whole MB partition in each direction.
[0064] When an MB is partitioned into four 8x8 MB partitions, each 8x8 MB partition
can be further partitioned into sub-blocks. There are four different ways to get sub-
blocks from an 8x8 MB partition:

¢ One 8x8 sub-block

e Two 8x4 sub-blocks

e Two 4x8 sub-blocks

e Four 4x4 sub-blocks
Each sub-block can have a different motion vector in each direction. Partitions of an
8x8 MB partition are referred to as sub-block partitions.
[0065] As mentioned above, multi-view coding (MVC) is an extension of H.264/AVC.
In multi-view coding, there may be multiple views of the same scene from different
viewpoints. The term “access unit” may be used to refer to the set of pictures that
correspond to the same time instance. Thus, video data may be conceptualized as a

series of access units occurring over time. A “view component” may be a coded
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representation of a view in a single access unit. In this disclosure, a “view” may refer to
a sequence of view components associated with the same view identifier.

[0066] FIG. 2 is a conceptual diagram illustrating an example multi-view decoding
order. The multi-view decoding order may be a bitstream order. In the example of FIG.
2, each square corresponds to a view component. Columns of squares correspond to
access units. Each access unit may be defined to contain the coded pictures of all the
views of a time instance. Rows of squares correspond to views. In the example of FIG.
2, the access units are labeled TO... T8 and the views are labeled SO...S7. Because cach
view component of an access unit is decoded before any view component of the next
access unit, the decoding order of FIG. 2 may be referred to as time-first coding. The
decoding order of access units may not be identical to the output or display order of the
views.

[0067] More specifically, a texture view component (i.¢., a texture picture) may be a
coded representation of the texture of a view in a single access unit. The texture view
component includes the actual image content to be displayed. For example, the texture
view component may include luma (e.g., Y) and chroma (e.g., Cb and Cr) components.
A texture view may be a sequence of texture view components associated with an
identical value of a view order index. A view order index of a view may indicate a
camera position of the view relative to other views.

[0068] One or more of the techniques of this disclosure relate to coding 3D video data
by coding texture and depth data. In general, the term “texture” is used to describe
luminance (that is, brightness or “luma”) values of an image and chrominance (that is,
color or “chroma”) values of the image. In some examples, a texture image may include
one set of luminance data and two sets of chrominance data for blue hues (Cb) and red
hues (Cr). In certain chroma sampling formats, such as 4:2:2 or 4:2:0, the chroma data
is downsampled relative to the luma data. That is, the spatial resolution of chrominance
pixels may be lower than the spatial resolution of corresponding luminance pixels, e.g.,
one-half or one-quarter of the luminance resolution.

[0069] A depth view component (i.e., a depth picture) may be a coded representation of
the depth of a view in a single access unit. A depth view may be a sequence of depth
view components associated with an identical value of a view order index. The depth
view component may indicate relative depths of the pixels in its corresponding texture

view component. As one example, the depth view component is a gray scale image that
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includes only luma values. In other words, the depth view component may not convey
any image content, but rather may provide a measure of the relative depths of the pixels
in the texture view component.

[0070] In some examples, a purely white pixel in a depth view component indicates that
its corresponding pixel or pixels in a corresponding texture view component is closer
from the perspective of the viewer, and a purely black pixel in the depth view
component indicates that its corresponding pixel or pixels in the corresponding texture
view component is further away from the perspective of the viewer. The various shades
of gray in between black and white indicate different depth levels. For instance, a dark
gray pixel in a depth view component may indicate that a corresponding pixel in a
texture view component is further away than a light gray pixel in the depth view
component. Because only gray scale is needed to identify the depth of pixels, the depth
view component need not include chroma components, as color values for the depth
view component may not serve any purpose. The depth view component using only
luma values (e.g., intensity values) to identify depth is provided for illustration purposes
and should not be considered limiting. In other examples, any technique may be
utilized to indicate relative depths of the pixels in the texture view component.

[0071] Depth data generally describes depth values for corresponding texture data. For
example, a depth image may include a set of depth pixels that each describes depth for
corresponding texture data. The depth data may be used to determine horizontal
disparity for the corresponding texture data. Thus, a device that receives the texture and
depth data may display a first texture image for one view (e.g., a left eye view) and may
use the depth data to modify the first texture image to generate a second texture image
for the other view (e.g., a right eye view) by offsetting pixel values of the first image by
the horizontal disparity values determined based on the depth values. In general,
horizontal disparity (or simply “disparity’’) describes the horizontal spatial offset of a
pixel in a first view to a corresponding pixel in a second view, where the two pixels
correspond to the same portion of the same object as represented in the two views.
[0072] In still other examples, depth data may be defined for pixels in a z-dimension
perpendicular to the image plane, such that a depth associated with a given pixel is
defined relative to a zero disparity plane defined for the image. Such depth may be used
to create horizontal disparity for displaying the pixel, such that the pixel is displayed
differently for the left and right eyes, depending on the z-dimension depth value of the
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pixel relative to the zero disparity plane. The zero disparity plane may change for
different portions of a video sequence, and the amount of depth relative to the zero-
disparity plane may also change. Pixels located on the zero disparity plane may be
defined similarly for the left and right eyes. Pixels located in front of the zero disparity
plane may be displayed in different locations for the left and right eye (e.g., with
horizontal disparity) so as to create a perception that the pixel appears to come out of
the image in the z-direction perpendicular to the image plane. Pixels located behind the
zero disparity plane may be displayed with a slight blur to present a slight perception of
depth, or may be displayed in different locations for the left and right eye (e.g., with
horizontal disparity that is opposite that of pixels located in front of the zero disparity
plane). Many other techniques may also be used to convey or define depth data for an
image.

[0073] For each pixel in the depth view component, there may be one or more
corresponding pixels in the texture view component. For instance, if the spatial
resolutions of the depth view component and the texture view component are the same,
cach pixel in the depth view component corresponds to one pixel in the texture view
component. If the spatial resolution of the depth view component is less than that of the
texture view component, then each pixel in the depth view component corresponds to
multiple pixels in the texture view component. The value of the pixel in the depth view
component may indicate the relative depth of the corresponding one or more pixels in
the texture view.

[0074] In some examples, video encoder 20 signals video data for the texture view
components and the corresponding depth view components for each of the views.
Video decoder 30 may utilize both the video data of texture view components and the
depth view components to decode the video content of the views for display. A display
then displays the multi-view video to produce 3D video.

[0075] Referring back to FIG. 2, each of the views includes sets of pictures. For
example, view S0 includes a set of pictures 0, 8, 16, 24, 32, 40, 48, 56, and 64, view S1
includes a set of pictures 1, 9, 17, 25, 33, 41, 49, 57, and 65, and so forth. Each set
includes two pictures: one picture is referred to as a texture view component, and the
other picture is referred to as a depth view component. The texture view component
and the depth view component within a set of pictures of a view may be considered as

corresponding to one another. For example, the texture view component within a set of
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pictures of a view is considered as corresponding to the depth view component within
the set of the pictures of the view, and vice-versa (i.¢., the depth view component
corresponds to its texture view component in the set, and vice-versa). As used in this
disclosure, a texture view component that corresponds to a depth view component may
be considered as the texture view component and the depth view component being part
of a same view of a single access unit.

[0076] Multi-view coding may support inter-view prediction. Inter-view prediction is
similar to the inter prediction used in H.264/AVC, HEVC, or other video coding
standards and may use the same syntax elements. However, when a video coder
performs inter-view prediction on a current video unit (such as a macroblock), the video
coder may use, as a reference picture, a picture that is in the same access unit as the
current video unit, but in a different view. In contrast, conventional inter prediction
only uses pictures in different access units as reference pictures.

[0077] In multi-view coding, a view may be referred to as a “base view” if a video
decoder (e.g., video decoder 30) can decode pictures in the view without reference to
pictures in any other view. When coding a picture in one of the non-base views (i.c.,
dependent views), a video coder (such as video encoder 20 or video decoder 30) may
add a picture into a reference picture list (e.g., RefPicList0 or RefPicListl) if the picture
is in a different view but within a same time instance (i.e. access unit) as the picture that
the video coder is currently coding. Like other inter prediction reference pictures, the
video coder may insert an inter-view prediction reference picture at any position of a
reference picture list.

[0078] FIG. 3 is a conceptual diagram illustrating an example prediction structure for
multi-view coding. The multi-view prediction structure of FIG. 3 includes temporal and
inter-view prediction. In the example of FIG. 3, each square corresponds to a view
component. Squares labeled “I” are intra predicted view components. Squares labeled
“P” are uni-directionally inter predicted view components. Squares labeled “B” and “b”
are bi-directionally inter predicted view components. Squares labeled “b” may use
squares labeled “B” as reference pictures. An arrow that points from a first square to a
second square indicates that the first square is available in inter prediction as a reference
picture for the second square. As indicated by the vertical arrows in FIG. 3, view
components in different views of the same access unit may be available as reference

pictures. The use of one view component of an access unit as a reference picture for
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another view component of the same access unit may be referred to as inter-view
prediction. Thus, a typical MVC prediction (including both inter-picture prediction
within each view and inter-view prediction) structure for multi-view video coding is
shown in FIG. 3, where predictions are indicated by arrows, the pointed-to object using
the point-from object for prediction reference.

[0079] In the MVC extension of H.264/AVC, inter-view prediction may be supported
by disparity motion compensation, which uses the syntax of the H.264/AVC motion
compensation, but allows a picture in a different view to be used as a reference picture.
Coding of two views may also be supported by the MVC extension of H.264/AVC.

One of the advantages of the MVC extension of H.264/AVC is that an MVC encoder
may take more than two views as a 3D video input and an MVC decoder may decode
such a multiview representation. Consequently, any renderer with a MVC decoder may
expect 3D video contents with more than two views.

[0080] In the MVC extension of H.264/AVC, inter-view prediction is allowed among
pictures in the same access unit (i.e., with the same time instance). In other words, in
MVC, inter-view prediction is performed among pictures captured from different views
of the same access unit (i.e., with the same time instance) to remove correlation between
views. When coding a picture in one of the non-base views, a picture may be added into
a reference picture list, if the picture is in a different view but with a same time instance.
In other words, a picture coded with inter-view prediction may be added into a reference
picture list for the inter-view prediction of the other non-base views. An inter-view
prediction reference picture can be put in any position of a reference picture list, just
like any inter prediction reference picture.

[0081] In the context of multi-view video coding, there are two kinds of motion vectors.
One kind of motion vector is a normal motion vector that points to a temporal reference
picture (i.e., a picture in a different time instance than a current picture). The type of
inter prediction corresponding to a normal, temporal motion vector may be referred to
as “motion-compensated prediction” or “MCP.” When an inter-view prediction
reference picture is used for motion compensation, the corresponding motion vector
may be referred to as a “disparity motion vector.” In other words, a disparity motion
vector points to a picture in a different view (i.c., a disparity reference picture or an
inter-view reference picture). The type of inter prediction corresponding to a disparity

motion vector may be referred to as “disparity-compensated prediction” or “DCP.”
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[0082] As mentioned above, a Joint Collaborative Team on 3D Video Coding (JCT-3V)
of VCEG of MPEG is developing a 3D video coding standard based on H.264/AVC,
i.e., 3D-AVC. For 3D-AVC, new coding tools besides the inter-view prediction in
MVC have been included and supported. The latest software 3D-ATM for 3D-AVC
can be downloaded from the following link:

[3D-ATM version 6.2]: http://mpeg3dv.research.nokia.com/svn/mpeg3dv/tags/3DV-
ATMv6.2/

[0083] The AVC based 3D video (3D-AVC) coding standard is currently under
development by the JCT-3V. A version of 3D-AVC is now publicly available as

follows:

M. M. Hannuksela, Y. Chen, T. Suzuki, J.-R. Ohm, G. J. Sullivan, “3D-AVC draft text
5,7 JCT3V-C1002, Geneva, CH, Jan. 2013. At least as of May 9, 2014, this document
is available from the following link: http://phenix.it-

sudparis.cu/jct2/doc_end user/documents/3 Geneva/wgl1/JCT3V-C1002-v3.zip

[0084] The next section of this disclosure discusses the AVC-based 3D video coding
standard (i.e., 3D-AVC). A coding order of view components in 3D-AVC is discussed
below. 3D-AVC is compatible with H.264/AVC in a way that the texture part of the
base view is fully decodable for a H.264/AVC decoder. For enhanced view components
in 3D-AVC, the depth may be coded prior to the texture and a texture view component
may be coded based on the information from the depth view component, which is also
known as depth-first coding. In contrast, each texture view component is coded before
the respective depth view components in texture-first coding orders. For example, the
coding orders of the texture and depth view components in the 3D-AVC may be
exemplified as follows; wherein TO and DO, respectively, refer to the texture and depth
view components of the base view, and Ti and D1, respectively, refer to the texture and
depth view components of the i-th dependent view. In the following examples, there are
three views:

-TODO DI D2 T1 T2: The base views (T0 and D0) are coded with the texture-

first coding order while the dependent view is coded with the depth-first coding
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order. Hybrid coding order is currently used in common test conditions of 3D-

AVC.

-TODO T1 D1 T2 D2: All the view components are coded with the texture-first

coding order.
[0085] If inter-view prediction is enabled for Ti, the reference texture view is defined as
the view that includes the inter-view reference picture and the corresponding depth view
is defined as the reference depth view that has the same view order index as that of the
reference texture view.
[0086] A video coder may use a disparity vector (DV) as an estimator of the disparity
between two views. Because neighboring blocks share almost the same
motion/disparity information in video coding, the current block can use the motion
vector information in neighboring blocks as a good predictor. 3D-AVC disparity vector
derivation via the depth map is now discussed. Techniques for deriving the disparity
vector may vary with each low-level coding tool, but, commonly, the depth data of the
dependent views is employed for the texture view component coding owing to the
depth-first coding order.
[0087] An in-loop block-based view synthesis inter-view prediction (BVSP) and depth-
based motion vector prediction (D-MVP) in 3D-AVC are the low-level coding tools,
mainly, using the disparity vector converted from the depth values of the depth map in
the dependent frame (e.g., a picture that relies on BVSP or D-MVP for decoding).
Typically, in the 3D-AVC software, the results of the conversion process from the
actual depth map value to a disparity to a particular view are stored in look-up tables
with camera parameters.
[0088] BVSP was originally proposed in Wenyi Su et al., “3DV-CE1.a: Block-based
View Synthesis Prediction for 3DV-ATM,” Joint Collaborative Team on 3D Video
Coding Extension Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, 1 meeting, Stockholm, Sweden, 16-20 July 2012, document JCT3V-A0107
(hereinafter, “JCT3V-A01077). At least as of May 9, 2014, JCT3V-A0107 can be
downloaded from: http://phenix.it-
sudparis.cu/jct2/doc_end user/documents/1_Stockholm/wgl1/JCT3V-A0107-v1.zip.
[0089] FIG. 4 is an example conceptual visualization of BVSP based on backward
warping. Referring to FIG. 4, assume that the following coding order is utilized: (TO,

DO, D1, T1). Texture component TO is a base view, and T1 is a dependent view coded
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with the VSP. Depth map components D0 and D1 are respective depth maps associated
with TO and T1. For ease of explanation, depth map component DO is omitted from the
example of FIG. 4.

[0090] In dependent view T1, sample values of current block Cb are predicted from
reference area R(Cb) that consists of sample values of the base view TO. The
displacement vector between coded and reference samples is denoted as a derived
disparity vector between T1 and TO from a depth map value associated with a currently
coded texture sample.

[0091] In some examples, a video coder may use the following equations to perform a

process of conversion from a depth value to a disparity vector:

. 1
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where j and 7 are local spatial coordinates within Cb, ¢ (Cb( Ji )) 1s a depth map value

in a depth map image of a view #1, Z is the actual depth value of d (Cb( Js i)), and D is

the horizontal component of a derived disparity vector to a particular view #0. The
parameters f, b, Znear and Zfar are parameters specifying the camera setup, i.¢., the
used focal length (f), camera separation (b) between view #1 and view #0, and depth
range (Znear, Zfar) represent parameters of depth map conversion.

[0092] In some examples, the vertical component of the derived disparity vector is
always set equal to 0. In a current implementation of 3D-AVC (i.e., a 3DV-ATM
implementation), equations (1) and (2) have already been pre-computed for every depth
map value (0...255) and stored as a look-up table. Thus, a video coder may use the
look-up table to convert depth values to disparity vectors without calculating equations
(1) and (2) provided above.

[0093] One implementation issue related to BVSP involves the indication of BVSP
blocks (i.e., blocks coded using BVSP). BVSP blocks may also be referred to herein as
BVSP coded blocks. In some examples, BVSP blocks are indicated as follows. One
flag at the macroblock (MB) level signals whether a current MB is coded with the
conventional skip/direct mode or whether the current MB is coded with the skip/direct

mode but predicted from a synthetic reference component. For each MB partition (from
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16x16 to 8x8), a reference index corresponding to a reference picture list signals a
reference picture in the reference picture list. When a video encoder uses BVSP mode
to encode an MB partition, the video encoder does not signal the motion vector
differences (MVDs) for the MB partition because there are no motion vectors for BVSP
coded blocks. When either the flag or a reference index indicates that an MB partition
is coded using a synthetic reference component, a video coder may invoke the
prediction of one partition as described below.

[0094] Another implementation issue related to BVSP involves the prediction
derivation process. NxM may denote the size of a MB partition, where N or M is equal
to 8 or 16. If the MB partition is coded with BVSP mode, the MB partition is further
partitioned into several sub-regions with the size equal to KxK, where K may be 4x4,
2x2 or 1x1. For each sub-region of the MB partition, a video coder derives a separate
derived disparity vector. Furthermore, for each respective sub-region of the MB
partition, the video coder uses the derived disparity vector to locate a corresponding
block in the inter-view reference picture, i.e., R(cb) in FIG. 4. The video coder may
predict the respective sub-region from the corresponding block for the respective sub-
region. One example of BVSP is based on backward warping for blocks with a size of
4x4 (meaning K is equal to 4.) The derived disparity vectors are not stored for BVSP
coded blocks because there are no coding tools that use such vectors.

[0095] Another implementation issue involves the disparity vector derivation process.
When a depth first coding order is applied, a video coder may obtain the derived
disparity vector by converting a depth value of the corresponding depth block in the
corresponding non-base depth view, as shown in FIG. 4. Several techniques may be
applied to select the depth value of one depth block, such as the depth value of the
center position of the depth block, the maximum value of all depth values within one
depth block, the maximum value of four corner pixels within one depth block, and the
depth value of the bottom-right pixel of the depth block/depth MB. When texture first
coding order is applied, the video coder may disable BVSP modes because the
corresponding non-base depth view is unavailable when decoding the non-base texture
view.

[0096] Depth-based motion vector prediction (D-MVP) in 3D-AVC for normal inter
modes is now be discussed. D-MVP is a motion vector prediction method incorporating

associated depth map data in the current view, which is available due to the depth-first
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coding order. A video coder may apply D-MVP with the texture view components in
dependent (i.c., non-base) views.

[0097] In 3D-AVC, the D-MVP method is incorporated into the conventional median
function-based motion vector prediction in H.264/AVC. Specifically, the type of
motion vector to be predicted (i.c., whether temporal motion vector or disparity motion
vector) is first identified in a way that reference indices of the motion vectors in
neighboring blocks are checked to know the type of motion prediction.

[0098] The neighboring blocks include, in order, a left block, an above block, an above-
right block, and an above-left block relative to the current block. In some examples, a
video coder may only use the motion vector in the above-left block when one of the
other three neighboring blocks (i.¢., the left block, the above block, and the above-right
block) does not contain a motion vector, and is thus considered as unavailable.

[0099] Afterwards, if three neighboring blocks are available, the video coder may
employ the motion vectors in the three neighboring blocks for the motion vector
prediction of motion vectors for the current block. In temporal prediction, if the motion
vectors of the three neighboring blocks all have the same type and all have the same
reference indices, the video coder may use a median filter directly as described in
H.264/AVC. Otherwise (if the motion vectors of the three neighboring blocks belong to
different types and the three neighboring blocks have the different reference indices),
the video coder may further derive a motion vector for the current block. When the
current reference picture is an inter-view reference picture, the video coder may check
the motion vector types and their reference indices in neighboring block positions. If
the motion vectors have all the same type and the same reference indices, the video
coder may apply the median filter. In both cases, if less than three neighboring blocks
are available, the video coder may further derive motion vectors for the unavailable
blocks so that three neighboring blocks become available.

[0100] A motion vector derived for a neighboring block may be referred to as a derived
motion vector. To derive a motion vector of a current block, a video coder may
determine whether a current motion vector (i.c., a motion vector of a neighboring block)
is a disparity motion vector, whether the motion vector of the neighboring block has a
different type than the type of the current motion vector, or whether the motion vector
of the neighboring block is unavailable. If any of these conditions applies, the video

coder may set the derived motion vector of the current block to be a disparity motion
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vector, which the video coder may convert from the corresponding depth view
component. The video coder may convert the maximum value of the depth values of
the four corners of the corresponding block of the depth view component of the same
view to a disparity value. The video coder may set the disparity value to the horizontal
component of the derived motion vector. The video coder may set the vertical
component of the derived motion vector to be zero.

[0101] If the current motion vector is a temporal motion vector, the video coder may
use the disparity value (derived similarly as mentioned above) to determine a temporal
motion vector of the reference block in the reference (base) view. The video coder may
set the derived motion vector to be the temporal motion vector. If the temporal motion
vector is considered to be unavailable (e.g., the temporal neighboring block is an intra
block or a motion vector of the temporal neighboring block does not point to a reference
picture in the reference view aligned with the current reference picture), the video coder
may set the derived motion vector to zero.

[0102] Inter-view motion prediction in 3D-AVC for skip and direct modes are now
discussed. As described in sections 7.3.5 and 7.4.5 of the H.264/AVC specification, a
macroblock layer syntax structure for a macroblock may include an mb_type syntax
element that specifies a macroblock type for the macroblock. The semantics of the
mb_type syntax element depend on the slice type of the slice containing the
macroblock. If the slice is a P slice, the macroblock types include a P_Skip type. When
the macroblock type of a macroblock is P_Skip, no further data is present for the
macroblock in the bitstream. If the slice is a B slice, the macroblock types include a
B_Skip mode and a B_Direct 16x16 mode (i.c., a B-16x16 direct mode). When the
macroblock type of a macroblock is B_Skip, no further data is present for the
macroblock in the bitstream. When the macroblock type of a macroblock is

B Direct 16x16, no motion vector differences or reference indices are present for the
macroblock in the bitstream. Furthermore, when the macroblock type of a macroblock
is B_Direct 16x16, the functions MbPartWidth( B_Direct 16x16 ), and MbPartHeight(
B Direct 16x16 ) are used in the derivation process for motion vectors and reference
frame indices in subclause 8.4.1 of the H.264/AVC specification for direct mode
prediction.

[0103] Furthermore, a macroblock layer syntax structure may include one or more

sub_mb_pred syntax structures. A sub mb_pred syntax structure may include four
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sub_mb_type syntax elements that specify sub-macroblock types. The sub-macroblock
types include a B_Direct 8x8 mode (i.c., a B-8x8 direct mode). When the sub-
macroblock type of a sub-macroblock is B_Direct 8x8, no motion vector differences or
reference indices are present for the sub-macroblock in the bitstream. The functions
SubMbPartWidth(B_Direct 8x8) and SubMbPartHeight(B_Direct 8x8) are used in the
derivation process for motion vectors and reference frame indices in subclause 8.4.1 of
the H.264/AVC specification for direct mode prediction.

[0104] A video coder may perform inter-view motion prediction in 3D-AVC in P-skip,
B-skip, B-16x16 direct mode, and B-8x8 direct mode. To perform inter-view motion
prediction, the video coder may first derive a disparity vector for a current block from
the neighboring blocks, as well as the disparity vector converted from the depth values
of the depth view component of the same view. If one available spatial neighboring
block contains a disparity motion vector, the video coder may determine that this
disparity motion vector is the disparity vector for the current block. Otherwise, when
none of the neighboring blocks has a disparity motion vector, the video coder may
convert a disparity motion vector of a block from the depth values (similar to the
conversion in D-MVP). Afterwards, the video coder may apply a median filter to three
neighboring blocks to determine the disparity vector for the current block.

[0105] The video coder may use the disparity vector for the current block to determine a
temporal motion vector of the reference block in the reference (e.g., base) view. If the
temporal motion vector is unavailable, the video coder may firstly derive the reference
index and the video coder may apply D-MVP, as discussed above, to produce a motion
vector predictor.

[0106] This disclosure now discusses HEVC. The following discussion of HEVC may
also be applicable to other video coding standards and/or specifications. To generate an
encoded representation of a picture, video encoder 20 may generate a set of coding tree
units (CTUs). Each of the CTUs may comprise (e.g., be) a coding tree block of luma
samples, two corresponding coding tree blocks of chroma samples, and syntax
structures used to code the samples of the coding tree blocks. In at least some
examples, a coding tree block may be an NxN block of samples. A CTU may also be
referred to as a “tree block” or a “largest coding unit” (LCU). The CTUs of HEVC may
be broadly analogous to the macroblocks of other video coding standards, such as

H.264/AVC. However, a CTU is not necessarily limited to a particular size and may
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include one or more coding units (CUs). A slice may include an integer number of
CTUs ordered consecutively in a scanning order (e.g., a raster scan).

[0107] This disclosure may use the term “video unit” or “video block™ or simply
“block” to refer to one or more blocks of samples and syntax structures used to code
samples of the one or more blocks of samples. Example types of video units may
include CTUs, CUs, PUs, transform units (TUs), macroblocks, macroblock partitions,
and so on.

[0108] To generate a coded CTU, video encoder 20 may recursively perform quad-tree
partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into
coding blocks, hence the name “coding tree units.” In at least some examples, a coding
block is an NxN block of samples. A CU may comprise (e.g., be) a coding block of
luma samples and two corresponding coding blocks of chroma samples of a picture that
has a luma sample array, a Cb sample array and a Cr sample array, and syntax structures
used to code the samples of the coding blocks. In monochrome pictures or pictures
having three separate color planes, a CU may comprise a single coding block and syntax
structures used to code the samples of the coding block. A size of the CU generally
corresponds to a size of a coding block of the CU and is typically square in shape. In
some examples, the size of the CU ranges from 8x8 pixels up to the size of a CTU with
a maximum size of 64x64 pixels or greater.

[0109] Video encoder 20 may partition a coding block of a CU into one or more
prediction blocks. A prediction block may be a rectangular (i.e., square or non-square)
block of samples on which the same prediction is applied. A prediction unit (PU) of a
CU may comprise (e.g., be) a prediction block of luma samples, two corresponding
prediction blocks of chroma samples of a picture, and syntax structures used to predict
the prediction block samples. Video encoder 20 may generate predictive luma, Cb and
Cr blocks for luma, Cb and Cr prediction blocks of each PU of the CU. In monochrome
pictures or pictures having three separate color planes, a PU may comprise a single
prediction block and syntax structures used to predict the prediction block. A prediction
block may be a rectangular (e.g., MXN, where M may or may not be equal to N) block
of samples on which the same prediction is applied. Thus, PUs may be partitioned to be
non-square in shape.

[0110] Video encoder 20 may use intra prediction or inter prediction to generate the

predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the
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predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of the picture associated with the PU (i.e., the picture
containing a prediction block of the PU).

[0111] If video encoder 20 uses inter prediction to generate the predictive blocks of a
PU, video encoder 20 may generate the predictive blocks of the PU based on decoded
samples of one or more pictures other than the picture associated with the PU. Inter
prediction may be uni-directional inter prediction (i.e., uni-prediction) or bi-directional
inter prediction (i.e., bi-prediction). To perform uni-prediction or bi-prediction, video
encoder 20 may generate a first reference picture list (RefPicList0) and a second
reference picture list (RefPicListl) for a current slice. Each of the reference picture lists
may include one or more reference pictures. When using uni-prediction, video encoder
20 may search the reference pictures in either or both RefPicList0 and RefPicList] to
determine a reference location within a reference picture. Furthermore, when using uni-
prediction, video encoder 20 may generate, based at least in part on samples
corresponding to the reference location, the predictive sample blocks (i.e., predictive
blocks) for the PU. Moreover, when using uni-prediction, video encoder 20 may
generate a single motion vector that indicates a spatial displacement between a
prediction block of the PU and the reference location. To indicate the spatial
displacement between a prediction block of the PU and the reference location, a motion
vector may include a horizontal component specifying a horizontal displacement
between the prediction block of the PU and the reference location and may include a
vertical component specifying a vertical displacement between the prediction block of
the PU and the reference location.

[0112] When using bi-prediction to encode a PU, video encoder 20 may determine a
first reference location in a reference picture in RefPicList0 and a second reference
location in a reference picture in RefPicListl. Video encoder 20 may then generate,
based at least in part on samples corresponding to the first and second reference
locations, the predictive blocks for the PU. Moreover, when using bi-prediction to
encode the PU, video encoder 20 may generate a first motion vector indicating a spatial
displacement between a sample block of the PU and the first reference location and a
second motion vector indicating a spatial displacement between the prediction block of

the PU and the second reference location.



WO 2014/194239 PCT/US2014/040312

31

[0113] After video encoder 20 generates predictive blocks (e.g., luma, Cb and Cr
predictive blocks) for one or more PUs of a CU, video encoder 20 may generate a
residual block for the CU. For example, video encoder 20 may generate a luma residual
block for the CU. Each sample in the CU’s luma residual block indicates a difference
between a luma sample in one of the CU’s predictive luma blocks and a corresponding
sample in the CU’s original luma coding block. In addition, video encoder 20 may
generate a Cb residual block for the CU. Each sample in the CU’s Cb residual block
may indicate a difference between a Cb sample in one of the CU’s predictive Cb blocks
and a corresponding sample in the CU’s original Cb coding block. Video encoder 20
may also generate a Cr residual block for the CU. Each sample in the CU’s Cr residual
block may indicate a difference between a Cr sample in one of the CU’s predictive Cr
blocks and a corresponding sample in the CU’s original Cr coding block.

[0114] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the
residual blocks (e.g., luma, Cb and Cr residual blocks) of a CU into one or more
transform blocks (e.g., luma, Cb and Cr transform blocks). In at least some examples, a
transform block is a rectangular block of samples on which the same transform is
applied. A transform unit (TU) of a CU may comprise (e.g., be) a transform block of
luma samples, two corresponding transform blocks of chroma samples, and syntax
structures used to transform the transform block samples. Thus, each TU of a CU may
have (i.e., be associated with) a luma transform block, a Cb transform block, and a Cr
transform block. The luma transform block of (i.e., associated with) the TU may be a
sub-block of the CU’s luma residual block. The Cb transform block may be a sub-block
of the CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s
Cr residual block. In monochrome pictures or pictures having three separate color
planes, a TU may comprise a single transform block and syntax structures used to
transform the samples of the transform block. In this way, residual samples
corresponding to a CU may be subdivided into smaller units using a quadtree structure
known as a “residual quad tree” (RQT). The leaf nodes of the RQT may be referred to
as TUs. Syntax data associated with a CU may also describe, for example, partitioning
of the CU into one or more TUs according to a quadtree.

[0115] Video encoder 20 may apply one or more transforms to a transform block of a
TU to generate a coefficient block for the TU. A coefficient block may be a two-

dimensional array of transform coefficients. A transform coefficient may be a scalar
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quantity. For example, video encoder 20 may apply one or more transforms to a luma
transform block of a TU to generate a luma coefficient block for the TU. Video encoder
20 may apply one or more transforms to a Cb transform block of a TU to generate a Cb
coefficient block for the TU. Video encoder 20 may apply one or more transforms to a
Cr transform block of a TU to generate a Cr coefficient block for the TU.

[0116] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefficient block or a Cr coefficient block), video encoder 20 may quantize the
coefficient block. Quantization generally refers to a process in which transform
coefficients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. Furthermore, video encoder 20
may inverse quantize transform coefficients and may apply an inverse transform to the
transform coefficients in order to reconstruct transform blocks of TUs of CUs of a
picture. The video encoder 20 may use the reconstructed transform blocks of TUs of a
CU and the predictive blocks of PUs of the CU to reconstruct coding blocks of the CU.
By reconstructing the coding blocks of each CU of a picture, video encoder 20 may
reconstruct the picture. Video encoder 20 may store reconstructed pictures in a decoded
picture buffer (DPB). Thus, video encoder 20 may comprise a buffer storing decoded
pictures. Video encoder 20 may use reconstructed pictures in the DPB for inter
prediction and intra prediction.

[0117] After video encoder 20 quantizes a coefficient block, video encoder 20 may
entropy encode syntax elements indicating the quantized transform coefficients. For
example, video encoder 20 may perform Context-Adaptive Binary Arithmetic Coding
(CABAC) on the syntax elements indicating the quantized transform coefficients.
Video encoder 20 may output the entropy-encoded syntax elements in a bitstream.
[0118] Video encoder 20 may output a bitstream that includes a sequence of bits that
forms a representation of coded pictures and associated data. The bitstream may
comprise a sequence of network abstraction layer (NAL) units. Each of the NAL units
may include a NAL unit header and may encapsulate a raw byte sequence payload
(RBSP). The NAL unit header may include a syntax element that indicates a NAL unit
type code. The NAL unit type code specified by the NAL unit header of a NAL unit
indicates the type of the NAL unit. A RBSP may be a syntax structure containing an
integer number of bytes that is encapsulated within a NAL unit. In some instances, an

RBSP includes zero bits.
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[0119] Different types of NAL units may encapsulate different types of RBSPs. For
example, a first type of NAL unit may encapsulate an RBSP for a picture parameter set
(PPS), a second type of NAL unit may encapsulate an RBSP for a coded slice, a third
type of NAL unit may encapsulate an RBSP for Supplemental Enhancement
Information (SEI), and so on. A PPS is a syntax structure that may contain syntax
elements that apply to zero or more entire coded pictures. NAL units that encapsulate
RBSPs for video coding data (as opposed to RBSPs for parameter sets and SEI
messages) may be referred to as video coding layer (VCL) NAL units. A NAL unit that
encapsulates a coded slice may be referred to herein as a coded slice NAL unit. An
RBSP for a coded slice may include a slice header and slice data.

[0120] HEVC and other video coding standards provide for various types of parameter
sets. For example, a video parameter set (VPS) is a syntax structure comprising syntax
clements that apply to zero or more entire coded video sequences (CVSs). A sequence
parameter set (SPS) may contain information that applies to all slices of a CVS. An
SPS may include a syntax element that identifies a VPS that is active when the SPS is
active. Thus, the syntax elements of a VPS may be more generally applicable than the
syntax elements of an SPS. A PPS is a syntax structure comprising syntax elements that
apply to zero or more coded pictures. A PPS may include a syntax element that
identifies an SPS that is active when the PPS is active. A slice header of a slice may
include a syntax element that indicates a PPS that is active when the slice is being
coded.

[0121] Video decoder 30 may receive a bitstream. In addition, video decoder 30 may
parse the bitstream to obtain (e.g., decode) syntax elements from the bitstream. Video
decoder 30 may reconstruct the pictures of the video data based at least in part on the
syntax elements obtained (e.g., decoded) from the bitstream. The process to reconstruct
the video data may be generally reciprocal to the process performed by video encoder
20. For instance, video decoder 30 may use motion vectors of PUs to determine
predictive blocks for the PUs of a current CU. Video decoder 30 may use a motion
vector or motion vectors of PUs to generate predictive blocks for the PUs.

[0122] In addition, video decoder 30 may inverse quantize coefficient blocks associated
with TUSs of the current CU. Video decoder 30 may perform inverse transforms on the
coefficient blocks to reconstruct transform blocks of (i.e., associated with) the TUs of

the current CU. Video decoder 30 may reconstruct the coding blocks of the current CU
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by adding the samples of the predictive sample blocks (i.e., predictive blocks) for PUs
of the current CU to corresponding samples of the transform blocks of the TUs of the
current CU. By reconstructing the coding blocks for each CU of a picture, video
decoder 30 may reconstruct the picture. Video decoder 30 may store decoded pictures
in a decoded picture buffer for output and/or for use in decoding other pictures. Thus,
video decoder 30 may comprise a buffer storing decoded pictures.

[0123] When a video coder (e.g., video encoder 20 or video decoder 30) begins coding
a current slice of a picture, the video coder may initialize a first reference picture list
(i.e., List 0). Furthermore, if the current slice is a B slice, the video coder may initialize
a second reference picture list (i.e., List 1). This disclosure may refer to List 0 as
“RefPicList0” and may refer to List 1 as “RefPicList]l.” After a video coder has
initialized a reference picture list (e.g., List 0 or List 1), the video coder may modify the
order of the reference pictures in the reference picture list. In other words, the video
coder may perform a reference picture list modification (RPLM) process. The video
coder may modify the order of the reference pictures in any order, including the case
where one particular reference picture may appear in more than one position in the
reference picture list.

[0124] In some cases, video encoder 20 may signal the motion information of a PU
using merge mode or advanced motion vector prediction (AMVP) mode. In other
words, in HEVC, there are two modes for the prediction of motion parameters, one
being the merge mode and the other being AMVP. The motion information of a PU
may include motion vector(s) of the PU and reference index(s) of the PU. When video
encoder 20 signals the motion information of a current PU using merge mode, video
encoder 20 may generate a merge candidate list (i.e., a motion vector predictor (MVP)
candidate list). In other words, video encoder 20 may perform a motion vector predictor
list construction process. The merge candidate list includes a set of merge candidates
(i.e., MVP candidates). The merge candidate list may include merge candidates that
indicate the motion information of PUs that spatially or temporally neighbor the current
PU. That is, in the merge mode, a candidate list of motion parameters (e.g., reference
indexes, motion vectors, etc.) may be constructed where a candidate can be from spatial
and temporal neighboring blocks.

[0125] Furthermore, in merge mode, video encoder 20 may select a merge candidate

from the merge candidate list and may use the motion information indicated by the
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selected merge candidate as the motion information of the current PU. Video encoder
20 may signal the position in the merge candidate list of the selected merge candidate.
For instance, video encoder 20 may signal the selected motion vector parameters by
transmitting an index into the candidate list. Video decoder 30 may obtain, from the
bitstream, the index into the candidate list (i.c., a candidate list index). In addition,
video decoder 30 may generate the same merge candidate list and may determine, based
on the indication of the position of the selected merge candidate, the selected merge
candidate. Video decoder 30 may then use the motion information of the selected
merge candidate to generate predictive blocks for the current PU. That is, video
decoder 30 may determine, based at least in part on the candidate list index, a selected
candidate in the candidate list, wherein the selected candidate specifies the motion
vector for the current PU. In this way, at the decoder side, once the index is decoded,
all motion parameters of the corresponding block where the index points are to be
inherited by the current PU.

[0126] Skip mode is similar to merge mode. In skip mode, video encoder 20 and video
decoder 30 generate and use a merge candidate list in the same way that video encoder
20 and video decoder 30 use the merge candidate list in merge mode. However, when
video encoder 20 signals the motion information of a current PU using skip mode, video
encoder 20 does not signal any residual data for the current PU. Accordingly, video
decoder 30 may use, as a predictive block for the PU, a reference block indicated by the
motion information of a selected candidate in the merge candidate list.

[0127] AMVP mode is similar to merge mode in that video encoder 20 generates a
candidate list and selects a candidate from the list of candidates. However, when video
encoder 20 signals the motion information of a current PU using AMVP mode, video
encoder 20 also may signal a motion vector difference (MVD) for the current PU and a
reference index in addition to signaling a position of the selected candidate in the
candidate list. An MVD for the current PU may indicate a difference between a motion
vector of the current PU and a motion vector of the selected candidate from the AMVP
candidate list. In uni-prediction, video encoder 20 may signal one MVD and one
reference index for the current PU. In bi-prediction, video encoder 20 may signal two
MVDs and two reference indexes for the current PU. In this way, video encoder 20
may signal the selected motion vectors by transmitting an index into the candidate list

and may signal the reference index values and MVDs. In other words, the data in the
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bitstream representing the motion vector for the current PU may include data
representing a reference index, an index to a candidate list, and an MVD.

[0128] Furthermore, when the motion information of a current PU is signaled using
AMVP mode, video decoder 30 may obtain, from the bitstream, a MVD for a current
PU and a candidate list index. Video decoder 30 may generate the same AMVP
candidate list and may determine, based on the indication of the position of the selected
candidate in the AMVP candidate list, the selected candidate. Video decoder 30 may
recover a motion vector of the current PU by adding a MVD to the motion vector
indicated by the selected candidate. That is, video decoder 30 may determine, based at
least in part on a motion vector indicated by the selected candidate and the MVD, the
motion vector of the current PU. Video decoder 30 may then use the recovered motion
vector or motion vectors of the current PU to generate predictive blocks for the current
PU.

[0129] A candidate in a merge candidate list or an AMVP candidate list that is based on
the motion information of a PU that temporally neighbors a current PU (i.e., a PU that is
in a different time instance than the current PU) may be referred to as a temporal motion
vector predictor (TMVP). To determine a TMVP, a video coder may firstly identify a
reference picture that includes a PU that is co-located with the current PU. In other
words, the video coder may identify a co-located picture. If the current slice of the
current picture is a B slice (i.¢., a slice that is allowed to include bi-directionally inter
predicted PUs), video encoder 20 may signal, in a slice header, a syntax element (e.g.,
collocated from 10 flag) that indicates whether the co-located picture is from
RefPicList0 or RefPicList]l. After video decoder 30 identifies the reference picture list
that includes the co-located picture, video decoder 30 may use another syntax element
(e.g., collocated ref idx), which may be signaled in a slice header, to identify a picture
(i.e., the co-located picture) in the identified reference picture list.

[0130] A video coder may identify a co-located PU by checking the co-located picture.
The TMVP may indicate either the motion information of a right-bottom PU of the CU
containing the co-located PU, or the motion information of the right-bottom PU within
the center PUs of the CU containing this PU. The right-bottom PU of the CU
containing the co-located PU may be a PU that covers a location immediately below and
right of a bottom-right sample of a prediction block of the PU. In other words, the

TMVP may indicate the motion information of a PU that is in the reference picture and
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that covers a location that is co-located with a bottom right corner of the current PU, or
the TMVP may indicate the motion information of a PU that is in the reference picture
and that covers a location that is co-located with a center of the current PU.

[0131] When motion vectors identified by the above process are used to generate a
motion candidate for merge mode or AMVP mode, the motion vectors may be scaled
based on the temporal location (e.g., reflected by picture order count (POC) value). For
instance, a video coder may increase the magnitude of a motion vector by greater
amounts when a difference between the POC values of a current picture and a reference
picture is greater than when a difference between the POC values of the current picture
and the reference picture is less.

[0132] WPP is a technique for increasing parallelism. If a video coder codes the picture
using WPP, the video coder may divide the CTBs of the picture into a plurality of
“WPP waves.” Each of the WPP waves may correspond to a different row of CTBs in
the picture. If the video coder codes the picture using WPP, the video coder may start
coding a top row of CTBs. After the video coder has coded two or more CTBs of the
top row, the video coder may start coding a second-to-top row of CTBs in parallel with
coding the top row of CTBs. After the video coder has coded two or more CTBs of the
second-to-top row, the video coder may start coding a third-to-top row of CTBs in
parallel with coding the higher rows of CTBs. This pattern may continue down the
rows of CTBs in the picture.

[0133] If the video coder is using WPP, the video coder may use information associated
with spatially-neighboring CUs outside a current CTB to perform in-picture prediction
on a particular CU in the current CTB, so long as the spatially-neighboring CUSs are left,
above-left, above, or above-right of the current CTB. If the current CTB is the leftmost
CTB in a row other than the topmost row, the video coder may use information
associated with the second CTB of the immediately higher row to select a context for
CABAC coding one or more syntax elements of the current CTB. Otherwise, if the
current CTB is not the leftmost CTB in the row, the video coder may use information
associated with a CTB to the left of the current CTB to select a context for CABAC
coding one or more syntax clements of the current CTB. In this way, the video coder
may initialize CABAC states of a row based on the CABAC states of the immediately

higher row after encoding two or more CTBs of the immediately higher row.
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[0134] Thus, in response to determining that a first CTB is separated from a left
boundary of the picture by a single CTB, a video coder may store context variables
associated with the first CTB. The video coder may entropy code (e.g., entropy encode
or entropy decode), based at least in part on the context variables associated with the
first CTB, one or more syntax elements of a second CTB, the second CTB being
adjacent to the left boundary of the picture and one row of CTBs lower than the first
CTB.

[0135] FIG. 5 is a conceptual diagram that illustrates an example of WPP. As described
above, a picture may be partitioned into pixel blocks, each of which is associated a
CTB. FIG. 5 illustrates the pixel blocks associated with the CTBs as a grid of white
squares. The picture includes CTB rows 50A-50E (collectively, “CTB rows 507).
[0136] A first parallel processing thread (e.g., executed by one of a plurality of parallel
processing cores) may be coding CTBs in CTB row 50A. Concurrently, other threads
(e.g., executed by other parallel processing cores) may be coding CTBs in CTB rows
50B, 50C, and 50D. In the example of FIG. 5, the first thread is currently coding a CTB
52A, a second thread is currently coding a CTB 52B, a third thread is currently coding a
CTB 52C, and a fourth thread is currently coding a CTB 52D. This disclosure may
refer to CTBs 52A, 52B, 52C, and 52D collectively as “current CTBs 52.” Because the
video coder may begin coding a CTB row after more than two CTBs of an immediately
higher row have been coded, current CTBs 52 are horizontally displaced from each
other by the widths of two CTBs.

[0137] In the example of FIG. 5, the threads may use data from CTBs indicated by the
thick gray arrows to perform intra prediction or inter prediction for CUs in current
CTBs 352. (The threads may also use data from one or more reference frames to
perform inter prediction for CUs.) To code a given CTB, a thread may select one or
more CABAC contexts based on information associated with previously-coded CTBs.
The thread may use the one or more CABAC contexts to perform CABAC coding on
syntax elements associated with the first CU of the given CTB. If the given CTB is not
the leftmost CTB of a row, the thread may select the one or more CABAC contexts
based on information associated with a last CU of the CTB to the left of the given CTB.
If the given CTB is the leftmost CTB of a row, the thread may select the one or more
CABAC contexts based on information associated with a last CU of a CTB that is above
and two CTBs right of the given CTB. The threads may use data from the last CUs of
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the CTBs indicated by the thin black arrows to select CABAC contexts for the first CUs
of current CTBs 52.

[0138] 3D-HEVC provides for multiple views of the same scene from different
viewpoints. Part of the standardization efforts for 3D-HEVC includes the
standardization of the multiview video codec based on HEVC. In HEVC based 3DV
(i.e., 3D-HEVC(), inter-view prediction based on the reconstructed view components
from different views is enabled. Like MVC in H.264/AVC, 3D-HEVC supports inter-
view motion prediction (IMP). In 3D-HEVC, IMP is similar to the motion
compensation used in standard HEVC and may utilize the same or similar syntax
elements. However, when a video coder performs IMP on a PU, the video coder may
use, as a reference picture, a picture that is in the same access unit as the PU, but in a
different view. In contrast, conventional motion compensation only uses pictures in
different access units as reference pictures. Thus, in 3D-HEVC, the motion parameters
of a block in a dependent view may be predicted or inferred based on already coded
motion parameters in other views of the same access unit.

[0139] In 3D-HEVC and other video coding standards, a video coder may generate a
candidate list (e.g., a merge candidate list or an AMVP candidate list) when the motion
information of a current PU is signaled using merge mode or AMVP mode.
Furthermore, in 3D-HEVC and other video coding standards, the candidate list may
include an inter-view prediction candidate that may be used in the same manner as other
candidates in the candidate list. The inter-view prediction candidate specifies the
motion information of a PU (i.c. a reference PU) of a reference picture. The reference
picture is in the same access unit as the current PU, but is in a different view than the
current PU. To determine the reference PU, the video coder may perform a disparity
vector construction process to determine a disparity vector for the current PU. The
disparity vector for the current PU may indicate a horizontal spatial displacement
between the current PU and a location within the reference texture picture. The
reference PU may be the PU of the reference texture picture that covers the location
indicated by the disparity vector.

[0140] A disparity motion vector is a motion vector pointing to a location within an
inter-view reference picture. An inter-view reference picture is a texture picture that is
in the same access unit as a current PU, but in a different view. A spatial disparity

vector (SDV) is a disparity motion vector of a PU that spatially neighbors the current
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PU. In other words, a SDV is a motion vector that is specified by a spatially-
neighboring PU and that indicates a location in an inter-view reference picture, where
the spatially-neighboring PU spatially neighbors a current PU. A temporal disparity
vector (TDV) is a disparity motion vector of a PU co-located with the current PU, in the
same view as the current PU, and in a different access unit than the current PU. In other
words, a TDV may be a disparity motion vector from co-located PU, co-located LCU in
any reference picture or inter-view picture with the same access unit. Alternatively, if
the motion vector of the co-located PU from the picture used for TMVP or the motion
vector generated by TMVP is a disparity vector, it is also treated as a TDV. Ifa
spatially-neighboring or a temporally-neighboring PU of the current PU is coded using
inter-view motion prediction, the disparity vector of the spatially-neighboring or
temporally-neighboring PU is an IDV.

[0141] The video coder may use a selected disparity vector directly for IMP. As
indicated above, a video encoder may generate motion vector predictor candidate lists
(i.e., motion vector candidate lists) for the current PU when signaling the motion
information of the current PU using merge/skip mode or AMVP mode. The video coder
may use the disparity vector specified by the selected disparity vector candidate to
determine a reference PU in an inter-view reference picture. The video coder may then
include the motion information of the reference PU as the inter-view prediction motion
vector candidate in the motion vector predictor candidate lists for merge mode or
AMVP mode.

[0142] Furthermore, 3D-HEVC and other video coding standards may support inter-
view residual prediction. In inter-view residual prediction, a video coder may determine
residual blocks of a current block (e.g., CU) based on residual data in a different view
than the current block. The video coder may use disparity vectors of the current block
(or disparity vectors of sub-blocks of the current block (e.g., PUs)) to determine the
residual data in the different view.

[0143] In some instances, a video coder may perform CU-level inter-view residual
prediction (IVRP) based on a derived disparity vector for each CU. When the video
coder performs IVRP for a current CU of a current picture, the video coder may use
motion vectors of PUs of the current CU to determine a motion compensated block for
the current CU. In other words, the motion compensated block for the current CU may

comprise the predictive blocks of the PUs of the current CU. The motion compensated
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block of the current CU may be denoted as P.. Each sample in a residual block (r.) for
the current CU may indicate a difference between a sample in an original coding block
of the current CU and a corresponding sample in P.. In addition, the video coder may
use a disparity vector of the current CU to determine a disparity reference CU in a
reference picture. The reference picture is in a different view than the current picture.
A residual block of the disparity reference CU may be denoted as r,. Each sample of
the residual block of the disparity reference CU (1p) may indicate a difference between
an original sample of a coding block for the disparity reference CU and a corresponding
predictive sample in a predictive block for a PU of the disparity reference CU.

[0144] Video encoder 20 may include, in the bitstream, data indicating a final residual
block. Each sample in the final residual block may indicate a difference between a
sample in 1, and a corresponding sample in r.. Therefore, when inter-view residual
prediction is used, motion compensation can be expressed by the following equation:

lo=re+P.+ry

where the reconstruction of the current block 1. equals de-quantized coefficients r. plus
prediction P, and quantization normalized residual coefficients r,. Video coders may
treat 1y, as the residual predictor. Thus, similar to motion compensation, r, may be
subtracted from the current residual and only the resulting difference signal is transform
coded.

[0145] Some video coders may implement so-called Advanced Residual Prediction
(ARP). For instance, Zhang et al., “3D-CES5.h related: Advanced residual prediction for
multiview coding,” Joint Collaborative Team on 3D Video Coding Extension
Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 2nd Meeting:
Shanghai, CN, 13-19 Oct. 2012, document JCT3V-B0051 (hereinafter, “JCT3V-
B00517), proposed an ARP method to further improve the coding efficiency of inter-
view residual prediction.

[0146] As indicated above, inter-view motion prediction, inter-view residual prediction,
and/or other inter-view coding techniques may rely on disparity vectors. Neighboring-
block based disparity vector (NBDV) derivation is a process for determining a disparity
vector for a block. NBDV is used for a disparity vector derivation method in the 3D-
HEVC that uses the texture-first coding order for all the views. In at least some 3D-

HEVC designs, the NBDV is also used to retrieve depth data from a reference view’s
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depth map. A reference software description as well as a working draft of 3D-HEVC is
available as follows: Gerhard Tech et al., “3D-HEVC Test Model Description draft 2,”
JCT3V-B1005, Joint Collaborative Team on 3D Video Coding Extension Development
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 2nd Meeting: Shanghai, CN,
Oct. 2012 (hereinafter, “JCT3V-B1005”). At least as of May 9, 2014, JCTV-B1005 is
available from http://phenix.int-

evry.fr/jct2/doc_end user/documents/2 Shanghai/wgl1/JCT3V-B1005-v1.zip.

[0147] A disparity vector is used for an estimator of the disparity between two views.
Because neighboring blocks share almost the same motion/disparity information in
video coding, the current block can use the motion vector information in neighboring
blocks as a good predictor. Following this idea, the NBDV derivation process (i.c., the
“NBDV process” or simply “NBDV”) uses the neighboring disparity information for
estimating the disparity vector in different views.

[0148] Several spatial and temporal neighboring blocks are firstly defined. Each of the
spatial and temporal neighboring blocks is then checked in a pre-defined order
determined by the priority of the correlation between the current block and the candidate
block. Once a disparity motion vector (i.c., the motion vector points to an inter-view
reference picture) is found in the candidates, the disparity motion vector is converted to
a disparity vector. Two sets of neighboring blocks are utilized. One set is from spatial
neighboring blocks and the other set is from temporal neighboring blocks.

A video coder may use the NBDV derivation process as a disparity vector derivation
method in 3D-HEVC and other video coding standards, which uses the texture-first
coding order for all the views. In at least some 3D-HEVC designs, the video coder may
also use the NBDV derivation process to retrieve depth data from a depth map of a
reference view. 3D-HEVC first adopted the NBDV method proposed in Zhang et al.,
“Disparity vector generation results,” Joint Collaborative Team on 3D Video Coding
Extension Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 1st
Meeting: Stockholm, SE, 16-20 July 2012, document JCT3V-A0097 (hereinafter,
JCT3V-A0097). Implicit disparity vectors are included with a simplified NBDV in
JCT3V-A0126: Sung et al., “3D-CES5.h: Simplification of disparity vector derivation for
HEVC-based 3D video coding,” Joint Collaborative Team on 3D Video Coding
Extension Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 1st
Meeting: Stockholm, SE, 16-20 July 2012, document no. JCT3V-A0126 (hereinafter,
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JCT3V-A0126). In addition, in Kang et al., “3D-CE5.h related: Improvements for
disparity vector derivation,” Joint Collaborative Team on 3D Video Coding Extension
Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 2nd Meeting:
Shanghai, CN, 13-19 Oct. 2012, document JCT3V-B0047 (hereinafter, JCT3V-B0047),
the NBDV derivation process is further simplified by removing the implicit disparity
vectors stored in the decoded picture buffer, while achieving an improved coding gain
with the random access picture (RAP) selection.

[0149] In some NBDV derivation processes, a video coder uses five spatial neighboring
blocks for disparity vector derivation. The five spatial neighboring blocks are the
below-left, left, above-right, above and above-left blocks of a current PU, denoted by
Ay, A1, By, Bi and B,. The five spatial neighboring blocks used in the proposed NBDV
derivation process may be the same five spatial neighboring blocks used in the merge
modes in HEVC. Therefore, in some examples, no additional memory access is
required to access the five spatial neighboring blocks.

[0150] For checking temporal neighboring blocks, a construction process of a candidate
picture is performed first. All the reference pictures from the current view may be
treated as candidate pictures. A co-located reference picture is first inserted into the
candidate picture list, followed by the rest of the candidate pictures in the ascending
order of reference index. When the reference pictures with the same reference index in
both reference picture lists are available, the one in the same reference picture list of the
co-located picture precedes the other one. For each candidate picture in the candidate
picture list, three candidate regions are determined for deriving the temporal
neighboring blocks.

[0151] When a video coder codes a block with inter-view motion prediction, the video
coder may derive a disparity vector for selecting a corresponding block in a different
view. The term “implicit disparity vector” or “IDV” (or in some circumstances a
“derived disparity vector”) may refer to a disparity vector derived in inter-view motion
prediction. For instance, even though a video coder may code a block with motion
prediction (i.e., temporal motion prediction), the video coder does not discard the
derived disparity vector. Rather, the video coder may use the disparity vector for the
purpose of coding a following block. Specifically, the video coder may treat the

disparity vector as an implicit disparity vector and may use the implicit disparity vector
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in an NBDV derivation process to determine a disparity vector for one or more other
blocks.

[0152] Typically, when a video coder performs the NBDV derivation process, the video
coder checks disparity motion vectors in the temporal neighboring blocks, disparity
motion vectors in the spatial neighboring blocks, and then the implicit disparity vector
in order. Once the video coder finds the disparity vector, the video coder may terminate
the NBDV derivation process.

[0153] Backward VSP may be enabled in 3D-HEVC. In 3D-HEVC, when a video
coder applies a texture-first coding order, the video coder may derive, for each PU, a
disparity vector from the NBDV derivation process with or without consideration of the
depth values in a reference depth view. After the video coder obtains a disparity vector,
the video coder may further refine the disparity vector for each 4x4 sub-region of one
PU if the 4x4 sub-region of the PU is coded with BVSP mode.

[0154] The refinement process may include two steps. In the first step, the video coder
may select one maximum depth value from a 4x4 depth block in the reference depth
view. The video coder may use the derived disparity vector to locate the 4x4 depth
block. In the second step, the video coder may convert the depth value to a horizontal
component of the refined disparity vector while keeping the vertical component of the
refined disparity vector to be 0. After the disparity vector is refined for one 4x4 sub-
region of one PU, the video coder may use the refined disparity vector to locate one
block in the reference texture view for motion compensation.

[0155] As described in U.S. Provisional Patent Application No. 61/815,656, filed April
24,2013, MB-level NBDV may be used to derive a disparity vector for the current MB
and further used for motion vector prediction. Once a disparity motion vector is
identified, i.e., one of the temporal or spatial neighboring block uses the inter-view
reference picture, it is returned as the disparity vector for the current MB. One example
implementation of U.S. Provisional Patent Application No. 61/815,656 is described
below. In this example implementation, the spatial neighboring blocks that are checked
in the AVC motion prediction process are checked in the order of A (left), B (above), C
(above-right) and D (above-left) in the proposed NBDV process, as shown in FIG. 6.
FIG. 6 is a conceptual diagram illustrating spatial neighboring blocks for NBDV.
[0156] Blocks from up to two reference pictures in the same view as the current picture

are checked: (RefPicList1[ 0 ] and RefPicList0[ 0 ] for B slices and RefPicListO[ 0 ] for



WO 2014/194239 PCT/US2014/040312

45

P slices). In some examples, three temporal blocks are checked picture by picture and
for each picture, the co-located blocks relative to the co-located MB are checked as
indicated below in order of BR (bottom-right), CT3 (center 3) and CO2 (corner 2), as
shown in FIG. 7. FIG. 7 is a conceptual diagram illustrating example temporal
neighboring blocks for NBDV.

[0157] The above-mentioned neighboring blocks are checked in order. Similar to 3D-
HEVC, temporal neighboring blocks are checked first and the spatial neighboring
blocks are checked afterwards. Once a block containing an available disparity motion
vector is identified, the derivation process terminates. The coding gain of the proposed
method of U.S. Provisional Patent Application No. 61/815,656, when compared with
multi-view coding plus depth (MVC+D) is shown in the following table (TABLE 1).
Vetro et al., “Joint Draft 8.0 on Multiview Video Coding,” Joint Video Team (JVT) of
ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6),
28t Meeting, Hannover, DE, 20-25 July 2008, document no. JVT-AB204, is one draft
of MVC+D.
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TABLE 1
Total Total
Texture Coding Depth Coding (Coded PSNR) (Synthesed PSNR)
dBR,% | dPSNR,dB | dBR,% | dPSNR,dB | dBR,% | dPSNR,dB | dBR,% | dPSNR,dB

S01 27.67 -0.83 -3.83 0.20 33.18 -0.98 32.82 -0.99
S02 7.95 -0.23 -15.22 | 0.68 12.20 -0.35 11.49 -0.34
S03 16.99 -0.55 -20.91 | 1.85 15.99 -0.53 20.24 -0.60
S04 19.99 -0.67 -21.22 | 1.43 25.03 -0.83 20.34 -0.64
S05 22.77 -1.03 -22.40 | 1.30 44.49 -1.78 39.03 -1.45
S06 29.93 -1.36 -15.42 | 0.75 43.01 -1.80 36.11 -1.44
S08 13.15 -0.54 -11.16 | 0.49 19.79 -0.77 18.82 -0.63
Average | 19.78 -0.74 -15.74 | 0.96 27.67 -1.01 25.55 -0.87

[0158] The proposed method of U.S. Provisional Patent Application No. 61/815,656
enables texture-only coding, which is not efficiently supported in 3D-AVC. When
enabling the same texture-only configuration, the coding gain from the current 3D-AVC
is only 1%.

[0159] In some examples, an NBDV derivation process that accesses a depth view
component of a reference view is used in 3D-AVC. As described in U.S. Provisional
Patent Application 61/770,268 (the ‘268 application), filed February 27, 2013, the entire
content of which is incorporated herein by reference, the NBDV derivation process can
be further improved by accessing the depth view component of a base/reference view.
As described in the ‘268 application, a video coder may use the disparity vector derived
from the neighboring blocks to locate depth pixels in the depth view component, such
that the video coder can further refine the disparity vector. The following table
(TABLE 2) shows a coding gain of the proposed method of the ‘268 application when
compared with MVC+D.

TABLE 2
Total Total
Texture Coding Depth Coding (Coded PSNR) (Synthesed PSNR)
dBR,% | dPSNR,dB | dBR,% | dPSNR,dB | dBR,% | dPSNR,dB | dBR,% | dPSNR,dB
S01 40.61 -1.09 -4.43 0.23 45.32 -1.22 43.63 -1.20
S02 12.89 -0.36 -18.08 | 0.83 16.61 -0.46 14.90 -0.43
S03 22.07 -0.69 -25.71 | 2.40 20.22 -0.65 23.97 -0.69
S04 28.87 -0.93 -27.45 | 1.90 33.30 -1.06 26.72 -0.81
S05 28.47 -1.22 -22.69 | 1.33 49.34 -1.89 44.42 -1.58
S06 35.69 -1.56 -16.56 | 0.81 48.32 -1.97 40.81 -1.58
S08 16.48 -0.66 -11.57 | 0.51 22.51 -0.85 21.52 -0.70
Average | 26.44 -0.93 -18.07 | 1.14 33.66 -1.16 30.85 -1.00
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As shown above, the proposed method of the ‘268 application provides 5% more coding
gain, although accessing the depth view component is still required.

[0160] In 3D-AVC, a derived disparity vector (DDV) has been proposed in U.S.
Provisional Patent Application 61/809,174 (the ‘174 application), filed April 5, 2013, to
be maintained for the whole slice (when inter-view prediction is enabled) and updated
by each MB. For simplicity, such a DDV may not be calculated for an intra MB. In
3D-HEVC, a derived disparity vector has been proposed in the ‘174 application to be
maintained for the whole slice (when inter-view prediction is enabled) and updated by
cach CU (or PU). A DDV is set to be the disparity vector of the current block when
NBDYV does not find any available disparity motion vector from neighboring blocks.
[0161] The DDV of the first slice may be typically set to zero. The DDV may be
updated in the decoding order. Therefore, an unfavorable decoding dependency may
occur for the following cases. First, if CAVLC entropy coding is used in AVC, certain
decoders (e.g., smart decoders) may decode the MB rows in parallel with certain delay.
Second, when wavefront parallel processing (WPP) is enabled in HEVC, a current
coding unit does not necessarily depend on a CU in a prevous CTB row. Third, it is
possibly less efficient to use a DDV from a CU that is in a previous row but it is far
from the current CU in the horizontal direction. For example, it is possible that the first
CU of the current CTB row might have quite different ground truth disparity than that
of the last CU of the previous CTB row. In general, a ground truth disparity may be the
disparity derived from ground truth depth (i.c., the actual depth of an object depicted by
a pixel). The techniques of this disclosure may provide more flexibility for e.g.,
parallelization of the derived disparity vector as proposed in the ‘174 application.
[0162] In accordance with an example technique of this disclosure, in 3D-HEVC or
other video coding standards, during the decoding of a CU, the DDV is set to be zero
once the current CU is the first CU of the CTB row and/or the first CU of one slice.
Therefore, the value of the DDV is not carried across a CTB row. In some examples,
regardless of whether the CU is coded with intra or inter prediction, if the CU is the first
CU of the CTB that starts a new CTB row, the video coder updates the DDV by setting
the DDV to be zero, before coding of any CU of the first CTB of the current CTB row.
After an inter CU is coded in a dependent view, even the inter CU is the first one in the

CTB row, the video coder updates the DDV to be equal to the DDV of the CU.
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[0163] Additionally, in accordance with one or more example techniques of this
disclosure related to 3D-HEVC or other video coding standards, the DDV is updated to
zero, even when a new tile starts or when a new CTB row of a new tile starts.
Therefore, in some examples, the video coder does not carry the value of the DDV
across a tile and does not carry the value of the DDV across a CTB row of a tile. Thus,
in some such examples, for each respective CU of a slice, a video coder may, in
response to determining that the respective CU is the first CU of a tile of a picture, set
the DDV to an initial value (e.g., zero).

[0164] In at least some examples, a tile is a rectangular region of CTBs (or other types
of blocks) within a particular tile column and a particular tile row in a picture. A tile
column may be a rectangular region of CTBs (or other types of blocks) having a height
equal to the height of the picture and a width specified by syntax elements (e.g., in a
PPS). A tile row may be a rectangular region of CTBs (or other types of blocks) having
a height specified by syntax elements (e.g., in a PPS) and a width equal to the width of
the picture.

[0165] In accordance with one or more example techniques of this disclosure related to
3D-HEVC or other video coding standards, when the video coder starts coding each
slice or tile, the video coder may reset the DDV to zero. Furthermore, the video coder
may code (e.g., encode or decoder) a slice using WPP. In this example, when WPP is
enabled and the video coder starts coding of a WPP (a CTB row), the video coder resets
the DDV to zero. In general, when a video coder starts coding a CTB row, the DDV
may be equal to the DDV of the last block (e.g., CU) of the previous CTB row. Thus,
the video coder may not be able to start coding the first block of a CTB row until after
the video coder has coded the last block of the previous CTB row. This may be
incompatible with WPP, which provides for coding of multiple CTB rows in parallel.
In this example, when WPP is enabled, the video coder may maintain a separate DDV
for each CTB row. Setting the DDV for a CTB to zero when the video coder starts
coding the CTB row, as described in this disclosure, may facilitate WPP because the
video coder no longer has to wait for the DDV of the last block of the previous CTB
row to be determined prior to starting to code the first block of the CTB row. In this
way, the techniques of this disclosure may enable increased parallel processing in the

video coder.
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[0166] Additionally, in accordance with one or more example techniques of this
disclosure related to 3D-HEVC or other video coding standards, the video coder does
not carry the DDV across CTBs. Thus, before the video coder encodes or decodes the
first CU or PU of a CTB, the video coder may always set the DDV to 0 first. Hence, in
some examples, for each respective CU of the slice, the video coder may, in response to
determining that the respective CU is the first CU of a CTB, set the DDV to an initial
value (e.g., zero).

[0167] In H.264/AVC and other video coding standards, a video coder may use
different entropy codecs in different profiles. For example, a video coder operating in
one profile (e.g., a Baseline profile, an Extended profile, etc.) may use CAVLC to code
syntax elements representing transform coefficients. In this example, a video coder
operating in another profile may use CABAC to entropy code the syntax elements
representing transform coefficients. In accordance with one or more example
techniques of this disclosure related to 3D-AVC or other video coding standards, a
video coder resets the DDV to be zero after the video coder decodes a MB starting a
new MB row and/or the first MB of one slice. In some examples, the video coder only
resets a DDV to zero if the entropy codec is CAVLC and the video coder does not reset
the DDV to zero if the entropy codec is CABAC. In this example, the entropy codec
may be a codec used to entropy encode and entropy decode syntax elements
representing transform coefficients for the current block (e.g., the current MB).
Accordingly, in some examples, the video coder may reset the DDV to zero if an
entropy codec is CAVLC and does not reset the DDV to zero if the entropy coded is
CABAC.

[0168] In accordance with some or all of the techniques of this disclosure described
above, instead of setting DDV to zero for the first CU of a slice, tile, CTB row or CTB,
the video coder may set the DDV to be converted by accessing camera parameters (e.g.,
a global disparity calculated by converting the horizontal displacement of two views).
In some examples, a disparity vector may be converted from a depth value of 128. In
general, the camera parameters may be parameters that may be used for converting
depth information to disparity information. In some examples, camera parameters are
signaled in a SPS or VPS. Thus, in some examples, the video coder may determine the

value to which the DDV is set based at least in part on one or more camera parameters.
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In some such examples, the one or more camera parameters include a horizontal
displacement of two views.
[0169] An example of the proposed method for 3D-HEVC or other video coding
standards is described step by step as follows:
1. A DDV is set to zero before decoding one slice or one picture.
2. For each CTB in decoding order (in a view component with inter-view
prediction enabled), the following apply:
a. For each CU in decoding order, the following apply:
1. Ifthe CU belongs to a CTB that starts a new CTB row, the video
coder sets the DDV to zero.
ii. If the current CU is not intra coded, the video coder invokes an
NBDYV derivation process;

1. If the video coder determines that the NBDV is
unavailable by checking neighboring blocks, the video
coder sets the disparity vector of the current CU to the
DDV.

2. Otherwise, the video coder sets the disparity vector of the
current CU to the result of the NBDV derivation process
(i.e., the NBDV).

iii. The video coder decodes the current CU as described in 3D-
HEVC;
iv. Ifthe current CU is not intra coded, the video coder updates the

DDV to be equal to the disparity vector of the current CU.

[0170] Thus, in accordance with at least one example of this disclosure, for each
respective CU of a slice of a picture of the video data, video encoder 20 may, in
response to determining that the respective CU is the first CU of a CTB row of the
picture or the respective CU is the first CU of the slice, set a DDV to an initial value,
such as 0 or another value. Furthermore, in this example, video encoder 20 may
perform an NBDV process that attempts to determine a disparity vector for the
respective CU. In some examples of this disclosure, performing the NBDV process
involves checking temporal and/or spatial neighboring blocks of a current block (e.g., a

CU, macroblock, etc.) for disparity motion vectors. In such examples, the NBDV
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process may successfully determine a disparity vector for the current block if the NBDV
process is able to identify a temporal or neighboring block that has a disparity motion
vector.

[0171] Furthermore, when performing the NBDV process does not identify an available
disparity vector for the respective CU (e.g., when none of the neighboring blocks has a
disparity motion vector), video encoder 20 may determine that the disparity vector for
the respective CU is equal to the DDV. Furthermore, video encoder 20 may generate,
based in part on the disparity vector for the respective CU, an encoded representation of
a coding block for the respective CU.

[0172] In a similar example, for each respective CU of a slice of a picture of the video
data, video decoder 30 may, in response to determining that the respective CU is the
first CU of a CTB row of the picture or the respective CU is the first CU of the slice, set
a DDV to an initial value, such as 0 or another value. Furthermore, in this example,
video decoder 30 may perform an NBDV process that attempts to determine a disparity
vector for the respective CU. When performing the NBDV process does not identify an
available disparity vector for the respective CU (e.g., when none of the neighboring
blocks has a disparity motion vector), video decoder 30 may determine that the disparity
vector for the respective CU is equal to the DDV. Furthermore, video decoder 30 may
reconstruct, based in part on the disparity vector for the respective CU, a coding block
for the respective CU.

[0173] In some examples, in the context of H.264/AVC and other video coding
standards, video encoder 20 may perform the following actions for each respective
macroblock of a slice of a picture of video data. For example, in response to
determining that the respective macroblock is the first macroblock of a macroblock row
of the picture or the respective macroblock is the first macroblock of the slice, video
encoder 20 may set a DDV to an initial value (e.g., zero). Additionally, video encoder
20 may perform an NBDV process that attempts to determine a disparity vector for the
respective macroblock. When performing the NBDV process does not identify an
available disparity vector for the respective macroblock, video encoder 20 may
determine that the disparity vector for the respective macroblock is equal to the DDV.
Video encoder 20 may generate, based in part on the disparity vector for the respective
macroblock, an encoded representation of a sample block (i.e., coding block) for the

respective macroblock.
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[0174] Similarly, in some examples in the context of H.264/AVC and other video
coding standards, video decoder 30 may perform the following actions for each
respective macroblock of a slice of a picture of video data. Particularly, in response to
determining that the respective macroblock is the first macroblock of a macroblock row
of the picture or the respective macroblock is the first macroblock of the slice, video
decoder 30 may set a DDV to an initial value (e.g., zero). Additionally, video decoder
30 may perform an NBDV process that attempts to determine a disparity vector for the
respective macroblock. When performing the NBDV process does not identify an
available disparity vector for the respective macroblock, video decoder 30 may
determine that the disparity vector for the respective macroblock is equal to the DDV.
Video decoder 30 may reconstruct, based in part on the disparity vector for the
respective macroblock, a sample block (i.e., coding block) for the respective
macroblock.

[0175] FIG. 8 is a block diagram illustrating an example video encoder 20 that may
implement one or more techniques of this disclosure. FIG. 8 is provided for purposes of
explanation and should not be considered limiting of the techniques as broadly
exemplified and described in this disclosure. For purposes of explanation, this
disclosure describes video encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other coding standards or methods.
[0176] In the example of FIG. 8, video encoder 20 includes a prediction processing unit
100, a residual generation unit 102, a transform processing unit 104, a quantization unit
106, an inverse quantization unit 108, an inverse transform processing unit 110, a
reconstruction unit 112, a filter unit 114, a decoded picture buffer 116, and an entropy
encoding unit 118. Prediction processing unit 100 includes an inter-prediction
processing unit 120 and an intra-prediction processing unit 126. Inter-prediction
processing unit 120 includes a motion estimation unit 122 and a motion compensation
unit 124. In other examples, video encoder 20 may include more, fewer, or different
functional components.

[0177] Video encoder 20 may receive video data. Video encoder 20 may encode each
CTU in a slice of a picture of the video data. Each of the CTUs may have (i.e., be
associated with) equally-sized luma coding tree blocks (CTBs) and corresponding CTBs
of the picture. As part of encoding a CTU, prediction processing unit 100 may perform

quad-tree partitioning to divide the CTBs of the CTU into progressively-smaller blocks.
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The smaller blocks may be coding blocks of CUs. For example, prediction processing
unit 100 may partition a CTB associated with a CTU into four equally-sized sub-blocks,
partition one or more of the sub-blocks into four equally-sized sub-sub-blocks, and so
on.

[0178] Video encoder 20 may encode CUs of a CTU to generate encoded
representations of the CUs (i.e., coded CUs). As part of encoding a CU, prediction
processing unit 100 may partition the coding blocks of (i.c., associated with) the CU
among one or more PUs of the CU. Thus, each PU may be associated with a luma
prediction block and corresponding chroma prediction blocks. Video encoder 20 and
video decoder 30 may support PUs having various sizes. The size of a CU may refer to
the size of the luma coding block of the CU and the size of a PU may refer to the size of
a luma prediction block of the PU. Assuming that the size of a particular CU is 2Nx2N,
video encoder 20 and video decoder 30 may support PU sizes of 2Nx2N or NxN for
intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, or similar for
inter prediction. Video encoder 20 and video decoder 30 may also support asymmetric
partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N for inter prediction.
[0179] Inter-prediction processing unit 120 may generate predictive data for a PU by
performing inter prediction on each PU of a CU. The predictive data for the PU may
include predictive blocks of the PU and motion information for the PU. Inter-prediction
processing unit 120 may perform different operations for a PU of a CU depending on
whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs are intra
predicted. Hence, if the PU is in an I slice, inter-prediction processing unit 120 does not
perform inter prediction on the PU. Thus, for video blocks encoded in I-mode, the
predictive block is formed using spatial prediction from previously-encoded
neighboring blocks within the same frame.

[0180] PUs in a P slice may be intra predicted or uni-directionally inter predicted. For
instance, if a PU is in a P slice, motion estimation unit 122 may search the reference
pictures in a list of reference pictures (e.g., “RefPicList0”) for a reference region for the
PU. The reference region for the PU may be a region, within a reference picture, that
contains sample blocks that most closely correspond to the prediction blocks of the PU.
Motion estimation unit 122 may generate a reference index that indicates a position in
RefPicList0 of the reference picture containing the reference region for the PU. In

addition, motion estimation unit 122 may generate a motion vector that indicates a
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spatial displacement between a prediction block of the PU and a reference location
associated with the reference region. For instance, the motion vector may be a two-
dimensional vector that provides an offset from the coordinates in the current decoded
picture to coordinates in a reference picture. Motion estimation unit 122 may output the
reference index and the motion vector as the motion information of the PU. Motion
compensation unit 124 may generate the predictive blocks of the PU based on actual or
interpolated samples at the reference location indicated by the motion vector of the PU.
[0181] PUs in a B slice may be intra predicted, uni-directionally inter predicted, or bi-
directionally inter predicted. Hence, if a PU is in a B slice, the motion estimation unit
122 may perform uni-prediction or bi-prediction for the PU. To perform uni-prediction
for the PU, motion estimation unit 122 may search the reference pictures of RefPicList0
or a second reference picture list (“RefPicList]”) for a reference region for the PU.
Motion estimation unit 122 may output, as the motion information of the PU, a
reference index that indicates a position in RefPicList0 or RefPicList] of the reference
picture that contains the reference region, a motion vector that indicates a spatial
displacement between a sample block of the PU and a reference location associated with
the reference region, and one or more prediction direction indicators that indicate
whether the reference picture is in RefPicList0 or RefPicListl. Motion compensation
unit 124 may generate the predictive blocks of the PU based at least in part on actual or
interpolated samples at the reference region indicated by the motion vector of the PU.
[0182] To perform bi-directional inter prediction for a PU, motion estimation unit 122
may scarch the reference pictures in RefPicList0 for a reference region for the PU and
may also search the reference pictures in RefPicList] for another reference region for
the PU. Motion estimation unit 122 may generate reference indexes that indicate
positions in RefPicList0 and RefPicList] of the reference pictures that contain the
reference regions. In addition, motion estimation unit 122 may generate motion vectors
that indicate spatial displacements between the reference locations associated with the
reference regions and a sample block of the PU. The motion information of the PU may
include the reference indexes and the motion vectors of the PU. Motion compensation
unit 124 may generate the predictive blocks of the PU based at least in part on actual or
interpolated samples at the reference region indicated by the motion vector of the PU.
[0183] Intra-prediction processing unit 126 may generate predictive data for a PU by

performing intra prediction on the PU. The predictive data for the PU may include
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predictive blocks for the PU and various syntax elements. Intra-prediction processing
unit 126 may perform intra prediction on PUs in I slices, P slices, and B slices.

[0184] To perform intra prediction on a PU, intra-prediction processing unit 126 may
use multiple intra prediction modes to generate multiple sets of predictive data for the
PU. Intra-prediction processing unit 126 may generate a predictive block for a PU
based on samples of neighboring PUs. The neighboring PUs may be above, above and
to the right, above and to the left, or to the left of the PU, assuming a left-to-right, top-
to-bottom encoding order for PUs, CUs, and CTUs. Intra-prediction processing unit
126 may use various numbers of intra prediction modes. In some examples, the number
of intra prediction modes may depend on the size of the prediction blocks of the PU.
[0185] In some examples, prediction processing unit 100 may implement inter-view
motion prediction and/or inter-view residual prediction. To implement inter-view
motion prediction and/or inter-view residual prediction, prediction processing unit 100
may perform an NBDV derivation process to determine disparity vectors for blocks
(e.g., CUs, PU, etc) of a slice. Prediction processing unit 100 may use the disparity
vectors for inter-view motion prediction and/or inter-view residual prediction.

[0186] In accordance with one or more techniques of this disclosure, for each respective
CU of a slice, prediction processing unit 100 may set, in response to determining that
the respective CU is the first CU of a CTB row of the picture or the respective CU is the
first CU of the slice, a DDV to an initial value. Furthermore, prediction processing unit
100 may perform an NBDV process that attempts to determine a disparity vector for the
respective CU. When performing the NBDV process does not identify an available
disparity vector for the respective CU, prediction processing unit 100 may determine
that the disparity vector for the respective CU is equal to the DDV. In this way,
prediction processing unit 100 may determine disparity vectors for CUs of the slice.
[0187] Prediction processing unit 100 may select the predictive data for PUs of a CU
from among the predictive data generated by inter-prediction processing unit 120 for the
PUs or the predictive data generated by intra-prediction processing unit 126 for the PUs.
In some examples, prediction processing unit 100 selects the predictive data for the PUs
of the CU based on rate/distortion metrics of the sets of predictive data. The predictive

blocks of the selected predictive data may be referred to herein as the selected predictive
blocks.
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[0188] Residual generation unit 102 may generate, based on the coding blocks (e.g.,
luma, Cb and Cr coding blocks) of a CU and the selected predictive blocks (e.g., luma,
Cb and Cr blocks) of the PUs of the CU, residual blocks (e.g., luma, Cb and Cr residual
blocks) of the CU. For instance, residual generation unit 102 may generate the residual
blocks of the CU such that each sample in the residual blocks has a value equal to a
difference between a sample in a coding block of the CU and a corresponding sample in
a corresponding selected predictive block of a PU of the CU.

[0189] Transform processing unit 104 may perform quad-tree partitioning to partition
the residual blocks of (i.e., associated with) a CU into transform blocks of (i.e.,
associated with) TUs of the CU. Thus, a TU may have (i.c., be associated with) a luma
transform block and two chroma transform blocks. The sizes and positions of the luma
and chroma transform blocks of TUs of a CU may or may not be based on the sizes and
positions of prediction blocks of the PUs of the CU. A quad-tree structure known as a
“residual quad-tree” (RQT) may include nodes associated with each of the regions. The
TUs of a CU may correspond to leaf nodes of the RQT.

[0190] Transform processing unit 104 may generate coefficient blocks for each TU of a
CU by applying one or more transforms to the transform blocks of the TU. Transform
processing unit 104 may apply various transforms to a transform block of (i.e.,
associated with) a TU. For example, transform processing unit 104 may apply a
discrete cosine transform (DCT), a directional transform, or a conceptually similar
transform to a transform block. In some examples, transform processing unit 104 does
not apply transforms to a transform block. In such examples, the transform block may
be treated as a coefficient block.

[0191] Quantization unit 106 may quantize the transform coefficients in a coefficient
block. The quantization process may reduce the bit depth associated with some or all of
the transform coefficients. For example, an #-bit transform coefficient may be rounded
down to an m-bit transform coefficient during quantization, where # is greater than m.
Quantization unit 106 may quantize a coefficient block associated with a TU of a CU
based on a quantization parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the coefficient blocks associated
with a CU by adjusting the QP value associated with the CU. Quantization may
introduce loss of information, thus quantized transform coefficients may have lower

precision than the original ones.
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[0192] Inverse quantization unit 108 and inverse transform processing unit 110 may
apply inverse quantization and one or more inverse transforms to a coefficient block,
respectively, to reconstruct a residual block from the coefficient block. Reconstruction
unit 112 may add the reconstructed residual block to corresponding samples from one or
more predictive blocks generated by prediction processing unit 100 to produce a
reconstructed transform block of (i.e., associated with) a TU. By reconstructing
transform blocks for each TU of a CU in this way, video encoder 20 may reconstruct the
coding blocks of the CU.

[0193] Filter unit 114 may perform one or more deblocking operations to reduce
blocking artifacts in the coding blocks of (i.¢., associated with) a CU. Decoded picture
buffer 116 may store the reconstructed coding blocks after filter unit 114 performs the
one or more deblocking operations on the reconstructed coding blocks. Inter-prediction
processing unit 120 may use a reference picture that contains the reconstructed coding
blocks to perform inter prediction on PUs of other pictures. In addition, intra-prediction
processing unit 126 may use reconstructed coding blocks in decoded picture buffer 116
to perform intra prediction on other PUs in the same picture as the CU.

[0194] Entropy encoding unit 118 may receive data from other functional components
of video encoder 20. For example, entropy encoding unit 118 may receive coefficient
blocks from quantization unit 106 and may receive syntax elements from prediction
processing unit 100. Entropy encoding unit 118 may perform one or more entropy
encoding operations on the data to generate entropy-encoded data. For example,
entropy encoding unit 118 may perform a context-adaptive variable length coding
(CAVLC) operation, a CABAC operation, a variable-to-variable (V2V) length coding
operation, a syntax-based context-adaptive binary arithmetic coding (SBAC) operation,
a Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-
Golomb encoding operation, or another type of entropy encoding operation on the data.
[0195] Video encoder 20 may output a bitstream that includes entropy-encoded data
generated by entropy encoding unit 118. For instance, the bitstream may include data
that represent a RQT for a CU. The bitstream may also include syntax elements that are
not entropy encoded.

[0196] FIG. 9 is a block diagram illustrating an example video decoder 30 that may
implement one or more techniques described in this disclosure. FIG. 9 is provided for

purposes of explanation and is not limiting on the techniques as broadly exemplified



WO 2014/194239 PCT/US2014/040312

58

and described in this disclosure. For purposes of explanation, this disclosure describes
video decoder 30 in the context of HEVC coding. However, the techniques of this
disclosure may be applicable to other coding standards or methods.

[0197] In the example of FIG. 9, video decoder 30 includes an entropy decoding unit
150, a prediction processing unit 152, an inverse quantization unit 154, an inverse
transform processing unit 156, a reconstruction unit 158, a filter unit 160, and a decoded
picture buffer 162. Prediction processing unit 152 includes a motion compensation unit
164 and an intra-prediction processing unit 166. In other examples, video decoder 30
may include more, fewer, or different functional components.

[0198] Entropy decoding unit 150 may receive NAL units and may parse the NAL units
to decode syntax elements. Entropy decoding unit 150 may entropy decode entropy-
encoded syntax elements in the NAL units. Prediction processing unit 152, inverse
quantization unit 154, inverse transform processing unit 156, reconstruction unit 158,
and filter unit 160 may generate decoded video data based on the syntax elements
extracted from the bitstream.

[0199] The NAL units of the bitstream may include coded slice NAL units. As part of
decoding the bitstream, entropy decoding unit 150 may extract and entropy decode
syntax elements from the coded slice NAL units. Each of the coded slices may include
a slice header and slice data. The slice header may contain syntax elements pertaining
to a slice. The syntax elements in the slice header may include a syntax element that
identifies a PPS associated with a picture that contains the slice.

[0200] In addition to decoding syntax elements from the bitstream, video decoder 30
may perform reconstruction operations on CUs. To perform a reconstruction operation
on a CU, video decoder 30 may perform a reconstruction operation on each TU of the
CU. By performing the reconstruction operation for each TU of the CU, video decoder
30 may reconstruct residual blocks of the CU.

[0201] As part of performing a reconstruction operation on a TU of a CU, inverse
quantization unit 154 may inverse quantize, i.¢., de-quantize, coefficient blocks
associated with the TU. Inverse quantization unit 154 may use a QP value associated
with the CU of the TU to determine a degree of quantization and, likewise, a degree of
inverse quantization for inverse quantization unit 154 to apply.

[0202] After inverse quantization unit 154 inverse quantizes a coefficient block, inverse

transform processing unit 156 may apply one or more inverse transforms to the
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coefficient block in order to generate a residual block associated with the TU. For
example, inverse transform processing unit 156 may apply an inverse DCT, an inverse
integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse rotational
transform, an inverse directional transform, or another inverse transform to the
coefficient block.

[0203] If a PU is encoded using intra prediction, intra-prediction processing unit 166
may perform intra prediction to generate predictive blocks for the PU. Intra-prediction
processing unit 166 may use an intra prediction mode to generate the predictive blocks
(e.g., luma, Cb and Cr predictive blocks) for the PU based on the prediction blocks of
spatially-neighboring PUs. Intra-prediction processing unit 166 may determine the intra
prediction mode for the PU based on one or more syntax elements decoded from the
bitstream.

[0204] Prediction processing unit 152 may construct a first reference picture list
(RefPicList0) and a second reference picture list (RefPicList]) based on syntax elements
extracted from the bitstream. Furthermore, if a PU is encoded using inter prediction,
entropy decoding unit 150 may extract motion information for the PU. Motion
compensation unit 164 may determine, based on the motion information of the PU, one
or more reference regions for the PU. Motion compensation unit 164 may generate,
based on samples blocks at the one or more reference blocks for the PU, predictive
blocks (e.g., luma, Cb and Cr predictive blocks) for the PU.

[0205] In some examples, prediction processing unit 152 may implement inter-view
motion prediction and/or inter-view residual prediction. To implement inter-view
motion prediction and/or inter-view residual prediction, prediction processing unit 152
may perform an NBDV derivation process to determine disparity vectors for blocks
(e.g., CUs, PU, etc) of a slice. Prediction processing unit 152 may use the disparity
vectors for inter-view motion prediction and/or inter-view residual prediction.

[0206] In accordance with one or more techniques of this disclosure, for each respective
CU of a slice, prediction processing unit 152 may set, in response to determining that
the respective CU is the first CU of a CTB row of the picture or the respective CU is the
first CU of the slice, a DDV to an initial value. Furthermore, prediction processing unit
152 may perform an NBDV process that attempts to determine a disparity vector for the
respective CU. When performing the NBDV process does not identify an available

disparity vector for the respective CU, prediction processing unit 152 may determine
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that the disparity vector for the respective CU is equal to the DDV. In this way,
prediction processing unit 152 may determine disparity vectors for CUs of the slice.
[0207] Reconstruction unit 158 may use transform blocks (e.g., luma, Cb and Cr
transform blocks) associated with TUs of a CU and the predictive blocks (e.g., luma, Cb
and Cr blocks) of the PUs of the CU, i.e., either intra-prediction data or inter-prediction
data, as applicable, to reconstruct coding blocks (e.g., luma, Cb and Cr coding blocks)
of the CU. For example, reconstruction unit 158 may add samples of the transform
blocks (e.g., luma, Cb and Cr transform blocks) to corresponding samples of the
predictive blocks (e.g., luma, Cb and Cr blocks) to reconstruct the coding blocks (e.g.,
luma, Cb and Cr coding blocks) of the CU.

[0208] Filter unit 160 may perform a deblocking operation to reduce blocking artifacts
associated with the coding blocks (e.g., luma, Cb and Cr coding blocks) of the CU.
Video decoder 30 may store the coding blocks (e.g., the luma, Cb and Cr coding blocks)
of the CU in decoded picture buffer 162. Decoded picture buffer 162 may provide
reference pictures for subsequent motion compensation, intra prediction, and
presentation on a display device, such as display device 32 of FIG. 1. For instance,
video decoder 30 may perform, based on the blocks (e.g., luma, Cb and Cr blocks) in
decoded picture buffer 162, intra prediction or inter prediction operations on PUs of
other CUs. In this way, video decoder 30 may obtain, from the bitstream, transform
coefficient levels of a coefficient block, inverse quantize the transform coefficient
levels, and apply a transform to the transform coefficient levels to generate a transform
block. Furthermore, video decoder 30 may generate, based at least in part on the
transform block, a coding block. Video decoder 30 may output the coding block for
display.

[0209] FIG. 10 is a flowchart illustrating an example operation of a video coder, in
accordance with one or more techniques of this disclosure. FIG. 10 is provided as an
example. Other example operations of video coders in accordance with the techniques
of this disclosure may include more, fewer, or different actions. Although the example
of FIG. 10 is described with reference to CUs and CTUs, similar examples are
contemplated in this disclosure for other types of blocks, such as macroblocks,
macroblock partitions, and so on.

[0210] In the example of FIG. 10, the video coder (e.g., video encoder 20 or video
decoder 30) may set a DDV to zero (200). For instance, the video coder may set both
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the horizontal component and the vertical component of the DDV to zero. The video
coder may set the DDV to zero before coding (e.g., encoding or decoding) a slice or
picture.

[0211] Furthermore, in the example of FIG. 10, the video coder may perform actions
(202) through (222) with respect to each CTB of the current slice. In this way, the video
coder may code each of the CTBs of the current slice. Accordingly, in the example of
FIG. 10, the video coder may determine whether there are any CTBs in a current slice
remaining to be coded (i.c., remaining CTBs) (202). If there are one or more remaining
CTBs in the current slice (“YES” of 202), the video coder may code each CU of a
current CTU. Accordingly, if there are one or more CUs of the current CTU remaining
to be coded (“YES” of 202), the video coder may determine whether there are any CUs
of the current CTU remaining to be coded (i.c., remaining CUs) (204).

[0212] If there are one or more remaining CUs of the current CTU (“YES” of 204), the
video coder may determine whether the current CTU is at the start of a new CTB row
(206). Responsive to determining that the current CTU is at the start of a new CTB row
(“YES” of 206), the video coder may set the DDV to zero (208). After setting the DDV
to zero or determining that the current CTU is not at the start of a new CTB row (“NO”
of 206), the video coder may determine whether the current CU of the current CTU is
intra coded (210).

[0213] Responsive to determining that the current CU is not intra coded (“NO” of 210),
the video coder may invoke an NBDV derivation process (212). Thus, in the example
of FIG. 10 and potentially other examples of this disclosure, the video coder may
perform the NBDV process only if the current CU is not intra coded.

[0214] The NBDYV derivation process may attempt to determine a disparity vector for
the current CU based on a disparity motion vector of a neighboring block. For example,
when the video coder performs the NBDV derivation process, the video coder may
determine a temporal neighboring block. If the temporal neighboring block has a
disparity motion vector, the video coder may set the disparity vector of the current block
(e.g., CU, macroblock, etc.) based on the disparity motion vector of the temporal
neighboring block. For instance, the video coder may set the disparity vector of the
current block equal to the disparity motion vector of the temporal neighboring block.
[0215] Furthermore, in this example, if the temporal neighboring block does not have a

disparity motion vector, the video coder may check spatial neighboring blocks for a
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spatial neighboring block that has a disparity motion vector. In this example, if one of
the spatial neighboring blocks has a disparity motion vector, the video coder may set the
disparity vector of the current block based on (e.g., equal to) the disparity motion vector
of the spatial neighboring block. In this example, the NBDV derivation process may be
unsuccessful in determining a disparity vector for the current block if none of the
temporal or spatial neighboring blocks checked has a disparity motion vector. In other
words, in this and other examples, the NBDV derivation process does not identify an
available disparity vector for the current block if none of the temporal or spatial
neighboring blocks checked has a disparity motion vector.

[0216] In the example of FIG. 10, the video coder may determine whether the NBDV
derivation process identifies a disparity vector for the current CU (i.c., determines an
NBDV is available) (214). 1f the NBDV is not available (“NO” of 214), the video coder
may set the disparity vector of the current CU to the DDV (216). Otherwise, if the
NBDYV is available (“YES” of 214), the video coder may set the disparity vector of the
current CU to the NBDV (218). Thus, in the example of FIG. 10 and potentially other
examples of this disclosure, when performing the NBDV process does determine an
available disparity vector for the respective CU, the video coder may set the disparity
vector for the respective CU equal to the available disparity vector identified by the
NBDYV process (i.c., the NBDV).

[0217] Furthermore, after setting the disparity vector of the current CU, the video coder
may update the DDV to be equal to the disparity vector of the current CU (220). Thus,
in the example of FIG. 10 and potentially other examples of this disclosure, in response
to determining that the respective CU is not intra coded, the video coder may update the
DDV to be equal to the disparity vector of the respective CU.

[0218] After updating the DDV, or after determining that the current CU is intra coded
(“YES” of 210), the video coder may code (¢.g., encode or decode) the current CU
(222). For example, the video coder may reconstruct, based in part on the disparity
vector for the respective CU, a coding block for the respective CU. In some examples,
the video coder may generate, based in part on the disparity vector for the respective
CU, an encoded representation of a coding block for the respective CU.

[0219] FIG. 11A is a flowchart illustrating an example operation of video encoder 20,

in accordance with one or more techniques of this disclosure. FIG. 11A is provided as
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an example. Other example operations of video encoders in accordance with the
techniques of this disclosure may include more, fewer, or different actions.

[0220] In the example of FIG. 11A, video encoder 20 may perform actions (300)
through (306) for each respective CU of a slice of a picture of video data. Particularly,
in response to determining that the respective CU is the first CU of a CTB row of the
picture or the respective CU is the first CU of the slice, video encoder 20 may set a
DDV to an initial value (e.g., zero) (300). Additionally, video encoder 20 may perform
an NBDV process that attempts to determine an available disparity vector for the
respective CU (302). When performing the NBDV process does not determine an
available disparity vector for the respective CU, video encoder 20 may determine that
the disparity vector for the respective CU is equal to the DDV (304).

[0221] Video encoder 20 may generate, based in part on the disparity vector for the
respective CU, an encoded representation of a coding block for the respective CU (306).
For example, as part of generating the encoded representation of the coding block for
the respective CU based in part on the disparity vector for the respective CU, video
encoder 20 may use the disparity vector for the respective CU to perform inter-view
motion prediction and/or inter-view residual prediction for the respective CU, as
described elsewhere in this disclosure.

[0222] FIG. 11B is a flowchart illustrating an example operation of video decoder 30, in
accordance with one or more techniques of this disclosure. FIG. 11B is provided as an
example. Other example operations of video decoders in accordance with the
techniques of this disclosure may include more, fewer, or different actions.

[0223] In the example of FIG. 11B, video decoder 30 may perform actions (350)
through (356) for each respective CU of a slice of a picture of video data. Particularly,
in response to determining that the respective CU is the first CU of a CTB row of the
picture or the respective CU is the first CU of the slice, video decoder 30 may set a
DDV to an initial value (e.g., zero) (350). Additionally, video decoder 30 may perform
an NBDV process that attempts to determine an available disparity vector for the
respective CU (352). When performing the NBDV process does not determine an
available disparity vector for the respective CU, video decoder 30 may determine that
the disparity vector for the respective CU is equal to the DDV (354).

[0224] Video decoder 30 may reconstruct, based in part on the disparity vector for the
respective CU, a coding block for the respective CU (356). For example, as part of
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reconstructing the coding block for the respective CU based in part on the disparity
vector for the respective CU, the video coder may use the disparity vector for the
respective CU to perform inter-view motion prediction and/or inter-view residual
prediction for the respective CU, as described elsewhere in this disclosure.

[0225] FIG. 12A is a flowchart illustrating an example operation of video encoder 20,
in accordance with one or more techniques of this disclosure. FIG. 12A is provided as
an example. Other example operations of video encoders in accordance with the
techniques of this disclosure may include more, fewer, or different actions.

[0226] In the example of FIG. 12A, video encoder 20 may perform actions (400)
through (406) for each respective macroblock of a slice of a picture of video data.
Particularly, in response to determining that the respective macroblock is the first
macroblock of a macroblock row of the picture or the respective macroblock is the first
macroblock of the slice, video encoder 20 may set a DDV to an initial value (e.g., zero)
(400). Additionally, video encoder 20 may perform an NBDV process that attempts to
determine a disparity vector for the respective macroblock (402). When performing the
NBDYV process does not identify an available disparity vector for the respective
macroblock, video encoder 20 may determine that the disparity vector for the respective
macroblock is equal to the DDV (404).

[0227] Video encoder 20 may generate, based in part on the disparity vector for the
respective macroblock, an encoded representation of a sample block (i.e., a coding
block) for the respective macroblock (406). For example, as part of generating the
encoded representation of the sample block for the respective macroblock based in part
on the disparity vector for the respective macroblock, video encoder 20 may use the
disparity vector for the respective macroblock to perform inter-view motion prediction
and/or inter-view residual prediction for the respective macroblock, as described
elsewhere in this disclosure.

[0228] FIG. 12B is a flowchart illustrating an example operation of video decoder 30, in
accordance with one or more techniques of this disclosure. FIG. 12B is provided as an
example. Other example operations of video decoders in accordance with the
techniques of this disclosure may include more, fewer, or different actions.

[0229] In the example of FIG. 12B, video decoder 30 may perform actions (450)
through (456) for each respective macroblock of a slice of a picture of video data.

Particularly, in response to determining that the respective macroblock is the first
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macroblock of a macroblock row of the picture or the respective macroblock is the first
macroblock of the slice, video decoder 30 may set a DDV to an initial value (e.g., zero)
(450). Additionally, video decoder 30 may perform an NBDV process that attempts to
determine a disparity vector for the respective macroblock (452). When performing the
NBDYV process does not identify an available disparity vector for the respective
macroblock, video decoder 30 may determine that the disparity vector for the respective
macroblock is equal to the DDV (454).

[0230] Video decoder 30 may reconstruct, based in part on the disparity vector for the
respective macroblock, a sample block for the respective macroblock (456). For
example, as part of reconstructing the sample block for the respective macroblock based
in part on the disparity vector for the respective macroblock, the video coder may use
the disparity vector for the respective macroblock to perform inter-view motion
prediction and/or inter-view residual prediction for the respective macroblock, as
described elsewhere in this disclosure

[0231] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0232] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a



WO 2014/194239 PCT/US2014/040312

66

computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0233] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable gate arrays (FPGAS), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0234] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0235] Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A method of decoding video data, the method comprising;:
for each respective coding unit (CU) of a slice of a picture of the video data:
in response to determining that the respective CU is the first CU of a
coding tree block (CTB) row of the picture or the respective CU is the first CU
of the slice, setting a derived disparity vector (DDV) to an initial value;
performing a neighbor-based disparity vector derivation (NBDV) process
that attempts to determine an available disparity vector for the respective CU;
when performing the NBDV process does not determine an available
disparity vector for the respective CU, determining that the disparity vector for
the respective CU is equal to the DDV} and
reconstructing, based in part on the disparity vector for the respective

CU, a coding block for the respective CU.

2. The method of claim 1, further comprising, for each respective CU of the slice:
in response to determining that the respective CU is the first CU of a tile of the

picture, setting the DDV to the initial value.

3. The method of claim 1, wherein the slice is decoded using wavefront parallel
processing (WPP).
4. The method of claim 1, further comprising, for each respective CU of the slice:

in response to determining that the respective CU is the first CU of a CTB,
setting the DDV to the initial value.

5. The method of claim 1, wherein the initial value is zero.

6. The method of claim 1, further comprising determining the initial value based at

least in part on one or more camera parameters, wherein the one or more camera

parameters include a horizontal displacement of two views.
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7. The method of claim 1, further comprising, in response to determining that the
respective CU is not intra coded, updating the DDV to be equal to the disparity vector
of the respective CU.

8. The method of claim 1, further comprising: when performing the NBDV process
does determine an available disparity vector for the respective CU, setting the disparity
vector for the respective CU equal to the available disparity vector identified by the
NBDYV process.

9. The method of claim 1, further comprising performing the NBDV process only

if the current CU is not intra coded.

10. A method of encoding video data, the method comprising:
for each respective coding unit (CU) of a slice of a picture of the video data:
in response to determining that the respective CU is the first CU of a
coding tree block (CTB) row of the picture or the respective CU is the first CU
of the slice, setting a derived disparity vector (DDV) to an initial value;
performing a neighbor-based disparity vector derivation (NBDV) process
that attempts to determine an available disparity vector for the respective CU;
when performing the NBDV process does not determine an available
disparity vector for the respective CU, determining that the disparity vector for
the respective CU is equal to the DDV} and
generating, based in part on the disparity vector for the respective CU, an

encoded representation of a coding block for the respective CU.

11.  The method of claim 10, further comprising, for each respective CU of the slice:
in response to determining that the respective CU is the first CU of a tile of the

picture, setting the DDV to the initial value.

12.  The method of claim 10, wherein the slice is encoded using wavefront parallel

processing (WPP).
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13.  The method of claim 10, further comprising, for each respective CU of the slice:
in response to determining that the respective CU is the first CU of a CTB,
setting the DDV to the initial value.

14, The method of claim 10, wherein the initial value is zero.

15.  The method of claim 10, further comprising determining the initial value based
at least in part on one or more camera parameters, wherein the one or more camera

parameters include a horizontal displacement of two views.

16.  The method of claim 10, further comprising, in response to determining that the
respective CU is not intra coded, updating the DDV to be equal to the disparity vector
of the respective CU.

17.  The method of claim 10, further comprising: when performing the NBDV
process does determine an available disparity vector for the respective CU, setting the
disparity vector for the respective CU equal to the available disparity vector identified

by the NBDV process.

18.  The method of claim 10, further comprising: performing the NBDV process only

if the current CU is not intra coded.
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19. A device comprising:
a buffer storing decoded pictures; and
one or more processors configured such that, for each respective coding unit
(CU) of a slice of a picture of video data, the one or more processors:
in response to determining that the respective CU is the first CU of a
coding tree block (CTB) row of the picture or the respective CU is the first CU
of the slice, set a derived disparity vector (DDV) to an initial value;
perform a neighbor-based disparity vector derivation (NBDV) process
that attempts to determine an available disparity vector for the respective CU;
and
when performing the NBDV process does not determine an available
disparity vector for the respective CU, determine that the disparity vector for the

respective CU is equal to the DDV.

20.  The device of claim 19, wherein the one or more processors are configured such
that, for each respective CU of the slice, the one or more processors:

in response to determining that the respective CU is the first CU of a tile of the
picture, set the DDV to the initial value.

21.  The device of claim 19, wherein the slice is coded using wavefront parallel
processing (WPP).
22.  The device of claim 19, wherein the one or more processors are configured such

that, for each respective CU of the slice, the one or more processors:
in response to determining that the respective CU is the first CU of a CTB, set
the DDV to the initial value.

23. The device of claim 19, wherein the initial value is zero.

24.  The device of claim 19, wherein the one or more processors are configured to
determine the initial value based at least in part on one or more camera parameters,
wherein the one or more camera parameters include a horizontal displacement of two

Views.



WO 2014/194239 PCT/US2014/040312

71

25.  The device of claim 19, wherein the one or more processors are configured to
update, in response to determining that the respective CU is not intra coded, the DDV to

be equal to the disparity vector of the respective CU.

26.  The device of claim 19, wherein the one or more processors are configured to

perform the NBDV process only if the current CU is not intra coded.

27.  The device of claim 19, wherein the one or more processors are configured to
reconstruct, based in part on the disparity vector for the respective CU, a coding block

for the respective CU.

28.  The device of claim 19, wherein the one or more processors are configured to
generate, based in part on the disparity vector for the respective CU, an encoded

representation of a coding block for the respective CU.

29. A method of decoding video data, the method comprising;:

for each respective macroblock of a slice of a picture of the video data:

in response to determining that the respective macroblock is the first
macroblock of a macroblock row of the picture or the respective macroblock is
the first macroblock of the slice, setting a derived disparity vector (DDV) to an
initial value;

performing a neighbor-based disparity vector derivation (NBDV) process
that attempts to determine an available disparity vector for the respective
macroblock;

when performing the NBDV process does not determine an available
disparity vector for the respective macroblock, determining that the disparity
vector for the respective macroblock is equal to the DDV; and

reconstructing, based in part on the disparity vector for the respective

macroblock, a coding block for the respective macroblock.
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30.  The method of claim 29, further comprising: resetting the DDV to zero if an
entropy codec is context-adaptive variable length coding (CAVLC) and not resetting the
DDV to zero if the entropy coded is context-adaptive binary arithmetic coding
(CABACQ).
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