A transportable, prefabricated structure with internal modules and adapted for obtaining a state of wellness, includes an external containing structure (100) having a rectangular parallelepiped geometric form overall, with the walls characterized by the presence of windows (101), by an access door (102) and by at least one exit door (106). The external containing structures (100) internally include internal scalar modules (200) assigned the following functions: sauna (210), Turkish bath or caldarium (211), hydromassage (212), massages (213), exercise (214), entrance/access (220), changing room/entrance-access (221), pedicure/manicure (222) and showers-bathrooms/entrance-access (223), relaxation (250), and emotional showers (251).
PREFABRICATED STRUCTURE WITH INTERNAL MODULES FOR OBTAINING PSYCHOPHYSICAL WELLBEING

FIELD OF THE ART

[0001] The present patent application in general refers to the field of installable prefabricated structures, dedicated for specific purposes, more in particular the invention regards an innovative structure prefabricated with internal modules suitable for obtaining a state of psychophysical wellbeing in the users.

[0002] The invention is applicable in any field where one such structure type can be advantageously used, but preferably it regards the large “wellness” and leisure sector.

PRIOR ART

[0003] The term “wellness” is quickly gaining an important place in everyday language. In the fast-paced world of health, the consumer’s attention is continuously on the move, rapidly transforming, so that it is now the time for “wellness”, intended as the holistic development of the pre-existing “fitness” sector.

[0004] The resulting concept, therefore, after the consolidation of the “fitness” sector, which regards the search for a dynamic psychophysical state through a suitable motor activity, is that which incorporates easier physical activity into “wellness”, activity that is more conceptualized, more meditative. Even if it is difficult to assign an exact definition to the term “wellness”, it can be stated that this represents a manner for reaching one’s inner sense of wellbeing, through a series of practices that range from easy exercise to thermal treatments, from massages to alternative therapies.

[0005] On one hand, therefore, the request for structures oriented around “living well” has increased, as seen from the growth of interest in health, intended as “wellness”, physical shape, and body practices (massages, sauna, hydromassage, Turkish bath, caldarium, frigidarium), on the other hand there is no widespread network of centers which can ensure treatment continuity for users in movement during vacations, work trips, leisure time and big events.

[0006] Currently, in fact, not all the accommodation and recreational structures can offer a service of such type, and this is due both to the lack of suitable spaces and because these are often seasonal structures, so that investing in a stable structure equipped for “wellness” activities could be unsustainable or non-economic. Examples of such structures can include tourist ports, golf courses, hotels, campgrounds, bathing establishments, places where tournaments and sports events are held, etc., in other words, all those accommodation structures in which the inflow is definitely concentrated during a seasonal period, and therefore the request for additional services is only high for fairly limited time periods.

[0007] Seasonal structures and thus the organizers of medium-term events do not find an investment oriented towards a stable structure to be profitable. Often, such a structure is not obtainable due to the lack of building spaces, municipal authorizations and suitable infrastructures.

[0008] Also, even if there currently exist various prefabricated structures to be used as different structures such as offices, homes, ticket counters, store-rooms, meeting places etc., such structures used as settings for obtaining the aforesaid “wellness” state are poorly adapted for the specific purpose since they would be arrangements of pre-existing structures and thus lack the rigid specificity requirements requested in the field. It must be added that the structures of the prior art total lack the concept of extreme versatility, self-sufficiency and easy mobility which should distinguish them, especially in a specific context such as that where there is a massive but not continuous frequenting of users. Thus, the primary object of the present invention is that, in general, of meeting the aforesaid needs, by means of making a prefabricated structure specifically oriented towards the wellness of the person, or towards the specific “wellness” state.

[0009] A still more specific object is that of providing a structure conceived for being modular, ergonomic, optimized in space, easily transportable, completely self-sufficient, placeable even in narrow spaces and installable in limited time periods. A structure that, upon completed use, can be quickly removed and subsequently placed in the same location or elsewhere.

[0010] Other advantages of the invention are clear from the detailed description of an exemplifying and non-limiting embodiment thereof, illustrated below.

DESCRIPTION OF THE INVENTION

[0011] The innovative concept underlying the present invention consists of providing a prefabricated structure with internal modules, specifically designed for creating a state of wellness in the person who uses it and that at the same time is modular, completely self-sufficient, ergonomic, optimized in space, easily transportable and with minimum size. The innovative prefabricated structure comprises an external containing structure, which includes different internal scalar modules that can be mutually assembled with various combinations. The manner of arrangement of the modules creates a wellness path which permits fully appreciating the benefits of the treatment. As will be better specified below, the aforesaid internal scalar modules represent settings in which the specific activities for which they were designed are carried out, i.e. achieving the aforesaid state of “wellness” sought by users of the same structure.

[0012] As an exemplifying and non-limiting example of the invention, we can relate that there exist internal scalar modules comprising the sauna room, the bathroom, the entrance/ access room, the room used for the massages, for the hydromassages, for exercise and so on.

[0013] With regard to the optimization of the spaces, connected with the ergonomics concept discussed above, it must be said that this results from the careful design of every single internal scalar module, so as to ensure the maximum availability of the equipment in minimum space. The design occurs as a function of the study related to the activity undertaken by the user of the structure and to the use of every single component present in the module itself, in particular taking under consideration the use sequence of the equipment and services present.

[0014] Regarding the aforesaid concept of self-sufficiency, this is a variable based on the type and level of self-sufficiency that one wishes to obtain from the prefabricated inventive structure.

[0015] In particular, regarding the hydraulic load plant, this can be conceived so that it can be connected to a pre-existing onsite water main and/or it can be conceived for using at least one water tank, preferably situated in the space comprised between the top of the module assigned the function of showers-bathrooms/entrance-access and the roof of the external containing structure, having a total volume com-
prised between 2,000 liters and 500 liters and more preferably is 800 liters. In a further embodiment, the water related to the hydraulic load plant can be in part heated by means of a boiler device and/or solar panels. Regarding the hydraulic discharge plant, this can be achieved by means of a plant that directly discharges into the suitable ducts present onsite; if not available, the blackwater (waste) can be stored in suitable containers preferably placed at the base of the module, assigned the function of showers-bathrooms/entrance-access, that can be drawn and emptied each time. In a further alternative embodiment of the present invention, where current laws permit, the inventive prefabricated structure can simply comprise a plant that discharges the blackwater directly to the ground and/or can comprise a chemical WC.

[0016] Regarding the electrical system, the prefabricated structure is prearranged for being directly connected with the power supply network, if available, and/or generate the electric current by means of automatic generators and/or photovoltaic panels. Said prefabricated structure, object of the present patent application, can also comprise a suitable air recirculation and air-conditioning plant, capable of optimizing the microclimate and thus facilitate the achievement of the desired “wellness”.

[0017] As already amply discussed, the internal scalar modules (i.e. of progressive size) are of modular type. This considerably simplifies and speeds up the assembly of various components and the obtaining of the structure itself. Moreover, the modularity and scalability of said modules allow adapting the applications to the multiple user needs. Another objective is that of having external containing structures that are variably sized, so that the inventive prefabricated structure can be used in accordance with multiple types and different complexity levels, being adapted to the different use needs, to the landscape morphology and to the climatic conditions of the place of installation. For such purpose, the external coatings of the prefabricated structure can be selected in different finishes and colors, i.e. they can be obtained onsite by means of the installation of panels on the outside walls of the external containing structures, so that they are coordinated with the aesthetics of the place of installation. Also, it is provided that said inventive prefabricated structures, in particular those intended for an installation in settings with extreme climates, have an airspace in the non-window zone of about 5 cm-8 cm thickness, situated between the internal scalar module and the external containing structure and occupied by a common insulating material.

[0018] Said inventive prefabricated structures provide for windows of variable shape and size and of openable or fixed type. In a further embodiment of the present invention, the prefabricated structures are also openable via sliding, especially in case of placement in suitable natural settings, with suitable climatic conditions.

[0019] A further characteristic of the present inventive structure is that the morphological, compositional, structural and size characteristics of the external containing structure itself allow said manufactured item to be easily loaded and transported via truck. Such particular feature renders said prefabricated structure practically one of a kind, since once loaded, even if already configured and operational, it can be easily transported to the installation site and then directly unloaded in position via crane truck. Thus, the timeliness of installation is ensured, which will allow continuous collection/replacement of the inventive structures themselves based on the seasonal needs of the customers. Alternatively, the aforesaid structure can be positioned directly on floating pontoons or barges.

[0020] In addition, it must be pointed out the size of the external containing structure of the inventive prefabricated structure, nearly analogous to those of common commercial containers, allows the structure to be easily transported on trains, airplanes, ships and thus easily shipped even towards distant destinations.

[0021] A further objective of the present patent application is that of proposing a prefabricated structure which can be achieved on an industrial scale, whose components are of standard type and perfectly obtainable on the market, and whose production is fully sustainable from an economical and environmental standpoint.

[0022] With regard to the materials composing said inventive prefabricated structure, they can be chosen by the man skilled in the art so as to satisfy the technical characteristics in this particular sector, including solidity, strength, anti-corrosiveness and low environmental impact; nevertheless, said materials can comprise those of wood type, glass type, metal type, polymers of natural type and/or synthetic type. In addition, said material can comprise those having any type of external finish, i.e. a painted finish and/or a variously coated and/or plasticized and/or colored and/or opaque and/or translucent and/or clear finish.

[0023] Other characteristics of the present invention are described in the following detailed description of one or more specific embodiments, protected by the various dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The preceding advantages, as well as other properties and characteristics of the present invention, will be illustrated by making reference to the attached drawings, which should be considered merely illustrative and non-limiting or binding with regard to the present patent application, wherein:

[0025] FIG. 1 shows an axonometric projection of the inventive prefabricated structure;

[0026] FIG. 2 shows an axonometric projection of the inventive prefabricated structure made by stacking two external containing structures of equivalent size;

[0027] FIG. 3 shows an axonometric projection of the inventive prefabricated structure made by stacking two external containing structures of different size;

[0028] FIG. 4 shows the plan view of the external containing structure characterized by a 600 cm length;

[0029] FIG. 5 shows the plan view of the external containing structure characterized by a 800 cm length;

[0030] FIG. 6 shows the plan view of the external containing structure characterized by a 1,000 cm length;

[0031] FIG. 7 shows the plan view of the external containing structure characterized by a 1,200 cm length;

[0032] FIG. 8 shows the plan view of an agglomerate of different and suitably installed external containing structures;

[0033] FIG. 9 shows the plan view of two installed external structures that are coupled along the larger side;

[0034] FIG. 10 shows the plan view characterized by the 700 cm length suitable for housing a Turkish bath for an “emotional shower” (a multi-sensory shower) and a relaxation area;
FIG. 11 shows the plan view characterized by the 800 cm length of a service structure.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0036] The present invention will now be described in detail with reference to the figures and to several preferred embodiments shown therein, in which identical reference numbers were used for the same components in all the figures.

[0037] With reference to the different figures, these show the different external containing structures 100. As can be specifically observed in FIGS. 1-3, said external containing structures 100 preferably have a structure with a rectangular parallelepiped geometric form overall, with the walls characterized by the presence of the windows 101 and by at least one entrance 102, which on the basis of the stylistic and structural needs have variable characteristics, size, positioning and shape. Preferably, each external containing structure has at least one further exit door 106, which can also be used for making the single, flanked, mutually-communicating prefabricated structures, as can be observed in FIGS. 8 and 9, so as to be able to obtain additional intercommunicating prefabricated structures.

[0038] Regarding the external bulk of said external containing structures 100, this is variable and with regard to the height comprised between 350 cm and 200 cm, with regard to the width between 400 cm and 200 cm and finally with regard to the length between 200 cm and 1,600 cm.

[0039] Preferably, nevertheless, said external containing structures 100 comprise four different structures preferably distinguished from each other only by the length measurement; i.e.

[0040] the external containing structure 100a having external dimensions characterized by the 300 cm height, 255 cm weight and 700 cm length, while the internal dimensions are characterized by the 270 cm height, 231 cm width and 676 cm length;

[0041] the external containing structure 100b having the external dimensions characterized by the 300 cm height, 255 cm width and 800 cm length, while the internal dimensions are characterized by the 270 cm height, 231 cm width and 776 cm length;

[0042] the external containing structure 100c having external dimensions characterized by the 300 cm height, 255 cm width and 1,000 cm length, while the internal dimensions are characterized by the 270 cm height, 231 cm width and 976 cm length;

[0043] the external containing structure 100d having external dimensions characterized by the 300 cm height, 255 cm width and 1,200 cm length, while the internal dimensions are characterized by the 270 cm height, 231 cm width and 1,180 cm length.

[0044] As can be observed in FIGS. 4-8, the aforesaid external containing structures 100 include at their interior from one to fifteen internal scalar modules 200, more preferably from two to six internal scalar modules 200, varying by type, shape, structure and equipment, based on the purpose for which said internal scalar modules 200 were designed. With regard to the external bulk of said inventive internal scalar modules 200, it also varies based on the type of module itself and based on the presence (or lack of presence) of the aforesaid further insulation layer; naturally, the width and height sizes cannot be greater than the aforesaid internal dimensions of the external containing structures 100. With regard to the size of the length of the internal scalar modules 200, this can be comprised overall between 50 cm and 550 cm, more preferably said internal scalar modules 200 can be grouped into two different main types on the basis of the two principal determinant lengths, that is:

[0045] the type x internal scalar module 200 having 400 cm length,

[0046] the type y internal scalar module 200 having 300 cm length and

[0047] the type z internal scalar module 200 having 200 cm length.

[0048] As can be observed in FIGS. 4-8, the type x internal scalar module 200 specifically regards several module types, ergonomically structured for containing the equipment related to the activity carried out in the module itself. As only a descriptive and non-limiting example, the different types regarding the type x internal scalar module 200 can be:

[0049] the module 212, assigned the hydromassage function, with 400 cm length;

[0050] the module 214, assigned the exercise function, with 400 cm length and dedicated to muscle strengthening, aerobic activity, cardiovascular activity using spinning, treadmill and the like;

[0051] Also, as can be observed in FIGS. 4-8, the type y internal scalar module 200 specifically regards several module types, ergonomically structured for containing the equipment related to the activity carried out in the module itself. As only a descriptive and non-limiting example, the different types regarding the type y internal scalar module 200 can be:

[0052] the module 210 assigned the sauna function, with 200 cm length;

[0053] the module 211 assigned the Turkish bath or caldarium function, with 200 cm length;

[0054] the module 220 assigned the entrance/access function, with 200 cm length;

[0055] the module assigned the shower-bathroom function 223, with 200 cm length;

[0056] the module 251 assigned the “emotional shower” (multi-sensory shower) function, of aromatic and/or chromatic and/or frigidarium type;

[0057] the module assigned the changing room/entrance/access function 221, with 300 cm length;

[0058] the module assigned the pedicure/manicure function 222, with 300 cm length;

[0059] the module 213 assigned the massage function, with 300 cm length;

[0060] the module 250 assigned the relaxation sauna function, with 300 cm length.

[0061] Also as shown in FIGS. 4, 7 and 9, several of the aforesaid internal scalar modules 200 can include at least one technical room 224, in which specific machinery for the functioning of the modules themselves is installed, with area comprised between 0.25 m² and 3 m², more preferably 1.5 m². Said technical area 224 is a separate room, isolated from the rest of the internal scalar module 200; said area, present in the sauna/Turkish bath/hydraulic modules, also provides services to the modules at the massage zone including boilers, softeners, main circuit boards, lighting current, music, hot water etc. The access to said technical area occurs by means of doors openable from the outside and/or doors openable from the inside.

[0062] It must be added that the characteristics of the present invention are not limited to those which, although
innovative, have been described up to now, since they also comprise the innumerable installation possibilities of the single prefabricated structures, so as to easily obtain agglomerates, even multilevel agglomerates. In reality, multiple combinations can be obtained from the coupling of several external containing structures 100, also by virtue of the different characterizing lengths, and therefore those described in the present patent must be considered exclusively as an example and absolutely non-limiting of the range of the present invention.

As can be observed in FIG. 8, the inventive prefabricated structure is formed by a series of single external containing structures 100, in the specific case of different size, situated adjacent each other on one side. Specifically, said external containing structures 100 can preferably be placed side-by-side and some prefabricated structures even intercommunicating by means of the exit doors 106. Such structures can be placed flanking in five different manners: two or more structures, even of different size, can be flanked on the short side, two more structures, as seen in FIG. 9, can be flanked on the long side, two structures, even of different size, can be mounted at a corner so as to form an “L” three structures, even of different size, can be mounted at a corner so as to form a “U” and finally, as can be seen in FIG. 8, four structures, at least one of which with a lesser length than that of the opposite structure, can be installed at a corner so as to create a square which faces on an exclusive, dedicated courtyard.

As can be seen in FIGS. 2 and 3, the inventive prefabricated structure is formed by two single external containing structures 100, situated mutually stacked. Said further stackability characteristic exists, setting aside all of the flanking modes referred to above, and mainly consists of at least two superimposed external containing structures 100. Said stackability characteristic preferably occurs in two separate modes, i.e. the superimposition of at least two external containing structures 100 of equal length and the superimposition of at least two external containing structures 100 of different length. As can be seen in FIG. 3, the external containing structure 100 of lesser length is situated on the upper part and forms a landing obtained by means of a roof portion of the lower external containing structure 100, reachable by means of the exit door 106. As can be easily inferred, the aforesaid stackability characteristic reduces the bulk of the inventive prefabricated structure to a minimum, since it allows obtaining twice the usable volume with the same overall dimension area.

As can be observed in FIGS. 2 and 3, said inventive prefabricated structures comprise numerous further accessories, which can be installed as desired and on the basis of the stylistic and environmental requirements. Such accessories comprise verandas 103, the handrail 104, the externally-situated access staircase 105 for accessing the upper external containing structure 100 and so on.

Of course, the data provided here is merely exemplifying and absolutely non-limiting of the range of the present invention. It only serves for assisting a man skilled in the art in comprehending several possible applications and embodiments of the finding—and thus to extend, and not limit, the contents of the present invention. Different, obvious modifications could be clearly made to the preceding exemplifying and non-limiting embodiments described with reference to the figures, without extending beyond the inventive concept underlying the present invention, as defined by the following dependent claims.

1-20. (canceled)

21. A transportable, prefabricated structure with internal modules suitable for obtaining a state of psychophysical well-being through a specific wellness path comprising at least one external containing structure 100 having rectangular parallelepiped geometric form overall, with walls having windows 101, and at least one access door 102, aforesaid external containing structure 100 internally including from one to fifteen internal modules 200, said internal modules 200 varying by type, shape, structure and equipment based on the purpose for which they were designed and said internal modules 200 being characterized by being grouped into three different main types on the basis of the three principal determinant lengths, i.e.:

- a first internal module type, so-called type x 200, having about 400 cm length, related to the modules assigned the functions of: hydromassage 212, exercise 214, i.e. muscle strengthening and aerobic activity;
- a second internal module type, so-called type z 200, having about 300 cm length, related to the modules assigned the functions of: massages 213, relaxation 250, changing room/entrance-access 221 and manicure-pedicure 222;
- a third internal module type, so-called type y 200, having about 200 cm length, related to the modules assigned the functions of: sauna 210, Turkish bath or caldarium 211, entrance-access 220, showers-bathrooms/entrance-access 223, emotional showers 251.

22. A prefabricated structure according to claim 21, characterized in that it comprises at least one further exit door (106) that can also be used for making several flanking external containing structures (100) intercommunicating.

23. A prefabricated structure according to claim 22, characterized in that the external bulk of the external containing structures (100) is comprised, with regard to the height, between 350 cm and 200 cm, with regard to the width between 400 cm and 200 cm and finally with regard to the length between 200 cm and 1,600 cm and in that said external containing structures (100) preferably comprise four different structures distinguished from each other only by the length measurement, i.e.:

- the external containing structure (100a) having the external dimensions characterized by the 300 cm height, 255 cm width and 700 cm length while the internal dimensions are characterized by the 270 cm height, 231 cm width and 676 cm length;
- the external containing structure (100b) having external dimensions characterized by the 300 cm height, 255 cm width and 800 cm length, while the internal dimensions are characterized by the 270 cm height, 231 cm width and 776 cm length;
- the external containing structure (100c) having external dimensions characterized by the 500 cm height, 255 cm width and 1,000 cm length, while the internal dimensions are characterized by the 270 cm height, 231 cm width and 976 cm length;
- the external containing structure (100d) having the external dimensions characterized...
by the 300 cm height, 255 cm width and 1,200 cm length, while the internal dimensions are characterized by the 270 cm height, 231 cm width and 1,180 cm length.

24. A prefabricated structure according to claim 21, characterized in that the external bulk of the internal modules (200) varies both on the basis of the type of module itself and on the basis of the presence (or lack of presence) of the further insulation layer, but of course, with regard to the width and height dimensions, these cannot be larger than the aforesaid internal dimensions of the external containing structures (100), while with regard to the length, this is comprised overall between 50 cm and 550 cm, and more preferably said internal modules (200) are grouped together in two different main types on the basis of the three principal determinant lengths, i.e.: the internal module (200a) having 400 cm length; the internal module (200b) having 300 cm length; the internal module (200c) having 200 cm length.

25. A prefabricated structure according to claim 21, characterized in that the materials can comprise those made of wood and/or of glass type and/or of metal type and/or polymers of natural and/or synthetic type and in that said materials can comprise those having any external finishing, i.e. a painted finish, and/or a variously coated and/or plasticized and/or colored and/or opaque and/or translucent and/or clear finish.

26. A prefabricated structure according to claim 21, characterized in that several of the internal modules (200) can include at least one technical area (224), having an area comprised between 0.5 m² and 3 m², more preferably 1.5 m² and in that said technical area (224) is a separate room, thus isolated from the rest of the internal module (200) by means of the use of doors that can be opened both from the inside and outside.

27. A prefabricated structure according to claim 21, characterized in that it is possible to obtain agglomerates formed by a series of single external containing structures (100) flanked on one side and possibly intercommunicating through the exit doors (106), so as to obtain five different conformations which consist of the conformation obtained from two or more structures, even of different size, flanked along the short side, the conformation obtained from two structures, even of different size, flanked along the long side, the conformation obtained from two structures, even of different size, installed at a corner so as to form an “L”, the conformation obtained from three structures, even of different size, installed at a corner so as to form a “U” and finally the conformation obtained from four structures, of which at least one has lesser length than that of the opposite structure, installed at a corner so as to create a square which faces an exclusive, dedicated courtyard.

28. A prefabricated structure according to claim 21, characterized in that it is possible to obtain multilevel agglomerates formed by at least two single external containing structures (100) that are mutually stacked, and in that said agglomerates are preferably of two types, i.e. of the type obtained from the superimposition of two external containing structures (100) of equal length or the type obtained from the superimposition of two external containing structures (100) of different length, so that the external containing structure (100) of lesser length is placed on the upper part and forms a landing obtained from the roof portion of the lower external containing portion (100), reachable by means of the exit door (106).

29. A prefabricated structure according to claim 21, characterized in that it externally comprises the access staircase (105) to the upper external container structure (100).

30. A prefabricated structure according to claim 21, characterized in that it comprises verandas (103) and handrails (104).

31. A prefabricated structure according to claim 21, characterized in that the hydraulic load plant can be conceived so that it can be connected to a pre-existing onsite water main and/or it can be conceived for using at least one water tank, preferably placed in the space comprised between the top of the module assigned the function of showers-bathrooms/entrance-access (223) and the roof of the external containing structure (100), having a total volume comprised between 2,000 liters and 500 liters and more preferably is 800 liters and in that the water related to the hydraulic load plant can be in part heated by means of a boiler and/or solar panel device.

32. A prefabricated structure according to claim 21, characterized in that the hydraulic discharge plant can be obtained by means of a plant directly discharging into the ducts present onsite and/or by means of storage of the blackwater (waste) in suitable containers, preferably placed at the base of the module assigned the function of showers-bathrooms/entrance-access (223), which can be drawn and emptied each time and/or by means of a plant that discharges directly to the ground and/or comprising a chemical WC.

33. A prefabricated structure according to claim 21, characterized in that the electrical system can be prearranged in order to be directly connected to the power supply network and/or generate the electric current through autonomous generators and/or photovoltaic panels, and in that it comprises a suitable air recirculation and air-conditioning plant, and in that the external coatings can be made onsite by means of the installation of panels on the outside walls of the external containing structure (100).

34. A prefabricated structure according to claim 21, characterized in that the showers related to the module assigned the function of showers-bathrooms/entrance-access (223) comprise aromatic showers and/or chromatic showers and/or frigidarium.

35. A prefabricated structure according to claim 21, characterized in that between the internal module (200) and the external containing structure (100), an air space is present in the non-window zone of about 5 cm to 8 cm thickness, occupied by a common insulation material, and in that it comprises windows (101) of variable shape and size and of fixed type or variably openable type.

36. A prefabricated structure according to claim 21, characterized in that it can be loaded onto a suitable truck, transported to the installation place—even already configured and operational—and then directly unloaded in position, and in that it can be transported on trains, airplanes and ships, and in that it can be installed on a wharf, barge or floating pontoon.