‘O T 0 O O OO

5086 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 January 2001 (18.01.2001)

0 0 000 O A

(10) International Publication Number

WO 01/05086 A2

(51) International Patent Classification’: HO04L
(21) Imternational Application Number: PCT/US00/18537
(22) International Filing Date: 7 July 2000 (07.07.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/142,870
60/159,011

8 July 1999 (08.07.1999)
12 October 1999 (12.10.1999)

us
Us

(71) Applicant (for all designated States except US): BROAD-
COM CORPORATION [US/US]; 16215 Alton Parkway,
Irvine, CA 92618-3616 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KRISHNA, Suresh
[US/US]; 695 South Knickerbocker Drive #6, Sunnyvale,
CA 94087 (US). OWEN, Christopher [US/US]; 708
Blossom Hill Road #198, Los Gatos, CA 95032 (US).
LIN, Derrick [US/US); Broadcom Corporation, 16215 Al-
ton Parkway, Irvine, CA 92618-3616 (US). TARDO, Joe
{US/US]; Broadcom Corporation, 16215 Alton Parkway,

Irvine, CA 92618-3616 (US). LAW, Patrick [US/US];

Broadcom Corporation, 16215 Alton Parkway, Irvine, CA

92618-3616 (US).
(74) Agent: AUSTIN, James, E.; Beyer Weaver & Thomas,
LLP, P.O. Box 130, Mountain View, CA 94042-0130 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS,LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CL CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

[Continued on next page]

(54) Title: DISTRIBUTED PROCESSING IN A CRYPTOGRAPHY ACCELERATION CHIP

(cenay
LOOKUP
caM
Zao.\ s
> L 4
200
T — PACKET
DATA ~————p
N lll'ﬂh!f INT
SHARED SERAM
—Zﬁ MEMORY < » OR
SYSTEM SDRAM
CONTRGLLER
ey B
DA — oomr | [2E Ao
T wT PACKET 20
26 DSTRIRVTR -
—o 206U T/ (onry)
HDRBLF TPOOMP u HDRBUF [1ges ¥ 3 u
c c
(o] o
D D
awo A e RYPTO | AUH | E
2w
HIRBF | FOOMP | u HRBF | poove | u
c c
o o
D D
RYPTO AUTH E CRYPTO AUTH - E

(57) Abstract: Provided is an architecture for a cryptography accelerator chip that allows significant performance improvements
over previous prior art designs. In various embodiments, the architecture enables parallel processing of packets through a plurality
~~ of cryptography engines and includes a classification engine configured to efficiently process encryption/decryption of data packets.
Cryptography acceleration chips in accordance may be incorporated on network line cards or service modules and used in applica-
tions as diverse as connecting a single computer to a WAN, to large corporate networks, to networks servicing wide geographic areas
(e.g., cities). The present invention provides improved performance over the prior art designs, with much reduced local memory
requirements, in some cases requiring no additional external memory. In some embodiments, the present invention enables sustained
full duplex Gigabit rate security processing of IPSec protocol data packets.

woO 01/05086 A2 MU R0 00 N0 A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

5

10

15

20

25

30

WO 01/05086 PCT/US00/18537

DISTRIBUTED PROCESSING IN A CRYPTOGRAPHY
ACCELERATION CHIP

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of cryptography, and more
particularly to an architecture and method for cryptography acceleration.

Many methods to perform cryptography are well known in the art and are
discussed, for example, in Applied Cryptography, Bruce Schneier, John Wiley &

Sons, Inc. (1996, 2" Edition), herein incorporated by reference. In order to improve
the speed of cryptography processing, specialized cryptography accelerator chips have
been developed. For example, the Hi/fn ™ 7751 and the VLSI ™ VMSI115 chips
provide hardware cryptography acceleration that out-performs similar software
implementations. Cryptography accelerator chips may be included in routers or
gateways, for example, in order to provide automatic IP packet encryption/decryption.
By embedding cryptography functionality in network hardware, both system

performance and data security are enhanced.

However, these chips require sizeable external attached memory in order to
operate. The VLSI VMSI115 chip, in fact, requires attached synchronous SRAM,
which is the most expensive type of memory. The substantial additional memory
requirements make these solutions unacceptable in terms of cost versus performance

for many applications.

Also, the actual sustained performance of these chips is much less than peak
throughput that the internal cryptography engines (or “crypto engines”) can sustain.
One reason for this is that the chips have a long “context” change time. In other
words, if the cryptography keys and associated data need to be changed on a packet-
by-packet basis, the prior art chips must swap out the current context and load a new
context, which reduces the throughput. The new context must generally be externally
loaded from software, and for many applications, such as routers and gateways that
aggregate bandwidth from multiple connections, changing contexts is a very frequent
task.

Moreover, the architecture of prior art chips does not allow for the processing
of cryptographic data at rates sustainable by the network infrastructure in connection
with which these chips are generally implemented. This can result in noticeable

-1-

10

WO 01/05086 PCT/US00/18537

delays when cryptographic functions are invoked, for example, in e-commerce
transactions.

Recently, an industry security standard has been proposed that combines both
“DES/3DES” encryption with “MD5/SHA1” authentication, and is known as “IPSec.”
By incorporating both encryption and authentication functionality in a single
accelerator chip, over-all system performance can be enhanced. But due to the
limitations noted above, the prior art solutions do not provide adequate performance at
a reasonable cost.

Thus it would be desirable to have a cryptography accelerator chip architecture
that is capable of implementing the IPSec specification (or any other cryptography
standard), at much faster rates than are achievable with current chip designs.

10

15

20

25

30

35

WO 01/05086 PCT/US00/18537

SUMMARY OF THE INVENTION

In general, the present invention provides an architecture for a cryptography
accelerator chip that allows significant performance improvements over previous prior
art designs. In various embodiments, the architecture enables parallel processing of
packets through a plurality of cryptography engines and includes a classification
engine configured to efficiently process encryption/decryption of data packets.
Cryptography acceleration chips in accordance may be incorporated on network line
cards or service modules and used in applications as diverse as connecting a single
computer to a2 WAN, to large corporate networks, to networks servicing wide
geographic areas (e.g., cities). The present invention provides improved performance
over the prior art designs, with much reduced local memory requirements, in some
cases requiring no additional external memory. In some embodiments, the present
invention enables sustained full duplex Gigabit rate security processing of IPSec

protocol data packets.

In one aspect, the present invention provides a cryptography acceleration chip.
The chip includes a plurality of cryptography processing engines, and a packet
distributor unit. The packet distributor unit is configured to receive data packets and
matching classification information for the packets, and to input each of the packets to
one of the cryptography processing engines. The combination of the distributor unit
and cryptography engines is configured to provide for cryptographic processing of a
plurality of the packets from a given packet flow in parallel while maintaining per
flow packet order. In another embodiment, the distributor unit and cryptography
engines are configured to provide for cryptographic processing of a plurality of the
packets from a plurality of packet flows in parallel while maintaining packet ordering

across the plurality of flows.

In another aspect, the invention provides a method for accelerating
cryptography processing of data packets. The method involves receiving data packets
on a cryptography acceleration chip, processing the data packets and matching
classification information for the packets, and distributing the data packets to a
plurality of cryptography processing engines for cryptographic processing. The data
packets are cryptographically processed in parallel on the cryptography processing
engines, and the cryptographically processed data packets are output from the chip in
correct per flow packet order. In another embodiment the combination of the
distribution and cryptographic processing further maintains packet ordering across a

plurality of flows.

10

15

20

WO 01/05086 PCT/US00/18537

These and other features and advantages of the present invention will be
presented in more detail in the following specification of the invention and the
accompanying figures which illustrate by way of example the principles of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the following detailed
description in conjunction with the accompanying drawings, wherein like reference

numerals designate like structural elements, and in which:

Figs. 1A and B are high-level block diagrams of systems implementing a
cryptography accelerator chip in accordance with one embodiment the present

invention.

Fig. 2 is a high-level block diagram of a cryptography accelerator chip in
accordance with one embodiment the present invention.

Fig. 3 is a block diagram of a cryptography accelerator chip architecture in

accordance with one embodiment of the present invention.

Fig. 4 is a block diagram illustrating a DRAM-based or SRAM-based packet

classifier in accordance with one embodiment the present invention.

Fig. 5 is a block diagram illustrating a CAM-based packet classifier in

accordance with one embodiment the present invention.

Figs. 6A and 6B are flowcharts illustrating aspects of inbound and outbound

packet processing in accordance with one embodiment the present invention.

Fig. 7 shows a block diagram of a classification engine in accordance with one

embodiment of the present invention, illustrating its structure and key elements.

10

15

20

25

30

35

WO 01/05086 PCT/US00/18537

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to some specific embodiments of the
invention including the best modes contemplated by the inventors for carrying out the
invention. Examples of these specific embodiments are illustrated in the
accompanying drawings. While the invention is described in conjunction with these
specific embodiments, it will be understood that it is not intended to limit the
invention to the described embodiments. On the contrary, it is intended to cover
alternatives, modifications, and equivalents as may be included within the spirit and
scope of the invention as defined by the appended claims. In the following
description, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. The present invention may be practiced
without some or all of these specific details. In other instances, well known process
operations have not been described in detail in order not to unnecessarily obscure the

present invention.

In general, the present invention provides an architecture for a cryptography
accelerator chip that allows significant performance improvements over previous prior
art designs. In preferred embodiments, the chip architecture enables “cell-based”
processing of random-length IP packets, as described in copending U.S. Patent
Application No. 09/510,486, entitled SECURITY CHIP ARCHITECTURE AND
IMPLEMENTATIONS FOR CRYPTOGRAPHY ACCELERATION, incorporated by reference
herein in its entirety for all purposes. Briefly, cell-based packet processing involves
the splitting of IP packets, which may be of variable and unknown size, into smaller
fixed-size “cells.” The fixed-sized cells are then processed and reassembled
(recombined) into packets. The cell-based packet processing architecture of the
present invention allows the implementation of a processing pipeline that has known
processing throughput and timing characteristics, thus making it possible to fetch and
process the cells in a predictable time frame. In preferred embodiments, the cells may
be fetched ahead of time (pre-fetched) and the pipeline may be staged in such a
manner that the need for attached (local) memory to store packet data or control

parameters is minimized or eliminated.

Moreover, in various embodiments, the architecture enables parallel
processing of packets through a plurality of cryptography engines, for example four,
and includes a classification engine configured to efficiently process
encryption/decryption of data packets. Cryptography acceleration chips in accordance
may be incorporated on network line cards or service modules and used in
applications as diverse as connecting a single computer to a WAN, to large corporate

-5-

10

15

20

25

30

WO 01/05086 PCT/US00/18537

networks, to networks servicing wide geographic areas (e.g., cities). The present
invention provides improved performance over the prior art designs, with much
reduced local memory requirements, in some cases requiring no additional external
memory. In some embodiments, the present invention enables sustained full duplex

Gigabit rate security processing of IPSec protocol data packets.

X3 RN 1]

In this specification and the appended claims, the singular forms “a,” “an,” and
“the” include plural reference unless the context clearly dictates otherwise. Unless
defined otherwise, all technical and scientific terms used herein have the same
meaning as commonly understood to one of ordinary skill in the art to which this

invention belongs.

The present invention may be implemented in a variety of ways. Figs. 1A an
1B illustrate two examples of implementations of the invention as a cryptography
acceleration chip incorporated into a network line card or a system module,
respectively, in a standard processing system in accordance with embodiments of the

present invention.

As shown in Fig. 1A, the cryptography acceleration chip 102 may be part of an
otherwise standard network line card 103 which includes a WAN interface 112 that
connects the processing system 100 to a WAN, such as the Internet, and manages in-
bound and out-bound packets. The chip 102 on the card 103 may be connected to a
system bus 104 via a standard system interface 106. The system bus 104 may be, for
example, as standard PCI bus, or it may be a high speed system switching matrix, as
are well known to those of skill in the art. The processing system 100 includes a
processing unit 114, which may be one or more processing units, and a system

memory unit 116.

The cryptography acceleration chip 102 on the card 103 also has associated
with it a local processing unit 108 and local memory 110. As will be described in
more detail below, the local memory 110 may be RAM or CAM and may be either on
or off the chip 102. The system also generally includes a LAN interface (not shown)
which attaches the processing system 100 to a local area network and receives packets

for processing and writes out processed packets to the network.

According to this configuration, packets are received from the LAN or WAN
and go directly through the cryptography acceleration chip and are processed as they
are received from or are about to be sent out on the WAN, providing automatic

security processing for IP packets.

10

15

20

25

30

35

WO 01/05086 PCT/US00/18537

In some preferred embodiments the chip features a streamlined IP packet-
in/packet-out interface that matches line card requirements in ideal fashion. As
described further below, chips in accordance with the present invention may provide
distributed processing intelligence that scales as more line cards are added,
automatically matching up security processing power with overall system bandwidth.
In addition, integrating the chip onto line cards preserves precious switching fabric
bandwidth by pushing security processing to the edge of the system. In this way, since
the chip is highly autonomous, shared system CPU resources are conserved for

switching, routing and other core functions.

One beneficial system-level solution for high-end Web switches and routers is
to integrate a chip in accordance with the present invention functionality with a
gigabit Ethernet MAC and PHY. The next generation of firewalls being designed
today require sustained security bandwidths in the gigabit range. Chips in accordance
with the present invention can deliver sustained full duplex multi-gigabit IPSec

processing performance.

As shown in Fig. 1B, the cryptography acceleration chip 152 may be part of a
service module 153 for cryptography acceleration. The chip 152 in the service
module 153 may be connected to a system bus 154 via a standard system interface
156. The system bus 154 may be, for example, a high speed system switching matrix,
as are well known to those of skill in the art. The processing system 150 includes a
processing unit 164, which may be one or more processing units, and a system

memory unit 166.

The cryptography acceleration chip 152 in the service module 153 also has
associated with it a local processing unit 158 and local memory 160. As will be
described in more detail below, the local memory 160 may be RAM or CAM and may
be either on or off the chip 152. The system also generally includes a LAN interface
which attaches the processing system 150 to a local area network and receives packets
for processing and writes out processed packets to the network, and a WAN interface
that connects the processing system 150 to a WAN, such as the Internet, and manages
in-bound and out-bound packets. The LAN and WAN interfaces are generally
provided via one or more line cards 168, 170. The number of line cards will vary
depending on the size of the system. For very large systems, there may be thirty to

forty or more line cards.

According to this configuration, packets received from the LAN or WAN are
directed by the high speed switching matrix 154 to memory 166, from which they are

sent to the chip 152 on the service module 153 for security processing. The processed
-7-

10

15

20

25

30

WO 01/05086 PCT/US00/18537

packets are then sent back over the matrix 154, through the memory 166, and out to
the LAN or WAN, as appropriate.

Basic Features. Architecture and Distributed Processing

Fig. 2 is a high-level block diagram of a cryptography chip architecture in
accordance with one embodiment of the present invention. The chip 200 may be
connected to external systems by a standard PCI interface (not shown), for example a
32-bit bus operating at up to 33 MHz. Of course, other interfaces and configurations
may be used, as is well known in the art, without departing from the scope of the

present invention.

Referring to Fig. 2, the IP packets are read into a FIFO (First In First Out
buffer) input unit 202. This interface (and the chip’s output FIFO) allow packet data
to stream into and out of the chip. In one embodiment, they provide high performance
FIFO style ports that are unidirectional, one for input and one for output. In addition,
the FIFO 202 supports a bypass capability that feeds classification information along
with packet data. Suitable FIFO-style interfaces include GMII as well as POS-PHY-3
style FIFO based interfaces, well known to those skilled in the art.

From the input FIFO 202, packet header information is sent to a packet
classifier unit 204 where a classification engine rapidly determines security
association information required for processing the packet, such as encryption keys,
data, etc. As described in further detail below with reference to Figs. 4, 5 and 6A and
B, the classification engine performs lookups from databases stored in associated
memory. The memory may be random access memory (RAM), for example, DRAM
or SSRAM, in which case the chip includes a memory controller 212 to control the
associated RAM. The associated memory may also be contact addressable memory
(CAM), in which case the memory is connected directly with the cryptography
engines 216 and packet classifier 204, and a memory controller is unnecessary. The
associated memory may be on or off chip memory. The security association
information determined by the packet classifier unit 204 is sent to a packet distributor
unit 206.

The distributor unit 206 determines if a packet is ready for IPSec processing,
and if so, distributes the security association information (SA) received from the
packet classifier unit 204 and the packet data among a plurality of cryptography
processing engines 124, in this case four, on the chip 200, for security processing.

This operation is described in more detail below.

10

15

20

25

30

35

WO 01/05086 PCT/US00/18537

The cryptography engines may include, for example, “3DES-CBC/DES X”
encryption/decryption “MD5/SHA1” authentication/digital signature processing and
compression/decompression processing. It should be noted, however, that the present
architecture is independent of the types of cryptography processing performed, and
additional cryptography engines may be incorporated to support other current or future
cryptography algorithms. Thus, a further discussion of the cryptography engines 1s
beyond to scope of this disclosure.

Once the distributor unit 206 has determined that a packet is ready for [PSec
processing, it will update shared IPSec per-flow data for that packet, then pass the
packet along to one of the four cryptography and authentication engines 214. The
distributor 206 selects the next free engine in round-robin fashion within a given flow.
Engine output is also read in the same round-robin order. Since packets are retired in
a round-robin fashion that matches their order of issue packet ordering is always
maintained within a flow (“per flow ordering™). For the per-flow ordering case, state
is maintained to mark the oldest engine (first one issued) for each flow on the output
side, and the newest (most recently issued) engine on the input side; this state is used
to select an engine for packet issue and packet retiring. The chip has an engine
scheduling module which allows new packets to be issued even as previous packets
from the same flow are still being processed by one or more engines. In this scenario,
the SA Buffers will indicate a hit (SA auxiliary structure already on-chip), shared state
will be updated in the on-chip copy of the SA auxiliary structure, and the next free

engine found in round-robin order will start packet processing.

Thus, the distributor 206 performs sequential portions of [PSec processing that
rely upon packet-to-packet ordering, and hands off a parallelizable portion of [PSec to
the protocol and cryptography processing engines. By providing multiple
cryptography engines and processing data packets in parallel chips in accordance with
the present invention are able to provide greatly improved security processing
performance. The distributor also handles state cleanup functions needed to properly
retire a packet (including ensure that packet ordering is maintained) once [PSec

processing has completed.

Per-flow ordering offers a good trade-off between maximizing end-to-end
system performance (specifically desktop PC TCP/IP stacks), high overall efficiency,
and design simplicity. In particular, scenarios that involve a mix of different types of
traffic such as voice-over-IP (VoIP), bulk fip/e-mail, and interactive telnet or web

browsing will run close to 100% efficiency. Splitting, if necessary, a single IPSec

10

15

20

25

30

35

WO 01/05086 PCT/US00/18537

tunnel into multiple tunnels that carry unrelated data can further enhance processing

efficiency.

Per-flow IPSec data includes IPSec sequence numbers, anti-replay detection
masks, statistics, as well as key lifetime statistics (time-based and byte-based
counters). Note that some of this state cannot be updated until downstream
cryptography and authentication engines have processed an entire packet. An example
of this is the anti-replay mask, which can only be updated once a packet has been
established as a valid, authenticated packet. In one embodiment, the distributor 206
handles these situations by holding up to eight copies of per-flow IPSec information
on-chip, one copy per packet that is in process in downstream authentication and
crypto engines (each engine holds up to two packets due to internal pipelining). These

copies are updated once corresponding packets complete processing.

This scheme will always maintain ordering among IPSec packets that belong
to a given flow, and will correctly process packets under all possible completion

ordering scenarios.

In addition, in some embodiments, a global flag allows absolute round robin
sequencing, which maintains packet ordering even among different flows (“strong
ordering”). Strong ordering may be maintained in a number of ways, for example, by
assigning a new packet to the next free cryptography processing unit in strict round-
robin sequence. Packets are retired in the same sequence as units complete
processing, thus ensuring order maintenance. If the next engine in round-robin
sequence is busy, the process of issuing new packets to engines is stalled until the
engines become free. Similarly, if the next engine on output is not ready, the packet
output process stalls. These restrictions ensure that an engine is never *“skipped”, thus

guaranteeing ordering at the expense of some reduced processing efficiency.

Alternatively, strong ordering may be maintained by combining the distributor
unit with an order maintenance packet retirement unit. For every new packet, the
distributor completes the sequential portions of IPSec processing, and assigns the
packet to the next free engine. Once the engine completes processing the packet, the
processed packet is placed in a retirement buffer. The retirement unit then extracts
processed packets out of the retirement buffer in the same order that the chip
originally received the packets, and outputs the processed packets. Note that packets
may process through the multiple cryptography engines in out of order fashion;
however, packets are always output from the chip in the same order that the chip
received them. This is an “out-of-order execution, in-order retirement” scheme. The

-10 -

10

15

20

25

30

35

WO 01/05086 PCT/US00/18537

scheme maintains peak processing efficiency under a wide variety of workloads,

including a mix of similar size or vastly different size packets.

Most functions of the distributor are performed via dedicated hardware assist
logic as opposed to microcode, since the distributor 206 is directly in the critical path
of per-packet processing. The distributor’s protocol processor is programmed via on-
chip microcode stored in a microcode storage unit 208. The protocol processor is

microcode-based with specific instructions to accelerate IPSec header processing.

The chip also includes various buffers 210 for storing packet data, security
association information, status information, etc., as described further with reference to
Fig. 3, below. For example, fixed-sized packet cells may be stored in payload or
packet buffers, and context or security association buffers may be used to store

security association information for associated packets/cells.

The output cells are then stored in an output FIFO 216, in order to write the
packets back out to the system. The processed cells are reassembled into packets and
sent off the chip by the output FIFO 216.

Fig. 3 is a block diagram of a cryptography accelerator chip architecture in
accordance with one embodiment of the present invention. The chip 300 includes an
input FIFO 302 into which IP packets are read. From the input FIFO 302, packet
header information is sent to a packet classifier unit 204 where a classification engine
rapidly determines security association information required for processing the packet,
such as encryption keys, data, etc. As described in further detail below, the
classification engine performs lookups from databases stored in associated memory.
The memory may be random access memory (RAM), for example, DRAM or
SSRAM, in which case the chip includes a memory controller 308 to control the
associated RAM. The associated memory may also be contact addressable memory
(CAM), in which case the memory is connected directly with the cryptography
engines 316 and packet classifier 304, and a memory controller is unnecessary. The
associated memory may be on or off chip memory. The security association
information determined by the packet classifier unit 304 is sent to a packet distributor

unit 306 via the chip’s internal bus 305.

The packet distributor unit 306 then distributes the security association
information (SA) received from the packet classifier unit 304 and the packet data via
the internal bus 305 among a plurality of cryptography processing engines 316, in this
case four, on the chip 200, for security processing. For example, the crypto engines
may include “3DES-CBC/DES X" encryption/decryption “MDS5/SHAI”

-11-

10

15

20

25

30

35

WO 01/05086 PCT/US00/18537

authentication/digital signature processing and compression/decompression
processing. As noted above, the present architecture is independent of the types of
cryptography processing performed, and a further discussion of the cryptography

engines is beyond to scope of this disclosure.

The packet distributor unit 306 includes a processor which controls the
sequencing and processing of the packets according to microcode stored on the chip.
The chip also includes various buffers associated with each cryptography engine 316.
A packet buffer 312 is used for storing packet data between distribution and crypto
processing. Also, in this embodiment, each crypto engine 316 has a pair of security
association information (SA) buffers 314a, 314b associated with it. Two buffers per
crypto engine are used so that one 314b, may hold the SA for a current packet (packet
currently being processed) while the other 314a is being preloaded with the security
association information for the next packet. A status buffer 310 may be used to store

processing status information, such as errors, etc.

Processed packet cells are reassembled into packets and sent off the chip by an
output FIFO 318. The packet distributor 306 controls the output FIFO 318 to ensure

that packet ordering is maintained.

Packet Classifier

The IPSec cryptography protocol specifies two levels of lookup: Policy
(Security Policy Database (SPD) lookup) and Security Association (Security
Association Database (SAD) lookup). The policy look-up is concerned with
determining what needs to be done with various types of traffic, for example,
determining what security algorithms need to be applied to a packet, without
determining the details, e.g., the keys, etc. The Security Association lookup provides
the details, e.g., the keys, etc., needed to process the packet according to the policy
identified by the policy lookup. The present invention provides chip architectures and
methods capable of accomplishing this IPSec function at sustained multiple full

duplex gigabit rates.

As noted above, there are two major options for implementing a packet
classification unit in accordance with the present invention: CAM based and RAM
(DRAM/SSRAM) based. The classification engine provides support for general
IPSec policy rule sets, including wild cards, overlapping rules, conflicting rules and
conducts deterministic searches in a fixed number of clock cycles. In preferred
embodiments, it may be implemented either as a fast DRAM/SSRAM lookup

classification engine, or on-chip CAM memory for common situations, with

-12-

10

15

20

25

30

35

WO 01/05086 PCT/US00/18537

extensibility via off-chip CAM, DRAM or SSRAM. Engines in accordance with
some embodiments of the present invention engine are capable of operating at
wirespeed rates under any network load. In one embodiment, the classifier processes
packets down to 64 bytes at OC12 full duplex rates (1.2Gb/s throughput); this works
out to a raw throughput of 2.5M packets per second.

The classifier includes four different modes that allow all IPSec selector
matching operations to be supported, as well as general purpose packet matching for
packet filtering purposes, for fragment re-assembly purposes, and for site blocking
purposes. The classifier is not intended to serve as a general-purpose backbone router
prefix-matching engine. As noted above, the classifier supports general IPSec
policies, including rules with wildcards, ranges, and overlapping selectors. Matching
does not require a linear search of overlapping rules, but instead occurs in a

deterministic number of clock cycles.

Security and filtering policies are typically specified using flexible rule sets
that allow generic matching to be performed on a set of broad packet selector fields.
Individual rules support wildcard specification and ranges for matching parameters.
In addition, multiple rules are allowed to overlap, and order-based matching is used to

select the first applicable rule in situations where multiple rules apply.

Rule overlap and ordered matching add a level of complexity to hardware-
based high-speed rule matching implementations. In particular, the requirement to
select among multiple rules that match based on the order in which these rules are
listed precludes direct implementation via high-speed lookup techniques that

immediately find a matching rule independent of other possible matches.

Chips in accordance with the present invention provide a solution to the
problem of matching in a multiple overlapping order-sensitive rule set environment
involving a combination of rule pre-processing followed by direct high-speed
hardware matching, and supports the full generality of security policy specification

languages.

A pre-processing de-correlation step handles overlapping and possibly
conflicting rule sets. This de-correlation algorithm produces a slightly larger
equivalent rule set that involves zero intersection The new rule set is then
implemented via high-speed hardware lookups. High performance aigorithms that
support incremental de-correlation are available in the art. Where CAM is used, a
binarization step is used to convert range-based policies into mask-based lookups
suitable for CAM arrays.

-13-

10

15

20

25

30

WO 01/05086 PCT/US00/18537

The function of the packet classifier is to perform IPSec-specified lookup as
well as IP packet fragmentation lookup. These lookups are used by the distributor
engine, as well as by the packet input engine (FIFO). In one embodiment,

classification occurs based on a flexible set of selectors as follows:

. Quintuple of <src IP addr, dst IP addr, src port, dst port, protocol> =
104 bits match field

J Triple of <src IP addr, dst [P addr, IPSec SPI security parameter index>
-> 96-bit match field

. Basic match based on <src IP addr, dst IP addr, protocol> -> 72-bit
match field

. Fragment match based on <src IP, dst IP, fragment ID, protocol> =>
88-bit match field

The result of packet classification is a classification tag. This structure holds

IPSec security association data and per-flow statistics.

As noted above, a classifier in accordance with the present invention can be
implemented using several different memory arrays for rule storage; each method
involves various cost/performance trade-offs. The main implementations are external
CAM-based policy storage; on-chip CAM-based policy storage; and external RAM
(DRAM, SGRAM, SSRAM) based storage. Note that RAM-based lookups can only
match complete (i.e. exact) sets of selectors, and hence tend to require more memory
and run slower than CAM-based approaches. On-chip CAM offers an attractive blend
of good capacity, high performance and low cost.

A preferred approach for cost-insensitive versions of a cryptography
acceleration chip in accordance with the present invention is to implement an on-chip
CAM and to provide a method to add more CAM storage externally. Rule sets tend to
be relatively small (dozens of entries for a medium corporate site, a hundred entries
for a large site, perhaps a thousand at most for a mega-site) since they need to be
managed manually. The de-correlated rule sets will be somewhat larger, however

even relatively small CAMs will suffice to hold the entire set.

A preferred method for cost-sensitive versions of a cryptography acceleration
chip in accordance with the present invention is to implement DRAM-based

classification, with a dedicated narrow DRAM port to hold classification data (i.e. a

-14-

10

15

20

25

30

WO 01/05086 PCT/US00/18537

32-bit SGRAM device). A higher performance alternative is to use external SSRAM,

in which case a shared memory system can readily sustain the required low latency.

Both variants of packet classifier are described herein. The RAM-based
variant, illustrated in Fig. 4 relies upon a classification entry structure in external
memory. The RAM-based classifier operates via a hash-based lookup mechanism.
RAM-based classification requires one table per type of match: one for IPSec

quintuples, one for IPSec triples, and a small table for fragmentation lookups.

An important property of DRAM-based matching is that only exact matches
are kept in the DRAM-based tables, i.e., it is not possible to directly match with
wildcards and bit masks the way a CAM can. Host CPU assistance is required to
dynamically map IPSec policies into exact matches. This process occurs once every
time a new connection is created. The first packet from such a connection will require
the creation of an exact match based on the applicable IPSec policy entry. The host
CPU load created by this process is small, and can be further reduced by providing

microcode assistance.

The input match fields are hashed to form a table index, which is then used to
look up a Hash Map table. The output of this table contains indexes into a
Classification Entry table that holds a copy of match fields plus additional match tag

information.

The Hash Map and Classification Entry tables are typically stored in off-chip
DRAM. Since every access to these tables involves a time-consuming DRAM fetch, a
fetch algorithm which minimizes the number of rehash accesses is desirable. In most
typical scenarios, a matching tag is found with just two DRAM accesses with a chip in

accordance with the present invention.

To this effect, the hash table returns indexes to three entries that could match
in one DRAM access. The first entry is fetched from the Classification Table; if this
matches the classification process completes. If not, the second then the third entry
are fetched and tested for a match against the original match field. If both fail to
match, a rehash distance from the original hash map entry is applied to generate a new
hash map entry, and the process repeated a second time. If this fails too, a host CPU
interrupt indicating a match failure is generated. When this occurs, the host CPU will
determine if there is indeed no match for the packet, or if there is a valid match that
has not yet been loaded into the classifier DRAM tables. This occurs the first time a

packet from a new connection is encountered by the classification engine.

-15-

10

15

20

25

30

35

40

45

50

55

WO 01/05086

PCT/US00/18537

Because the hash table is split into a two-level structure, it is possible to

maintain a sparse table for the top-level Hash Map entries. Doing so greatly reduces

the chances of a hash collision, ensuring that in most cases the entire process will

complete within two DRAM accesses.

The following code shows the Hash Map table entries as well as the

Classification Entries:

/*

* % % % * %

*

*/
typedef struct SATClass_struct {
u32 srcAddr;
u32 dstAddr;
ule srckort;
ulé dstPort;
u32 spi;
us protocol;
u32 tag;
} SATClass;
/t
*
* Association Table Classification
*
* to sat_class values.
*
* one for inner header lookup.
*
*
*
*
*
*
*
*
*
*
*/

typedef struct SATClassHash_struct {

/*
/w
/1\'
/i
/*
/*
/*

Security Association Table - Classification Fields
Used to look up an association per header.
This table is accessed via a hash lookup structure, SATClassHash, defined next.

Note that a single IPSec Security Association Database entry can occupy multiple
SATClass entries due to wildcard and range support for various header fields.

IP source address */

IP destination address */
TCP source port */

TCP destination port */
Security Parameter Index */
Next level protocol */
Match tag */

Hash table structure to look up an entry in the Security
Fields array. Each hash bucket holds up to three entries pointing

There are two hash table structures -- one for SPI-based lookup,

Overflows are handled via software. The odds of an overflow are small -- the
average hash bucket occupancy is 0.5 entries per bucket,

and an initial overflow is handled via a variable-distance rehash.

Host software can set the rehash distance per hash entry to minimize
overflow situations. An overflow would require 3 entries in the first

hash bucket, followed by 3 entries in the second re-hashed

bucket as well. This is very unlikely in practice.

Multiple matching SATClass entries need to searched sequentially.

/* Up to three pointers (index) of SATClass entries */

SATClass *Index0,
u32 SATPresent:10;

} SATClassHash;

*Index2;
/* 2 low order bits are # entries (0-3) */

/* 8 high order bits are rehash distance */

In one embodiment of the present invention, a Hash Map structure entry is

128-bits long, and a Classification Entry is 192-bits long. This relatively compact

representation enables huge numbers of simultaneous security associations to be

supported in high-end systems, despite the fact that DRAM-based matching requires

that only exact matches be stored in memory. As an example, the DRAM usage for

256K simultaneous sessions for IPSec quintuple matches is as follows:

-16-

10

15

20

25

30

WO 01/05086 PCT/US00/18537

Classification Entry memory: 24 Bytes * 256K = 6.1 Mbytes of DRAM usage
Hash Map memory: Sparse (0.5 entries per hash bucket avg), 2 * 16 Bytes * 256K -
8M Bytes

Total DRAM usage for 256K simultaneous sessions is under 16 Mbytes; 256K
sessions would be sufficient to cover a major high-tech metropolitan area, and is

appropriate for super high-end concentrator systems.

Since DRAM-based classification requires one table per type of match, the
total memory usage is about double the above number, with a second table holding
IPSec triple matches. This brings the total up to 32Mbytes, still very low considering
the high-end target concentrator system cost. A third table is needed for

fragmentation lookups, but this table is of minimal size.

Another attractive solution is to use SSRAM to build a shared local memory
system. Since SSRAM is well suited to the type of random accesses performed by
RAM-based classification, performance remains high even if the same memory bank
is used for holding both packet and classification data.

Further performance advances may be achieved using a CAM based
classification engine in accordance with the present invention. The CAM based
classifier is conceptually much simpler than the DRAM based version. In one
embodiment, it is composed of a 104-bit match field that returns a 32-bit match tag,
for a total data width of 136-bits. In contrast to DRAM-based classification, a
common CAM array can readily be shared among different types of lookups. Thus a
single CAM can implement all forms of lookup required by a cryptography
acceleration chip in accordance with the present invention, including fragment
lookups, IPSec quintuple matches, and IPSec triple matches. This is accomplished by
storing along with each entry, the type of match that it corresponds to via match type
field.

Because the set of IPSec rules are pre-processed via a de-correlation step and a
binarization step prior to mapping to CAM entries, it is not necessary for the CAM to
support any form of ordered search. Rather, it is possible to implement a fully parallel

search and return any match found.

Referring to Fig. 5, the preferred implementation involves an on-chip CAM
that is capable of holding 128 entries. Each entry consists of a match field of 106-bits
(including a 2-bit match type code) and a match tag of 32-bits. An efficient, compact
CAM implementation is desired in order to control die area. The CAM need not be

-17-

10

15

20

25

30

WO 01/05086 PCT/US00/18537

fast; one match every 25 clock cycles will prove amply sufficient to meet the
performance objective of one lookup every 400ns. This allows a time-iterated search
of CAM memory, and allows further partitioning of CAM contents into sub-blocks
that can be iteratively searched. These techniques can be used to cut the die area

required for the classifier CAM memory.

CAM matching is done using a bit mask to reflect binarized range specifiers
from the policy rule set. In addition, bit masks are used to choose between [PSec

quintuple, triple, fragment or non-IPSec basic matches.

Should on-chip CAM capacity prove to be a limitation, an extension
mechanism is provided to access a much larger off-chip CAM that supports bit masks.
An example of such a device is Lara Technologies’ LTI1710 8Kx136/4Kx272 ternary
CAM chip.

Typical security policy rule sets range from a few entries to a hundred entries
(medium corporate site) to a maximum of a thousand or so entries (giant corporate site
with complex policies). These rule sets are manually managed and configured, which
automatically limits their size. The built-in CAM size should be sufficient to cover
typical sites with moderately complex rule sets; off-chip CAM can be added to cover

mega-sites.

CAM-based classification is extremely fast, and will easily provide the
required level of performance. As such, the classifier unit does not need any

pipelining, and can handle multiple classification requests sequentially.

Figs. 6A and 6B provide process flow diagrams showing aspects of the
inbound and outbound packet processing procedures (including lookups) associated
with packet classification in accordance with one embodiment of the present
invention. Fig. 6A depicts the flow in the inbound direction (600). When an inbound
packet is received by the packet classifier on a cryptography acceleration chip in
accordance with the present invention, its header is parsed (602) and a SAD lookup is
performed (604). Depending on the result of the SAD lookup and as specified by the
resulting policy, the packet may be dropped (606), passed-through (608), or directed
into the cryptography processing system. Once in the system, the packet is decrypted
and authenticated (610), and decapsulated (612). Then, a SPD lookup is performed
(614). If the result of the lookup is a policy that does not match that specified by the
SAD lookup, the packet is dropped (616). Otherwise, a clear text packet is sent out of
the cryptography system (618) and into the local system/network.

-18 -

10

15

20

25

WO 01/05086 PCT/US00/18537

Fig. 6B depicts the flow in the outbound direction (650). When an outbound
packet is received by the packet classifier on a cryptography acceleration chip in
accordance with the present invention, its header is parsed (652) and a SPD lookup is
performed (654). Depending on the result of the SPD lookup and as specified by the
resulting policy, the packet may be dropped (656), passed-through (658), or directed
into the cryptography processing system. Once in the system, a SAD lookup is
conducted (660). If no matching SAD entry is found (662) one is created (664) in the
IPSec Security Association Database. The packet is encapsulated (666), encrypted
and authenticated (668). The encrypted packet is then sent out of the system (670) to
the external network (WAN).

Examples

The following examples describe and illustrate aspects and features of specific
implementations in accordance with the present invention. It should be understood
the following is representative only, and that the invention is not limited by the detail

set forth in these examples.

Example 1: Security Association Prefetch Buffer

The purpose of the SA buffer prefetch unit is to hold up to eight Security
Association Auxiliary structures, two per active processing engine. This corresponds
to up to two packet processing requests per engine, required to support the double-
buffered nature of each engine. The double buffered engine design enables header
prefetch, thus hiding DRAM latency from the processing units. The structures are
accessed by SA index, as generated by the packet classifier.

Partial contents for the SA Auxiliary structure are as shown in the following C
code fragment:

-19-

10

15

20

25

30

35

40

45

50

55

WO 01/05086 PCT/US00/18537

typedef struct SATAux_struct {

u32 byteCount; /* Total payload bytes processed via */
/* this entry (larger of crypto or auth bytes) */
u64 expiry; /* Expiry time or #bytes for this */
/* entry (checked per use) */
u32 packetCount; /* Stats - # packets processed via this entry */
struct SATAux_struct *next; /* Next IPSec Security Association for SA *x/
/* bundles */
u32 segNoHi; /* Anti replay sequence number - "right" edge of window
*
/
y /* for outgoing packets, used for next sequence number
*
u64 segWin; /* Anti-replay sequence window (bit mask) */
u32 peerAddr; /* IPSec peer security gateway address */
u32 spi; /* IPSec security parameter index */
u8 originalProtocol;/* pre-IPSec Protocol to which this SA applies */
cryptoState algoCrypto; /* Keys and other parameters for crypto */
authState algoAuth; /* Keys, state and other HMAC parameters */
u8 enableSeq:1; /* 1 to enable anti-replay sequence check */
u8 crypto:2; /* DES, 3DES, RC4, NONE */
u8 auth:2; /* MDS, SHAl, NONE */
u8 format:2; /* FORMAT_ESP, FORMAT AH, FORMAT_AH_ESP */
ug tunnel:1; /* 1 to enable tunneling, 0 to use transport adjacency
*
/
u8 discard:1; /* Drop packet */
u8 pass:1; /* Pass packet through */
u8 intr:1; /* Interrupt upon match to this entry */
/* (useful for drop/pass) */
u8 explicitiv:1; /* Use implicit IV from SAdB as opposed to explicit */
/* IV from packet */
us8 padnull:l; /* Apply pad to 64-byte boundary for ESP */
/* null crypto upon IPSec output */
u8 oldpad:1; /* 01d style random padding per RFC1829 */
} SATAux;

The SA Buffer unit prefetches the security auxiliary entry corresponding to a
given SA index. Given an SA index, the SA buffer checks to see if the SA Aux entry
is already present; if so, an immediate SA Hit indication is returned to the distributor
micro-engine. If not, the entry is pre-fetched, and a hit status is then returned. If all
SA entries are dirty (i.e. have been previously written but not yet flushed back to
external memory) and none of the entries is marked as retired, the SA Buffer unit
stalls. This condition corresponds to all processing engines being busy anyway, such

that the distributor is not the bottleneck in this case.

Example 2: Distributor Microcode QOverview

In one implementation of the present invention, the distributor unit has a
micro-engine large register file (128 entries by 32-bits), good microcode RAM size
(128 entries by 96-bits), and a simple three stage pipeline design that is visible to the
instruction set via register read delay slots and conditional branch delay slots.
Microcode RAM is downloaded from the system port at power-up time, and is
authenticated in order to achieve FIPS140-1 compliance. In order to ensure immediate
micro-code response to hardware events, the micro-engine is started by an event-
driven mechanism. A hardware prioritization unit automatically vectors the micro-

-20 -

WO 01/05086 PCT/US00/18537

engine to the service routing for the next top-priority outstanding event; packet

Packet Issue Microcode:

//
// SA Buffer entry has been pre-fetched and is on-chip

// Packet length is available on-chip

//

test drop/pass flags; if set special case processing;

test lifetime; break if expired; // reset if auth fails later

test byte count; break if expired; // reset if auth fails later

assert stats update command; // update outgoing sequence
number

assert locate next engine command; if none, stall;
assert issue new packet command with descriptor ID, tag, length;

retiring has priority over issue.

Since the distributor unit is fully pipelined, the key challenge is to ensure that
5 any given stage keeps up with the overall throughput goal of one packet every 50
clock cycles. This challenge is especially important to the micro-engine, and limits the
number of micro-instructions that can be expended to process a given packet. The
following pseudo-code provides an overview of micro-code functionality both for
packet issue and for packet retiring, and estimate the number of clock cycles spent in

10 distributor micro-code.

Packet Retiring Microcode:

//

// SA Buffer entry has been pre-fetched and is on-chip
// Packet length is available on-chip. Packet has been

authenticated

// by now if authentication is enabled for this flow.

//

if sequence check enabled for inbound, check & update sequence
mask;

update Engine scheduling status;
mark packet descriptor as free; add back to free pool; // Schedule
write

Since most distributor functions are directly handled via HW assist

mechanisms, the distributor microcode is bounded and can complete quickly. It is

15 estimated that packet issue will require about 25 clocks, while packet retiring will
require about 15 clocks, which fits within the overall budget of 50 clocks.

Example 3: Advanced Classification Engine (ACE)

221-

10

15

20

25

30

WO 01/05086 PCT/US00/18537

In one specific implementation of the present invention, a classification engine
(referred to as the Advanced Classification Engine (ACE)) provides an innovative
solution to the difficult problem of implementing the entire set of complex IPSec
specified Security Association Database and Security Policy Database rules in
hardware. The IETF IPSec protocol provides packet classification via wildcard rules,
overlapping rules and conflict resolution via total rule ordering. The challenge solved
by ACE is to implement this functionality in wirespeed hardware.

The Advanced Classification Engine of a chip in accordance with the present
invention handles per-packet lookup based on header contents. This information then
determines the type of [PSec processing that will be implemented for each packet. In
effect, ACE functions as a complete hardware IPSec Security Association Database
lookup engine. ACE supports full IPSec Security Association lookup flexibility,
including overlapping rules, wildcards and complete ordering. Simultaneously, ACE
provides extremely high hardware throughput. In addition, ACE provides value-
added functions in the areas of statistics gathering and maintenance on a flexible per
link or per Security Association basis, and SA lifetime monitoring. A separate unit
within ACE, the Automatic Header Generator, deals with wirespeed creation of [PSec

compliant headers.

ACE derives its extremely high end to end performance (5 Mpkt/s at 125MHz)
from its streamlined, multi-level optimized design. The most performance critical
operations are handled via on-chip hardware and embedded SRAM memory. The next
level is handled in hardware, but uses off-chip DRAM memory. The slowest, very
infrequent frequent level of operations is left to host processor software. Key features
of ACE include:

o Full support for IPSec Security Association Database lookup, including
wildcard rules, overlapping rules, and complete ordering of database entries.

. Extremely high hardware throughput: Fully pipelined non-blocking
out-of-order design. Four datagrams can be processed simultaneously and out of order

to keep throughput at full rated wirespeed.

. Flexible connection lookup based on src/dst address, src/dst ports, and
protocol. Any number of simultaneously active packet classification values can be

supported.

. Hardware support for header generation for IPSec Encapsulating
Security Protocol (ESP) and for IPSec Authentication Header (AH).

-22-

10

15

20

25

30

WO 01/05086 PCT/US00/18537

o Full hardware header generation support for Security Association
bundling — transport adjacency, and iterated tunneling.

o Sequence number generation and checking on-chip.

o Classification engine and statistics mechanisms available to non-IPSec

traffic as well as to IPSec traffic.

. Security Association lifetime checking based on byte count and elapsed

wall clock time.

° High quality random number generator for input to cryptography and
authentication engines.

The input to ACE consists of packet classification fields: src/dst address,
src/dst ports, and protocol. The output of ACE is an IPSec Security Association
matching entry, if one exists, for this classification information within the IPSec
Security Association Database. The matching entry then provides statistics data and

control information used by automatic IPSec header generation.

A global state flag controls the processing of packets for which no matching
entry exists — silent discard, interrupt and queue up packet for software processing, or
pass through.

The matching table (SAT, Security Association Table) holds up to 16K entries
in DRAM memory. These entries are set up via control software to reflect IPSec
Security Association Database (SAdB) and Security Policy Database (SPdB) rules.
The wildcard and overlapping but fully ordered entries of the SAdB and SPdB are
used by control software to generate one non-overlapping match table entry for every
combination that is active. This scheme requires software intervention only once per

new match entry.
Fig. 7 shows a block diagram of the ACE illustrating its structure and key

elements. Major components of ACE are as follows:

e Security Association Table Cache — Classification Field (SATC-CL): Used to look
up a packet’s classification fields on-chip. Each entry has the following fields:

SATC-CL SATC Classification Field Cache
Field name | Description IPv6 1Pv4
size size
(bits) (bits)

-23-

10

WO 01/05086 PCT/US00/18537
src@ IP source address 128 bits | 32 bits
dst@ IP destination address 128 bits | 32 bits
protocol High level protocol field 8 bits
src port High level protocol source 16 bits | 16 bits
port

dst port High level protocol 16 bits | 16 bits
destination port

Aux field | Pointer to auxiliary data (stats, 16 bits

ptr lifetime)

peer@ IP address of IPSec peer 128 bits |32 bits
gateway

spi IPSec Security Parameter 32 bits
Index

ipsec ESP, AH or none; Tunnel or 3 bits

format Adj

e Security Association Auxiliary Data table Cache (SATC-AUX): Serves to hold
statistics, etc. information on-chip in flexible fashion. An entry within SATC-
AUX can serve multiple classification fields, allowing multiple combinations to
be implemented for stats gathering. Each entry has the following fields:

SATC-AUX SATC Auxiliary Field Cache

Field name | Description IPv6 IPv4
size size
(bits) (bits)
Byte count | Total byte count for this entry 32 bits
Expiry time | Time entry expires 32 bits
#misses SATC-CL misses for this entry 32 bits
#pkt Total packet count for this entry 32 bits
next_spi Next SPI for Iterated tunneling or 32 bits
Transport adjacency
seqchk Enable anti-replay sequence 1 bit
check
seqno Sequence number (output) or 32 bits
highest received seq number
(input)
seqmask Anti-Replay window 64 bits
algo_info | Algorithm specific data (keys, 296 bits
pad lengths, Initial Vectors, etc)

e Quad Refill Engine: handles the servicing of SATC-CL misses. When ever a miss
occurs, the corresponding entry in the SATC-AUX is simultaneously fetched in
order to maintain cache inclusion of all SATC-AUX entries within SATC-CL
entries. This design simplifes and speeds up the cache hit logic considerably. The
refill engine accepts and processes up to 4 outstanding miss requests

224 -

10

15

20

25

WO 01/05086 PCT/US00/18537
simultaneously.

e Quad Header Buffers: Holds up to 4 complete IPv4 headers, and up to 256 bytes
each of 4 IPv6 headers. Used to queue up headers that result in SATC-CL misses.
Headers that result in a cache hit are immediately forwarded for [PSec header
generation.

e Header streaming buffer: Handles overflows from the header buffer by streaming
header bytes directly from DRAM memory; it is expected that such overflows will
be exceedingly rare. This buffer holds 256 bytes.

e Header/Trailer processing and buffer: For input datagrams, interprets and strips
[PSec ESP or AH header. For output datagrams, adjusts and calculates header and
trailer fields. Holds a complete IPv4 fragment header, and up to 256 bytes of an
IPv6 header. Requires input from the cryptography modules for certain fields
(authentication codes, for instance).

In addition to the above components, two data structures in DRAM memory

are used by ACE for efficient operation. These are:

o Complete Security Association Table— Classification Field (SAT-CL): holds
classification data. This table backs up the on-chip SAT-CL Cache. Each entry is
475 bits aligned up to 60 bytes.

e Complete Security Association Auxiliary Data table (SAT-AUX): holds auxiliary
data. This table backs up the on-chip SAT-AUX Cache. Each entry is 617 bits,
plus up to 223 bits of algorithm specific state (such as HMAC intermediate state),
for a total of 105 bytes.

.25-

WO 01/05086

PCT/US00/18537

The following pseudo-code module describes major ACE input processing

Input Processing () { /* Received datagram */

Calculate hash value based upon
(dst@, spi, protocol) ;

/* Re-hash via predetermined sequence if collision occurs */

Lookup field in Security Association Classification Cache;
if (no match found)
/* Refill cache from DRAM memory */
Calculate new hash for DRAM entry;
/* Re-hash in case of collision */
/t
* Qut-of-order non-blocking execution
*
/

Schedule DRAM access (up to 4 outstanding £ill req’'s);

Move on to Input Processing () of next datagram;
/* When DRAM refill has completed */
Lookup field in DRAM Security Association table;
Pre-fetch DRAM Auxiliary table entry;

}

if (no match found) ({
*

* Datagram does not have a SAdB entry;

* Process based on global flags.

*/

if (nomatch_discard) silently drop packet;
else if (nomatch_pass) send insecure packet out;
else queue up packet and raise interrupt;

/* Datagram has a matching SAdB entry */

Sanity check packet header fields, including protocol;
Verify packet data against SAdB entry;

if (seqchk) Perform anti-replay check;

Perform lifetime check;

Update statistics information;

/* Aggressive writeback to minimize future miss latency */
Schedule SATC-AUX entry for writeback to DRAM;

Extract SAdB processing control & crypto parameters;
Implement SAdB-specified processing on datagram;

/* Double check packet SAdB match as soon as possible >/
Perform SAdB lookup procedure on

(src@, dst@, srcport,dstport, protocol) ;
verify that original SPI is returned;

(received datagrams) operation:

-26-

10

15

WO 01/05086 PCT/US00/18537

The following pseudo-code module describes major ACE output processing

Output Processing () { /* Received datagram */
Calculate hash value based upon
(src@,dst@, srcport,dstport, protocol) ;
/* Re-hash via predetermined sequence if collision occurs */
Lookup field in Security Association Classification Cache;
if (no match found) {
/* Refill cache from DRAM memory */
Calculate new hash for DRAM entry;
/* Re-hash in case of collision */
/*
* Qut-of-order non-blocking execution
*/
Schedule DRAM access {up to 4 outstanding fill req’s);
Move on to Input Processing () of next datagram;
/* When DRAM refill has completed */
Lookup field in DRAM Security Association table;
Pre-fetch DRAM Auxiliary table entry;
}
if (no match found) {
/*
* Datagram does not have a SAdB entry; process based
* Process based on global flags.
*/
if (nomatch_discard) silently drop packet;
else if (nomatch_pass) send insecure packet out;
else queue up packet and raise interrupt;

/* Datagram has a matching SAdB entry */

Sanity check packet header fields, including protocol;
Generate sequence number;

Perform lifetime check;

Update statistics information;

/* BAggressive writeback to minimize future miss latency */
Schedule SATC-AUX entry for writeback to DRAM;

Extract SAdB processing control & crypto parameters;
Implement SAdB-specified processing on datagram;

(transmitted datagrams) operation:

ACE implements multiple techniques to accelerate processing. The design is
fully pipelined, such that multiple headers are in different stages of ACE processing at
any given time. In addition, ACE implements non-blocking out-of-order processing of

up to four packets.

Out of order non-blocking header processing offers several efficiency and
performance enhancing advantages. Performance-enhancing DRAM access techniques
such as read combining and page hit combining are used to full benefit by issuing
multiple requests at once to refill SATC-CL and SATC-AUX caches. Furthermore,
this scheme avoids a problem similar to Head Of Line Blocking in older routers, and

minimizes overall packet latency.
Because of the pipelined design, throughput is gated by the slowest set of

stages.

Header parsing 2 clocks

_27-

10

15

20

WO 01/05086 PCT/US00/18537

Hash & SA Cache lookup 2 clocks
Hash & SA Auxiliary lookup 2 clocks
Initial header processing, anti-replay 4 clocks
Statistics update 3 clocks
Final header update 6 clocks

This works out to 19 clocks per datagram total with zero pipelining, within a
design goal of 25 clocks per packet (corresponding to a sustained throughput of
5Mpkt/s at 125MHz). A simple dual-stage pipeline structure is sufficient, and will
provide margin (average throughput of 10 clocks per header). The chip implements
this level of pipelining.

ACE die area is estimated as follows based on major components and a rough

allocation for control logic and additional data buffering:

Control logic overhead 50Kg
Quad header buffer 20Kg
Quad refill controller with 50Kg
tag match
SATC-CL cache 130K g (single port)
SATC-AUX cache 170K g (single port)
Stats engine 10Kg
Header/Trailer processor 20Kg
Prefetch buffering 50Kg

Total estimated gate count is 500K g.

References

The following references, which provide background and contextual
information relating to the present invention, are incorporated by reference herein in

their entirety and for all purposes:

“Efficient Fair Queuing using Deficit Round Robin”, M. Shreedhar, G. Varghese,
October 1996.

draft-ietf-pppext-mppe-03.txt Microsoft Point-To-Point Encryption (MPPE) Protocol,
G. S. Pall, G. Zorn, May 1999

draft-ietf-nat-app-guide-02.txt “NAT Friendly Application Design Guidelines”, D.
Senie, September 1999.

.28 -

10

15

20

25

WO 01/05086 PCT/US00/18537

draft-ietf-nat-rsip-ipsec-00.tx] “RSIP Support for End-to-end IPSEC”, G. Montenegro,
M. Borella, May 19 1999.

draft-ietf-ipsec-spsl-01.txt, “Security Policy Specification Language”, M. Condell, C.
Lynn, J. Zao, July 1, 1999

“Random Early Detection Gateways for Congestion Avoidance”, S. Floyd, V.
Jacobson, August 1993 ACM Transactions on Networking

“The IP Network Address Translator (NAT)”, K. Egevang, P. Francis, May 1994.

“DEFLATE Compressed Data Format Specification version 1.3”, P. Deutsch, May
1996.

“Specification of Guaranteed Quality of Service”, S. Shenker, C. Partridge, R. Guerin,
September 1997.

“IP Network Address Translator (NAT) Terminology and Considerations”, P.
Srisuresh, M. Holdrege, August 1999.

“IP Payload Compression using DEFLATE”, R. Pereira, December 1998.

S. Kent, R. Atkinson, "Security Architecture for the Internet Protocol,” RFC 2401,
November 1998 (obsoletes RFC 1827, August 1995).

S. Kent, R. Atkinson, "IP Authentication Header," RFC 2402, November 1998
(obsoletes RFC 1826, August 1995).

S. Kent, R. Atkinson, "IP Encapsulating Payload," RFC 2406, November 1998
(obsoletes RFC 1827, August 1995).

Maughhan, D., Schertler, M., Schneider, M., and Turner, J., "Internet Security
Association and Key Management Protocol (ISAKMP)," RFC 2408,
November 1998.

Harkins, D., Carrel, D., "The Internet Key Exchange (IKE)," RFC 2409, November
1998.

“Security Model with Tunnel-mode IPsec for NAT Domains”, P. Srisuresh, October
1999.

“On the Deterministic Enforcement of Un-Ordered Security Policies”, L. Sanchez, M.
Condell, February 14" 1999.

.29.

10

15

WO 01/05086 PCT/US00/18537

CONCLUSION

Although the foregoing invention has been described in some detail for
purposes of clarity of understanding, those skilled in the art will appreciate that
various adaptations and modifications of the just-described preferred embodiments
can be configured without departing from the scope and spirit of the invention. For
example, other cryptography engines may be used, different system interface
configurations may be used, or modifications may be made to the packet processing
procedure. Moreover, the described processing distribution and classification engine
features of the present invention may be implemented together or independently.
Therefore, the described embodiments should be taken as illustrative and not
restrictive, and the invention should not be limited to the details given herein but

should be defined by the following claims and their full scope of equivalents.

What is claimed is:

-30-

N

10
11

12
13

14
15

16
17

18
19
20
21

22

23
24

25
26
27

28
29
30

WO 01/05086 PCT/US00/18537

CLAIMS
1. A cryptography acceleration chip, comprising:
a plurality of cryptography processing engines; and

a packet distributor unit configured to receive data packets and matching
classification information for the packets, and to input each of the packets to one of

the plurality of cryptography processing engines;

wherein the combination of said distributor unit and plurality of cryptography
engines is configured to provide for cryptographic processing of a plurality of the

packets from a given packet flow in parallel while maintaining per flow packet order.

2. The chip of claim 1, wherein said distributor unit processes received packet and

matching classification information sequentially.

3. The chip of claim 1, wherein said plurality of cryptography engines process the

input packets in parallel.

4. The chip of claim 1, wherein said distributor unit inputs packets to the

cryptography engines in round-robin fashion.

5. The chip of claim 4, wherein said distributor unit reads packets output from the

cryptography engines in the same round-robin fashion.

6. The chip of claim 1, wherein the combination of said distributor unit and plurality
of cryptography engines is configured to provide for cryptographic processing of a
plurality of the packets from a plurality of packet flows in parallel while maintaining

packet ordering across the plurality of flows.
7. The chip of claim 1, wherein said packets require IPSec cryptography processing.

8. The chip of claim 7, wherein said chip operates at sustained rate of at least one

Gigabit/s in full duplex mode.

9. The chip of claim 1, wherein said distributor unit further comprises an order
maintenance retirement unit configured to enable the plurality of cryptography engines

to process incoming packets in out-of-order fashion.

10. The chip of claim 9, wherein said order maintenance retirement unit extracts
processed packets from a retirement buffer and outputs them from the chip in the

same order in which they were received by the chip.

- 31 -

SUBSTITUTE SHEET (RULE 26)

31
32

33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57
58

59

WO 01/05086 PCT/US00/18537

11. A method for accelerating cryptography processing of data packets, the method

comprising:
receiving a plurality of data packets on a cryptography acceleration chip;

processing the data packets and matching classification information for the

packets;

distributing the data packets to a plurality of cryptography processing engines
for cryptographic processing;

cryptographically processing the data packets in parallel on the plurality of
cryptography processing engines;

outputting the cryptographically processed data packets from the chip in

correct per flow packet order.

12. The method of claim 11, wherein said processing of received packet and

matching classification information is done sequentially.

13. The method of claim 11, wherein said cryptographic processing of said packets on
said plurality of cryptography engines is done in parallel.

14. The method of claim 11, wherein said distribution of packets to the cryptography

engines is done in round-robin fashion.

15. The method of claim 14, wherein said outputting of packets from the

cryptography engines is done in the same round-robin fashion.

16. The method of claim 11, wherein the combination of said distribution and

cryptographic processing further maintains packet ordering across a plurality of flows.

17. The method of claim 11, wherein said packets require IPSec cryptography

processing.

18. The method of claim 17, wherein said chip operates at sustained rate of at least

one Gigabit/s in full duplex mode.

19. The method of claim 18, further comprising managing the processing of the
packet data through the plurality of cryptography processing engines without requiring
any attached local memory.

20. An IPSec cryptography acceleration chip, comprising:

- 32 -

SUBSTITUTE SHEET (RULE 26)

60

61

62

63

64

65
66

67

10
11
12
13

14
15

WO 01/05086 PCT/US00/18537

an external system bus interface unit;

a packet classifier unit:

a packet distributor unit;

a FIFO input buffer connected to the packet classifier unit;
a FIFO output buffer connected to packet distributor unit;

a plurality of cryptography processing engine units connected to the packet

distributor unit; and

a control processor that manages the processing of packets through the chip.

21. The IPSec cryptography acceleration chip of Claim 20, further

comprising:

cells.

a packet splitting unit, in which incoming packets are split into fixed-sized

22. A network communication device, comprising:
a central processing unit;
a system memory;
a network interface unit;
a cryptography acceleration chip comprising:
a plurality of cryptography processing engines; and

a packet distributor unit configured to receive data packets and
matching classification information for the packets, and to input each of the
packets to one of the plurality of cryptography processing engines;

wherein the combination of said distributor unit and plurality of
cryptography engines is configured to provide for cryptographic processing of
a plurality of the packets from a given packet flow in parallel while

maintaining per flow packet order.

an internal bus that connects the central processing unit, the system memory,

the network interface unit, and the cryptography acceleration chip.

- 33 -

SUBSTITUTE SHEET (RULE 26)

WO 01/05086 PCT/US00/18537

16 23. The device of claim 22, wherein the internal bus is a high speed switching matrix.

17

- 34 -

SUBSTITUTE SHEET (RULE 26)

WO 01/05086

100

1/9

MAIN
CPU

PCT/US00/18537

MAIN
MEMORY

~— 116

i

104

’y

I

L]

SYSTEM
INTERFACE

1

~+~~ 103

LOCAL

CRYPTOGRAPHY
ACCELERATION

LOCAL

)

110

MEMORY [™

CHIP
102

CPU

I

NETWORK
(WAN)
INTERFACE

~— 112

108

FIG. 1A

SUBSTITUTE SHEET (RULE 26)

WO 01/05086 PCT/US00/18537

2/9
150
MAIN MAIN
184~ cpu MEMORY [166
A A 154
< y\ Y ! Y Y / >
\ \ 4
Y
SYS. INTER. ~~ 156
1 LOCAL
LINE LINE i cPU TN 158
CARD CARD %‘RYCP'[L%GR,%%HI\IY
CCELERATI
«—»| LOCAL
CHIP MEMORY T~ 160
//l | /] I\ \) \
168‘ l/ ‘ ‘/170 152 153

FIG. 1B

SUBSTITUTE SHEET (RULE 26)

WO 01/05086

PCT/US00/18537

3/9
200
N (OPTION)
LOOKUP
CAM
FIFO
KT INPUT PACKET
DATA—b| UNIT 8h?TSSIFIER
IN 202 204 SHARED SGRAM
MEMORY > OR
SYSTEM
FIFO uCode | Buffs CONTROLLER| | 0
DATA < UNIT PACKET 206 212
ouT DISTRIBUTOR <
216 UNIT/(OMRU)
HDR BUF | IPCOMP HDR BUF | IPCOMP
u u
C C
o) 0
CRPTO | AUTH |D CRPTO | AUTH | D
E E
214
HDR BUF | IPCOMP HDR BUF | IPCOMP
u u
C C
0 0
CRPTO | AUTH | D CRPTO | AUTH | D
E E
FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US00/18537

WO 01/05086

ynyjoidhiy —9le ynyoidhy 9Le e yinyjoidhin yny/oldly —9lg
\)\
ZLe oLe N rAR>
/ N glL¢
| @ | @
avie siayng layng layng arie siayng Jayng lajng
ZLe eyLe ~ vS 1ox0ed snjejs sLe epre~ v NG snjejs
il o inis FF]
Z | (@
arie slayng layng layng avie slayng layng layng ole
epre~ vs 1o%oed | | smeis eple ~ vs jooed | | smess
v0€
@ [el s e
<< A N\ % | V— \
f L=
oLE —\ e 181ssel0
- Soe B Joyoeq \GMHOOTAYO
jo)nqusig | —
S Y1 wped [
VN E— ndu I
(rowwed] , OM e L Odiindul { Ue¥ed |
/ 90¢ 0 f
8le Vi 1ajj01u00 Alowspy (40>
: 80¢
€ 9Old

sng
WYY

V/ 00¢

SUBSTITUTE SHEET (RULE 26)

WO 01/05086

PKT
HDR
ACCESS

HASH
TABLE
ACCESS

CLASSIFICATIO
ENTRY
ACCESS

<

1

5/9

PCT/US00/18537

FIG. 4

SUBSTITUTE SHEET (RULE 26)

NEXT
PKT
- DMA
ADDR
[BASE IP HDR, SRC/DST PORT, PROTO, SPI
L— HASH = —» MATCH
= >/ CLASSIFICATION ENTRY
NININGE
DIDiDIH
IEiEIEIA
XiXixis
0i1i2iH
<7

PCT/US00/18537

WO 01/05086

6/9

S Old

J1901 T1d43Y

!

HOLVIN e WVO dIHO-NO

i

IdS ‘010¥d ‘1¥0d 1SQ/0YS "HaH di 3svd

AHVANNO4
diHO

VD TYNY3LXT
(NOILLO)

SUBSTITUTE SHEET (RULE 26)

WO 01/05086

7/9

604

Buffer Up
Packet Header

)

602

SAD Lookup

PCT/US00/18537

600
y

606

608

Decrypt and
Authenticate

|

Decapsulate
(strip headers)

~— 612

|

614 < SPD Lookup |

Drop packet if
bad policy 616

FIG. 6A

618

SUBSTITUTE SHEET (RULE 26)

WO 01/05086 PCT/US00/18537

8/9

650
y

654
656

Buffer Up
Packet Header

ecurity Policy
Database

Lookup 658
652

5 Create

No SAD Security

660] SAD Lookup Association, if
required
l 662 2
664

Encapsulate
Packet (new | ~__ 666
headers)

|

Perform
Encryption and ~— 668
Authentication

Send Out
IPSec packet

FIG. 6B

670

SUBSTITUTE SHEET (RULE 26)

WO 01/05086

I
| TO MEMORY CTLR

WB STATS

9/9

RANDOM
NUMBER
GENERATOR

PCT/US00/18537

QUAD REQUEST REFILL ENGINE

—

l

SATC-CL CACHE

HASH

ENTRY #0
ENTRY #1

\

QUAD
HEADER
BUFFER

ENTRY #2355

l

S

l

SATC-AUX CACHE

ENTRY #0

e

HASH

ENTRY #1

ENTRY #255

\
l UPDT STATS

MATCHING SAdb / AUX DATA ENTRY

HEADER STREAM
BUFFER

IPSec

HEADER & TRAILER
PROCESSING

ESP/AH/NONE
TUNNEL/ADJ

CHECK/UPDT SEQ. NO.

A

TO & FROM

NEW HDR

e

FIG. 7

—>

CRYPTO ENGINES

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

