wO 2008/032070 A1 |00 00 000 0 0 R 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 March 2008 (20.03.2008)

‘ﬂb A0 0

(10) International Publication Number

WO 2008/032070 Al

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/GB2007/003471

(22) International Filing Date:
13 September 2007 (13.09.2007)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
60/845,224 14 September 2006 (14.09.2006) US

(71) Applicant (for all designated States except US): 1060 RE-
SEARCH LIMITED [GB/GB]; 23 Horse Street, Chipping
Sodbury, Bristol, BS37 6DA (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RODGERS, Peter,
James [GB/GB]; 4 Hawkesbury Road, Hillesley, Wotton-
under-Edge, Gloucestershire, GI.12 7RE (GB). BUTTER-
FIELD, Antony, Allan [GB/GB]; Old Schoolhouse, Sea-
gry Road, Sutton Benger, Wiltshire, SN15 4RX (GB).

(74) Agent: MACKENZIE, Andrew, Bryan; Scott & York,
45 Grosvenor Road, St Albans, AL1 3AW (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

[Continued on next page]

(54) Title: METHOD FOR LOCATING, RESOLVING AND INVOKING SOFTWARE FUNCTIONS

RESOURCE IDENTFER | \1 o
EXECUTABLE ACTION T T~
REPRESENTATION CLASS T~
PRIORITY T
PARENT REQUEST T T~
' REQUESTOR K— I

J

100

(57) Abstract: A method to locate, resolve, and invoke soft-
ware functions, wherein the method forms a request compris-
ing a resource identifier, resolves the request to an endpoint,
evaluates the request by the endpoint to generate a resource
representation.

WO 2008/032070 A1 |} DA 00 0000000000 A 0

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, Published:
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). — with international search report

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

METHOD FOR LOCATING, RESOLVING AND INVOKING SOFTWARE
FUNCTIONS
Cross-Reference To Related Applications

This Application claims priority from a United States Provisional Application
having Serial No. 60/845,224 filed September 14, 2006, which, including the source
code Appendices “A”, “B”, and “C”, is hereby incorporated by reference herein.

Field Of The Invention

This invention relates to a method for invoking software functions in which
the software functions and the resources to be processed by the software system are
located within structured address spaces.

Background Of The Invention

In a procedural software system, such as Java or C++, a software procedure is

located in memory. A thread of execution may invoke the procedure by calling the
memory location. Frequently a procedure will present a typed interface defining the
arguments that must be supplied to the procedure. In languages such as Java and C++
the type of the argument to be supplied is declared by the procedure and any
execution invocation must supply instances of positionally correlated arguments.

For example here is a simple Java method interface:

' void javaMethod(int aValue, String DbValue);
This procedure might be invoked with code similar to:

javaMethod (100, “Hello World”);

The call to execute the procedure “javaMethod” must ensure that the correct
type of argument is provided in the correct positional location — in this case, the first
argument must be an integer, the second must be a String object. This approach can
be called 'Procedure Invocation with Positionally Cortrelated Typed Arguments'
(PIPCTA). |

Some languages, such as Python or PL/SQL, extend the PIPCTA model to
support named arguments. For example, here is a Python method definition, which

uses named arguments, and supplies default values :
def pythonMethod (someInteger=0, someString="Default”):

The following method invocations are equivalent:

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

pythonMethod(100, “Hello World);
pythonMethod(somelnteger=100, someString="Hello World”)
pythonMethod(someString="Hello World”, somelnteger=100)

As those skilled in the art will appreciate, by employing named arguments the
positional dependence of the arguments is removed resulting in increased code ‘
flexibility for the caller of the procedure.

Languages in which interfaces are untyped offer further relaxation of the
constraint between procedure and caller. In the examples shown above, the Python
language demonstrates both named arguments and untyped interfaces.

The World Wide Web (WWW) is a distributed client-server software system
in which information resources are hosted on Web-servers. Web-clients and Web-
servers implement support for the HyperText Transport Protocol (HTTP) and adhere
to a standard means of ideﬁtifying Web resources.

A Uniform Resource Identifier (URI) identifies a Web resource. A URI is an
untyped location in a resource address space. Specifically, for information resources
in the WWW system, the URI is a Uniform Resource Locator (URL).

The HTTP protocol defines a small set of actions that may be applied to a
resource. Most commonly a client will request a copy of a resource by issuing an
HTTP 'GET' request for the URL of the resource. To physically perform this action
the client will parse the URL to obtain the name of the resource's host Web-server. It
will then employ DNS to locate the IP address of that Web-server. Using TCP/IP
networking it will then issue the HTTP GET request to the port of the host server's
HTTP protocol handler. The Web-server will respond by sending a stream of bytes
consisting of HTTP protocol message headers followed by a copy of the resource
itself.

A Web-server must provide an HTTP transport protocol handler and a means
of delivering a copy of a resource for a requested URL. Most importantly, a Web-
server must be configured to perform a mapping from the logical URI web-address of
a resource to the physical embodiment of the information resource.

In a simplest form a Web-server, such as Apache, might map a file system
directory into the web URI address space:

http://www.1060.0rg/myDirectory/ => /var/www/myDirectory/

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

such that a GET request for a resource below the URL path /myDirectory/ will obtain
a copy of the file located in the server's directory /var/www/myDirectory/
http://www.1060.0rg/myDirectory/myFile.html =>
/var/www/myDirectory/myFile.html

The WWW is a remarkably robust and adaptive application. It has grown to
have a huge diversity of client and server implementations and its success rests on the
basis of the common adherence to the HTTP protocol and URL addressing.

The Web does not have a formal architecture and yet is highly tolerant such
that it accepts a wide range of styles of Web application development.
Representational State Transfer (REST) is a post-hoc formal description of one such
application development style. Its premise is to describe a Web application
development model utilizing the HTTP protocol and URL requests with
characteristics that approach an ideal. Much debate remains about what the 'ideal' is
but it includes scalability (both scaling-out and scaling-up) and adaptability.

One notable point is that REST suggests that when a resource is served as the
result of a computation (for example by mapping a URL to the execution of a CGI
script or JSP engine), then it is good practice to explicitly embody the information
necessary to compute the resource in the URL of the resource.

Suppose for example we have a map service, which dynamically generates an
image of a geographical location. Its primary REST interface might have the URL:

http://www.1060.0rg/cgi-bin/mapserver

‘To generate an image it needs two pieces of information, namely the latitude
and longitude of the geographical point at which to center the map (for simplicity lets
assume all map images are a fixed size of 10x10 kilometers). Two possible ways of
explicitly expressing in the URL the information required for the computation of the
map by the mapserver can be considered. First a positional URL path approach where
latitude and longitude values are expressed by position in the URL path:

http://www.1060.0rg/cgi-bin/mapserver/51.536/-2.390/

An alternative approach is to use URL query parameters to provide named arguments:
http://www.1060.0rg/cgi-
bin/mapserver?latitude=51.536&longitude=-2.390

The first approach is analogous to PIPCTA function invocation. The second is

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

similar to named argument invocation. In either case the computed resource is
uniquely identified by its URI. Explicitly supplying the information needed to
compute the resource as part of its URI allows that a computed resource can be
cached for future reuse, where the URI is used as the primary key in the cache.
Transparent caching is a very important attribute for the scalability of Web
applications. Applications, which adhere to the REST architectural style, are
sometimes described as RESTful',

Operating systems, such as Unix or Linux, locate executable application code
using an environmental context. When a shell process executes it has associated with
it a collection of environment variables. These variables provide the context for the
execution. When the shell makes a kernel call to execute a secondary process — for
example 'Is' to list a directory - the kernel uses the PATH variable containing an
ordered list of directories to search the filesystem for an executable file called 'Is".
The PATH variable's listing of directories in effect represents a series of searchable
resource address spaces in which executable code may be located.

‘When a child process is forked, by default it inherits the environmental
context of its parent. It is possible to programmatically modify the environment
variables within a process so as to provide a dynamic execution context but due to the
limited nature of environment variables this would be a very unwieldy way to develop
systems.

Brief Description Of The Drawings

The invention will be better understood from a reading of the following detailed
description taken in conjunction with the drawings in which like reference designators
are used to designate like elements, and in which:

| FIG. 1 is a block diagram illustrating the elements of a first request formed
using Applicants’ method,

FIG. 2 is a perspective view of a linked list comprising three contexts;

FIG. 3 graphically illustrates the resolution of the request of FIG. 1 in one of
the contexts of FIG. 2;

FIG. 4 graphically illustrates the evaluation of a second request formed using
Applicants’ method;

FIG. 5 is a flow chart summarizing the steps of Applicants’ method to resolve

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

and evaluate an example request using Applicants’ method;

FIG. 6 is a flow chart summarizing certain additional steps of Applicants’
method used to resolve and evaluate the example request;

FIG. 7 is a flow chart summarizing certain additional steps of Applicants’
method used to resolve and evaluate the example request; and

FIG. 8 is a flow chart summarizing certain additional steps of Applicants’
method used to resolve and evaluate the example request.

Detailed Description Of The Preferred Embodiments

This invention is described in preferred embodiments in the following
description with reference to the Figures, in which like numbers represent the same or
similar elements. Reference throughout this specification to “one embodiment,” “an
embodiment,” or similar language means that a particular feature, structure, or
characteristic described in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of the phrases “in one
embodiment,” “in an embodiment,” and similar language throughout this specification
may, but do not necessarily, all refer to the same embodiment.

The described features, structures, or characteristics of the invention may be
combined in any suitable manner in one or more embodiments. In the following
description, numerous specific details are recited to provide a thorough understanding
of embodiments of the invention. One skilled in the relevant art will recognize,
however, that the invention may be practiced without one or more of the specific
details, or with other methods, components, materials, and so forth. In other
instances, well-known structures, materials, or operations are not shown or described
in detail to avoid obscuring aspects of the invention. |

Applicants’ method utilizes a plurality of values, functions, function-calls, and
the like, including one or more Resources, one or more Resource-Identifiers, one or
more Resource Representations, one or more Endpoints, one or more Contexts, one or
more Requests, one or more Requestors.

By “Resource,” Applicants mean an entity to be modeled in the software
system. A resource comprises an logical object and can only be physically processed
when reified as a Resource Representation. Information values computed by the

execution of the software system are treated as resources. Resources may also reside

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

externally to the execution of the software system. A resource may have one or more
Resource Identifiers. |

By.“Resource Identifier”, Applicants mean a value expressing an identity for a
resource. A Resource Identifier is often an address, or vector, to a location within a
resource address space. Resource Identifiers are not absolute. Rather, Resource
Identifiers are resolvable relative to a Context.

By “Context,” Applicants mean a Resource Identifier address space. A context
resolves Requests to Endpoints that reify Resource Representations. A context
receives and resolves requests for resources. A context returns a resolution
representation containing a reference to a resolved Endpoint, both its physical
implementation and its logical identity within the address space, and a Request-Scope
constructed during the resolution. In a preferred embodiment, a resolution
representation is returned in an IResolution object comprising:

EndpointReference getPhysicalEndpoint () ;
Regsourceldentifier getLogicalEndpoint () ;
Request-Scope getRequestScope () ;

By “Endpoint,” Applicants mean a software function, which computes
Resource Representations and/or provides a gateway for changing a resource.

By “Resource Representation,” Applicants mean the concrete embodiment, or
reification, of a resource. It may comprise information representing the current state
of a resource or comprise information representing the state to which a resource
should be 'set'. A Resource Representation can be implemented using any suitable
computational information model, examples include: a handle to a file on a file
system, or an in-memory object model.

A Request comprises an information structure. In addition, a Request
comprises the information needed to identify, resoive and perform an action upon a
Resource. For example and referring now to FIG. 1, Request 100 comprises Resource
Identifier 110, Executable Action 120, Representation Class 130, Priority 140, Parent
Request 150, and Réquestor 160. In certain embodiments, the Executable Action 120
is selected from the group consisting of resolve, source, sink, delete, new, exists,
meta, and transrept.

Resource Identifier 110 comprises an identifier for a resource. Executable

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

Action 120 comprises a qualifier indicating the action of the request upon the
resource. Representation Class 130 comprises the type or classification of
representation that should be returned in response to Request 100. A scheduler
algorithm to schedule execution of Request 100 uses priority 140. Parent Request 150
comprises a reference to an earlier, i.e. parent request, with which Request 100 is
associated. Requestor 160 comprises the software function wherein Request 100 was
constructed and issued. A Response to Request 100 is provided to the Requestor 160.

In addition to the information structure recited in FIG. 1, a request further
comprises a Request-Scope. A Request-Scope defines the contexts in which the
request may be resolved. In practice, a linked list of contexts, the nearest context
being the first in the list. For example and referring now to FIG. 2, Request-Scope
200 comprises a first context 210, a second context 220, and a third context 230.

Context 210 comprises a first searchable address space, context 220 comprises
a second searchable address space, and context 230 comprises a third searchable
address space. In certain embodiments, the first searchable address space, the second
search able address space, and the third searchable address space are disposed in the
same computer readable medium. In other embodiments, the first searchable address
space, the second search able address space, and the third searchable address space,
are each disposed in a different computer readable medium.

FIGs. 1 and 2 illustrate a Request information structure comprising the
minimum required using Applicants’ method. Higher-order data can be added to a
Request using additional data fields. Examples of information that could be added to
an extended request include, without limitation: authentication credentials, billing and
payment tokens, quality-of-service contractual obligations etc.

A Requestor comprises executable code that constructs and issues a Request
for a Resource. In certain embodiments, a Requestor comprises an Endpoint residing
in a Context. In other embodiments, as in the case of a transport or bootloader, a
Requestor might be on the edge of the system and “inj ects” one or more Requests into
the system, in which case it must construct or obtain an initial request context. The
Requestor's Context provides the Request-scope for Requests created and issued by
the Requestor. A Requestor issues such a resource request to the kernel scheduler to

be resolved to a Resource Representation.

WO 2008/032070 PCT/GB2007/003471

10

15

20

25

30

Referring now to FIG. 3, Request Resolution 320 comprises locating an
Endpoint that can satisfy a request. The kernel scheduler allocates execution threads
to Requests to resolve an Endpoint for a request. The scheduled thread starts to
resolve the request using the nearest context in the request-scope. It creates a
RESOLVE sub-request with the request to resolve as a field and issues it to the
Context. In the illustrated embodiment of FIG. 3, Context 210 interprets Request 100
and either: |

1. Recognizes that it has an Endpoint 330 that can handle the request and

which can deliver a Resource Representation. A successful Resolution 320

results in the return of an IResolution object to the kernel containing Endpoint

reference 330 and a constructed Request Scope 360.

2. Delegates resolution to another Context by issuing a further sub-

request, such as for example Context 310 . Delegation enables Contexts to be

nested to create modular address space compositions. The evaluation order of
delegated contexts is information model specific and depends on the

implementation of the Context. For example, a Context might host a

composite address space resulting from the import of several contexts.

3. Fails to match the request and returns a Response 320 comprising a

“No Match” indication 340 to the kernel. The response can indicate one of

two states to the kernel.

. a) “Stop” 350 - do not attempt to resolve any further. The Context has
determined that the resource should not be resolved any further.
b) Broaden the scope and continue the resolution process. The kernel
will 'pop’ the request-scope of the request and try to resolve it using the
next available context. The failed context moves out of scope and will
1ot be retried. '

When a request cannot be resolved in the nearest Context, the kernel will "pop’
the Request-Scope. The next Context in the linked list of contexts is selected and the
request resolution process is performed in this Context. As a result, the previous
context is “popped”, i.e. removed from the Request-scope. Applicants’ method
continues this “context-popping” process -until either an Endpoint is resolved or all

Request-scopes have been popped. If the resolution process does not resolve an

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

Endpoint the kernel will return an Application Error to the Requestor indicating a
resolution failure.

In an optimization the kernel retains a cache of previously requested Contexts
used in the current request resolution. The kernel checks each selected Context
against the previously popped contexts and does not attempt to resolve against a
Context if it has previously failed. This optimization improves resolution times in
cases where a context has more than one entry in a request scope.

Finally, for some requests it can be useful to construct a Durable Context. A
Durable Context is preserved by the kernel during the scope-popping process. After
a resolution is completed, the kernel reattaches popped Durable Contexts as the
nearest contexts in the resolved request-scope. Therefore a Durable-Context remains
at the top of the Request-Scope when a Request is evaluated by the resolved
Endpoint. As an example of when this can be valuable, a durable context might
provide a mapping from a Resource Identifier to a physical instance of a Resource
Representation. When added as the nearest context in a request, such a durable
context provides the ability for a Requestor to present pass-by-value arguments to an
Endpoint. In a similar way, a durable context can be used to implement the
Environment Variable pattern of Unix and other operating systems.

In certain embodiments, the process of Request Resolution comprises the use
of one or more Contexts. Movement through contexts during resolution adds (context
delegation) or removes (scope-popping) Contexts to the Request-Scope. The
Request-Scope that is constructed during resolution provides the Request-Scope for
Resources that might be requested from within the Endpoint. Applicants’ process of
Request Resolution comprises the key to thé dynamic construction of the address-
space scope for locating and calling software functions.

Having resolved a Request to an Endpoint, the kernel constructs a new
Request from the original Request containing copies of its data values, and the
Request-Scope constructed during the resolution process. The parent of the new
request remains the same as the parent of the original request. In a preferred
optimization the new Request is constructed by wrapping the original Request thereby
reducing information redundancy. New Request provides a mechanism to override

values for modified fields such as the Request-Scope.

WO 2008/032070 PCT/GB2007/003471

10

15

20

25

30

Referring now to FIG. 4, the kernel evaluates the New Request in the
Endpoint by calling a method on the Endpoint that accepts the New Request. In an
illustrative embodiment presented in the Appendix A source code incorporated by
reference herein, IEndpoint interface presents a method named onRequest(Request)
which is invoked to evaluate a request. The information contained in the new request
is used by the Endpoint to perform its operation. In general the Endpoint will perform
a computation 420 and return a Response 450. That Response 450 comprises an
information structure comprising the New Request received by the Endpoint from the
kernel, a Resource Representation 430 comprising an information structure
comprising the information expressed by the resource or an information structure
containing the outcome of the New Request, Response Metadata 440 comprising
hidden system metadata and optional user specific metadata.

In certain embodiments, Metadata 440 comprises, without limitation, the
expiration of response, i.e. an indication if the response is reusable, the cost of
generating the response, the scope within which the resource is meaningful,
dependent resources that are involved in creating the response, and the like.

Frequently an Endpoint will construct and issue further sub-requests for
Resource Representations that are required in order to fulfill the New Request
e§aluation . In order to correlate long-running asynchronous processes an Endpoint
will usually set the Parent Request of the sub-requests to be the New Request. Sub-
requests will usually inherit the Request-Scope of the New Request.

After a Resource Representation has been returned by the Request Evaluation
then the kernel compares the class of the Resource Representation that has been
returned in the response to that which was desired by the Representation Class field of
the original Request. If the desired class has not been returned then the kernel
attempts to locate an Endpoint that can perform a transrepresentation of the given
Resource Representation to the required class.

By “transrepresentation” Applicants mean an isomorphic lossless
transformation of the resource information held in one Resource Representation to the
resource information expressed in another alternate Resource Representation.
Examples include parsing an XML file from binary data stream to DOM object model
or compiling a script from ASCII text to machine readable bytecode. As a further

10

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

example, a mismatch between meta data associated with the two classes. For example,
the requested class could be XMLDOM using XML schema "A" and the returned
representation could be class XMLDOM using XML schema "B". In this case, a
transrepresentation could be requested to convert information encoded as
XMLDOM(schema "A") to XMLDOM(schema "B").

Transrepresentation does not change the underlying information of the
resource but instead it serves to restructure the resource information into a more
desirable form for the Requestor. One benefit of Transrepresentation is that it
provides a formal process for reducing information entropy in computational results.

If the response needs transrepresentation the kernel constructs a new Request.
This Request will have a request Executable Action type of TRANSREPT. The
Request Scope will be that of the original request with the addition of a new nearest
Durable Context, which maps the Resource Identifier to the Resource Representation
returned in the previous evaluation Response. In the same way as for the initial
request, the Transrepresentation Request is resolved using the Request-Scope to
locate an Endpoint that can perform the transrepresentation operation. It is Context
specific how the TRANSREPT request is resolved within the Context to a
transrepresentation Endpoint. If an Endpoint is resolved, the request is evaluated in
the resolved Endpoint in the same way as described in the Request Evaluation section.

It will be clear to those skilled in the art, that this pattern can be continued to
perform additional resource processing steps within the request scope. A kernel
would replicate the pattern described for TRANSREPT post-processing with requests
constructed within the request context and an appropriate Executable Action used to
indicate the processing action.

Finally the Request will be satisfied and a Resource Representation will be
available to be returned to the Requestor. In a preferred embodiment the kernel will
use the Request information structure, especially the Resource Identifier and Request
Scope, and any associated response metadata to determine a unique key for the
resource. If the Resource Representation is deemed cachable the kernel will place it
in a cache and return the resource representation in a response to the Requestor.

The most efficient processing is not to do any processing, and therefore, in

practice the kernel performs a cache lookup before resolving any request. An

11

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

implementation of the kernel scheduler, which performs caching and cache lookup,
and a cache implementation, is implemented in the source code recited in the
Appehdices incorporated by reference herein.

For Resource Representations that cannot be usefully cached because the
Resource is perpetually changing, the resolution process itself rather than the final
Resource Representation can be cached. The IResolution object is cached aga:inst a
key consisting of the request to be resolved’s identifier and scope. This mechanism
provides near constant time lookup for resolutions against previously resolved
resources.

A robust software system should provide mechanisms for signaling error
conditions. Errors can be categorized into two types: Application Errors - errors that
are generated due to unanticipated state or bugs in implementation code in an
Endpoint or a failure to resolve a request in a request-scope. Runtime Errors - errors
that occur within the software system but that are not specific to a single Endpoint;
examples include exhausting memory capacity, termination of thread execution, etc.

An Endpoint must catch and manage application errors. If an application error
results in a failure of an Endpoint to fulfill its assigned request then the Endpoint
should return a response containing an Exception Resource Representation. The
kernel will return the response containing the exception representation to the
Requestor. The Requestor may choose to process the exception representation or may
choose to issue a further exception response to its Requestor. This error forwarding
chain may propagate through the entire request call stack. It can be seen that the
resource oriented nature of this invention allows that an error generated at one level of
a request hierarchy may be treated as processable resource to a higher order
Requestor.

An Endpoint will usually not catch runtime errors. In certain embodiments,
the kernel scheduler is implemented to catch runtime errors in the Thread assignment
implementation. The kernel must determine the severity of the runtime errors. Non-
critical runtime errors may be wrapped as an exception representation and returned in
a response to the Requestor. Critical runtime errors may cause the kernel to respond
by taking emergency measures to stabilize the software system.

In certain embodiments, a kernel scheduler performs the scheduling of threads

12

WO 2008/032070 PCT/GB2007/003471

10

15

20

25

30

for Request Resolution and Request Evaluation. An implementation of a kernel
scheduler is embodied in the source code recited in the Appendices incorporated by
reference herein.

Applicants’ method does not require that a Context be identified. The
relationship between Contexts and Request-Scopes can be implemented entirely using
software references. In certain embodiments, Applicants’ method identifies a context
with a Resource Identifier. In certain embodiments, a Version Identifier may
additionally qualify an identifier. By identifying and versioning Contexts the
composite address space constructed when a first Context delegates to a second
Context allows for multiple independent and co-existing generations of software
environments in the same overall software system.

In embodiments wherein Contexts are uniquely identified and versioned,
Applicants’ method includes the implementation of a request Request-Scope using
either software references or, by use of the context identifier and version. The source
code recited in Appendices incorporated by reference herein embodies a system
wherein all of the context implementations are identified and versioned. For
computational efficiency the request implementation employs only software
references for Request-Scopes.

There is no limit to the number of resource space models and resource
addressing schemes that can be developed. The following Example is presented to
further illustrate to persons skilled in the art how to make and use the invention. This
Example is not intended as a limitation, however, upon the scope of the invention.

EXAMPLE I
Function Call With Named Arguments

This Example I illustrates how a software function can be located in an
address space defined as the Context. The function can be called with named
argument values. What is needed is a function to sum two integers. The function will
be implemented as an Endpoint within a first Context, such as Context A. The
Endpoint comprises a software function resident in Context A, and will be identified
by the Resource Identifier “sum”.

The Context is constructed so that it resolves requests for “sum” and returns

an JResolution object with a reference to the Endpoint. The Endpoint requires two

13

WO 2008/032070 PCT/GB2007/003471

10

15

20

25

30

resources comprising the values to add, for example “valuel” and “value2”.

Referring now to FIG, 5, in step 510 a Requestor generates a Requestor
Request, using for example the Request format of FIG. 1. In step 520, the Requestor
sets the Resource Identifier element of the Request “sum”. In step 530, the Requestor
adds Context A to the Request Scope of the Request. In step 540, the Requestor
constructs a Durable Context B, which comprises a name-value map and provides a
single Lookup Endpoint that can source Resource Representations for a Resource
Identifier name.

In step 550, the Requestor places integer values with Resource Identifiers
“valuel” and “value2” into the map of context B. In step 560, the Requestor adds
context B as the nearest Context in the Request Scope. In step 570, the Requestor
issues the Request to the kernel scheduler. In step 580, the Requestor receives a
Response comprising a returned Resource Representation comprising the sum of
valuel and value 2. In this example, the returned Resource Representation comprises
an Integer object.

FIG. 6 summarizes the steps of Applicants’ method to resolve the Requestor
Request. Applicants’ method transitions from step 570 to step 610 (FIG. 6).
Referring now to FIG. 6, in step 610 the kernel provides the Requestor Request to
Context B because Context B is identified as the “nearest Context.” In step 620,
Applicants’ method determines that Context B does not resolve the Resource
Identifier in the Requestor Request because Context B does not comprise a summing
function.

Applicants’ method transitions from step 620 to step 630 wherein the kernel
pops the request scope and provides the Requestor Request to Context A. In step 640,
Applicants’ method determines that Context A resolves the Resource Identifier in the
Requestor Request because Context A comprises a function, namely the summing
function, that is capable of summing valuel and value 2.

In step 650, Context A returns to the Kernel an IResolution object comprising
a reference to the Sum Endpoint. In step 660, Context A returns to the kernel a
resolved Request Scope comprising Context A only. In the illustrated embodiment of
FIG. 6, steps 650 and 660 are shown separately. As a general matter, steps 650 and

660 are combined and/or performed synchronously In step 670, the kernel reattaches

14

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

Context B to the Resolved Request Scope because Context B is defined as a Durable
Context.

FIGs. 7 and 8 summarize the steps of Applicants’ method to evaluate the
Requestor Request. Applicants’ method transitions from step 670 to step 710 (FIG.
7). Referring now to FIG. 7, in step 705 Applicants’ method executes the Sum
Endpoint by calling the Sum Endpoint with a New Request consisting values from the
Requestor Request and with the Request Scope being the Request Scope resulting
from step 670. In step 710, the Sum Endpoint generates a first Endpoint Request for a
value comprising the Resource Identifier “valuel.” In step 720, the Sum Endpoint
provides that first Endpoint Request to the kernel. The Endpoint Request has the
request scope received from the New Request and as constructed 670 during the
Requestor Request resolution. The first Endpoint Request has the New Request as its
parent request.

In step 730, the kernel provides the first Endpoint Request to Context B
because Context B is denominated the “nearest Context™ in the Request Scope for the
first Endpoint Request. In step 740, Applicants’ method determines that Context B
has an endpoint. the Lookup Endpoint, which resolves the Reséurce Identifier in the
first Endpoint Request. In step 750, Context B returns to the kernel an IResolution
object containing an Endpoint reference to Context B’s name-value map lookup
function, i.e. the Lookup Endpoint, and a resolved Request Scope comprising Context
B. In step 760, the first Endpoint Request is evaluated in the Lookup Endpoint by
constructing a first New Endpoint Request with values of first Endpoint Request and
Request Scope obtained in the first Endpoint Request resolution. First New Endpoint
Request is evaluated by the Lookup Endpoint to obtain the Resource Representation
value for the first Endpoint Request Identifier, and the kernel returns to the Sum |
Endpoint the Resource Representation comprising a value denominated “valuel.”

Applicants’ method transitions from step 760 to step 810 (FIG. 8) wherein the
Sum Endpoint generates a second Endpoint Request for a value comprising the
Resource Identifier “value2.” In step 820, the Sum Endpoint provides that second
Endpoint Request to the kernel. The second Endpoint Request has the Request Scope
received from the New Request and as constructed in step 670 during the Requestor

Request resolution. The second Endpoint Request has the New Request as its parent

15

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

request.

In step 830, the kernel provides the second Endpoint Request to Context B
because Context B is denominated the “nearest Context” in the Request Scope for the
second Endpoint Request. In step 840, Applicants’ method determines that Context B
has an endpoint, the Lookup Endpoint, which resolves the Resource Identifier in the
second Endpoint Request. In step 850, Context B returns to the kernel an IResolution
object containing an Endpoint reference to Context B's name-value map lookup
function, i.e. the Lookup Endpoint, and a resolved Request Scope comprising
Context B. In step 860, the second Endpoint Request is evaluated in the Lookup
Endpoint by constructing a second New Endpoint Request with values of second
Endpoint Request and Request Scope obtained in the second Endpoint Request
resolution. Second New Endpoint Request is evaluated by the Lookup Endpoint to
obtain the Resource Representation value for the second Endpoint Request Identifier,
and the kernel returns to the Sum Endpoint the Resource Representation comprising a
value denominated “value2.” In step 870, the Sum Endpoint generates a Response to
the Requestor Request comprising the sum of valuel and value2. Applicants’ method
transitions from step 870 to step 580 wherein the kernel returns to the Requestor a
Resource Representation comprising the sum of valuel and value2.

Context B provides a reference to the same Endpoint for both “valueX”
requests. One of the valuable properties of Applicants’ software system is that object
creation is a minimum — usually there is only one instance of a given Endpoint in the
system at a time.

Example I, above, assumes that all values are passed as Integer objects.

However, the sum function can be made more general and could be written to add

floating point values together. In this case, the Sum Endpoint would issue Sum

Endpoint Requests for “valuel” and “value2” but the Representation Class element
130 (FIG. 1) would require Float representations.

Nevertheless, Context B might still provide Integer resources if valuel and
value2 comprise Integer objects. In certain emBodiments, Applicants’ method
comprises a transrepresentor, sometimes referred to as a “transreptor” herein, in
context “A,” wherein that transreptor supports Integer-To-Float conversions. The

kernel would discover “valuel” in context B but would recognize that the Integer

16

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

representation did not match Sum Endpoint’s requested Float object model.

The kernel would make a TRANSREPT request from Integer to Float.
Context B would fail, but Context A would match and the resolved transrepresentor
would be called. The Integer representation would be converted to Float. Ultimately,
and transparently, the Sum Endpoint would receive a Float for “valuel”.

If the Sum Endpoint were to return a Float representation then Applicants’
method would add a second transrepresentor in context A that converted Float-To-
Integer. The original Requestor could specify in the Requestor Request that it
required an Integer representation. The kernel would then transrepresent the Float
response returned from “sum” to an Integer value. In various embodiments,
Applicants’ method implements the Float-To-~Integer transrepresentor to be either
strict or tolerant. For example, if the Float value were not an integer a strict approach
would be to throw an exception indicating that the transrepresentation cannot occur.
Alternatively, if the method makes the transrepresentor tolerant, thereby allowing a
loss of preeision, the method performs a rounding of the float to integer and logs a
warning message;

As those skilled in the art will appreciate, Applicants have found it useful to
construct a Context implementation wherein URIs identify resources. Requests into
the Context use URI Resource Identifiers and, for example, conventional URI
schemes, for example 'file:’, can be mapped to implementing Endpoints. Furthermore
a URI Context implementation has been implemented to resolve Active URIs in
which the URI Resource Identifier is itself a functional program. The resolution/
evaluation of the active URI to/in Endpoints is the equivalent to "lazy evaluation' in
functional programming.

The Appendices incorporated by reference herein recites source code for an
example Context implementation which implements a context address space model
that embodies a URI address space of resources. The general Context implementation
embodied in Applicants’ method significantly extends the capabilities and generality
of prior art methods and systems. Applicants’ method supports all of the features of
the prior art URI~centric hard-coded systems, and offers the opportunity to create
Contexts that implement arbitrary address space models. Whilst for existing URI
addressing, Applicants’ method makes possible functional composition of URI

17

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

address spaces such that a URI address space in a Context can intercept and provide
wrapper functionality (currying) for an imported URI address space. Such
interception of Requests introduces the opportunity for capturing a Request and
associating with it a transaction, or for applying policy-based access management. In
addition the Context implementation embodied in Applicants’ method enables
transrepresentation to be uniformly treated as resolvable Endpoints that respond to
and issue requests, this dramatically simplifies the implementation and state
management of the kernel.

Finally, when implementing a URI addressing model a Context may actually
describe a bracketed infinity of possible computational results. The reification of a
Resource Representation requires the resolution of the URI vector through the
composite address space. Because computational results are located at points in an
address space a Context can contain all computational results but each value is not
reified until you have walked the path (resolved the request) to obtain the answer. As
with any other Resource Identifier type, the use of URI addressing for resources,
including computational results, means that a Resource Representation can be cached.
As aresult, after a representation has been computed it does not need to be
recomputed unless the resources it depends upon are invalidated.

Applicants’ method as described herein provides a method for locating and
evaluating software functions within a composable resource address space. In other
embodiments, Applicants’ method encompasses within the resource context model
exotic computational address spaces. In certain embodiments, a quantum context
comprises a container for a quantum computation engine able to parallelize the
resolution and/or computation of the Resource Representation value within the
quantum address space expressed by the Context. This being the case, in these
embodiments Applicants’ method resolves requests in quantum computation Contexts
—such a hybrid classical/quantum processing model to yield very efficient resource
resolution and computation married with significant computational efficiency by use
of resource caching. Furthermore, in certain of these quantum computational

embodiments, the kernel's cache also utilizes a highly efficient quantum search

algorithm.

In certain embodiments, Applicants’ invention comprises an article of

18

10

15

WO 2008/032070 PCT/GB2007/003471

manufacture comprising a computer readable medium having computer readable
program code disposed therein to locate, resolve, and invoke software functions
where the computer readable program code comprises a seties of computer readable
program steps, i.e. instructions, to implement Applicants’ method described and
claimed herein. In other embodiments, Applicants’ invention includes instructions
residing in a computer program product encoded in a computer readable medium,
where those instructions are executed by a computing device to perform Applicants’
method described and claimed herein. In either case, the instructions may be encoded
in a computer readable medium comprising, for example, a magnetic storage medium,
an optical storage medium, an electronic storage medium, and the like. By “electronic
storage media,” Applicants mean, for example, a device such as a PROM, EPROM,
EEPROM, Flash PROM, compactflash, smartmedia, and the like.

‘While the preferred embodiments of the present invention have been
illustrated in detail, it should be apparent that modifications and adaptations to those
embodiments may occur to one skilled in the art without departing from the scope of

the present invention as set forth in the following claims.

19

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

We claim:

1. A method to locate, resolve, and invoke software functions, comprising
the steps of:

forming an original request comprising a resource identifier;

resolving said original request to an endpoint;

evaluating said original request by said endpoint to generate a resource
representation;

saving said resource representation in a cache.

2. The method of claim 1, wherein said saving step further comprises the
steps of:

determining whether said resource representation will likely be reused;

when said resource representation will likely be reused, saving said resource
representation in said cache.

3. The method of claim 1, wherein:

said forming step comprises forming an original request comprising an
executable action in combination with said resource identifier;

said resolving step comprises retwrning the location of said endpoint, wherein
said endpoint comprises executable code capable of executing said action on said
resource identifier to generate said resource representation;

said evaluating step comprises executing said action on said resource identifier
by said endpoint.

4. The method of claim 3, further comprising the steps of:

executing a software function, wherein said software function performs said
forming step;

returning said resource representation to said software function.

5. The method of claim 4, wherein said forming step further comprises
forming an original request comprising a request scope, wherein said request scope
comprises at least one context, wherein each context comprises an address space.

6. The method of claim 5, wherein said original request comprises a first
context and a second context, wherein said first context comprises a first address
space, and wherein said second context comprises a second address space;

said resolving step further comprises the steps of:

20

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

determining if said first context comprises said endpoint;
operative if said first context does not comprise said endpoint:
popping said first context from said request scope; and
determining if said second context comprises said endpoint.
7. The method of claim 6, further comprising the steps of:
operative if said second context comprises said endpoint, returning said
request scope as a resolved request scope;
determining if said first context comprises a durable context;
operative if said first context comprises a durable context, reattaching said first
context to said resolved request scope.
8. The method of claim 7, further comprising the steps of:
providing a computer program product comprising a kernel;
executing said software function by said kernel;
providing said original request to said kernel;
forming by said kernel an executable thread, wherein said executable thread:
performs the steps of claim 7;
returns to the kernel a resolution representation comprising the location of said
endpoint, the logical identity of said endpoint, and said resolved request scope.
9. The method of claim 8, further comprising the step of saving said
resolution representation in said cache.
| 10. The method of claim 8, further comprising the steps oft
forming a RESOLVE sub-request by said executable thread, wherein said
RESOLVE sub-request comprises said original request as a field;
issuing said RESOLVE sub-request to said first context.
11. The method of claim 10, wherein said first context delegates said
RESOLVE sub-request to a third context comprising a third address space.
12. The method of claim 10, wherein said second context delegates said
RESOLVE sub-request to a third context comprising a third address space.
"~ 13. The method of claims 11 and 12, further comprising the steps-of:
appending said third context to said request scope;
issuing said RESOLVE sub-request with said request scope to said third

context;

21

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

returning said resolution representation from said third context to said kermnel.

14, The method of claim 8, wherein said evaluating step further comprises

the steps of:

forming a new request;

providing said new request to said endpoint.

15. The method of claim 14, wherein said kernel forms said new request,
and provides said new request to said endpoint.

16. The method of claim 14, wherein:

said forming a new request comprises forming a new request comprising said
original request and said resolved request scope;

said endpoint uses said new request to generate said resource representation.

17. The method of claim 14, further comprising the steps of:

forming a sub-request by said endpoint;

issuing said sub-request to said kernel;

providing to said endpoint a sub-request resource representation;

generating said resource representation by said endpoint using said sub-
request resource representation.

18. The method of claim 1, wherein said executable action is selected from
the group consisting of resolve, source, sink, delete, new, exists, meta, and transrept.

19. The method of claim 18, further comprising the steps of:

forming a transrept request, wherein said transrept request comprises:

transrept as the executable action;

said resource representation as a field on request.

20. The method of claim 19, wherein:

said resource representation comprises a first representation class;

said transrept request comprises a second representation class, wherein said
first representation class differs from said second representation class.

21. An article of manufacture comprising a computer readable medium
having computer readable program code disposed therein to locate, resolve, and
invoke software functions, the computer readable program code comprising a series of
computer readable program steps to effect: |

receiving an original request comprising a resource identifier;

22

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

resolving said original request to an endpoint;

evaluating said original request by said endpoint to generate a resource
representation;

saving said resource representation in a cache.

22. The article of manufacture of claim 21, wherein the computer readable
program code to save said resource representation further comprises a series of
computer readable program steps to effect:

determining whether said resource representation will likely be reused;

when said resource representation will likely be reused, saving said resource
representation in said cache.

23. The method of claim 21, wherein:

the computer readable program code to receive said request further comprises
a series of computer readable program steps to effect receiving a first request
comprising an executable action in combination with said resource identifier;

the computer readable program code to resolve said request further comprises
a series of computer readable program steps to effect returning the location of said
endpoint, wherein said endpoint comprises executable code capable of executing said
action on said resource identifier to generate said resource representation;

the computer readable program code to evaluate the request by the endpoint to
generate a resource representation further comprises a series of computer readable
program steps to effect executing said action on said resource identifier by said
endpoint. ‘

24. The article of manufacture of claim 21, said computer readable
program code further comprising a series of computer readable program steps to
effect:

executing a software function, wherein said software function performs said
forming step;

returning said resource representation to said software function.

25. The article of manufacture of claim 24, wherein the computer readable
program code to receive said request further comprises a series of computer readable

program steps to effect receiving an original request comprising a request scope,

23

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

wherein said request scope comprises at least one context, wherein each context
comprises a address space.

26. The article of manufacture of claim 25, wherein said original request
comprises a first context and a second context, wherein said first context comprises a
first address space, and wherein said second context comprises a second address
space;

the computer readable program code to resolve said request further comprises
a series of computer readable program steps to effect:

determining if said first context comprises said endpoint;

operative if said first context does not comprise said endpoint:

popping said first context from said request scope; and

determining if said second context comprises said endpoint.

27. The article of manufacture of claim 26, said computer readable
program code further comprising a series of computer readable program steps to
effect:

operative if said second context comprises said endpoint, returning said
request scope as a resolved request scope;

determining if said first context comprises a durable context;

operative if said first context comprises a durable context, reattaching said first
context to said resolved request scope.

28. The article of manufacture of claim 27, wherein said computer
program readable code further comprises a kernel, said computer readable program
code further comprising a series of computer readable program steps to effect:

executing said software function by said kernel;

providing said original request to said kernel;

forming by said kernel an executable thread, wherein said executable thread
returns to the kernel a resolution representation comprising the location of said
endpoint, the logical identity of said endpoint, and said resolved request scope.

© 29. The article of manufacture of claim 28, said computer readable
program code further comprising a series of computer readable program steps to

effect saving said resolution representation in said cache.

24

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

30. The article of manufacture of claim 28, said computer readable
program code further comprising a series of computer readable program steps to
effect:

forming a RESOLVE sub-request by said executable thread, wherein said
RESOLVE sub-request comprises said original request as a field;

issuing said RESOLVE sub-request to said first context.

31. The article of manufacture of claim 30, wherein said first context
comprises computer readable program code comprising a series of computer readable
program steps to effect delegating said RESOLVE sub-request to a third context
comprising a third address space.

32. The article of manufacture of claim 30, wherein said second context
comprises computer readable program code comprising a series of computer readable
program steps to effect delegating said RESOLVE sub-request to a third context
comprising a third address space.

33. The article of manufacture of claims 31 and 32, said computer readable
program code further comprising a series of computer readable program steps to
effect:

appending said third context to said request scope;

issuing said RESOLVE sub-request with said request scope to said third
context;

returning said resolution representation from said third context to said kernel.

34. The article of manufacture of claim 28, wherein said computer
readable program code to evaluate said request further comprises a series of computer
readable program steps to effect:

forming a new request;

| providing said new request to said endpoint.

35. The article of manufacture of claim 34, wherein said kernel comprises
said computer readable program code comprising a series of computer readable
program steps to effect forming said new request, and providing said new request to
said endpoint.

36. The article of manufacture of claim 34, wherein:

25

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

said computer readable program code to form a new request further comprises
a series of computer readable program steps to effect forming a new request
comprising said original request and said resolved request scope;

said endpoint comprises computer readable program code further comprising a
series of computer readable program steps to effect using said new request to generate
said resource representation.

37. The article of manufacture of claim 34, said computer readable
program code further comprising a series of computer readable program steps to
effect:

forming a sub-request by said endpoint;

issuing said sub-request to said kernel,

providing to said endpoint a sub-request resource representation;

generating said resource representation by said endpoint using said sub-
request resource representation.

38. The article of manufacture of claim 21, wherein said executable action
is selected from the group consisting of resolve, source, sink, delete, new, exists,
meta, and transrept.

39. The article of manufacture of claim 38, said computer readable
program code further comprising a series of computer readable program steps to
effect:

forming a transrept request, wherein said transrept request comprises:

transrept as the executable action,;

said resource representation as a field on request.

40. The article of manufacture of claim 39, wherein:

said resource representation comprises a first representation class;

said transrept request comprises a second representation class, wherein said
first representation class differs from said second representation class.

41. A computer program product embodied on a computer readable
medium for locating, resolving, and invoking software functions, the computer
program product comprising instructions for:

receiving an original request comprising a resource identifier;

resolving said original request to an endpoint;

26

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

evaluating said original request by said endpoint to generate a resource
representation;

saving said resource representation in a cache.

42. The computer program product of claim 41, wherein said instructions
to save said resource representation further comprise instructions for:

determining whether said resource representation will likely be reused;

when said resource representation will likely be reused, saving said resource
representation in said cache.

43. The computer program product of claim 41, wherein:

said instructions for receiving an original request further comprise instructions
for receiving an original request comprising an executable action in combination with
said resource identifier;

said instructions for resolving said original request further comprise
instructions for returning the location of said endpoint, wherein said endpoint
comprises executable code capable of executing said action on said resource identifier
to generate said resource representation;

said instructions to evaluate said original request further comprise instructions
for executing said action on said resource identifier by said endpoint.

44. The computer program product of claim 43, further comprising
instructions for: '

executing a software function, wherein said software function performs said
forming step;

returning said resource representation to said software function.

45. The computer program product of claim 44, wherein said instructions
for receiving an original request further comprise instructions for receiving an original
request comprising a request scope, wherein said request scope comprises at least one
context, wherein each context comprises a address space.

46. The computer program product of claim 45, wherein said original
request comprises a first context and a second context, wherein said first context
comprises a first address space, and wherein said second context comprises a second

address space;

27

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

wherein said instructions to resolve said original request further comprise
instructions for:

determining if said first context comprises said endpoint;

operative if said first context does not comprise said endpoint: -

popping said first context from said request scope; and

determining if said second context comprises said endpoint.

47. - The computer program product of claim 46, further comprising
instructions for:

operative if said second context comprises said endpoint, returning said
request scope as a resolved request scope;

determining if said first context comprises a durable context;

operative if said first context comprises a durable context, reattaching said first
context to said resolved request scope.

48. The computer program product of claim 47, further comprising a
kernel and instructions for:

executing said software function by said kemel;

providing said original request to said kemnel;

forming by said kernel an executable thread, wherein said executable thread:

returns to the kernel a resolution representation comprising the location of said
endpoint, the logical identity of said endpoint, and said resolved request scope.

49. The computer program product of claim 48, further comprising
instructions for saving said resolution representation in said cache.

50. The computer program product of claim 48, further comprising
instructions for:

forming a RESOLVE sub-request by said executable thread, wherein said
RESOLVE sub-request comprises said original request as a field;

issuing said RESOLVE sub-request to said first context.

51. The computer program product of claim 50, wherein said first context
comprises instructions to delegate said RESOLVE sub-request to a third context

comprising a third address space.

28

10

15

20

25

30

WO 2008/032070 PCT/GB2007/003471

52. The computer program product of claim 50, wherein said second
context comprises instructions to delegate said RESOLVE sub-request to a third
context comprising a third address space.

53. The computer program product of claims 51 and 52, further
comprising the instructions for:

appending said third context to said request scope;

issuing said RESOLVE sub-request with said request scope to said third
context;

returning said resolution representation from said third context to said kernel.

54. The computer program product of claim 48, wherein said instructions
to evaluate the original request further comprise instructions for:

forming a new request;

providing said new request to said endpoint.

55. The computer program product of claim 54, wherein said kernel forms
said new request, and provides said new request to said endpoint.

56. The computer program product of claim 54, wherein:

said instructions for forming a new request comprise instructions for forming a
new request comprising said original request and said resolved request scope;

said endpoint comprises instructions to use said new request to generate said
resource representation. ‘

57. The computer program product of claim 54, further comprising
instructions for:

forming a sub-request by said endpoint;

issuing said sub-request to said kernel;

providing to said endpoint a sub-request resource representation;

generating said resource representation by said endpoint using said sub-
request resource representation.

58. The computer program product of claim 51, wherein saici executable
action is selected from the group consisting of resolve, source, sink, delete, new,
exists, meta, and transrept.

59. The computer program product of claim 58, further comprising

instructions for;

29

WO 2008/032070 PCT/GB2007/003471

forming a transrept request, wherein said transrept request comprises:
transrept as the executable action;
said resource representation as a field on request.
60. The computer program product of claim 59, wherein:
5 said resource representation comprises a first representation class;
said transrept request comprises a second representation class, wherein said
first representation class differs from said second representation class.
61. A computer program product embodied on a computer readable
medium for locating, resolving, and invoking software functions, the computer
10 program product comprising:
computer readable program means for receiving a original request comprising
a resource identifier;
computer readable program means for resolving said original request to an
endpoint;
15 computer readable program means for evaluating said original request by said
endpoint to generate a resource representation; and
computer readable program means for saving said resource representation in a

cache.
20 62. A computer program product directly loadable into the internal

memory of a digital computer, comprising software code portions for performing the

steps of claim 1 when said product is run on a computer.

30

WO 2008/032070 PCT/GB2007/003471

118

FIG. 1

)

RESOURCE IDENTIFIER

EXECUTABLE ACTION ﬂ\ 120

REPRESENTATION CLASS K—\HO

PRIORITY T T~
PARENT REQUEST] \150
'REQUESTOR 2 ™

)

100

WO 2008/032070 PCT/GB2007/003471

218

FIG. 2

230

220

210

200

WO 2008/032070

PCT/GB2007/003471

3/8

FIG. 3

Request

320 .
~—— Resolution

330 . \
S~ Endpoint, legate

%0_____ + Resolved Scope

310

WO 2008/032070 PCT/GB2007/003471

418
FIG. 4

100

Resource
Response Repres-
Resource- entation

450 Representation,

/Metadata

440

210

WO 2008/032070

518

FIG. 5

Construct a Requestor
Request

Set the Resource Identifier to
QIS UM "n

y
Add Context A to the Requesif
Scope

A

{
Construct a Durable Context "B"

Place in Context "B", a first /
integer value comprising a

Resource Identifier "valuel® and a
second integer value comprising a

Resource Identifier "value2"

y

Add Context "B" to the Request

870

Issue the Requestor Request toﬁle

kernel scheduler

.

y

i
Generate a Response using the
returned Resource Representation

PCT/GB2007/003471

//>/——— 510

520
, 7

-530

540

550
4 /,_

/—-56()

Scope as the nearest Context / 570
"

580

WO 2008/032070 PCT/GB2007/003471

6/8

FIG. 6

610
v

Provide the Requestor Request to
Context "B" calling for an
Endpoint capable of summing two
values

620

NO
v 630

Provide the Requestor Request to
Context "A* cailing for an
Endpoint capable of summing two
values

640

eontext "A" resolve
Resource [dentifier in the

YES
4

650
Return to the kernel an
IResolution object comprising a
reference to Resource
Representation comprising the
Sum Endpoint

Return to the kernel a resolved

/- 660
Requestor Request Scope
comprising Context “A" /’ 670

Reattach Context "B" to the
Requestor Request Scope as a
Durable Context

705

WO 2008/032070 PCT/GB2007/003471

718

FIG. 7

=

Execute the Sum Endpoint

i 7 710

Generate by the Sum Endpoint {
first Endpoint Request comprising
a Resource Identifier "valuel”

l /\ 720

Provide the first Endpoint Requeét
to the kernel

730

Provide the first Endpoint Reque
to Context "B" calling for an
Endpoint capable of providing a
Resource Identifier "valuel”

740

ntext "B" resolve

Resource Identifier in the

st Endpoint Requ
?

750
YES f
y
Return to the kernelan |
IResolution comprising a
Resource Representation
comprising valuel containing an
Endpoint reference to Context B's
name-value map lookup function,
i.e. a first Lookup Endpoint, and a
resolved Request Scope
comprising Context "B" — 760

Return to Sum Endpoint the |
Resource Representation
comprising "valuel”

WO 2008/032070

8/8

FIG. 8

/~8|0

Generate by the Sum Endpoint
second Endpoint Request
comprising a Resource Identifier
"value2"

P 820

y

/

Provide the second Endpoint
Request to the kernel

830

Provide the second Endpoint
Request to Context B calling for

a Resource Identifier "value2"

Context "B" resolve

Resource Identifier in thé

scond Endpoint Reqye
?

YES
\ 4

an Endpomt capable of providing

840

Return to the kernel an
IResolution comprising a
Resource Representation

comprising value2 containing an
Endpoint reference to Context B's
name-value map lookup function,
i.e. asecond Lookup Endpoint,
and a resolved Request Scope
comprising Context "B"

/ 850

860

Return to Sum Endpoint the
Resource Representation

comprising "value2" /‘ 870

Generate a Response to the
Requestor Request comprising a
Resource Representation
comprising the sum of valuel and
value2

3

PCT/GB2007/003471

INTERNATIONAL SEARCH REPORT

Internationat application No

PCT/GB2007/003471

INV.

A. CLASSIFISATION OF SUBJECT MATTER

6F9/44

According to International Patent Classification {IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fislds searched

Electronic data base conslted during the international search (name of dala base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™*

Citation of document, with indication, where approptiate, of the relevant passages

Relevant to claim No.

FETZER C ET AL: "A flexible generator
architecture for improving software
dependability”

PROCEEDINGS 13TH INTERNATIONAL SYMPOSIUM
ON SOFTWARE RELIABILITY ENGINEERING IEEE
COMPUT. SOC LOS ALAMITOS, CA, USA, 2002,
pages 102-113, XP002460129

ISBN: 0-7695-1763-3

page 8, left-hand column

figure 12

US 5 265 206 A (SHACKELFORD FLOYD W [US]
ET AL) 23 November 1993 (1993-11-23)

the whole document

US 6 708 330 Bl (MOBERG KENNETH [US] ET
AL) 16 March 2004 (2004-03-16)

the whole document

1-62

1-62

1-62

Further documents are listed in the continuation of Box C.

See pateni family annex.

A document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international e
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another rys
citation or other special reason (as speciflied)

O document referring to an oral disclosure, use, exhibition or

* Special categories of ciied documents :

T later document published after the international filing date

invention

or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the

document of particular relevance; the claimed invention

cannot be considered novel or cannot be considered to

involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—

other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but inthe art
later than the priority date claimed '&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search repont
27 November 2007 07/12/2007
Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 H)V Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, s
Fax: (+31-70) 340-3016 Dewyn, Torkild

Form PCT/iS$A/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International appfication No

PCT/GB2007/003471

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2006/080646 A1 (AMAN PHILIP J [ush
13 April 2006 (2006-04-13)
the whole document

1-62

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

WO 2006041813 A2

PCT/GB2007/003471
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5265206 A 23-11-1993 J°P 2559926 B2 04-12-1996
JP 4230530 A 19-08-1992
US 6708330 Bl 16-03-2004 NONE
US 2006080646 Al 13-04-2006 EP 1805608 A2 11-07-2007

20-04-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

