SYNERGISTIC COMPOSITION OF TRANS-TETRACOS-15-ENOIC ACID AND APOCYNIN AND USE THEREOF

The present invention relates to a synergistic hepatoprotective pharmaceutical composition comprising an effective amount of trans-tetracos-15-enoic acid (TCA) and Apocynin (APO), the present invention also relates to use in the treatment for hepatotoxicity.
SYNERGISTIC COMPOSITION OF TRANS-TETRACOS-15-ENOIC ACID AND APOCYNIN AND USE THEREOF

TECHNICAL FIELD

The present invention relates to a synergistic hepatoprotective composition comprising trans-tetracos-15-enoic acid (TCA) and Apocynin (APO). The present invention also relates to use in the treatment of hepatotoxicity in mammals.

BACKGROUND ART

Literature survey revealed that earlier reports showed the presence of trans-tetracos-15-enoic acid in Jojoba oil ex. Simmondsia chinensis seeds (0.62-1.11%) and cis isomer of the acid is reported in fatty acids of the seed oil of Microula sikkimensis (1.2%) [Wang

Recent study in RRL Jammu for hepatoprotective effect of the plant extract and further bioactivity-guided fractionation has resulted in identification of trans-tetracos-15-enoic acid as the active principle. The constituent has been synthesized and observed to possess dose related hepatoprotective effect against galactosamine, paracetamol and CCl₄ as hepatotoxins using commercially available silymarin as reference material. Activity of the formulation being described in the invention is not exactly equal to the sum of the activities of the two individual constituents and activity enhancement does not occur simply due to the mixing of the two compounds. This has been verified by mixing the formulation with RLJ-NE-299A, a standardized mixture of iridoid glycosides from Picrorhiza kurroa possessing hepatoprotective, immunostimulant and immunorestorative effects [Indian patent no. 178866].

The mixture of Apocynin, trans-tetracos-15-enoic acid prepared in many other proportions by weight have not shown any enhancement in hepatoprotective action and in some experiments the biological activity of the mixture is much less than the individual constituents.

OBJECTS OF THE INVENTION

The primary object of the invention is to provide a synergistic composition of trans-tetracos-15-enoic acid and Apocynin.
Another object of the present invention is to provide use in the treatment for hepatotoxicity.

Yet another object of the present invention is to provide a composition having broader spectrum of hepatoprotective activity than the established herbal product in use viz., Silymarin.

Still another object of the invention is to provide a composition having potential therapeutic application in obstructive and viral hepatitis.

SUMMARY OF THE INVENTION

The present invention relates to a synergistic hepatoprotective composition containing trans-tetracos-15-enoic acid (TCA) and Apocynin (APO). The present invention also relates to use of treatment for hepatotoxicity in mammals.

DETAILED DESCRIPTION OF THE INVENTION

Accordingly, the present invention provides a synergistic pharmaceutical composition having enhanced hepatoprotective activity on subjects, obtained from the plant *Indigofera tinctoria*, said composition comprising an effective amount of:

(a) trans-tetracos-15-enoic acid (TCA) obtained from the plant *Indigofera tinctoria*;

(b) Apocynin (APO) obtained from the plants Apocynum cannabinum and A. androsaemifolium; and

(c) the ratio of APO and TCA is in the range of 3:1 to 1:3.

An embodiment of the present invention, wherein the said composition is used either singly or in combination with pharmaceutically acceptable additives.

An another embodiment of the present invention, wherein the pharmaceutically acceptable additives are selected from the group consisting of carriers, diluents, solvents, filters lubricants, excipients, binder and stabilizers.

Yet another embodiment of the present invention, wherein the said composition is used for both preventive and curative properties.

Still another embodiment of the present invention, wherein the said composition is used systemically, orally or by any clinically/medically accepted uses.

Yet another embodiment of the present invention, wherein the said composition is used to treat hepatic disorders that are clinically, biochemically and histologically similar to that of viral hepatitis, chronic hepatitis, fatty liver, cirrhosis and several vascular lesions of the liver.

Still another embodiment of the present invention, wherein the said composition is used to treat the liver damage induced by hepatotoxins.
Yet another embodiment of the present invention, wherein the hepatotoxins are selected from the group consisting of Galactosamine, Paracetamol and Carbon tetrachloride.

Still another embodiment of the present invention, wherein the subject is selected from the group consisting of mammals.

Yet another embodiment of the present invention, wherein the dosage of said composition for the treatment of CCl₄ induced hepatotoxicity in mammals is 50 mg/kg-body weight.

Still another embodiment of the present invention, wherein said composition having the enhanced hepatoprotective activity in CCl₄ induced hepatotoxic mammals upto 92%.

Yet another embodiment of the present invention, wherein the dosage of said composition for the treatment of acetaminophen induced hepatotoxicity in mammals is 50mg/kg-body weight.

Still another embodiment of the present invention, wherein said composition having the enhanced hepatoprotective activity in acetaminophen induced hepatotoxicity in mammals upto 86%.

Yet another embodiment of the present invention, wherein said composition having the dosage of said composition for the treatment of Galactosamine induced hepatotoxicity in mammals 50 mg/kg of body weight.

Still another embodiment of the present invention, wherein said composition having the enhanced hepatoprotective activity in Galactosamine induced hepatotoxicity in mammals upto 75%.

Yet another embodiment of the present invention, the dosage of said composition for chloretic activity in mammals to control bile flow and bile solids is 50 mg/kg of body weight.

Still another embodiment of the present invention, wherein the enhanced chloretic activity is upto 39%.

The present invention also provides use in treating subjects with liver disorders with an effective amount of synergistic pharmaceutical composition to induce enhanced hepatoprotective activity, said composition comprising:

(a) trans-tetracos-15-enoic acid (TCA) obtained from the plant *Indigofera tinctoria*;

(b) Apocynin (APO) obtained from the plants Apocyanum cannabium and A. androsaemifolium; and

(c) the ratio of APO and TCA is in the range of 3:1 to 1:3.

Still another embodiment of the present invention, wherein said use is used to treat liver disorders caused by Galactosamine, Paracetamol and Carbon tetrachloride.
Yet another embodiment of the present invention, a use wherein the dosage for the
treatment of CC\textsubscript{4} induced hepatotoxicity in mammals is about 50-mg/kg-body weight.
Still another embodiment of the present invention, a use wherein the enhanced
hepatoprotective activity in CC\textsubscript{4} induced hepatotoxic mammals is upto 92%.

Yet another embodiment of the present invention, a use wherein the dosage for the
treatment of acetaminophen induced hepatotoxicity in mammals is 50mg/kg-body weight.
Still another embodiment of the present invention, a use wherein the enhanced
hepatoprotective activity in acetaminophen induced hepatotoxicity in mammals is upto
86%.

Yet another embodiment of the present invention, a use wherein the dosage for the
treatment of Galactosamine induced hepatotoxicity in mammals is 50mg/kg of body
weight.
Still another embodiment of the present invention, a use wherein the enhanced
hepatoprotective activity in Galactosamine induced hepatotoxicity in mammals is upto
75%.

Yet another embodiment of the present invention, a use wherein the dosage for choletic activity in
mammals to control the bile flow and bile solids is 50 mg/kg of body weight.
Still another embodiment of the present invention, a use wherein the enhanced choletic
activity in mammals is upto 39%.

Yet another embodiment of the present invention, a use wherein the composition is used
either singly or in combination with pharmaceutically acceptable carriers.
Still another embodiment of the present invention, a use wherein the composition is administered to
a subject in combination with pharmaceutically acceptable additives, carriers, diluents, solvents,
filters, lubricants, excipients, binder or stabilizers.

Yet another embodiment of the present invention, a use wherein the desired dosage is
administered for both preventive and curative properties.
Still another embodiment of the present invention, a use wherein the composition is
administered systemically, orally or by any clinically/medically accepted uses.
Yet another embodiment of the present invention, a use wherein the subject is selected
from animals, mammals.

The invention is further explained in the form of preferred embodiments.
i. Animals: The pharmacological studies are conducted on Wistar albino rats (150-180g)
and Swiss albino mice (25-30g) of either sex, colony - bred in the Institute’s animal house.
After procurement, all the animals are divided into different groups and are left for one
week for acclimatization to experimentation room and are maintained on standard
conditions (23±2°C, 60-70 % relative humidity and 12 h photo period). The animals are fed
with standard rodents pellet diet and water ad libitum. There are six animals in each group
except for general behaviour and acute toxicity studies where ten animals are used in each
group.

ii. Hepatotoxins: It is emphasized that hepatotoxin that causes acute hepatitis should have
close resemblance with the viral hepatitis, clinically, biochemically and histologically.
Drugs are also causes of chronic hepatic disease as chronic hepatitis, fatty liver, cirrhosis
and several vascular lesions of the liver. In many instances drug induced hepatitis proves
indistinguishable from viral hepatitis. Chemically induced hepatic injury for experimental
studies should be severe enough to cause cell death or to modify hepatic functions. The
mechanism of acute hepatic injury depends upon the chemical compound and the species
of animals used. Many chemicals produce parenchymal damage, arrest bile flow and cause
jaundice (choletic injury). Hepatoprotective activity against CCl₄, paracetamol and, D-
galactosamine induced hepatotoxicity are studied.

Carbon tetrachloride (CCl₄): CCl₄ is one of the most powerful hepatotoxins (in term of
severity of injury). It causes toxic necrosis, which leads to biochemical changes having
clinical features similar to those of acute viral hepatitis (Vogel, 1977, Bramanti et. al.,
1978, Kumar et. al., 1992). Liver injury is produced by administration of CCl₄ mixed with
liquid paraffin. Animals are given single dose of CCl₄ (50 μl.kg⁻¹, p.o.) in acute single
treatment and (0.5 ml.kg⁻¹, p.o.) in case of multtreatment with drug. It is administered
orally (p.o) by gastric intubation. The control animals received the equal volume of liquid
paraffin. (Table 3, 4).

Paracetamol (APAP, acetaminophen): It is a therapeutic agent widely used as
analgesic/antipyretic drug. When taken in large doses it causes hepatic necrosis which
leads to biochemical changes having clinical features similar to those of acute viral
hepatitis. The similar effect is observed in animals. The toxic effect can be potentiated if it
is given several hours after the anesthetic ether inhalation (Wells et. al., 1986).
Liver injury is induced by injecting paracetamol (200 mg.kg⁻¹) interaperitoneally in normal
saline (pH 9.4) six hour after inhalation of anesthetic ether (4ml/4min/6animals) in a
closed chamber. The control animals received the equal volume of vehicle. (Table 2)

D-Galactosamine: It is one of the toxins that induce hepatic inflammatory conditions in the rat
liver that clinically resembles to viral hepatitis. The mechanism of GalN induced liver injury
has been extensively examined and this model is now accepted as one of the authentic systems
of liver damage (Bauer et al., 1974, Al-Tuwaijiri et al., 1981). (Table 1)

Hepatic damage is produced by injecting GalN (300 mg.kg\(^{-1}\)) subcutaneously in normal saline. The control animals received the equal volume of vehicle.

iii. Treatment with bio-active compound and silymarin:

Freshly prepared suspension (1%, w/v) in 0.2% gum acacia in normal saline is used for all the experiments except for toxicity studies where (10%, w/v) suspension is used. Silymarin suspension (1%, w/v) in 0.2% gum acacia is used as a reference standard (positive control).

iv. Experimental models:

Effect on serum and hepatic biochemical parameters:

CCl\(_4\) induced hepatotoxicity:

Treatment of test material before and after hepatotoxin: The doses of TCA and APO individually and in mixture, silymarin (50 mg/kg, p.o. each) and vehicle (normal saline) are fed to different groups of rats at 48 hours, 24 hours and 2 hours before and 6 hours after hepatotoxin (CCl\(_4\), 0.5 mL.kg\(^{-1}\), p.o.) intoxication. Blood is collected from orbital sinus in all the animals 18 hours after last treatment and serum separated for different estimations. All the animals are then killed by decapitation, their livers are quickly excised, cleaned of adhering tissue, weighed and homogenised in phosphate buffer saline for the analysis of hepatic parameters (Agarwal and Mehendale, 1983, Klingensmith and Mehendale, 1982, Zimmerman, 1973, Edmondson and Peter, 1985, Mitchell, et al, 1973). (Table 3-4).

Paracetamol induced hepatotoxicity:

Treatment of test material before and after hepatotoxin:

The doses of TCA and APO individually and in mixture, silymarin (50 mg/kg, p.o. each) and vehicle (normal saline) are fed to different groups of mice at 72 hours, 48 hours and 24 hours, 1 hour before diethyl ether inhalation and 1 hour after hepatotoxin (paracetamol, 200 mg.kg\(^{-1}\), i.p.) given 6 hours after exposure to diethyl- ether. Blood is collected from orbital sinus in all the animals 18 hours after last treatment and serum separated for different estimations. A portion of the liver is processed for histopathological studies. (Table 2)

D-Galactosamine induced hepatotoxicity:

(a) **Treatment of test material before and after hepatotoxin:**

The doses of TCA and APO individually and in mixture, silymarin (50 mg/kg, p.o. each) and vehicle (normal saline) are fed to different groups of mice at 48 hours, 24 hours and 2 hours before and 6 hours after hepatotoxin (GalN, 300 mg.kg\(^{-1}\), s.c.) intoxication. Blood is
collected from orbital sinus in all the animals 18 h after last treatment and serum separated for different estimations. All the animals are then killed by decapitation, their livers are quickly excised, cleaned of adhering tissue, weighed and homogenised in phosphate buffer saline for the analysis of hepatic parameters. A portion of the liver is processed for histopathological studies (Table 1)

Parameters studied:

GPT and GOT: Pyruvate formed by transamination reaction is determined spectrophotometrically after reaction with 2,4-dinitrophenylhydrazine (Reitman and Frankel, 1957).

ALP: p-nitrophenol formed in alkaline medium is measured spectrophotometrically using p-nitrophenyl phosphate as substrate (Walter and Schutt, 1974).

Bilirubin: Total bilirubin is measured by diazotization reaction with NaNO₂ (Malloy and Evelyn, 1937).

Triglycerides: Triglycerides from serum are extracted with isopropanol and saponified with KOH. The liberated glycerol is converted to formaldehyde by periodate and determined after reaction with acetyl acetone. Triolein is used as standard (Neri and Firings, 1973).

Glutathione: It is determined after deproteination by reaction with DTNB (Ellman 1959 as modified by David 1987).

Hepatoprotective activity:

Hepatoprotective activity (H) is calculated by the following equation:

\[H = \left[1 - \left(\frac{TC - V}{VC - V} \right) \right] \times 100 \]

Where TC, VC, and V are drug + toxin, vehicle + toxin and vehicle treated groups of animals respectively.

Effect on Bile flow and bile solids

The liver, by producing bile, plays an important role in digestion. The presence of bile in the intestine is necessary to accomplish the digestion and absorption of fats as well as absorption of the fat-soluble vitamins- A, D, E & K. Bile is also an important vehicle of excretion. It removes many drugs, toxins, bile pigments and various inorganic substances either derived from the diet or synthesized by the body as cholesterol or as cholic acid. Increase in the bile flow is suggestive of stimulating action of liver microsomal enzymes.
Effect on the liver bile flow of test drug and that of vehicle is carried out after cannulating the bile duct in normal anaesthesied rats. Bile collected is from each animal from 0-5 hours (Klaassen, 1969, Donal et al.1953). (Table 5)

Histopathological studies:

Histopathological studies: A portion of the liver after treatment of hepatotoxic (GalN, CCl4, and paracetamol) and test material is processed for histopathological studies by routine hematoxyline and eosin stained sections (Krajian, A. A., 1963).

General behaviour and acute toxicity:

Using different doses (10, 30, 100, 1200, 1400, 1600, 1800 and 2000 mg.kg⁻¹) of said composition given orally to the groups of 10 mice for each dose, while one group with same number of mice served as control. The animals are observed continuously for 1 hour and then half hourly for 4 hours for any gross behavioral changes and general motor activity, writhing, convulsion, response to tail pinching, gnawing, piloerection, pupil size, fecal output, feeding behaviour etc. and further up to 72 hours for any mortality. Acute LD₅₀ values in mice are calculated by the use of Miller and Tainter, (1944). Mortality of animals in all the groups used in different models for determining hepatoprotective activity during the period of treatment is also recorded as a rough index of subacute toxicity.

Statistical analysis. The data obtained are subjected to statistical analysis using ANOVA for comparing different groups (Armitage, 1987) and Dunnett’s t test for control and test groups (Dunnett, 1964). The regression coefficient (Slope b) correlation coefficient (r) with its p value and ED₅₀ with 95% confidence limit (CL) are determined by regression analysis using log dose and percent effect of adaptogenic activity (Swinscow, 1980). The two tailed paired student t test for comparing means before and after treatment and one tailed unpaired student t test for comparing control and drug treated groups (Ghosh, 1984) are used. The p value of < 0.05 or less is taken as the criterion of significance.
Table 1: Hepatoprotective activity (in vivo) of TCA, APO, Mixture of TCA & APO (1:1) and silymarin (pre-treatment fed at 48 h, 24h, 2 h before and 6 h after hepatotoxin) against the D-Galactosamine (GalN) [(300 mg kg\(^{-1}\) in normal saline, sub cutaneously (s.c.))] induced hepatic injury in rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>Serum parameters</th>
<th>Hepatic parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GPT (Units)</td>
<td>GOT (Units)</td>
</tr>
<tr>
<td>Vehicle Control</td>
<td>-</td>
<td>107.18±13.48</td>
<td>112.65±3.65</td>
</tr>
<tr>
<td>Vehicle + GalN</td>
<td>-</td>
<td>1515.18±68.09</td>
<td>756.78±65.63</td>
</tr>
<tr>
<td>TCA + GalN</td>
<td>50</td>
<td>758.59±40.86</td>
<td>421.64±30.36</td>
</tr>
<tr>
<td>APO + GalN</td>
<td>50</td>
<td>859.18±50.51</td>
<td>509.33±41.63</td>
</tr>
<tr>
<td>Mixture + GalN</td>
<td>50</td>
<td>457.76±19.48</td>
<td>309.40±26.52</td>
</tr>
<tr>
<td>Silymarin + GalN</td>
<td>50</td>
<td>706.04±55.79</td>
<td>429.35±46.94</td>
</tr>
</tbody>
</table>

\(a\): Values represent the mean ± S.E. and within parentheses hepatoprotective activity percent of six animals in each group, Rats: Wistar, (150-175 g) male.

Unit: each unit is µmole pyruvate/min/L.

\(b\): is µ mole of p-nitrophenol formed/min/ L,

\(c\): is n moles MDA/g liver,

\(d\): is µ mole GSH/g liver.
Table 2: Hepatoprotective activity (in vivo) of TCA, APO, Mixture of TCA & APO (1:1) and silymarin (Pre-treatment) fed at 72 h, 48 h, 24 h, 1h before inhalation of diethyl-ether and 1 h after ‘Acetaminophen’ ((APAP) 200 mg kg⁻¹) given i. p. 6 h after exposure to diethyl-ether in mice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>Serum parameters</th>
<th>Hepatic parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg kg⁻¹ (p.o.)</td>
<td>GPT (Units)</td>
<td>GOT (Units)</td>
</tr>
<tr>
<td>Vehicle Control</td>
<td>50</td>
<td>1008.04±63.66 (57.99)</td>
<td>561.83±51.52 (54.92)</td>
</tr>
<tr>
<td>Vehicle + PAP</td>
<td>50</td>
<td>1334.72±98.34 (42.27)</td>
<td>755.04±112.04 (36.07)</td>
</tr>
<tr>
<td>TCA + APAP</td>
<td>50</td>
<td>747.36±86.30 (70.57)</td>
<td>409.27±72.84 (69.80)</td>
</tr>
<tr>
<td>APO + APAP</td>
<td>50</td>
<td>1129.74±62.49 (52.12)</td>
<td>671.86±69.00 (44.19)</td>
</tr>
<tr>
<td>Mixture + APAP</td>
<td>50</td>
<td>1129.74±62.49 (52.12)</td>
<td>671.86±69.00 (44.19)</td>
</tr>
<tr>
<td>Silymarin + APAP</td>
<td>50</td>
<td>1129.74±62.49 (52.12)</td>
<td>671.86±69.00 (44.19)</td>
</tr>
</tbody>
</table>

a: Values represent the mean ± S.E. and within parentheses hepatoprotective activity percent of six animals in each group Mice: Swiss albino (25-30 g) male.

Unit: each unit is µmole pyruvate/min/L.

b: is µ mole of p-nitrophenol formed/min/ L,
c: is n moles MDA/g liver,
d: is µ mole GSH/g liver
Table 3: Hepatoprotective activity (in vivo) of TCA, APO, Mixture of TCA & APO (1:1) and silymarin (pre-treatment fed at 48h, 24h, 2h before and 6h after hepatotoxin) against CCl₄ (0.5 ml kg⁻¹, p.o.) induced hepatic injury in rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg kg⁻¹) (p.o.)</th>
<th>Serum parameters</th>
<th>Hepatic parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GPT (Units)</td>
<td>GOT (Units)</td>
</tr>
<tr>
<td>Vehicle control</td>
<td>-</td>
<td>118.18±29.88</td>
<td>156.97±27.97</td>
</tr>
<tr>
<td>Vehicle + CCl₄</td>
<td>-</td>
<td>93.1.00±78.14</td>
<td>825.03±68.95</td>
</tr>
<tr>
<td>TCA + CCl₄</td>
<td>50 (74.63)</td>
<td>324.8±42.09</td>
<td>409.7±46.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(62.16)</td>
<td>(81.78)</td>
</tr>
<tr>
<td>Mixture + CCl₄</td>
<td>50 (59.33)</td>
<td>448.7±22.03</td>
<td>472.0±38.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(52.83)</td>
<td>(92.03)</td>
</tr>
<tr>
<td>Silymarin + CCl₄</td>
<td>50 (59.73)</td>
<td>445.5±43.48</td>
<td>464.9±32.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(53.89)</td>
<td>(67.87)</td>
</tr>
</tbody>
</table>

a: Values represent the mean ± S.E. and within parentheses hepatoprotective activity percent of six animals in each group, Rats: Wistar, (150-175 g) male.
Unit: each unit is μmole pyruvate/min/L,
b: is μ mole of p-nitrophenol formed/min/ L,
c: is n moles MDA/g liver,,
d: is μ mole GSH/g liver
Table 4: Hepatoprotective activity (in vivo) of TCA, APO, Mixture of TCA & APO (1:1) and silymarin (pre-treatment fed at 48h, 24h, 2h before and 6h after hepatotoxin) against CCl₄ (0.5 ml kg⁻¹, p.o.) induced hepatic injury in rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>Serum parameters</th>
<th>Hepatic parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg kg⁻¹ (p.o.)</td>
<td>GPT (Units)</td>
<td>GOT (Units)</td>
</tr>
<tr>
<td>Vehicle control</td>
<td>-</td>
<td>87.88±11.60</td>
<td>62.86±13.16</td>
</tr>
<tr>
<td>Vehicle + CCl₄</td>
<td>50</td>
<td>1527.57±76.47</td>
<td>765.64±75.43</td>
</tr>
<tr>
<td>APO + CCl₄</td>
<td>50</td>
<td>838.58±69.65</td>
<td>489.39±66.82</td>
</tr>
</tbody>
</table>

a: Values represent the mean ± S. E. and within parentheses hepatoprotective activity percent of six animals in each group. Rats: Wistar, (150-175 g) male.

Unit: each unit is μmole pyruvate/min/L.,

b: is μ mole of p-nitrophenol formed/min/ L.,
c: is n moles MDA/g liver.,
d: is μ mole GSH/g liver
Table- 5: Chloretic activity of TCA, APO, Mixture of TCA & APO (1:1) and Dehydrocholic acid (DHC) as percent increase in bile flow and bile solids when compared to normal values in rats\(^a\).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose mg kg(^{-1})</th>
<th>Route</th>
<th>Bile parameters % Increase (as compared to normal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bile flow (ml %)</td>
</tr>
<tr>
<td>TCA</td>
<td>50</td>
<td>i.d.</td>
<td>08.23 ± 1.71</td>
</tr>
<tr>
<td>APO</td>
<td>50</td>
<td>i.d.</td>
<td>27.39 ± 2.05</td>
</tr>
<tr>
<td>Mixture</td>
<td>50</td>
<td>i.d.</td>
<td>39.46 ± 3.73</td>
</tr>
<tr>
<td>DHC</td>
<td>50</td>
<td>i.d.</td>
<td>38.40 ± 2.76</td>
</tr>
</tbody>
</table>

\(^a\): Values represent mean ± SE of six animals in each group, Rats: Wistar 150-175 g) male

\(^b\): Values represent mean ± SE of eight animals in each group.
ADVANTAGES

Most of the hepatoprotective preparations/formulations available on the market are herbal based and hence are unstandardised chemically as well as biologically. Efficacy of the herbal formulations are known to be dependent upon secondary metabolites and reliability of these can only be assured if batch to batch standardization (chemical and pharmacological) are carried out.

In the present invention

a) Chemical composition of the formulation is well described, hence reproducible biological activity is assured.

b) Activity parameters are of broader spectrum and hence effectiveness of the formulation in obstructive and viral hepatitis.

c) Pharmacological evaluation data of the formulation clearly indicates synergistic action of the constituents of the formulation.
CLAIMS

1. A synergistic pharmaceutical composition having enhanced hepatoprotective activity on subjects, said composition comprising an effective amount of:
 (a) trans-tetracos-15-enoic acid (TCA) obtained from the plant Indigofera tinctoria;
 (b) Apocynin (APO) obtained from the plants Apocyanum cannabium and A. androsaemifolium; and
 (c) the ratio of APO and TCA is in the range of 3:1 to 1:3.

2. A composition according to claim 1 wherein said composition is used either singly or in combination with pharmaceutically acceptable additives.

3. A composition according to claim 1 wherein the pharmaceutically acceptable additives are selected from the group consisting of carriers, diluents, solvents, filters lubricants, excipients, binder and stabilizers.

4. A composition according to claim 1 wherein the said composition is used for both preventive and curative properties.

5. A composition according to claim 1 wherein said composition is administered systemically, orally or by any clinically/medically accepted uses.

6. A composition according to claim 1 wherein the composition is used to treat hepatic disorders that are clinically, biochemically and histologically similar to that of viral hepatitis, chronic hepatitis, fatty liver, cirrhosis and several vascular lesions of the liver.

7. A composition according to claim 1 wherein said composition is used to treat the liver damage induced by hepatotoxins.

8. A composition according to claim 1 wherein the hepatotoxins are selected from the group consisting of Galactosamine, Paracetamol and Carbon tetrachloride.

9. A composition according to claim 1, wherein the subjects is selected from the group consisting of mammals.

10. A composition according to claim 1 wherein the dosage for the treatment of CCl₄ induced hepatotoxicity in mammals is 50 mg/kg-body weight.

11. A composition according to claim 1 wherein the enhanced hepatoprotective activity in CCl₄ induced hepatotoxic mammals is upto 92%.

12. A composition according to claim 1 wherein the dosage for the treatment of acetaminophen induced hepatotoxicity in mammals is 50mg/kg-body weight.

13. A composition according to claim 1 wherein the enhanced hepatoprotective activity in acetaminophen induced hepatotoxicity in mammals is upto 86%.
14. A composition according to claim 1 wherein the dosage for the treatment of Galactosamine induced hepatotoxicity in mammals is 50 mg/kg of body weight.

15. A composition according to claim 1 wherein the enhanced hepatoprotective activity in Galactosamine induced hepatotoxicity in mammals is up to 75%.

16. A composition according to claim 1 wherein the dosage for chlorectic activity in mammals to control bile flow and bile solids is 50 mg/kg of body weight.

17. A composition according to claim 1 wherein the enhanced chlorectic activity is up to 39%.

18. A use of synergistic pharmaceutical composition in treating subjects with liver disorders with an effective amount of synergistic pharmaceutical composition to induce enhanced hepatoprotective activity, said composition comprising:

(a) trans-tetracos-15-enoic acid (TCA) obtained from the plant Indigofera tinctoria;
(b) Apocynin (APO) obtained from the plants Apocyanum cannabinum and A. androsaemifolium; and
(c) the ratio of APO and TCA is in the range of 3:1 to 1:3.

19. A use according to claim 19 wherein said composition is used to treat liver disorders caused by Galactosamine, Paracetamol and Carbon tetrachloride.

20. A use according to claim 19 wherein the dosage for the treatment of CCl₄ induced hepatotoxicity in mammals is about 50-mg/kg-body weight.

21. A use according to claim 19 wherein the enhanced hepatoprotective activity in CCl₄ induced hepatotoxic mammals is up to 92%.

22. A use according to claim 19 wherein the dosage for the treatment of acetaminophen induced hepatotoxicity in mammals is 50mg/kg-body weight.

23. A use according to claim 19 wherein the enhanced hepatoprotective activity in acetaminophen induced hepatotoxicity in mammals is up to 86%.

24. A use according to claim 19 wherein the dosage for the treatment of Galactosamine induced hepatotoxicity in mammals is 50mg/kg of body weight.

25. A use according to claim 19 wherein the enhanced hepatoprotective activity in Galactosamine induced hepatotoxicity in mammals is up to 75%.

26. A use according to claim 19 wherein the dosage for chlorectic activity in mammals to control the bile flow and bile solids is 50 mg/kg of body weight.

27. A use according to claim 19 wherein the enhanced chlorectic activity in mammals is up to 39%.
28. A use according to claim 19 wherein the composition is used either singly or in combination with pharmaceutically acceptable carriers.

29. A use according to claim 19 wherein the composition is administered to a subject in combination with pharmaceutically acceptable additives, carriers, diluents, solvents, filters, lubricants, excipients, binder or stabilizers.

30. A use according to claim 19 wherein the desired dosage is administered for both preventive and curative properties.

31. A use according to claim 19 wherein said composition is administered systemically, orally or by any clinically/medically accepted uses.

32. A use according to claim 19 wherein the subject is selected from animals and mammals.