wo 20137106492 A1 || I} NN TP OO0 AR A AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

18 July 2013 (18.07.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/106492 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 21/60 (2013.01) GO6F 21/30 (2013.01)

International Application Number:
PCT/US2013/020913

International Filing Date:
10 January 2013 (10.01.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/350,360 13 January 2012 (13.01.2012) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: RENGANATHAN, Venkataramann; c¢/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
CARVER, Brian Thomas; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-

(8D

mond, Washington 98052-6399 (US). JUMP, Daniel
Browne; c¢/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). LEBLANC, David Charles; c/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
WEISS, Samuel Ira; c/o Microsott Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

[Continued on next page]

(54) Title: DETECTION OF INVALID ESCROW KEYS

100 \

(57) Abstract: A secure hash, such as a Hash-based Message Authentication Code

START
102

RECEIVE INSTRUCTION TO SAVE FILE

104 l

GENERATE SECURE HASH USING
SECRET KEY

106 l

HASH CERTIFICATE DATA USING SECURE
HASH TO GENERATE VALIDATION DATA

108 l

WRITE VALIDATION DATA, CERTIFICATE
DATA, AND ENCRYPTED SECRET KEY INTO
FILE CONTAINER

110 l

SAVE FILE CONTAINER

security breach.

112
END

FIG.1

("HMAC"), is generated using a piece of secret information (e.g., a secret key) and a
piece of public information specific to each escrow key (e.g., a certificate hash or public
key). Using the secret key ensures that escrow key validation data can only be generated
by knowing the secret key, which prevents an attacker from generating the appropriate
escrow key validation data. Using the certificate hash as the public data ties each escrow
key validation data to a particular certificate, thereby preventing the attacker from simply
copying the validation data from another escrow key. Any escrow key that is found to be
invalid may be removed from the file container and a system audit log may be generated
so that a company, individual, or other entity can be aware of the possible attempt at a

WO 2013/106492 A1 WK 00NN AN AT AR AR AR

(84) Designated States (unless otherwise indicated, for every Declarations under Rule 4.17:
kind of regional protection available): ARIPO (BW, GH, __ . , .
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Zsp ;Ote‘,’f;p(%‘l’:;s I%Zjemem to apply for and be granted
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, ’
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — as to the applicant’s entitlement to claim the priority of
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, the earlier application (Rule 4.17(iii))
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ’
GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
1

DETECTION OF INVALID ESCROW KEYS
BACKGROUND

[0001] Document creation applications, such as word processing applications,
spreadsheet applications, and presentation applications, sometimes provide a document
encryption mechanism through which a user can provide a password that is used to
encrypt a document to prevent unauthorized access to information contained therein. The
information contained in encrypted documents may, at some time or another, be needed by
others that are not privy to the password. For instance, when a document is encrypted by a
password created by an employee of a company and the employee leaves the company or
simply forgets the password, nobody can access the document, which could contain
critical and confidential company information such as human resources or financial
information.

[0002] In an effort to enable decryption of an encrypted document without knowing a
password, an escrow key mechanism can be used. An escrow key mechanism is a
configurable mechanism to automatically add certificate-based decryption keys, called
escrow keys, in password-protected documents. The escrow key mechanism enables
password-protected documents to be decrypted using a certificate without requiring
knowledge of the password so as to enable a document recovery scenario in instances such
as described above.

[0003] Encrypted documents sometimes utilize a two-step system. For instance, each
time a document is saved, a randomly generated secret key is used to encrypt the entire
document. A password provided by the user is used to derive a new key, which is used to
encrypt the secret key. The encrypted secret key may be stored in the document as plain
text. To decrypt the document, the key is derived from the user-entered password and is
used to decrypt the secret key, which is then used to decrypt the document.

[0004] The escrow key mechanism works by encrypting the secret key using a
configured public key, which may or may not be contained in a certificate, for the
document. The encrypted secret key (i.e., the escrow key) is also added to the document,
along with the password-encrypted secret key. Anyone with the private key can then
decrypt the secret key, and hence the document. Because the secret key changes each time
the document is saved, any existing escrow keys in the document need to be updated with
the new secret key. The escrow key mechanism is not without vulnerabilities to attackers

that seek to gain access to a protected document.

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
2

[0005] It is with respect to these and other considerations that the disclosure made
herein is presented.

SUMMARY
[0006] Concepts and technologies are described herein for the detection of invalid
escrow keys, such as those inserted into a file by an attacker. By way of example, and to
illustrate a potential vulnerability with the use of the escrow key mechanism described
above, consider a scenario in which an attacker gains access to a password-protected file,
but the attacker does not have the password and therefore is unable to open the file. The
attacker can modify the file container to include his or her own escrow key. Because the
attacker does not know the secret key, the newly added malicious escrow key is not valid.
In other words, the malicious escrow key contains a key other than the actual intermediate
encryption key. When a legitimate user then opens and subsequently re-saves the file, all
escrow keys in the file container could be updated with a new secret key. As a result of
this update, the attacker’s malicious escrow key now has a valid encrypted secret key (i.e.,
the new secret key) instead of the incorrect key it originally contained. The attacker is
accordingly able to decrypt and access the file, thereby circumventing the escrow key
mechanism.
[0007] The concepts and technologies disclosed herein provide a mechanism by which
existing escrow keys in a file can be refreshed and maintained after the file is saved,
without enabling the above attack scenario. Escrow keys cannot be decrypted to check
validity since only a certificate owner is able to decrypt an escrow key. The concepts and
technologies described herein also provide a mechanism to validate each escrow key in a
file container without having to access a certificate’s private key.
[0008] According to one aspect, a secure hash, such as a Hash-based Message
Authentication Code (“HMAC?”), is generated using a piece of secret information (e.g., a
secret key) and a piece of public information specific to each escrow key (e.g., a certificate
hash, or a public key). Using the secret key ensures that escrow key validation data can
only be generated by knowing the secret key, which prevents an attacker from generating
the appropriate escrow key validation data. Using the certificate hash or public key as the
public data ties each escrow key validation data to a particular certificate, thereby
preventing the attacker from simply copying the validation data from another escrow key.
Any escrow key that is found to be invalid may be removed from the file container and a
system audit log may be generated so that a company, individual, or other entity can be

aware of the possible attempt at a security breach. A similar, but not malicious, condition

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
3

could occur if the document were edited by a version of the software which was unaware
of the need to update a previously legitimate escrow key. In either case, whether the
supplied escrow keys should be updated or not can be detected.

[0009] According to another aspect, during a save operation performed to save a file,
validation data is added to each escrow key in a file container. Then, during an open
operation performed to open the file, validation data is generated and compared to the
validation data that was added to each escrow key during the save operation. If a match
exists, the escrow key is determined to be valid. Otherwise, the escrow key is determined
to be invalid and the escrow key may be removed from the file container and may be
logged.

[0010] It should be appreciated that the above-described subject matter may be
implemented as a computer-controlled apparatus, a computer process, a computing
system, or as an article of manufacture such as a computer-readable storage medium.
These and various other features will be apparent from a reading of the following Detailed
Description and a review of the associated drawings.

[0011] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended that this Summary be used to limit the scope of the claimed subject matter.
Furthermore, the claimed subject matter is not limited to implementations that solve any or
all disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIGURE 1 is a flow diagram showing aspects of a method for adding validation
data to a document for one or more escrow keys, according to an illustrative embodiment.
[0013] FIGURES 2A and 2B are flow diagrams showing aspects of a method for
validating one or more escrow keys, according to an illustrative embodiment.

[0014] FIGURE 3 is a computer architecture diagram illustrating an illustrative
computer hardware and software architecture for a computing system capable of
implementing aspects of the embodiments presented herein.

DETAILED DESCRIPTION

[0015] The following detailed description is directed to concepts and technologies for
the detection of invalid escrow keys. According to one aspect of the concepts and
technologies described herein, a secure hash, such as an HMAC, is generated using a piece

of secret information (e.g., a secret key) and a piece of public information specific to each

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
4

escrow key (e.g., a certificate hash). The secret key can be stored in encrypted
information protected by an intermediate key, which is only known to someone who is
authorized to decrypt the document. Using the secret key ensures that escrow key
validation data can only be generated by knowing the secret key, which prevents an
attacker from generating the appropriate escrow key validation data. Using the certificate
hash or public key as the public data ties each escrow key validation data to a particular
certificate, thereby preventing the attacker from simply copying the validation data from
another escrow key. Any escrow key that is found to be invalid may be removed from the
file container and a system audit log may be generated so that a company, individual, or
other entity can be aware of the possible attempt at a security breach.

[0016] While the subject matter described herein is presented in the general context of
program modules that execute in conjunction with the execution of an operating system
and application programs on a computer system, those skilled in the art will recognize that
other implementations may be performed in combination with other types of program
modules. Generally, program modules include routines, programs, components, data
structures, and other types of structures that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the
subject matter described herein may be practiced with other computer system
configurations, including hand-held devices, multiprocessor systems, microprocessor-
based or programmable consumer electronics, minicomputers, mainframe computers, and
the like.

[0017] In the following detailed description, references are made to the accompanying
drawings that form a part hereof, and in which are shown by way of illustration specific
embodiments or examples. Referring now to the drawings, in which like numerals
represent like elements throughout the several figures, aspects of a computing system,
computer-readable storage medium, and computer-implemented methodology for the
detection of invalid escrow keys will be presented.

[0018] Turning now to FIGURE 1, aspects of a method 100 for adding validation data to
a file for one or more escrow keys will be described in detail. It should be understood that
the operations of the methods disclosed herein are not necessarily presented in any
particular order and that performance of some or all of the operations in an alternative
order(s) is possible and is contemplated. The operations have been presented in the

demonstrated order for ease of description and illustration. Operations may be added,

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
5

omitted, and/or performed simultaneously, without departing from the scope of the
appended claims.

[0019] It also should be understood that the illustrated methods can be ended at any time
and need not be performed in their respective entireties. Some or all operations of the
methods, and/or substantially equivalent operations, can be performed by execution of
computer-readable instructions included on a computer-storage media, as defined below.
The term “computer-readable instructions,” and variants thereof, as used in the description
and claims, is used expansively herein to include routines, applications, application
modules, program modules, programs, components, data structures, algorithms, and the
like. Computer-readable instructions can be implemented on various system
configurations, including single processor or multiprocessor systems, minicomputers,
mainframe computers, personal computers, hand-held computing devices, processor-
based, programmable consumer electronics, combinations thereof, and the like.

[0020] Thus, it should be appreciated that the logical operations described herein are
implemented (1) as a sequence of computer-implemented acts or program modules
running on a computing system and/or (2) as interconnected machine logic circuits or
circuit modules within the computing system. The implementation is a matter of choice
dependent on the performance and other requirements of the computing system.
Accordingly, the logical operations described herein are referred to variously as states,
operations, structural devices, acts, or modules. These operations, structural devices, acts,
and modules may be implemented in software, in firmware, in special purpose digital
logic, and any combination thereof.

[0021] The method 100 is described as being performed during a save operation
executed to save a file. The aspects described herein below are not necessarily particular
to a certain application, application type, file, or file type. In some embodiments, an
application is configured to open a file in a first state, receive user input, such as edits or
other interactions, and save the file in a second state that is different from the first state. In
other embodiments, the file is saved, but no changes are made to the file data. In some
embodiments, the file is saved with changes to metadata, formatting parameters, or to
other data contained within the file that is not file data. In some embodiments, the
application is configured to save the file, but may or may not have the capability to
perform operations beyond opening and saving. For instance, the application, in some

implementations, may not be configured to edit the file in any way. In some

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
6

embodiments, the save operation includes a copy and paste operation, wherein a first file
is copied and pasted thereby creating and saving a new file.

[0022] In some embodiments, the file is a document, such as a word processor
document, a spreadsheet document, a presentation document, a drawing document, or a
collaboration document. In some embodiments, the application used to create and/or view
such documents is, respectively, a word processing application such as MICROSOFT
WORD, available from Microsoft Corporation of Redmond, Washington; a spreadsheet
application such as MICROSOFT EXCEL, available from Microsoft Corporation of
Redmond, Washington; a presentation application such as MICROSOFT POWERPOINT,
available from Microsoft Corporation of Redmond, Washington; a drawing application
such as MICROSOFT VISIO, available from Microsoft Corporation of Redmond,
Washington; or a collaboration application such as MICROSOFT SHAREPOINT,
available from Microsoft Corporation of Redmond, Washington. In some embodiments,
the application is a read-only application configured to allow a user to view but not edit a
document. In other embodiments, the application is a read/write application configured to
allow a user to view and edit a document. The application may be a stand-alone
application installed locally on a computer system, a remote application installed on a
remote system that is access remotely by a computer system, or a web application. Other
document types and the associated applications are contemplated.

[0023] The method 100 is also described for a file that contains one or more escrow
keys. Alternatively or additionally, a file container that contains the file may contain one
or more escrow keys. Some escrow keys may be stored in the file container while others
may be stored in the file itself. The file container is a container or wrapper meta-file
format whose specification describes how different data elements and metadata coexist in
the file.

[0024] The method 100 begins at operation 102, wherein an instruction to save a file is
received. The instruction to save the file may be received through a graphical user
interface (“GUI”) or other user interface presented by or for an application configured to
save the file. The GUI may be represented as a menu or part of a menu, as an icon, as a
ribbon interface or part of a ribbon interface, as a pop-up GUI, some combination thereof,
or the like. The instruction to save the file may be received via an interface device, such
as a keyboard, keypad, mouse, gamepad, remote control device, or via any other interface
device that, through one or more buttons, touchscreens, touchpads, microphones, or other

man-machine interface that provides a mechanism by which a user can instruct the

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
7

application to save the file. A dedicated or programmed physical save button on one or
more of these interface devices is contemplated.

[0025] The remaining operations of the method 100 are performed during a save
operation triggered by the instruction to save the file received in operation 102. From
operation 102, the method 100 proceeds to operation 104, wherein a secure hash is
generated using a secret key. The secret key, in some embodiments, is randomly or
pseudo-randomly generated and is used to encrypt the file. In some embodiments, the
secret key is encrypted using a password provided by a user. In some embodiments, the
encrypted secret key is stored in the file in plain text. Alternatively, the encrypted secret
key may be stored in the file in some other format.

[0026] The secure hash generated in operation 104, in some embodiments, is a Hashed
Message Authentication Code, or otherwise termed a Hashed Message Authentication
Checksum (“HMAC”). In some embodiments, the HMAC is generated using the secret
key as a piece of secret information and some public information that is specific to the
particular escrow key for which the HMAC is being generated, such as certificate data or a
public key. In an alternative embodiment, a regular hash of the secret key and the
certificate data (or public key) is used instead of an HMAC. Although the resultant hash
in embodiments that utilize a regular hash would be cryptographically weaker, the use of a
regular hash may, nevertheless, find application in certain scenarios.

[0027] If the secret key is not changed during each save operation, or for other entropy
purposes, in some embodiments, a random salt value for each escrow key is generated and
included in the hash or HMAC, as the case may be. This salt value is then stored in the
file container with the remainder of the escrow key data.

[0028] From operation 104, the method 100 proceeds to operation 106, wherein
certificate data is hashed using the secure hash generated in operation 104 to generate
validation data for the escrow key. Alternatively, a public key may be used instead of
certificate data. The method 100 then proceeds to operation 108, wherein the validation
data, the certificate data, and the encrypted secret key are written into the file container for
the file. Alternatively, all or a portion of this data is written directly into the file. The
method 100 then proceeds to operation 110, wherein the file container is saved. From
operation 110, the method 100 proceeds to operation 112, wherein the method 100 ends.
[0029] Turning now to FIGURES 2A and 2B, aspects of a method 200 for validating
one or more escrow keys will be described in detail. The method 200 is described as

being performed during an open operation to open the file that was saved during the

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
8

execution of the save operation described above with reference to the method 100
illustrated in FIGURE 1. The aspects described herein below also are not necessarily
particular to a certain application, application type, file, or file type. In some
embodiments, the application is configured to open and permit editing of the file. In some
embodiments, the application is configured to open the file, but may or may not have the
capability to perform operations beyond opening. For instance, the application, in some
implementations, may not be configured to edit the file in any way. In some
embodiments, the application used to open the file according to the method 200 is the
same application used to save the file according to the method 100, described above. In
other embodiments, these applications are different. The computer system or device used
to save the file may be the same or different than the computer system or device used to
open the file.

[0030] Turning first to FIGURE 2A, the method 200 begins and proceeds to operation
202, wherein an instruction to open the file is received. In response to the instruction to
open the file, user input for decryption of the secret key is requested. In some
embodiments, the request for user input is a notification presented within the application
prompting a user to provide the user input, although the request may take alternative
forms. In some embodiments, the requested user input is an authentication credential such
as, but not limited to, a password, passcode, personal identification number, security
question/answer, passphrase, voice passphrase, another security certificate, combinations
thereof, and the like. In some embodiments, the requested user input includes a request
for multi-factor authentication credentials from two or more of the following categories:
something one has, something one is, something one knows, something one has done, and
somewhere one is located.

[0031] The instruction to open the file may be received through a GUI or other user
interface presented by or for an application configured to open the file. The GUI may be
represented as a menu or part of a menu, as an icon, as a ribbon interface or part of a
ribbon interface, as a pop-up GUI or part of a pop-up GUI, some combination thereof, or
the like. Alternatively, the instruction to open the file may be received via an interface
device, such as a keyboard, keypad, mouse, gamepad, remote control device, or via any
other interface device that, through one or more buttons, touchscreens, touchpads,
microphones, or other man-machine interface that provides a mechanism by which a user
can instruct the application to open the file. A dedicated or programmed physical open

button on one or more of these interface devices is contemplated.

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
9

[0032] From operation 202, the method 200 proceeds to operation 204, wherein user
input responsive to the request for user input in operation 202 is received. The method
200 then proceeds to operation 206, wherein a determination is made as to whether or not
the user input received in operation 204 is valid. This determination may be made based
upon comparing the user input received in operation 204 to an expected user input, such as
an expected password or other expected authentication credential. The expected user input
may be stored on the same computer or device on which the application is executing, or
may be stored remotely such as on an authentication server configured to validate the user
input received at operation 204.

[0033] If, at operation 206, it is determined that the user input is not valid, the method
200 proceeds to operation 208, wherein a message indicating that the user input is invalid
is presented. Alternatively, no message indicating the user input is invalid is presented. In
some embodiments, the application closes upon or at a time after the determination that
the user input is not valid is made. In any case, the method 200 then proceeds to operation
210, wherein the method 200 ends.

[0034] If, at operation 206, it is determined that the user input is valid, the method 200
proceeds to operation 212, wherein the secret key is decrypted. From operation 212, the
method 200 proceeds to operation 214, wherein a secure hash is generated using the secret
key. The secure hash generated in operation 214, in some embodiments, is an HMAC. In
some embodiments, the HMAC is generated using the secret key as a piece of secret
information and some public information that is specific to the particular escrow key for
which the HMAC is being generated, such as certificate data or a public key. In an
alternative embodiment, a regular hash of the secret key and the certificate data (or public
key) is used instead of an HMAC. Although the resultant hash in embodiments that utilize
a regular hash would be cryptographically weaker, the use of a regular hash may,
nevertheless, find application in certain scenarios.

[0035] From operation 214, the method 200 proceeds to operation 216, wherein the
certificate data is hashed using the secure hash generated in operation 214 to generate
validation data for the escrow key. Alternatively, a public key may be used instead of
certificate data. The method 200 then proceeds to FIGURE 2B and, particularly, to
operation 218. At operation 218, the validation data generated in operation 216 is
compared to the validation data saved in the file container in operation 110 of FIGURE 1.
From operation 218, the method 200 proceeds to operation 220, wherein a determination is

made as to whether or not a match exists between the two validation data sets.

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
10

[0036] If, at operation 220, it is determined that a match does not exist between the
validation data sets, the method 200 proceeds to operation 222, wherein it is determined
that the escrow key is invalid and the invalid escrow key is removed from the file. The
method 200 then proceeds to operation 224, wherein the invalid escrow key is logged. In
some embodiments, a system audit is generated so that a company or other entity that has
an interest in the security of the file can be made aware of the possible attempt at a
security breach. Alternatively, the invalid escrow key is not logged. In any case, the
method 200 then proceeds back to FIGURE 2A and, particularly, to operation 210,
wherein the method 200 ends.

[0037] In another embodiment (not illustrated), at operation 224, the method 200
proceeds to operation 228, wherein the file is opened. In this embodiment, a warning
indicating that the file may have been tampered with can be presented the user. The
method 200 can then proceed back to FIGURE 2A and, particularly, to operation 210,
wherein the method 200 ends.

[0038] If, at operation 220, it is determined that a match does exist between the
validation data sets, the method 200 proceeds to operation 226, wherein it is determined
that the escrow key is valid. The method 200 then proceeds to operation 228, wherein the
file is opened. From operation 228, the method 220 proceeds back to FIGURE 2A and,
particularly, to operation 210, wherein the method 200 ends.

[0039] Although escrow keys are described in FIGURE 2 as being validated during an
open operation, it should be understood that escrow keys alternatively may be validated
during a save operation, as a background task, or responsive to a specific pre-defined
input.

[0040] FIGURE 3 illustrates an illustrative computer architecture 300 for a device
capable of executing the software components described herein for the detection of invalid
escrow keys. Thus, the computer architecture 300 illustrated in FIGURE 3 illustrates an
architecture for a server computer, mobile phone, a PDA, a smart phone, a desktop
computer, a netbook computer, a tablet computer, and/or a laptop computer. The
computer architecture 300 may be utilized to execute any aspects of the software
components presented herein.

[0041] The computer architecture 300 illustrated in FIGURE 3 includes a central
processing unit 302 (“CPU”), a system memory 304, including a random access

memory 306 (“RAM”) and a read-only memory (“ROM”) 308, and a system bus 310 that
couples the memory 304 to the CPU 302. A basic input/output system containing the

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
11

basic routines that help to transfer information between elements within the computer
architecture 300, such as during startup, is stored in the ROM 308. The computer
architecture 300 further includes a mass storage device 312 for storing an operating system
314, an application 316, and data 318. The data 318 includes one or more escrow keys
320, one or more secret keys 322, one or more certificates or public keys 324, one or more
secure hashes 326, validation data 328, and file data 330, such as the escrow keys, secret
keys, certificates, secure hashes, validation data, and file data described herein above.
[0042] The CPU 302 is configured to execute the operation system 314. The operations
system 314 is an application program for controlling the operation of the computer
architecture 300. The application 316 is an executable program configured to execute on
top of the operating system 314 to provide various functionality described herein. For
instance, the application 316 may provide the save operation and open operations
described above with reference to FIGURES 1 and 2A/2B, respectively, with regard to
validating escrow keys. In some embodiments, the application 316 is configured to open a
file in a first state, receive user input such as edits or other interactions, and save the file in
a second state that is different from the first state. In other embodiments, the application
316 1s configured to save the file even when no changes are made to the file data 330. In
some embodiments, the file is saved with changes to metadata, formatting parameters, or
to other data contained within the file that is not viewable data. In some embodiments, the
application 316 is configured to save the file, but may or may not have the capability to
perform operations beyond opening and saving. For instance, the application 316, in some
implementations, may not be configured to edit the file in any way.

[0043] In some embodiments, the application 316 is a word processing application such
as MICROSOFT WORD, available from Microsoft Corporation of Redmond,
Washington; a spreadsheet application such as MICROSOFT EXCEL, available from
Microsoft Corporation of Redmond, Washington; a presentation application such as
MICROSOFT POWERPOINT, available from Microsoft Corporation of Redmond,
Washington; a drawing application such as MICROSOFT VISIO, available from
Microsoft Corporation of Redmond, Washington; or a collaboration application such as
MICROSOFT SHAREPOINT, available from Microsoft Corporation of Redmond,
Washington. Alternatively or additionally, the application 316 is a web-based version of
one or more of the aforementioned document creation applications and, in these
embodiments, the computer architecture 300 functions as an architecture of a server

computer configured to provide the application 316 as a web-based application.

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
12

[0044] The mass storage device 312 is connected to the CPU 302 through a mass storage
controller (not shown) connected to the bus 310. The mass storage device 312 and its
associated computer-readable media provide non-volatile storage for the computer
architecture 300. Although the description of computer-readable media contained herein
refers to a mass storage device, such as a hard disk or CD-ROM drive, it should be
appreciated by those skilled in the art that computer-readable media can be any available
computer storage media or communication media that can be accessed by the computer
architecture 300.

[0045] Communication media includes computer-readable instructions, data structures,
program modules, or other data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any delivery media. The term “modulated data signal”
means a signal that has one or more of its characteristics changed or set in a manner as to
encode information in the signal. By way of example, and not limitation, communication
media includes wired media such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of
the any of the above should also be included within the scope of computer-readable media.
[0046] By way of example, and not limitation, computer storage media may include
volatile and non-volatile, removable and non-removable media implemented in any
method or technology for storage of information such as computer-readable instructions,
data structures, program modules, or other data. For example, computer media includes,
but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state
memory technology, CD-ROM, digital versatile disks (“DVD”), HD-DVD, BLU-RAY, or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the desired
information and which can be accessed by the computer architecture 300. For purposes of
the claims, the phrase “computer storage medium” and variations thereof, does not include
waves, signals, and/or other transitory and/or intangible communication media, per se.
[0047] According to various embodiments, the computer architecture 300 may operate
in a networked environment using logical connections to remote computers through a
network 332. The network 332 may be an internet, the Internet, an intranet, or an extranet.
Access to the network 332 may be provided via one or more wired or wireless access
networks (not shown), as will be understood by those skilled in the art.

[0048] The computer architecture 300 may connect to the network 332 through a
network interface unit 314 connected to the bus 310. It should be appreciated that the

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
13

network interface unit 314 also may be utilized to connect to other types of networks and
remote computer systems. The computer architecture 300 also may include an
input/output controller 316 for receiving and processing input from a number of other
devices, including a keyboard, mouse, electronic stylus, or other input device (not shown
in FIGURE 3). Similarly, the input/output controller 316 may provide output to a display
screen, a printer, or other type of output device (also not shown in FIGURE 3).

[0049] It should be appreciated that the software components described herein may,
when loaded into the CPU 302 and executed, transform the CPU 302 and the overall
computer architecture 300 from a general-purpose computing system into a special-
purpose computing system customized to facilitate the functionality presented herein. The
CPU 302 may be constructed from any number of transistors or other discrete circuit
elements, which may individually or collectively assume any number of states. More
specifically, the CPU 302 may operate as a finite-state machine, in response to executable
instructions contained within the software modules disclosed herein. These computer-
executable instructions may transform the CPU 302 by specifying how the CPU 302
transitions between states, thereby transforming the transistors or other discrete hardware
elements constituting the CPU 302.

[0050] Encoding the software modules presented herein also may transform the physical
structure of the computer-readable media presented herein. The specific transformation of
physical structure may depend on various factors, in different implementations of this
description. Examples of such factors may include, but are not limited to, the technology
used to implement the computer-readable media, whether the computer-readable media is
characterized as primary or secondary storage, and the like. For example, if the computer-
readable media is implemented as semiconductor-based memory, the software disclosed
herein may be encoded on the computer-readable media by transforming the physical state
of the semiconductor memory. For example, the software may transform the state of
transistors, capacitors, or other discrete circuit elements constituting the semiconductor
memory. The software also may transform the physical state of such components in order
to store data thereupon.

[0051] As another example, the computer-readable media disclosed herein may be
implemented using magnetic or optical technology. In such implementations, the software
presented herein may transform the physical state of magnetic or optical media, when the
software is encoded therein. These transformations may include altering the magnetic

characteristics of particular locations within given magnetic media. These transformations

10

15

20

25

WO 2013/106492 PCT/US2013/020913
14

also may include altering the physical features or characteristics of particular locations
within given optical media, to change the optical characteristics of those locations. Other
transformations of physical media are possible without departing from the scope and spirit
of the present description, with the foregoing examples provided only to facilitate this
discussion.

[0052] In light of the above, it should be appreciated that many types of physical
transformations take place in the computer architecture 300 in order to store and execute
the software components presented herein. It also should be appreciated that the computer
architecture 300 may include other types of computing devices, including hand-held
computers, embedded computer systems, personal digital assistants, and other types of
computing devices known to those skilled in the art. It is also contemplated that the
computer architecture 300 may not include all of the components shown in FIGURE 3,
may include other components that are not explicitly shown in FIGURE 3, or may utilize
an architecture completely different than that shown in FIGURE 3.

[0053] Based on the foregoing, it should be appreciated that technologies for the
detection of invalid escrow keys have been disclosed herein. Although the subject matter
presented herein has been described in language specific to computer structural features,
methodological and transformative acts, specific computing machinery, and computer
readable media, it is to be understood that the invention defined in the appended claims is
not necessarily limited to the specific features, acts, or media described herein. Rather, the
specific features, acts and mediums are disclosed as example forms of implementing the
claims.

[0054] The subject matter described above is provided by way of illustration only and
should not be construed as limiting. Various modifications and changes may be made to
the subject matter described herein without following the example embodiments and
applications illustrated and described, and without departing from the true spirit and scope

of the present invention, which is set forth in the following claims.

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
15

CLAIMS
1. A computer-implemented method for generating escrow key validation data, the
computer-implemented method comprising performing computer-implemented operations
for:
receiving, using a computer, an instruction to save a file;
generating, using the computer, a secure hash using a secret key, the secret key
being used to encrypt the file;
hashing, using the computer, a public key using the secure hash to generate
validation data for an escrow key, wherein the validation data is generated for use as part
of a validation operation to validate the escrow key during a later operation performed on
the file; and
saving, using the computer, the validation data, the public key, and the secret key.
2. The computer-implemented method of claim 1, wherein the secure hash is a Hash-
based Message Authentication Code (“HMAC”).
3. The computer-implemented method of claim 1, further comprising:
receiving an instruction to open the file;
in response to receiving the instruction to open the file, requesting user input for
decryption of secret key;
receiving user input;
determining if the user input is valid;
in response to determining that the user input is valid,
decrypting the secret key,
generating a further secure hash using the secret key,
hashing the public key using the further secure hash to generate further
validation data for the escrow key,
comparing the validation data to the further validation data,
if the validation data matches the further validation data, determining that
the escrow key is valid and opening the file, and
if the validation data does not match the further validation data,
determining that the escrow key is not valid and removing the invalid escrow key
from the file.
4. The computer-implemented method of claim 1, further comprising:
generating a salt value for the escrow key; and

adding the salt value to the secure hash.

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913
16

5. The computer-implemented method of claim 1, wherein saving the validation data,
the public key, and the secret key comprises saving the validation data, the public key, and
the secret key to the file.
6. The computer-implemented method of claim 1, wherein saving the validation data,
the public key, and the secret key comprises saving the validation data, the public key, and
the secret key to a file container that contains the file.
7. A computer-implemented method for validating escrow keys, the computer-
implemented method comprising performing computer-implemented operations for:
receiving, using a computer, an instruction to perform an operation on a file, the
file having validation data for an escrow key associated therewith, the validation data
having been generated by hashing certificate data using a secure hash, which was
generated using a secret key during a save operation performed on the file;
in response to receiving the instruction to perform the operation on the file,
requesting, using the computer, user input for decryption of the secret key;
receiving, using the computer, user input;
determining, using the computer, if the user input is valid;
in response to determining that the user input is valid,
decrypting, using the computer, the secret key,
generating, using the computer, a further secure hash using the secret key,
hashing, using the computer, the certificate data using the further secure
hash to generate further validation data for the escrow key,
comparing, using the computer, the validation data to the further validation
data,
if the validation data matches the further validation data, determining, using
the computer, that the escrow key is valid and performing the operation on the file,
and
if the validation data does not match the further validation data,
determining, using the computer, that the escrow key is not valid and removing the
invalid escrow key from association with the file.
8. The computer-implemented method of claim 7, wherein the secure hash and the
further secure hash are Hash-based Message Authentication Codes (“HMACs”).
9. The computer-implemented method of claim 7, wherein the operation is an open

operation, a re-save operation, or a background task.

10

15

20

25

30

WO 2013/106492 PCT/US2013/020913

17
10. The computer-implemented method of claim 7, further comprising logging the
invalid escrow key.
11. The computer-implemented method of claim 10, wherein logging the invalid

escrow key comprises generating a system audit.
12. The computer-implemented method of claim 7, wherein, prior to receiving the
instruction to perform the operation on the file, the file was saved comprising the
validation data, the escrow key, the certificate data, and the secret key.
13. The computer-implemented method of claim 7, wherein, prior to receiving the
instruction to perform the operation on the file, the file was saved in a file container, the
file container comprising the validation data, the escrow key, the certificate data, and the
secret key.
14. A computer storage medium having computer-readable instructions stored
thereupon that, when executed by a computer, cause the computer to:
receive an instruction to open a file, the file having validation data for an escrow
key associated therewith, the validation data having been generated by hashing certificate
data using a Hash-based Message Authentication Code (“HMAC”), which was generated
using a secret key during a save operation performed on the file;
in response to receiving the instruction to open the file, request an authentication
credential for decryption of the secret key;
receive an authentication credential;
determine if the authentication credential is valid;
in response to determining that the authentication credential is valid,
decrypt the secret key,
generate a further HMAC using the secret key,
hash the certificate data using the HMAC to generate further validation data
for the escrow key,
compare the validation data to the further validation data,
if the validation data matches the further validation data, determine that the
escrow key is valid and open the file responsive to the instruction to open the file,
and
if the validation data does not match the further validation data, determine
that the escrow key is not valid, remove the invalid escrow key from association

with the file, and log the invalid escrow key.

10

WO 2013/106492 PCT/US2013/020913
18

15. The computer storage medium of claim 14, further having computer-readable
instructions stored thereupon that, when executed by the computer, cause the computer to:

prior to receiving the instruction to open the file, receive an instruction to save the

file;

generate the HMAC using the secret key, the secret key being used to encrypt the
file;

hash the certificate data using the HMAC to generate validation data for the escrow
key; and

write and save the validation data, the certificate data, and the secret key to the file

or to a file container containing the file.

WO 2013/106492

100 w

1/4

(START ’

102 —~ l

PCT/US2013/020913

RECEIVE INSTRUCTION TO SAVE FILE

104 ~~ l
GENERATE SECURE HASH USING
SECRET KEY

HASH CERTIFICATE DATA USING SECURE
HASH TO GENERATE VALIDATION DATA

WRITE VALIDATION DATA, CERTIFICATE
DATA, AND ENCRYPTED SECRET KEY INTO
FILE CONTAINER

110 ~ l

SAVE FILE CONTAINER

112 —~ l

(o)

FIG. 1

WO 2013/106492
2/4

(e) v

202 —

RECEIVE INSTRUCTION TO OPEN FILE
AND, IN RESPONSE, REQUEST USER
INPUT FOR DECRYPTION OF SECRET KEY

204 — l
RECEIVE USER INPUT FOR DECRYPTION
OF SECRET KEY

VALID USER INPUT NO

PCT/US2013/020913

RECEIVED?

YES
212 — 208 —
PRESENT MESSAGE INDICATING USER
DECRYPT SECRET KEY NPUT IS INVALID
214 — l v
210
GENERATE SECURE HASH USING
SECRET KEY END
216 —~

HASH CERTIFICATE DATA USING SECURE
HASH TO GENERATE VALIDATION DATA

FIG. 2A

WO 2013/106492 PCT/US2013/020913
3/4

218 —~

COMPARE VALIDATION DATATO
VALIDATION DATA STORED IN FILE
CONTAINER

MATCH?

226 ~ 222 ~~ v
DETERMINE ESCROW KEY IS INVALID AND
DETERMINE ESCROW KEY IS VALID REMOVE INVALID ESCROW KEY
FROM FILE
228 ~ i 224 ~ !
OPEN FILE LOG INVALID ESCROW KEY

NV

FIG. 2B

PCT/US2013/020913

WO 2013/106492

4/4

¢ OIld

1253
W3LSAS ONILYY3dO
91¢
NOILYOITddY
|||||||||||||||| -
! — 8¢ !
| /EMME viva |
! NOILYAIVA |1 _
_ — L 80¢
7% vee . | 8re viva Woy
_ e AT OMand |!
_ A=
TSRO | 5 yoimn || E—S
| — — _\ —_
_ %43 (143 _ 90¢
|| A2 139035 | | A24 moyos3 ! Wvd
|||||||||||| 7 70€
30IA30 IOVHOLS SSYA AYOWIN
_ _
|] w |
— (253 0Le Fow
e 208
LINN 30VA4TINI
Y3ITIOYLINOD O] SMOMLIN Ndo

00€

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/020913

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 21/60(2013.01)i, GO6F 21/30(2013.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 21/60; GO6L 11/30; GO6F 12/14; HOAL 9/32; HOAL 9/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: validation data, secure, escrow, encrypt, decrypt, hash, file, secret, public, key

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2011-0252243 A1 (MICHAEL LAMBERTUS HUBERTUS BROUWER et al.) 1-15
13 October 2011
See paragraphs [0081], [0090]-[0091], [0129], [0133]: and figures 7, 26, 28.

A US 6931549 B1 (MOHAN ANANDA) 16 August 2005 1-15
See column 3, lines 1-2, 19-20; column &, lines 18-20; column 9, lines 29-30;
and figure 1.

A US 2011-0246772 A1 (BRENDAN O CONNOR et al.) 06 October 2011 1-15
See paragraphs [0054]-[0062]; and figures 5B-8.

A US 2007-0297608 A1l (PER ERWIN JONAS et al.) 27 December 2007 1-15
See paragraphs [0003]-[0010], [0026]-[0027]; and figure 5.

A US 2006-0136723 Al (ANDREW ROBERT TAYLOR) 22 June 2006 1-15
See paragraphs [0024]-[0029]; and figures 1-3.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
25 April 2013 (25.04.2013) 25 April 2013 (25.04.2013)
Name and mailing address of the ISA/KR Authorized officer

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan BYUN, Sung Cheal
City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8262

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/020913

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2011-02562243 A1 13.10.2011 EP 1653405 A1 03.05.2006
GB 0424205 DO 01.12.2004
GB 2419762 A 03.05.2006
JP 2006-191534 A 20.07.2006
US 08046580 B2 25.10.2011

US 6931549 B1 16.08.2005 None

US 2011-0246772 A1 06.10.2011 None

US 2007-0297608 A1 27 .12.2007 US 2004-0146164 A1 29.07.2004
us 7272231 B2 18.09.2007
US 7596222 B2 29.09.2009

US 2006-0136723 Al 22.06.2006 EP 1653405 A1 03.05.2006
GB 0424205 DO 01.12.2004
GB 2419762 A 03.05.2006
JP 2006-191534 A 20.07.2006
US 8046580 B2 25.10.2011

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report

