(54) 发明名称
复合发酵制备几丁聚糖的方法

(57) 摘要
本发明公开了一种复合发酵制备几丁聚糖的方法，包括如下步骤：将蟹壳或虾壳干燥、粉碎；发酵；脱钙；脱蛋白；酶解脱乙酰，水洗干燥粉碎即得。本发明的酶解工艺与现有技术相比，减少了强酸用量，耗能低，无污染，更加环保。发酵液回收后可以制成生物骨钙素，这样所有的产物都能够被合理利用产生显著的经济价值，避免资源浪费。
1. 一种复合发酵制备几丁聚糖的方法，包括如下步骤：
 (1) 将蟹壳或虾壳干燥，粉碎；
 (2) 发酵；
 (3) 脱钙；
 (4) 脱蛋白；
 (5) 脱乙酰，水洗干燥粉碎即得。
2. 根据权利要求 1 所述的制备方法，其特征在于，将蟹壳或虾壳粉碎至 0.5～1.0mm 大小。
3. 根据权利要求 1 所述的制备方法，其特征在于，所述的发酵采用乳酸菌。
4. 根据权利要求 3 所述的制备方法，其特征在于，所述的乳酸菌是乳双歧杆菌、保加利亚乳杆菌和瑞士乳杆菌复合菌。
5. 根据权利要求 1 所述的制备方法，其特征在于，所述的乳酸菌重量比是乳双歧杆菌：保加利亚乳杆菌：瑞士乳杆菌 =2:6:5。
6. 根据权利要求 3.4 或 5 所述的制备方法，其特征在于，乳酸菌占蟹壳或虾壳原料重量比为 0.02～0.06%。
7. 根据权利要求 1 所述的制备方法，其特征在于，所述的脱钙是发酵液过滤后留取残渣，残渣中加入 8～15% 盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。
8. 根据权利要求 1 或 7 所述的制备方法，其特征在于，所述的脱蛋白是脱钙后的残渣中加入 8～15% 氢氧化钠溶液，80～100℃，1～3h，过滤水洗至中性。
9. 根据权利要求 1 所述的制备方法，其特征在于，所述的脱乙酰是脱蛋白后的残渣中加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳质与发酵液的重量体积比 1～3:1～6，30～32℃，48～72h，0.2MPa，然后 120℃ 灭菌 20min，干燥即得。
10. 根据权利要求 9 所述的制备方法，其特征在于，所述的甲壳质脱乙酰酶制备方法如下：
 (1) 制备发酵培养基：酵母粉 8g，壳聚糖 15g，葡萄糖 30g，磷酸二氢钾 2g，无水硫酸镁 1g，二氯化钴 (0.01mol/l) 10ml，水 1000ml；
 (2) 发酵条件：发酵培养基灭菌，接入构巢曲霉菌，30～35℃，PH6.0～7.0，72～96h。
复合发酵制备几丁聚糖的方法

技术领域
[0001] 本发明涉及几丁聚糖制备方法，属于制造领域。

背景技术
[0002] 甲壳素是一种天然含氮多糖物质，广泛存在与无脊椎动物的外壳或角质层中，尤其是虾蟹类的外壳中。甲壳素很容易获得，可再生，是仅次于纤维素的天然高聚物，但是因其分子内部有很强的氢键作用，溶解性低，应用范围受到限制。
[0003] 甲壳素脱乙酰后生成壳聚糖。目前壳聚糖的制备多采用化学法和酶解法脱乙酰。化学法脱乙酰反应中，影响脱乙酰的因素很多，但主要是影响因素包括：碱液浓度、反应温度和时间。一般来说，提高反应温度和延长反应时间均可提高脱乙酰度，但也会导致甲壳素主链降解增加，从而影响产品的粘度和分子量。通入氨气可以在一定程度上缓和主链的降解。由于化学法使用的碱液浓度高，反应时间长，产品质量不稳定，环境污染严重。
[0004] 酶解法不会降解主链，并且无污染，具有重要的研究开发价值。影响酶解的因素很多，主要包括PH值和温度。文献记载最适宜PH值4~8，最适宜温度30~70℃(《甲壳酶特性与应用研究》万云云等《天然产物研究与开发》2003 Vol 15 No.6)。迄今为止发现的真菌甲壳质脱乙酰酶(CDA)都是糖蛋白，且有良好的热稳定性。但是不同来源CDA的存在位置、最适宜PH值(PH4.5~12)、碳水化合物含量、相对分子质量及离子影响等有较大的差异。
[0005] 迄今报道的CDA基本都来源于真菌。真菌来源的CDA主要作用是自身细胞壁的合成，最适底物一般为甲壳寡糖，对甲壳质的活性较低，不适合用酶法脱乙酰生产壳聚糖。真菌来源的CDA来源广泛，获取容易，成本相对较低。因此如何能够将真菌来源的CDA用于制备壳聚糖成为本领域技术人员急需解决的问题。

发明内容
[0006] 本发明的目的在于提供一种新的几丁聚糖制备方法，所述的方法能够较现有技术更节能环保。
[0007] 本发明的另一目的是提供一种用真菌来源的CDA制备几丁聚糖的方法，所述的方法能够解决现有技术CDA不适于生产几丁聚糖的技术难题。
[0008] 本发明的另一目的是提供一种安全的几丁聚糖制备方法，所述的方法制得的几丁聚糖无磺酸或强碱残留，产品更安全。
[0009] 本发明的另一目的是提供一种具有市场竞争力的几丁聚糖，所述的产品不因工艺的改进而增加生产成本。
[0010] 为达到上述目的，本发明采用下列技术方案实现：
干燥、粉碎、发酵；盐酸脱钙、脱蛋白、过滤；酶解脱乙酰、水洗干燥即得。
[0011] 本发明采用制备方法对脱钙前的蟹壳或虾壳进行预处理，然后再进行酶解脱钙和脱蛋白。
[0012] 为增强脱钙和脱蛋白效果，本发明优选的将蟹壳或虾壳粉碎至0.5～1.0mm颗
粒，颗粒过小则增加生产成本，颗粒过大效果较差。发明人经过多次实验和经验，最终确定0.5～1.0mm颗粒范围达到脱铅和成本的最佳性价比。

【0013】发明人提供大量实验，试验发现多种乳酸菌按照一定比例组合进行发酵后脱铅效果更好，而采用乳双歧杆菌（B. lactis）、保加利亚乳杆菌（L. bulgaricus）和瑞士乳杆菌（L. helveticus）三组乳酸菌进行发酵效果较好；采用此三组乳酸菌配比后发酵效果最好，当三种乳酸菌以重量比2:6:5进行组合时，发酵24～36h，游离钙含量较单一乳酸菌发酵后提高10%～20%。优选的乳酸菌占蟹壳或虾壳原料重量比为0.02～0.06%。

【0014】本发明采用高温灭菌的方法达到杀菌消毒的目的，同时也去除乳酸菌。

【0015】发酵液过滤，留取残渣，滤液回收干燥制成生物有机颗粒。残渣中加入8～15%盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。残渣中加入8～15%氢氧化钠溶液，80～100℃，1～3h，过滤水洗至中性。

【0016】脱钙和脱蛋白后，过滤，弃滤液，留取残渣，残渣即为甲壳质。将甲壳质加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳质与发酵液的重量体积比（g/l）1～3:1，室温30～32℃，48～72h，0.2Mpa，然后120℃灭菌20min，干燥得乙丁聚糖。

【0017】所述的可以公开市场上购得，也可以通过构建曲霉菌发酵后制得。

【0018】所述的甲壳质脱乙酰酶制备方法如下：

（1）制备发酵培养基：酵母粉8g，壳聚糖15g，葡萄糖30g，磷酸二氢钾2g，无水硫酸镁1g，二氯化钻（0.01mol/l）10ml，水1000ml；

（2）发酵条件：发酵培养基灭菌，接入构巢曲霉菌，30～35℃，PH6.0～7.0，72h～96h。

【0019】经过脱铅和脱蛋白后，去除了原料中的钙离子、蛋白质等其他有机物质。

【0020】本发明所述的几丁聚糖脱乙酰度高达96%以上。

【0021】本发明的产物与任何一种或一种以上药剂学上辅料如淀粉、糊精、乳糖、微晶纤维素、羟丙基甲基纤维素、聚乙二醇、硬脂酸镁、微粉硅胶、木糖醇、乳糖醇、葡萄糖、甘露醇、甘露醇等混合制成的各种剂型，例如，可制成片剂、缓释片、滴丸、颗粒剂、胶囊剂、微丸剂。优选剂型为胶囊剂或颗粒剂。

【0022】本发明的酶解工艺与现有技术相比，减短了强酸用酸，耗能低，无污染，更加环保。发酵液回收后可以制成生物骨钙素，这样所有的产物都能够被合理利用产生显著的经济效益，避免资源浪费。

具体实施方式

【0023】实施例1

制备甲壳质脱乙酰酶：

（1）制备发酵培养基：酵母粉8g，壳聚糖15g，葡萄糖30g，磷酸二氢钾2g，无水硫酸镁1g，二氯化钻（0.01mol/l）10ml，水1000ml；

（2）发酵条件：发酵培养基灭菌，接入构巢曲霉菌，30℃，PH6.0，72h。

【0024】将蟹壳或虾壳干燥粉碎至0.5mm颗粒，加入4倍重量体积比的水制成料液，加入乳双歧杆菌、保加利亚乳杆菌、瑞士乳杆菌=2:6:5的乳酸菌，乳酸菌占原料重量比为0.02%，发酵24h，然后70℃，20min；发酵液过滤，留取残渣，滤液回收干燥制成生物有机钙。残渣中加入8%盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。残渣中加入8%氢氧化钠溶
液，80℃，1h，过滤水洗至中性。残渣中加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳质与发酵液的重量体积比 1:1,30℃，48h, 0.2MPa, 然后120℃灭菌20min，干燥即得。

【0025】 实施例 2
制备甲壳质脱乙酰酶：
(1) 制备发酵培养基：酵母粉 8g，壳聚糖 15g，葡萄糖 30g，磷酸二氢钾 2g，无水硫酸镁
1g，二氯化钴 (0.01mol/l) 10ml，水 1000ml；
(2) 发酵条件：发酵培养基灭菌，接入构巢曲霉菌，35℃，PH 7.0，96h。

【0026】将蟹壳或虾壳干燥粉碎至 1.0mm 颗粒，加入 8 倍重量体积比的水制成料液，加入乳双歧杆菌、保加利亚乳杆菌、瑞士乳杆菌 =2:6:5 的乳酸菌，乳酸菌占原料重量比为 0.06%，发酵 36h，然后 100℃，20min；发酵液过滤，留取残渣，滤液回收干燥制成生物有机钙。残渣
中加入 15% 盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。残渣中加入 15% 氢氧化钠
溶液，100℃，3h，过滤水洗至中性。残渣中加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳质与发酵液的重量体积比 3:1，32℃，72h, 0.2MPa, 然后 120℃灭菌 20min，干燥即得。

【0027】 实施例 3
制备甲壳质脱乙酰酶：
(1) 制备发酵培养基：酵母粉 8g，壳聚糖 15g，葡萄糖 30g，磷酸二氢钾 2g，无水硫酸镁
1g，二氯化钴 (0.01mol/l) 10ml，水 1000ml；
(2) 发酵条件：发酵培养基灭菌，接入构巢曲霉菌，34℃，PH 6.5，82h。

【0028】将蟹壳或虾壳干燥粉碎至 0.5mm 颗粒，加入 8 倍重量体积比的水制成料液，加入乳双歧杆菌、保加利亚乳杆菌、瑞士乳杆菌 =2:6:5 的乳酸菌，乳酸菌占原料重量比为 0.04%，发
酵 36h，然后 80℃，20min；发酵液过滤，留取残渣，滤液回收干燥制成生物有机钙。残渣中
加入 10% 盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。残渣中加入 10% 氢氧化钠
溶液，90℃，3h，过滤水洗至中性。残渣中加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳质与发酵液的重量体积比 1:6, 31℃，56h, 0.2MPa, 然后 120℃灭菌 20min，干燥即得。

【0029】 实施例 4
制备甲壳质脱乙酰酶：
(1) 制备发酵培养基：酵母粉 8g，壳聚糖 15g，葡萄糖 30g，磷酸二氢钾 2g，无水硫酸镁
1g，二氯化钴 (0.01mol/l) 10ml，水 1000ml；
(2) 发酵条件：发酵培养基灭菌，接入构巢曲霉菌，33℃，PH 6.0，80h。

【0030】将蟹壳或虾壳干燥粉碎至 1.0mm 颗粒，加入 4 倍重量体积比的水制成料液，加入乳双歧杆菌、保加利亚乳杆菌、瑞士乳杆菌 =2:6:5 的乳酸菌，乳酸菌占原料重量比为 0.05%，发酵
32h，然后 100℃，20min；发酵液过滤，留取残渣，滤液回收干燥制成生物有机钙。残渣
中加入 12% 盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。残渣中加入 12% 氢氧化钠
溶液，100℃，2h，过滤水洗至中性。残渣中加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳
质与发酵液的重量体积比 1:2, 30℃，64h, 0.2MPa, 然后 120℃灭菌 20min，干燥即得。

【0031】 实施例 5
制备甲壳质脱乙酰酶：
(1) 制备发酵培养基：酵母粉 8g，壳聚糖 15g，葡萄糖 30g，磷酸二氢钾 2g，无水硫酸镁
1g，二氯化钴 (0.01mol/l) 10ml，水 1000ml；
（2）发酵条件：发酵培养基灭菌，接入构巢曲霉菌，31℃，pH7.0，72h。

将蟹壳或虾壳干燥粉碎至0.8mm颗粒，加入6倍重量体积比的水制成料液，加入乳双岐杆菌；保加利亚乳杆菌；瑞士乳杆菌=2：6：5的乳酸菌，乳酸菌占原料重量比为0.03%，发酵24h，然后70℃，20min；发酵液过滤，留取残渣，滤液回收干燥制成生物有机酸。残渣中加入8%盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。残渣中加入15%氢氧化钠溶液，100℃，1h，过滤水洗至中性。残渣中加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳质与发酵液的重量体积比2：1，32℃，48h，0.2MPa，然后120℃灭菌20min，干燥即得。

制备甲壳质脱乙酰酶：

（1）制备发酵培养基：酵母粉8g，壳聚糖15g，葡萄糖30g，磷酸二氢钾2g，无水硫酸镁1g，氯化钠（0.01mol/l）10ml，水1000ml；

（2）发酵条件：发酵培养基灭菌，接入构巢曲霉菌，30℃，pH7.0，96h。

将蟹壳或虾壳干燥粉碎至0.9mm颗粒，加入5倍重量体积比的水制成料液，加入乳双岐杆菌；保加利亚乳杆菌；瑞士乳杆菌=2：6：5的乳酸菌，乳酸菌占原料重量比为0.06%，发酵24h，然后100℃，20min；发酵液过滤，留取残渣，滤液回收干燥制成生物有机酸。残渣中加入15%盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。残渣中加入8%氢氧化钠溶液，100℃，1h，过滤水洗至中性。残渣中加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳质与发酵液的重量体积比1：4，32℃，72h，0.2MPa，然后120℃灭菌20min，干燥即得。

制备甲壳质脱乙酰酶：

（1）制备发酵培养基：酵母粉8g，壳聚糖15g，葡萄糖30g，磷酸二氢钾2g，无水硫酸镁1g，氯化钠（0.01mol/l）10ml，水1000ml；

（2）发酵条件：发酵培养基灭菌，接入构巢曲霉菌，35℃，pH6.0，72h。

将蟹壳或虾壳干燥粉碎至0.6mm颗粒，加入7倍重量体积比的水制成料液，加入乳双岐杆菌；保加利亚乳杆菌；瑞士乳杆菌=2：6：5的乳酸菌，乳酸菌占原料重量比为0.05%，发酵24h，然后100℃，20min；发酵液过滤，留取残渣，滤液回收干燥制成生物有机酸。残渣中加入8%盐酸脱钙，充分反应后，过滤，水洗至中性，留取残渣。残渣中加入8%氢氧化钠溶液，80℃，2h，过滤水洗至中性。残渣中加入含有甲壳质脱乙酰酶的发酵液脱乙酰，甲壳质与发酵液的重量体积比2：5，32℃，56h，0.2MPa，然后120℃灭菌20min，干燥即得。