LIFT TAB FOR STORM AND SCREEN SASH

Edwin R. Thompson, Canfield, Ohio, assignor to Western Reserve Plastics, Inc., Canfield, Ohio, a corporation of Ohio

Filed Feb. 12, 1959, Ser. No. 792,866
3 Claims. (Cl. 20—52)

This invention relates to a storm sash and more particularly to a lifting tab for storm and screened sash in combination storm windows.

The principal object of the invention is the provision of an inexpensive lifting tab for storm or screened sash.

A further object of the invention is the provision of a lifting tab for a storm or screen sash that may be molded of plastic material such as nylon.

A still further object of the invention is the provision of a lifting tab for storm or screened sash that will normally position itself immediately adjacent the glass or screen of the sash in which it is mounted.

A still further object of the invention is the provision of a lifting tab for a storm or screened sash that may be easily and quickly installed and which will remain in position indefinitely.

A still further object of the invention is the provision of a lifting tab for a storm sash that engages the glass of the sash directly and permits the lifting force applied through the tab to be directed against said glass.

The lifting tab for storm or screened sash disclosed herein comprises an improvement in the art of affixing handles to storm or screened sash by which the same may be moved vertically or horizontally in their mounting frames. Those skilled in the art will recognize that storm sash and particularly combination storm windows are widely used and that such combination storm windows include a pair of glazed sash and a screened sash which are movably positioned in a storm window frame. The positioning of the storm sash close to the regular windows, as well as the positioning of the storm and screened sash of the storm window unit in relatively close position to one another, has made it difficult to provide handles or lifting tabs as the same would interfere with the sliding action of the glazed or screened sash of the storm window. Attempts have been made to utilize sections of wire or metal which were hingedly affixed to the sash but such devices have not proven practical and as a result a majority of the storm sash sold and installed have not been provided with any handles or other means for conveniently lifting the same.

The present invention discloses a simple, inexpensive and highly efficient lifting tab which may be installed in pairs on a glazed or screened sash when it is assembled and which enables the same to be easily handled and at the same time does not interfere with the close sliding action of the sash.

With the foregoing and other objects in view which will appear as the description proceeds, the invention resides in the combination and arrangement of parts and in the details of construction hereinafter described and claimed, it being the intention to cover all changes and modifications of the example of the invention herein chosen for purposes of the disclosure, which do not constitute departures from the spirit and scope of the invention.

The invention is illustrated in the accompanying drawings, wherein:

FIGURE 1 is a perspective view of the lifting tab adapted for glazed storm sash.

FIGURE 2 is a perspective view of a storm window showing the lifting tabs on the sash therein.

FIGURE 3 is an enlarged section on line 3—3 of FIGURE 2, broken lines in FIGURE 3 showing an alternate position of the lifting tab.

FIGURE 4 is a perspective view of a modified form of the lifting tab adapted for a screened sash.

FIGURE 5 is a perspective view of a storm window showing the screened sash with lifting tabs therein.

FIGURE 6 is an enlarged section on line 6—6 of FIGURE 5 showing the lifting tab, broken lines show an alternate position of the lifting tab.

By referring to the drawings and FIGURES 1, 2 and 3 in particular it will be seen that a lifting tab has been disclosed which comprises a vertical body portion 10 having a flange 11 extending sidewardly therefrom along its lower edge 12, the flange 11 being tapered from a thick portion adjacent the lowermost edge 12 to a thin longitudinal edge 13. The upper edge 14 of the tab 10 is formed in a longitudinally extending cross sectionally circular section 15 which in turn is provided with a plurality of circumferentially spaced longitudinally extending ribs 16, 16. The sides of the tab 10 are preferably tapered inwardly as at 17 and 18 respectively and the opposite outer end corners of the flange 11 are preferably rounded as at 19, 19 respectively.

In FIGURE 2 of the drawings the lifting tabs 10 will be seen installed in a glazed storm sash comprising a pane of glass 20 in a sash 21. The sash 21 is mounted in a storm window frame 22 as known in the art.

By referring to FIGURE 3 of the drawings it will be seen that the lifting tab is shown in solid lines in the position it normally occupies against the glass 20 and with the flange 11 underlying the lower edge of the glass 20. Broken lines in FIGURE 3 show the lifting tab moved outwardly from the glass 20 as at such times it is grasped and used to lift and/or lower the storm sash. The tapered flange 11 being thicker at the edge adjoining the body portion 10 insures the retention of the lifting tab and the storm sash assembly as the area of engagement with the glass in the sash is adjacent the body portion 10 and prevents the same from curving at this point and pulling out of the sash.

By referring now to FIGURES 4, 5 and 6 of the drawings, a variation of the lifting tab may be seen adapted to be engaged in a screened sash.

In FIGURE 4 of the drawings the device will be seen to include a tab body 22 having a longitudinally extending flange 23 along its lower edge 24, the flange 23 having a longitudinally extending U-shaped section 25 which tapers from a thick portion 26 of flange 23 to a thin portion 27 defining the outer edge thereof. The upper end of the tab body 22 has a cross sectionally rounded piece 28 with a plurality of longitudinally extending ribs 29, 29 thereon.

In FIGURE 5 of the drawings the tab body 22 may be seen installed on a screened sash 30 including a section 31.

In FIGURE 6 of the drawings which is an enlarged cross sectional view taken on FIGURE 5, the lifting tab body 22 is seen in solid lines in normal position adjacent the screen 31 and in broken lines bent outwardly therefrom, it being observed that the flange 23 across the lowermost edge 24 of the body 22 extends at right angles to the body 22 and into recess or channel 32 in the screen sash 30 along with the edge of the screen 31. A rigid spline 33 formed from suitable plastic material such as nylon is engaged in the U-shaped section 25 of the flange 23 and distorts the same and clamps it and the screen into the channel 32 as will be understood by those skilled in the art. It will be noted that the inner face of the upper leg of the channel shown in FIGURE 6 is provided with serrations. The screen and flange of the tab are first positioned within the channel and the spline 33 is then forced or driven into the interior of the U-
shaped flange thereby tending to expand the flange since the spline is normally of a slightly greater dimension than the normal dimension of the flange 23. The resilient construction of the flange permits such expansion thereby causing the screen to be wedged up between the serrations formed in the channel such that the screen and channel are securely locked in place within the channel.

It will thus be seen that a lifting tab for glazed or screened sash in storm windows has been disclosed which meets the several objects of the invention and having thus described my invention, what I claim is:

1. A lifting tab for a storm sash comprising an approximately vertically disposed rectangular body portion of resilient flexible material, a flange extending sidewardly therefrom along the lowermost edge thereof and the uppermost edge of said lifting tab being thickened along its length, said flange being U-shaped in cross-section.

2. In combination, a sash comprising a rigid frame including a channel formed along one side thereof, a member supported in position within said sash, and a lifting tab for the sash comprising a main body portion having a flange extending sidewardly therefrom along the lower edge thereof, said body portion being formed of a resilient flexible material, the upper edge portion of said tab being thickened along its length to permit ready manual grasping thereof, said supported member extending within the channel of said sash and said flange of the lifting tab also extending within said channel and said supported member and the flange of the lifting tab being clamped within the channel so that the lifting tab is held in operative position and the main body portion of the tab extends along the adjacent portion of the supported member, the inherent resilience of the body portion of said lifting tab maintaining the thickened upper edge portion thereof in engagement with the supported member, and the inherent flexibility of said body member portion permitting ready bending of the tab so as to move the thickened upper edge portion away from the supported member so that the upper edge portion can be more readily manually grasped.

3. Apparatus as defined in claim 2, wherein said flange tapers from a thick portion adjacent the lower edge of said body portion to a thin portion adjacent the outermost edge of the flange.

References Cited in the file of this patent

UNITED STATES PATENTS

250,086 Lindsay November 29, 1881
254,953 Dee March 14, 1882
539,690 Lasher May 21, 1895
705,815 Beeching July 29, 1902
1,147,837 Allmand July 27, 1915
1,243,265 Smith October 16, 1917
1,540,155 Wyndon et al. June 2, 1925
1,921,386 Edwards August 8, 1933
2,348,937 Stahl May 16, 1944
2,364,690 Bruner December 12, 1944
2,749,172 Jacobs June 5, 1956
2,949,647 Migneault et al. August 23, 1956

FOREIGN PATENTS

746,138 Great Britain March 7, 1956