特許協力条約に基づいて公開された国際出願
(19) 世界知的所有権機関
国際事務局
(43) 国際公開 曰 2011 年 11 月 3 日 (03.11.2011)
(51) 国際特許分類: C03B 5/04 (2006.01) C03B 5/235 (2006.01)
(52) 国際出願番号: PCT/JP2011/059621
(54) 国際公開の言語: 日本語
(56) 優先権データ:
(71) 出願人 (米国を除く全ての指定国について): 旭硝子株式会社 (Asahi Glass Company, Limited.)
発明者: および
(72) 発明者/出願人 (米国についてのみ): 柴谷英樹 (KUSHITANI Hideki) [JP/JP]: 〒1008405 東京都千代田区丸の内一丁目 2 番 1 号 旭硝子株式会社内 東京 (JP).
(73) 代理人: 小栗 昌平, 外(OGURI Shohei et al); 〒105003 東京都港区芝港一丁目 7 番 13 号虎ノ門 ఒ ఆ ద ి 13 01 階 柘 光特許事務所 (JP).
添付公開書類:
- 国際調査報告 (条約第 21 条(3))
[綴有]

Title: GLASS MELTING FURNACE AND METHOD FOR MELTING GLASS

発明の名称: ガラス溶解炉及びガラス溶解方法

Abstract: Disclosed is a glass melting furnace which is capable of suppressing an increase in the amount of emission of CO₂ and NOₓ and adequately regulating the water content dissolved in molten glass. The glass melting furnace comprises a plurality of burners (31-50) on side walls (13, 14) of a flow path (23) from a front wall (11) to a rear wall (12) of a melting chamber (10), wherein 30% to 90% of the total combustion heat Qₐ per hour of the plurality of burners (31-50) is generated by oxygen combustion burners. Each side wall (13, 14) of the melting chamber (10) has one exhaust port (24, 25) positioned so that the exhaust ports face one another, and at least one each of an oxygen combustion burner and an air combustion burner is provided in a region at least 0.6 L away in a backward direction from the exhaust ports (24, 25). Of the total combustion heat per hour of the burners provided in the region, 5% to 95% is generated by the air combustion burner.

要約:
CO₂やNO₂の排出量の増加を抑制しつつ、溶融ガラスに溶存する水分量を十分に調節することができるガラス溶解炉を提供すること。溶解室10の前壁11から後壁12に至る流路23の側壁13、14に複数のヘアライン31-50を備えるガラス溶解炉において、複数のバーナー31-50の1時間当たりの総燃焼熱量Qaの30%以上90%以下が酸素燃焼バーナーにより発生する。排出ガス24、25ガス溶解室10の両側壁13、14のそれぞれに1つのみ対向して配置され、側面より4、25から後方向へ0.6L以上離れた領域に、酸素燃焼バーナー及び空気燃焼バーナーを少なくとも1つずつ設けている。該領域に設けられるバーナーの1時間当たりの総燃焼熱量のうち5%以上9.5%以下が空気燃焼バーナーによるものである。
発明の名称 : ガラス溶解炉及びガラス溶解方法

技術分野

本発明は、ガラス原料を溶解するガラス溶解炉、及びガラス溶解方法に関する。

背景技術

ガラス製品を製造する方法は、一般的に、ガラス原料を溶解して溶融ガラスを得る溶解工程と、溶融ガラスの気泡を除去して溶融ガラスを清澄する清澄工程と、清澄後の溶融ガラスを所定の形状に成形する成形工程とにより構成される。

これらの工程のうち、溶解工程は、複数種の原料をガラス製品の組成に合わせて秤量し混合したガラス原料を溶解炉に投入し、ガラスの種類に応じた温度に加熱して溶解する工程である。

溶解炉は、ガラス原料を溶解する溶解室の前壁に原料投入口を備え、溶解室の後壁に取出口を備え、原料投入口から取出口に至る流路の側壁に複数のバーナーを備え、複数のバーナーが火炎を溶解室内に噴出する溶解室を形成するものである。バーナーは、天然ガスや重油等の燃料をガスと混合して燃焼させた火炎を噴出す。

一般的に、燃料に混合されるガスとしては、空気及び酸素ガスのいずれかが用いられる。空気を用いた空気燃焼の場合、空気の約78体積％を占める窒素ガスが燃焼に寄与することなく炉外に排気される。酸素ガスを用いた酸素燃焼の場合、空気燃焼の場合に比較して、排気量が少ないので、熱効率が高く、CO₂排出量やNOₓ排出量が少ない。

燃料に混合されるガスとして、空気と酸素ガスとを混合した混合ガスを用いることも可能である（例えば、特許文献1参照）。この場合、混合ガスに占める酸素ガスの割合が高いほど、燃焼後のガスに含まれる水分濃度が高いため、溶解室の融解ガラスに溶存する水分量が多くなる。溶融ガラスに溶
存した水分は、清澄工程において、気泡となって浮上する。そこで、溶解ガラスに溶存する水分量を最適化することによって、清澄工程において、溶解ガラス内の気泡の成長を促進し、気泡の浮上を促進することができ、欠陥の少ないガラス製品を製造することができる。

しかし、燃料に混合されるガスとして、空気と酸素ガスを混合した混合ガスを用いる場合、空気燃焼の場合と比較しても、NOx排出量が多くなることもある（例えば、非特許文献1参照）。詳細には、混合ガス中の酸素濃度が93体積％未満であって25体積％を超える場合において、空気燃焼の場合と比較して、NOx排出量が多くなる。

先行技術文献

特許文献

[0007] 特許文献1：日本国特開2000－128549号公報

非特許文献

[0009] 非特許文献1：R&D神戸製鋼技報、V o に 5 1 、N o ．2 (S e p ．2 0 0 1) 、p ．8－12、「酸素富化空気による省エネルギー低NOx燃焼に関する研究」

発明の概要

発明が解決しようとする課題

[0010] そこで、本発明では、CO2やNOxの排出量の増加を抑制しつつ、溶解室内的溶解ガラスに溶存する水分量を調節することを目的として、空気燃焼バーナーと酸素燃焼バーナーの両方を溶解炉に設置することを検討した。

[0011] しかし、空気燃焼バーナーと酸素燃焼バーナーの両方を単に溶解炉に設置しただけで、溶解室の側壁に設けられる排気口の影響によって、溶解室内の燃焼後のガスに含まれる水分濃度を十分に調節するのが困難な場合がある。その結果、溶解室内の溶解ガラスに溶存する水分量を十分に調節するのが困難となる場合がある。

[0012] 本発明は、上記課題に鑑みてなされたものであって、CO2やNOxの排出
量の増加を抑制しつつ、溶融ガラスに溶存する水分量を十分に調節することができるガラス溶解炉を提供することを目的とする。

課題を解決するための手段

上記目的を解決するため、本発明は、ガラス原料を溶解する溶解室と、該溶解室の前壁から後壁に至る流路の側壁に設けられる複数のバーナーとを備え、前記複数のバーナーが火炎を前記溶解室内に噴出して前記溶解室内のガラスを加熱し溶解するガラス溶解炉において、

前記複数のバーナーには、燃料を酸素ガスと混合して燃焼させた火炎を噴出する酸素燃焼バーナーと、燃料を空気と混合して燃焼させた火炎を噴出す空気燃焼バーナーとの両方が用いられており、

前記複数のバーナーの1時間当たりの総燃焼熱量の30％以上90％以下が前記酸素燃焼/空気燃焼バーナーによるものであって、

前記溶解室の燃焼後のガスを外部に排気するための排気口が、前記溶解室の両側壁のそれぞれに1つのみ対向して配置され、前記溶解室の両側壁の一方のみに且つ1つののみ配置され、又は、前記溶解室の前壁、若しくは後壁に配置され、

前記排気口と前記前壁との間の前後方向における距離及び前記排気口と前記後壁との間の前後方向における距離のうち最大距離をとするとき、前記排気口から前方及び/又は後方向に0.6L以上離れた領域に、前記酸素燃焼バーナー及び前記空気燃焼バーナーが少なくとも1つずつ設けられ、

該領域に設けられる前記バーナーの1時間当たりの総燃焼熱量のうち5％以上95％以下が前記空気燃焼/空気燃焼バーナーによるものであるガラス溶解炉である。

発明の効果

本発明によれば、NO_x排出量の増加を抑制しつつ、溶融ガラスに溶存する水分量を十分に調節することができるガラス溶解炉を提供することができる。このガラス溶解炉は、溶融ガラスに対して十分な加熱を行いつつ、水分量を低減させる場合に特に有効である。
図面の簡単な説明

図面の簡単な説明

図1 図1は、本発明の実施形態におけるガラス製品の製造方法の工程図である。

図2 図2は、第1実施形態におけるガラス溶解炉の内部構造の側面図である。

図3 図3は、第1実施形態におけるガラス溶解炉の内部構造の上面図である。

図4 図4は、第2実施形態におけるガラス溶解炉の内部構造の側面図である。

図5 図5は、第2実施形態におけるガラス溶解炉の内部構造の上面図である。

図6 図6は、第3実施形態におけるガラス溶解炉の内部構造の側面図である。

図7 図7は、第3実施形態におけるガラス溶解炉の内部構造の上面図である。

図8 図8は、ガラス溶解炉の内部構造の変形例の上面図である。

図9 図9は、ガラス溶解炉の内部構造の別変形例の上面図である。

発明を実施するための形態

以下、本発明を実施するための形態について図面を参照して説明する。尚、各図において、同一構成には同一符号を付して説明を省略する。

（第1実施形態）

図1は、本発明の実施形態におけるガラス製品の製造方法の工程図である。
図2は、第1実施形態におけるガラス溶解炉の内部構造の側面図である。
図3は、第1実施形態におけるガラス溶解炉の内部構造の上面図である。

図3において、各バーナーの燃焼領域（各バーナーの火炎の外縁）を点線で囲んで示している。

ガラス製品の製造方法は、図1に示すように、ガラス原料を溶解して溶融ガラスを得る溶解工程（S100）と、溶融ガラスの気泡を除去して溶融ガラスを製造する工程を経て、製品を成形する。
ラスを清澄する清澄工程（S102）と、清澄後の溶融ガラスを所定形状に成形する成形工程（S104）とを備える。

これらの工程のうち、清澄工程（S102）は、溶解工程で得られた溶融ガラスを清澄槽に供給し、溶融ガラス内の気泡を浮上させて除去する工程である。気泡の浮上を促進させる方法としては、例えば清澄槽内を減圧して脱泡する方法などがある。

成形工程（S104）は、清澄後の溶融ガラスを所定の板厚の板状に成形する工程である。板状に成形する方法としては、例えば周知のフロー・ト法や、フュージョン法がある。

溶解工程（S100）は、複数種の原料をガラス製品の組成に合わせて秤量し混合したガラス原料を溶解槽に投入し、ガラスの種類に応じた温度に加熱して溶解する工程である。

溶解炉1は、図2、図3に示すように、ガラス原料を溶解する溶解室10の上流側の前壁11に原料投入口21を備え、溶解室10の下流側の後壁12に取出口22を備え、原料投入口21から取出口22に至る流路23の両側壁13、14に複数のバーナー31〜50及び1対の排気口24、25を備える。両側壁13、14は前後方向に延びている。

この溶解炉1では、原料投入口21から投入されたガラス原料G1は、溶解室10内の溶融ガラスG2と共に、複数のバーナー31〜50の火炎からの放射熱等によって加熱され、溶融ガラスG2に徐々に溶け込む。このようにして得られた溶融ガラスG2は、後方に流れた後、取出口22から取り出され、清澄槽に供給される。

溶解室10は、ガラス原料を溶解して得た溶融ガラスを容れる溶解槽15及び溶解槽15内の上部空間を覆う天井16により形成される。溶解槽15や天井16は、煉瓦等の耐火物で構成される。

溶解室10の大きさは、特に限定されないが、例えば、溶解室10の前後方向寸法X1は、10〜30mであり、好ましいは10〜25mである。また、溶解室10の幅方向寸法Y1は、5〜10mである。さらに、溶解室1
0 の高さ方向寸法 Z 1 は、3〜8 m である。

[0026] 1 対の排気口 24, 25 は、溶解室 10 内の燃焼後のガスを外部に排気するためのものである。1 対の排気口 24, 25 は、両側壁 13, 14 の前後方向～端部に配置されており、前壁 11 の近傍に配置されている。

[0027] 左側壁 13 に配置される排気口 24 と、右側壁 14 に配置される排気口 25 は、流路 23 を挟んで対向配置される。1 対の排気口 24, 25 が前後方向にずれて配置されると、排気が流路 23 を挟んで左右非対称に行われるのので、溶融ガラスの温度分布を制御するのが難しい。

[0028] 排気口 24, 25 の大きさは、特に限定されないが、例えば排気口 24, 25 の前後方向寸法 X 2 は 1 m 程度であり、排気口 24, 25 の高さ方向寸法 Z 2 は、1 m 程度である。

[0029] 複数のバーナー 3〜5 0 は、火炎を溶解室 10 内に噴出して、溶解室 10 内のガラスを加熱し溶解する。複数のバーナー 31〜5 0 は、火炎を連続的に噴出しても良好し、火炎を断続的に噴出しても良い。火炎を断続的に噴出する場合は、複数のバーナー 31〜5 0 は、火炎を同時に噴出しても良いし、火炎を異なるタイミングで噴出しても良い。

[0030] 複数のバーナー 31〜5 0 は、互いの火炎が干渉しないように、両側壁 13, 14 に配置される。例えば、左側壁 13 に配置される複数のバーナー 31〜4 0 と、右側壁 14 に配置される複数のバーナー 41〜5 0 とは、流路 23 を挟んで対向配置されている。即ち、複数のバーナー 31〜5 0 は、流路 23 を挟んで対称に配置されている。なお、複数のバーナー 31〜5 0 は、流路 23 を挟んで千鳥配置されても良い。

[0031] 左側壁 13 に配置される複数のバーナー 31〜4 0 は、流路 23 に沿って前後方向に不等ピッチで配列されても良いし、等ピッチで配列されても良い。右側壁 14 に配置される複数のバーナー 41〜5 0 についても同様である。

[0032] 複数のバーナー 31〜5 0 は、燃料をガスと混合して燃焼させた火炎を噴出する。バーナー 31〜5 0 に使用される燃料としては、例えば天然ガスや
都市ガス等の気体燃料、重油等の液体燃料が用いられる。液体燃料を用いる場合、液体燃焼を霧状に噴霧して使用する。複数のバーナー3〜50において、同種の燃料を使用しても良いし、異種の燃料を使用しても良い。

一般的に、燃料に混合されるガスとしては、空気及び酸素ガスのいずれかが用いられる。空気を用いた空気燃焼の場合、空気の約78体積％を占める窒素ガスが燃焼に寄与することなく廻外に排気される。酸素ガスを用いた酸素燃焼の場合、空気燃焼の場合に比較して、排気量が少なくので、熱効率が高く、CO_2排出量やNO_x排出量が少ない。

燃料に混合されるガスとして、空気と酸素ガスを混合法した混合ガスを用いることも可能である。この場合、混合ガスに占める酸素ガスの割合が高いほど、燃焼後のガスに含まれる水分濃度が高いので、溶解室内的溶融ガラスに溶存する水分量が多くなる。溶融ガラスに溶存した水分は、清澄工程において、気泡となって浮上する。そこで、溶融ガラスに溶存する水分量を最適化することによって、清澄工程において、溶融ガラス内の気泡の成長を促進し、気泡の浮上を促進することができ、欠陥の少ないガラス製品を製造することができる。

しかし、燃料に混合されるガスとして、空気と酸素ガスを混合法した混合ガスを用いる場合、空気燃焼の場合と比較しても、NO_x排出量が多くなることである。詳細には、混合ガス中の酸素濃度が93体積％未満であって25体積％を超える場合に、空気燃焼の場合と比較して、NO_x排出量が多くなる。

これに対し、本実施形態では、バーナー31〜50には、燃料を空気と混合して燃焼させた火炎を噴出する空気燃焼バーナー、及び燃料を酸素ガスと混合して燃焼させた火炎を噴出する酸素燃焼バーナーが用いられる。ここで酸素ガスとは、酸素濃度が93体積％以上のガスをいう。このように、空気燃焼バーナーと酸素燃焼バーナーとを用いることにより、NO_x排出量の増加を抑制することができる。

また、本実施形態では、複数のバーナー31〜50の1時間当たりの総燃
焼熱量 Q_a の30％以上（好ましくは35％以上）90％以下（好ましくは87％以下）が酸素燃焼バーナーによるものである。もしくは、溶解室10内のガラスの加熱に使用される1時間当たりの総加熱量 Q_b の60％以上（好ましくは、68％以上）97％以下（好ましくは、95％以下）が酸素燃焼/カソードによるものである。

ここで、溶解室10内のガラスの加熱に使用される1時間当たりの総加熱量 Q_b と、複数のバーナー31〜50の1時間当たりの燃焼熱量 Q_a と、溶解室10内の燃焼後のガスが排気口24、25を介して溶解室10の外部に持ち出す1時間当たりの総排気熱量 Q_c との差分（$Q_a - Q_c$）を意味する。この1時間当たりの総排気熱量 Q_c は、1時間当たりの排気量や排気ガスの温度等に基づいて算出される。

総燃焼熱量 Q_a に対する酸素燃焼バーナーの寄与率を上記のように設定することによって、空気燃焼バーナーを用いることによる熱効率の低下やCO$_2$排出量の増加、NO$_x$排出量の増加を抑制することができる。また、熱効率の低下を抑制することができるので、溶解室10内の温度を比較的高溫に保持し易い。このため、ソーダライムガラス製品の他、特に高融点のガラス製品の製造に適している。そのような高融点のガラス製品としては、例えば、液晶ディスプレイガラス基板（所謂、無アルカリガラス基板）が挙げられる。無アルカリガラスは、一般的なソーダライムガラスに比べて融点が100℃以上高くなっている。

しかし、空気燃焼バーナーと酸素燃焼バーナーの両方を単に溶解炉に設置しただけでは、溶解室10の側壁13、14に設けられる排気口24、25の影響によって、溶解室10内の燃焼後のガスに含まれる水分濃度を十分に調節するのが困難な場合がある。その結果、溶解室10内の溶融ガラスに溶存する水分量を十分に調節するのが困難となる場合がある。

溶融ガラスに溶存する水分量が少なすぎると、清澄工程において、溶融ガラス内の気泡の浮上を十分に促進することができない。一方、溶融ガラスに溶存する水分量が多すぎると、清澄工程において、溶融ガラス内に気泡が残
存することがある。また、溶融ガラスに溶存する水分量が多すぎると、清澄
工程などにおいて、溶融ガラスの流路の内壁面が白金で覆われている場合、
溶融ガラスと白金との界面に気泡が発生することが一般的に知られている。

そこで、溶解室 10 内において燃焼後のガスは、排気口 24、25 に向
かって移動する傾向がある。

そこで、本実施形態では、排気口 24、25 から後方向に 0.6 L 以上（
好ましくは、0.7 L 以上）離れた領域に、空気燃焼バーナー及び酸素燃焼
バーナーが少なくとも 1 つずつ設けられている。ここで、L は、排気口 24
、25 と前室 11 との間の前後方向における距離 L1 及び排気口 24、25
と後室 12 との間の前後方向における距離 L2 のうち最大距離（図 2、図 3
に示す例では、L2）を表す。

このように、排気口 24、25 から後方向に 0.6 L 以上離れた領域に空
気燃焼バーナー及び酸素燃焼バーナーが少なくとも 1 つずつ設けられるので
、空気燃焼後のガスと酸素燃焼後のガスとが混じる領域を十分に確保するこ
とができる。よって、燃焼後のガスに含まれる水分濃度を調節可能な領域を
十分に確保することができ、溶解室 10 内の溶融ガラスに溶存する水分量を
広い範囲で可変とすることができる。その結果、溶解室 10 内の溶融ガラス
に溶存する水分量を十分に調節することができ、清澄工程において、溶融ガ
ラス内の気泡の成長を促進し、気泡の浮上を促進することができ、欠陥の少
ないガラス製品を製造することができる。

尚、溶解室 10 内の溶融ガラスに溶存する水分量は、ガラス製品の組成や
種類の変更に応じて適宜調節されることももちろん、炉壁の劣化、ガラス原
料のロットの変更、燃料のロットの変更等に応じて適宜調節されてもよい。

溶解室 10 内の溶融ガラスに溶存する水分量の調節は、空気燃焼バーナー
と酸素燃焼バーナーと 1 時間当たりの燃焼熱量比を調節することにより行
われる。この調節の対象となるのは、主に、排気口 24、25 から後方向に
0.6 L 以上離れた領域に設けられるバーナー 37〜40、47〜50 であ
る。酸素燃焼バーナーに対する空気燃焼バーナーの燃焼熱量比が高くなるほ
ここで、1対の排気口24、25から後方向に0.6L以上離れた領域に設けられるバーナー37〜40、47〜50の1時間当たりの燃焼熱量Qdの5%以上95%以下（好ましくは10%以上90%以下、より好ましくは15%以上90%以下）が空気燃焼バーナーによるものである。

5%未満である場合、溶解室10内の燃焼後のガスに含まれる水分濃度が高過ぎ、溶解室10内の融融ガラスに溶存する水分量が多すぎる。一方、95%を超える場合、溶解室10内の燃焼後のガスに含まれる水分濃度が低過ぎ、溶解室10内の融融ガラスに溶存する水分量が少なすぎる。

溶解ガラスに溶存する水分量は、製造されたガラス中の水分量と同等であると考えられ、製造されたガラス中のβ—OHの値（単位：/mm）によって表される。β—OHの値が大きいほど、ガラス中の水分量が多いことを意味する。β—OH値の値Bは、ガラスの板厚Cおよび透過率Tを測定し、該測定結果を下記に代入して算出される。なお、ガラスの透過率の測定には、一般的なフーリエ変換赤外分光光度計（FT-IR）が用いられる。

\[B = \frac{1}{C} \log_{10} \left(\frac{T_1}{T_2} \right) \]

\(T_1 \) :参照波数4000/cmにおけるガラスの透過率（単位：%）
\(T_2 \) :水酸基吸収波数3570/cm付近におけるガラスの最小透過率（単位：%）

例えば、無アルカリガラスの場合、β—OHは、0.25〜0.52/mmが好ましく、0.3〜0.5/mmがより好ましく、0.35〜0.48/mmがさらに好ましい。

ところで、2つの空気燃焼バーナー（例えば、バーナー38、40）の間には、少なくとも1つの酸素燃焼バーナー（例えば、バーナー39）が設けられることが好ましい。

2つの空気燃焼バーナーを隣同士に配置すると、上述の如く空気燃焼では酸素燃焼に比較して熱効率が低いので、低温領域が部分的に発生しやすい。

なお、本実施形態では、排気口24、25が流路23の両側壁13、14
のそれぞれに1つのみ対向して配置される構成としたが、排気口が流路の両側壁の一方のみに且つ1つのみ配置される構成であっても良い。

また、本実施形態では、排気口2 4 、2 5 が側壁1 3 、1 4 の前後方向一端部に配置され、前壁1 1 の近傍に配置されるが、排気口の位置に制限はなし。例えば、排気口が後壁の近傍に配置されても良い。また、排気口が側壁の前後方向一端と前後方向中央の中間に設けられても良い。

（第2実施形態）

第2実施形態は、本発明に係るガラス溶解炉に関するものである。具体的には、1対の排気口が側壁の前後方向中央に配置される構成のものである。即ち、1対の排気口が前壁と後壁との間の中央に配置される構成のものである。

図4は、第2実施形態におけるガラス溶解炉の内部構造の側面図である。図5は、第2実施形態におけるガラス溶解炉の内部構造の上面図である。図5において、各バーナーの火炎の外線を点線で囲んで示している。尚、図4、図5において、図2、図3と同一構成については同一符号を付して説明を省略する。

溶解炉1 Aは、図4、図5に示すように、溶解室1 0 の前壁1 1 に原料投入口2 1 を備え、溶解室1 0 の後壁1 2 に取出口2 2 を備え、原料投入口2 1 から取出口2 2 に至る流路2 3 の側壁1 3 、1 4 に複数のバーナー3 1 A～5 0 A及び1対の排気口2 4 A、2 5 Aを備える。

1対の排気口2 4 A、2 5 Aは、両側壁1 3 、1 4 の前後方向中央に配置されており、前壁1 1 と後壁1 2 との間の中央に配置されている。左側壁1 3 に配置される排気口2 4 Aと、右側壁1 4 に配置される排気口2 5 Aとは、流路2 3 を挟んで対向配置されている。

本実施形態では、第1実施形態と同様に、バーナー3 1 A～5 0 Aには、空気燃焼バーナー及び酸素燃焼バーナーが用いられる。従って、第1実施形態と同様に、NOx排出量の増加を抑制することができる。

また、本実施形態では、第1実施形態と同様に、複数のバーナー3 1 A～
50 A の 1 時間当た りの総燃焼熱量 Q a の 30 % 以上 （好ましくは、35 %
以上） 90 % 以下 （好ましくは、87 % 以下 ）が酸素 燃焼バーナー によるも
のである。もしくは、溶解室 10 内のガラスの加熱に使用される 1 時間当た
りの総加熱熱量 Q b の 60 % 以上 （好ましくは、68 % 以上 ）97 % 以下 （好
ましくは、95 % 以下 ）が酸素燃焼バーナー によるものである。

従って、第 1 実施形態 と同様に、空気燃焼バーナーを用いることによる燃
効率の低下や CO2 排出量の増加、 NOx 排出量の増加を抑制することができ
る。また、燃焼効率の低下を抑制することができるので、溶解室 10 内の温度
を比較的高温に保持し易い。

さらに、本実施形態では、第 1 実施形態 と同様に、排気口 24 A 、25 A
から後方向に 0.6 L 以上 （好ましくは、0.7 L 以上 ）離れた領域に、空
気燃焼バーナー及び酸素燃焼バーナーが少なくとも 1 つずつ設けられている
。ここで、L は、排気口 24 A 、25 A と前壁 11 との間の前後方向におけ
る距離 L 3 及び排気口 24 A 、25 A と後壁 12 との間の前後方向における
距離 L 4 のうち最大距離 （図 5 に示す例では、L 3 = L 4 ） を表す。従って
、第 1 実施形態 と同様に、燃焼後のガスに含まれる水分濃度を調節可能な領
域を十分に確保することができ、溶解室 10 内の溶融ガラスに溶存する水分
量を広い範囲で可変 とすることができる。その結果、溶解室 10 内の溶融ガ
ラスに溶存する水分量を十分に調節することができ、清澄工程において、溶
融ガラス内の気泡の成長を促進し、気泡の浮上を促進することができ、欠陥
の少ないガラス製品を製造することができる。

溶解室 10 内の溶融ガラスに溶存する水分量の調節 は、空気燃焼バーナー
と酸素燃焼/空気バーナーとの 1 時間当た りの燃焼熱量比を調節することにより行
われる。この調節の対象となるのは、主に、排気口 24 A 、25 A から後方
向に 0.6 L 以上 離れた領域に設けられるバーナー 39 A ～40 A 、49 A
～50 A である。酸素燃焼バーナーに対する空気燃焼バーナーの燃焼熱量比
が高くなるほど、溶解室 10 内の燃焼後のガスに含まれる水分濃度が低くな
るので、溶解室 10 内の溶融ガラスに溶存する水分量が少なくな る。
ここで、排気口24A、25Aから後方向に0.6L以上離れた領域に設けられるバーナー39A〜40A、49A〜50Aの1時間当たりの燃焼熱量Q_dの5%以上95%以下（好ましくは10%以上90%以下、より好ましくは15%以上90%以下）が空気燃焼バーナーによるものである。

5%未満である場合、溶解室10内の燃焼後のガスに含まれる水分濃度が高過ぎ、溶解室10内の溶融ガラスに溶存する水分量が多すぎる。一方、95%を超える場合、溶解室10内の燃焼後のガスに含まれる水分濃度が低過ぎ、溶解室10内の溶融ガラスに溶存する水分量が少なすぎる。

なお、本実施形態では、排気口24A、25Aが流路23、14のそれぞれに1つのみ対向して配置される構成としたが、排気口が流路の両側壁の一方のみに且つ1つのみ配置される構成であっても良い。

また、本実施形態では、排気口24A、25Aから後方向に0.6L以上（好ましくは、0.7L以上）離れた領域に、空気燃焼バーナー及び酸素燃焼バーナーが少なくとも1つずつ設けられる構成としたが、本発明はこれに限定されない。例えば、排気口24A、25Aから前方向に0.6L以上（好ましくは、0.7L以上）離れた領域に、空気燃焼バーナー及び酸素燃焼バーナーが少なくとも1つずつ設けられる構成であっても良いし、両構成を組み合わせても良い。

（第3実施形態）

第3実施形態は、本発明に係るガラス溶解炉に関するものである。具体的には、複数のバーナーが、流路を挟んで鍛造状に配置される構成のものである。

図6は、第3実施形態におけるガラス溶解炉の内部構造の側面図である。図7は、第3実施形態におけるガラス溶解炉の内部構造の上面図である。図7において、各バーナーの火炎の外縁を点線で囲んで示している。尚、図6、図7において、図2、図3と同一構成については同一符号を付して説明を省略する。

溶解炉1Bは、図6、図7に示すように、溶解室10の前壁11Bに原
料投入口21Bを備え、溶解室10Bの後壁12Bに取出口22Bを備え、原料投入口21Bから取出口22Bに至る流路23Bの側壁13B、14Bに複数のバーナー31B〜33B、41B〜42B及び1対の排気口24B、25Bを備える。

[0069] 溶解室10Bの大きさは、特に限定されないが、例えば溶解室10Bの前後方向寸法X3は2〜5mであり、溶解室10Bの幅方向寸法Y3は1〜3mであり、溶解室10Bの高さ方向寸法Z3は1〜3mである。

[0071] 排気口24B、25Bの大きさは、特に限定されないが、例えば排気口24B、25Bの前後方向寸法X4は0.3m程度であり、排気口24B、25Bの高さ方向寸法Z4は、0.2m程度である。

[0072] 複数のバーナー31B〜33B、41B〜42Bは、流路23Bを挟んで千鳥状に配置されている。左側壁13Bに配置される複数のバーナー31B〜33Bは、流路23Bに沿って前後方向に配列されている。同様に、右側壁14Bに配置される複数のバーナー41B〜42Bは、流路23Bに沿って前後方向に配列されている。

[0073] 本実施形態では、第1実施形態と同様に、バーナー31B〜33B、41B〜42Bには、空気燃焼バーナー、及び酸素燃焼バーナーが用いられる。従って、第1実施形態と同様に、CO2やNOxの排出量の増加を抑制することができる。

[0074] また、本実施形態では、第1実施形態と同様に、複数のバーナー31B〜33B、41B〜42Bの1時間当たりの総燃焼熱量Qaの30%以上（好ましくは、35%以上）90%以下（好ましくは、87%以下）が酸素燃焼バーナーによるものである。もしくは、溶解室10B内のガラスの加熱に使用される1時間当たりの総加熱熱量Qbの60%以上（好ましくは、68%以
上）97%以下（好ましくは、95%以下）が酸素燃焼バーナーによるものである。

従って、第1実施形態と同様に、空気燃焼バーナーを用いることによる熱効率の低下やCO₂排出量の増加、NOₓ排出量の増加を抑制することができる。また、熱効率の低下を抑制することができるので、溶解室1OB内の温度を比較的高温に保持し易い。このため、高融点のガラス製品の製造に適している。

さらに、本実施形態では、第1実施形態と同様に、排気口24B、25Bから後方向に0.6L以上（好ましくは、0.7L以上）離れた領域に、空気燃焼バーナー及び酸素燃焼バーナーが少なくとも1つずつ設けられている。ここで、Lは、排気口24B、25Bと前壁11Bとの間の後方方向における距離L5及び排気口24B、25Bと後壁12Bとの間の前方方向における距離L6のうち最大距離（図7に示す例では、L6）を表す。従って、第1実施形態と同様に、燃焼後のガスに含まれる水分濃度を調節可能な領域を十分に確保することができ、溶解室1OB内の溶融ガラスに溶存する水分量を広い範囲で可変とすることができる。その結果、溶解室1OB内の溶融ガラスに溶存する水分量を十分に調節することができ、清澄工程において、溶融ガラス内の気泡の成長を促進し、気泡の浮上を促進することができ、欠陥の少ないガラス製品を製造することができる。

溶解室1OB内の溶融ガラスに溶存する水分量の調節は、空気燃焼バーナーと酸素燃焼バーナーとの1時間当たりの燃焼熱量比を調節することにより行われる。この調節の対象となるのは、主に、排気口24B、25Bから後方向に0.6L以上離れた領域に設けられるバーナー33B、42Bである。酸素燃焼バーナーに対する排気口24B、25Bから後方向に0.6L以上離れた領域に設けられるバーナー33B、42Bの1時間当たりの燃焼熱量Qdの5%以上
95%以下（好ましくは10%以上90%以下、より好ましくは15%以上90%以下）が空気燃焼バーナーによるものである。

5%未満である場合、溶解室10B内の燃焼後のガスに含まれる水分濃度が高過ぎ、溶解室10B内の溶融ガラスに溶存する水分量が多すぎる。一方、95%を超える場合、溶解室10B内の燃焼後のガスに含まれる水分濃度が低過ぎ、溶解室10B内の溶融ガラスに溶存する水分量が少なすぎる。

以上、本発明の第1〜第3実施形態について説明したが、本発明は、上述の実施形態に制限されることなく、本発明の範囲を逸脱することなく、上述の実施形態に種々の変形及び置換を加えることができるのである。

例えば、図8に示すガラス溶解炉1Cのように、溶解室10Cの両側壁13C、14Cには、溶解室10Cを2つの部屋17、18に区画するくびれ部19が設けられても良い。この場合、後側の部屋18は溶融ガラスの温度を調整するための部屋であって、後側の部屋18の側壁にはバーナーが設けられない。

また、図9に示すガラス溶解炉1Dのように、溶解室10Dの両側壁13D、14Dに原料投入口21Dが設けられ、排気口24Dが前壁11Dに設けられても良い。なお、排気口24Dは前壁11D、及び/又は、後壁12Dに設けられても良い。

また、溶融ガラスを加熱する方法として、上記バーナーが発出する火炎の放射熱を利用して加える方法に加えて、溶融ガラスを直接通電加熱する方法を併用しても良い。

また、本発明における空気燃焼バーナーの燃料に混合されるガスは、空気であることが好ましいが、前述のようにNOx排出量が多くならない程度、具体的には燃料に混合されるガス中の酸素が25体積％以下であれば、空気のほかに酸素ガスを混合させることができる。

なお、溶解室の側壁には、ガラス溶融状況確認のための観察用窓が設けられていることが好ましく（図示）、観察用窓の扉は、上下開閉時の密閉性向上のためにやや傾斜して設けられていると好ましい。
実施例

[0084] 以下に、実施例により本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。

[0085] (例1〜10) 例1〜10 (表1、2) では、図2、図3に示すガラス溶解炉を用いて製造されるガラス中の$\beta \cdot O \cdot H$ (単位: /m m) を計算により求めた。$\beta \cdot O \cdot H$は、ガラス中の水分量を示す指標であり、$\beta \cdot O \cdot H$が大きいほど、ガラス中の水分量が多いことを意味する。例2、4〜6、10は実施例であり、例1、3、7〜9は比較例である。

[0086] ここで、$\beta \cdot O \cdot H$の計算方法について簡単に説明する。まず、各バーナーによって燃焼される燃料およびガスの組成などに基づいて、燃焼後のガスに含まれる水分濃度などを算出した。次に、燃焼後のガスが排気口に向かって流れるのを考慮して、溶解室内の雰囲気中の水分濃度の分布を算出した。そして、水分濃度の分布と、溶融ガラスの平均流速に基づいて、溶融ガラス中に最終的に拡散する水分量を算出し、製造後のガラス中に含まれる$\beta \cdot O \cdot H$を換算した。

[0087] 各例1〜10において、溶解室10の前後方向寸法X1を25 mに、溶解室10の幅方向寸法Y1を10 mに、溶解室10の高さ方向寸法Z1を8 mにそれぞれ設定した。また、溶解室10内の溶融ガラスの体積を300 m3に設定し、溶解室10内に1時間当たりに投入されるガラス原料（即ち、溶解室10から1時間当たりに取り出される溶融ガラス）の体積を1.25 m3に設定した。さらに、排気口24、25の前後方向寸法X2を1 mに、排気口24、25の高さ方向寸法Z2を1 mにそれぞれ設定した。また、左側壁13において、前壁11と排気口24との間の前後方向における距離L1を2 mに、排気口24から各バーナー31〜40までのそれぞれの前後方向の距離を2 m X N (Nは1〜10の自然数)に設定し、排気口24とバーナー40との間の前後方向における距離を20 mに設定した。同様に、右側壁14においても、排気口25および複数のバーナー41〜50の配置を設定した。
そして、各例1、2、4、5、7～10において、複数のバーナー31～50のそれぞれの1時間当たりの燃焼熱量を同一に設定した。一方、例3では、複数の酸素燃焼バーナーのそれぞれの1時間当たりの燃焼熱量を同一に設定し、複数の空気燃焼バーナーのそれぞれの1時間当たりの燃焼熱量を同一に設定すると共に、各空気燃焼バーナーの1時間当たりの燃焼熱量を各酸素燃焼バーナーの1時間当たりの燃焼熱量よりも小さく設定した。また、例6では、複数の酸素燃焼バーナーのそれぞれの1時間当たりの燃焼熱量を同一に設定し、複数の空気燃焼バーナーのそれぞれの1時間当たりの燃焼熱量を同一に設定すると共に、各空気燃焼バーナーの1時間当たりの燃焼熱量を各酸素燃焼バーナーの1時間当たりの燃焼熱量よりも大きく設定した。尚、例1、9のバーナー31～50には、酸素燃焼バーナーのみを用い、例2～8、10のバーナー31～50には、酸素燃焼バーナーと空気燃焼バーナーを用いた。

表1、2において、CO₂排出量の単位であるNm³は、標準状態（0℃、1気圧）における体積を表す（表3、表4も同様）。表1、2では、空気燃焼バーナーのNo.を示すことによって、酸素燃焼バーナーのNo.を省略してある（表3、表4も同様）。
<table>
<thead>
<tr>
<th>例</th>
<th>例2</th>
<th>例3</th>
<th>例4</th>
<th>例5</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸素燃焼バーナーの燃料</td>
<td>天然ガス</td>
<td>天然ガス</td>
<td>天然ガス</td>
<td>天然ガス</td>
</tr>
<tr>
<td>空気燃焼バーナーのNo.</td>
<td>—</td>
<td>38.48</td>
<td>38.48</td>
<td>38</td>
</tr>
<tr>
<td>空気燃焼バーナーの燃料</td>
<td>—</td>
<td>天然ガス</td>
<td>天然ガス</td>
<td>天然ガス</td>
</tr>
<tr>
<td>1時間当たりの総燃焼熱量Qa (kWh)</td>
<td>10000</td>
<td>12200</td>
<td>10200</td>
<td>11100</td>
</tr>
<tr>
<td>Qaに対する酸素燃焼バーナーの寄与率(%)</td>
<td>100</td>
<td>74</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>1時間当たりの総加熱量Qb (kWh)</td>
<td>7300</td>
<td>7300</td>
<td>7300</td>
<td>7300</td>
</tr>
<tr>
<td>Qbに対する酸素燃焼バーナーの寄与率(%)</td>
<td>100</td>
<td>90</td>
<td>99</td>
<td>95</td>
</tr>
<tr>
<td>1時間当たりのCO₂排出量 (Nm³/h)</td>
<td>1050</td>
<td>1250</td>
<td>1050</td>
<td>1150</td>
</tr>
<tr>
<td>距離L (m)</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>排気口と排気口から最も遠い空気燃焼バーナーとの間の前後方向の距離La (m)</td>
<td>—</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>La/L</td>
<td>—</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>所定領域における1時間当たりの総燃焼熱量Qdに対する空気燃焼バーナーの寄与率(%)</td>
<td>—</td>
<td>51</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>β-OH (mm⁻¹)</td>
<td>0.50</td>
<td>0.39</td>
<td>0.47</td>
<td>0.42</td>
</tr>
</tbody>
</table>

[0091]
表1、2から理解されるように、燃料が天然ガスである例1〜8において、例2、4〜6では、排気口24、25から後方向に0.6L以上離れた領域に、空気燃焼バーナー及び酸素燃焼バーナーが少なくとも1つずつ設けられており、例1の場合に比較して、ガラス中のβ-OHが10%以上低下している。また、燃料が重油である例9、10において、例10では、排気口24、25から後方向に0.6L以上離れた領域に、空気燃焼バーナー及び酸素燃焼バーナーが少なくとも1つずつ設けており、例9の場合に比較して、ガラス中のβ-OHが10%以上低下している。10%以上低下していると、空気燃焼バーナーと酸素燃焼バーナーとの1時間当たりの燃焼熱量比を変化させることで、β-OHを十分に調整できる。よって、例2、4〜
6, 10 では、空気燃焼バーナーと酸素燃焼バーナーとの 1 時間当たりの燃焼熱量比を調節することにより、溶解室 10 内の溶融ガラスに溶存する水分量を十分に調節することができる。

一方、例 7, 8 では、排気口 24, 25 から後方向に 0.6 L 以上離れた領域に、空気燃焼バーナーが設けられていないので、例 1 に対して、\(\theta \) 0 H が 10 % 以上低下していない。よって、空気燃焼バーナーと酸素燃焼バーナーとの 1 時間当たりの燃焼熱量比を調節しても、溶解室 10 内の溶融ガラスに溶存する水分量を十分に調節するのが難しいことが判る。

また、例 3 では、例 2 と同様に、排気口 24, 25 から後方向に 0.6 L 以上離れた領域に、空気燃焼バーナー及び酸素燃焼バーナーが少なくとも 1 つずつ設けられているが、例 2 と異なり、溶解室内のガラスの加熱に使用される 1 時間当たりの総加熱量 Q b の 99 % が酸素燃焼バーナーによるものである。このため、例 3 では、ガラス中の \(\beta \) 0 H が 10 % 以上低下していない。よって、例 3 では、溶解室 10 内の溶融ガラスに溶存する水分量を十分に低下するのが困難なことが判る。

(例 11 ～ 12)

例 11 ～ 12 (表 3) では、図 4、図 5 に示すガラス溶解炉を用いて製造されるガラス中の \(\beta \) ～0 H（単位：\(/ \mathrm{mm} \)) を上記計算により求めた。例 12 は実施例であり、例 11 は比較例である。

各例 11 ～ 12 において、排気口 24A、25A を側壁 13、14 の前後方向中央に配置した以外、溶解室の大きさ、排気口の大きさ、排気口と各バーナーとの間の前後方向における距離などは、例 1 ～ 10 と同様に、設定した。各例 11 ～ 12 において、複数のバーナー 31A ～ 50A のそれぞれの 1 時間当たりの燃焼熱量を同一に設定した。尚、例 11 のバーナー 31A ～ 50A には、酸素燃焼バーナーのみを用い、例 12 のバーナー 31A ～ 50A には、酸素燃焼バーナーと空気燃焼バーナーを用いた。

[0097]
表3から理解されるように、例12では、排気口24A、25Aから後方に0.6L以上離れた領域に、空気燃焼バーナー及び酸素燃焼バーナーが少なくとも1つずつ設けられており、例11の場合に比較して、ガラス中のβ-0が10%以上低下している。よって、例12では、空気燃焼バーナー
と酸素燃焼/くーナーとの1時間当たりの燃焼熱量比を調節することにより、溶解室10内の溶融ガラスに溶存する水分量を十分に調節することができることが判る。

[0099]（例13〜14）
例13〜14（表4）では、図6、図7に示すガラス溶解炉を用いて製造されるガラス中のβ—OH（単位 : pm/m）を上記計算により求めた。例14は実施例であり、例13は比較例である。

[0100]各例13〜14において、溶解室10Bの前後方向寸法X3を3口に、溶解室10Bの幅方向寸法Y3を2口に、溶解室10Bの高さ方向寸法Z3を2mにそれぞれ設定した。また、溶解室10B内の溶融ガラスの体積を4.5m3に設定し、溶解室10B内に1時間当たりに投入されるガラス原料（即ち、溶解室10Bから1時間当たりに取り出される溶融ガラス）の体積を0.04m3に設定した。さらに、排気口24B、25Bの前後方向寸法X4を0.3mに、排気口24B、25Bの高さ方向寸法Z4を0.3mにそれぞれ設定した。また、左側壁13Bにおいて、前壁11Bと排気口24Bとの間の前後方向における距離L5を0.2mに、排気口24Bとパーナー31Bとの間の前後方向における距離を0.3mに、排気口24Bとパーナー32Bとの間の前後方向における距離を1.0mに、排気口24Bとパーナー33Bとの間の前後方向における距離を2.0mにそれぞれ設定した。一方、右側壁14Bにおいて、前壁11Bと排気口25Bとの間の前後方向における距離L5を0.2mに、排気口25Bとパーナー41Bとの間の前後方向における距離を0.5mに、排気口25Bとパーナー42Bとの間の前後方向における距離を1.5mにそれぞれ設定した。そして、各例13〜14において、複数のパーナー31B〜33B、41B〜42Bのそれぞれの1時間当たりの燃焼熱量を同一に設定した。尚、例13のパーナー31B〜33B、41B〜42Bには、酸素燃焼パーカーのみを用い、例14のパーナー31B〜33B、41B〜42Bには、酸素燃焼パーカーと空気燃焼パーカーを用いた。
表4から理解されるように、例14では、排気口24B、25Bから後方
に向に0.6L以上離れた領域に、空気燃焼バーナー及び酸素燃焼バーナーが
少なくとも1つずつ設けられており、例13の場合に比較して、ガラス板中の
β-OHが10%以上低下している。よって、例14では、空気燃焼バーナーと酸素燃焼/バーナーとの1時間当たりの燃焼熱量比を調節することによ

<table>
<thead>
<tr>
<th></th>
<th>例13</th>
<th>例14</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸素燃焼バーナーの燃料</td>
<td>天然ガス</td>
<td>天然ガス</td>
</tr>
<tr>
<td>空気燃焼バーナーのNo.</td>
<td>—</td>
<td>42B</td>
</tr>
<tr>
<td>空気燃焼バーナーの燃料</td>
<td>—</td>
<td>天然ガス</td>
</tr>
<tr>
<td>1時間当たりの総燃焼熱量Qa(kWh)</td>
<td>500</td>
<td>720</td>
</tr>
<tr>
<td>Qaに対する酸素燃焼バーナーの寄与率(%)</td>
<td>100</td>
<td>56</td>
</tr>
<tr>
<td>1時間当たりの総加熱量Qb(kWh)</td>
<td>370</td>
<td>370</td>
</tr>
<tr>
<td>Qbに対する酸素燃焼バーナーの寄与率(%)</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>1時間当たりのCO₂排出量(Nm³/h)</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>距離L(m)</td>
<td>—</td>
<td>2.5</td>
</tr>
<tr>
<td>排気口と排気口から最も遠い空気燃焼バーナーとの間の前後方向の距離La(m)</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>La/L</td>
<td>—</td>
<td>0.6</td>
</tr>
<tr>
<td>所定領域における1時間当たりの総燃焼熱量Qdに対する空気燃焼バーナーの寄与率(%)</td>
<td>—</td>
<td>76</td>
</tr>
<tr>
<td>β-OH(mm⁻¹)</td>
<td>0.52</td>
<td>0.46</td>
</tr>
</tbody>
</table>
溶解室 OB 内の溶融ガラスに溶存する水分量を十分に調節することができることが判る。

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。

本出願は、2010年4月26日出願の日本特許出願2010-101312に基づくものであり、その内容はここに参照として取り込まれる。

産業上の利用可能性

本発明によれば、NOx排出量の増加を抑制しつつ、溶融ガラスに溶存する水分量を十分に調節することができるガラス溶解炉を提供することができる。このガラス溶解炉は、溶融ガラスに対して十分な加熱を行いつつ、水分量を低減させる場合に特に有効である。

符号の説明

1 溶解炉
 10 溶解室
 11 前壁
 12 後壁
 13 側壁（左側壁）
 14 側壁（右側壁）
21 原料投入口
22 取出口
23 流路
24 排気口
25 排気口
31〜50 バーナー
請求の範囲

[請求項1] ガラス原料を溶解する溶解室と、該溶解室の前壁から後壁に至る流路の側壁に設けられる複数のバーナーとを備え、前記複数のバーナーが火炎を前記溶解室内に噴出して前記溶解室内のガラスを加熱し溶解するガラス溶解炉において、

前記複数のバーナーには、燃料を酸素ガスと混合して燃焼させた火炎を噴出する酸素燃焼バーナーと、燃料を空気と混合して燃焼させた火炎を噴出する空気燃焼バーナーとの両方が用いられており、

前記複数のバーナーの1時間当たりの総燃焼熱量の30％以上90％以下が前記酸素燃焼バーナーによるものであって、

前記溶解室内の燃焼後のガスを外部に排気するための排気口が、前記溶解室の両側壁のそれぞれに1つのみ対向して配置され、前記溶解室の両側壁の一方のみに且つ1つのみ配置され、又は、前記溶解室の前壁、若しくは、後壁に配置され、

前記排気口と前記前壁との間の前後方向における距離及び前記排気口と前記後壁との間の前後方向における距離のうち最大距離をLとすると、前記排気口から前方向及び／又は後方向に0.56L以上離れた領域に、前記酸素燃焼バーナー及び前記空気燃焼バーナーが少なくとも1つずつ設けられ、

該領域に設けられる前記バーナーの1時間当たりの総燃焼熱量のうち5％以上95％以下が前記空気燃焼バーナーによるものであるガラス溶解炉。

[請求項2] 少なくとも2つの前記空気燃焼バーナーが前記溶解室の側壁に配列される場合、該2つの空気燃焼バーナーの間には、少なくとも1つの前記酸素燃焼バーナーが設けられる請求項1に記載のガラス溶解炉。

[請求項3] 請求項1又は2に記載のガラス溶解炉を用いたガラスの溶解方法。
[図1]

開始
→ S100
溶解工程
→ S102
清澄工程
→ S104
成形工程
→ 終了

[図2]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C 0 3 B 5 / 0 0 - 5 / 4 4 , F 2 3 C 9 9 / 0 0 , F 2 3 L 7 / 0 0

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 1 0 0 5 5 9 2 4 A 1 (HORN GLASANLAGEN GMBH). 07 March 2002 (07.03.2002). paragraph s [0011], [0012], [0024], [0025]; fig. 1 to 3 (Family: none)</td>
<td>1 - 3</td>
</tr>
<tr>
<td>A</td>
<td>JP 2 0 0 1 - 3 1 6 1 2 1 A (Air Products and Chemicals Inc.). 13 November 2001 (13.11.2001). claims: fig. 1 to 12 & US 6 5 1 9 9 7 3 B 1 & EP 1 1 3 6 4 5 1 A 2</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search 03 June , 2011 (03.06.11) Date of mailing of the international search report 21 June , 2011 (21.06.11)

Name and mailing address of the ISA/ Japanese Patent Office Authorized officer

Facsimile No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2005-35826 A (Japan Air Gases Co.), 10 February 2005 (10.02.2005), claims; fig. 1, 2 (Family: none)</td>
<td>1-3</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP 2011/059621

A. 発明の属する分野の分類（国際特許分類（IPC））

| Int.Cl. | C03B5/04 (2006. 01) i, C03B5/235 (2006. 01) i |

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

| Int.Cl. | C03B5/00-5/44, F2C99/00, F23L7/00 |

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2011年
日本国実用新案登録公報	1996-2011年
日本国登録実用新案公報	1994-2011年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文헌

<table>
<thead>
<tr>
<th>引用文헌のカテゴリー</th>
<th>引用文献名及第一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 10055924 A (HORN GLASANLAGEN GMBH) 2002. 03. 07, [0011], [0012], [0024], [0025], FIG. 1-3（ファミリーなし）</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>JP 5-97444 A（ユニオン・カーパイド・インダストリアル・ガス・テクノロジー・コーポレーション）1993. 04. 20, 特許請求の範囲、</td>
<td>1-3</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。

\[\text{P} \] バーティントファミリーに関する別紙を参照。

国際調査を完了した日

03.06.2011

国際調査報告の送付日

21.06.2011

国際調査機関の名称及びあて先

日本国特許庁 (ISA／JP)

郵便番号 100-0015

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

藤 代 佳

電話番号 03-3581-1101 内線 3465
C (続き) 関連すると認められる文献

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2005-35826 A（ジャパン・エア・ガシス株式会社）2005. 02. 10, 特許請求の範囲, 図 1, 2 (ファミリーなし)</td>
<td>1-3</td>
</tr>
</tbody>
</table>

様式 PCT／ISA／210 (第2ページの続き) (2009年7月)