发明名称
多模光纤和包括这种多模光纤的系统

摘要
一种多模光纤，包括芯，该芯具有直径D0以及折射率分布，该芯被配置成用于在波长λ1＝850nm处最佳地传输光并且用于在另一个波长λ0处传播LP01模，其中，λ0≥950nm。该多模光纤具有LP01模场直径LP01 MFD0，λ0，并且8.5μm<LP01 MFD<11μm。
1. 一种多模光纤，包括：芯，所述芯具有直径D₀，至少0.7%的最大相对折射率变化量Δ₁(%)，以及折射率分布，所述芯被配置成用于在波长λ₁＝850nm处最佳地传输光并且用于在另一个波长λ₀处以LP01模式来传播光，其中，λ₀＞950nm，所述多模光纤被构造成具有LP01模场直径LP01MFDₓₐₓₐₓ₀，使得8.5μm＜LP01MFDₓₐₓₐₓ₀＜11μm。

2. 如权利要求1所述的多模光纤，其中，15μm＜D₀＜23μm，并且0.7%＜Δ₁＜1.25%。

3. 如权利要求1或2所述的多模光纤，其中，所述芯具有2.09≤a≤2.13的阿尔法值。

4. 如权利要求1、2或3所述的多模光纤，其中，所述光纤包括包围所述芯的包层以及位于所述包层内的凹陷折射率区域。

5. 根据权利要求1或2或3所述的光学传输系统，其中，所述多模光纤的模带宽在波长λ₁处为至少2.5GHz·Km并且在波长1200nm处为小于2GHz·Km。

6. 根据权利要求5所述的光学传输系统，其中，所述多模光纤的模带宽在波长λ₁处为至少5GHz·Km并且在波长1200nm处为小于2GHz·Km。

7. 一种光学传输系统，包括：

 发射器，所述发射器生成调制光，所述调制光具有位于840nm与860nm之间的工作波长λ₁；

 光学接收器，所述光学接收器被配置成用于接收并检测所述调制光；

 多模光纤，所述多模光纤限定于所述多模发射器与所述光学接收器之间的光学路径，所述多模光纤具有芯，所述芯具有直径D₀，至少0.7%的最大相对折射率变化量Δ₁(%)，以及折射率分布，所述芯被配置成用于在波长850nm处最佳地传输光并且用于在另一个波长λ₀处传播LP01模式，其中，λ₀＞950nm，所述多模光纤具有LP01模场直径LP01MFDₓₐₓₐₓ₀，并且8.5μm＜LP01MFDₓₐₓₐₓ₀＜11μm。

8. 根据权利要求7所述的光学传输系统，其中，所述多模光纤的模带宽在波长λ₁处为至少2.5GHz·Km。

9. 根据权利要求7所述的光学传输系统，其中，所述波长λ₀位于1260nm到1340nm的波长带或者1540nm到1560nm的波长带中。

10. 根据权利要求7或9所述的光学传输系统，其中，15μm＜D₀＜23μm，并且0.7%＜Δ₁≤1.25%。

11. 根据权利要求10所述的光学传输系统，其中，所述芯具有2.09≤a≤2.13的阿尔法值。

12. 如权利要求7所述的光学传输系统，其中，所述光纤包括包围所述芯的包层以及位于所述包层内的凹陷折射率区域。

13. 如权利要求7所述的光学传输系统，其中，所述发射器是在850nm波长处进行操作的VCSEL。

14. 如权利要求7所述的光学传输系统，其中，所述发射器是在850nm波长处进行操作的多模VCSEL。

15. 如权利要求7、12、13或14所述的光学传输系统，其中，所述多模光纤的模带宽在波长λ₁处为至少5GHz·Km。

16. 如权利要求15所述的光学传输系统，其中，所述多模光纤的模带宽在波长λ₁处为至少10GHz·Km。
17. 一种光学传输系统，包括：
发射器，所述发射器生成调制光，所述调制光具有工作波长λ₀，使得λ₀>950nm；
光学接收器，所述光学接收器被配置成用于接收并检测所述调制光；
多模光纤，所述多模光纤限定了所述多模发射器与所述光学接收器之间的光学路径，
所述多模光纤具有芯，所述芯具有直径Dₘ，至少0.7%的最大相对折射率变化量Δ₁(%)，以及
折射率分布，所述芯被配置成用于在波长850nm处最佳地传输光并且用于在所述波长λ₀
处传播LP01模式，所述多模光纤具有LP01模场直径LP01MFDₘ，λ₀，并且8.5μm<LP01MFDₘ<11μm。

18. 根据权利要求17所述的光学传输系统，其中，所述波长λ₀位于1260nm到1340nm的波
长带或者1540nm到1560nm的波长带中。

19. 根据权利要求17或18所述的光学传输系统，其中，波长λ₀的所述光以基本上LP01模
式被发射到所述多模光纤中。
多模光纤和包括这种多模光纤的系统

相关申请的交叉引用

本申请根据35U.S.C. §119要求于2014年5月16日提交的美国临时申请序列号61/994388的优先权权益，该申请的内容被用作依据并且通过引用以其全部内容结合在此。

技术领域

本公开涉及采用多模光纤的光学传输系统以及利用这种光纤的传输系统。

背景技术

[0001] 不承认在本文引用的任何参考构成现有技术。申请人明确地保留质疑任何引用文献的准确性和相关性的权利。

[0002] 在数据中心中采用光纤传输系统来将一台光学设备（例如，路由器、服务器、交换机等）与另一组光学设备光学地连接。

[0003] 当前数据中心配置有多种光纤，这些多模光纤被耦合至向多模光纤提供调制数据信号的850nm多模VCSEL光源。因为光学设备中的收发器中的光源是多模光源，所以使用这种多模光纤。而且，在历史上，相比单模光纤，一直以来使用多模光纤进行工作更加容易。不幸地是，由于模色散的原因，多模光纤的带宽距离乘积更小，这使得在维持高带宽传输的同时扩展光纤传输系统的范围是困难且昂贵的。此外，利用以10Gb/s来进行操作的典型发射器（其利用850nm VCSEL）作为源，由于这些多模光纤的二氧化硅材料所带来的色散而引起的信号失真，当前标准OM3和OM4多模光纤仅可以在约300m到约500m的距离上传输光信号。

随着光学传输速度移至25Gb/s或更高，由于在850nm周围进行操作的当前标准OM3和OM4多模光纤的色散的原因，此距离变得甚至更短（75m到150m）。因此，需要增大光纤传输系统的传输距离而不会导致用于替换现有模光纤的时间、功率和费用的其他方式。

发明内容

[0004] 根据一些实施例，一种多模光纤包括多模芯，该多模芯具有直径D0以及折射率分布，该芯被配置成用于在位于480nm与680nm之间的波长λ1处最佳地传输光并且用于在另一个波长λ0处以LP01模式来传播光，其中λ0<950nm，该多模光纤具有LP01模场直径LP01MFD0处，并且8.5μm<LP01MFD0<11μm，根据一个示例性实施例，λ0在1320nm与1360nm之间。根据另一个示例性实施例，λ0在1540nm与1640nm之间。根据一些实施例，优选地，多模光纤具有至少0.7%的最大折射率变化量Δ1(%)。

[0005] 根据一些实施例，多模光纤具有芯直径D0，使得15μm≤D0<23μm；以及在0.7%与1.25%之间的芯折射率变化量。根据一些实施例，芯的阿尔法值为2.09≤a≤2.13。该芯由包层包围。在一些实施例中，光纤包括包层芯的包层以及位于包层内的凹陷折射率区域。根据一些实施例，多模光纤OF (全模式) 模带宽 (BW) 在波长λ1=850nm处为至少2.5GHz•Km并且在波长1200nm处为小于2GHz•Km。根据一些实施例，全模式带宽在波长λ1处为至少2.5GHz•Km，多模光纤模带宽在波长λ1=850nm处为至少5GHz•Km，并且根据一些实施例，
在此波长处为大于10GHz·Km。

根据一些实施例，一种光学传输系统包括：

多模发射器，该多模发射器生成调制光，该调制光具有840nm与860nm之间的工作波长λ。

光学接收器，所述光学接收器被配置成用于接收并检测所述调制光。

多模光纤，该多模光纤限定了该多模发射器与该光学接收器之间的光学路径，该多模光纤具有芯，该芯具有直径D0以及折射率分布，该芯被配置成用于在840nm与860nm之间的波长λ处最佳地传输光，并且用于在另一个波长λ0处传播LP01模式，其中，λ0>950nm。该多模光纤具有LP01模场直径LP01MFD840nm并且8.5μm<LP01MFD950nm<11μm。根据一个示例性实施例，λ0在1320nm与1360nm之间，根据另一个示例性实施例，λ0在1540nm与1560nm之间。

根据一些实施例，多模光纤的模带宽在波长λ处为至少2.5GHz·Km。

根据一些实施例，一种光学传输系统包括：

发射器，该发射器生成调制光，该调制光具有使得λ0>950nm的工作波长λ0。

光学接收器，所述光学接收器被配置成用于接收并检测所述调制光。

多模光纤，该多模光纤限定了该多模发射器与该光学接收器之间的光学路径，该多模光纤具有芯，该芯具有直径D0，至少0.7%的最大相对折射率变化量△(%)，以及折射率分布，该芯被配置成用于在波长850nm处最佳地传输光并且用于在该波长λ0处传输LP01模式，该多模光纤具有LP01模场直径LP01MFD850nm并且8.5μm<LP01MFD950nm<11μm。根据至少一些光学传输系统实施例，在波长λ0处的光基本上LP01模式被发射到多模光纤中。

在一些示例性实施例中，波长λ0位于1260nm到1340nm的波长带或者1540nm到1560nm的波长带中。

附图特征以及优选将在以下详细描述中予以阐明，并且部分地从该描述中对本领域的技术人员而言将变得非常明显或者通过实践而所写描述中描述的实施例和其权利要求书以及所附附图很容易被认识。

应当理解的是，上述概括描述和以下详细描述仅是示例性的，并且旨在为理解权利要求书的本质和特征提供概要或框架。

附图被包括以便提供进一步理解，并被结合在本说明书中并构成本说明书的一部分。附图展示了其中一个或多个实施例，并且与说明书一起用于解释各种实施例的原理和操作。

附图说明

图1A是采用通过多模光纤40光学地连接的多模发射器和单接收器的光纤传输系统的一个实施例的示意图；

图1B是采用通过多模光纤40光学地连接的单模发射器和单模或多模接收器的光纤传输系统的一个实施例的示意图；

图2A是采用通过多模光纤光学地连接的单模发射器和多模接收器的光纤传输系统的一个实施例的示意图；

图2B是采用通过多模光纤光学地连接的单模发射器和单模接收器30S的光纤传输系统的一个实施例的示意图；

图3A和图3B是光学传输系统的其他示例性实施例的示意图；

图4展示了若干示例性多模光纤实施例在1310nm波长处的LP01模式MFD对芯半
具体实施方式

本发明的附加特征以及优点将在以下详细描述中予以阐述，并且将从该描述中对本领域技术人员而言是明显的或通过实践如在以下描述连同权利要求书和附图中描述的本发明被理解。

“折射率分布”是折射率或相对折射率与波导光纤半径之间的关系。

“相对折射率”被定义为△ = 100 × ln(n(r)² - n₀₀²) / ln(n₁₀₀²), 其中，除非另外指出，n(r) 是折射率的中心点的径向距离 r 处的折射率，并且 n₁₀₀ 是包层的外层包层区域在波长 850nm 处的平均折射率，该平均折射率可以例如通过在包层的外部环形区域中进行 “N” 次折射率测量 (n₁₁₁₁, n₂₂₂₂, ..., nₙₙₙₙ) 并通过以下各项来计算平均折射率来计算：

在包层的外部环形区域中进行 “N” 次折射率测量 (n₁₁₁₁, n₂₂₂₂, ..., nₙₙₙₙ) 并通过以下各项来计算平均折射率来计算：

\[i = N \]
\[n_c = (1/N) \sum n_{ci} \]

在一些示例性实施例中，外部包层区域包括基本上纯的二氧化硅。除非另外指出，在本文中所使用的相对折射率由变化量或位置表示，并且它的值通常以“%”为单位给出。比例相对折射率百分比为负并且被称为具有凹陷折射率，并且是在相对折射率最低的点处计算的。除非另外指出，在区域的折射率大于外部包层区域的平均折射率的折射率的情况下，相对折射率百分比为正，并且该区域可以说是被提高或者具有正折射率，并且该相对折射率百分比是在相对折射率最低的点处计算的。参照芯变化量值，其在本文中被公开为最大变化量。

“上掺杂剂 (up-dopant)” 在本文中被认为是相对于纯的未掺杂 SiO₂ 具有提高折射率的倾向的掺杂剂。“下掺杂剂 (down-dopant)” 在本文中被认为是相对于纯的未掺杂 SiO₂ 具有降低折射率的倾向的掺杂剂。在伴随有不是上掺杂剂的一种或其他掺杂剂时，上掺杂剂可以存在于具有负相对折射率的光纤区域中。同样地，不是上掺杂剂的一种或其他掺杂剂可以存在于具有正相对折射率的光区区域中。在伴随有不是下掺杂剂的一种或其他掺杂剂时，下掺杂剂可以存在于具有正相对折射率的光纤区域中。同样地，不是下掺杂剂的一种或其他掺杂剂可以存在于具有负相对折射率的光纤区域中。

除非另外说明，光纤的全模式 (Overfill) (或全模式 (Overfilled, OFL)) 带宽 (BW) 在本文中被定义为根据 Measurement Methods and Test Procedures: Bandwidth (测量方法和测试程序: 带宽) (IEC 60793-1-41 (TIA-FOTP-204)) 在 850nm 处使用全模式发射条件来
测量的。除非另外指明，在以下讨论中，带宽BW被理解为指全模式带宽。

[0028] 最小计算有效模带宽(EBW)可以从由Measurement Methods and Test Procedures:Differential Mode Delay(测量方法和测试程序：差分模式延迟)(IEC 60793-1-49(TIA/EIA-455-220))所指定的测量差分模式延迟光谱中获得。

[0031] 如在本文中所使用的，术语渐变折射率、“α分布”或“阿尔法分布”是指相对折射率分布，用以“%”为单位的Δ来表示，其中，r是半径，并且其遵循以下方程，

\[\Delta(r) = \Delta_0 \left[1 - \left(\frac{r}{R_0} \right)^{\alpha} \right] \]

其中，Δ_0是被推至r=0的相对折射率，R_0是芯的半径(即，Δ(r)为0的半径)，并且α是作为实数的指数。对于阶跃折射率分布，阿尔法值大于或等于10。对于渐变折射率分布，阿尔法值小于10。

在本文中所使用的术语中，折射率分布是基于基上抛物线形状的折射率分布，这些折射率分布可以在芯中的一个或多个点处从例如2.0到0.0095的半径范围内数值地测量的相对折射率分布与阿尔法分布进行拟合来获得。在中心线处不具有如下降或尖峰等缺陷的理想渐变折射率光纤中，Δ_0=Δ_{max}，其中，Δ_{max}是芯的最大折射率。在其他情况下，从0.05R_0≤r≤0.95R_0的数值拟合中获得的Δ_0值可能大于或小于Δ_{max}。

[0032] 本发明的附加特征以及优点将在以下详细描述中予以阐述，并且将从该描述中对本领域的技术人员而言是明显的或通过实践如在以下描述条款权利要求书和附图中描述的本发明是认识到的。

[0033] “折射率分布”是折射率或相对折射率与波导光纤半径之间的关系。

“相对折射率”被定义为Δ=100×[n(r)^2-2(n_1)^2]/2n^2，其中，除非另外指明，n(r)是在高折射率的中心线的径向距离r处的折射率，并且n_1是包层的外部包层区域在波长850nm处的平均折射率，该平均折射率可以通过在包层的外部环形区域中进行“N”次折射率测
量 \((n_1, n_2, \ldots, n_N) \) 并通过以下各项来计算平均折射率来计算：

在包层的外部环形区域中进行“N”次折射率测量 \((n_1, n_2, \ldots, n_N) \) 并通过以下各项来计算平均折射率来计算：

\[
i = N \quad \quad n_c = \left(\frac{1}{N} \right) \sum n_i.
\]

\[i = 1\]

【0034】在一些示例性实施例中，外部包层区域包括基本上纯的二氧化硅。除非另外注明，如在本文中所使用的，相对折射率由变化量或 \(\Delta \) 表示并且它的值通常以“%”为单位给出。除非另外注明，在区域的折射率小于外部包层区域的平均折射率的情况下，相对折射率百分比为负并且被表示为具有凹陷折射率，并且是在相对折射率最低的点处计算的。除非另外注明，在区域的折射率为大于外部包层区域的平均折射率的折射率的情况下，相对折射率百分比为正，并且该区域可以被表示为具有正折射率，并且该相对折射率百分比是在相对折射率最正的点处计算的。参照芯变化量，其在本文中被公开为最大%变化量。

【0035】“上掺杂剂（up-dopant）”在本文中被认为是相对于纯的未掺杂SiO：具有提高折射率的倾向的掺杂剂。“下掺杂剂（down-dopant）”在本文中被认为是相对于纯的未掺杂SiO：具有降低折射率的倾向的掺杂剂。在伴随有不是上掺杂剂的一种或多种其他掺杂剂时，上掺杂剂可以存在于具有负相对折射率的光纤区域中。同样地，不是上掺杂剂的一种或多种其他掺杂剂可以存在于具有负相对折射率的光纤区域中。在伴随有不是下掺杂剂的一种或多种其他掺杂剂时，下掺杂剂可以存在于具有正相对折射率的光纤区域中。同样地，不是下掺杂剂的一种或多种其他掺杂剂可以存在于具有负相对折射率的光纤区域中。

【0036】除非另外说明，光纤的全模式（Overfill）（或全模式（Overfilled, OFL））带宽（BW）在本文中被定义为根据Measurement Methods and Test Procedures: Bandwidth (测量方法和测试程序：带宽) (IEC 60793-1-41 (TIA-FOTP-204)) 在850nm处使用全模式发射条件来测量的。除非另外说明，在以下讨论中，带宽BW被理解为指全模式带宽。

【0037】最小计算有效模带宽（EBW）可以从如由Measurement Methods and Test Procedures: Differential Mode Delay (测量方法和测试程序：差分模式延迟) (IEC 60793-1-49 (TIA/EIA-455-220)) 所指定的测量差分模式延迟光谱中获得。

【0038】光纤的NA是指如使用题为“Measurement Methods and Test Procedures: Numerical Aperture (测量方法和测试程序：数值孔径)”的IEC-60793-1-43 (TIA SP3-2839-URV2FOTP-177) 中所阐述的方法来测量的数值孔径。

【0039】模型化带宽可以根据T.A.Lenanah (T.A.里纳瀚) “Calculation of Modes in an Optical Fiber Using the Finite Element Method and EISPACK (使用有限元方法和EISPACK来计算光纤中的模式)” Bell Sys. Tech. J. (贝尔系统技术杂志)，第62卷，第2663-2695页(1983) 中所述的程序来计算，其全部公开据此通过引用结合在此。此参考的方程47用于计算模延迟；然而，注意，术语 \(dK_{eff}/d\omega^2 \) 必须由 \(dK_{eff}/d\omega^2 \) 来代替，其中，\(K_{eff} \) = 2\(\pi \) \(n_{eff} \) /\(\lambda \) 并且 \(\omega = 2\pi /\lambda \)，并且 \(n_{eff} = n_c \) 其中，外部包层区域的平均折射率。通常每英寸长度地对模延迟进行归一化，并且以ns/km为单位（或等效地以ps/m为单位）给出模式延迟。计算带宽假设折射率分布是理想的，不具有如有中心线下降等扰动，并且因此，对于给定设计，代表最大带宽。
如在本文中所使用的术语渐变折射率、“a分布”或“阿尔法分布”是指相对折射率分布，用以“％”为单位的△来表示，其中，r是半径，并且其遵循以下方程，

\[\Delta(r) = \Delta_0 \left[1 - \left(\frac{r}{R_1} \right)^a \right]. \]

其中，△0是被外推至r = 0的相对折射率，R1是芯的半径（即，△(r)为0的半径），并且a是作为实数的指数。对于阶跃折射率分布，阿尔法值大于或等于10。对于渐变折射率分布，阿尔法值小于10。如在本文中所使用的术语“抛物线的”包括基本上抛物线形状的折射率分布，这些折射率分布可以在芯的一个或多个点处从例如2.0的a值略微变化，以及具有微小变化和/或中心线下降的分布。举例说明本发明的模型化折射率分布具有作为完全阿尔法分布的渐变折射率芯。真实光纤通常将与完美阿尔法分布具有微小偏差，包括如芯的外部接口处的中心线和/或扩散尾部处的下降或尖峰等特征。然而，准确的阿尔法值和△0值仍然可以通过在从0.05R1 ≤ r ≤ 0.95R1的半径范围内数值地将测量的相对折射率分布与阿尔法分布进行拟合来获得。在中心线处不具有如下降或尖峰等缺陷的理想的渐变折射率光纤中，△0 = △MAX，其中，△MAX是芯的最大折射率。在其他情况下，从0.05R1 ≤ r ≤ 0.95R1的数值拟合中获得的△0值可能大于或小于△MAX。

现在详细参照本公开的各实施例，附图中展示了这些实施例的示例。在任何可能的情况下，在附图中使用相同的或相似的参考数字和符号来指代相同或相似的部分。附图不一定是按比例的，而且本领域的技术人员将认识到附图已经简化了的地方以展示本公开的重要方面。

如以下所阐述的权利要求书被结合到具体实施方式中并构成具体实施方式的一部分。

将通过以下示例来进一步阐明各实施例。

本公开的至少一个实施例包括多模光纤(MMF)40、40'的光学传输系统10、10'。多模光纤40、40'既可以在位480nm~860nm的波长范围（例如，845nm<λ<855nm的范围，850nm）内的信号波长λ1处进行操作以便进行多模(MM)传输，又可以在更长波长λ0（例如，980nm、1060nm、1310nm或1550nm）处进行操作以便进行单模(SM)传输。期望的是，光学传输系统10具有长于950nm的工作波长λ0（例如，980nm、1060nm、1310nm或1550nm），以便降低由于光纤的二氧化硅材料而引起的色散。由此，因为在本文中所公开的光学传输系统中的实施例中的多模光纤40、40'能够既在850nm处进行操作以便进行多模传输，又在更长波长λ0（即，λ0>λ1，其中，λ0-λ1>100nm）处进行操作以便进行单模传输，所以它们可以与通常利用的850nm VCSEL（Vertical Cavity Surface Emitting Laser，垂直腔表面发射激光器）一起使用，并且在稍后的时间，可以有利地通过使用更长波长（例如，λ0>950nm）光源来替换850nm VCSEL从而对光学传输系统进行升级，而无需替换已经铺设的（多根）多模光纤。更长波长光源可以是例如980nm、1060nm、1310nm或1550VCSEL，或者在或者1310nm或者1550nm处进行操作的硅光子激光源，或者在950nm到1600nm的波长处进行操作的DFB（Distributed Feed-back, 分布反馈）激光器。

例如，在光学传输系统10的一些实施例中，在波长λ0>950nm处提供光信号的更长波长光被光学地耦合至单模光纤(SMF)50、50'的相对短长度（例如，0.01m到20m）。例如，
SMF 50.50°的相对短长度可以采用0.01m到0.2m的SMF光纤插芯类型连接器的形式，或者SMF路径中的0.5m到2m的单模光纤（SMF）50.50°反过来可以被直接耦合至在本文中所描述的多模光纤40.40°可以例如在单个模块中提供更长波长光源和SMF 50，以便容易地被耦合至MMF 40°。这些实施例的升级的光学传输系统10利用被优化成用于在840到860nm的波长范围内（例如，以λ0=850nm）进行多模传输的至少均模单模光纤（MFD）40.40°以及被耦合至（多根）多模光纤40.40°的能够在波长λ0>950nm处进行SM传输的至少均模单模光纤（SMF）50.50°。多模光纤40.40°被构成用于在波长λ0处以LP01模式来传播光，并且用于使LP01光学模式的模场直径大约等于（±30%）更优选地，±20%）SM光纤50.50°的模场直径。SM光纤50.50°被光度学地耦合至收发器20,30。从SMF的LP01模式到MMF的LP01模式的耦合损耗取决于于模场直径（MFD）。由于MFD失配而引起的耦合损耗CL可以使用

\[
CL = -10 \log \left(\frac{4}{(MFD_{SM}/MFD_{SM} + MFD_{SM}/MFD_{SM})^2} \right)
\]

来计算。不大于±30%的模场直径失配帮助将由于MFD失配而引起的耦合损耗保持为不大于0.5dB。例如，SMF 50°, 50°可以位于发射器20（包含在长于950nm的波长处进行操作的光源）与MMF 40°, 40°之间。然而，其还可以位于接收器30与MMF 40°, 40°之间。在光学系统10的一些实例中，MMF 40°, 40°的长度为100μm到1000μm。

[0046] 在一些示例性实施例中，在1310nm处对单模光纤50.50°进行单模处理，并且多模光纤40.40°被构造成具有这样的模场直径（MFD）；该模场直径使得在1310nm处传播多模光纤的LP01模式大约等于单模光纤50.50°在此波长处的MFD（即，±30%），或者在λ0=1310nm处，0.7MFD_{SM}<LP01 MFD_{SM}<1.5MFD_{SM}。在一些实施例中，0.8MFD_{SM}<LP01 MFD_{MM}0<1.2MFD_{SM}并且在一些实施例中，在λ0=1310nm处，0.9MFD_{SM}<LP01 MFD_{MM}0<1.1MFD_{SM}。

[0047] 而且，例如，在一些实施例中，单模光纤50.50°在1060nm处是单模光纤，并且多模光纤40.40°被构造成具有这样的模场直径（MFD）；该模场直径使得在1060nm的λ0处传播多模光纤的LP01模式大约等于单模光纤50.50°的模场直径（即，±30%），或者在λ0处，0.7MFD_{SM}<LP01 MFD_{SM}<1.3MFD_{SM}。在一些实施例中，0.8MFD_{SM}<LP01 MFD_{MM}0<1.2MFD_{SM}并且在一些实施例中，λ0=1060nm处，0.9MFD_{SM}<LP01 MFD_{MM}0<1.1MFD_{SM}。

[0048] 而且，例如，在一些实施例中，单模光纤50.50°在λ0=1550nm处是单模光纤，并且多模光纤40.40°被构造成具有这样的模场直径（MFD）；该模场直径使得在λ0=1550nm处传播多模光纤的LP01模式大约等于单模光纤50.50°的模场直径（即，±30%），或者在λ0=1550nm处，0.7MFD_{SM}<LP01 MFD_{SM}<1.2MFD_{SM}。在一些实施例中，0.8MFD_{SM}<LP01 MFD_{MM}0<1.2MFD_{SM}并且在一些实施例中，在λ0=1550nm处，0.9MFD_{SM}<LP01 MFD_{MM}0<1.1MFD_{SM}。

[0049] 并且，例如，在一些实施例中，波长λ0处光纤50.50°进行多模处理，并且该光纤在980nm，或1060nm，或1310nm，或1550nm的波长，或者另一个波长λ0（其中，λ0-λ0<100nm）处以LP01模式来传播光，并且多模光纤被构造成具有这样的模场直径；该模场直径使得在此波长处传播多模光纤40.40°的LP01模式大约等于（±30%）更优选地，±20%，并且甚至更优选地，10%）单模光纤50.50°在该波长处的MFD，以便将MMF与SMF之间的耦合损耗最小化。由此，根据这些实施例，可以在光学传输系统10中将多模光纤40.40°既用于传输由（多个）850nm VCSEL光源所提供的信号，又用于对从单模光纤提供至该多模光纤的信号光进行单模传输，并且有利地，光学传输系统10不需要利用在单模光纤与多模光纤之间的模式转换。
透镜的耦合设备。例如，有利地，SMF和MMF可以彼此接合，或者彼此对接耦合，而不需要具有在其之间的介人的透镜元件。

【0050】根据一些实施例，可以在光学传输系统中将多模光纤40、40′既用于在波长λ0处（例如，在λ1=850nm处）传输由（多个）VCSEL光源所提供的信号，又用于进行到单模光纤50、50′的单模传输（LP01模式，在波长λ0处），其中，单模光纤50、50′位于WGM光纤与接收器之间。在这些实施例中，λ0<λ1<1000nm。在此实施例中，例如，多模光纤和单模光纤可以彼此物理接触，或者可以与其中的折射率匹配流体或粘合剂耦合，或者可以被小的气隙d（例如，d<1mm）分离。（多根）光纤50、50′、40、40′被构造成使得在λ0处，0.7MFD skeptical LP01 MFD<1.3MFD skeptical。因此，在此实施例中，在更高阶光学模式进一步传输到光学系统10中之前，单模光纤50、50′剥离的更高阶光学模式（同时允许以LP01模式传输光）。在这些实施例中，有利地，光学传输系统10不需要利用位于单模光纤50、50′与多模光纤40、40′之间的模式转换/匹配透镜的耦合设备。

【0051】本公开的一些实施例涉及光学传输系统10，该光学传输系统在从950nm到1600nm的范围内的波长处进行操作，且采用光学地耦合至被设计成用于进行850nm多模操作的多模光纤的对端的单模光纤发射器和光学接收器。光学传输系统10采用光发射器与接收器20和30之间的光学路径内的至少一根单模光纤50、50′。在这些实施例中，单模光纤50、50′确保仅在该波长处来自LP01模式的光传输通过该系统，由此有利地启用大于10GHz•km的系统带宽。单模光纤50、50′可以具有相对短的长度l，例如，1cm到5m或者50cm到5m。

【0052】根据一些示例性实施例，单模光纤50′的物理芯直径D50′为从8.0μm到9.5μm，并且此光纤被耦合至多模光纤40。在此实施例中，多模光纤40具有相对小的芯直径D40（例如，14μm到30μm），该芯直径小于传输系统中使用的常规SMF的50μm或62.5μm的直径。

【0053】根据其他实施例，单模光纤50的物理芯直径D50对于常规SMF的物理芯直径，并且具有比常规SMF的芯变化量更小的芯变化量（例如，0.1%到0.25%）。例如，单模光纤50的物理芯直径D50为14μm到24μm，并且此SMF 50可以被耦合至多模光纤40′。这些实施例的多模光纤40′具有例如50μm或62.5μm的芯直径D40。

【0054】可以在限定光学路径的部件中的任何部件中将单模光纤50、50′整合在该光学路径内。例如，单模光纤50、50′可以被耦合至发射器20和/或接收器30。可以将单模光纤50、50′接合在多模光纤40、40′的任一端或两端处，例如以便形成光纤链路的一部分。在一些示例中，升级的光学传输系统10支持大于10Gb/s的数据速率，例如，16Gb/s、25Gb/s或甚至更高。

【0055】如在图1A中所示出的，根据一些实施例，光学系统利用适合用于进行850nm多模传输和在更长波长λ0（例如，980nm、1060nm、1310nm或1550nm）处进行LP01模式传输的多模光纤（MMF）40。此实施例的MMF 40针对在位于845到855nm的范围内的波长λ1（例如，λ1=850nm）处的高带宽（BW）而设计。MMF 40的基本模式（LP01）具有大约等于标准单模光纤50′（例如，SMF-28°）的模场直径（LP01 MFD skeptical）的模场直径，例如，在1310nm处约8.7–9.7μm以及在1550nm处约9.8–10.8μm，并且MMF 40优选地具有约13–30μm的物理芯直径D40，例如，15μm≤D40≤23μm。当MMF 40用于在光学传输系统10中在图1A中所示出的850nm处进行传输时，MM发射器被直接耦合至MMF，在接收端处，MMF 40被耦合至MM接收器。

【0056】当图1A的MMF 40用于在图1B中所示出的更长波长（λ0>950nm，例如，1060nm、
1310nm或1550nm)处进行单模传输时，SM发射器可以被耦合至标准SMF 50’，该标准SMF被耦合至MMF 40 (呈中心对齐)。因为MMF 40的基本模式的MFd与标准SMF 50’的MFd大约相同，所以从SM源20S (或者从SMF 50’)处提供至MMF 40的光被耦合到基本模式LP01中。在接收端处，如果在MMF中没有发生明显的模式耦合损耗，则SM接收器或MM接收器中的任一者都可以被直接耦合至MMF 40。然而，如果在MMF 40中进行传播期间发生模式耦合，则可以将标准SMF 50’作为滤波器放在MMF与接收器之间，以便隔离更高级模式。

【0057】图2A是采用通过多模光纤 (MMF) 40光缆中的单模 (SM) 发射器20S和多模 (MM) 接收器30M的光纤传输系统 (“系统”) 10的示意图，该多模光纤具有被设计成用于在约850nm的标称波长处最佳地进行操作的折射率分布 (即，具有845nm-855nm的范围内的“峰值波长”，在该范围内，模色散最小)。因为在本文中所描述的MM光纤40在波长λ0处以LP01模式来传输光信号，所以从SM发射器20S处发射的光将传播通过光纤40，就好像它是单模光纤。

【0058】图2B类似于图2A，但是采用了SM接收器30S。SM发射器20S可以在如IR或LRM收发器等光通信收发器中使用的SM发射器。MM接收器30M可以在基于VCSEL的收发器中使用的MM接收器，或者其可以是特别设计的MM接收器。SM发射器20S发射光调制22，在示例中，该调制光具有至少595nm的标称波长λ0 (例如，980nm、1060nm、1200nm、1310nm、或1550nm)。进一步地，SM发射器20S发射光有从950nm到1600nm的范围内的波长的光，并且在本文中所公开的系统和方法可以具有此范围内的工作波长。在图2A和图2B中表示出的光学传输系统10的两个实施例中，SM光纤 (未示出) 可以被耦合至收发器20S和多模光纤，从而使得SMF的MFd直径大约等于MMF的MFd直径，即，在波长λ0处，0.7MFdSM<LP01 MFdMM<1.3MFdSM。优选地，在波长λ0处，0.8MFdSM<LP01 MFdMM<1.2MFdSM。在一些实施例中，在波长λ0处，0.9MFdSM<LP01 MFdMM<1.1MFdSM。

【0059】光学系统10的一个实施例类似于图1B中所示出的光学系统的一个示例，但是代替MMF 40，光学系统10包括现有或“遗留”850nm MMF 40，比如，在波长950nm到1600nm处具有12-16μm的范围内的LP01 MFd的现有OM2、OM3或OM4MM光纤，其中，SM收发器20S在从950nm到1600nm的范围内的波长λ0处 (并且特别是在约1060nm (即，1060nm±10nm) 处、或者在约1310nm (即，1310nm±10nm) 处、或者在约1510nm (即，1510nm±10nm) 处) 进行操作以便以可能10Gb/s或更高数据速率 (例如，25Gb/s或更高，取决于如由SMF 40’的功率预算和带宽所限制的系统能力) 在100m到1000m的距离上在数据中心之内或之间传输数据。在此实施例中，SMF 50被设计成用于与现有或“遗留”850nm MMF 40’ (比如，现有OM2、OM3或OM4MM光纤)一起利用。在此实施例中，SMF 40’直接耦合至SM光纤50，该SM光纤被构造在波长λ0处具有使得0.7MFdSM<LP01 MFdMM<1.3MFdSM的MFd直径 (MFdSM)。在一些实施例中，0.8MFdSM<LP01 MFdMM<1.2MFdSM，例如，0.9MFdSM<LP01 MFdMM<1.1MFdSM。MF 50具有12-16μm的范围内的MFd (在位于950nm与1600nm之间的波长λ0处)，在此波长处，该MFd大于是标准SMF 50’的MFd (例如，大于SMF-28®的MFd)。在一些实施例中，被耦合至位于950nm与1600nm的范围内的波长λ0处具有约12-16μm的LP01模式MFd的OM2、OM3或OM4MM光纤40’的SM光纤50的芯直径 (D50) 为例如15到23μm。

【0060】由此，在一些实施例中，光学系统10包括MMF 40’ (比如，在波长λ0处具有12-16μm的MFd的现有OM2、OM3、或OM4MM光纤)，其中，SM收发器20S在从950nm到1600nm的范围内的波长λ0处 (并且特别是在约980nm (±10nm)、1060nm (±10nm)、1310nm (±10nm) 或者1510nm (±
进行操作以便以可能10Gb/s或更高数据速率（例如，25Gb/s或更高，取决于如由MMF 40°的功率预算和带宽所限制的系统能力）在100m到1000m的距离上在数据中心之内或之间传输数据。在这些实施例中，MMF 40°被直接耦合至常规SM光纤50，并且SMF 50被构造成波长λ₀处具有使得0.7MFD_{dw}<LP01 MFD_{dm}<1.3MFD_{dw}的MFD直径（MFD_{dw}）。

【0062】在这些实施例中，此处所讨论的SM发射器30S可以是基于现有标准而设计成用于使用单模光纤（SMF）来工作的发射器。可以对这种SM发射器30S进行修改以便与MMF一起使用来确保更好的光管理或者与现有设备的兼容性。还需要的是，MMF 40°被设计成用于在850nm处进行最佳操作，但是光学传输系统10在从950nm到1600nm的范围内的标称波长处（例如，在约980nm、1060nm、1310nm、或1550nm的标称波长处）进行操作。

【0063】图3A和图3B是作为图2A和图2B的系统10的修改版本的并且被配置成用于减小更高阶模式所产生的不利效果的示例性光学传输系统100的示意图，这些更高阶模式具有与基本LP01模式的群延迟非常不同的群延迟。参照图3A，系统10包括单模接收器或多模接收器（“接收器”）30和安排在MMF 40°与接收器30之间的单模光纤50-50°。在这些实施例中，MMF 50被耦合至SMF 40°，或者MMF 50被耦合至SMF 40°。图3B类似于图3A，并且也包括SM发射器20S与MMF 40°之间的第二单模光纤50-50°。图3A的两个特写插图示出了单模光纤50-50°和MMF 40-40°的截面视图。单模光纤50-50°具有由包层54包围的中心芯52，中心芯具有直径D_{sw}。优选地，单模光纤50-50°具有从5nm到10nm的范围内的长度。多模光纤40-40°具有由包层44包围的直径为D_{sw}的芯42。

【0064】单模光纤50-50°的芯直径D_{sw}小于MMF 40-40°的芯直径D_{dm}。单模光纤50-50°的更小芯直径D_{sw}用于滤出可能在MMF 40-40°中行进的更高阶模式。虽然存在一些模式损耗，但是来自SM发射器20的光在穿过系统10的光22将被限制在基本上沿着MMF 40-40°的中心向下行进的那些模式。

【0065】图4展示了在λ₀＝1310nm处具有若干示例性芯变化量的MMF 40的LP01 MFD对芯半径。为了图4中所示出的模型的目的，我们将MMF 40的芯阿尔法选择为2.1，但是在图4中所展示的芯半径的范围内，计算的LP01 MFD在1.9与2.2之间的阿尔法的范围内变化非常小。例如，我们考虑了当MMF 40的芯变化量为1%时的MFD。已知的是，由纽约州康宁市的康宁公司（Corning Incorporated）所生产的单模光纤SMF-28®在1310nm处具有SMF-28®的9.2μm的标称MFD。图4展示了为了MMF 40能够在λ₀＝1310nm处与SMF-28®的使得在λ₀＝1310nm处0.8MFD_{sw}<LP01 MFD_{dw}<1.2MFD_{sw}的9.2μm的MFD相匹配，变化量为1%的MMF 40的芯半径应当在10μm左右（芯直径D_{dm}应当在20μm左右）。例如，对于具有△＝0.6%的相对芯折射率变化量的MMF 40，该光纤应当优选地具有约15μm的芯直径D_{dm}，以便具有大约等于SMF-28®光纤的MFD的LP01模式MFD。图4还展示出MMF 40的芯变化量减小时，MMF 40的芯半径应当减小，以便在1310nm处LP01 MFD_{dw}能够大约等于SMF-28®的MFD（即，以便使该光纤能够满足以下条件：在λ₀＝1310nm处，0.7MFD_{sw}<LP01 MFD_{sw}<1.3MFD_{sw}）。然而，如果我们选择MMF 40的芯变化量为2.0%，则芯直径D_{dm}应当为30μm。因此，图4展示了在大约±30%的芯变化量时，MMF 40的芯半径应当减小。图4展示了对于MMF 40的任何给定芯变化量值，我们可以选择合适的芯直径D_{dm}，从而使得MMF 40的MFD大约（±30%）等于光纤50°的MFD（即，此示例中，SMF-28®光纤的MFD）。可以对在1550nm处进行的单模操作或对任何其他兴
趣波长λ₀进行类似研究。

【0065】例如，在图5中示出了在λ₀=1550nm的波长处，对于MMF 40的不同芯半径，在若干芯变化量处的LP01 MFD。为了让LP01 MFD在1550nm处与SMF-28®的10.3μm的标称MFD相匹配（在大小上），人们可以将芯变型为1%的情况下的22微米的芯直径或芯变化量为2%的情况下的31微米的芯直径。以上分析示出了对于给定变化量，用于在1310nm和1550nm两者处匹配SMF-28®的MFD的芯直径大约相同，人们可以将芯变化量1%，可以将芯直径选择为约21μm，并且对于变化量2%，可以将芯直径选择为约30.5μm。

【0066】在光学系统10的一些实施例中，对于1310nm操作，单模光纤SMF（例如，作为SM尾纤）可能不与SMF-28®光纤的MFD，并且在这种情况下，在给定此光纤的MFD的情况下，对于给定芯变化量，我们可以参照图4找到芯半径或直径D₀，从而使得MM光纤将具有类似于此SMF的LP01 MFD的LP01 MFD。此相同的SM光纤将在1550nm处非常合适地工作。

【0067】例如，对于芯变化量1%，以上确定20微米的芯直径将在此波长处与SMF-28®的LP01相匹配。相同的光纤在1550nm处具有9.9微米的LP01 MFD，该LP01 MFD基本上类似于SMF-28®的10.3微米值。在一个进一步实施例中，需要时，人们可以将芯变化量2%的芯直径选为55微米的芯直径。芯变化量3%的芯直径选为75微米的芯直径。芯变化量4%的芯直径选为95微米的芯直径。芯变化量5%的芯直径选为125微米的芯直径。芯变化量6%的芯直径选为155微米的芯直径。芯变化量7%的芯直径选为195微米的芯直径。芯变化量8%的芯直径选为235微米的芯直径。芯变化量9%的芯直径选为275微米的芯直径。芯变化量10%的芯直径选为335微米的芯直径。芯变化量11%的芯直径选为395微米的芯直径。芯变化量12%的芯直径选为465微米的芯直径。芯变化量13%的芯直径选为545微米的芯直径。芯变化量14%的芯直径选为635微米的芯直径。芯变化量15%的芯直径选为735微米的芯直径。芯变化量16%的芯直径选为845微米的芯直径。芯变化量17%的芯直径选为965微米的芯直径。芯变化量18%的芯直径选为1095微米的芯直径。芯变化量19%的芯直径选为1235微米的芯直径。芯变化量20%的芯直径选为1385微米的芯直径。芯变化量21%的芯直径选为1545微米的芯直径。芯变化量22%的芯直径选为1715微米的芯直径。芯变化量23%的芯直径选为1895微米的芯直径。芯变化量24%的芯直径选为2085微米的芯直径。芯变化量25%的芯直径选为2285微米的芯直径。芯变化量26%的芯直径选为2495微米的芯直径。芯变化量27%的芯直径选为2715微米的芯直径。芯变化量28%的芯直径选为2945微米的芯直径。芯变化量29%的芯直径选为3195微米的芯直径。芯变化量30%的芯直径选为3465微米的芯直径。芯变化量31%的芯直径选为3755微米的芯直径。芯变化量32%的芯直径选为4065微米的芯直径。芯变化量33%的芯直径选为4395微米的芯直径。芯变化量34%的芯直径选为4745微米的芯直径。芯变化量35%的芯直径选为5115微米的芯直径。芯变化量36%的芯直径选为5505微米的芯直径。芯变化量37%的芯直径选为5925微米的芯直径。芯变化量38%的芯直径选为6375微米的芯直径。芯变化量39%的芯直径选为6865微米的芯直径。芯变化量40%的芯直径选为7395微米的芯直径。芯变化量41%的芯直径选为7975微米的芯直径。芯变化量42%的芯直径选为8615微米的芯直径。芯变化量43%的芯直径选为9315微米的芯直径。芯变化量44%的芯直径选为10075微米的芯直径。芯变化量45%的芯直径选为10895微米的芯直径。芯变化量46%的芯直径选为11785微米的芯直径。芯变化量47%的芯直径选为12755微米的芯直径。芯变化量48%的芯直径选为13825微米的芯直径。芯变化量49%的芯直径选为15005微米的芯直径。芯变化量50%的芯直径选为16305微米的芯直径。芯变化量51%的芯直径选为17715微米的芯直径。芯变化量52%的芯直径选为19255微米的芯直径。芯变化量53%的芯直径选为20935微米的芯直径。芯变化量54%的芯直径选为22775微米的芯直径。芯变化量55%的芯直径选为24785微米的芯直径。芯变化量56%的芯直径选为26995微米的芯直径。芯变化量57%的芯直径选为29425微米的芯直径。芯变化量58%的芯直径选为32125微米的芯直径。芯变化量59%的芯直径选为35085微米的芯直径。芯变化量60%的芯直径选为38355微米的芯直径。芯变化量61%的芯直径选为42015微米的芯直径。芯变化量62%的芯直径选为46075微米的芯直径。芯变化量63%的芯直径选为50555微米的芯直径。芯变化量64%的芯直径选为55555微米的芯直径。芯变化量65%的芯直径选为61035微米的芯直径。芯变化量66%的芯直径选为67035微米的芯直径。芯变化量67%的芯直径选为73535微米的芯直径。芯变化量68%的芯直径选为80735微米的芯直径。芯变化量69%的芯直径选为88835微米的芯直径。芯变化量70%的芯直径选为97935微米的芯直径。芯变化量71%的芯直径选为108035微米的芯直径。芯变化量72%的芯直径选为118135微米的芯直径。芯变化量73%的芯直径选为129235微米的芯直径。芯变化量74%的芯直径选为141335微米的芯直径。芯变化量75%的芯直径选为154435微米的芯直径。芯变化量76%的芯直径选为168535微米的芯直径。芯变化量77%的芯直径选为183635微米的芯直径。芯变化量78%的芯直径选为199735微米的芯直径。芯变化量79%的芯直径选为217035微米的芯直径。芯变化量80%的芯直径选为235335微米的芯直径。芯变化量81%的芯直径选为254635微米的芯直径。芯变化量82%的芯直径选为275335微米的芯直径。芯变化量83%的芯直径选为297035微米的芯直径。芯变化量84%的芯直径选为320035微米的芯直径。芯变化量85%的芯直径选为345035微米的芯直径。芯变化量86%的芯直径选为372035微米的芯直径。芯变化量87%的芯直径选为401035微米的芯直径。芯变化量88%的芯直径选为432035微米的芯直径。芯变化量89%的芯直径选为465035微米的芯直径。芯变化量90%的芯直径选为501035微米的芯直径。芯变化量91%的芯直径选为540135微米的芯直径。芯变化量92%的芯直径选为582035微米的芯直径。芯变化量93%的芯直径选为628035微米的芯直径。芯变化量94%的芯直径选为678035微米的芯直径。芯变化量95%的芯直径选为732035微米的芯直径。芯变化量96%的芯直径选为800135微米的芯直径。芯变化量97%的芯直径选为874135微米的芯直径。芯变化量98%的芯直径选为956135微米的芯直径。芯变化量99%的芯直径选为1046135微米的芯直径。芯变化量100%的芯直径选为1146135微米的芯直径。
μm的范围内的MFD，该范围在如在1310nm处具有9.2μm的MFD的SMF-28®等标准单模光纤50′的MFD的30%内。MMF的理论带宽大于58GHz.km，这些理论带宽优于更少的模式群在MMF 40中进行传播而远高于标准MMF的理论带宽。在表1中所示出的示例性实施例中，15μm≤D<0.0≤23μm，并且多模光纤40的模带宽在波长λ1处为至少2.5GHz•Km并且在波长λ1≥1200nm处为小于2GHz•Km。

表1. MMF 40设计示例

<table>
<thead>
<tr>
<th>示例</th>
<th>示例2</th>
<th>示例3</th>
<th>示例4</th>
<th>示例5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ1 (%)</td>
<td>0.75</td>
<td>0.75</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>α</td>
<td>2.109</td>
<td>2.108</td>
<td>2.106</td>
<td>2.106</td>
</tr>
<tr>
<td>r1 (μm)</td>
<td>9.1</td>
<td>9.0</td>
<td>9.9</td>
<td>10.5</td>
</tr>
<tr>
<td>Δ2 (%)</td>
<td>0</td>
<td>-0.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r2 (μm)</td>
<td>na</td>
<td>10.2</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>D (μm)</td>
<td>na</td>
<td>1.2</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Δ3 (%)</td>
<td>na</td>
<td>-0.4</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>r3 (μm)</td>
<td>na</td>
<td>15.0</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>W (μm)</td>
<td>na</td>
<td>4.8</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>850 nm BW (GHz.km)</td>
<td>20.6</td>
<td>48.7</td>
<td>20.2</td>
<td>10.9</td>
</tr>
<tr>
<td>1200 nm BW (GHz.km)</td>
<td>1.7</td>
<td>2.2</td>
<td>2.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>

在1310 nm处
| MFD (μm) | 9.1 |
| 1550 nm处 | 10.2 |

如以上所讨论的，根据另一个实施例，单模光纤50（光纤跳线50）可以用于使用850nm标准MMF 40′来升级现有系统，以使在1310nm或1550nm处进行单模传输。变化量为1%的单模光纤40′的MFD在1310nm处为14.6μm，并且在1550nm处为15.8μm，并且变化量为2%的标准单模光纤40′的MFD在1310nm处为13.8μm，并且在1550nm处为15.0μm。这些MFD远大于标准SMF 50′。如果标准SMF 50′在1310或1550nm处被用作跳线，那么MMF 40′与SMF 50′之间的MFD失配将激起更高阶光学模式，这些更高阶光学模式将使系统性能降级。可以通过使用如在图8中所示出的特别设计的SMF 50跳线来解决这一问题。

在下表2中描述了MFD类似于标准MMF 40′的MFD的SMF 50的一些示例性实施例，该表提供了SMF实施例50的参数。示例6光纤具有这样的分布设计：凹陷的内部包层包围芯。该光纤的截止波长为1288nm，可以在1310nm或1550nm的波长λ0处进行操作的传输系统10上使用这种SM光纤50。如果SM光纤50仅用于1550nm，那么可以增大其截止波长以便改善弯曲损耗。在示例7的SM光纤50中，通过增大芯变化量来将截止波长增大到1466nm。示例8SM光纤50具有这样的分布设计：在包层中具有低折射率沟槽。示例7和示例8的SM光纤50被设计成用于与芯变化量为1%且芯直径为50μm的标准MMF相匹配。示例9和示例10的SM光纤50被设计成用于与芯变化量为2%且芯直径为62.5μm的标准MMF相匹配。示例9SM光纤50具有凹陷的内部包层，并且示例10具有向上掺杂的外部包层。
表2. SMF 50设计示例

<table>
<thead>
<tr>
<th></th>
<th>示例 6</th>
<th>示例 7</th>
<th>示例 8</th>
<th>示例 9</th>
<th>示例 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_1 (%)</td>
<td>0.12</td>
<td>0.14</td>
<td>0.13</td>
<td>0.135</td>
<td>0.24</td>
</tr>
<tr>
<td>α</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>r_1 (µm)</td>
<td>9.0</td>
<td>9.4</td>
<td>7.9</td>
<td>8.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Δ_2 (%)</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.2</td>
<td>-0.12</td>
<td>0</td>
</tr>
<tr>
<td>r_2 (µm)</td>
<td>9.0</td>
<td>9.4</td>
<td>12.0</td>
<td>8.4</td>
<td>8.4</td>
</tr>
<tr>
<td>d (µm)</td>
<td>0</td>
<td>0</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ_3 (%)</td>
<td>0</td>
<td>0</td>
<td>-0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>r_3 (µm)</td>
<td>19</td>
<td>19.9</td>
<td>19.2</td>
<td>17.9</td>
<td>15.4</td>
</tr>
<tr>
<td>W (µm)</td>
<td>10</td>
<td>10.5</td>
<td>7.2</td>
<td>9.5</td>
<td>4</td>
</tr>
<tr>
<td>截止波长 (nm)</td>
<td>1288</td>
<td>1466</td>
<td>1306</td>
<td>1279</td>
<td>1301</td>
</tr>
<tr>
<td>在 1310 nm 处的 MFD (µm)</td>
<td>14.6</td>
<td>na</td>
<td>14.6</td>
<td>13.7</td>
<td>13.7</td>
</tr>
<tr>
<td>在 1550 nm 处的 MFD (µm)</td>
<td>15.7</td>
<td>15.8</td>
<td>15.7</td>
<td>14.7</td>
<td>14.8</td>
</tr>
</tbody>
</table>

表3

<table>
<thead>
<tr>
<th></th>
<th>示例 11</th>
<th>示例 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_1 (%)</td>
<td>0.095</td>
<td>0.085</td>
</tr>
<tr>
<td>α</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>r_1 (µm)</td>
<td>8.2</td>
<td>7.9</td>
</tr>
<tr>
<td>Δ_2 (%)</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>r_2 (µm)</td>
<td>8.2</td>
<td>7.9</td>
</tr>
<tr>
<td>d (µm)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ_3 (%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_3 (µm)</td>
<td>17.4</td>
<td>16.8</td>
</tr>
<tr>
<td>W (µm)</td>
<td>9.2</td>
<td>8.9</td>
</tr>
<tr>
<td>截止波长 (nm)</td>
<td>1030</td>
<td>936</td>
</tr>
<tr>
<td>在 980 nm 处的 MFD (µm)</td>
<td>na</td>
<td>12.6</td>
</tr>
<tr>
<td>在 1060 nm 处的 MFD (µm)</td>
<td>13.1</td>
<td>13.0</td>
</tr>
</tbody>
</table>

对本领域技术人员将变得清楚的是，可以在不偏离如由所附权利要求书所限定的本公开的精神或范围的情况下对如在本文中所描述的本公开的优选实施例所作的各种修改。因此，本公开涵盖了所提供的这些修改和变形，它们落在所附权利要求书和其等价物的范围内。
除非另外明确指出，否则并不以任何方式意图使在本文中所论述的任何方法解释为要求其步骤按特定顺序执行。相应地，在方法部分所有的步骤所要遵循的程序或在权利要求书或说明中没有另行明确地指出这些步骤将局限于特定顺序的情况下，绝不旨在推测任何具体的顺序。

对本领域的技术人员而言将明显的是，可以在不背离本发明的精神和范围的情况下作出多种不同的修改和变更。由于本领域技术人员可能发现结合本发明的精神和实质所公开的实施例加以修改组合、产生子组合和变体，所以本发明应当解释为包括在所附权利要求及其等效物的范围之内的每一事项。
图8