隐形眼镜产品

一种隐形眼镜产品，包含多焦点隐形眼镜以及缓冲溶液，多焦点隐形眼镜浸入缓冲溶液中。多焦点隐形眼镜包含中心区及至少一环形区，环形区同心环状中心区，环形区的屈光度与中心区的屈光度不同。多焦点隐形眼镜的材质为硅水胶或水胶，借此，隐形眼镜产品有利于控制近视进展并可提升配戴的舒适性。
1. 一种隐形眼镜产品，其特征在于，包含：
 一多焦点隐形眼镜，包含一中心区；及至少一环形区，环绕该中心区，该环形区的屈光度与该中心区的屈光度不同；以及
 一缓冲溶液，该多焦点隐形眼镜浸泡于该缓冲溶液中；
 其中该多焦点隐形眼镜的材质为硅水胶或水胶，最靠近该多焦点隐形眼镜周边的该环形区为一第二环形区，该多焦点隐形眼镜的该中心区的屈光度为PowC，该多焦点隐形眼镜的该第二环形区的最大屈光度为PowP1，其满足下列条件：
 $$3D | PowC - PowP1 | \leq 20D.$$

2. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜包含至少二环形区，各该环形区包含一最大屈光度，所述至少二环形区的最大屈光度中最大者为PowPMax，其满足下列条件：
 $$0D \leq PowPMax \leq 20D.$$

3. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜包含至少二环形区，各该环形区包含一最大屈光度，所述至少二环形区的最大屈光度中最小者为PowPMin，其满足下列条件：
 $$-8D \leq PowPMin \leq 15D.$$

4. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜包含至少二环形区，各该环形区包含一最大屈光度，所述至少二环形区的最大屈光度中最大者为PowPMax，该多焦点隐形眼镜的该中心区的屈光度为PowC，其满足下列条件：
 $$-8.0 \leq PowPMax - PowC | PowPMax | \leq 1.0.$$

5. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜包含至少二环形区，各该环形区包含一最大屈光度，所述至少二环形区的最大屈光度中最大者为PowPMax，该多焦点隐形眼镜的该中心区的屈光度为PowC，其满足下列条件：
 $$0.10 \leq | PowPMax - PowC | PowPMax | \leq 10.$$

6. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜包含至少二环形区，各该环形区包含一斜率绝对值，所述至少二环形区的斜率绝对值中最大者为SloPMax，其满足下列条件：
 $$1.44 \leq SloPMax \leq 20.$$

7. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜包含至少二环形区，各该环形区包含一斜率绝对值，所述至少二环形区的斜率绝对值中最大者为SloPMax，其满足下列条件：
 $$2.40 \leq SloPMax \leq 10.$$

8. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜包含至少二环形区，各该环形区包含一斜率绝对值，所述至少二环形区的斜率绝对值中最小者为SloPMin，其满足下列条件：
 $$1.20 \leq SloPMin \leq 10.$$

9. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜包含至少二环形区，各该环形区包含一斜率绝对值，所述至少二环形区的斜率绝对值中最大者为SloPMax，所述至少二环形区的斜率绝对值中最小者为SloPMin，其满足下列条件：
0 < SloPMn / SloPMax ≤ 0.31。
10. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜的该环
形区的斜率为SloP，其满足下列条件：
1.33 < |SloP| ≤ 20。
11. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜的该中
心区的斜率为SloC，其满足下列条件：
0 ≤ |SloC| ≤ 0.10。
12. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中该多焦点隐形眼镜的该中
心区的直径为DiC，该多焦点隐形眼镜的该第一环形区的外围直径为DiP1，其满足下列条
件：
0.15 ≤ DiC / DiP1 < 1。
13. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中制备该硅水胶的组成物包
含甲基丙烯酸羟乙酯、甲基丙烯酸甲氧基丙三（三甲基硅氧烷基）硅烷、2-羟基-2-甲基-1-
苯基-1-丙酮、N-乙烯基-2-吡咯酮、N，N-二甲基丙烯酸乙二醇酯、二甲基丙烯酸乙二醇
酯、（3-甲基丙
烯酰氧基-2-羟基丙氧基）丙基双（三甲基硅氧基）甲基、异丙醇以及甲基丙烯酸。
14. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中制备该硅水胶的组成物包
含甲基丙烯酸羟乙酯、甲基丙烯酸甲氧基丙三（三甲基硅氧烷基）硅烷、2-羟基-2-甲基-1-
苯基-1-丙酮、N-乙烯基-2-吡咯酮、N，N-二甲基丙烯酸乙二醇酯、二甲基丙烯酸乙二醇
酯、3-乙酰氧
基-2-羟基丙氧基丙基封端的聚二甲基硅氧烷以及正己醇。
15. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中制备该硅水胶的组成物包
含甲基丙烯酸羟乙酯、甲基丙烯酸甲氧基丙三（三甲基硅氧烷基）硅烷、2-羟基-2-甲基-1-
苯基-1-丙酮、N-乙烯基-2-吡咯酮、N，N-二甲基丙烯酸乙二醇酯、二甲基硅氧烷改性氨酯寡聚体、甲
基丙烯酸甲酯以及乙醇。
16. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中制备该硅水胶的组成物包
含甲基丙烯酸羟乙酯、二甲基丙烯酸乙二醇酯、2-羟基-2-甲基-1-苯基-1-丙酮、甘油、三羟甲
基丙烯烷三甲基丙烯酸酯以及甲基丙烯酸。
17. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中制备该硅水胶的组成物包
含甲基丙烯酸羟乙酯、二甲基丙烯酸乙二醇酯、2-羟基-2-甲基-1-苯基-1-丙酮、甘油、三羟甲
基丙烯烷三甲基丙烯酸酯以及2-甲基-2-丙烯酸-2，3-二羟基丙酯。
18. 根据权利要求1所述的隐形眼镜产品，其特征在于，其中制备该硅水胶的组成物包
含甲基丙烯酸羟乙酯、二甲基丙烯酸乙二醇酯、2-羟基-2-甲基-1-苯基-1-丙酮、甘油以及N-
乙烯基-2-吡咯酮。
隐形眼镜产品

技术领域
[0001] 本发明是有关于一种隐形眼镜产品，且特别是有关于一种有利于控制近视进展并可提升配戴舒适性的隐形眼镜产品。

背景技术
[0002] 根据世界卫生组织(WHO)资料显示世界各国近视盛行率介于8%至62%之间，然而在台湾的调查显示18岁以下青少年与儿童的近视率高达85%，其近视发生的比率明显超越其他国家，其中原因之一很可能是由于近年来高度发展的3C电子装置，使儿童的眼睛过早接受不当刺激与造成用眼过度，目前研究显示，一但幼童罹患早发性近视，其后会以一定的速度增加近视度数，研究另指出，得到近视的年龄越低，日后演变成高度近视(大于等于6.00D)的机率越高，而高度近视患者更可能引发视网膜剥离、青光眼等严重的并发症。因此，倘若能够于察觉幼童患者有假性近视时即进行控制与减缓近视，则可有效避免假性近视转变为近视，进而预防高度近视的发生。

[0003] 近视的主要成因是眼球光学构造的变异所造成，其中形成光学成像主要通过眼球的角膜、水晶体与眼球长度等因数所影响，正常人的眼睛可以将影像正确聚焦于视网膜上而得到清晰的影像，近视患者则可能由于角膜与水晶体的屈光度过强(屈光性近视)或是眼球轴距过长(轴性近视)而导致影像聚焦于视网膜之前，呈现影像模糊的近视症状。幼童的近视症状可分为近视与假性近视，其中近视是属于眼球轴距过长的情形，无法通过矫正而恢复，但若为假性近视，则为睫状肌过度用力的短暂近视症状，属于可矫正的近视症状。临床上有许多用于矫正儿童假性近视的方式，主要有角膜塑型镜与长效型散瞳剂等方式，但其中的角膜塑型镜易造成高度外部压力而使配戴者产生不适感，而一般单独使用长效型散瞳剂须要较高浓度的剂量方能发挥矫正近视的效用，但也相对提高产生药物副作用的机率。

发明内容
[0004] 本发明的一目的是提供一种隐形眼镜产品，其包含多焦点隐形眼镜及缓冲溶液，借此，多焦点隐形眼镜可提供物理性的矫正，从而可有效控制近视进展，且可提升配戴的舒适性。

[0005] 依据本发明提供一种隐形眼镜产品，包含多焦点隐形眼镜与缓冲溶液，多焦点隐形眼镜浸泡于缓冲溶液中。多焦点隐形眼镜包含中心区以及至少一环形区，环形区同心环绕中心区，环形区的屈光度与中心区的屈光度不同。多焦点隐形眼镜的材质为硅水胶或水胶，最靠近多焦点隐形眼镜周边的环形区为第一环形区，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，其满足下列条件：

[0006] \[3D < |PowC - PowP1| \leq 20D.\]

[0007] 当|PowC - PowP1|满足上述条件时，有利于矫正近视，减缓第一环形区的屈光度增加幅度，避免因最大屈光度增幅过大所造成不适感。
附图说明

[0008] 为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂，所附附图的说明如下：

[0009] 图1绘示依照本发明一实施方式的一种隐形眼镜产品的示意图；
[0010] 图2绘示图1中多焦点隐形眼镜的平面示意图；
[0011] 图3绘示依照本发明另一实施方式的一种多焦点隐形眼镜的平面示意图；
[0012] 图4绘示依照本发明又一实施方式的一种多焦点隐形眼镜的平面示意图；
[0013] 图5为第一实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0014] 图6为第二实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0015] 图7为第二实施例的多焦点隐形眼镜与第一比较例的多焦点隐形眼镜的波长与光
穿透率的关系图；
[0016] 图8为第三实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0017] 图9为第四实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0018] 图10为第四实施例的多焦点隐形眼镜与第二比较例的多焦点隐形眼镜的波长与
光穿透率的关系图；
[0019] 图11为第五实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0020] 图12为第六实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0021] 图13为第七实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0022] 图14为第七实施例的多焦点隐形眼镜与第三比较例的多焦点隐形眼镜的波长与
光穿透率的关系图；
[0023] 图15为第八实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0024] 图16为第九实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0025] 图17为第十实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0026] 图18为第十一实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0027] 图19为第十一实施例的多焦点隐形眼镜与第四比较例的多焦点隐形眼镜的波长
与光穿透率的关系图；
[0028] 图20为第十二实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0029] 图21为第十二实施例的多焦点隐形眼镜与第五比较例的多焦点隐形眼镜的波长
与光穿透率的关系图；
[0030] 图22绘示依照本发明又一实施方式的一种多焦点隐形眼镜的平面示意图；
[0031] 图23绘示依照本发明又一实施方式的一种多焦点隐形眼镜的平面示意图；
[0032] 图24为第十三实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0033] 图25为第十四实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0034] 图26为第十五实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0035] 图27为第十六实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0036] 图28为第十七实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0037] 图29为第十八实施例的多焦点隐形眼镜的半径与屈光度的关系图；
[0038] 图30为第十九实施例的多焦点隐形眼镜的半径与屈光度的关系图；
图31为第十二实施例的多焦点隐形眼镜的半径与屈光度的关系图；
图32为第二十一实施例的多焦点隐形眼镜的半径与屈光度的关系图；
图33为第二十二实施例的多焦点隐形眼镜的半径与屈光度的关系图；
图34为第二十三实施例的多焦点隐形眼镜的半径与屈光度的关系图；以及
图35为第二十四实施例的多焦点隐形眼镜的半径与屈光度的关系图。

【符号说明】

100：隐形眼镜产品
110、210、310、410、510：多焦点隐形眼镜
111、211、311、411、511：中心区
112、212、312、412、512：第一环形区
120：缓冲溶液
213、313、413、513：第二环形区
314、414、514：第三环形区
415、515：第四环形区
516：第五环形区
ConA：睫状肌麻痹剂于缓冲溶液中的重量百分比浓度
DiC：中心区的直径
DiP1：第一环形区的外圆直径
DiP2：第二环形区的外圆直径
DiP3：第三环形区的外圆直径
DiP4：第四环形区的外圆直径
DiP5：第五环形区的外圆直径
PowC：中心区的屈光度
PowP1：第一环形区的最大屈光度
PowP2：第二环形区的最大屈光度
PowP3：第三环形区的最大屈光度
PowP4：第四环形区的最大屈光度
PowP5：第五环形区的最大屈光度
PowPMax：环形区的最大屈光度中最大者
PowPMin：环形区的最大屈光度中最小者
SloC：中心区的斜率
SloP1：第一环形区的斜率
SloP2：第二环形区的斜率
SloP3：第三环形区的斜率
SloP4：第四环形区的斜率
SloP5：第五环形区的斜率
SloPMax：环形区的斜率绝对值中最大者
SloPMin：环形区的斜率绝对值中最小者
SloP：环形区的斜率
具体实施方式

[0078] 请参照图1，其是示例依本发明一实施方式的一种隐形眼镜产品100的示意图，隐形眼镜产品100包含多焦点隐形眼镜110与缓冲溶液120。多焦点隐形眼镜110浸泡于缓冲溶液120中。

[0079] 请并参见图2，其是示例图1中多焦点隐形眼镜110的平面示意图。多焦点隐形眼镜110包含中心区111以及第一环形区112，第一环形区112同心环绕中心区111，第一环形区112的屈光度与中心区111的屈光度不同。借此，可赋予多焦点隐形眼镜110多焦点的功能，使周边的影像能够聚焦于视网膜之前，从而有效减缓眼球的轴距增长，避免近视的恶化。依据本发明一实施例，中心区111的屈光度固定。

[0080] 多焦点隐形眼镜110的中心区111与第一环形区112至少一者为非球面，借此，有助于第一环形区212设计为具有梯度渐变的屈光度。

[0081] 请参照图1，缓冲溶液120包含睫状肌麻痹剂，睫状肌麻痹剂于缓冲溶液120中的重量百分比浓度为ConA，其满足下列条件：0＜ConA≤1%。借此，睫状肌麻痹剂的浓度适当，有助于放松睫状肌并可降低药物副作用产生的机率。或者，其可满足下列条件：0＜ConA≤0.5%。再或者，其可满足下列条件：0＜ConA≤0.25%。再者，其可满足下列条件：0＜ConA≤0.1%。更或者，其可满足下列条件：0＜ConA≤0.05%。再者，其可满足下列条件：0＜ConA≤0.01%。前述缓冲液120的制备方式，可在配制一基础溶液，基础溶液的配方为市面上用于浸泡、保存隐形眼镜的溶液，再于基础溶液中添加睫状肌麻痹剂至所需的浓度。此外，基础溶液与睫状肌麻痹剂之间不会产生化学反应。

[0082] 依据前述的隐形眼镜产品100，制备多焦点隐形眼镜110的组成物可包含蓝光吸收成分。借此，多焦点隐形眼镜110可吸收高能量蓝光，进而可降低视网膜受蓝光伤害的机率。依据本发明一实施例，蓝光吸收成分可为四苯基二甲基丙烯酸(4-(phenyldiazenyl)phenyl methacrylate)。

[0083] 依据前述的隐形眼镜产品100，制备多焦点隐形眼镜110的组成物可包含UV(Ultraviolet)吸收成分，UV吸收成分可为但不限于2-3-(2H-苯并三唑-2-基)-4-羟基苯基]乙基2-甲基丙烯酸(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl methacrylate)、4-甲基丙烯酸基-2-羟基二苯甲酮(4-methacryloxy-2-hydroxybenzophenone)、2-苯基乙基丙烯酸酯(2-phenylethyl acrylate)、2-甲基丙烯酸苯乙烯酯(2-phenylethyl methacrylate)、2-[2′-羟基-5-(2′-羟基-5′-甲基丙烯酰氧基)乙基]苯基]-2H-苯并三唑(2’-hydroxy-5′-methacryloxyethylphenyl)-2H-benzotriazole)或2-丙烯酸2-(4′-苯甲酰-3-羟基苯氧基)乙基酯(2-(4-benzoyl-3-hydroxyphenoxo)ethyl acrylate)。借此，多焦点隐形眼镜110可吸收高能量UV光，进而可降低视网膜受UV光伤害的机率。依据本发明一实施例，UV吸收成分可为2-2′-羟基-5-2′-(乙基丙烯酰氧基)乙基]苯基]-2H-苯并三唑(2′-hydroxy-5′-methacryloxyethylphenyl)-2H-benzotriazole)或2-丙烯酸2-(4′-苯甲酰-3-羟基苯氧基)乙基酯。前述UV吸收成分可同时使用或单独使用。

[0084] 依据前述的隐形眼镜产品100，多焦点隐形眼镜110的材质可为硅水胶(silicone hydrogel)，借此，可有效提高多焦点隐形眼镜110的透氧率，可避免角膜因缺氧而产生红眼、血丝、红肿等现象，以提供长时间配戴的舒适感。前述硅水胶可为但不限于经美国食品
药物管理局(USFDA)归类至第5群组的隐形眼镜材料，如Balafilcon A、Comfilcon A、Efrofilcon A、Enfilcon A、Galyfilcon A、Lotrafilcon A、Lotrafilcon B、Narafilcon A、Narafilcon B、Senofilcon A、Delefilcon A、Somofilcon A等材料。

【0085】制备前述硅水胶的组成物可包含甲基丙烯酸羟乙酯(2-hydroxyethyl methacrylate)、甲基丙烯酸氧丙基三(三甲基硅氧烷基)硅烷(3-methacryloyloxypropyltris(trimethylsilyloxy)silane)、2-羟基-2-甲基-1-苯基-1-丙酮(2-hydroxy-2-methyl-propiophenone)、N-乙烯基-2-吡咯酮(N-vinyl-2-pyrrolidinone)、N,N-二甲基丙烯酰胺(N,N-dimethyl acrylamide)、二甲基丙烯酸乙二醇酯(ethyleneglycol dimethacrylate)、(3-甲基丙烯酰氧基-2-羟基丙氧基)丙基双(三甲基硅氧基)甲基(3-(3-methacryloxy-2-hydroxypropoxy)propylbis(trimethylsiloxy)methylsilane)、异丙醇(isopropyl alcohol)以及甲基丙烯酸(methacrylic acid)。

【0086】较佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.05%～25%，甲基丙烯酸氧丙基三(三甲基硅氧烷基)硅烷为0.1%～40%，2-羟基-2-甲基-1-苯基-1-丙酮为0.01%～5%，N-乙烯基-2-吡咯酮为0.1%～35%，N,N-二甲基丙烯酰胺为0.1%～40%，二甲基丙烯酸乙二醇酯为0.01%～5%，(3-甲基丙烯酰氧基-2-羟基丙氧基)丙基双(三甲基硅氧基)甲基为0.1%～30%，异丙醇为0.1%～30%以及甲基丙烯酸为0.01%～5%。

【0087】更佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.1%～10%，甲基丙烯酸氧丙基三(三甲基硅氧烷基)硅烷为1%～40%，2-羟基-2-甲基-1-苯基-1-丙酮为0.1%～2%，N-乙烯基-2-吡咯酮为1%～35%，N,N-二甲基丙烯酰胺为1%～20%，二甲基丙烯酸乙二醇酯为0.1%～2%，(3-甲基丙烯酰氧基-2-羟基丙氧基)丙基双(三甲基硅氧基)甲基为1%～30%，异丙醇为1%～20%以及甲基丙烯酸为0.1%～2%。

【0088】制备前述硅水胶的组成物可包含甲基丙烯酸羟乙酯、甲基丙烯酸氧丙基三(三甲基硅氧烷基)硅烷、2-羟基-2-甲基-1-苯基-1-丙酮、N-乙烯基-2-吡咯酮、N,N-二甲基丙烯酰胺、二甲基丙烯酸乙二醇酯、3-乙酰氧基-2-羟基丙氧基丙基封端的聚二甲基硅氧烷(3-acryloxy-2-hydroxypropoxypropyl terminated polydimethylsiloxane)以及正己醇(1-hexanol)。

【0089】较佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.05%～25%，甲基丙烯酸氧丙基三(三甲基硅氧烷基)硅烷为0.1%～40%，2-羟基-2-甲基-1-苯基-1-丙酮为0.01%～5%，N-乙烯基-2-吡咯酮为0.1%～35%，N,N-二甲基丙烯酰胺为0.1%～40%，二甲基丙烯酸乙二醇酯为0.01%～5%，3-乙酰氧基-2-羟基丙氧基丙基封端的聚二甲基硅氧烷为0.1%～40%以及正己醇为0.1%～30%。

【0090】更佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.1%～10%，甲基丙烯酸氧丙基三(三甲基硅氧烷基)硅烷为1%～40%，2-羟基-2-甲基-1-苯基-1-丙酮为0.1%～2%，N-乙烯基-2-吡咯酮为1%～35%，N,N-二甲基丙烯酰胺为1%～20%，二甲基丙烯酸乙二醇酯为0.1%～2%，3-乙酰氧基-2-羟基丙氧基丙基封端的聚二甲基硅氧烷为1%～40%以及正己醇为1%～30%。

【0091】制备前述硅水胶的组成物可包含甲基丙烯酸羟乙酯、甲基丙烯酸氧丙基三(三甲基硅氧烷基)硅烷、2-羟基-2-甲基-1-苯基-1-丙酮、N-乙烯基-2-吡咯酮、N,N-二甲基丙烯
酰胺、二甲基硅氧烷改性氨酯寡聚体（polysiloxane macromer）、甲基丙烯酸甲酯（methyl methacrylate）以及乙醇（ethanol）。

[0092] 佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.05％～25％，甲基丙烯酰氧丙基三（三甲基硅氧烷基）硅烷为0.1％～40％，2-羟基-2-甲基-1-苯基-1-丙酮为0.01％～5％，N-乙烯基-2-吡咯酮为0.1％～35％，N，N-二甲基丙烯酰胺为0.1％～40％，二甲基硅氧烷改性氨酯寡聚体为0.1％～40％，甲基丙烯酸甲酯为0.1％～20％以及乙醇为0.1％～30％。

[0093] 佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.1％～10％，甲基丙烯酰氧丙基三（三甲基硅氧烷基）硅烷为1％～40％，2-羟基-2-甲基-1-苯基-1-丙酮为0.1％～2％，N-乙烯基-2-吡咯酮为1％～35％，N，N-二甲基丙烯酰胺为1％～20％，二甲基硅氧烷改性氨酯寡聚体为1％～40％，甲基丙烯酸甲酯为1％～10％以及乙醇为1％～20％。

[0094] 佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.1％～10％，甲基丙烯酰氧丙基三（三甲基硅氧烷基）硅烷为1％～40％，2-羟基-2-甲基-1-苯基-1-丙酮为0.1％～2％，N-乙烯基-2-吡咯酮为1％～35％，N，N-二甲基丙烯酰胺为1％～20％，二甲基硅氧烷改性氨酯寡聚体为1％～40％，甲基丙烯酸甲酯为1％～10％以及乙醇为1％～20％。

[0095] 佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.1％～10％，甲基丙烯酰氧丙基三（三甲基硅氧烷基）硅烷为1％～40％，2-羟基-2-甲基-1-苯基-1-丙酮为0.1％～2％，N-乙烯基-2-吡咯酮为1％～35％，N，N-二甲基丙烯酰胺为1％～20％，二甲基硅氧烷改性氨酯寡聚体为1％～40％，甲基丙烯酸甲酯为1％～10％以及乙醇为1％～20％。

[0096] 佳地，硅水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为0.1％～10％，甲基丙烯酰氧丙基三（三甲基硅氧烷基）硅烷为1％～40％，2-羟基-2-甲基-1-苯基-1-丙酮为0.1％～2％，N-乙烯基-2-吡咯酮为1％～35％，N，N-二甲基丙烯酰胺为1％～20％，二甲基硅氧烷改性氨酯寡聚体为1％～40％，甲基丙烯酸甲酯为1％～10％以及乙醇为1％～20％。
丙烯酸为0.01%～5%。

[0099] 更佳地，前述水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为40%～96%、二甲基丙烯酸乙二醇酯为0.1%～2%、2-羟基-2-甲基-1-苯基-1-丙酮为0.1%～2%、甘油为0.1%～20%、三羟甲基丙烷三甲基丙烯酸酯为0.1%～2%以及甲基丙烯酸为0.1%～2%。

[0100] 制备前述水胶的组成物可包含甲基丙烯酸羟乙酯、二甲基丙烯酸乙二醇酯、2-羟基-2-甲基-1-苯基-1-丙酮、甘油、三羟甲基丙烷三甲基丙烯酸酯以及2-甲基-2-丙烯酸-2,3-二羟基丙酮（glycerol monomethacrylate）。

[0101] 较佳地，前述水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为10%～94.8%、二甲基丙烯酸乙二醇酯为0.01%～5%、2-羟基-2-甲基-1-苯基-1-丙酮为0.01%～5%、甘油为0.1%～30%、三羟甲基丙烷三甲基丙烯酸酯为0.01%～5%以及2-甲基-2-丙烯酸-2,3-二羟基丙酮为5%～60%。

[0102] 更佳地，前述水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为40%～79.6%、二甲基丙烯酸乙二醇酯为0.1%～2%、2-羟基-2-甲基-1-苯基-1-丙酮为0.1%～2%、甘油为0.1%～20%、三羟甲基丙烷三甲基丙烯酸酯为0.1%～2%以及2-甲基-2-丙烯酸-2,3-二羟基丙酮为20%～50%。

[0103] 制备前述水胶的组成物可包含甲基丙烯酸羟乙酯、二甲基丙烯酸乙二醇酯、2-羟基-2-甲基-1-苯基-1-丙酮、甘油以及N-乙烯基-2-吡咯酮。

[0104] 较佳地，前述水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为10%～96%、二甲基丙烯酸乙二醇酯为0.01%～5%、2-羟基-2-甲基-1-苯基-1-丙酮为0.01%～5%、甘油为0.1%～30%以及N-乙烯基-2-吡咯酮为0.1%～25%。

[0105] 更佳地，前述水胶的组成物中各成分的重量百分比如下：甲基丙烯酸羟乙酯为40%～96%、二甲基丙烯酸乙二醇酯为0.1%～2%、2-羟基-2-甲基-1-苯基-1-丙酮为0.1%～2%、甘油为1%～20%以及N-乙烯基-2-吡咯酮为0.1%～10%。

[0106] 依据本发明一实施例，前述水胶的组成物可更包含蓝光吸收成分或UV吸收成分，较佳地，前述水胶的组成物中蓝光吸收成分或UV吸收成分的重量百分比为0.01%～10%，更佳地，前述水胶的组成物中蓝光吸收成分或UV吸收成分的重量百分比为0.1%～5%。

[0107] 通过调整前述水胶中各成分的比例，可有效增加多焦点隐形眼镜110的含水量与软度，此外，前述水胶的组成物可依实际需要添加其他成分。水胶组成物与硅水胶组成物中使用的单体，如甲基丙烯酸羟乙酯、甲基丙烯酸、2-甲基-2-丙烯酸-2,3-二羟基丙酮、N-乙烯基-2-吡咯酮、甲基丙烯酰氧丙基三(三甲基硅氧烷基)硅烷、N,N-二甲基丙烯酰胺、(2-甲基丙烯酰氧基-2-羟基丙氧基)丙基双(三甲基硅氧烷基)甲基、3-乙酰氧基-2-羟基丙氧基丙基封端的聚二甲基硅氧烷、甲基丙烯酸甲酯等，亦可依实际需要互相替换。

[0108] 请参照图2，多焦点隐形眼镜110的中心区111的直径为DiC，其可满足下列条件：4mm≤DiC≤10mm。借此，可依照不同生理状态下的瞳孔大小弹性调整，提升中心区111矫正近视的精确度，使影像能够完整清晰呈现于视网膜上。较佳地，其可满足下列条件：5mm≤DiC≤9mm。

[0109] 多焦点隐形眼镜110的第一环形区112的外圆直径为DiP1，其可满足下列条件：6mm≤DiP1≤17mm。借此，可依照眼裂大小弹性调整，以提供多焦点隐形眼镜110适当的服贴感，
多焦点隐形眼镜110的中心区111的直径为DiC, 多焦点隐形眼镜110的第一环形区112的外圈直径为DiP1, 其可满足下列条件：0.15≤DiC/DiP1<1。借此，DiC/DiP1的大小适当，有利于依照个人眼球生理状况而设计适当的多焦点隐形眼镜110,进而有利于矫正近视。

多焦点隐形眼镜110的中心区111的屈光度为PowC, 其可满足下列条件：-6.00D≤PowC≤-0.25D。借此，可依照使用者需求，提供适当的矫正近视度数，进而提供清晰的影像。

多焦点隐形眼镜110的第一环形区112的最大屈光度为PowP1, 其可满足下列条件：-5.50D≤PowP1≤-0.50D。借此，可适当设计第一环形区112的最大屈光度，有利于矫正近视。

多焦点隐形眼镜110的中心区111的屈光度为PowC, 多焦点隐形眼镜110的第一环形区112的最大屈光度为PowP1, 其可满足下列条件：|PowC-PowP1|≤20D。借此，有利于矫正近视，减少第一环形区112的屈光度增加幅度，避免因最大屈光度增幅过大所造成不适感。或者，其可满足下列条件：3D≤|PowC-PowP1|≤20D。或者，其可满足下列条件：|PowC-PowP1|≤12D。或者，其可满足下列条件：|PowC-PowP1|≤5D。或者，其可满足下列条件：|PowC-PowP1|≤1D。或者，其可满足下列条件：|PowC-PowP1|≤0.5D。或者，其可满足下列条件：|PowC-PowP1|≤25D。

各个环形区(112)包含一最大屈光度, 环形区的最大屈光度中最大者为PowPMax, 其可满足下列条件：0D≤PowPMax≤20D。借此, 环形区可依使用者状况进行近视控制的屈光度分布设计，较缓和的屈光度设计可加强视力控制的矫正效果，并可于不同疗程与状况差异间进行调整。或者，其可满足下列条件：0D≤PowPMax≤18D。或者，其可满足下列条件：0.5D≤PowPMax≤16D。或者，其可满足下列条件：1.0D≤PowPMax≤15D。或者，其可满足下列条件：2.0D≤PowPMax≤10D。

各个环形区(112)包含一最大屈光度，环形区的最大屈光度中最小者为PowPMin, 其可满足下列条件：-80≤PowPMin≤15D。借此, 环形区可依使用者状况进行近视控制的屈光度分布设计，较缓和的屈光度设计可具有缓冲效果，提升视觉舒适性并维持视力控制的矫正效果。或者，其可满足下列条件：-6D≤PowPMin≤15D。或者，其可满足下列条件：-4D≤PowPMin≤13D。或者，其可满足下列条件：-2D≤PowPMin≤12D。或者，其可满足下列条件：0D≤PowPMin≤11D。或者，其可满足下列条件：0D≤PowPMin≤10D。

具体来说，在本实施方式中，多焦点隐形眼镜110仅包含一个环形区, 亦即第一环形区112, 环形区的最大屈光度中最大者等于第一环形区112的最大屈光度(亦即, PowPMax = PowP1), 环形区的最大屈光度中最小者亦等于第一环形区112的最大屈光度(亦即, PowPMin = PowP1)。在其他实施方式中, 多焦点隐形眼镜可包含复数个环形区。例如, 多焦点隐形眼镜可包含二个环形区, 由中心至周边依序为第二环形区以及第一环形区，第一环形区的最大屈光度为PowP1, 第二环形区的最大屈光度为PowP2。当PowP2大于PowP1, 环形区的最大屈光度中最大者等于第二环形区的最大屈光度(亦即, PowPMax = PowP2), 而环形区的
最大屈光度中最小者等于第一环形区的最大屈光度（即，$\text{PowPMin}=\text{PowP1}$）。或者，当$\text{PowP1} \geq \text{PowP2}$，环形区的最大屈光度中最小者等于第一环形区的最大屈光度（亦即，$\text{PowPMax}=\text{PowP1}$），而环形区的最大屈光度中最小者等于第二环形区的最大屈光度（亦即，$\text{PowPMin}=\text{PowP2}$）。又例如，多焦点隐形眼镜可包含三个环形区，由中心至周边依序为第三环形区，第二环形区以及第一环形区，第一环形区的最大屈光度为PowP1，第二环形区的最大屈光度为PowP2，第三环形区的最大屈光度为PowP3。当$\text{PowP3} \geq \text{PowP1}$，且$\text{PowP1} \geq \text{PowP2}$，环形区的最大屈光度中最小者等于第三环形区的最大屈光度（亦即，$\text{PowPMax}=\text{PowP3}$），而环形区的最大屈光度中最小者等于第二环形区的最大屈光度（亦即，$\text{PowPMin}=\text{PowP2}$）。当多焦点隐形眼镜包含多个环形区时，可依照前述方式确定PowPMax以及PowPMin。再者，多焦点隐形眼镜环形区的最大屈光度的命名规则如下，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，多焦点隐形眼镜的第二环形区的最大屈光度为PowP2，多焦点隐形眼镜的第三环形区的最大屈光度为PowP3，多焦点隐形眼镜的第四环形区的最大屈光度为PowP4，多焦点隐形眼镜的第五环形区的最大屈光度为PowP5，依此类推。

【0117】各个环形区（112）包含—最大屈光度，环形区的最大屈光度中最大者为PowPMax，环形区的最大屈光度中最小者为PowPMin，其可满足下列条件：$-8.0 \leq \text{PowPMin}/\text{PowPMax} \leq 1.0$。借此，有助于在加强视力控制矫正效果与视觉舒适性间取得平衡。或者，其可满足下列条件：$-6.0 \leq \text{PowPMin}/\text{PowPMax} \leq 1.0$。或者，其可满足下列条件：$-5.0 \leq \text{PowPMin}/\text{PowPMax} \leq 0.9$。或者，其可满足下列条件：$-4.0 \leq \text{PowPMin}/\text{PowPMax} \leq 0.8$。或者，其可满足下列条件：$-3.0 \leq \text{PowPMin}/\text{PowPMax} \leq 0.7$。或者，其可满足下列条件：$-2.5 \leq \text{PowPMin}/\text{PowPMax} \leq 0.6$。

【0118】各个环形区（112）包含—最大屈光度，环形区的最大屈光度中最大者为PowPMax，多焦点隐形眼镜110的中心区111的屈光度为PowC，其可满足下列条件：$0.1 \leq |\text{PowPMax}-\text{PowC}|/\text{PowPMax} \leq 0.1$。借此，有助于评估使用者在不同近视程度与疗程时期进行最佳化屈光度变化设计。或者，其可满足下列条件：$0.25 \leq |\text{PowPMax}-\text{PowC}|/\text{PowPMax} \leq 0.9$。或者，其可满足下列条件：$0.25 \leq |\text{PowPMax}-\text{PowC}|/\text{PowPMax} \leq 0.8$。或者，其可满足下列条件：$0.5 \leq |\text{PowPMax}-\text{PowC}|/\text{PowPMax} \leq 0.7$。或者，其可满足下列条件：$0.5 \leq |\text{PowPMax}-\text{PowC}|/\text{PowPMax} \leq 0.6$。或者，其可满足下列条件：$1.0 \leq |\text{PowPMax}-\text{PowC}|/\text{PowPMax} \leq 0.5$。

【0119】各个环形区（112）包含—斜率绝对值，环形区的斜率绝对值中最大者为SloPMax，其可满足下列条件：$0.5 \leq \text{SloPMax} \leq 20$。借此，环形区的屈光度变化较剧烈，可强化视力控制的矫正效果。或者，其可满足下列条件：$1.44 \leq \text{SloPMax} \leq 20$。或者，其可满足下列条件：$0.5 \leq \text{SloPMax} \leq 15$。或者，其可满足下列条件：$0.8 \leq \text{SloPMax} \leq 13$。或者，其可满足下列条件：$0.8 \leq \text{SloPMax} \leq 10$。或者，其可满足下列条件：$2.40 \leq \text{SloPMax} \leq 10$。或者，其可满足下列条件：$1.0 \leq \text{SloPMax} \leq 8$。或者，其可满足下列条件：$1.0 \leq \text{SloPMax} \leq 6$。

【0120】各个环形区（112）包含—斜率绝对值，环形区的斜率绝对值中最小者为SloPMin，其可满足下列条件：$0 \leq \text{SloPMin} \leq 10$。借此，环形区的屈光度变化较为缓和，可维持多焦点隐形眼镜110成型的稳定性与耐用性，并兼顾视觉舒适性。或者，其可满足下列条件：$1.20 \leq \text{SloPMin} \leq 10$。或者，其可满足下列条件：$0 \leq \text{SloPMin} \leq 8$。或者，其可满足下列条件：$0 \leq \text{SloPMin} \leq 6$。或者，其可满足下列条件：$0.1 \leq \text{SloPMin} \leq 5$。或者，其可满足下列条件：$0.1 \leq \text{SloPMin} \leq 3$。

【0121】具体来说，在本实施方式中，多焦点隐形眼镜110仅包含一个环形区，即第一环
形区112，第一环形区112的斜率为 SloP1，即，第一环形区112的斜率的绝对值可表示为 SloP1。因此，环形区的斜率绝对值中最大者等于第一环形区112的斜率绝对值（亦即，SloPMax = |SloP1|），环形区的斜率绝对值中最小者亦等于第一环形区112的斜率绝对值（亦即，SloPMin = |SloP1|）。在其他实施方式中，多焦点隐形眼镜可包含复数个环形区。例如，多焦点隐形眼镜可包含三个环形区，由中心至周边依序为第二环形区以及第一环形区。第二环形区的斜率为 SloP2，其绝对值为 |SloP2|，SloP1与 |SloP1| 的定义如前所述，在此不予赘述。当 |SloP2| 大于 |SloP1|，环形区的斜率绝对值中最大者等于第二环形区的斜率绝对值（亦即，SloPMax = |SloP2|），环形区的斜率绝对值中最小者等于第一环形区的斜率绝对值（亦即，SloPMin = |SloP1|）。或者，当 |SloP1| 大于 |SloP2|，环形区的斜率绝对值中最大者等于第一环形区的斜率绝对值（亦即，SloPMax = |SloP1|），环形区的斜率绝对值中最小者等于第二环形区的斜率绝对值（亦即，SloPMin = |SloP2|）。又例如，多焦点隐形眼镜可包含三个环形区，由中心至周边依序为第三环形区、第二环形区以及第一环形区，第三环形区的斜率为 SloP3，其绝对值为 |SloP3|，SloP2、|SloP2|、SloP1与 |SloP1| 的定义如前所述，在此不予赘述。当 |SloP3| 大于 |SloP1|，且 |SloP1| 大于 |SloP2|，环形区的斜率绝对值中最大者等于第三环形区的斜率绝对值（亦即，SloPMax = |SloP3|），而环形区的斜率绝对值中最小者等于第二环形区的斜率绝对值（亦即，SloPMin = |SloP3|）。当多焦点隐形眼镜包含更多个环形区时，可依照前述方式确定 SloPMax 以及 SloPMin。再者，多焦点隐形眼镜环形区的斜率的命名规则如下，第一环形区的斜率为 SloP1，第二环形区的斜率为 SloP2，第三环形区的斜率为 SloP3，第四环形区的斜率为 SloP4，第五环形区的斜率为 SloP5，依此类推。

[0122] 各个环形区 (112) 包含一斜率绝对值，环形区的斜率绝对值中最大者为 SloPMax，环形区的斜率绝对值中最小者为 SloPMin，其可满足下列条件：0 ≤ SloPMin/SloPMax ≤ 1.0。借此，有利于适当地评估与设计环形区屈光度的变化程度以及环形区的数量，同时兼顾多焦点隐形眼镜110成形的稳定性与耐用性，不致因过薄设计而破裂或过厚而有异物感。或者，其可满足下列条件：0 ≤ SloPMin/SloPMax ≤ 0.31。或者，其可满足下列条件：0.01 ≤ SloPMin/SloPMax ≤ 1.0。或者，其可满足下列条件：0.01 ≤ SloPMin/SloPMax ≤ 0.9。或者，其可满足下列条件：0.02 ≤ SloPMin/SloPMax ≤ 0.8。或者，其可满足下列条件：0.02 ≤ SloPMin/SloPMax ≤ 0.7。

[0123] 多焦点隐形眼镜110的环形区 (112) 的斜率为 SloP，其可满足下列条件：0 ≤ |SloP| ≤ 20。借此，可适当设计环形区数量与屈光度变化幅度，达成视力控制效果以与视觉舒适性间的平衡性。或者，其可满足下列条件：1.33 ≤ |SloP| ≤ 20。或者，其可满足下列条件：0 ≤ |SloP| ≤ 15。或者，其可满足下列条件：0.1 ≤ |SloP| ≤ 13。或者，其可满足下列条件：0.1 ≤ |SloP| ≤ 10。或者，其可满足下列条件：0 ≤ |SloP| ≤ 8。或者，其可满足下列条件：1 ≤ |SloP| ≤ 7。或者，其可满足下列条件：3 ≤ |SloP| ≤ 6。或者，其可满足下列条件：6 ≤ |SloP| ≤ 14。或者，其可满足下列条件：6 ≤ |SloP| ≤ 12。

[0124] 如前所述，多焦点隐形眼镜环形区的斜率的命名规则如下，第一环形区的斜率为 SloP1，第二环形区的斜率为 SloP2，第三环形区的斜率为 SloP3，第四环形区的斜率为 SloP4，第五环形区的斜率为 SloP5，依此类推。也就是说，SloP为 SloP1、SloP2、SloP3、SloP4、SloP5 等斜率的通用表示方式。换句话说，上述有关 SloP 的条件式也可适用于 SloP1、SloP2、SloP3、SloP4、SloP5 等等。
说明书

[0125] 多焦点隐形眼镜110的中心区111的斜率为SloC，其可满足下列条件：0 ≤ |SloC| ≤ 0.10。为此，中心区111的斜率为接近零或等于零的值，显示中心区111可以恒定屈光度矫正近视。理论上，中心区111斜率的设计值等于零。然而，设计值与实际量测值之间可能存在误差，而导致中心区111斜率的实际量测值可能非常接近零的数值。或者，其可满足下列条件：0 ≤ |SloC| ≤ 0.08。或者，其可满足下列条件：0.0001 ≤ |SloC| ≤ 0.06。或者，其可满足下列条件：0.0005 ≤ |SloC| ≤ 0.04。

[0126] 请参照图3，其是示例依照本发明另一实施方式的一种多焦点隐形眼镜210的平面示意图。多焦点隐形眼镜210包含中心区211、第一环形区212以及第二环形区213，中心区211、第二环形区213、第一环形区212由多焦点隐形眼镜210的中心至多焦点隐形眼镜210的周边依序相连且同圆心，多焦点隐形眼镜210的中心区211的直径为D1C，多焦点隐形眼镜210的第一环形区212的外圆直径为D1P1，多焦点隐形眼镜210的第二环形区213的外圆直径为D2P2，其中，第二环形区213的屈光度与中心区211的屈光度不同，第一环形区212的屈光度与中心区211的屈光度不同。借此，可赋予多焦点隐形眼镜210多焦点的功能，使周边的影像能够聚焦于视网膜之前，从而有效减缓眼球的轴距增长，避免近视的恶化。依据本发明一实施例，中心区211的屈光度固定。

[0127] 多焦点隐形眼镜210的中心区211、第一环形区212与第二环形区213中至少一者可为非球面，借此，有助于第一环形区212及/或第二环形区213设计为具有梯度渐变的屈光度。

[0128] 多焦点隐形眼镜210的第二环形区213的外圆直径为D2P2，其可满足下列条件：5mm ≤ D2P2 ≤ 13mm。借此，可有效缓和屈光度的提升幅度，较佳地，其可满足下列条件：6mm ≤ D2P2 ≤ 12mm。

[0129] 多焦点隐形眼镜210的中心区211的直径为D1C，多焦点隐形眼镜210的第二环形区213的外圆直径为D2P2，其可满足下列条件：0.2 ≤ D1C/D2P2 ≤ 1。借此，可有效缓和第二环形区213的屈光度的增幅，减少因屈光度增幅过大所造成的不适感。

[0130] 关于多焦点隐形眼镜210的其他性质可与多焦点隐形眼镜110相同，此将不再予以赘述。

[0131] 请参照图4，其是示例依照本发明又一实施方式的一种多焦点隐形眼镜310的平面示意图，多焦点隐形眼镜310包含中心区311、第一环形区312、第二环形区313以及第三环形区314，中心区311、第三环形区314，第二环形区313、第一环形区312由多焦点隐形眼镜310的中心至多焦点隐形眼镜310的周边依序相连且同圆心，多焦点隐形眼镜310的中心区311的直径为D1C，多焦点隐形眼镜310的第一环形区312的外圆直径为D1P1，多焦点隐形眼镜310的第二环形区313的外圆直径为D2P2，多焦点隐形眼镜310的第三环形区314的外圆直径为D3P3，其中第二环形区313的屈光度与中心区311的屈光度不同，第二环形区313的屈光度与中心区311的屈光度不同，第一环形区312的屈光度与中心区311的屈光度不同。借此，可赋予多焦点隐形眼镜310多焦点的功能，使周边的影像能够聚焦于视网膜之前，从而有效减缓眼球的轴距增长，避免近视的恶化。依据本发明一实施例，中心区311的屈光度固定。

[0132] 由图2至图4可知，依据本发明的多焦点隐形眼镜（110、210、310）可于中心区（111、211、311）外同心环设至少一个环形区（第一环形区（112、212、312）、第二环形区（213、313）、第三环形区（314）），环形区的数量以及其屈光度的配置可弹性调整以符合个人眼球生理状
说明 书

从而能提升矫正近视的效果，而能有效预防近视或控制近视进展。

[0133] 图22绘制依次分析又一实施方式的一种多焦点隐形眼镜410的平面示意图，多焦点隐形眼镜410包含中心区411、第一环形区412、第二环形区413、第三环形区414以及第四环形区415。中心区411、第一环形区412、第二环形区413、第三环形区414以及第四环形区415的中心至多焦点隐形眼镜410的周边依次相连且同心圆，多焦点隐形眼镜410的中心至第一环形区412的外圆直径为DiP1，多焦点隐形眼镜410的第二环形区413的外圆直径为DiP2，多焦点隐形眼镜410的第三环形区414的外圆直径为DiP3，多焦点隐形眼镜410的第四环形区415的外圆直径为DiP4，其中第四环形区415的屈光度与中心区411的屈光度不同，第一环形区414的屈光度与中心区411的屈光度不同，第二环形区413的屈光度与中心区411的屈光度不同，第三环形区412的屈光度与中心区411的屈光度不同。借此，可赋予多焦点隐形眼镜410多焦点的功能。

[0134] 图23绘制依次分析又一实施方式的一种多焦点隐形眼镜510的平面示意图，多焦点隐形眼镜510包含中心区511、第一环形区512、第二环形区513、第三环形区514、第四环形区515以及第五环形区516。中心区511、第一环形区512、第二环形区513、第三环形区514、第四环形区515以及第五环形区516的中心至多焦点隐形眼镜510的周边依次相连且同心圆，多焦点隐形眼镜510的中心至第一环形区512的外圆直径为DiP1，多焦点隐形眼镜510的第二环形区513的外圆直径为DiP2，多焦点隐形眼镜510的第三环形区514的外圆直径为DiP3，多焦点隐形眼镜510的第四环形区515的外圆直径为DiP4，多焦点隐形眼镜510的第五环形区516的外圆直径为DiP5，其中第五环形区516的屈光度与中心区511的屈光度不同，第一环形区514的屈光度与中心区511的屈光度不同，第二环形区513的屈光度与中心区511的屈光度不同，第三环形区512的屈光度与中心区511的屈光度不同。借此，可赋予多焦点隐形眼镜510多焦点的功能。

[0135] 本发明另提供一种隐形眼镜产品，包含多焦点隐形眼镜，其中制备多焦点隐形眼镜的组成物包含蓝色吸收成分。借此，多焦点隐形眼镜可吸收高能量蓝光，进而可降低视网膜受蓝光伤害的机率。关于蓝光吸收成分、多焦点隐形眼镜的材质以及多焦点隐形眼镜的其他细节可参照上述内容，在此将不再予以赘述。

[0136] 〈一实施例〉

[0137] 第一实施例的多焦点隐形眼镜，包含中心区以及第一环形区、第一环形区同心环绕中心区，中心区以及第一环形区中至少一者为非球面，关于第一实施例多焦点隐形眼镜的结构可参照图2。

[0138] 第一实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，关于第一实施例的DiC、DiP1、DiC/DiP1、PowC、PowP1、|PowC-PowP1|的数值请参见表一。
请同时参照表二以及图5，表二列出第一实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图5为第一实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表二以及图5可知，中心区的屈光度固定，第一环形区的屈光度与中心区的屈光度不同，具体来说，第一环形区的屈光度大于中心区的屈光度，第一环形区的屈光度随远离中心区而递增。

第一实施例多焦点隐形眼镜的材质为水胶，关于制备第一实施例水胶的组成物请参照表三。
由表三可知，通过添加2-[2-羟基-5-[2-(甲基丙烯酰氧)乙基]苯基]-2H-苯并三唑，第一实施例的多焦点隐形眼镜可吸收UV光。

第二实施例的多焦点隐形眼镜，包含中心区、第一环形区以及第二环形区，中心区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第二环形区以及第一环形区中至少一者为非球面，关于第二实施例多焦点隐形眼镜的结构可参照图3。

第二实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的第二环形区的外圆直径为DiP2，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，多焦点隐形眼镜的第二环形区的最大屈光度为PowP2，关于第二实施例的DiC、DiP1、DiP2、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、|PowC-PowP1|的数值请参见表四。

<table>
<thead>
<tr>
<th>表四 、第二实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
</tr>
<tr>
<td>DiC/DiP1</td>
</tr>
<tr>
<td>DiC/DiP2</td>
</tr>
</tbody>
</table>

请同时参照表五以及图6，表五列出第二实施例的多焦点隐形眼镜的半径及所对应的屈光度，图6为第二实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表五以及图6可知，中心区的屈光度固定，第二环形区的屈光度与中心区的屈光度不同，第一环形区的屈光度与中心区的屈光度不同，具体来说，第二环形区的屈光度大于中心区的屈光度，且第二环形区的屈光度随远离中心区而递增，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度固定。
第二实施例多焦点隐形眼镜的材质为水胶，关于制备第二实施例水胶的组成物请参照表六A。

表五、第二实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8.00</td>
<td>0.50</td>
<td>0.50</td>
<td>-0.50</td>
</tr>
<tr>
<td>-7.50</td>
<td>0.50</td>
<td>1.00</td>
<td>-0.50</td>
</tr>
<tr>
<td>-7.00</td>
<td>0.50</td>
<td>1.50</td>
<td>-0.50</td>
</tr>
<tr>
<td>-6.50</td>
<td>0.50</td>
<td>2.00</td>
<td>-0.50</td>
</tr>
<tr>
<td>-6.00</td>
<td>0.38</td>
<td>2.50</td>
<td>-0.50</td>
</tr>
<tr>
<td>-5.50</td>
<td>0.25</td>
<td>3.00</td>
<td>-0.38</td>
</tr>
<tr>
<td>-5.00</td>
<td>0.13</td>
<td>3.50</td>
<td>-0.25</td>
</tr>
<tr>
<td>-4.50</td>
<td>0.00</td>
<td>4.00</td>
<td>-0.13</td>
</tr>
<tr>
<td>-4.00</td>
<td>-0.13</td>
<td>4.50</td>
<td>0.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>-0.25</td>
<td>5.00</td>
<td>0.13</td>
</tr>
<tr>
<td>-3.00</td>
<td>-0.38</td>
<td>5.50</td>
<td>0.25</td>
</tr>
<tr>
<td>-2.50</td>
<td>-0.50</td>
<td>6.00</td>
<td>0.38</td>
</tr>
<tr>
<td>-2.00</td>
<td>-0.50</td>
<td>6.50</td>
<td>0.50</td>
</tr>
<tr>
<td>-1.50</td>
<td>-0.50</td>
<td>7.00</td>
<td>0.50</td>
</tr>
<tr>
<td>-1.00</td>
<td>-0.50</td>
<td>7.50</td>
<td>0.50</td>
</tr>
<tr>
<td>-0.50</td>
<td>-0.50</td>
<td>8.00</td>
<td>0.50</td>
</tr>
<tr>
<td>0.00</td>
<td>-0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表六 A

<table>
<thead>
<tr>
<th>成分</th>
<th>含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>44.8</td>
</tr>
<tr>
<td>2-[2-羟基-5-(2-(甲基丙烯酰氧)乙基)苯基]-2H-苯并三唑</td>
<td>1.2</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇酯</td>
<td>0.6</td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基-1-丙酮</td>
<td>0.6</td>
</tr>
<tr>
<td>甘油</td>
<td>10.5</td>
</tr>
<tr>
<td>三羟甲基丙烷三甲基丙烯酸酯</td>
<td>0.3</td>
</tr>
<tr>
<td>2-甲基-2-丙烯酸-2,3-二羟基丙酯</td>
<td>42</td>
</tr>
</tbody>
</table>

由表六A可知，通过添加2-[2-羟基-5-(2-(甲基丙烯酰氧)乙基)苯基]-2H-苯并三唑，第二实施例的多焦点隐形眼镜可吸收UV光。

请参照图7，其为第二实施例的多焦点隐形眼镜与第一比较例的多焦点隐形眼镜的波长与光透过率的关系图，第一比较例与第二实施例的差异在于第一比较例未添加UV吸收成分，具体来说，第一比较例以甲基丙烯酸羟乙酯取代2-[2-羟基-5-(2-(甲基丙烯酰氧)乙基)苯基]-2H-苯并三唑，由图7可推算出第一比较例与第二实施例的多焦点隐形眼镜对于UV-A (波长范围316nm～380nm的UV光) 的阻隔率，计算方法如下：(1-波长316～380nm的平
均穿透率）×100%，以及第一比较例与第二实施例的多焦点隐形眼镜对于UV-B（波长范围280nm~315nm的UV光）的阻隔率，计算方法如下：（1-280nm~315nm的平均穿透率）×100%，并将结果列于表六B。

<table>
<thead>
<tr>
<th>表六B</th>
<th>第一比较例</th>
<th>第二实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-A 的阻隔率(%) (316 nm~380 nm)</td>
<td>5.92</td>
<td>73.19</td>
</tr>
<tr>
<td>UV-B 的阻隔率(%) (280 nm~315 nm)</td>
<td>7.91</td>
<td>96.36</td>
</tr>
</tbody>
</table>

由表六B可知，与第一比较例相比较，第二实施例对UV-A的阻隔率以及UV-B的阻隔率均远大于第一比较例，换言之，第二实施例的多焦点隐形眼镜可有效吸收UV光，进而可降低视网膜受UV光伤害的机率。

＜第三实施例＞

第三实施例的多焦点隐形眼镜，包含中心区、第一环形区以及第二环形区，中心区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第二环形区以及第一环形区中至少一者为非球面，关于第三实施例多焦点隐形眼镜的结构可参照图3。

第三实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的第二环形区的外圆直径为DiP2，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，多焦点隐形眼镜的第二环形区的最大屈光度为PowP2，关于第三实施例的DiC、DiP1、DiP2、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、PowC-PowP1的数值请参见表七。

<table>
<thead>
<tr>
<th>表七、第三实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
</tr>
<tr>
<td>DiC/DiP1</td>
</tr>
<tr>
<td>DiC/DiP2</td>
</tr>
</tbody>
</table>

请同时参照表八以及图8，表八列出第三实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图8为第三实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表八以及图8可知，中心区的屈光度固定，第二环形区的屈光度与中心区的屈光度不同，第一环形区的屈光度与中心区的屈光度不同，具体来说，第二环形区的屈光度大于中心区的屈光度，且第二环形区的屈光度随远离中心区而递增，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度随远离中心区而递增。
表八、第三实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.50</td>
<td>0.25</td>
<td>0.50</td>
<td>-1.00</td>
</tr>
<tr>
<td>-7.00</td>
<td>0.17</td>
<td>1.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>-6.50</td>
<td>0.08</td>
<td>1.50</td>
<td>-1.00</td>
</tr>
<tr>
<td>-5.50</td>
<td>0.00</td>
<td>2.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>-5.00</td>
<td>-0.08</td>
<td>2.50</td>
<td>-0.75</td>
</tr>
<tr>
<td>-4.50</td>
<td>-0.17</td>
<td>3.00</td>
<td>-0.50</td>
</tr>
<tr>
<td>-4.00</td>
<td>-0.25</td>
<td>3.50</td>
<td>-0.42</td>
</tr>
<tr>
<td>-3.50</td>
<td>-0.33</td>
<td>4.00</td>
<td>-0.33</td>
</tr>
<tr>
<td>-3.00</td>
<td>-0.42</td>
<td>4.50</td>
<td>-0.25</td>
</tr>
<tr>
<td>-2.50</td>
<td>-0.50</td>
<td>5.00</td>
<td>-0.17</td>
</tr>
<tr>
<td>-2.00</td>
<td>-0.75</td>
<td>5.50</td>
<td>-0.08</td>
</tr>
<tr>
<td>-1.50</td>
<td>-1.00</td>
<td>6.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-1.00</td>
<td>-1.00</td>
<td>7.00</td>
<td>0.17</td>
</tr>
<tr>
<td>-0.50</td>
<td>-1.00</td>
<td>7.50</td>
<td>0.25</td>
</tr>
<tr>
<td>0.00</td>
<td>-1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第三实施例多焦点隐形眼镜的材料为水胶，关于制备第三实施例水胶的组成物请参照表九。

表九

<table>
<thead>
<tr>
<th>成分</th>
<th>含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>91</td>
</tr>
<tr>
<td>2-[2-(羟基-5-[2-(甲基丙烯酰氧)乙基]-苯基]-2H-苯并三唑</td>
<td>1</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇酯</td>
<td>0.6</td>
</tr>
<tr>
<td>2-(羟基-2-甲基-1-苯基-1-丙烯)</td>
<td>0.6</td>
</tr>
<tr>
<td>甘油</td>
<td>6.3</td>
</tr>
<tr>
<td>N-乙基基-2-吡咯酮</td>
<td>0.5</td>
</tr>
</tbody>
</table>

由表九可知，通过添加2-[2-(羟基-5-[2-(甲基丙烯酰氧)乙基]-苯基]-2H-苯并三唑，第三实施例的多焦点隐形眼镜可吸收UV光。

第四实施例的多焦点隐形眼镜，包含中心区以及第一环形区，第一环形区同心环绕中心区，中心区以及第一环形区中至少一者为非球面，关于第一实施例多焦点隐形眼镜的结构可参照图2。

第四实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的中心区的屈光度为PowC，多
焦点隐形眼镜的第一环形区的最大屈光度为PowP1，关于第四实施例的DiC、DiP1、DiC/DiP1、PowC、PowP1、|PowC-PowP1|的数值请参见表十。

<table>
<thead>
<tr>
<th>表十、第四实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
<tr>
<td>DiC/DiP1</td>
</tr>
</tbody>
</table>

[0171] 请同时参照表十一以及图9，表十一列出第四实施例的多焦点隐形眼镜的半径及其对应的屈光度（负值仅示意为相反方向半径距离），图9为第四实施例的多焦点隐形眼镜的半径与屈光度的关系图，由表十一以及图9可知，中心区的屈光度固定，第一环形区的屈光度与中心区的屈光度不同，具体来说，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度随远离中心区而递增。

<table>
<thead>
<tr>
<th>表十一、第四实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>半径 (mm)</td>
</tr>
<tr>
<td>-7.00</td>
</tr>
<tr>
<td>-6.50</td>
</tr>
</tbody>
</table>

[0173]

半径 (mm)	屈光度 (D)	半径 (mm)	屈光度 (D)
-6.00	-1.14	1.50	-1.50
-5.50	-1.21	2.00	-1.50
-5.00	-1.29	2.50	-1.50
-4.50	-1.36	3.00	-1.50
-4.00	-1.43	3.50	-1.50
-3.50	-1.50	4.00	-1.43
-3.00	-1.50	4.50	-1.36
-2.50	-1.50	5.00	-1.29
-2.00	-1.50	5.50	-1.21
-1.50	-1.50	6.00	-1.14
-1.00	-1.50	6.50	-1.07
-0.50	-1.50	7.00	-1.00
0.00	-1.50	7.50	-1.00

[0174] 第四实施例多焦点隐形眼镜的材质为水胶，关于制备第四实施例水胶的组成物请参照表十二A。
表十二 A

<table>
<thead>
<tr>
<th>成分</th>
<th>含量(wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>82</td>
</tr>
<tr>
<td>2-丙烯酸 2-(4-苯甲酰-3-羟基苯氧基)乙基酯</td>
<td>1</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇酯</td>
<td>0.4</td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基-1-丙酮</td>
<td>0.6</td>
</tr>
<tr>
<td>甘油</td>
<td>13.6</td>
</tr>
<tr>
<td>三羟甲基丙烷三甲基丙烯酸酯</td>
<td>0.2</td>
</tr>
<tr>
<td>甲基丙烯酸</td>
<td>2.2</td>
</tr>
</tbody>
</table>

[0176] 由表十二A可知，通过添加2-丙烯酸2-(4-苯甲酰-3-羟基苯氧基)乙基酯，第四实施例的多焦点隐形眼镜可吸收UV光。

[0177] 请参照图10，其为第四实施例的多焦点隐形眼镜与第二比较例的多焦点隐形眼镜的波长与光穿透率的关系图，第二比较例与第四实施例的差异在于第二比较例未添加UV吸收成分，具体来说，第二比较例以甲基丙烯酸羟乙酯取代2-丙烯酸2-(4-苯甲酰-3-羟基苯氧基)乙基酯。由图10可推算出第二比较例与第四实施例的多焦点隐形眼镜对于UV-A (波长范围316nm~380nm的UV光) 的阻隔率，计算方法如下：(1-波长316~380nm的平均穿透率)×100%，以及第二比较例与第四实施例的多焦点隐形眼镜对于UV-B (波长范围280nm~315nm的UV光) 的阻隔率，计算方法如下：(1-280nm~315nm的平均穿透率)×100%，并将结果列于表十二B。

表十二 B

<table>
<thead>
<tr>
<th></th>
<th>第二比较例</th>
<th>第四实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-A的阻隔率(%)</td>
<td>6.44</td>
<td>79.32</td>
</tr>
<tr>
<td>(316nm~380nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV-B的阻隔率(%)</td>
<td>8.76</td>
<td>98.39</td>
</tr>
<tr>
<td>(280nm~315nm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0180] 由表十二B可知，与第二比较例相较，第四实施例对UV-A的阻隔率以及UV-B的阻隔率均远大于第二比较例，换言之，第四实施例的多焦点隐形眼镜可有效吸收UV光，进而可降低视网膜受UV光伤害的机率。

[0181] <第五实施例>

[0182] 第五实施例的多焦点隐形眼镜，包含中部区、第一环形区以及第二环形区，中心区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依次相连且同圆心，中心区、第二环形区以及第一环形区中至少一者为非球面，关于第五实施例多焦点隐形眼镜的结构可参照图3。

[0183] 第五实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为D1，多焦点隐形眼镜的第一环形区的外环直径为D1P1，多焦点隐形眼镜的第二环形区的外环直径为D1P2，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，多焦点隐形眼镜的第二环形区的最大屈光度为PowP2，关于第五实施例的
DiC，DiP1，DiP2，DiC/DiP1，DiC/DiP2，PowC，PowP1，PowP2，PowC-PowP1的数值请参见表十三。

表十三，第五实施例

<table>
<thead>
<tr>
<th>DiC (mm)</th>
<th>8.00</th>
<th>PowC (D)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiP1 (mm)</td>
<td>15.00</td>
<td>PowP1 (D)</td>
<td>0</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
<td>11.00</td>
<td>PowP2 (D)</td>
<td>0</td>
</tr>
<tr>
<td>DiC/DiP1</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiC/DiP2</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0185] 请同时参照表十四以及图11，表十四列出第五实施例的多焦点隐形眼镜的半径及其所对应的屈光度。图11为第五实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表十四以及图11可知，中心区的屈光度固定，第二环形区的屈光度与中心区的屈光度不同。第一环形区的屈光度与中心区的屈光度不同，具体来说，第二环形区的屈光度大于中心区的屈光度，且第二环形区的屈光度随远离中心区而递增，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度固定。

表十四，第五实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.50</td>
<td>0.00</td>
<td>0.50</td>
<td>-2.00</td>
</tr>
<tr>
<td>-7.00</td>
<td>0.00</td>
<td>1.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>-6.50</td>
<td>0.00</td>
<td>1.50</td>
<td>-2.00</td>
</tr>
<tr>
<td>-6.00</td>
<td>0.00</td>
<td>2.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>-5.50</td>
<td>0.00</td>
<td>2.50</td>
<td>-2.00</td>
</tr>
<tr>
<td>-5.00</td>
<td>-0.67</td>
<td>3.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>-4.50</td>
<td>-1.33</td>
<td>3.50</td>
<td>-2.00</td>
</tr>
<tr>
<td>-4.00</td>
<td>-2.00</td>
<td>4.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>-2.00</td>
<td>4.50</td>
<td>-1.33</td>
</tr>
<tr>
<td>-3.00</td>
<td>-2.00</td>
<td>5.00</td>
<td>-0.67</td>
</tr>
<tr>
<td>-2.50</td>
<td>-2.00</td>
<td>5.50</td>
<td>0.00</td>
</tr>
<tr>
<td>-2.00</td>
<td>-2.00</td>
<td>6.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-1.50</td>
<td>-2.00</td>
<td>6.50</td>
<td>0.00</td>
</tr>
<tr>
<td>-1.00</td>
<td>-2.00</td>
<td>7.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-0.50</td>
<td>-2.00</td>
<td>7.50</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>-2.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0187] 第五实施例多焦点隐形眼镜的材质为水胶，关于制备第五实施例水胶的组成物请参照表十五。

23
表十五

<table>
<thead>
<tr>
<th>成分</th>
<th>含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>45</td>
</tr>
<tr>
<td>2-丙烯酸-(4-苯甲酰-3-羟基苯氧基)乙基酯</td>
<td>0.9</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇酯</td>
<td>0.6</td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基-1-丙酮</td>
<td>0.6</td>
</tr>
<tr>
<td>甘油</td>
<td>10.6</td>
</tr>
<tr>
<td>三羟甲基丙烷三甲基丙烯酸酯</td>
<td>0.3</td>
</tr>
<tr>
<td>2-甲基-2-丙烯酸-2,3-二羟基丙酯</td>
<td>42</td>
</tr>
</tbody>
</table>

[0189] 由表十五可知，通过添加2-丙烯酸2-(4-苯甲酰-3-羟基苯氧基)乙基酯，第五实施例的多焦点隐形眼镜可吸收UV光。

[0190] 第六实施例的多焦点隐形眼镜，包含中心区以及第一环形区，第一环形区同心环绕中心区，中心区以及第一环形区中至少一者为非球面，关于第六实施例多焦点隐形眼镜的结构可参照图2。

[0192] 第六实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，关于第六实施例的DiC、DiP1、DiC/DiP1、PowC、PowP1、|PowC-PowP1|的数值请参见表十六。

表十六、第六实施例

DiC (mm)	PowC (D)	DiP1 (mm)	PowP1 (D)		PowC-PowP1	(D)
----------	----------	-----------	-----------			
9.00		14.00		-2.50		
0.64				0.25		

[0194] 请同时参照表十七以及图12，表十七列出第六实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图12为第六实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表十七以及图12可知，中心区的屈光度固定，第一环形区的屈光度与中心区的屈光度不同，具体来说，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度随远离中心区而递增。
表十七、第六实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.00</td>
<td>-2.25</td>
<td>0.50</td>
<td>-2.50</td>
</tr>
<tr>
<td>-6.50</td>
<td>-2.30</td>
<td>1.00</td>
<td>-2.50</td>
</tr>
<tr>
<td>-6.00</td>
<td>-2.35</td>
<td>1.50</td>
<td>-2.50</td>
</tr>
<tr>
<td>-5.50</td>
<td>-2.40</td>
<td>2.00</td>
<td>-2.50</td>
</tr>
<tr>
<td>-5.00</td>
<td>-2.45</td>
<td>2.50</td>
<td>-2.50</td>
</tr>
<tr>
<td>-4.50</td>
<td>-2.50</td>
<td>3.00</td>
<td>-2.50</td>
</tr>
<tr>
<td>-4.00</td>
<td>-2.50</td>
<td>3.50</td>
<td>-2.50</td>
</tr>
<tr>
<td>-3.50</td>
<td>-2.50</td>
<td>4.00</td>
<td>-2.50</td>
</tr>
<tr>
<td>-3.00</td>
<td>-2.50</td>
<td>4.50</td>
<td>-2.50</td>
</tr>
<tr>
<td>-2.50</td>
<td>-2.50</td>
<td>5.00</td>
<td>-2.45</td>
</tr>
<tr>
<td>-2.00</td>
<td>-2.50</td>
<td>5.50</td>
<td>-2.40</td>
</tr>
<tr>
<td>-1.50</td>
<td>-2.50</td>
<td>6.00</td>
<td>-2.35</td>
</tr>
<tr>
<td>-1.00</td>
<td>-2.50</td>
<td>6.50</td>
<td>-2.30</td>
</tr>
<tr>
<td>-0.50</td>
<td>-2.50</td>
<td>7.00</td>
<td>-2.25</td>
</tr>
<tr>
<td>0.00</td>
<td>-2.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第六实施例多焦点隐形眼镜的材质为水胶，关于制备第六实施例水胶的组成物可参照表十八。

表十八

<table>
<thead>
<tr>
<th>成分</th>
<th>含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>90.4</td>
</tr>
</tbody>
</table>

2-丙烯酸 2-(4-苯甲酰-3-羟基苯氧基)乙基酯 1.2
二甲基丙烯酸乙二醇酯 0.6
2-羟基-2-甲基-1-苯基-1-丙酮 0.7
甘油 6.3
N-乙烯基-2-吡咯酮 0.8

由表十八可知，通过添加2-丙烯酸2-(4-苯甲酰-3-羟基苯氧基)乙基酯，第六实施例的多焦点隐形眼镜可吸收UV光。

<第七实施例>

第七实施例的多焦点隐形眼镜，包含中心区、第一环形区以及第二环形区，中心区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第二环形区以及第一环形区中至少一者为非球面，关于第七实施例多焦点隐形眼镜的结构可参照图3。

第七实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的第二环形区的外圆直径为DiP2，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈
光度为PowP1，多焦点隐形眼镜的第二环形区的最大屈光度为PowP2，关于第七实施例的DiC、DiP1、DiP2、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、|PowC-PowP1|的数值请参见表十九。

<table>
<thead>
<tr>
<th>表十九，第七实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
</tr>
<tr>
<td>DiC/DiP1</td>
</tr>
<tr>
<td>DiC/DiP2</td>
</tr>
</tbody>
</table>

[0204] 请同时参照表二十以及图13，表二十列出第七实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图13为第七实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表二十以及图13可知，中心区的屈光度固定，第二环形区的屈光度与中心区的屈光度不同，第一环形区的屈光度与中心区的屈光度不同，具体来说，第二环形区的屈光度大于中心区的屈光度，且第二环形区的屈光度随远离中心区递增，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度随远离中心区递增。

<table>
<thead>
<tr>
<th>表二十，第七实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>半径 (mm)</td>
</tr>
<tr>
<td>-7.50</td>
</tr>
<tr>
<td>-7.00</td>
</tr>
<tr>
<td>-6.50</td>
</tr>
<tr>
<td>-6.00</td>
</tr>
<tr>
<td>-5.50</td>
</tr>
<tr>
<td>-5.00</td>
</tr>
<tr>
<td>-4.50</td>
</tr>
<tr>
<td>-4.00</td>
</tr>
<tr>
<td>-3.50</td>
</tr>
<tr>
<td>-3.00</td>
</tr>
<tr>
<td>-2.50</td>
</tr>
<tr>
<td>-2.00</td>
</tr>
<tr>
<td>-1.50</td>
</tr>
<tr>
<td>-1.00</td>
</tr>
<tr>
<td>-0.50</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

[0207] 第七实施例多焦点隐形眼镜的材质为水胶，关于制备第七实施例水胶的组成物请参照表二十一A。
<table>
<thead>
<tr>
<th>成分</th>
<th>含量（wt%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>82</td>
</tr>
<tr>
<td>四苯基二甲基丙烯酸</td>
<td>1</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇酯</td>
<td>0.4</td>
</tr>
<tr>
<td>2-烃基-2-甲基-1-苯基-1-丙酮</td>
<td>0.6</td>
</tr>
<tr>
<td>甘油</td>
<td>13.5</td>
</tr>
<tr>
<td>三烃基甲基丙烷三甲基丙烯酰胺</td>
<td>0.2</td>
</tr>
<tr>
<td>甲基丙烯酸</td>
<td>2.3</td>
</tr>
</tbody>
</table>

由表二十一A可知，通过添加四苯基二甲基丙烯酸，第七实施例的多焦点隐形眼镜可吸收蓝光。

请参照图14，其为第七实施例的多焦点隐形眼镜与第三比较例的多焦点隐形眼镜的波长与光穿透率的关系图，第三比较例与第七实施例的差异在于第三比较例未添加蓝光吸收成分，具体来说，第三比较例以甲基丙烯酸羟乙酯取代四苯基二甲基丙烯酸，由图14可推算出第三比较例与第七实施例的多焦点隐形眼镜对于蓝光（波长范围380nm～495nm）的阻隔率，计算方法如下：(1-波长380～495nm的平均穿透率)*100%，并将结果列于表二十一B。

<table>
<thead>
<tr>
<th>蓝光的阻隔率(%) (380 nm～495 nm)</th>
<th>第三比较例</th>
<th>第七实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.21</td>
<td>35.53</td>
<td></td>
</tr>
</tbody>
</table>

由表二十一B可知，与第三比较例相较，第七实施例对蓝光的阻隔率远大于第三比较例，换言之，第七实施例的多焦点隐形眼镜可有效吸收蓝光，进而可降低视网膜受蓝光伤害的机率。

第八实施例的多焦点隐形眼镜，包含中心区以及第一环形区，第一环形区同心环绕中心区，中心区以及第一环形区中至少一者为非球面，关于第八实施例多焦点隐形眼镜的结构可参照图2。

第八实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，关于第八实施例的DiC、DiP1、DiC/DiP1、PowC、PowP1、PowC-PowP1的数值请参见表二十二。
<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.00</td>
<td>-1.75</td>
<td>0.50</td>
<td>-3.50</td>
</tr>
<tr>
<td>-4.50</td>
<td>-2.10</td>
<td>1.00</td>
<td>-3.50</td>
</tr>
<tr>
<td>-4.00</td>
<td>-2.45</td>
<td>1.50</td>
<td>-3.50</td>
</tr>
<tr>
<td>-3.50</td>
<td>-2.80</td>
<td>2.00</td>
<td>-3.50</td>
</tr>
<tr>
<td>-3.00</td>
<td>-3.15</td>
<td>2.50</td>
<td>-3.50</td>
</tr>
</tbody>
</table>

第八实施例多焦点隐形眼镜的材质为水胶，关于制备第八实施例水胶的组成物质参照表二十四。

<table>
<thead>
<tr>
<th>成分</th>
<th>含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>45</td>
</tr>
<tr>
<td>四苯基二甲基丙烯酸</td>
<td>1</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇酯</td>
<td>0.5</td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基-1-丙酮</td>
<td>0.6</td>
</tr>
<tr>
<td>甘油</td>
<td>10.6</td>
</tr>
<tr>
<td>三羟甲基丙烷三甲基丙烯酸酯</td>
<td>0.3</td>
</tr>
<tr>
<td>2-甲基-2-丙烯酸-2,3-二羟基丙酯</td>
<td>42</td>
</tr>
</tbody>
</table>

由表二十四可知，通过添加四苯基二甲基丙烯酸，第八实施例的多焦点隐形眼镜可吸收蓝光。
第九实施例的多焦点隐形眼镜，包含中心区、第一环形区以及第二环形区，中心区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第二环形区以及第一环形区中至少一者为非球面，关于第九实施例多焦点隐形眼镜的结构可参照图3。

第九实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的第二环形区的外圆直径为DiP2，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，多焦点隐形眼镜的第二环形区的最大屈光度为PowP2，关于第九实施例的DiC、DiP1、DiP2、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、|PowC-PowP1|的数值请参见表二十五。

<table>
<thead>
<tr>
<th>表二十五 、 第九实施例</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
<td>6.00</td>
<td>PowC (D)</td>
<td>-4.00</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
<td>14.00</td>
<td>PowP1 (D)</td>
<td>-3.25</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DiP2 (mm)</td>
<td>10.00</td>
<td>PowP2 (D)</td>
<td>-3.75</td>
</tr>
<tr>
<td>DiC/DiP1</td>
<td>0.43</td>
<td></td>
<td>PowC - PowP1 (D)</td>
</tr>
<tr>
<td>DiC/DiP2</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

请同时参照表二十六以及图16，表二十六列出第九实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图16为第九实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表二十六以及图16可知，中心区的屈光度固定，第二环形区的屈光度与中心区的屈光度不同，第一环形区的屈光度与中心区的屈光度不同，具体来说，第二环形区的屈光度大于中心区的屈光度，且第二环形区的屈光度随远离中心区而递增，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度随远离中心区而递增。
[0231] 第九实施例多焦点隐形眼镜的材质为水胶，关于制备第九实施例水胶的组成物请参照表二十七。

[0232]

<table>
<thead>
<tr>
<th>表二十七</th>
</tr>
</thead>
<tbody>
<tr>
<td>成分</td>
</tr>
<tr>
<td>甲基丙烯酸羟乙酯</td>
</tr>
<tr>
<td>四苯基二甲基丙烯酸</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇脂</td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基-1-丙酮</td>
</tr>
<tr>
<td>甘油</td>
</tr>
<tr>
<td>N-乙烯基-2-吡咯酮</td>
</tr>
</tbody>
</table>

[0233] 由表二十七可知，通过添加四苯基二甲基丙烯酸，第九实施例的多焦点隐形眼镜可吸收蓝光。

[0234] (第十实施例)

[0235] 第十实施例的多焦点隐形眼镜，包含中心区以及第一环形区，第一环形区同心环绕中心区，中心区以及第一环形区中至少一者为非球面，关于第十实施例多焦点隐形眼镜的结构可参照图2。

[0236] 第十实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区外圆直径为DiP1，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，关于第十实施例的DiC、DiP1、DiC/DiP1、PowC、PowP1、PowC-PowP1的数值请参见表二十八。
[0237] 表二十八、第十实施例

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
<td>7.00</td>
<td>PowC (D)</td>
<td>-4.50</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
<td>12.00</td>
<td>PowP1 (D)</td>
<td>-3.00</td>
</tr>
<tr>
<td>DiC/DiP1</td>
<td>0.58</td>
<td>PowC – PowP1 (D)</td>
<td>1.50</td>
</tr>
</tbody>
</table>

[0238] 请同时参照表二十九以及图17，表二十九列出第十实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图17为第十实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表二十九以及图17可知，中心区的屈光度固定，第一环形区的屈光度与中心区的屈光度不同，具体来说，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度随远离中心区而递增。

[0239] 表二十九、第十实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.00</td>
<td>-3.00</td>
<td>0.50</td>
<td>-4.50</td>
</tr>
<tr>
<td>-5.50</td>
<td>-3.30</td>
<td>1.00</td>
<td>-4.50</td>
</tr>
<tr>
<td>-5.00</td>
<td>-3.60</td>
<td>1.50</td>
<td>-4.50</td>
</tr>
<tr>
<td>-4.50</td>
<td>-3.90</td>
<td>2.00</td>
<td>-4.50</td>
</tr>
<tr>
<td>-4.00</td>
<td>-4.20</td>
<td>2.50</td>
<td>-4.50</td>
</tr>
<tr>
<td>-3.50</td>
<td>-4.50</td>
<td>3.00</td>
<td>-4.50</td>
</tr>
<tr>
<td>-3.00</td>
<td>-4.50</td>
<td>3.50</td>
<td>-4.50</td>
</tr>
<tr>
<td>-2.50</td>
<td>-4.50</td>
<td>4.00</td>
<td>-4.20</td>
</tr>
<tr>
<td>-2.00</td>
<td>-4.50</td>
<td>4.50</td>
<td>-3.90</td>
</tr>
<tr>
<td>-1.50</td>
<td>-4.50</td>
<td>5.00</td>
<td>-3.60</td>
</tr>
</tbody>
</table>

[0240] -1.00 | -4.50 | 5.50 | -3.30 |
| -0.50 | -4.50 | 6.00 | -3.00 |
| 0.00 | -4.50 | | |

[0241] 十实施例多焦点隐形眼镜的材质为硅水胶，关于制备第十实施例硅水胶的组成物请参照表三十。
表三十一

<table>
<thead>
<tr>
<th>成分</th>
<th>含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>4.3</td>
</tr>
<tr>
<td>甲基丙烯酰氧丙基三(三甲基硅氧烷基)硅烷</td>
<td>28</td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基-1-丙酮</td>
<td>0.6</td>
</tr>
<tr>
<td>N-乙烯基-2-吡咯酮</td>
<td>20.2</td>
</tr>
<tr>
<td>N,N-二甲基丙烯酰胺</td>
<td>12.3</td>
</tr>
<tr>
<td>二甲基丙烯酸乙烯酯</td>
<td>0.6</td>
</tr>
<tr>
<td>2-丙烯酸 2-(4-苯甲酰-3-羟基苯氧基)乙基酯</td>
<td>1</td>
</tr>
<tr>
<td>(3-甲基丙烯酰氧基-2-羟基丙氧基)丙基双(三甲基硅氧烷基)甲基</td>
<td>21.5</td>
</tr>
<tr>
<td>异丙醇</td>
<td>10</td>
</tr>
<tr>
<td>甲基丙烯酸</td>
<td>1.5</td>
</tr>
</tbody>
</table>

由表三十一可知，通过添加2-丙烯酸2-(4-苯甲酰-3-羟基苯氧基)乙基酯，第十一实施例的多焦点隐形眼镜可吸收UV光。

第十一实施例的多焦点隐形眼镜，包含中心区、第一环形区以及第二环形区，中心区、第二环形区、第一环形区由多焦点隐形眼镜的中心到多焦点隐形眼镜的周边依序相连，且同圆心，中心区、第二环形区以及第一环形区中至少一者为非球面，关于第十一实施例多焦点隐形眼镜的结构可参照图3。

第十一实施例的多焦点隐形眼镜中，多焦点隐形眼镜的中心区的直径为DiC，多焦点隐形眼镜的第一环形区的外圆直径为DiP1，多焦点隐形眼镜的第二环形区的外圆直径为DiP2，多焦点隐形眼镜的中心区的屈光度为PowC，多焦点隐形眼镜的第一环形区的最大屈光度为PowP1，多焦点隐形眼镜的第二环形区的最大屈光度为PowP2，关于第十一实施例的DiC,DiP1,DiP2,DiC/DiP1,DiC/DiP2,PowC,PowP1,PowP2,|PowC-PowP1|的数值请参见表三十一。

<table>
<thead>
<tr>
<th>DiC (mm)</th>
<th>PowC (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00</td>
<td>-5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DiP1 (mm)</th>
<th>PowP1 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.00</td>
<td>-2.75</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
<td>PowP2 (D)</td>
</tr>
<tr>
<td>10.00</td>
<td>-4.00</td>
</tr>
<tr>
<td>DiC/DiP1</td>
<td></td>
</tr>
<tr>
<td>0.62</td>
<td>2.25</td>
</tr>
<tr>
<td>DiC/DiP2</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td></td>
</tr>
</tbody>
</table>

表三十一、第十一实施例

请同时参照表三十二以及图18，表三十二列出第十一实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图18为第十一实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表三十二以及图18可知，中心区的屈光度固定，第二环形区的屈光度与中心区的屈光度相同，第一环形区的屈光度与中心区的屈光度不同，
具体来说，第二环形区的屈光度大于中心区的屈光度，且第二环形区的屈光度随远离中心区而递增，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度随远离中心区而递增。

表三十二、第十一实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.50</td>
<td>-2.75</td>
<td>0.50</td>
<td>-5.00</td>
</tr>
<tr>
<td>-6.00</td>
<td>-3.17</td>
<td>1.00</td>
<td>-5.00</td>
</tr>
<tr>
<td>-5.50</td>
<td>-3.58</td>
<td>1.50</td>
<td>-5.00</td>
</tr>
<tr>
<td>-5.00</td>
<td>-4.00</td>
<td>2.00</td>
<td>-5.00</td>
</tr>
<tr>
<td>-4.50</td>
<td>-4.50</td>
<td>2.50</td>
<td>-5.00</td>
</tr>
<tr>
<td>-4.00</td>
<td>-5.00</td>
<td>3.00</td>
<td>-5.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>-5.00</td>
<td>3.50</td>
<td>-5.00</td>
</tr>
<tr>
<td>-3.00</td>
<td>-5.00</td>
<td>4.00</td>
<td>-5.00</td>
</tr>
<tr>
<td>-2.50</td>
<td>-5.00</td>
<td>4.50</td>
<td>-4.50</td>
</tr>
<tr>
<td>-2.00</td>
<td>-5.00</td>
<td>5.00</td>
<td>-4.00</td>
</tr>
<tr>
<td>-1.50</td>
<td>-5.00</td>
<td>5.50</td>
<td>-3.58</td>
</tr>
<tr>
<td>-1.00</td>
<td>-5.00</td>
<td>6.00</td>
<td>-3.17</td>
</tr>
<tr>
<td>-0.50</td>
<td>-5.00</td>
<td>6.50</td>
<td>-2.75</td>
</tr>
<tr>
<td>0.00</td>
<td>-5.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第十一实施例多焦点隐形眼镜的材质为硅水胶，关于制备第十一实施例硅水胶的组成物请参照表三十三A。

表三十三 A

<table>
<thead>
<tr>
<th>成份</th>
<th>含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>4</td>
</tr>
<tr>
<td>甲基丙烯酰氧丙基三 (三甲基硅氧烷基)硅烷</td>
<td>28</td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基-1-丙酮</td>
<td>0.6</td>
</tr>
<tr>
<td>N-乙基基-2-吡咯酮</td>
<td>20.5</td>
</tr>
<tr>
<td>N,N-二甲基丙烯酰胺</td>
<td>12.3</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇酯</td>
<td>0.5</td>
</tr>
<tr>
<td>2-丙烯酸 2-(4-苯甲酰-3-羟基苯氧基)乙基酯</td>
<td>1.1</td>
</tr>
<tr>
<td>3-乙酰氧基-2-羟基丙氧基丙基封端的聚二甲基硅氧烷</td>
<td>22</td>
</tr>
<tr>
<td>正己醇</td>
<td>11</td>
</tr>
</tbody>
</table>

由表三十三A可知，通过添加2-丙烯酸2-(4-苯甲酰-3-羟基苯氧基)乙基酯，第十一实施例的多焦点隐形眼镜可吸收UV光。

请参照图19，其为第十一实施例的多焦点隐形眼镜与第四比较例的多焦点隐形眼镜的波长与光穿透率的关系图，第四比较例与第十一实施例的差异在于第四比较例未添加UV吸收成分，具体来说，第四比较例以甲基丙烯酸羟乙酯取代2-丙烯酸2-(4-苯甲酰-3-羟
基苯氧基)乙基酯,由图19可推算出第四比较例与第十一实施例的多焦点隐形眼镜对于UV-A (波长范围316nm～380nm的UV光)的阻隔率，计算方法如下：(1-波长316～380nm的平均穿透率)*100%，以及第四比较例与第十一实施例的多焦点隐形眼镜对于UV-B (波长范围280nm～315nm的UV光)的阻隔率，计算方法如下：(1-280nm～315nm的平均穿透率)×100%，并将结果列于表三十三B。

| 表三十三B |
| --- | --- |
| UV-A的阻隔率(%) | 第四比较例 | 第十一实施例 |
| (316nm～380nm) | 15.02 | 90.01 |
| UV-B的阻隔率(%) | 40.91 | 99.24 |

由表三十三B可知，与第四比较例相较，第十一实施例对UV-A的阻隔率以及UV-B的阻隔率均远大于第四比较例，换言之，第十一实施例的多焦点隐形眼镜可有效吸收UV光，进而可降低视网膜受UV光伤害的机率。

第十二实施例的多焦点隐形眼镜，包含中心区、第一环形区、第二环形区以及第三环形区，中心区、第一环形区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且均同心，中心区、第二环形区、第二环形区以及第一环形区中至少一者为非球面，关于第十二实施例多焦点隐形眼镜的结构可参照图4。

| 表三十四、第十二实施例 |
| --- | --- | --- |
| DiC (mm) | 4.00 | PowC (D) | -5.50 |
| DiP1 (mm) | 16.00 | PowP1 (D) | -3.00 |
| DiP2 (mm) | 12.00 | PowP2 (D) | -3.00 |
| DiP3 (mm) | 8.00 | PowP3 (D) | -3.75 |
| DiC/DiP1 | 0.25 | | PowC - PowP1 | 2.50 |
| DiC/DiP2 | 0.33 | | PowP1 | 2.50 |

请同时参照表三十五以及图20，表三十五列出第十二实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图20为第十二实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离），由表三十五以及图20可知，中心区的屈光度固定，第三环形区的屈光度与中心区的屈光度不同，第二环形区的屈光度与中心区的屈光度不同，
第一环形区的屈光度与中心区的屈光度不同，具体来说，第三环形区的屈光度大于中心区的屈光度，且第三环形区的屈光度随远离中心区而递增，第二环形区的屈光度大于中心区的屈光度，且第二环形区的屈光度随远离中心区而递增，第一环形区的屈光度大于中心区的屈光度，且第一环形区的屈光度固定。

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8.00</td>
<td>-3.00</td>
<td>0.50</td>
<td>-5.50</td>
</tr>
<tr>
<td>-7.50</td>
<td>-3.00</td>
<td>1.00</td>
<td>-5.50</td>
</tr>
<tr>
<td>-7.00</td>
<td>-3.00</td>
<td>1.50</td>
<td>-5.50</td>
</tr>
<tr>
<td>-6.50</td>
<td>-3.00</td>
<td>2.00</td>
<td>-5.50</td>
</tr>
<tr>
<td>-6.00</td>
<td>-3.00</td>
<td>2.50</td>
<td>-5.06</td>
</tr>
<tr>
<td>-5.50</td>
<td>-3.19</td>
<td>3.00</td>
<td>-4.63</td>
</tr>
<tr>
<td>-5.00</td>
<td>-3.38</td>
<td>3.50</td>
<td>-4.19</td>
</tr>
<tr>
<td>-4.50</td>
<td>-3.56</td>
<td>4.00</td>
<td>-3.75</td>
</tr>
<tr>
<td>-4.00</td>
<td>-3.75</td>
<td>4.50</td>
<td>-3.56</td>
</tr>
</tbody>
</table>

第十二实施例多焦点隐形眼镜的材质为硅水胶，关于制备第十二实施例水胶的组成物请参照表三十六A。

<table>
<thead>
<tr>
<th>成分</th>
<th>含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲基丙烯酸羟乙酯</td>
<td>4.2</td>
</tr>
<tr>
<td>甲基丙烯酸氢丙基三(三甲基硅氧烷基)硅烷</td>
<td>26</td>
</tr>
<tr>
<td>2-羟基-2-甲基-1-苯基-1-丙酮</td>
<td>0.6</td>
</tr>
<tr>
<td>N-乙烯基-2-吡咯酮</td>
<td>20</td>
</tr>
<tr>
<td>N,N-二甲基丙烯酸胺</td>
<td>11</td>
</tr>
<tr>
<td>二甲基硅氧烷改性氨酯交联聚体</td>
<td>24</td>
</tr>
<tr>
<td>四苯基二甲基丙烯酸</td>
<td>1</td>
</tr>
<tr>
<td>甲基丙烯酸甲酯</td>
<td>4.2</td>
</tr>
<tr>
<td>乙醇</td>
<td>9</td>
</tr>
</tbody>
</table>

由表三十六A可知，通过添加四苯基二甲基丙烯酸，第十二实施例的多焦点隐形眼镜可吸收蓝光。
请参照图21, 其为第十二实施例的多焦点隐形眼镜与第五比较例的多焦点隐形眼镜的波长与光穿透率的关系图, 第五比较例与第十二实施例的差异在于第五比较例未添加蓝光吸收成分, 具体来说, 第五比较例以甲基丙烯酸羟乙酯取代四苯基二甲基丙烯酸, 由图21可推算出第五比较例与第十二实施例的多焦点隐形眼镜对于蓝光 (波长范围380nm～495nm) 的阻隔率, 计算方法如下: (1～波长380～495nm的平均穿透率)*100%, 并将结果列于表三十六B。

<table>
<thead>
<tr>
<th>表三十六B</th>
</tr>
</thead>
<tbody>
<tr>
<td>蓝光的阻隔率(%)</td>
</tr>
<tr>
<td>(380 nm～495 nm)</td>
</tr>
</tbody>
</table>

由表三十六B可知, 与第五比较例相较, 第十二实施例对蓝光的阻隔率远大于第五比较例, 换言之, 第十二实施例的多焦点隐形眼镜可有效吸收蓝光, 进而可降低视网膜受蓝光伤害的机率。

第十三实施例的多焦点隐形眼镜, 包含中心区以及第一环形区, 第一环形区同心环绕中心区, 中心区以及第一环形区中至少一者为非球面, 关于第十三实施例多焦点隐形眼镜的结构可参照图2, 多焦点隐形眼镜的材质为硅水胶或水胶。

关于第十三实施例的DiC, DiP1, DiC/DiP1, PowC, PowP1, PowPMax, PowPMin, PowPMin/PowPMax, |PowC-PowP1|, |PowPMax-PowC|, |PowPMax-PowPMin|, |SloC|, |SloP1|, SloPMax, SloPMin, SloPMax/SloPMin/SloPMax的数值以及|SloP|的范围列于表三十七。前述参数的定义请参照前文，在此不予赘述。

<table>
<thead>
<tr>
<th>表三十七、第十三实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
<tr>
<td>DiC/DiP1</td>
</tr>
<tr>
<td>PowC (D)</td>
</tr>
<tr>
<td>PowP1 (D)</td>
</tr>
<tr>
<td>PowPMax (D)</td>
</tr>
<tr>
<td>PowPMin (D)</td>
</tr>
<tr>
<td>PowPMin/PowPMax</td>
</tr>
</tbody>
</table>

请同时参照表三十八以及图24, 表三十八列出第十三实施例的多焦点隐形眼镜的半径及其所对应的屈光度, 图24为第十三实施例的多焦点隐形眼镜的半径与屈光度的关系图 (负值仅示意为相反方向半径距离)。此外, 表三十八中中的双线是用于区分多焦点隐形眼镜中的不同区。具体来说, 第十三实施例中, 表三十八中的双线是用来区分中心区以及第一环形区。在以下实施例 (第十四实施例至第二十四实施例) 中, 表格中的双线功能相似, 将不再予以赘述。
表三十八、第十三届实施例

半径 (mm)	屈光度 (D)	半径 (mm)	屈光度 (D)
-7.00 | 6.00 | 0.50 | -0.50
-6.50 | 5.28 | 1.00 | -0.50
-6.00 | 4.56 | 1.50 | -0.50
-5.50 | 3.83 | 2.00 | -0.50
-5.00 | 3.11 | 2.50 | -0.50
-4.50 | 2.39 | 3.00 | 0.22
-4.00 | 1.67 | 3.50 | 0.94

表三十九、第十四实施例

-3.50 | 0.94 | 4.00 | 1.67
-3.00 | 0.22 | 4.50 | 2.39
-2.50 | -0.50 | 5.00 | 3.11
-2.00 | -0.50 | 5.50 | 3.83
-1.50 | -0.50 | 6.00 | 4.56
-1.00 | -0.50 | 6.50 | 5.28
-0.50 | -0.50 | 7.00 | 6.00
0.00 | -0.50 |

<第十四实施例>

第十四实施例的多焦点隐形眼镜，包含中心区以及第一环形区，第一环形区同心环绕中心区，中心区以及第一环形区中至少一者为非球面，关于第十四实施例多焦点隐形眼镜的结构可参照图2。多焦点隐形眼镜的材质为硅水胶或水胶。

关于第十四实施例的DiC, DiP1, DiC/DiP1, PowC, PowP1, PowPMax, PowPMin, PowPMin/PowPMax, PowC-PowP1, PowPMax-PowC, PowC/SloC, SloP, SloP1, SloPMin/SloPMax的数值以及SloP的范围列于表三十九。前述参数的定义请参照前文，在此不予赘述。

表三十九、第十四实施例

DiC (mm)	4.00	[PowC–PowP1] (D)	12.00
DiP1 (mm)	14.00	[PowPMax–PowC]/PowPMax	1.09
DiC/DiP1	0.29		
PowC (D)	-1.00		
PowP1 (D)	11.00		
PowPMax (D)	11.00		
PowPMin (D)	11.00		
PowPMin/PowPMax	1.00		
PowPMax/PowPMin	1.00		

请同时参照表四十以及图25，表四十列出第十四实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图25为第十四实施例的多焦点隐形眼镜的半径与屈光度的关系图。
（负值仅示意为相反方向半径距离）。

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.00</td>
<td>11.00</td>
<td>0.50</td>
<td>-1.00</td>
</tr>
<tr>
<td>-6.50</td>
<td>9.80</td>
<td>1.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>-6.00</td>
<td>8.60</td>
<td>1.50</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-5.50</th>
<th>7.40</th>
<th>2.00</th>
<th>-1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.00</td>
<td>6.20</td>
<td>2.50</td>
<td>0.20</td>
</tr>
<tr>
<td>-4.50</td>
<td>5.00</td>
<td>3.00</td>
<td>1.40</td>
</tr>
<tr>
<td>-4.00</td>
<td>3.80</td>
<td>3.50</td>
<td>2.60</td>
</tr>
<tr>
<td>-3.50</td>
<td>2.60</td>
<td>4.00</td>
<td>3.80</td>
</tr>
<tr>
<td>-3.00</td>
<td>1.40</td>
<td>4.50</td>
<td>5.00</td>
</tr>
<tr>
<td>-2.50</td>
<td>0.20</td>
<td>5.00</td>
<td>6.20</td>
</tr>
<tr>
<td>-2.00</td>
<td>-1.00</td>
<td>5.50</td>
<td>7.40</td>
</tr>
<tr>
<td>-1.50</td>
<td>-1.00</td>
<td>6.00</td>
<td>8.60</td>
</tr>
<tr>
<td>-1.00</td>
<td>-1.00</td>
<td>6.50</td>
<td>9.80</td>
</tr>
<tr>
<td>-0.50</td>
<td>-1.00</td>
<td>7.00</td>
<td>11.00</td>
</tr>
<tr>
<td>0.00</td>
<td>-1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(第十五实施例)

第十五实施例的多焦点隐形眼镜，包含中心区、第一环形区以及第二环形区，中心区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第二环形区以及第一环形区中至少一者为非球面，关于第十五实施例多焦点隐形眼镜的结构可参照图3。多焦点隐形眼镜的材质为硅水胶或水胶。

关于第十五实施例的DiC、DiP1、DiP2、Di/C/DiP1、Di/C/DiP2、PowC、PowP1、PowP2、PowPMax、PowPMin、PowPMax/PowPMin、PowC-PowP1、PowPMax-PowC/PowPMax、SloC、SloP1、SloP2、SloPMax、SloPMin、SloPMax/SloPMin/SloPMax的数值以及|SloP|的范围列于表四十一。前述参数的定义请参照前文，在此不赘述。
请同时参照表四十二以及图26，表四十二列出第十五实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图26为第十五实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

<table>
<thead>
<tr>
<th>Dic (mm)</th>
<th>PowMin/PowMax</th>
<th>0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiP1 (mm)</td>
<td>PowC-PowP1</td>
<td>16.50</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
<td>PowMax-PowC/PowMax</td>
<td>1.10</td>
</tr>
<tr>
<td>DiC/DiP1</td>
<td>SloC</td>
<td>0</td>
</tr>
<tr>
<td>DiC/DiP2</td>
<td>SloP1</td>
<td>4.00</td>
</tr>
<tr>
<td>PowC (D)</td>
<td>SloP2</td>
<td>2.25</td>
</tr>
<tr>
<td>PowP1 (D)</td>
<td>SloMax</td>
<td>4.00</td>
</tr>
<tr>
<td>PowP2 (D)</td>
<td>SloMin</td>
<td>2.25</td>
</tr>
<tr>
<td>PowMax (D)</td>
<td>SloMin/SloMax</td>
<td>0.56</td>
</tr>
<tr>
<td>PowMin (D)</td>
<td>SloP</td>
<td>2.25-4.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.50</td>
<td>15.00</td>
<td>0.50</td>
<td>-1.50</td>
</tr>
<tr>
<td>-6.00</td>
<td>13.00</td>
<td>1.00</td>
<td>-1.50</td>
</tr>
<tr>
<td>-5.50</td>
<td>11.00</td>
<td>1.50</td>
<td>-1.50</td>
</tr>
<tr>
<td>-5.00</td>
<td>9.00</td>
<td>2.00</td>
<td>-0.38</td>
</tr>
<tr>
<td>-4.50</td>
<td>7.00</td>
<td>2.50</td>
<td>0.75</td>
</tr>
<tr>
<td>-4.00</td>
<td>5.00</td>
<td>3.00</td>
<td>1.88</td>
</tr>
<tr>
<td>-3.50</td>
<td>3.00</td>
<td>3.50</td>
<td>3.00</td>
</tr>
<tr>
<td>-3.00</td>
<td>1.88</td>
<td>4.00</td>
<td>5.00</td>
</tr>
<tr>
<td>-2.50</td>
<td>0.75</td>
<td>4.50</td>
<td>7.00</td>
</tr>
<tr>
<td>-2.00</td>
<td>-0.38</td>
<td>5.00</td>
<td>9.00</td>
</tr>
<tr>
<td>-1.50</td>
<td>-1.50</td>
<td>5.50</td>
<td>11.00</td>
</tr>
<tr>
<td>-1.00</td>
<td>-1.50</td>
<td>6.00</td>
<td>13.00</td>
</tr>
<tr>
<td>-0.50</td>
<td>-1.50</td>
<td>6.50</td>
<td>15.00</td>
</tr>
<tr>
<td>0.00</td>
<td>-1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第十六实施例的多焦点隐形眼镜，包含中心区、第一环形区以及第二环形区，中心区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第二环形区以及第一环形区内至少一者为非球面，关于第十六实施例多焦点隐形眼镜的结构可参照图3。多焦点隐形眼镜的材质为硅水胶或水胶。
SloP1、SloP2、SloPMax、SloPMin、SloPMin/SloPMax的数值以及|SloP|的范围列于表四十三。前述参数的定义请参照前文，在此不予赘述。

表四十三、第十六实施例

<table>
<thead>
<tr>
<th>DiC (mm)</th>
<th>PowPMin/PowPMax</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>0.14</td>
</tr>
</tbody>
</table>

[D0294]

<table>
<thead>
<tr>
<th>DiP1 (mm)</th>
<th>14.00</th>
<th>(PowC–PowP1) (D)</th>
<th>9.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiP2 (mm)</td>
<td>7.00</td>
<td>PowPMax-PowC/PowPMax</td>
<td>1.29</td>
</tr>
<tr>
<td>DiC/DiP1</td>
<td>0.14</td>
<td>SloC</td>
<td>0</td>
</tr>
<tr>
<td>DiC/DiP2</td>
<td>0.29</td>
<td>SloP1</td>
<td>1.68</td>
</tr>
<tr>
<td>PowC (D)</td>
<td>-2.00</td>
<td>SloP2</td>
<td>1.20</td>
</tr>
<tr>
<td>PowP1 (D)</td>
<td>7.00</td>
<td>SloPMax</td>
<td>1.68</td>
</tr>
<tr>
<td>PowP2 (D)</td>
<td>1.00</td>
<td>SloPMin</td>
<td>1.20</td>
</tr>
<tr>
<td>PowPMax (D)</td>
<td>7.00</td>
<td>SloPMin/SloPMax</td>
<td>0.71</td>
</tr>
<tr>
<td>PowPMin (D)</td>
<td>1.00</td>
<td></td>
<td>1.20~1.68</td>
</tr>
</tbody>
</table>

[D0295] 请同时参照表四十四以及图27，表四十四列出第十六实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图27为第十六实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

表四十四、第十六实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.00</td>
<td>7.00</td>
<td>0.50</td>
<td>-2.00</td>
</tr>
<tr>
<td>-6.50</td>
<td>6.14</td>
<td>1.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>-6.00</td>
<td>5.29</td>
<td>1.50</td>
<td>-1.40</td>
</tr>
<tr>
<td>-5.50</td>
<td>4.43</td>
<td>2.00</td>
<td>-0.80</td>
</tr>
<tr>
<td>-5.00</td>
<td>3.57</td>
<td>2.50</td>
<td>-0.20</td>
</tr>
<tr>
<td>-4.50</td>
<td>2.71</td>
<td>3.00</td>
<td>0.40</td>
</tr>
<tr>
<td>-4.00</td>
<td>1.86</td>
<td>3.50</td>
<td>1.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>1.00</td>
<td>4.00</td>
<td>1.86</td>
</tr>
<tr>
<td>-3.00</td>
<td>0.40</td>
<td>4.50</td>
<td>2.71</td>
</tr>
<tr>
<td>-2.50</td>
<td>-0.20</td>
<td>5.00</td>
<td>3.57</td>
</tr>
<tr>
<td>-2.00</td>
<td>-0.80</td>
<td>5.50</td>
<td>4.43</td>
</tr>
<tr>
<td>-1.50</td>
<td>-1.40</td>
<td>6.00</td>
<td>5.29</td>
</tr>
<tr>
<td>-1.00</td>
<td>-2.00</td>
<td>6.50</td>
<td>6.14</td>
</tr>
<tr>
<td>-0.50</td>
<td>-2.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>0.00</td>
<td>-2.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[D0296] 〈第十七实施例〉

[D0299] 第十七实施例的多焦点隐形眼镜，包含中心区、第一环形区、第二环形区以及第三环形区，中心区、第三环形区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点
隐形眼镜的周边依序相连且同圆心，中心区、第三环区、第二环区以及第一环区中至少一者为非球面，关于第十七实施例多焦点隐形眼镜的结构可参照图4。多焦点隐形眼镜的材质为硅水胶或水胶。

[0300] 关于第十七实施例的DiC、DiP1、DiP2、DiP3、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、PowP3、PowPMax、PowPMin、PowPMin/PowPMax、|PowC-PowP1|、|PowPMax-PowC|、|PowPMax-PowC|、|PowPMax-PowC|、|SloC|、|SloP1|、|SloP2|、|SloP3|、SloPMax、SloPMin的数值以及|SloP|的范围列于表四十五。前述参数的定义请参照前文，在此不予赘述。

[0301]

<table>
<thead>
<tr>
<th>表四十五，第十七实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
</tr>
<tr>
<td>DiP3 (mm)</td>
</tr>
<tr>
<td>DiC/DiP1</td>
</tr>
<tr>
<td>DiC/DiP2</td>
</tr>
<tr>
<td>PowC (D)</td>
</tr>
<tr>
<td>PowP1 (D)</td>
</tr>
<tr>
<td>PowP2 (D)</td>
</tr>
<tr>
<td>PowP3 (D)</td>
</tr>
<tr>
<td>PowPMax (D)</td>
</tr>
<tr>
<td>PowPMin (D)</td>
</tr>
</tbody>
</table>

[0302] 请同时参照表四十六以及图28，表四十六列出第十七实施例的多焦点隐形眼镜的半径及所对应的屈光度,图28为第十七实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

[0303]

<table>
<thead>
<tr>
<th>表四十六，第十七实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>半径 (mm)</td>
</tr>
<tr>
<td>-8.00</td>
</tr>
<tr>
<td>-7.50</td>
</tr>
<tr>
<td>-7.00</td>
</tr>
<tr>
<td>-6.50</td>
</tr>
<tr>
<td>-6.00</td>
</tr>
<tr>
<td>-5.50</td>
</tr>
<tr>
<td>-5.00</td>
</tr>
<tr>
<td>-4.50</td>
</tr>
<tr>
<td>-4.00</td>
</tr>
<tr>
<td>-3.50</td>
</tr>
<tr>
<td>-3.00</td>
</tr>
</tbody>
</table>
[0304]

<table>
<thead>
<tr>
<th></th>
<th>6.00</th>
<th>1.71</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.50</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>-2.00</td>
<td>-0.83</td>
<td>6.50</td>
</tr>
<tr>
<td>-1.50</td>
<td>-1.67</td>
<td>7.00</td>
</tr>
<tr>
<td>-1.00</td>
<td>-2.50</td>
<td>7.50</td>
</tr>
<tr>
<td>-0.50</td>
<td>-2.50</td>
<td>8.00</td>
</tr>
<tr>
<td>0.00</td>
<td>-2.50</td>
<td>2.00</td>
</tr>
</tbody>
</table>

[0305] 〈第十八实施例〉

[0306] 第十八实施例的多焦点隐形眼镜，包含中心区、第一环形区、第二环形区以及第三环形区，中心区、第三环形区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第三环形区、第二环形区以及第一环形区中至少一者为非球面，关于第十八实施例多焦点隐形眼镜的结构可参照图4。多焦点隐形眼镜的材质为硅水胶或水胶。

[0307] 关于第十八实施例的DiC、DiP1、DiP2、DiP3、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、PowP3、PowPMax、PowPMin、PowPMIn/PowPMax、|PowC–PowP1|、|PowPMax–PowC|/PowPMax、|SloC|、|SloP1|、|SloP2|、|SloP3|、SloPMax、SloPMin、SloPMax/SloPMin的数值以及|SloP|的范围列于表四十七。前述参数的定义请参照前文，在此不予赘述。

[0308] 表四十七 第十八实施例

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>PowPMin/PowPMax</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
<td>3.00</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
<td>14.00</td>
<td>PowPMin/PowPMax</td>
<td>8.00</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
<td>11.00</td>
<td>PowPMax–PowC/PowPMax</td>
<td>1.60</td>
</tr>
<tr>
<td>DiP3 (mm)</td>
<td>7.00</td>
<td>SloC</td>
<td>0</td>
</tr>
<tr>
<td>DiC/DiP1</td>
<td>0.21</td>
<td>SloP1</td>
<td>0</td>
</tr>
<tr>
<td>DiC/DiP2</td>
<td>0.27</td>
<td>SloP2</td>
<td>0.12</td>
</tr>
<tr>
<td>PowC (D)</td>
<td>-3.00</td>
<td>SloP3</td>
<td>3.88</td>
</tr>
<tr>
<td>PowP1 (D)</td>
<td>5.00</td>
<td>SloPMax</td>
<td>3.88</td>
</tr>
<tr>
<td>PowP2 (D)</td>
<td>5.00</td>
<td>SloPMin</td>
<td>0</td>
</tr>
<tr>
<td>PowP3 (D)</td>
<td>4.75</td>
<td>SloPMax/SloPMin</td>
<td>0</td>
</tr>
<tr>
<td>PowPMIn (D)</td>
<td>5.00</td>
<td>SloP</td>
<td>0–3.88</td>
</tr>
<tr>
<td>PowPMax (D)</td>
<td>4.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0309] 请同时参照表四十八以及图29，表四十八列出第十八实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图29为第十八实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。
[0310] 表四十八、第十八实例例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.00</td>
<td>5.00</td>
<td>0.50</td>
<td>-3.00</td>
</tr>
<tr>
<td>-6.50</td>
<td>5.00</td>
<td>1.00</td>
<td>-3.00</td>
</tr>
<tr>
<td>-6.00</td>
<td>5.00</td>
<td>1.50</td>
<td>-3.00</td>
</tr>
<tr>
<td>-5.50</td>
<td>5.00</td>
<td>2.00</td>
<td>-1.06</td>
</tr>
<tr>
<td>-5.00</td>
<td>4.94</td>
<td>2.50</td>
<td>0.88</td>
</tr>
<tr>
<td>-4.50</td>
<td>4.88</td>
<td>3.00</td>
<td>2.81</td>
</tr>
<tr>
<td>-4.00</td>
<td>4.81</td>
<td>3.50</td>
<td>4.75</td>
</tr>
<tr>
<td>-3.50</td>
<td>4.75</td>
<td>4.00</td>
<td>4.81</td>
</tr>
<tr>
<td>-3.00</td>
<td>2.81</td>
<td>4.50</td>
<td>4.88</td>
</tr>
<tr>
<td>-2.50</td>
<td>0.88</td>
<td>5.00</td>
<td>4.94</td>
</tr>
<tr>
<td>-2.00</td>
<td>-1.06</td>
<td>5.50</td>
<td>5.00</td>
</tr>
<tr>
<td>-1.50</td>
<td>-3.00</td>
<td>6.00</td>
<td>5.00</td>
</tr>
<tr>
<td>-1.00</td>
<td>-3.00</td>
<td>6.50</td>
<td>5.00</td>
</tr>
<tr>
<td>-0.50</td>
<td>-3.00</td>
<td>7.00</td>
<td>5.00</td>
</tr>
<tr>
<td>0.00</td>
<td>-3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0311] <第三十九实施例>

[0312] 第三十九实施例的多焦点隐形眼镜，包含中心区、第一环形区、第二环形区以及第三环形区。中心区、第三环形区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同心圆，中心区、第三环形区、第二环形区以及第一环形区至少一者为非球面，关于第三十九实施例多焦点隐形眼镜的结构可参照图4。多焦点隐形眼镜的材质为硅水胶或水胶。

[0313] 关于第三十九实施例的DiC、DiP1、DiP2、DiP3、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、PowP3、PowPMin、PowPMax、PowPMin/PowPMax、PowC-PowP1、PowPMax-PowC/PowPMax、PowPMax-SloC、|SloP1|、|SloP2|、|SloP3|、SloPMax、SloPMin、SloPMax/SloPMin的数值以及|SloP|的范围列于表四十九。前述参数的定义请参照前文，在此不予赘述。

[0314] 表四十九、第三十实施例

<table>
<thead>
<tr>
<th>DiC (mm)</th>
<th>3.00</th>
<th>PowPMin/PowPMax</th>
<th>0.46</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiP1 (mm)</td>
<td>15.00</td>
<td>PowC-PowP1</td>
<td>10.00</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
<td>9.00</td>
<td>PowPMax-PowC/PowPMax</td>
<td>1.54</td>
</tr>
<tr>
<td>DiP3 (mm)</td>
<td>6.00</td>
<td>SloC</td>
<td>0</td>
</tr>
</tbody>
</table>
[0315]

<table>
<thead>
<tr>
<th></th>
<th>0.20</th>
<th>SloP1</th>
<th>1.83</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC/DiP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiC/DiP2</td>
<td>0.33</td>
<td>SloP2</td>
<td>1.33</td>
</tr>
<tr>
<td>PowC (D)</td>
<td>-3.50</td>
<td>SloP3</td>
<td>4.33</td>
</tr>
<tr>
<td>PowP1 (D)</td>
<td>6.50</td>
<td>SloPMax</td>
<td>4.33</td>
</tr>
<tr>
<td>PowP2 (D)</td>
<td>3.00</td>
<td>SloPMin</td>
<td>1.33</td>
</tr>
<tr>
<td>PowP3 (D)</td>
<td>3.00</td>
<td>SloPMin/SloPMax</td>
<td>0.31</td>
</tr>
<tr>
<td>PowPMax (D)</td>
<td>6.50</td>
<td>SloP</td>
<td>1.33~4.33</td>
</tr>
<tr>
<td>PowPMin (D)</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0316] 请同时参照表五十及图30，表五十列出第十九实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图30为第十九实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

[0317]

表五十、第十九实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.50</td>
<td>6.50</td>
<td>0.50</td>
<td>-3.50</td>
</tr>
<tr>
<td>-7.00</td>
<td>5.58</td>
<td>1.00</td>
<td>-3.50</td>
</tr>
<tr>
<td>-6.50</td>
<td>4.67</td>
<td>1.50</td>
<td>-3.50</td>
</tr>
<tr>
<td>-6.00</td>
<td>3.75</td>
<td>2.00</td>
<td>-1.33</td>
</tr>
<tr>
<td>-5.50</td>
<td>2.83</td>
<td>2.50</td>
<td>0.83</td>
</tr>
<tr>
<td>-5.00</td>
<td>1.92</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>-4.50</td>
<td>1.00</td>
<td>3.50</td>
<td>2.33</td>
</tr>
<tr>
<td>-4.00</td>
<td>1.67</td>
<td>4.00</td>
<td>1.67</td>
</tr>
<tr>
<td>-3.50</td>
<td>2.33</td>
<td>4.50</td>
<td>1.00</td>
</tr>
<tr>
<td>-3.00</td>
<td>3.00</td>
<td>5.00</td>
<td>1.92</td>
</tr>
<tr>
<td>-2.50</td>
<td>0.83</td>
<td>5.50</td>
<td>2.83</td>
</tr>
<tr>
<td>-2.00</td>
<td>-1.33</td>
<td>6.00</td>
<td>3.75</td>
</tr>
<tr>
<td>-1.50</td>
<td>-3.50</td>
<td>6.50</td>
<td>4.67</td>
</tr>
<tr>
<td>-1.00</td>
<td>-3.50</td>
<td>7.00</td>
<td>5.58</td>
</tr>
<tr>
<td>-0.50</td>
<td>-3.50</td>
<td>7.50</td>
<td>6.50</td>
</tr>
<tr>
<td>0.00</td>
<td>-3.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0318] 〈第二十实施例〉

[0319] 第二十实施例的多焦点隐形眼镜，包含中心区、第一环形区、第二环形区、第三环形区以及第四环形区，中心区、第四环形区、第三环形区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第四环形区、第三环形区、第二环形区以及第一环形区中至少一者为非球面，关于第二十实施例多焦点隐形眼镜的结构可参照图22。多焦点隐形眼镜的材质为硅水胶或水胶。

[0320] 关于第二十实施例的DiC、DiP1、DiP2、DiP3、DiP4、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、PowP3、PowP4、PowPMax、PowPMin、PowPMin/PowPMax、PowC-PowP1、
PowPMax-PowC/PowPMax、|SloC|、|SloP1|、|SloP2|、|SloP3|、|SloP4|、SloPMin、SloPMax的数值以及|SloP|的范围列于表五十一。前述参数的定义请参照前文，在此不予赘述。

表五十一、第二十实施例

<table>
<thead>
<tr>
<th>DiC (mm)</th>
<th>2.00</th>
<th>PowPMin (D)</th>
<th>-3.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiP1 (mm)</td>
<td>14.00</td>
<td>PowPMin/PowPMax</td>
<td>-0.31</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
<td>10.00</td>
<td>PowC−PowP1</td>
<td>15.25</td>
</tr>
<tr>
<td>DiP3 (mm)</td>
<td>7.00</td>
<td>PowPMax−PowC/PowPMax</td>
<td>1.36</td>
</tr>
<tr>
<td>DiP4 (mm)</td>
<td>5.00</td>
<td>SloC</td>
<td>0.13</td>
</tr>
<tr>
<td>DiC/DiP1</td>
<td>0.14</td>
<td>SloP1</td>
<td>0.13</td>
</tr>
<tr>
<td>DiC/DiP2</td>
<td>0.20</td>
<td>SloP2</td>
<td>9.17</td>
</tr>
<tr>
<td>PowC (D)</td>
<td>-4.00</td>
<td>SloP3</td>
<td>0.50</td>
</tr>
<tr>
<td>PowP1 (D)</td>
<td>11.25</td>
<td>SloP4</td>
<td>0.33</td>
</tr>
<tr>
<td>PowP2 (D)</td>
<td>11.00</td>
<td>SloPMax</td>
<td>9.17</td>
</tr>
<tr>
<td>PowP3 (D)</td>
<td>-3.00</td>
<td>SloPMin</td>
<td>0.13</td>
</tr>
<tr>
<td>PowP4 (D)</td>
<td>-3.50</td>
<td>SloPMin/SloPMax</td>
<td>0.01</td>
</tr>
<tr>
<td>PowPMax (D)</td>
<td>11.25</td>
<td>SloP</td>
<td>0.13−9.17</td>
</tr>
</tbody>
</table>

请同时参照表五十二以及图31，表五十二列出第二十实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图31为第二十实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

表五十二、第二十实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.00</td>
<td>11.25</td>
<td>0.50</td>
<td>-4.00</td>
</tr>
<tr>
<td>-6.50</td>
<td>11.19</td>
<td>1.00</td>
<td>-4.00</td>
</tr>
<tr>
<td>-6.00</td>
<td>11.13</td>
<td>1.50</td>
<td>-3.83</td>
</tr>
<tr>
<td>-5.50</td>
<td>11.06</td>
<td>2.00</td>
<td>-3.67</td>
</tr>
<tr>
<td>-5.00</td>
<td>11.00</td>
<td>2.50</td>
<td>-3.50</td>
</tr>
<tr>
<td>-4.50</td>
<td>11.19</td>
<td>3.00</td>
<td>-3.25</td>
</tr>
<tr>
<td>-4.00</td>
<td>3.33</td>
<td>3.50</td>
<td>-3.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>-3.00</td>
<td>4.00</td>
<td>3.33</td>
</tr>
</tbody>
</table>
[0324]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.00</td>
<td>-3.25</td>
<td>4.50</td>
<td>7.17</td>
<td></td>
</tr>
<tr>
<td>-2.50</td>
<td>-3.50</td>
<td>5.00</td>
<td>11.00</td>
<td></td>
</tr>
<tr>
<td>-2.00</td>
<td>-3.67</td>
<td>5.50</td>
<td>11.06</td>
<td></td>
</tr>
<tr>
<td>-1.50</td>
<td>-3.83</td>
<td>6.00</td>
<td>11.13</td>
<td></td>
</tr>
<tr>
<td>-1.00</td>
<td>-4.00</td>
<td>6.50</td>
<td>11.19</td>
<td></td>
</tr>
<tr>
<td>-0.50</td>
<td>-4.00</td>
<td>7.00</td>
<td>11.25</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>-4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0325] 〈第二十一实施例〉

第二十一实施例的多焦点隐形眼镜，包含中心区、第一环形区、第二环形区、第三环形区以及第四环形区，中心区、第四环形区、第三环形区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第四环形区、第三环形区、第二环形区以及第一环形区中至少一个为非球面，关于第二十一实施例多焦点隐形眼镜的结构可参照图22。多焦点隐形眼镜的材质为硅水胶或水胶。

[0326] 关于第二十一实施例的DiC、DiP1、DiP2、DiP3、DiP4、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、PowP3、PowP4、PowPMax、PowPMin、PowPMin/PowPMax、|PowC-PowP1|、PowPMax-PowC/PowPMax、|SloC|、|SloP1|、|SloP2|、|SloP3|、|SloP4|、SloPMax、SloPMin、SloPMin/SloPMax的数值以及|SloP|的范围列于表五十三。前述参数的定义请参照前文,在此不予赘述。

[0327]

<table>
<thead>
<tr>
<th>表五十三，第二十一实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
</tr>
<tr>
<td>DiP3 (mm)</td>
</tr>
<tr>
<td>DiP4 (mm)</td>
</tr>
<tr>
<td>DiC/DiP1</td>
</tr>
<tr>
<td>DiC/DiP2</td>
</tr>
<tr>
<td>PowC (D)</td>
</tr>
<tr>
<td>PowP1 (D)</td>
</tr>
<tr>
<td>PowP2 (D)</td>
</tr>
<tr>
<td>PowP3 (D)</td>
</tr>
<tr>
<td>PowP4 (D)</td>
</tr>
</tbody>
</table>

[0328]

[0329]

| PowPMax (D) | 2.25 | |SloP| | 0~4.00 |

[0330] 请同时参照表五十四以及图32:表五十四列出第二十一实施例的多焦点隐形眼镜的半径及其所对应的屈光度,图32为第二十一实施例的多焦点隐形眼镜的半径与屈光度的关系图（负数表示为相反方向半径距离）。

46
表五十四，第二十一实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.50</td>
<td>2.25</td>
<td>0.50</td>
<td>-5.00</td>
</tr>
<tr>
<td>-7.00</td>
<td>2.17</td>
<td>1.00</td>
<td>-5.00</td>
</tr>
<tr>
<td>-6.50</td>
<td>2.08</td>
<td>1.50</td>
<td>-5.00</td>
</tr>
<tr>
<td>-6.00</td>
<td>2.00</td>
<td>2.00</td>
<td>-3.00</td>
</tr>
<tr>
<td>-5.50</td>
<td>1.75</td>
<td>2.50</td>
<td>-1.00</td>
</tr>
<tr>
<td>-5.00</td>
<td>1.50</td>
<td>3.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-4.50</td>
<td>1.25</td>
<td>3.50</td>
<td>1.00</td>
</tr>
<tr>
<td>-4.00</td>
<td>1.00</td>
<td>4.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>1.00</td>
<td>4.50</td>
<td>1.25</td>
</tr>
<tr>
<td>-3.00</td>
<td>1.00</td>
<td>5.00</td>
<td>1.50</td>
</tr>
<tr>
<td>-2.50</td>
<td>-1.00</td>
<td>5.50</td>
<td>1.75</td>
</tr>
<tr>
<td>-2.00</td>
<td>-3.00</td>
<td>6.00</td>
<td>2.00</td>
</tr>
<tr>
<td>-1.50</td>
<td>-5.00</td>
<td>6.50</td>
<td>2.08</td>
</tr>
<tr>
<td>-1.00</td>
<td>-5.00</td>
<td>7.00</td>
<td>2.17</td>
</tr>
<tr>
<td>-0.50</td>
<td>-5.00</td>
<td>7.50</td>
<td>2.25</td>
</tr>
<tr>
<td>0.00</td>
<td>-5.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0332] 〈第二十二实施例〉

[0333] 第二十二实施例的多焦点隐形眼镜，包含中心区、第一环形区、第二环形区、第三环形区以及第四环形区，中心区、第四环形区、第三环形区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依顺序相连且同心圆，中心区、第四环形区、第三环形区、第二环形区以及第一环形区中至少一者为非球面，关于第二十二实施例多焦点隐形眼镜的结构可参照图22。多焦点隐形眼镜的材质为硅水胶或水胶。

[0334] 关于第二十二实施例的DiC、DiP1、DiP2、DiP3、DiP4、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、PowP3、PowP4、PowPMax、PowPMin、PowPMax/PowPMin、PowPMax-PowP1、PowPMax-PowC/PowPMax、SloC、SloP1、SloP2、SloP3、SloP4、SloPMax、SloPMin、SloPMax/SloPMin的数值以及SloP的范围列于表五十五。前述参数的定义请参照前文，在此不予赘述。
表五十五、第二十二实施例

<table>
<thead>
<tr>
<th>Dic (mm)</th>
<th>2.00</th>
<th>PowPMin (D)</th>
<th>-2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dip1 (mm)</td>
<td>13.00</td>
<td>PowPMin/PowPMax</td>
<td>-1.33</td>
</tr>
<tr>
<td>Dip2 (mm)</td>
<td>11.00</td>
<td></td>
<td>7.50</td>
</tr>
<tr>
<td>Dip3 (mm)</td>
<td>8.00</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>Dip4 (mm)</td>
<td>5.00</td>
<td>SloC</td>
<td>0</td>
</tr>
<tr>
<td>Dic/Dip1</td>
<td>0.15</td>
<td>SloP1</td>
<td>0.50</td>
</tr>
<tr>
<td>Dic/Dip2</td>
<td>0.18</td>
<td>SloP2</td>
<td>2.00</td>
</tr>
<tr>
<td>PowC (D)</td>
<td>-6.00</td>
<td>SloP3</td>
<td>0</td>
</tr>
<tr>
<td>PowP1 (D)</td>
<td>1.50</td>
<td></td>
<td>2.67</td>
</tr>
<tr>
<td>PowP2 (D)</td>
<td>1.00</td>
<td>SloPMax</td>
<td>2.67</td>
</tr>
<tr>
<td>PowP3 (D)</td>
<td>-2.00</td>
<td>SloPMin</td>
<td>0</td>
</tr>
<tr>
<td>PowP4 (D)</td>
<td>-2.00</td>
<td>SloPMin/SloPMax</td>
<td>0</td>
</tr>
<tr>
<td>PowPMax (D)</td>
<td>1.50</td>
<td>SloP</td>
<td>0~2.67</td>
</tr>
</tbody>
</table>

请同时参照表五十六以及图33，表五十六列出第二十二实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图33为第二十二实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

表五十六、第二十二实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.50</td>
<td>1.50</td>
<td>0.50</td>
<td>-6.00</td>
</tr>
<tr>
<td>-6.00</td>
<td>1.25</td>
<td>1.00</td>
<td>-6.00</td>
</tr>
<tr>
<td>-5.50</td>
<td>1.00</td>
<td>1.50</td>
<td>-4.67</td>
</tr>
<tr>
<td>-5.00</td>
<td>0.00</td>
<td>2.00</td>
<td>-3.33</td>
</tr>
<tr>
<td>-4.50</td>
<td>-1.00</td>
<td>2.50</td>
<td>-2.00</td>
</tr>
<tr>
<td>-4.00</td>
<td>-2.00</td>
<td>3.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>-2.00</td>
<td>3.50</td>
<td>-2.00</td>
</tr>
<tr>
<td>-3.00</td>
<td>-2.00</td>
<td>4.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>-2.50</td>
<td>-2.00</td>
<td>4.50</td>
<td>-1.00</td>
</tr>
<tr>
<td>-2.00</td>
<td>-3.33</td>
<td>5.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-1.50</td>
<td>-4.67</td>
<td>5.50</td>
<td>1.00</td>
</tr>
<tr>
<td>-1.00</td>
<td>-6.00</td>
<td>6.00</td>
<td>1.25</td>
</tr>
<tr>
<td>-0.50</td>
<td>-6.00</td>
<td>6.50</td>
<td>1.50</td>
</tr>
<tr>
<td>0.00</td>
<td>-6.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0336] 请同时参照表五十六以及图33，表五十六列出第二十二实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图33为第二十二实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

[0337] 请同时参照表五十六以及图33，表五十六列出第二十二实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图33为第二十二实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

[0338] <第二十三实施例>

[0339] 第二十三实施例的多焦点隐形眼镜，包含中心区、第一环形区、第二环形区、第三环形区以及第四环形区，中心区、第四环形区、第三环形区、第二环形区、第一环形区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第四环形区、第三环形区、第二环形区以及第一环形区中至少一者为非球面，关于第二十三实施例多焦点隐
形眼镜的结构可参照图22。多焦点隐形眼镜的材质为硅水胶或水胶。

<table>
<thead>
<tr>
<th>表五十七、第二十三实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
<tr>
<td>DiP2 (mm)</td>
</tr>
<tr>
<td>DiP3 (mm)</td>
</tr>
<tr>
<td>DiP4 (mm)</td>
</tr>
<tr>
<td>DiC/DiP1</td>
</tr>
<tr>
<td>DiC/DiP2</td>
</tr>
<tr>
<td>PowC (D)</td>
</tr>
<tr>
<td>PowP1 (D)</td>
</tr>
<tr>
<td>PowP2 (D)</td>
</tr>
<tr>
<td>PowP3 (D)</td>
</tr>
<tr>
<td>PowP4 (D)</td>
</tr>
<tr>
<td>PowPMax (D)</td>
</tr>
</tbody>
</table>

请同时参照表五十八以及图34，表五十八列出第二十三实施例的多焦点隐形眼镜的半径及其所对应的屈光度，图34为第二十三实施例的多焦点隐形眼镜的半径与屈光度的关系图（负值仅示意为相反方向半径距离）。

<table>
<thead>
<tr>
<th>表五十八、第二十三实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>半径 (mm)</td>
</tr>
<tr>
<td>-7.50</td>
</tr>
</tbody>
</table>
[0344]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.00</td>
<td>12.17</td>
<td>1.00</td>
<td>-7.00</td>
</tr>
<tr>
<td>-6.50</td>
<td>12.08</td>
<td>1.50</td>
<td>-5.67</td>
</tr>
<tr>
<td>-6.00</td>
<td>12.00</td>
<td>2.00</td>
<td>-4.33</td>
</tr>
<tr>
<td>-5.50</td>
<td>9.25</td>
<td>2.50</td>
<td>-3.00</td>
</tr>
<tr>
<td>-5.00</td>
<td>6.50</td>
<td>3.00</td>
<td>-1.67</td>
</tr>
<tr>
<td>-4.50</td>
<td>3.75</td>
<td>3.50</td>
<td>-0.33</td>
</tr>
<tr>
<td>-4.00</td>
<td>1.00</td>
<td>4.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>-0.33</td>
<td>4.50</td>
<td>3.75</td>
</tr>
<tr>
<td>-3.00</td>
<td>-1.67</td>
<td>5.00</td>
<td>6.50</td>
</tr>
<tr>
<td>-2.50</td>
<td>-3.00</td>
<td>5.50</td>
<td>9.25</td>
</tr>
<tr>
<td>-2.00</td>
<td>-4.33</td>
<td>6.00</td>
<td>12.00</td>
</tr>
<tr>
<td>-1.50</td>
<td>-5.67</td>
<td>6.50</td>
<td>12.08</td>
</tr>
<tr>
<td>-1.00</td>
<td>-7.00</td>
<td>7.00</td>
<td>12.17</td>
</tr>
<tr>
<td>-0.50</td>
<td>-7.00</td>
<td>7.50</td>
<td>12.25</td>
</tr>
<tr>
<td>0.00</td>
<td>-7.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0345] 〈第二十四实施例〉

第二十四实施例的多焦点隐形眼镜，包含中心区、第一环区、第二环区、第三环区、第四环区以及第五环区。中心区、第五环区、第四环区、第三环区、第二环区、第一环区由多焦点隐形眼镜的中心至多焦点隐形眼镜的周边依序相连且同圆心，中心区、第五环区、第四环区、第三环区、第二环区以及第一环区中至少一者为非球面，关于第二十四实施例多焦点隐形眼镜的结构可参照图23。多焦点隐形眼镜的材质为硅水胶或水胶。

[0346] 关于第二十四实施例的DiC、DiP1、DiP2、DiP3、DiP4、DiP5、DiC/DiP1、DiC/DiP2、PowC、PowP1、PowP2、PowP3、PowP4、PowP5、PowPMin、PowPMAX、PowPMin/PowPMax、|PowC-PowP1|、|PowPMax-PowC|/PowPMax|、|SloC|、|SloP1|、|SloP2|、|SloP3|、|SloP4|、|SloP5|、SloPMin/SloPMax的数值以及|SloP|的范围列于表五十九。前述参数的定义请参照前文，在此不予赘述。

[0348]

<table>
<thead>
<tr>
<th>表五十九，第二十四实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiC (mm)</td>
</tr>
<tr>
<td>DiP1 (mm)</td>
</tr>
</tbody>
</table>
表六十、第二十四实施例

<table>
<thead>
<tr>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
<th>半径 (mm)</th>
<th>屈光度 (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8.00</td>
<td>3.25</td>
<td>0.50</td>
<td>-8.00</td>
</tr>
<tr>
<td>-7.50</td>
<td>3.13</td>
<td>1.00</td>
<td>-7.88</td>
</tr>
<tr>
<td>-7.00</td>
<td>3.00</td>
<td>1.50</td>
<td>-7.75</td>
</tr>
<tr>
<td>-6.50</td>
<td>1.33</td>
<td>2.00</td>
<td>-7.63</td>
</tr>
<tr>
<td>-6.00</td>
<td>-0.33</td>
<td>2.50</td>
<td>-7.50</td>
</tr>
<tr>
<td>-5.50</td>
<td>-2.00</td>
<td>3.00</td>
<td>-4.67</td>
</tr>
<tr>
<td>-5.00</td>
<td>-1.00</td>
<td>3.50</td>
<td>-1.83</td>
</tr>
<tr>
<td>-4.50</td>
<td>0.00</td>
<td>4.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-4.00</td>
<td>1.00</td>
<td>4.50</td>
<td>0.00</td>
</tr>
<tr>
<td>-3.50</td>
<td>-1.83</td>
<td>5.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>-3.00</td>
<td>-4.67</td>
<td>5.50</td>
<td>-2.00</td>
</tr>
<tr>
<td>-2.50</td>
<td>-7.50</td>
<td>6.00</td>
<td>-0.33</td>
</tr>
<tr>
<td>-2.00</td>
<td>-7.63</td>
<td>6.50</td>
<td>1.33</td>
</tr>
<tr>
<td>-1.50</td>
<td>-7.75</td>
<td>7.00</td>
<td>3.00</td>
</tr>
<tr>
<td>-1.00</td>
<td>-7.88</td>
<td>7.50</td>
<td>3.13</td>
</tr>
<tr>
<td>-0.50</td>
<td>-8.00</td>
<td>8.00</td>
<td>3.25</td>
</tr>
<tr>
<td>0.00</td>
<td>-8.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0352] 依据本发明的多焦点隐形眼镜，第一实施例至第二十四实施例的数据皆为设计值，设计值与实际量测值之间可能存在1%～20%的误差。
依据本发明的多焦点隐形眼镜，最大屈光度是指包含正负号屈光度数值的最大者（即比较大小时，正负号需列入考虑）。

[0354] 依据本发明的多焦点隐形眼镜，环形区范围是依据线性回归（linear regression）来界定，说明如下。首先，画出屈光度（Y轴）与半径（X轴）的数据散布图（scatter diagram）。撷取线段的最小平方配适（least-squares fitting process）的线性趋势线（linear trend line），当R平方值（R²）大于0.9，即可定义所述范围区间为一个环形区。若选取数据范围的R²越接近1，则可更佳地定义一环形区的范围区间。

[0355] 线性趋势线可利用方程式（1）计算而得：

\[y = mx + b \quad (1) \]

其中m为斜率，b为截距。

[0358] \[R^2 = 1 - \frac{SSE}{SST} \quad (2) \]

\[SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

\[SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad ; \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \]

其中SSE为残差平方和（sum of squares for error）的缩写，SST为总平方和（sum of squares for total）的缩写，y_i为y的第i项的实际值，\hat{y}_i为第i项的回归预期，n是y_i的总数量。

[0360] 本发明中多焦点隐形眼镜上的非球面意指前表面或背表面于过中心剖面下的曲面形状，其中前表面指远离眼球角膜的表面，背表面指靠近眼球角膜的表面。

[0364] 本发明中的屈光度以D值表示，校正近视的镜片屈光度为负值，校正远视的镜片屈光度为正值。

[0365] 本发明中的睫状肌麻痹剂包含但不限于阿托品（atropine; 3-endo-8-methyl-8-azabicyclo[3.2.1]oct-3-yl tropate）、托吡卡胺（tropicamide; N-ethyl-3-hydroxy-2-phenyl-N-(4-pyridinylmethyl)propanamide）、环戊醇胺酯（cyclometolate; 2-(dimethylamino)ethyl (1-hydroxycyclopentyl) (phenyl) acetate）、后马托品（homatropine; 3-endo-8-methyl-8-azabicyclo[3.2.1]oct-3-yl hydroxy (phenyl) acetate）、东莨菪碱（scopolamine; 1R,2R,4S,5S,7s)-9-methyl-3-oxa-9-azatricyclo[3.3.1.02,4]non-7-yl (2S)-3-hydroxy-2-phenylpropanoate）与尤卡托品（eucatropine; 1,2,2,6-tetramethyl-4-piperidinyl hydroxy (phenyl) acetate）及前述物质的盐类。睫状肌麻痹剂又称为作散瞳剂，并用于副交感神经阻断剂，亦即为一种非选择性的M型受体阻断药，其可通过阻断M受体而使控制瞳孔的睫状肌麻痹与松弛，进而使得瞳孔放大。

[0366] 虽然本发明已以实施方式揭露如上，然其并非用以限定本发明，任何熟悉此技艺者，在不脱离本发明的精神和范围内，当可作各种的更动与润饰，因此本发明的保护范围当视所附的权利要求书所界定的范围为准。
图1
图3
图4
图5
图6
图8
屈光度 (D)

半径 (mm)

图9
图12
图13
图14
图15
图16
图17
图18
图20
图23
图24

屈光度 (D)

半径 (mm)

-10.00 -5.00 0.00 5.00 10.00

-10.00 -5.00 0.00 -5.00 -10.00

-0.50
图25
图26
图27
图28
图29
图30
图33
图34
图35