wo 2016/040753 A1 |1 I} NN OO0 O 0 O AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/040753 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

17 March 2016 (17.03.2016) WIPOIPCT
International Patent Classification: (74)
GO6F 12/00 (2006.01)

International Application Number: (81)
PCT/US2015/049606

International Filing Date:
11 September 2015 (11.09.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/049,473 12 September 2014 (12.09.2014) US
14/539,980 12 November 2014 (12.11.2014) US
Applicant: ADALLOM TECHNOLOGIES INC.

[US/US]; 390 El Camino Real, Suite 240, Palo Alto, CA
94306 (US).

Inventors: VISHNEPOLSKY, Gregory; 21 Habarzel
Street, Building B, 6971029 Tel Aviv (IL). MOYSI, Lir-
an; 21 Habarzel Street, Building B, 6971029 Tel Aviv
(IL).

(84)

Agent: BEN-SHIMON, Michael;, M&B IP Analysts,
LLC, 45 S. Park Place #262, Morristown, NJ 07960 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: A CLOUD SUFFIX PROXY AND METHODS THEREOF

(57) Abstract: A method and system for modifying network addresses of at least
one cloud application. The method comprises receiving a webpage sent to a client

200

START
8210

Receive a webpage sentto a
client device

Suffix a static network
address designated in the
received webpage

8225

Inject a piece of code into the
webpage

l $230

Receive any code dynamically
loaded to the webpage

l 5240

Modify the received code

l 8250

Send new code to the client device

FIG. 2

device from the at least one cloud application, wherein a webpage designates at
least one script loaded to the client device during runtime; injecting a piece of
code to the webpage; receiving, by the injected piece of code, an attempt to load
each of the at least one script; moditying the at least one script by suftixing each
network address designated in the at least one script with a predefined network
address; and sending the moditied at least one script to the client device, wherein
runtime execution of the modified at least one script on the client device causes
redirection of future requests from the client device to the cloud application to the
suffixed network address.

WO 2016/040753 A1 AT 00N 000 A O

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, _ before the expiration of the time limit for amending the

GW, KM, ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

WO 2016/040753 PCT/US2015/049606

A CLOUD SUFFIX PROXY AND METHODS THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 62/049,473
filed on September 12, 2014. This application is also a continuation-in-part of US Patent
Application No. 14/539,980 filed on November 12, 2014, the contents of which are hereby

incorporated by reference.

TECHNICAL FIELD
[0002] This application relates generally to securing communications networks and

systems by monitoring and securing communications, in particular by use of a suffix

Proxy.

BACKGROUND

[0003]In recent years more and more providers offer the ability to create computing
environments in the cloud. For example, Amazon Web Services™ (also known as AWS)
launched in 2006 a service that provides users with the ability to configure an entire
environment tailored to an application executed over a cloud platform. In general, such
services allow for developing scalable applications in which computing resources are
utilized to support efficient execution of the application.

[0004] Organizations and businesses that develop, provide, or otherwise maintain cloud-
based applications have become accustomed to rely on these services and implement
various types of environments from complex websites to applications and services
provided as a software-as-service (SaaS) delivery model. Such services and applications
are collectively referred to as “cloud applications.”

[0005] Cloud applications are typically accessed by users using a client device via a web
browser. Cloud applications include, among others, e-commerce applications, social
media applications, enterprise applications, gaming applications, media sharing
applications, storage applications, software development applications, and so on. Many
individual users, businesses, and enterprises turn to cloud applications in lieu of

“traditional” software applications that are locally installed and managed. For example, an

WO 2016/040753 PCT/US2015/049606

enterprise can use Office® 365 online services for email accounts, rather than having an
Exchange® Server maintained by the enterprise.

[0006] Enterprises are increasingly adopting cloud-based SaasS offerings. These services
are subject to varied network security risks. Known systems for securing these networks
operate by inspecting traffic between servers operating the SaaS and the endpoint
operated by a user. These known network security systems typically require complex
configuration of the endpoint which increases system complexity.

[0007] Furthermore, in many cases, the endpoint may not be under the complete control
of the enterprise, may be entirely unmanaged, or otherwise unconfigurable. In addition to
the difficulties inherent in configuring and administering a user-controlled endpoint, it is
difficult to ensure traffic captivation for an entire session when network addresses are
generated dynamically.

[0008] In addition, modern web/cloud applications, such as the Google® Apps platform,
utilize a large amount of client side code (JavaScript). This can make a suffix proxy
implementation much more challenging, as basic proxy functions are insufficient and
further intervention in the client side code is required.

[0009] It would therefore be advantageous to provide a solution that would overcome the
deficiencies of the prior art techniques for capture and reconstruction of HTTP traffic.

SUMMARY

[0010]A summary of several example embodiments of the disclosure follows. This
summary is provided for the convenience of the reader to provide a basic understanding
of such embodiments and does not wholly define the breadth of the disclosure. This
summary is not an extensive overview of all contemplated embodiments, and is intended
to neither identify key or critical elements of all embodiments nor delineate the scope of
any or all embodiments. Its sole purpose is to present some concepts of one or more
embodiments in a simplified form as a prelude to the more detailed description that is
presented later. For convenience, the term some embodiments may be used herein to
refer to a single embodiment or multiple embodiments of the disclosure.

[0011] Some embodiments of the disclosure relate to a method for modifying network
addresses of at least one cloud application. The method comprises receiving a webpage

WO 2016/040753 PCT/US2015/049606

sent to a client device from the at least one cloud application, wherein a webpage
designates at least one script loaded to the client device during runtime; injecting a piece
of code to the webpage; receiving, by the injected piece of code, an attempt to load each
of the at least one script; modifying the at least one script by suffixing each network
address designated in the at least one script with a predefined network address; and
sending the modified at least one script to the client device, wherein runtime execution of
the modified at least one script on the client device causes redirection of future requests
from the client device to the cloud application to the suffixed network address.

[0012] Some embodiments of the disclosure relate to a system for modifying network
addresses of at least one cloud application. The system comprises a processor; and a
memory containing instructions that, when executed by the processor, configure the
system to: receive a webpage sent to a client device from the at least one cloud
application, wherein a webpage designates at least one script loaded to the client device
during runtime; inject a piece of code to the webpage; receive, by the injected piece of
code, an attempt to load each of the at least one script; modify the at least one script by
suffixing each network address designated in the at least one script with a predefined
network address; and send the modified at least one script to the client device, wherein
runtime execution of the modified at least one script on the client device causes
redirection of future requests from the client device to the cloud application to the suffixed
network address.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The subject matter disclosed herein is particularly pointed out and distinctly
claimed in the claims at the conclusion of the specification. The foregoing and other
objects, features, and advantages of the disclosed embodiments will be apparent from
the following detailed description taken in conjunction with the accompanying drawings.
[0014]Figure 1 is a diagram of a networked system utilized to describe the various
disclosed embodiments.

[0015] Figure 2 is a flowchart illustrating the operation of the security sandbox according

to one embodiment.

WO 2016/040753 PCT/US2015/049606

[0016] Figure 3 is a flowchart illustrating a method for controlling changes to the DOM
according to one embodiment.
[0017]Figure 4 is a block diagram of a suffix proxy implemented according to an

embodiment.

DETAILED DESCRIPTION
[0018] 1t is important to note that the embodiments disclosed herein are only examples of
the many advantageous uses of the innovative teachings herein. In general, statements
made in the specification of the present application do not necessarily limit any of the
various claimed embodiments. Moreover, some statements may apply to some inventive
features but not to others. In general, unless otherwise indicated, singular elements may
be in plural and vice versa with no loss of generality. In the drawings, like numerals refer
to like parts through several views.
[0019] By a way of example, the various disclosed embodiments can be configured to
operate on network traffic between a network-based software as a service (SaaS)
provider and a client. As will be discussed in greater detail below, the disclosed
embodiments allow for non-intrusive suffixing and un-suffixing of network addresses
directed to the SaaS provider.
[0020] Fig. 1 is an exemplary and non-limiting diagram of a networked system 100 utilized
to describe the various disclosed embodiments. The networked system 100 includes a
cloud computing platform 110 which may be a private cloud, a public cloud, or a hybrid
cloud providing computing resources to applications or services executed therein. In an
embodiment, the cloud computing platform 110 may be of a SaaS platform.
[0021]Organizations and businesses that develop, provide, or otherwise maintain cloud
based applications have become accustomed to relying on these services and
implementing various types of environments from complex websites to applications and
services provided as SaaS delivery models. Such services and applications are
collectively referred to as “cloud applications 115",
[0022] Cloud applications 115 are typically accessed by users using a client device via a
web browser. Cloud applications 115 include, among others, e-commerce applications,

social media applications, enterprise applications, gaming applications, media sharing

WO 2016/040753 PCT/US2015/049606

applications, storage applications, software development applications, and so on. Many
individual users, businesses, and enterprises turn to cloud applications in lieu of
“traditional” software applications that are locally installed and managed. For example, an
enterprise can use Office® 365 online services for email accounts, rather than having an
Exchange® Server maintained by the enterprise.

[0023] The networked system 100 further includes a managed network proxy 120, client
devices 130-1 through 130-N, and a suffix proxy 140 that are communicatively connected
to a network 150. The network 150 may be, for example, a wide area network (WAN), a
local area network (LAN), the Internet, and the like. Each of the client devices 130 may
include, for example, a personal computer, a laptop, a tablet computer, a smartphone, a
wearable computing device, or any other computing device.

[0024] The client devices 130 are configured to access the one or more cloud applications
115 executed in the cloud computing platform 110. A client device 130 may be a managed
device or unmanaged device. A managed device is typically secured by an IT personnel
of an organization, while an unmanaged device is not. Referring to the above example,
the work computer is a managed device while the home computer is an unmanaged
device.

[0025] The managed network proxy 120 is configured to secure any or all traffic and
activities in a cloud computing platform 110. Specifically, the managed network proxy 120
can be used to intercept, monitor, modify, and forward network communications traffic
between client devices 130 and the cloud computing platform 110.

[0026] The managed network proxy 120 can be configured to detect and mitigate network
threats against the cloud applications 115 and/or the infrastructure of the cloud computing
platftorm 110. As non-limiting examples, the managed network proxy 120 can be
configured to notify of suspicious network traffic and behavior; block threats; perform
application control, URL filtering, and malware protection on the network traffic; establish
visibility to application layer parameters (e.g., list of users, devices, locations, etc.);
generate profiles of users using the cloud applications 115; provide alerts on specific or
predefined events; generate audit logs; and so on. The architecture and operation of the
managed network proxy 120 is discussed in US Patent Application No. 14/539,980
assigned to the common assignee, and incorporated herein by reference.

WO 2016/040753 PCT/US2015/049606

[0027] According to certain embodiments, the suffix proxy 140 is configured to keep URLs
and web accesses of a proxied webpage within the hold of the managed network proxy
120. That is, the modifications performed by the suffix proxy 140 for a request to access
a webpage of the cloud application 115 allow directing subsequent traffic to the managed
network proxy 120.

[0028] In an embodiment, the suffix proxy 140 can be configured to inspect the network
traffic and detect cloud-based application’s 115 addresses. Examples for such addresses
include, for example, uniform resource locators (URLS), uniform resource identifiers
(URIs), and so on. As non-limiting examples, the suffix proxy 140 can decompile,
deconstruct, or disassemble network traffic for inspection.

[0029]In an embodiment, the suffix proxy 140 can be configured to modify webpages and
codes (e.g., JavaScript) executed therein and on the cloud-computing platform 110, so
that no network addresses are provided to the client device 130 that would direct the
client device 130 to access the cloud application 115 directly. If such a network address
is detected, the suffix proxy 140 is configured to rewrite that address, for example,
appending a predefined domain name to the original network address. The added domain
name may refer or redirect the browser to the managed network proxy 120. For example,
the URL (network address) http://www.somesite.com would be accessed through
http://www.somesite.com.network-proxy-service.com. Various embodiments for rewriting
network address are disclosed below.

[0030] The suffix proxy 140 can be configured to modify any content, including webpages,
sent from the cloud application 115. The suffix proxy 140 can be configured to inspect
and/or decompile any content to identify any referred pages and/or URLs present in the
content and rewrite those URLs. As non-limiting examples, file types processed can
include HTML or JavaScript and responses can include zipped responses or chunked
responses.

[0031]In one embodiment, for static webpages, for URLs embedded in such webpages
a predefined suffix domain name is added. To this end, the suffix proxy 140 is configured
to parse HTML webpages and replace the URLs detected using the regular expressions.
A static webpage is a webpage that does not contain client-executable script (e.g.,

JavaScript) code.

WO 2016/040753 PCT/US2015/049606

[0032] According to another embodiment, in order to suffix network addresses in a
dynamic webpage, the suffix proxy 140 is configured to analyze and modify code or
scripts being loaded to a browser of the client device 130. For example, JavaScript can
be modified by the suffix proxy 140 to wrap any potential generation of network addresses
that would directly access the cloud application 115. If direct access addresses are
identified, the script and/or content generated by the script can be modified to rewrite the
address to refer to the managed network proxy 120.

[0033]In an embodiment, the suffix proxy 140 is configured to provide a security sandbox
which is a runtime component executed over the client device 130. Certain function of the
security sandbox can be performed in the suffix proxy. The security sandbox is labeled
as a security sandbox 145. In an embodiment, the security sandbox 145 is configured to
prevent access to the document object model (DOM) of a webpage. In particular, the
security sandbox 145 prevents any access and modification to the DOM during run-time
of the script. It should be noted that the operation of the security sandbox 145 to prevent
access to the DOM does not require any installation of any software, such as plugins,
add-ons, and the like in the client device 130 and/or the browser.

[0034] Typically, a browser on a client device 130 can execute a script (e.g., JavaScript)
that would change the DOM of a webpage during run-time. As a result, it is possible for
the client device’s 130 browser to create or modify DOM elements with un-suffixed URLSs.
In order to prevent such action, the security sandbox 145, and hence the suffix proxy 140,
are configured to restrict the access of any embedded or loaded script code to the DOM.
[0035]In an embodiment, the nature of the restriction can be such that changes to URLs
in the DOM, by an original script executed in the webpage, are monitored by the security
sandbox 145. The script code monitoring by the suffix proxy 140 can be invoked for read
and write accesses to DOM elements. That is, writes of a URL into the DOM are suffixed
with the predefined domain name, and reads of a URL from the DOM are un-suffixed. As
a result, there can be separation between the URLs seen by “user” code (e.g., the web-
applications code) and the browser itself (the DOM, and the JavaScript representation of
it). As a result, the original script code can be effectively maintained and controlled by

the security sandbox 145 and any communication with the original server (around the

WO 2016/040753 PCT/US2015/049606

proxy) is prevented. It should be noted that an original script is any script embedded in
the webpage not dynamically loaded to the webpage.

[0036] In certain configurations, a script can be loaded to a webpage after the webpage
is rendered on the browser. Such a script is downloaded from a server (originally
configured to serve the page) using any of several forms, including inline scripts inside
HTML pages and any code, script, or content files. Examples for such files include, for
example, JavaScript, Cascading Style Sheets (CSS), and the like.

[0037] Typically, the browser of a client device 130 first loads the main HTML page, and
then subsequently loads all referenced and inline scripts. Additional, scripts can also be
loaded dynamically by the web application, using, for example, the ‘eval’ statement.
[0038] Because dynamic code loading is initially performed by the statically loaded code
(or, once loaded, other dynamic code), the security sandbox 145 can take control of
execution by modifying the static script code when the webpage is downloaded to the
browser. The modifications to the code can be performed in such way that future
dynamically loaded code will be modified during run-time and specific changes to the
DOM can be intercepted in order to enforce suffixing of certain URLs. This allows the
webpage to remain under the control of the suffix proxy 140.

[0039]In an embodiment, the suffix proxy 140 and the security sandbox 145 are
configured to modify the dynamic loaded code. The loaded code is received at the suffix
proxy 140 which is configured to analyze the code to determine all elements that
potentially (explicitly or implicitly) contain, point, or otherwise refer to network addresses
(URLs), and replace and/or wrap elements within code that enforces suffixing of the
network addresses. The new script code is loaded at the client device’s 130 browser. In
some embodiments, caching of script codes can be employed to improve performance.
The sandbox 145 during run-time resolves the wrappers in order to enforce suffix and un-
suffix of network addresses. As noted above, enforcing suffix or network addresses
includes suffixing writes of an address (e.g., a URL) into the DOM with a predefined
domain name, and un-suffixing any reads of an address from the DOM.

[0040] As non-limiting examples, at least the following DOM elements and properties can

be wrapped during the creation of the new script code:

WO 2016/040753 PCT/US2015/049606

Properties of HTML elements that contain URLs, such as “IFRAME”, “STYLE”, “LINK”,
“IMG”, “"AUDIO”, “A”, “FORM”, “BASE”and “SCRIPT’, with the properties: “src”, “href” and
“‘action”. The getAttribute and setAttribute methods of these elements can also be used
to set the aforementioned properties.

[0041] Properties of HTML elements that can contain a DOM sub-tree (i.e., more HTML).
For such elements, the “appendChild” method can be used to add elements (and code)
dynamically and the “innerHTML” property can be used to add extra code.

[0042] Properties of the “document” object may contain URLs or Hostnames, such as
‘cookie” and “domain” (both can contain the origin domain of the window). The “write”
method can be used to add elements and code to the page.

[0043] An “open” method of XMLHttpRequest objects contains a request URL. An “origin”
property of “MessageEvent’ objects contains the origin hostname. Methods and
properties of the “Window” object contain “location”, “postMessage’, “eval’, and
“execScript’. The “location” redirects the frame to another URL or determines the current
location of the frame. The “postMessage” method has an origin argument. The “eval” and
“execScript’ properties are used to load code dynamically. Other such elements and
properties exist, and any or all of them can be wrapped.

[0044] In an embodiment, the wrapping of a DOM element, and thus the creation of a new
code, is performed using static hooking of the code. In a non-limiting implantation, the
static hooking includes: processing and extracting inline scripts in the HTML code of a
webpage. Then, any script code is converted to a syntax tree, such as an Abstract Syntax
Tree (AST). In an exemplary embodiment, the AST can be generated using the Mozilla®
parser. The syntax tree is recursively traversed and calls to wrappers are inserted in
certain nodes of the tree to allow for hooking. Finally, the new code is created from the
modified nodes (with the inserted class) and sent to the client device’s 130 browser. In
an embodiment, the new created code can be cached for further usage.

[0045] It should be noted that the inserted wrappers can allow for DOM changes to be
intercepted during run-time. The wrappers can be applied to cover any or all potential
DOM accesses. As non-limiting examples, the wrappers can be applied (inserted) to
some or all the following syntax tree (AST) nodes: ‘MemberExpression’, ‘ldentifier’,

‘AssignmentExpression’, and ‘CallExpression’. For MemberExpression nodes any

WO 2016/040753 PCT/US2015/049606

potential accesses to object properties of DOM objects, subscription operations with non-
literal keys, and access to specific properties (for example, obj.src) having a property
name matches a white-list of “interesting” properties, are wrapped. In an embodiment,
wrappers are inserted to wrap any appropriate object. Thus, some wrappers may not be
required. The security sandbox 145 determines if a wrapper should be handled. In most
cases, for example, “false positives”, the wrapper will decide to do nothing.

[0046] For “Identifier” nodes, any potential accesses to a white-list of global Identifiers
(which are properties of the window DOM object, e.g., “location”) are wrapped. It should
be noted that Identifier AST nodes can appear in many unrelated logical positions in the
tree. Instances where the Identifier represents access to a global variable are wrapped.
This is determined during the traversal step by checking the parent nodes and eliminating
all other cases.

[0047]For AssignmentExpression node, the “=" and “+=" assignment operators are
wrapped, as relevant DOM properties may be strings (URLS). Assignments to previously
“marked” MemberExpressions and Identifiers are handled by another wrapper that
specifically handles “set” access.

[0048]For CallExpression node, CallExpressions where a previously “marked”
MemberExpression or Identifier is the callee are handled by another wrapper that
specifically handles function calls. A special case exists with the call to “eval’, which
behaves like a statement, but is represented as a function call in the AST.

[0049] According to various embodiments, different wrapper functions can be defined
according to the traversal of the syntax tree. The different wrapper functions behave
differently during run-time. The wrapper functions include wrapped get, wrapped set,
and wrapped_call which are used to wrap access to MemberExpressions. The functions
wrapped_name_get, wrapped_name_set, and wrapped_name_call are used to access
global Identifiers. The function wrapped eval param specifically handles the code
passed as the parameter of an “eval’ call (which can affect the local scope, and thus
cannot be decorated).

[0050]In some embodiments, the security sandbox 145 is configured to first detect if the
wrapper was invoked on relevant objects or properties. Specifically, for
‘“MemberExpression” wrappers, the property name is checked against a white-list, as well

10

WO 2016/040753 PCT/US2015/049606

as the subscripted object. For “Identifier’ wrappers, a white-list is consulted as well.
Objects are determined to be of a certain type ("“Document”, “Window”, HTML elements,
and so on), and are also compared to global instances when applicable. These
comparisons and lookups can be performed efficiently without significant impact on
performance in many cases.

[0051]In an embodiment, a wrapper call can be processed using any one of various
procedures, including, as non-limiting examples: process dynamically loaded code,
where the new code (JavaScript code) is sent to a special REST API endpoint of the
proxy for translation and caching, as described below. This can occur in wrappers of
‘appendChild”, “innerHTML”, “eval”, “execScript”, and ‘write”. The wrapper can be
processed using suffixing or un-suffixing of a URL or hostname. Finally, a false positive
wrapper invocation and resume normal execution can also be detected.

[0052]In another embodiment, wrapper function handlers that are responsible for
handling DOM access to URL related properties or methods can be divided into logical
groups. These groups include, for example, ‘getters’, ‘setters’, and ‘detectors’. The
‘getters’ handle “get” wrappers. These will un-suffix handled URLs. If a method
(JavaScript type “function”) is accessed, a “decorator” is returned (see below). The
‘setters’ handle ‘set’ wrappers by suffixing assigned URLs. The ‘decorators’ are handle
‘call wrappers that return matching decorator functions for the wrapped methods, which
will suffix or un-suffix URLs according to what the decorated method is.

[0053] This decorator can be bound to the correct object using the JavaScript “bind”
method. In case of “Identifier’ wrappers, the correct object is the global object (in some
cases, a window). In case of “MemberExpression” wrappers, this is the object being
subscripted.

[0054] Following is a non-limiting example for code before and after wrapping:

Before

var new_src = location + /image’;
some_img.src = new_src;

var w = window.open('test);
eval('test()');

var loc = x.src;
postMessage('some_message', ‘origin’),

11

WO 2016/040753 PCT/US2015/049606

After

var new_src =__ WRAPPED name_get('location’, location) + /image’;
_ WRAPPED set(some_img, 'src’, '=', new_src);
varw=__WRAPPED_call(window, ‘open’)('test’);

eval(_ WRAPPED eval param(eval, ‘test()');

var loc =___WRAPPED_get(x, 'src’);

_ WRAPPED name_call(jpostMessage’,
postMessage)('some_message’, 'origin’);

[0055] In order to optimize and accelerate the creation of new code and serving of such
code to minimize any delay on the client device 130, a caching mechanism is provided
according to the disclosed embodiments. The caching mechanism is implemented at the
suffix proxy 140 and configured to improve the overhead of the translation phase. In an
embodiment, all elements of translated code (e.g., inline script, file, or dynamic translation
request) are cached per server. The entries are keyed by a cryptographic hash of the
original code. The cache is shared across users of the proxy. This way, only the first user
per-server will experience the impact of the translation phase for commonly loaded
scripts. In an embodiment, the dynamic script translation REST endpoint can also be
configured to accept a client-side calculated hash and perform a lookup in the cache using
it. This can reduce usage of upload bandwidth for the users of the proxy. In this fashion,
dynamically generated scripts will almost never be actually sent to the proxy (except for
the first time).

[0056] The disclosed caching mechanism further caches responses for dynamic
translation requests (per hash) returned with “Cache-Control” and “Expires” HTTP
headers such that the result will be cached by the client device’s 130 browser. In this
manner, the same client device 130 will not frequently query the suffix proxy 140 for the
same dynamically generated scripts.

[0057] According to some embodiments, further optimization of the run-time performance
is achieved by creating an optimized fast-path for irrelevant/false-positive wrapper
invocations (at the code level). This is achieved by writing the basic wrapper functions
with a limited subset of JavaScript to allow optimization by the client device 130 browser
(e.g., using a JIT compiler of a browser). In another embodiment, a manual maintenance

interface that allows for profiling and detection of the code paths having the most cache

12

WO 2016/040753 PCT/US2015/049606

hits is provided. This enables removing certain wrappers from the translated code in the
suffix proxy 140 cache.

[0058] According to various embodiments, the suffix proxy 140 using the security sandbox
145 is configured to implement additional security measures to protect the cloud
application 115 and client devices 130. According to one embodiment, the security
measures include configuring the security sandbox 145 to block a third-party content from
being added to the DOM and thereby rendered on the client device 130. The third-party
content may include, toolbars, advertisements, malware, and so on. According to this
embodiment, any script code downloaded by to a client device 130 is intercepted by the
sandbox 145 at the suffix proxy 140. Then, the code is analyzed and third-party content
called by the script code (and subsequently added to the DOM) is removed.

[0059]In an embodiment, the suffix proxy 140 using the security sandbox 145 is
configured to prevent access to URLs designated in a predefined blacklist, thereby
blocking third-party content. The analysis of the code or any attempt to access third party
content is performed in run-time as the code is loaded to the client device 130. The
embodiments for analyzing the code and generating a new code respective are discussed
in detail above.

[0060]In another embodiment, the suffix proxy 140 using the security sandbox 145 is
configured to provide a DOM firewall that prevents websites from accessing certain
features of the DOM and/or to perform certain operations on the client device 130. The
actions/features that are restricted may include, for example, preventing a website from
loading plugins or modifying the setting of the browser, blocking all cross domain
accesses between the client device 130 and other domains, and blocking all
asynchronous requests between the webpage and the web server. In an embodiment, an
alert is generated to the user of the operations that should be taken or are about to be
taken. The user may be able to allow or deny any blocking operation.

[0061] 1t should be noted that the analysis of the code or any attempt to access third party
content is performed in run-time as the code is loaded to the client device 130. The
embodiments for analyzing the code and generating a new code respective thereto are

discussed in detail above.

13

WO 2016/040753 PCT/US2015/049606

[0062] In yet another embodiment, the security sandbox 145 is configured to encrypt fields
included in a webpage rendered on the web browser. These fields may include, for
example, text fields, combo boxes, and the like. According this embodiment, an
encryption key is generated by the security sandbox 145. The key is known only to the
client device 130 and the security sandbox 145, but not to the cloud application 115. The
encryption key is provided to the client device 130 through the new code injected to the
webpage. As noted above, such code is sent to the browser from the security sandbox
145 upon analysis of a static webpage and/or when an inline script is sent to the security
sandbox 145.

[0063] Using the encryption key, any fields shown on the webpage can be encrypted.
The encryption of the data (contents of the field) is performed at the client device 130
while the decryption is performed by the security sandbox 145. In addition, any encrypted
data is intercepted by the security sandbox 145. Then, all text insertions into the DOM
are detected and text insertions of encrypted data are replaced with decrypted data (prior
to insertion to the actual DOM). As a result of this operation, the original code (provided
by the cloud-application 115) executed by the browser can access only encrypted data.
If the code tries to read the decrypted data out of the DOM, the security sandbox 145
intercepts this attempt and encrypts the data back again.

[0064] It should be noted that because the original code is sandboxed, execution of the
code cannot access injected objects and/or wrapper function and read out the encryption
key. As a result, even if the cloud computing platform 110 is hacked, hackers can access
only see encrypted data. If hackers inject code into the live site in order to steal the data
from the client device 130, the injected code is processed by the sandbox 145, and thus
cannot access any data residing in the client device 130.

[0065] It should be understood that the embodiments disclosed herein are not limited to
the specific architectures illustrated in Fig. 1 and other architectures may be equally used
without departing from the scope of the disclosed embodiments. Specifically, the suffix
proxy 140 may reside in the cloud computing platform 110, a different cloud computing
platform, or a connectable datacenter. Moreover, in an embodiment, there may be a
plurality of suffix proxies 140 operating as described hereinabove and configured to either
have one as a standby appliance to take control in a case of failure, or to share the load

14

WO 2016/040753 PCT/US2015/049606

between them, or to split the functions between them. Furthermore, without departing
from the scope of the disclosed embodiments, various functions of the suffix proxy 140
may be implemented by the managed network proxy 120.

[0066] Fig. 2 shows an exemplary and non-limiting flowchart 200 illustrating a method for
suffixing network addresses according to one embodiment.

[0067] At S210, a webpage sent to a client device from a cloud-application is received.
The webpage may be sent from an access proxy or any device in the line of traffic
between the client device and the cloud application. In an embodiment, the webpage is
intercepted by a suffix proxy.

[0068] At S220, a static network address designated in the received webpage is suffixed.
That is, a predefined domain name suffix is added to the network address. The network
address or addresses to be suffixed are determined based on a predefined list of URLs.
[0069] At S225, a piece of code (JavaScript code) is injected into the webpage to later
process scripts, code, or content files that are dynamically loaded to the webpage.
Examples for such files include, for example, JavaScript, CSS, and the like. The modified
webpage is relayed to the client device’s browser.

[0070] The rendering of the webpage on the client’s browser may cause dynamic loading
of content from a server (e.g., server running the cloud-application) to the webpage.
According to various embodiments, any attempt to load such code (for example, through
a static inline script) is detected in order to allow, e.g., the security sandbox 145 to control
the execution of the dynamic code, such as static script code, when the webpage is
downloaded to the browser.

[0071]At S230, any code that is dynamically loaded to the webpage is received. For
example, such code can be sent from the browser to the suffix proxy 140. In an
embodiment, the received code is cached for future usage. At S240, the received code is
modified. In an embodiment, S240 is performed by the suffix proxy. Specifically, the code
modification is performed in such way that future dynamically loaded code will be modified
during run-time and specific changes to the DOM can be intercepted in order to enforce
suffixing of certain network address.

15

WO 2016/040753 PCT/US2015/049606

[0072]In some embodiments, the enforcing suffixing of network addresses includes
suffixing writes of an address (URL) into the DOM with a predefined domain name and
un-suffixing any reads of an address (URL) from the DOM.

[0073] As discussed in detail above, the code modification includes wrapping certain
DOM elements. In a further embodiment, the modification of the code is performed using
static hooking techniques discussed in detail above. Step S240 will result in a new code
(an example for such new code is provided above). In an embodiment, the new code is
cached for future usage. The various embodiments of the caching mechanism are
described above.

[0074] At S250, the new code is sent to the client device for execution thereon. It should
be noted that S230 and S240 are performed for any dynamic code, script, or file included
in the webpage. It should be emphasized that steps S230 and S240 are performed
completely during run-time.

[0075] Fig. 3 shows an exemplary and non-limiting flowchart 300 illustrating a method for
controlling changes to the DOM according to one embodiment.

[0076] At S310, a webpage sent to a client device from a cloud-application is received.
The webpage may be sent from an access proxy or any device in the line of traffic
between the client device and the cloud application. In an embodiment, the webpage is
intercepted by the suffix proxy.

[0077] At S320, a piece of code (e.g., JavaScript code) is injected into the webpage to
later process scripts, code, or content files that are dynamically loaded to the webpage.
In an embodiment, the piece of code maintains an encryption key in the DOM of the
webpage. The encryption key is known to the suffix proxy, but not to the cloud-application
and/or a provider of the cloud platform.

[0078] At S330, the modified webpage is sent to the client device. The injected piece of
code together with the encryption key allow the user of the client device to encrypt any
text field in the webpage.

[0079] At S340, encrypted text fields inserted into the DOM are intercepted. The
recognition of the encrypted text is performed, for example, by searching for a known
encryption pattern. At S350, any identified encrypted text field is decrypted. Then, at
S360, the decrypted data of the identified encrypted text fields is inserted into the DOM.

16

WO 2016/040753 PCT/US2015/049606

It should be noted that any code (e.g., JavaScript code) provided by the cloud application
cannot read decrypted data from the DOM. It should be further noted that any attempt to
read such data outside of the DOM is intercepted, for example, by the security sandbox
145. Therefore, the disclosed method for controlling changes to the DOM provides
another layer of security to the cloud-application.

[0080] Fig. 4 shows an exemplary and non-limiting block diagram of the suffix proxy 140
constructed according to one embodiment. The suffix proxy 140 may be deployed in
cloud-computing platforms, data centers, or as a stand-alone network device. The suffix
proxy 140 is configured to at least control and enforce access to cloud applications based
on access policies described in greater detail above.

[0081] The suffix proxy 140 includes a processing system 410 coupled to a memory 415,
and a security sandbox module 420. The processing system 410 uses instructions stored
in the memory 415 to control the operation of the suffix proxy 140.

[0082] The processing system 410 may comprise or be a component of a larger
processing system implemented with one or more processors. The one or more
processors may be implemented with any combination of general-purpose
microprocessors, microcontrollers, digital signal processors (DSPs), field programmable
gate array (FPGASs), programmable logic devices (PLDs), controllers, state machines,
gated logic, discrete hardware components, dedicated hardware finite state machines, or
any other suitable entities that can perform calculations or other manipulations of
information.

[0083] The processing system 410 may also include machine-readable media for storing
software. Software shall be construed broadly to mean any type of instructions, whether
referred to as software, firmware, middleware, microcode, hardware description
language, or otherwise. Instructions may include code (e.g., in source code format, binary
code format, executable code format, or any other suitable format of code). The
instructions, when executed by the one or more processors, cause the processing system
410 to perform the various functions described herein.

[0084] The security sandbox module 420 is configured to monitor any changes to the
DOM, prevent access to the DOM, and suffix and un-suffix network addresses. As

discussed in detail above, the operation of the security sandbox module 420 is performed

17

WO 2016/040753 PCT/US2015/049606

in run-time, i.e., when the webpage is rendered on the web browser of a client device
130.

[0085] The webpage is provided by the cloud-application 115. The operation of the
security sandbox module 420 is discussed in detail above. In an embodiment, the security
sandbox module 420 can be realized as a processing unit having the various structural
configurations discussed in detail above.

[0086] The various embodiments disclosed herein can be implemented as hardware,
firmware, software, or any combination thereof. Moreover, the software is preferably
implemented as an application program tangibly embodied on a program storage unit or
non-transitory computer readable medium consisting of parts, or of certain devices and/or
a combination of devices. The application program may be uploaded to, and executed
by, a machine comprising any suitable architecture. Preferably, the machine is
implemented on a computer platform having hardware such as one or more central
processing units (“CPUs”), a memory, and input/output interfaces. The computer platform
may also include an operating system and microinstruction code. The various processes
and functions described herein may be either part of the microinstruction code or part of
the application program, or any combination thereof, which may be executed by a CPU,
whether or not such a computer or processor is explicitly shown. In addition, various other
peripheral units may be connected to the computer platform such as an additional data
storage unit and a printing unit. Furthermore, a non-transitory computer readable medium
is any computer readable medium except for a transitory propagating signal.

[0087]1t should be understood that any reference to an element herein using a

designation such as “first,” “second,” and so forth does not generally limit the quantity or
order of those elements. Rather, these designations are generally used herein as a
convenient method of distinguishing between two or more elements or instances of an
element. Thus, a reference to first and second elements does not mean that only two
elements may be employed there or that the first element must precede the second
element in some manner. Also, unless stated otherwise a set of elements comprises one
or more elements. In addition, terminology of the form “at least one of A, B, or C” or “one
or more of A, B, or C” or “at least one of the group consisting of A, B, and C” or “at least

one of A, B, and C” used in the description or the claims means “A or B or C or any

18

WO 2016/040753 PCT/US2015/049606

combination of these elements.” For example, this terminology may include A, or B, or
C,orAand B, or Aand C, or Aand B and C, or 2A, or 2B, or 2C, and so on.

[0088] All examples and conditional language recited herein are intended for pedagogical
purposes to aid the reader in understanding the principles of the disclosed embodiments
and the concepts contributed by the inventor to furthering the art, and are to be construed
as being without limitation to such specifically recited examples and conditions. Moreover,
all statements herein reciting principles, aspects, and embodiments, as well as specific
examples thereof, are intended to encompass both structural and functional equivalents
thereof. Additionally, it is intended that such equivalents include both currently known
equivalents as well as equivalents developed in the future, i.e., any elements developed
that perform the same function, regardless of structure.

19

WO 2016/040753 PCT/US2015/049606

CLAIMS

What is claimed is:

1. A method for modifying network addresses of at least one cloud application,
comprising:

receiving a webpage sent to a client device from the at least one cloud
application, wherein a webpage designates at least one script loaded to the client
device during runtime;

injecting a piece of code to the webpage;

receiving, by the injected piece of code, an attempt to load each of the at least
one script;

modifying the at least one script by suffixing each network address designated in
the at least one script with a predefined network address; and

sending the modified at least one script to the client device, wherein runtime
execution of the modified at least one script on the client device causes redirection of
future requests from the client device to the cloud application to the suffixed network
address.

2. The method of claim 1, further comprising:

modifying each static network address designated in the received webpage.

3. The method of claim 2, wherein suffixing a static network address further
comprises:

parsing the webpage to identify the static network address; and

suffixing each identified static network address designated in the at least one
script with the predefined network address.

4. The method of claim 3, wherein each of the network addresses to be modified is

included in a list of network addresses.

20

WO 2016/040753 PCT/US2015/049606

5. The method of claim 4, wherein each of the network addresses to be modified is

at least a uniform resource locator (URL).

6. The method of claim 1, wherein modifying, the at least one script further
comprises:

parsing the requested content to identify an executable instruction possibly
configured for generating a network address; and

wrapping the each identified instruction to call an alternative instruction, wherein
the alternative instruction is possibly configured to suffix the predefined network
address to the generated address.

7. The method of claim 6, further comprising

detecting, during runtime, at least one wrapped instruction that does not affect
the network address; and

ignoring the respective wrapper applied on the at least one wrapped instruction
that does not affect the network address.

8. The method of claim 6, wherein the at least script is any one of: a JavaScript
code and a Cascading Style Sheets (CSS) file.

9. The method of claim 6, wherein wrapping the each identified instruction further
comprises:

converting the at least one script into an abstract syntax tree;

recursively traversing the abstract syntax tree; and

wrapping nodes of the abstract syntax tree to generate a patched abstract syntax
tree.

10. The method of claim 6, further comprising:
rebuilding the modified at least one script from the patched abstract syntax tree.

11. The method of claim 6, further comprising:

21

WO 2016/040753 PCT/US2015/049606

caching the at least one script and the modified script.

12. The method of claim 1, further comprising:

determining if at least one modified script has been cached upon identifying a
request to load the at least one script; and

sending the cached modified script to the client device without retrieving the

requested content from a remote server executing the at least one cloud application.

13. The method of claim 1, wherein the method is performed without requiring any

modification of a default client device configuration.

14. The method of claim 6, further comprising:

executing in a sandbox the at least one script to monitor any attempts to change
a DOM of the webpage;

suffixing, at runtime, any write of a network address to the DOM; and

un-suffixing, at runtime, any read of a network address from the DOM.

15. The method of claim 14, further comprising:
monitoring access to the DOM; and
preventing at least one operation that can modify the DOM.

16. The method of claim 15, wherein the at least one operation includes any one of:
loading plugins to the client device, a cross domain access, and an asynchronous

request between the webpage and the web server.

17. The method of claim 1, wherein the method is performed by a suffix proxy

device.

18. A non-transitory computer readable medium having stored thereon instructions for

causing one or more processing units to execute the method according to claim 1.

22

WO 2016/040753 PCT/US2015/049606

19. A system for modifying network addresses of at least one cloud application,
comprising:

a processor; and

a memory containing instructions that, when executed by the processor, configure
the system to:

receive a webpage sent to a client device from the at least one cloud application,
wherein a webpage designates at least one script loaded to the client device during
runtime;

inject a piece of code to the webpage;

receive, by the injected piece of code, an attempt to load each of the at least one
script;

modify the at least one script by suffixing each network address designated in the
at least one script with a predefined network address; and

send the modified at least one script to the client device, wherein runtime
execution of the modified at least one script on the client device causes redirection of
future requests from the client device to the cloud application to the suffixed network

address.

20. The system of claim 19, wherein the system is further configured to:

modify each static network address designated in the received webpage.

21. The system of claim 20, wherein the system is further configured to:

parse the webpage to identify the static network address; and

suffix each identified static network address designated in the at least one script
with the predefined network address.

22. The system of claim 21, wherein each of the network addresses to be modified is
included in a list of network addresses.

23. The system of claim 22, wherein each of the network addresses to be modified is
at least a uniform resource locator (URL).

23

WO 2016/040753 PCT/US2015/049606

24. The system of claim 19, wherein the system is further configured to:

parse the requested content to identify an executable instruction possibly
configured for generating a network address; and

wrap the each identified instruction to call an alternative instruction, wherein the
alternative instruction is possibly configured to suffix the predefined network address to
the generated address.

25. The system of claim 24, wherein the system is further configured to:

detect, during run-time, at least one wrapped instruction that does not affect the
network address; and

ignore the respective wrapper applied on the at least one wrapped instruction
that does not affect the network address.

26. The system of claim 24, wherein the at least script is any one of: a JavaScript
code and a Cascading Style Sheets (CSS) file.

27. The system of claim 24, wherein the system is further configured to:

convert the at least one script into an abstract syntax tree;

recursively traverse the abstract syntax tree; and

wrap nodes of the abstract syntax tree to generate a patched abstract syntax
tree.

28. The system of claim 24, wherein the system is further configured to:

rebuild the modified at least one script from the patched abstract syntax tree.

29. The system of claim 24, wherein the system is further configured to:
cache the at least one script and the modified script.

30. The system of claim 19, wherein the system is further configured to:

24

WO 2016/040753 PCT/US2015/049606

determine if at least one modified script has been cached upon identifying a
request to load the at least one script; and

send the cached modified script to the client device without retrieving the
requested content from a remote server executing the at least one cloud application.

31. The system of claim 24, wherein the system is further configured to:

execute in a sandbox the at least one script to monitor any attempts to change a
DOM of the webpage;

suffix, at run-time, any write of a network address to the DOM; and

un-suffix, at run-time, any read of a network address from the DOM.

32. The system of claim 31, wherein the system is further configured to:
monitor access to the DOM; and
prevent at least one operation that can modify the DOM.

33. The system of claim 32, wherein the at least one operation includes any one of:

loading plugins to the client device, a cross domain access, and an asynchronous
request between the webpage and the web server.

25

WO 2016/040753 PCT/US2015/049606

1/4
100 \
Client Device 130-1 Client Device 130-N
Security LN Security
Sandbox Sandbox
145 145
110\
Cloud
App1ll<1:gtlon < : > Network
—2 150
[
[
\4
Suffix Proxy
| Security |
1 Sandbox | | 140
Managed iﬂ
Network

Proxy
120

FIG. 1

WO 2016/040753 PCT/US2015/049606

2/4
200
C START)
v S210
Receive a webpage sent to a
client device
v S220

Suffix a static network
address designated in the
received webpage

S225

Inject a piece of code into the
webpage

S230
v

Receive any code dynamically
loaded to the webpage

S240

Modify the received code

A 4

Send new code to the client device

FIG. 2

WO 2016/040753 PCT/US2015/049606

3/4
300
C START)
v S310
Receive a webpage sent to a
client device
v S320
Inject a piece of code into
the webpage

S330

Sent the modified webpage to
the client device

S340

A 4

Intercept encrypted text fields
inserted into the DOM

S350

Decrypt any identified encrypted
text fields

S360

A 4

Insert decrypted data of the
identified encrypted text fields
into the DOM

~_ > TN
N N

(END)

FIG. 3

WO 2016/040753 PCT/US2015/049606

4/4
140
s
Processing
> system
410
A
\ 4 y
Security) . Memory
Sandbox < > 415
module
420

Fig. 4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 2015/049606

A CLASSIFICATION OF SUBJECT MATTER

GOG6F 12/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L 29/00, 29/02, 29/06, GO6F 11/00, 12/00, 12/14, 15/00, 15/16, 21/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PAJ, Espacenet, USPTO DB, Information Retrieval System of FIPS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
US 2012/0030294 A1 (OPENWAVE SYSTEMS INC.) 02.02.2012,
X abstract, paragraphs [0007], [0024], [0025], [0029], [0035], [0039] - [0042], 1-5, 13, 17-23
[0049], [0051], table 1, fig. 2
Y 6-12, 14-16, 24-33
Y US 2007/0016949 A1 (MICROSOFT CORPORATION) 18.01.2007, paragraphs 6-11, 14-16, 24-29,
[0072] - [0075], [0086] - [0088], [0094], [0096], [0102] - [0105] 31-33
Y WO 2013/091709 A1 (FUNDACIO PRIVADA BARCELONA DIGITAL CENTRE 9-12, 27-30
TECHNOLOGIC et al.) 27.06.2013, paragraphs [0053], [0102] - [0109], claim 9
A US 2010/0146260 A1 (BARRACUDA NETWORKS, INC.) 10.06.2010 1-33
A US 6397246 B1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 1-33
28.05.2002
D Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited documents: “T” later document published after the international filing date or priority

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier document but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

18 December 2015 (18.12.2015)

Date of mailing of the international search report

25 February 2016 (25.02.2016)

Name and mailing address of the ISA/RU:

Federal Institute of Industrial Property,
Berezhkovskaya nab., 30-1, Moscow, G-59,

GSP-3, Russia, 125993

Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Authorized officer
P. Volkov

Telephone No. (495)531-64-81

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report

