

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 January 2009 (22.01.2009)

PCT

(10) International Publication Number
WO 2009/011897 A1

(51) International Patent Classification:
A01N 43/04 (2006.01)

(74) Agent: BELLIVEAU, Michael, J.; Clark & Elbing LLP,
101 Federal Street, Boston, MA 02110 (US).

(21) International Application Number:
PCT/US2008/008764

(22) International Filing Date: 17 July 2008 (17.07.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/959,877 17 July 2007 (17.07.2007) US
60/965,595 21 August 2007 (21.08.2007) US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): COMBINATORX, INCORPORATED [US/US]; 245 First Street, Sixteenth Floor, Cambridge, MA 02142 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RICKLES, Richard [US/US]; 10 Knowles Farm Road, Arlington, MA 02474 (US). PIERCE, Laura [US/US]; 4015 Caminito Suero, San Diego, CA 92122 (US). LEE, Margaret, S. [US/US]; 20 Pleasant Street, Middleton, MA 01949 (US).

Published:

— with international search report

WO 2009/011897 A1

(54) Title: COMBINATIONS FOR THE TREATMENT OF B-CELL PROLIFERATIVE DISORDERS

(57) Abstract: The invention features compositions and methods employing combinations of an A2A receptor agonist and a PDE inhibitor for the treatment of a B-cell proliferative disorder, e.g., multiple myeloma. In at least one embodiment, the compositions of the invention comprise a PDE inhibitor active against at least two of PDE 2, 3, 4, and 7. In at least one embodiment, the compositions of the invention comprise further administered an antiproliferative compound.

COMBINATIONS FOR THE TREATMENT OF B-CELL PROLIFERATIVE DISORDERS

CROSS-REFERENCE TO RELATED APPLICATIONS

5 This application claims benefit of U.S. Provisional Application Nos. 60/959,877, filed July 17, 2007, and 60/965,595, filed August 21, 2007, each of which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

10 The invention relates to the field of treatments for proliferative disorders.

Multiple Myeloma (MM) is a malignant disorder of antibody producing B-cells. MM cells flourish in the bone marrow microenvironment, generating tumors called plasmacytomas that disrupt haematopoiesis and cause severe 15 destruction of bone. Disease complications include anemia, infections, hypercalcemia, organ dysfunction and bone pain.

For many years, the combination of glucocorticoids (e.g., dexamethasone or prednisolone) and alkylating agents (e.g., melphalan) was standard treatment for MM, with glucocorticoids providing most of the clinical 20 benefit. In recent years, treatment options have advanced with three drugs approved by the FDA—VelcadeTM (bortezomib), thalidomide, and lenalidomide. Glucocorticoids remain the mainstay of treatment and are usually deployed in combination with FDA-approved or emerging drugs. Unfortunately, despite advances in the treatment, MM remains an incurable 25 disease with most patients eventually succumbing to the cancer.

SUMMARY OF THE INVENTION

In general, the invention features methods and compositions employing an A2A receptor agonist and a PDE inhibitor for the treatment of a B-cell 30 proliferative disorder.

In one aspect, the invention features a method of treating a B-cell proliferative disorder by administering to a patient a combination of an A2A receptor agonist and a PDE inhibitor in amounts that together are effective to treat the B-cell proliferative disorder. Exemplary A2A receptor agonists, e.g., 5 IB-MECA, Cl-IB-MECA, CGS-21680, regadenoson, apadenoson, binodenoson, BVT-115959, and UK-432097, are listed in Tables 1 and 2. Exemplary PDE inhibitors, e.g., trequinsin, zardaverine, roflumilast, rolipram, cilostazol, milrinone, papaverine, BAY 60-7550, or BRL-50481, are listed in 10 Tables 3 and 4. In certain embodiments, the PDE inhibitor is active against PDE 4 or at least two of PDE 2, 3, 4, and 7. In other embodiments, the combination includes two or more PDE inhibitors that when combined are active against at least two of PDE 2, 3, 4, and 7. The A2A receptor agonist and PDE inhibitor may be administered simultaneously or within 28 days of one another.

15 Examples of B-cell proliferative disorders include autoimmune lymphoproliferative disease, B-cell chronic lymphocytic leukemia (CLL), B-cell prolymphocyte leukemia, lymphoplasmacytic lymphoma, mantle cell lymphoma, follicular lymphoma, extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT type), nodal marginal zone 20 lymphoma, splenic marginal zone lymphoma, hairy cell leukemia, plasmacytoma, diffuse large B-cell lymphoma, Burkitt lymphoma, multiple myeloma, indolent myeloma, smoldering myeloma, monoclonal gammopathy of unknown significance (MGUS), B-cell non-Hodgkin's lymphoma, small lymphocytic lymphoma, monoclonal immunoglobulin deposition diseases, heavy 25 chain diseases, mediastinal (thymic) large B-cell lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, precursor B-lymphoblastic leukemia/lymphoma, Hodgkin's lymphoma (e.g., nodular lymphocyte predominant Hodgkin's lymphoma, classical Hodgkin's lymphoma, nodular sclerosis Hodgkin's lymphoma, mixed cellularity 30 Hodgkin's lymphoma, lymphocyte-rich classical Hodgkin's lymphoma, and

lymphocyte depleted Hodgkin's lymphoma), post-transplant lymphoproliferative disorder, and Waldenstrom's macroglobulineamia.

In other embodiments, the patient is not suffering from a comorbid immunoinflammatory disorder of the lungs (e.g., COPD or asthma) or other 5 immunoinflammatory disorder, or the patient has been diagnosed with a B-cell proliferative disorder prior to commencement of treatment.

The method may further include administering an antiproliferative compound or combination of antiproliferative compounds, e.g., selected from the group consisting of alkylating agents, platinum agents, antimetabolites, 10 topoisomerase inhibitors, antitumor antibiotics, antimitotic agents, aromatase inhibitors, thymidylate synthase inhibitors, DNA antagonists, farnesyltransferase inhibitors, pump inhibitors, histone acetyltransferase inhibitors, metalloproteinase inhibitors, ribonucleoside reductase inhibitors, TNF alpha agonists/antagonists, endothelin A receptor antagonist, retinoic acid 15 receptor agonists, immuno-modulators, hormonal and antihormonal agents, photodynamic agents, tyrosine kinase inhibitors, antisense compounds, corticosteroids, HSP90 inhibitors, proteosome inhibitors (for example, NPI-0052), CD40 inhibitors, anti-CS1 antibodies, FGFR3 inhibitors, VEGF inhibitors, MEK inhibitors, cyclin D1 inhibitors, NF- κ B inhibitors, 20 anthracyclines, histone deacetylases, kinesin inhibitors, phosphatase inhibitors, COX2 inhibitors, mTOR inhibitors, calcineurin antagonists, and IMiDs. Specific antiproliferative compounds and combinations thereof are provided herein, e.g., in Tables 5 and 6.

The method may also further include administering IL-6 to the patient. 25 If not by direct administration of IL-6, patients may be treated with agent(s) to increase the expression or activity of IL-6. Such agents may include other cytokines (e.g., IL-1 or TNF), soluble IL-6 receptor α (sIL-6R α), platelet-derived growth factor, prostaglandin E1, forskolin, cholera toxin, dibutyryl cAMP, or IL-6 receptor agonists, e.g., the agonist antibody MT-18, K-7/D-6, 30 and compounds disclosed in U.S. Patent Nos. 5,914,106, 5,506,107, and 5,891,998.

The invention further features kits including a PDE inhibitor and an A2A receptor agonist in an amount effective to treat a B-cell proliferative disorder. Exemplary PDE inhibitors and A2A receptors are described herein. In certain embodiments, the PDE inhibitor has activity against at least two of PDE 2, 3, 4, and 7, or the kit includes two or more PDE inhibitors that when combined have activity against at least two of PDE 2, 3, 4, and 7. A kit may also include an antiproliferative compound or combination of antiproliferative compounds, e.g., selected from the group consisting of alkylating agents, platinum agents, antimetabolites, topoisomerase inhibitors, antitumor antibiotics, antimitotic agents, aromatase inhibitors, thymidylate synthase inhibitors, DNA antagonists, farnesyltransferase inhibitors, pump inhibitors, histone acetyltransferase inhibitors, metalloproteinase inhibitors, ribonucleoside reductase inhibitors, TNF alpha agonists/antagonists, endothelin A receptor antagonist, retinoic acid receptor agonists, immuno-modulators, hormonal and antihormonal agents, photodynamic agents, tyrosine kinase inhibitors, antisense compounds, corticosteroids, HSP90 inhibitors, proteosome inhibitors (for example, NPI-0052), CD40 inhibitors, anti-CS1 antibodies, FGFR3 inhibitors, VEGF inhibitors, MEK inhibitors, cyclin D1 inhibitors, NF- κ B inhibitors, anthracyclines, histone deacetylases, kinesin inhibitors, phosphatase inhibitors, COX2 inhibitors, mTOR inhibitors, calcineurin antagonists, and IMiDs. Specific antiproliferative compounds and combinations thereof are provided herein. A kit may also include IL-6, a compound that increases IL-6 expression, or an IL-6 receptor agonist. Kits of the invention may further include instructions for administering the combination of agents for treatment of the B-cell proliferative disorder.

The invention also features a kit including an A2A receptor agonist and instructions for administering the A2A receptor agonist and a PDE inhibitor to treat a B-cell proliferative disorder. Alternatively, a kit may include a PDE inhibitor and instructions for administering said PDE inhibitor and an A2A receptor agonist to treat a B-cell proliferative disorder.

The invention additionally features pharmaceutical compositions including a PDE inhibitor and an A2A receptor agonist in an amount effective to treat a B-cell proliferative disorder and a pharmaceutically acceptable carrier. Exemplary PDE inhibitors and A2A receptors are described herein.

5 In certain embodiments, corticosteroids are specifically excluded from the methods, compositions, and kits of the invention. In other embodiments, e.g., for treating a B-cell proliferative disorder other than multiple myeloma, the following PDEs are specifically excluded from the methods, compositions, and kits of the invention: piclamilast, roflumilast, roflumilast-N-oxide, V-
10 11294A, CI-1018, arofylline, AWD-12-281, AWD-12-343, atizoram, CDC-801, lirimilast, SCH-351591, cilomilast, CDC-998, D-4396, IC-485, CC-1088, and KW4490.

By “A2A receptor agonist” is meant any member of the class of compounds whose antiproliferative effect on MM.1S cells is reduced in the 15 presence of an A2A-selective antagonist, e.g., SCH 58261. In certain embodiments, the antiproliferative effect of an A2A receptor agonist in MM.1S cells (used at a concentration equivalent to the K_i) is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, or 90 % by an A2A antagonist used at a concentration of at least 10-fold higher than it's K_i (for example, SCH 58261 ($K_i=5\text{nM}$) used at 20 78nM)). An A2A receptor agonist may also retain at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 95% of its antiproliferative activity in MM.1S cells in the presence of an A1 receptor antagonist (e.g., DPCPX (89nM)), an A2B receptor antagonist (e.g., MRS 1574 (89nM)), an A3 receptor antagonist (e.g., MRS 1523 (87nM)), or a combination thereof. In certain embodiments, the reduction 25 of agonist-induced antiproliferative effect by an A2A antagonist will exceed that of an A1, A2B, or A3 antagonist. Exemplary A2A Receptor Agonists for use in the invention are described herein.

By “PDE inhibitor” is meant any member of the class of compounds having an IC_{50} of 100 μM or lower concentration for a phosphodiesterase. In 30 preferred embodiments, the IC_{50} of a PDE inhibitor is 40, 20, 10 μM or lower concentration. In particular embodiments, a PDE inhibitor of the invention will

have activity against PDE 2, 3, 4, or 7 or combinations thereof in cells of the B-type lineage. In preferred embodiments, a PDE inhibitor has activity against a particular type of PDE when it has an IC_{50} of 40 μ M, 20 μ M, 10 μ M, 5 μ M, 1 μ M, 100 nM, 10 nM, or lower concentration. When a PDE inhibitor is 5 described herein as having activity against a particular type of PDE, the inhibitor may also have activity against other types, unless otherwise stated. Exemplary PDE inhibitors for use in the invention are described herein.

By “B-cell proliferative disorder” is meant any disease where there is a disruption of B-cell homeostasis leading to a pathologic increase in the number 10 of B cells. A B-cell cancer is an example of a B-cell proliferative disorder. A B-cell cancer is a malignancy of cells derived from lymphoid stem cells and may represent any stage along the B-cell differentiation pathway. Examples of B-cell proliferative disorders are provided herein.

By “effective” is meant the amount or amounts of one or more 15 compounds sufficient to treat a B-cell proliferative disorder in a clinically relevant manner. An effective amount of an active varies depending upon the manner of administration, the age, body weight, and general health of the patient. Ultimately, the prescribers will decide the appropriate amount and dosage regimen. Additionally, an effective amount can be that amount of 20 compound in a combination of the invention that is safe and efficacious in the treatment of a patient having the B-cell proliferative disorder as determined and approved by a regulatory authority (such as the U.S. Food and Drug Administration).

By “treating” is meant administering or prescribing a pharmaceutical 25 composition for the treatment or prevention of a B-cell proliferative disorder.

By “patient” is meant any animal (e.g., a human). Other animals that can be treated using the methods, compositions, and kits of the invention include horses, dogs, cats, pigs, goats, rabbits, hamsters, monkeys, guinea pigs, rats, mice, lizards, snakes, sheep, cattle, fish, and birds. In certain 30 embodiments, a patient is not suffering from a comorbid immunoinflammatory disorder.

The term “immunoinflammatory disorder” encompasses a variety of conditions, including autoimmune diseases, proliferative skin diseases, and inflammatory dermatoses. Immunoinflammatory disorders result in the destruction of healthy tissue by an inflammatory process, dysregulation of the immune system, and unwanted proliferation of cells. Examples of immunoinflammatory disorders are acne vulgaris; acute respiratory distress syndrome; Addison’s disease; adrenocortical insufficiency; adrenogenital syndrome; allergic conjunctivitis; allergic rhinitis; allergic intraocular inflammatory diseases, ANCA-associated small-vessel vasculitis; angioedema; 5 ankylosing spondylitis; aphthous stomatitis; arthritis, asthma; atherosclerosis; atopic dermatitis; autoimmune disease; autoimmune hemolytic anemia; autoimmune hepatitis; Behcet’s disease; Bell’s palsy; berylliosis; bronchial asthma; bullous herpetiformis dermatitis; bullous pemphigoid; carditis; celiac disease; cerebral ischaemia; chronic obstructive pulmonary disease; cirrhosis; 10 Cogan’s syndrome; contact dermatitis; COPD; Crohn’s disease; Cushing’s syndrome; dermatomyositis; diabetes mellitus; discoid lupus erythematosus; eosinophilic fasciitis; epicondylitis; erythema nodosum; exfoliative dermatitis; fibromyalgia; focal glomerulosclerosis; giant cell arteritis; gout; gouty arthritis; graft-versus-host disease; hand eczema; Henoch-Schonlein purpura; herpes 15 gestationis; hirsutism; hypersensitivity drug reactions; idiopathic cerato-scleritis; idiopathic pulmonary fibrosis; idiopathic thrombocytopenic purpura; inflammatory bowel or gastrointestinal disorders, inflammatory dermatoses; juvenile rheumatoid arthritis; laryngeal edema; lichen planus; Loeffler’s syndrome; lupus nephritis; lupus vulgaris; lymphomatous tracheobronchitis; 20 macular edema; multiple sclerosis; musculoskeletal and connective tissue disorder; myasthenia gravis; myositis; obstructive pulmonary disease; ocular inflammation; organ transplant rejection; osteoarthritis; pancreatitis; pemphigoid gestationis; pemphigus vulgaris; polyarteritis nodosa; polymyalgia rheumatica; primary adrenocortical insufficiency; primary billiary cirrhosis; 25 pruritus scroti; pruritis/inflammation, psoriasis; psoriatic arthritis; Reiter’s disease; relapsing polychondritis; rheumatic carditis; rheumatic fever;

rheumatoid arthritis; rosacea caused by sarcoidosis; rosacea caused by scleroderma; rosacea caused by Sweet's syndrome; rosacea caused by systemic lupus erythematosus; rosacea caused by urticaria; rosacea caused by zoster-associated pain; sarcoidosis; scleroderma; segmental glomerulosclerosis; septic shock syndrome; serum sickness; shoulder tendinitis or bursitis; Sjogren's syndrome; Still's disease; stroke-induced brain cell death; Sweet's disease; systemic dermatomyositis; systemic lupus erythematosus; systemic sclerosis; Takayasu's arteritis; temporal arteritis; thyroiditis; toxic epidermal necrolysis; tuberculosis; type-1 diabetes; ulcerative colitis; uveitis; vasculitis; and

10 Wegener's granulomatosis. "Non-dermal inflammatory disorders" include, for example, rheumatoid arthritis, inflammatory bowel disease, asthma, and chronic obstructive pulmonary disease. "Dermal inflammatory disorders" or "inflammatory dermatoses" include, for example, psoriasis, acute febrile neutrophilic dermatosis, eczema (e.g., asteatotic eczema, dyshidrotic eczema, vesicular palmoplantar eczema), balanitis circumscripta plasmacellularis, balanoposthitis, Behcet's disease, erythema annulare centrifugum, erythema dyschromicum perstans, erythema multiforme, granuloma annulare, lichen nitidus, lichen planus, lichen sclerosus et atrophicus, lichen simplex chronicus, lichen spinulosus, nummular dermatitis, pyoderma gangrenosum, sarcoidosis, subcorneal pustular dermatosis, urticaria, and transient acantholytic dermatosis.

20 By "proliferative skin disease" is meant a benign or malignant disease that is characterized by accelerated cell division in the epidermis or dermis. Examples of proliferative skin diseases are psoriasis, atopic dermatitis, non-specific dermatitis, primary irritant contact dermatitis, allergic contact dermatitis, basal and squamous cell carcinomas of the skin, lamellar ichthyosis, epidermolytic hyperkeratosis, premalignant keratosis, acne, and seborrheic dermatitis. As will be appreciated by one skilled in the art, a particular disease, disorder, or condition may be characterized as being both a proliferative skin disease and an inflammatory dermatosis. An example of such a disease is psoriasis.

25 30 By a "low dosage" is meant at least 5% less (e.g., at least 10%, 20%, 50%, 80%, 90%, or even 95%) than the lowest standard recommended dosage

of a particular compound formulated for a given route of administration for treatment of any human disease or condition.

By a “high dosage” is meant at least 5% (e.g., at least 10%, 20%, 50%, 100%, 200%, or even 300%) more than the highest standard recommended 5 dosage of a particular compound for treatment of any human disease or condition.

Compounds useful in the invention may also be isotopically labeled compounds. Useful isotopes include hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, (e.g., ^2H , ^3H , ^{13}C , ^{14}C , ^{15}N , ^{18}O , ^{17}O , ^{31}P , ^{32}P , ^{35}S , ^{18}F , and ^{36}Cl). Isotopically-labeled compounds can be prepared by 10 synthesizing a compound using a readily available isotopically-labeled reagent in place of a non-isotopically-labeled reagent.

Compounds useful in the invention include those described herein in any of their pharmaceutically acceptable forms, including isomers such as 15 diastereomers and enantiomers, salts, esters, amides, thioesters, solvates, and polymorphs thereof, as well as racemic mixtures and pure isomers of the compounds described herein.

Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

20

DETAILED DESCRIPTION OF THE INVENTION

The invention features methods, compositions, and kits for the administration of an effective amount of a combination of an A2A receptor agonist and a PDE inhibitor to treat a B-cell proliferative disorder. The 25 invention is described in greater detail below.

A2A Receptor Agonists

Exemplary A2A receptor agonists for use in the invention are shown in Table 1.

Table 1

Compound	Synonym
(S)-ENBA	S- <i>N</i> ⁶ -(2-endo-norbornyl)adenosine
2-Cl-IB-MECA	2-chloro- <i>N</i> ⁶ -(3-iodobenzyl)-5'- <i>N</i> -methylcarboxamidoadenosine
ADAC	N-(4-(2-((4-(2-((2-aminoethyl)amino)-2-oxoethyl)phenyl)amino)-2-oxoethyl)phenyl)-Adenosine
AMP 579	1S-[1a,2b,3b,4a(S*)]-4-[7-[[1-[(3-chloro-2-thienyl)methylpropyl]propyl-amino]-3H-imidazo[4,5-b] pyridyl-3-yl]-N-ethyl-2,3-dihydroxycyclopentane carboxamide
Apadenoson	trans-4-(3-(6-amino-9-(N-ethyl-.beta.-D-ribofuranuronamidosyl)-9H-purin-2-yl)-2-propynyl)-Cyclohexanecarboxylic acid methyl ester
Apaxifylline	(S)-3, 7-dihydro-8-(3-oxocyclopentyl)-1, 3-dipropyl-1H-purine-2, 6-dione
APEC	2-[(2-aminoethyl-aminocarbonylethyl)phenylethylamino]-5'- <i>N</i> -ethyl-carboxamidoadenosine
ATL-193	acetic acid 4- {3-[6-amino-9-(5-ethylcarbamoyl-3, 4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl] -prop-2-ynyl}-cyclohexylmethyl ester
ATL2037	5- {6-amino-2-[3-(4-hydroxymethyl-cyclohexyl)-prop-1-ynyl]-purin-9-yl} -3,4-dihydroxy-tetrahydro-furan-2-carboxylic acid ethylamide; BW-1433, 8-(4-carboxyethenylphenyl)-1,3-dipropylxanthine
ATL-313	4- {3-[6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl]prop-2-ynyl}piperidine-1-carboxylic acid methyl ester
ATL 210	CAS Registry No.: 506438-25-1 ; WO 2003/029264
BG 9928	1,3-dipropyl-8-[1-(4-propionate)-bicyclo-[2,2,2]octyl]xanthine
Binodenoson (MRE-0470)	2-((cyclohexylmethylene)hydrazino)-Adenosine
BN 063	1-cyclopropylisoguanosine
CCPA	2-chloro- <i>N</i> ⁶ -cyclopentyladenosine
CDS 096370	U.S. Patent No. 6,800,633
CGS 21680	2-(4-(2-carboxyethyl)phenethylamino)-5'- <i>N</i> -ethylcarboxamidoadenosine

Compound	Synonym
CGS 21680c	2-(4-(2-carboxyethyl)phenethylamino)-5'-N-ethylcarboxamidoadenosine, sodium salt
CGS 24012	N6-2-(3,5-dimethoxyphenyl)- 2-(2-methylphenyl)-ethyl adenosine
CHA	N ⁶ -cyclohexyladenosine
CP 608039	(2S, 3S, 4R, 5R)-3-amino-5-{6-[5-chloro-2-(3-methyl-isoxazol-5-ylmethoxy)-benzylamino]-purin-9-yl}-4-hydroxy-tetrahydro-furan-2-carboxylic acid methylamide
CPA	N ⁶ -cyclopentyladenosine
CPC 402	9'-hydroxy-EHNA
CPC 405	9'-chloro-EHNA
CPC 406	9'-phthalimido-EHNA
CPX	1,3-dipropyl-8-cyclopentylxanthine
CV 1808	2-phenylaminoadenosine
CVT 2759	[(5-{6-[((3R)oxolan-3-yl)amino]purin-9-yl}{(3S,2R,4R,5R)-3,4-dihydroxyoxolan-2-yl)methoxy]-N-methylcarboxamide
CVT 3033	(4S,2R,3R,5R)-2-[6-amino-2-(1-pentylpyrazol-4-yl)purin-9-yl]-5(- hydroxymethyl)oxolane-3,4-diol
CVT 3619	(2-{6-[((1R,2R)-2-hydroxycyclopentyl)amino]purin-9-yl}{(4S,5S,2R,3R)-5-[(2-fluorophenylthio)methyl] oxolane-3,4-diol}
CVT 6883	3-ethyl-1-propyl-8-[1-(3-trifluoromethylbenzyl)-1 <i>H</i> -pyrazol-4-yl]-3,7-dihydropurine-2,6-dione
DAX	1,3-diallyl-8-cyclohexylxanthine
DPCPX	8-cyclopentyl-1,3-dipropylxanthine
DPMA	N ⁶ -(2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl)adenosine
FK 352	(E)-(R)-1-[3-(2-phenylpyrazolo[1, 5-a]pyridin-3-yl)acryloyl]pyperidin-2-ylacetic acid
FK 453	(+)-(R)-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl) acryloyl]-2-piperidine ethanol
FK 838	6-oxo-3-(2-phenylpyrazolo [1,5-a] pyridin-3-yl)-1(6H)-pyridazinebutanoic acid
GR 79236	N-((1S,trans)-2-hydroxycyclopentyl)adenosine
HEMADO	2-(1-hexynyl)-N-methyladenosine
HE-NECA	hexynyladenosine-5'-N-ethylcarboxamide
HPIA	N ⁶ -(R-4-hydroxyphenylisopropyl) adenosine
I-AB-MECA	N ⁶ -(4-amino-3-iodophenyl)methyl-5'-N-methylcarboxamidoadenosine

Compound	Synonym
IB-MECA	N ⁶ -(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine
IRFI 165	4-Cyclopentylamino-1-methylimidazo[1,2-alquinoxaline
KF 17837	(E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine
KF 20274	7,8-dihydro-8-ethyl-2-(3-noradamantyl)-4-propyl-1H-imidazo(2,1-j)purin-5(4H)-one
KF 21213	(E)-8-(2,3-dimethyl-4-methoxystyryl)-1,3,7-trimethylxanthine
KFM 19	8-(3oxocyclopentyl)-1,3-dipropyl-7H-purine-2,6-dione
KW 3902	8-(noradamantan-3-yl)-1,3-dipropylxanthine
MDL 102234	3,7-dihydro-8-(1-phenylpropyl)-1,3-dipropyl-1H-purine-2,6-dione
MDL 102503	(R)-3,7-dihydro-8-(1-methyl-2-phenylethyl)-1,3-dipropyl-1H-purine-2,6-dione
MDL 201449	9-[(1R,3R)-trans-cyclopentan-3-ol]adenine
Metrifudil	N-((2-methylphenyl)methyl)adenosine
Midaxifylline	8-(1-Aminocyclopentyl)-3,7-dihydro-1,3-dipropyl-(1H)-purine-2,6-dione hydrochloride
Sonedenoson (MRE 0094)	2-[2-(4-chlorophenyl)ethoxy]adenosine
N 0840	N6-cyclopentyl-9-methyladenine
N 0861	(+)-N6-endonorbornan-2-yl-9-methyladenine
Naxifylline	8-[(1S,2R,4S,5S,6S)-3-oxatricyclo[3.2.1.0 _{2,4}]oct-6-yl]-1,3-dipropyl-3,7-dihydro-1H-purine-2,6-dione
NECA	N-ethylcarboxamidoadenosine
PD 81723	(2-Amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)phenyl]methanone
Regadenoson (CVT 3146)	2-(4-((methylamino)carbonyl)-1H-pyrazol-1-yl)-Adenosine
R-PIA	N-(1-methyl-2-phenylethyl)adenosine
SDZ WAG 994	N ⁶ -cyclohexyl-2'-O-methyladenosine
SF 349	3-acetyl-7-methyl-7,8-dihydro-2,5(1H, 6H)quinolinone
T 62	(2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)-(4-chlorophenyl)-methanone
TCPA	N ⁶ -cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine
UR 7247	3-iso-propyl-5-([2'-{ 1 H } -tetrazol-5-yl- 1,1'-biphenyl-4-yl]methyl)- 1 H-pyrazole-4-carboxylic acid

Compound	Synonym
WRC 0342	N ⁶ -(5'-endohydroxy)-endonorbornan-2-yl-9-methyladenine
WRC 0571	C ⁸ -(N-methylisopropyl)-amino-N ⁶ (5'-endohydroxy)-endonorbornan-2-yl-9-methyladenine
YT 146	2-(1-octynyl) adenosine
ZM 241385	4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-yl amino]ethyl)phenol
Acadesine	5-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]imidazole-4-carboxamide
Capadenoson	2-amino-6-({[2-(4-chlorophenyl)-1,3-thiazol-4-yl]methyl}sulfanyl)-4-[4-(2-hydroxyethoxy)phenyl]pyridine-3,5-dicarbonitrile
Spongosine	2-methoxyadenosine
Adenogesic	Adenosine (intravenous)
Tocladesine	8-chloro-cyclic adenosine monophosphate
APNEA	N ⁶ -2-(4-aminophenyl)ethyladenosine
CGS-15943	9-chloro-2-(2-furyl)-(1,2,4)triazolo(1,5-c)quinazolin-5-imine
CGS-22989	2-((2-(1-cyclohexen-1-yl)ethyl)amino)adenosine
GP-1-468	5-amino-5-deoxy-beta-D-ribofuranosylimidazole 4N-((4-chlorophenyl)methyl)carboxamide
GP-1-668	5-amino-1-beta-D-ribofuranosylimidazole 4N-((4-nitrophenyl)methyl)carboxamide 5'-monophosphate
GP-531	5-amino-1-beta-D-(5'-benzylamino-5'-deoxyribofuranosyl)imidazole-4-carboxamide
LJ-529	2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyl-4'-thioadenosine
NNC-21-0041	2-chloro-N-(1-phenoxy-2-propyl)adenosine
OT-7100	5-n-butyl-7-(3,4,5-trimethoxybenzoylamo)pyrazolo(1,5-a)pyrimidine
UP-202-32	1-(6-((2-(1-cyclopentylindol-3-yl)ethyl)amino)-9H-purin-9-yl)-N-cyclopropyl-1-deoxy-beta-D-ribofuranuronamide

Additional adenosine receptor agonists are shown in Table 2.

Table 2

3'-Aminoadenosine-5'-uronamides	A15PROH	Adenosine
Adenosine amine congener solid	Adenosine hemisulfate salt	BAY 68-4986
BIIB014	BVT 115959	CF 402
CVT 2501	DTI 0017	GP 3367
GP 3449	GP 4012	GR 190178
GW 328267	GW 493838	Istradefylline
KF 17838	M 216765	MDL 101483
NipentExtra	NNC 210113	NNC 210136
NNC 210147	NNC 901515	OSIC 113760
SCH 420814	SCH 442416	SCH 59761
Selodenoson (DTI-0009)	SLV 320	SSR 161421
SYN 115	Tecadenoson (CVT-510)	UK 432097
UP 20256	WRC 0542	Y 341
BVT 115959	UK 432097	EPI-12323 c
GP-3269	INO-7997	INO-8875
KS-341	MEDR-440	N-0723
PJ-1165	TGL-749	Supravent

Other adenosine receptor agonists are those described or claimed in Gao et al., JPET, 298: 209-218 (2001); U.S. Patent Nos. 5,278,150, 5,424,297, 5,877,180, 6,232,297, 6,448,235, 6,514,949, 6,670,334, and 7,214,665; U.S. Patent Application Publication No. 20050261236, and International Publication Nos. WO98/08855, WO99/34804, WO2006/015357, WO2005/107463, WO03/029264, WO2006/023272, WO00/78774, WO2006/028618, 10 WO03/086408, and WO2005/097140, incorporated herein by reference.

PDE Inhibitors

Exemplary PDE inhibitors for use in the invention are shown in Table 3.

Table 3

Compound	Synonym	PDE Activity
349U85	6-piperidino-2(1H)-quinolinone	3
Adibendan	5,7-dihydro-7,7-dimethyl-2-(4-pyridinyl)-pyrrolo(2,3-f)benzimidazol-6(1H)-one	3
Amlexanox	2-amino-7-isopropyl-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carboxylic acid (U.S. Patent No. 4,143,042)	3, 4
Amrinone	5-amino-(3,4'-bipyridin)-6(1H)-one	3, 4
Anagrelide	U.S. Patent No. 3,932,407	3, 4
AP 155	2-(1-piperazinyl)-4H-pyrido[1,2-a]pyrimidin-4-one	4
AR 12456	CAS Reg. No. 100557-06-0	4
Arofylline	3-(4-chlorophenyl)-3,7-dihydro-1-propyl-1H-purine-2,6-dione	4
Ataquimast	1-ethyl-3-(methylamino)-2(1H)-quinoxalinone	3
Atizoram	tetrahydro-5-[4-methoxy-3-[(1S,2S,4R)-2-norbornyloxy]phenyl]-2(1H)-pyrimidinone	4
ATZ 1993	3-carboxy-4,5-dihydro-1-[1-(3-ethoxyphenyl)propyl]-7-(5-pyrimidinyl)methoxy-[1H]-benz[g]indazole (Teikoku Hormone)	
Avanafil	4-{[(3-chloro-4-methoxyphenyl)methyl]amino}-2-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-N-(pyrimidin-2-ylmethyl)pyrimidine-5-carboxamide	5
AVE 8112		4
AWD 12171		5
AWD 12187		7
AWD 12250		5
AWD12343		4
BAY 38-3045		1
BAY 60-7550 (Alexis Biochemicals)	2-(3,4-dimethoxybenzyl)-7-[(1R)-1-[(1R)-1-hydroxyethyl]-4-phenylbutyl]-5-methylimidazo[5,1-f][1,2,4]triazin-4(3H)-one	2
BBB 022		4
Bemarinone	5,6-dimethoxy-4-methyl-2(1H)-quinazolinone	3

Compound	Synonym	PDE Activity
Bemoradan	6-(3,4-dihydro-3-oxo-1,4(2H)-benzoxazin-7-yl)-2,3,4,5-tetrahydro-5-methylpyridazin-3-one	3
Benafentrine	(6-(p-acetamidophenyl)-1,2,3,4,4a,10b-hexahydro-8,9-dimethoxy-2-methylbenzo[c][1,6]naphthyridine	3, 4
BMY 20844	1,3-dihydro-7,8-dimethyl-2H-imidazo[4,5-b]quinolin-2-one	4
BMY 21190		4
BMY 43351	1-(cyclohexylmethyl)-4-((2,3-dihydro-2-oxo-1H-imidazo(4,5-b)quinolin-7-yl)oxy)-1-oxobutyl)-Piperazine	4
BRL 50481	3-(N,N-dimethylsulfonamido)-4-methyl-nitrobenzene	7 (7A)
C 3885		4
Caffeine citrate	2-hydroxypropane-1,2,3-tricarboxylic acid	4
Apremilast (CC 10004)	N-(2-((1S)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl)-2,3-dihydro-1,3-dioxo-1H-isoindol-4-yl)-acetamide	4
CC 1088		4
CC 3052	<i>The Journal of Immunology</i> , 1998, 161: 4236-4243	4
CC 7085		4
CCT 62	6-[(3-methylene-2-oxo-5-phenyl-5-tetrahydrofuranyl)methoxy]quinolinone	3
CDC 998		4
CDP 840	4-((2R)-2-(3-(cyclopentyloxy)-4-methoxyphenyl)-2-phenylethyl)-pyridine	4
CGH 2466	2-amino-4-(3,4-dichlorophenyl)-5-pyridin-4-yl-thiazol	4
CI 1018	N-(3,4,6,7-tetrahydro-9-methyl-4-oxo-1-phenylpyrrolo(3,2,1-jk)(1,4)benzodiazepin-3-yl)-4-pyridinecarboxamide	4
CI 1044	N-[9-amino-4-oxo-1-phenyl-3,4,6,7-tetrahydropyrrolo[3,2,1-jk][1,4]b-enzodiazepin-3(R)-yl]pyridine-3-carboxamide	4
CI 930	4,5-dihydro-6-[4-(1H-imidazol-1-yl)phenyl]-5-methyl-3(2H)-pyridazinone	3
Cilomilast (Ariflo®)	4-cyano-4-(3-cyclopentyloxy-4-methoxy-phenyl)cyclohexane-1-carboxylic acid (U.S. Patent No. 5, 552, 438)	2, 3B, 4 (4B, 4D)

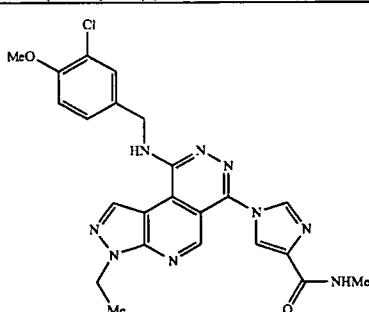
Compound	Synonym	PDE Activity
Cilostamide	N-cyclohexyl-4-((1, 2-dihydro-2-oxo-6-quinolinyl)oxy)-N-methyl-butanamide	3
Cilostazol	6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-quinolinone (U.S. Patent No. 4,277,479)	3, 4
Cipamfylline	8-amino-1,3-bis(cyclopropylmethyl)-3,7-dihydro-1H-purine-2,6-dione	4
CK 3197	2H-imidazol-2-one, 1-benzoyl-5-(4-(4,5-dihydro-2-methyl-1H-imidazol-1-yl)benzoyl)-4-ethyl-1,3-dihydro	
CP 146523	4'-methoxy-3-methyl-3'-(5-phenyl-pentyloxy)- biphenyl-4-carboxylic acid	4
CP 220629	1-cyclopentyl-3-ethyl-6-(2-methylphenyl)-7-oxo-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine	4
CP 248	(Z)-5-fluoro-2-methyl-1-[p-(methylsulfonyl)benzylidene]indene-3-acetic acid	2
CP 293121	(S)-3-(3-cyclopentyloxy-4-methoxyphenyl-2-isoxazoline-5-hydroxamic acid	4
CP 353164	5-(3-cyclopentyloxy-4-methoxy-phenyl)-pyridine-2-carboxylic acid amide	4
D 22888	8-methoxy-5-N-propyl-3-methyl-1-ethyl-imidazo [1,5-a]-pyrido [3, 2-e]-pyrazinone	4
D 4418	N-(2,5-dichloro-3-pyridinyl)-8-methoxy-5-quinolinecarboxamide	4
Dasantafil	7-(3-bromo-4-methoxyphenylmethyl)-1-ethyl-8-{{[(1R, 2R)-2-hydroxycyclopentyl] = amino}-3-(2-hydroxyethyl)-3,7-dihydro-1H-purine-2,6-dione	5
Dipyridamole	2-{{[9-(bis(2-hydroxyethyl)amino)-2,7-bis(1-piperidyl)-3,5,8,10-tetrazabicyclo[4.4.0]deca-2,4,7,9,11-pentaen-4-yl]-(2-hydroxyethyl)amino}ethanol	5, 6, 7, 8, 10, 11
DN 9693	1,5-dihydro-7-(1-piperidinyl)-imidazo[2,1-b]quinazolin-2(3H)-one dihydrochloride hydrate	4
Doxofylline	7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (U.S. Patent No. 4,187,308)	4

Compound	Synonym	PDE Activity
E 4010	4-(3-chloro-4-methoxybenzyl)amino-1-(4-hydroxypiperidino)-6-phthalazinecarbonitrile monohydrochloride	5
E 4021	sodium 1-[6-chloro-4-(3,4-methylenedioxybenzyl)aminoquinazolin-2-yl]piperidine-4-carboxylate sesquihydrate	4, 5
EHNA	erythro-9-(2-hydroxy-3-nonyl)adenine	2, 3, 4
EHT 0202	3,7-dimethyl-1-(5-oxohexyl)purine-2,6-dione	4
ELB 353		4
EMD 53998	5-(1-(3,4-dimethoxybenzoyl)-1,2,3,4-tetrahydro-6-quinolyl)-6-methyl-3,6-dihydro-2H-1,3,4-thiadiazin-2-one	3
EMD 57033	(+)-5-[1-(3,4-dimethoxybenzoyl)-3,4-dihydro-2H-quinolin-6-yl]-6-methyl-3,6-dihydro-1,3,4-thiadiazin-2-one	3
EMD 57439	(-)-5-[1-(3,4-dimethoxybenzoyl)-3,4-dihydro-2H-quinolin-6-yl]-6-methyl-3,6-dihydro-1,3,4-thiadiazin-2-one	3
EMD 82639		5
EMR 62203		5
Enoximone	U.S. Patent No. 4,405,635	3
Enprofylline	3-propyl xanthine	4
ER 017996	4-((3,4-(methylenedioxy)benzyl)amino)-6,7,8-trimethoxyquinazoline	
Etazolate	1-ethyl-4-((1-methylethylidene)hydrazino)-1h-pyrazolo(3,4-b) pyridine-5-carboxylic acid	4
Exisulind	(1Z)-5-fluoro-2-methyl-1-[[4-(methylsulfonyl)phenyl]methylene]-1H-indene-3-acetic acid	2, 5
Filaminast	(1E)-1-(3-(cyclopentyloxy)-4-methoxyphenyl)-ethanone O-(aminocarbonyl)oxime	4, 7
FR 226807	N-(3,4-dimethoxybenzyl)-2-{{(1R)-2-hydroxy-1-methylethyl]amino}-5-nitrobenzamide	5
FR 229934		5

Compound	Synonym	PDE Activity
GI 104313	6- {4-[N-[2-[3-(2-cyanophenoxy)-2-hydroxypropylamino]-2-methylpropyl]carbamoylmethoxy-3-chlorophenyl]} -4,5-dihydro-3(2H)pyridazinone	3
GRC 3015		4
GSK 256066		4
GW 3600	(7aS,7R) -7-(3-cyclopentyloxy-4-methoxyphenyl)-7a-methyl-2,5,6,7,7a-penta-hydro-2-azapyrrolizin-3-one	4
GW 842470	N-(3,5-dichloro-4-pyridinyl)-1-((4-fluorophenyl)methyl)-5-hydroxy- α -oxo-1H-indole-3-acetamide	4
Helenalin	CAS Reg. No. 6754-13-8	5
Hydroxypumafetrine		4
IBMX	3-isobutyl-1-methylxanthine	3, 4, 5
Ibudilast	1-(2-isopropyl-pyrazolo[1,5-a]pyridine-3-yl)-2-methylpropan-1-one (U.S. Patent No. 3,850,941)	Not selective
IC 485		4
IPL 455903	(3S, 5S)-5-(3-cyclopentyloxy-4-methoxy-phenyl)-3-(3- methyl-benzyl)-piperidin-2-one	4
Isbufylline	1,3-dimethyl-7-isobutylxanthine	4
KF 17625	5-phenyl-1H-imidazo(4,5-c)(1,8)naphthyridin-4(5H)-one	4
KF 19514	5-phenyl-3-(3-pyridil) methyl-3H-imidazo[4,5-c][1,8]naphthyridin-4(5H)-one	1, 4
KF 31327	3-ethyl-8-[2-[4-(hydroxymethyl)piperidin-1-yl]benzylamino]-2,3-dihydro-1H-imidazo[4,5-g]quinazoline-2-thione	5
Ks-505a	1-carboxy-2,3,4,4a,4b,5,6,6a,6b,7,8,8a,8b,9,10,10a,14,16,17,17a,17b,18,19,19a,19b,20,21,21a,21b,22,23,23a-dotriacontahydro-14-hydroxy-8a,10a-bis(hydroxymethyl)-14-(3-methoxy-3-oxopropyl)-1,4,4a, 6,6a,17b,19b,21b-octamethyl beta-D-glucopyranosiduronic acid	1
KT 734		5
KW 4490		4

Compound	Synonym	PDE Activity
L 686398	9-[1,S,2R)-2-fluoro-1-methylpropyl]-2-methoxy-6-(1-piperazinyl]-purine hydrochloride	3, 4
L 826141	4-{2-(3,4-bis-difluoromethoxyphenyl)-2-{4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropa n-2-yl)-phenyl]-ethyl}-3-methylpyridine-1-oxide	4
L 869298	(+)-1 (S)-(+)-3-{2-[(3-cyclopropoxy-4-difluoromethoxy)-phenyl]-2-[5-(2-(1-hydroxy-1-trifluoromethyl-2,2,2-trifluoro)ethyl)-thiazolyl]ethyl}pyridine N-oxide	4
L-869299	(-)-1 (R)-(-)-3-{2-[(3-cyclopropoxy-4-difluoromethoxy)phenyl]-2-[5-(2-(1-hydroxy-1-trifluoromethyl-2,2,2-trifluoro)ethyl)thiazolyl]ethyl}pyridine N-Oxide	4
Laprafylline	8-[2-[4-(dicyclohexylmethyl)piperazin-1-yl]ethyl]-1-methyl-3-(2-methylpropyl)-7H-purine-2,6-dione	4
LAS 34179		5
LAS 37779		4
Levosimendan	U.S. Patent No. 5,569,657	3
Lirimilast	methanesulfonic acid 2-(2,4-dichlorophenylcarbonyl)-3-ureidobenzofuran-6-yl ester	4
Lixazinone	N-cyclohexyl-N-methyl-4-((1,2,3,5-tetrahydro-2-oxoimidazo(2,1-b)quinazolin-7-yl)oxy)-butanamide	3, 4
LPDE4 inhibitor	Bayer	4
Macquarimicin A	J Antibiot (Tokyo). 1995 Jun;48(6):462-6	
MEM 1414	US 2005/0215573 A1	4
MERCK1	(5R)-6-(4-{[2-(3-iodobenzyl)-3-oxocyclohex-1-en-1-yl]amino}phenyl)-5-methyl-4,5-dihdropyridazin-3(2H)-one; dihydropyridazinone	3
Mesopram	(5R)-5-(4-methoxy-3-propoxyphenyl)-5-methyl-2-oxazolidinone	4
Milrinone	6-dihydro-2-methyl-6-oxo-3,4'-bipyridine)-5-carbonitrile (U.S. Patent No. 4,478,836)	3, 4
MIMX	1 8-methoxymethyl-3-isobutyl-1-methylxantine	1

Compound	Synonym	PDE Activity
MN 001	4-[6-acetyl-3-[3-(4-acetyl-3-hydroxy-2-propylphenylthio)propoxy]-2-propylphenoxy]butyric acid	4
Mopidamol	U.S. Patent No. 3,322,755	4
MS 857	4-acetyl-1-methyl-7-(4-pyridyl)-5,6,7,8-tetrahydro-3(2H)-isoquinolinone	3
Nanterinone	6-(2,4-dimethyl-1H-imidazol-1-yl)-8-methyl-2(1H)-quinolinone	3
NCS 613	<i>J Pharmacol Exp Ther</i> Boichot et al. 292 (2): 647	4
ND 1251		4
ND7001	Neuro3D Pharmaceuticals	2
Nestifylline	7-(1,3-dithiolan-2-ylmethyl)-1,3-dimethylpurine-2,6-dione	
NIK 616		4
NIP 520		3
NM 702		5
NSP 306		3
NSP 513		3
NSP 804	4,5-dihydro-6-[4-[(2-methyl-3-oxo-1-cyclopentenyl)-amino] phenyl]-3(2H)-pyridazinone	3
NSP 805	4,5-dihydro-5-methyl-6-[4-[(2-methyl-3-oxo-1-cyclopentenyl) amino]phenyl]-3(2H)-pyridazinone	3
NVP ABE 171		4
Oglemilast	N-(3,5-dichloropyridin-4-yl)-4-difluoromethoxy-8-((methylsulfonyl)amino)dibenzo(b,d)furan-1-carboxamide	4
Olprinone	5-imidazo[2,1-f]pyridin-6-yl-6-methyl-2-oxo-1H-pyridine-3-carbonitrile	3, 4
ONO 1505	4-[2-(2-hydroxyethoxy)ethylamino]-2-(1H-imidazol-1-yl)-6-methoxy-quinazoline methanesulphonate	5
ONO 6126		4
OPC 33509	(-)-6-[3-[3-cyclopropyl-3-[(1R,2R)-2-hydroxycyclohexyl]ureido]-propoxy]-2(1H)-quinolinone	3
OPC 33540	6-[3-[3-cyclooctyl-3-[(1R[*],2R[*])-2-hydroxycyclohexyl]ureido]-propoxy]-2(1H)-quinolinone	3
ORG 20241	N-hydroxy-4-(3,4-dimethoxyphenyl)-thiazole-2-carboximidamide	3, 4


Compound	Synonym	PDE Activity
ORG 30029	N-hydroxy-5,6-dimethoxy-benzo[b]thiophene-2-carboximide hydrochloride	3, 4
ORG 9731	4-fluoro-N-hydroxy-5, 6-dimethoxy-benzo[b]thiophene-2-carboximidamide methanesulphonate	3, 4
ORG 9935	4,5-dihydro-6-(5,6-dimethoxy-benzo[b]-thien-2-yl)-methyl-1-(2H)-pyridazinone	3
OSI 461	N-benzyl-2-[(3Z)-6-fluoro-2-methyl-3-(pyridin-4-ylmethylidene)inden-1-yl]acetamide hydrochloride	5
Osthole	7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one	5
Ouazinone	(R)-6-chloro-1,5-dihydro-3-methyl-imidazo[2,1-b]quinazolin-2-one	3
PAB 13	6-bromo-8-(methylamino)imidazo[1,2-a]pyrazine	
PAB 15	6-bromo-8-(ethylamino)imidazo[1,2-a]pyrazine	
PAB 23	3-bromo-8-(methylamino)imidazo[1,2-a]pyrazine	
Papaverine	1-[(3,4-dimethoxyphenyl)-methyl]-6,7-dimethoxyisoquinolone	5, 6, 7, 10
PDB 093		4
Pentoxifylline	3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydropurine-2,6-dione (U.S. Patent No. 3,422,107)	
Piclamilast	3-cyclopentyloxy-N-(3,5-dichloropyridin-4-yl)-4-methoxy-benzamide	2, 3B, 4 (4B, 4D), 7
Pimobendan	U.S. Patent No. 4,361,563	3, 4
Piroximone	4-ethyl-1,3-dihydro-5-(4-pyridinylcarbonyl)-2H-imidazol-2-one	3
Prinoxodan	6-(3,4-dihydro-3-methyl-2-oxoquinazolinyl)-4,5-dihydro-3-pyridazinone	
Propentofylline	U.S. Patent No. 4,289,776	5
Pumafentrine	rel-(M)-4-((4aR,10bS)-9-ethoxy-1,2,3,4,4a,10b-hexahydro-8-methoxy-2-methylbenzo(c)(1,6)naphthyridin-6-yl)-N,N-bis(1-methylethyl)-benzamide	3B, 4 (4B, 4D)
R 79595	N-cyclohexyl-N-methyl-2-[[[phenyl (1,2,3,5-tetrahydro-2 oxoimidazo [2,1-b]-quinazolin-7-yl) methylene] amin] oxy] acetamide	3

Compound	Synonym	PDE Activity
Revizinone	(E)-N-cyclohexyl-N-methyl-2-(((phenyl(1,2,3,5-tetrahydro-2-oxoimidazo(2,1-b)quinazolin-7-yl)methylene)amino)oxy)-acetamide	3
Ro20-1724	4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone	4
Roflumilast	3-(cyclopropylmethoxy)-N-(3,5-dichloro-4-pyridinyl)-4-(difluoromethoxy)-benzamide	2, 3B 4 (4B, 4D), 5
Rolipram	4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (U.S. Patent No. 4,193,926)	4
RPL554	9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(N-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one	3, 4
RPL565	6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquinolin-4-one	3, 4
RPR 132294		4
RPR 132703		4
Saterinone	1,2-dihydro-5-(4-(2-hydroxy-3-(4-(2-methoxyphenyl)-1-piperazinyl)propoxy)phenyl)-6-methyl-2-oxo-3-pyridinecarbonitrile	3
Satigrel	4-cyano-5,5-bis(4-methoxyphenyl)-4-pentenoic acid (U.S. Patent No. 4,978,767)	2, 3, 5
SCA 40	6-bromo-8-methylaminoimidazol[1,2-a]pyrazine-2carbonitrile	3
SCH 351591	N-(3,5-dichloro-1-oxido-4-pyridinyl)-8-methoxy-2-(trifluoromethyl)-5-quinoline carboxamide	4
SCH 45752	J Antibiot (Tokyo). 1993 Feb;46(2):207-13	
SCH 46642		5
SCH 51866	cis-5,6a,7,8,9,9a-hexahydro-2-(4-(trifluoromethyl)phenylmethyl)-5-methylcyclopent(4,5)imidazo(2,1-b)purin-4(3H)-one	1, 5
SCH 51866	cis-5,6a,7,8,9,9a-hexahydro-2-[4-(trifluoromethyl)phenylmethyl]-5-methylcyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one	1, 5

Compound	Synonym	PDE Activity
SCH 59498	cis-2-hexyl-5-methyl-3,4,5,6a,7,8,9,9a-octahydrocyclopent[4,5]imidazo-[2,-1-b]purin-4-one	5
SDZ ISQ 844	6,7-dimethoxy-1-(3,4-dimethoxyphenyl)-3-hydroxymethyl-3,4-dihydroisoquinoline	3, 4
SDZ MKS 492	R(+)-(8-[(1-(3,4-dimethoxyphenyl)-2-hydroxyethyl)amino]-3,7-dihydro-7-(2-methoxyethyl)-1,3-dimethyl-1H-purine-2,6-dione	3
Senazodan		3
Siguazodan	N-cyano-N'-methyl-N''-[4-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)phenyl]guanidine	3, 4
Sildenafil	5-[2-ethoxy-5-(4-methyl-1-piperazinylsulfonyl)phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (U.S. Patent No. 5,250,534)	5
SK 3530		5
SKF 94120	5-(4-acetamidophenyl)pyrazin-2(1H)-one	3
SKF 95654	±-5-methyl-6-[4-(4-oxo-1,4-dihdropyridin-1-yl)phenyl]-4,5-dihydro-3(2H)-pyridazinone	3
SKF 96231	2-(2-propoxyphenyl)-6-purinone	3, 4, 5
SLX 2101		5
Sulmazole	U.S. Patent No. 3,985,891	3
T 0156	2-(2-methylpyridin-4-yl)methyl-4-(3,4,5-trimethoxyphenyl)-8-(pyrimidin-2-yl)methoxy-1,2-dihydro-1-oxo-2,7-naphthyridine-3-carboxylic acid methyl ester hydrochloride	5
T 1032	methyl-2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridylmethoxy)-4-(3,4,5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate	5
T 440	6,7-diethoxy-1-[1-(2-methoxyethyl)-2-oxo-1,2-dihdropyridin-4-yl]naphthalene-2,3-dimethanol	4
Tadalafil	(6R,12aR)-6-(1,3-benzodioxol-5-yl)-2-methyl-2,3,6,7,12,12a-hexahdropyrazino[1,2,1,6]pyrido[3,4-b]indole-1,4-dione	4, 5
Tetomilast	6-(2-(3,4-diethoxyphenyl)-4-thiazolyl)-2-pyridinecarboxylic acid	4

Compound	Synonym	PDE Activity
Theophylline	3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione	Not selective
Tibenelast	5,6-diethoxybenzo(B)thiophene-2-carboxylic acid	4
Toborinone	(+/-)-6-[3-(3,4-dimethoxybenzylamino)-2-hydroxypropoxy]-2(1H)-quinolinone	3
Tofimilast	9-cyclopentyl-7-ethyl-6,9-dihydro-3-(2-thienyl)-5H-pyrazolo(3,4-c)-1,2,4-triazolo(4,3-a)pyridine	4
Tolafentrine	N-[4-[(4aS,10bR)-8,9-dimethoxy-2-methyl-3,4,4a,10b-tetrahydro-1H-pyrido[4,3-c]isoquinolin-6-yl]phenyl]-4-methylbenzenesulfonamide	3 (3B), 4 (4B, 4D)
Torbaffylline	7-(ethoxymethyl)-3,7-dihydro-1-(5-hydroxy-5-methylhexyl)-3-methyl-1-H-purine-2,6-dione	4
Trequinsin	2,3,6,7-tetrahydro-9,10-dimethoxy-3-methyl-2-((2,4,6-trimethylphenyl)imino)-4H-pyrimido(6,1-a)isoquinolin-4-one	2, 3 (3B), 4 (4B, 4D)
UCB 29936		4
UDCG 212	5-methyl-6-[2-(4-oxo-1-cyclohexa-2,5-dienylidene)-1,3-dihydrobenzimidazol-5-yl]-4,5-dihydro-2H-pyridazin-3-one	3
Udenafil	3-(1-methyl-7-oxo-3-propyl-4H-pyrazolo[5,4-e]pyrimidin-5-yl)-N-[2-(1-methylpyrrolidin-2-yl)ethyl]-4-propoxybenzenesulfonamide	5
UK 114542	5-[2-ethoxy-5-(morpholinylacetyl)phenyl]-1,6-dihydro-1-methyl-3-propyl-7H-pyrazolo [4,3-d]-pyrimidin-7-one	5
UK 343664	3-ethyl-5-((4-ethylpiperazino)sulphonyl)-2-propoxyphenyl)-2-(2-pyridylmethyl)-6,7-dihydro-2H-pyrazolo(4,3-d)pyrimidin-7-one	5
UK 357903	1-ethyl-4-{3-[3-ethyl-6,7-dihydro-7-oxo-2-(2-pyridylmethyl)-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-2-(2-methoxyethoxy)5-pyridylsulphonyl} piperazine	5
UK 369003		5
V 11294A	3-((3-(cyclopentyloxy)-4-methoxyphenyl)methyl)-N-ethyl-8-(1-methylethyl)-3H-purin-6-amine monohydrochloride	4

Compound	Synonym	PDE Activity
Vardenafil	2-(2-ethoxy-5-(4-ethylpiperazin-1-yl-1-sulfonyl)phenyl)-5-methyl- 7-propyl-3H-imidazo(5,1-f)(1,2,4)triazin-4-one	5
Vesnarinone	U.S. Patent No. 4,415,572	3, 5
Vinpocetine	(3-alpha,16-alpha)-eburnamenine-14-carboxylic acid ethyl ester	1, 3, 4
WAY 122331	1-aza-10-(3-cyclopentyloxy-4-methoxyphenyl)-7,8-dimethyl-3-oxaspiro[4.5]dec-7-en-2-one	4
WAY 127093B	[(3S)-3-(3-cyclopentyloxy-4-methoxyphenyl)-2-methyl-5-oxopyrazolidinyl]-N-(3-pyridylmethyl)carboxamide	4
WIN 58237	1-cyclopentyl-3-methyl-6-(4-pyridinyl)pyrazolo (3,4-d)pyrimidin-4(5H)-one	5
WIN 58993	5-methyl-6-pyridin-4-yl-3H-[1,3]thiazolo[5,4-e]pyridine-2-one	3
WIN 62005	5-methyl-6-pyridin-4-yl-1,3-dihydroimidazo[4,5-e]pyridine-2-one	3
WIN 62582	6-pyridin-4-yl-5-(trifluoromethyl)-1,3-dihydroimidazo[4,5-b]pyridine-2-one	3
WIN 63291	6-methyl-2-oxo-5-quinolin-6-yl-1H-pyridine-3-carbonitrile	3
WIN 65579	1-cyclopentyl-6-(3-ethoxy-4-pyridinyl)-3-ethyl-1,7-dihydro-4H-pyrazolo[3,-4-d]pyrimidin-4-one	5
Y 20487	6-(3,6-dihydro-2-oxo-2H-1,3,4-thiadiazin-5-yl)-3,4-dihydro-2(1H)-quinolinone	3
YM 58997	4-(3-bromophenyl)-1,7-diethylpyrido[2,3-d]pyrimidin-2(1H)-one	4
YM 976	4-(3-chlorophenyl)-1,7-diethylpyrido(2,3-d)pyrimidin-2(1H)-one	4
Z 15370A		4
Zaprinast	1,4-dihydro-5-(2-propoxyphenyl)-7H-1,2,3-triazolo[4,5-d]pyrimidine-7-one	5
Zaprinast	2-o-propoxyphenyl-8-azapurine-6-one	1, 5
Zardaverine	6-(4-(difluoromethoxy)-3-methoxyphenyl)-3(2H)-Pyridazinone	2, 3 (3B), 4 (4B, 4D), 7A
Zindotrine	8-methyl-6-(1-piperidinyl)-1,2,4-triazolo(4,3-b)pyridazine	
CR-3465	N-[(2-quinolinyl)carbonyl]-O-(7-fluoro-2-quinolinylmethyl)-tyrosine, sodium salt	3B, 4B, 4D

Compound	Synonym	PDE Activity
HT-0712	(3S,5S)-5-(3-Cyclopentyloxy-4-methoxy-phenyl)-3-(3-methyl-benzyl)-piperidin-2-one	4
4AZA-PDE4		4
AN-2728	5-(4-cyanophenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole	4
AN-2898	5-(3,4-dicyanophenoxy)-1-hydroxy-1,3-dihydro-2,1-benzoxaborole	4
AP-0679		4
ASP-9831		4
ATI-22107		3
Atopik		4
AWD-12-281	N-(3,5-dichloropyrid-4-yl)-(1-(4-fluorobenzyl)-5-hydroxy-indole-3-yl)glyoxylic acid amide	4
BA-41899	5-methyl-6-phenyl-1,3,5,6-tetrahydro-3,6-methano-1,5-benzodiazocine-2,4-dione	
BAY-61-9987		4
BAY-65-6207		11A
BDD-104XX		5, 6
BIBW-22	4-(N-(2-Hydroxy-2-methylpropyl)ethanolamino)-2,7-bis(cis-2,6-dimethylmorpholino)-6-phenylpteridine CAS Registry No. 137694-16-7 2-Propanol, 1-((2,7-bis(2,6-dimethyl-4-morpholiny)-6-phenyl-4-pteridinyl)(2-hydroxyethyl)amino)-2-methyl-, (cis(cis))-	
BMS-341400		5
CD-160130		4
CHF-5480	2-(S)-(4-Isobutyl-phenyl)-propionic acid, (Z)- 2-(3,5-dichloro-pyridin-4-yl)-1-(3,4-dimethoxy-phenyl)vinyl ester	4
CKD-533		5
CT-5357		4
Daxalipram	(5R)-5-(4-Methoxy-3-propoxyphenyl)-5-	4

Compound	Synonym	PDE Activity
	methyl-1,3-oxazolidin-2-one	
DE-103		4
Denbufylline	1H-Purine-2,6-dione, 3,7-dihydro-1,3-dibutyl-7-(2-oxopropyl)- 7-Acetonyl-1,3-dibutylxanthine	
DMPO	1,3-dimethyl-6-(2-propoxy-5-methanesulfonylamidophenyl)pyrazolo(3,4-d)pyrimidin-4(5H)-one	5
E-8010		5
ELB-526		4
EMD-53998	6-(3,6-dihydro-6-methyl-2-oxo-2H-1,3,4-thiadiazin-5-yl)-1-(3,4-dimethoxybenzoyl)-1,2,3,4-tetrahydroquinoline	3
FK-664	6-(3,4-Dimethoxyphenyl)-1-ethyl-4-mesitylimino-3-methyl-3,4-dihydro-2(1H)-pyrimidinone	
Flosequinan	(+)-7-Fluoro-1-methyl-3-(methylsulfinyl)-4(1H)-quinolinone Manoplax 4(1H)-Quinolinone, 7-fluoro-1-methyl-3-(methylsulfinyl)-	3
FR-181074	1-(2-chlorobenzyl)-3-isobutyryl-2-propylindole-6-carboxamide	5
GF-248	5"((propoxy),7'(4-morpholino)-phenacyl),(1-methyl-3-propyl)pyrazolo(4,3d)pyrimidin-7-one	5
GP-0203		4
HN-10200	2-((3-methoxy-5-methylsulfinyl)-2-thienyl)-1H-imidazo-(4,5-c)pyridine hydrochloride	
KF-15232	4,5-dihydro-5-methyl-6-(4-((phenylmethyl)amino)-7-quinazolinyl)-3(2H)-Pyridazinone	4
KF-19514	5-phenyl-3-(3-pyridil)methyl-3H-imidazo(4,5-c)(1,8)naphthyridin-4(5H)-one	1, 4
LAS-31180	3-methylsulfonylamino-1-methyl-4(1H)-quinolone	3
Lifigiquat	CAS Registry No. 170632-47-0	
Lodenafil carbonate	bis(2-{4-[4-ethoxy-3-(1-methyl-7-oxo-3-propyl-4,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-	5

Compound	Synonym	PDE Activity
	yl)phenylsulfonyl]piperazin-1-yl}ethyl) carbonate	
MEM-1917		4
Mepiphylline	mepyramine-theophylline-acetate	
Mirodenafil	5-ethyl-2-(5-(4-(2-hydroxyethyl)piperazine-1-sulfonyl)-2-propoxyphenyl)-7-propyl-3,5-dihydro-4H-pyrrolo(3,2-d)pyrimidin-4-one	
MK-0952		4
NA-23063 analogs	EP0829477	4
NCS-613		4
NSP-307		4
OPC-35564		5
OPC-8490	3,4-Dihydro-6-(4-(4-oxo-4-phenylbutyl)-1-piperazinylcarbonyl)-2(1H)-quinolinone	3
OX-914		4
PDB-093		5
QAD-171A		5
RPR-114597		4
RPR-122818	3(R)-(4-Methoxyphenylsulfonyl)-2(S)-methyl-7-phenylheptanohydroxamic acid	
RS-25344-000	1-(3-nitrophenyl)-3-(4-pyridylmethyl)pyrido [2,3-d]pyrimidin-2,4(1H,3H)-dione	4
RWJ-387273	R290629	5
Sophoflavescono 1	3,7-Dihydroxy-2-(4-hydroxyphenyl)-5-methoxy-8-(3-methyl-2-butenyl)-4H-1-benzopyran-4-one	5
SR-265579	1-cyclopentyl-3-ethyl-6-(3-ethoxypyrid-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-one	5
Tipelukast	4-[6-Acetyl-3-[3-[(4-acetyl-3-hydroxy-2-propylphenyl)sulfanyl]propoxy]-2-propylphenoxy]butanoic acid	
TPI-PD3	TPI-1100	4, 7
UCB-101333-3	Bioorganic & Medicinal Chemistry Letters, 16: 1834-1839 (2006)	4
UCB-11056	2-(4-morpholino-6-propyl-1,3,5-triazin-2-yl)aminoethanol	
UK-114502		5
UK-357903	1-ethyl-4-{3-[3-ethyl-6,7-dihydro-7-oxo-2-(2-pyridylmethyl)-2H-pyrazolo[4,3-	5

Compound	Synonym	PDE Activity
	d] pyrimidin-5-yl]-2-(2-methoxyethoxy)5- pyridylsulphonyl} piperazine	
UK-83405		4
WAY-126120		4
WIN-61691	Bioorganic and Medicinal Chemistry Letters, 7: 89-94(1997)	1
XT-044	1-n-butyl-3-n-propylxanthine	3
XT-611	3,4-dipropyl-4,5,7,8-tetrahydro-3H-imidazo(1,2-i)purin-5-one	
YM-393059	N-(4,6-dimethylpyrimidin-2-yl)-4-(2-(4-methoxy-3-methylphenyl)-5-(4-methylpiperazin-1-yl)-4,5,6,7-tetrahydro-1H-indol-1-yl)benzenesulfonamide difumarate	4, 7A
Zoraxel	RX-10100 IR	
CR-3465	N-[(2-quinoliny)carbonyl]-O-(7-fluoro-2-quinolinylmethyl)-L-Tyrosine, sodium salt	
LASSBio-294	(2'-thienylidene)-3,4-methylenedioxy benzoylhydrazine	
Serdaxin	RX-10100 XR	
CP 77059	methyl 3- [2, 4-dioxo-3-benzyl-1, 3-dihdropyridino [2,3- d] pyrimidinyl] benzoate	4
MX 2120	7-(2,2 dimethyl)propyl-1-methylxanthine	
UK 66838	6-(4-acetyl-2-methylimidazol-1-yl)-8-methyl-2(1H)-quinolinone	
CC 11050		4
CT 1579		4
Trombodipine	CAS Registry No. 113658-85-8	
A 906119	CAS Registry No. 134072-58-5	
256066 (GSK)		4

Additional PDE inhibitors are shown in Table 4.

Table 4

5E3623	CP 166907	MKS 213492
A 021311	CT 1786	N 3601
ARX-111	GRC-3566	ND-1510
ATB-901	GRC-3590	NR-111
BFGP 385	GRC-3785	ORG 20494
BY 244	GRC-4039	R-1627
CH-2874	HFV 1017	REN 1053
CH-3442	IPL 423088	RP 116474
CH-3697	IWF 12214	RPR-117658
CH-4139	K 123	SDZ-PDI-747
CH-422	KF 31334	SKF-107806
CH-673	LAS-30989	Vasotrope
CH-928	LAS-31396	CT 2820

Other PDE 1 inhibitors are described in U.S. Patent Application Nos. 20040259792 and 20050075795, incorporated herein by reference. Other PDE 2 inhibitors are described in U.S. Patent Application No. 20030176316, 5 incorporated herein by reference. Other PDE 3 inhibitors are described in the following patents and patent applications: EP 0 653 426, EP 0 294 647, EP 0 357 788, EP 0 220 044, EP 0 326 307, EP 0 207 500, EP 0 406 958, EP 0 150 937, EP 0 075 463, EP 0 272 914, and EP 0 112 987, U.S. Pat. Nos. 4,963,561; 5,141,931, 6,897,229, and 6,156,753; U.S. Patent Application Nos. 10 20030158133, 20040097593, 20060030611, and 20060025463; WO 96/15117; DE 2825048; DE 2727481; DE 2847621; DE 3044568; DE 2837161; and DE 3021792, each of which is incorporated herein by reference. Other PDE 4 inhibitors are described in the following patents, patent applications, and references: U.S. Patent Nos. 3,892,777, 4,193,926, 4,655,074, 4,965,271, 15 5,096,906, 5,124,455, 5,272,153, 6,569,890, 6,953,853, 6,933,296, 6,919,353, 6,953,810, 6,949,573, 6,909,002, and 6,740,655; U.S. Patent Application Nos. 20030187052, 20030187257, 20030144300, 20030130254, 20030186974, 20030220352, 20030134876, 20040048903, 20040023945, 20040044036, 20040106641, 20040097593, 20040242643, 20040192701, 20040224971, 20 20040220183, 20040180900, 20040171798, 20040167199, 20040146561, 20040152754, 20040229918, 20050192336, 20050267196, 20050049258,

20060014782, 20060004003, 20060019932, 20050267196, 20050222207, 20050222207, 20060009481; International Publication No. WO 92/079778; and Molnar-Kimber, K.L. et al. *J. Immunol.*, 150:295A (1993), each of which is incorporated herein by reference. Other PDE 5 inhibitors that can be used in the methods, compositions, and kits of the invention include those described in U.S. Patent Nos. 6,992,192, 6,984,641, 6,960,587, 6,943,166, 6,878,711, and 6,869,950, and U.S. Patent Application Nos. 20030144296, 20030171384, 20040029891, 20040038996, 20040186046, 20040259792, 20040087561, 20050054660, 20050042177, 20050245544, 20060009481, each of which is incorporated herein by reference. Other PDE 6 inhibitors that can be used in the methods, compositions, and kits of the invention include those described in U.S. Patent Application Nos. 20040259792, 20040248957, 20040242673, and 20040259880, each of which is incorporated herein by reference. Other PDE 7 inhibitors that can be used in the methods, compositions, and kits of the invention include those described in the following patents, patent application, and references: U.S. Patent Nos. 6,838,559, 6,753,340, 6,617,357, and 6,852,720; U.S. Patent Application Nos. 20030186988, 20030162802, 20030191167, 20040214843, and 20060009481; International Publication WO 00/68230; and Martinez et al., *J. Med. Chem.* 43:683-689 (2000), Pitts et al. *Bioorganic and Medicinal Chemistry Letters* 14: 2955-2958 (2004), and Hunt *Trends in Medicinal Chemistry* 2000:November 30(2), each of which is incorporated herein by reference. Other PDE inhibitors that can be used in the methods, compositions, and kits of the invention are described in U.S. Patent No. 6,953,774.

In certain embodiments, more than one PDE inhibitor may be employed in the invention so that the combination has activity against at least two of PDE 2, 3, 4, and 7. In other embodiments, a single PDE inhibitor having activity against at least two of PDE 2, 3, 4, and 7 is employed.

Combinations

The invention includes the individual combination of each A2A receptor agonist with each PDE inhibitor provided herein, as if each combination were explicitly stated. In a particular example, the A2A receptor agonist is IB-5 MECA or chloro-IB-MECA, and the PDE inhibitor is any one or more of the PDE inhibitors described herein. In another example, the PDE inhibitor is trequinsin, zardaverine, roflumilast, rolipram, cilostazol, milrinone, papaverine, BAY 60-7550, or BRL-50481, and the A2A agonist is any one or more of the A2A agonists provided herein.

10

B-cell Proliferative Disorders

B-cell proliferative disorders include B-cell cancers and autoimmune lymphoproliferative disease. Exemplary B-cell cancers that are treated according to the methods of the invention include B-cell CLL, B-cell prolymphocyte leukemia, lymphoplasmacytic lymphoma, mantle cell lymphoma, follicular lymphoma, extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT type), nodal marginal zone lymphoma, splenic marginal zone lymphoma, hairy cell leukemia, plasmacytoma, diffuse large B-cell lymphoma, Burkitt lymphoma, multiple myeloma, indolent myeloma, smoldering myeloma, monoclonal gammopathy of unknown significance (MGUS), B-cell non-Hodgkin's lymphoma, small lymphocytic lymphoma, monoclonal immunoglobulin deposition diseases, heavy chain diseases, mediastinal (thymic) large B-cell lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, precursor B-lymphoblastic leukemia/lymphoma, Hodgkin's lymphoma (e.g., nodular lymphocyte predominant Hodgkin's lymphoma, classical Hodgkin's lymphoma, nodular sclerosis Hodgkin's lymphoma, mixed cellularity Hodgkin's lymphoma, lymphocyte-rich classical Hodgkin's lymphoma, and lymphocyte depleted Hodgkin's lymphoma), post-transplant lymphoproliferative disorder, and Waldenstrom's macroglobulinemia. A

preferred B-cell cancer is multiple myeloma. Other such disorders are known in the art.

Additional Compounds

5 A combination of an A2A receptor agonist and a PDE inhibitor may also be employed with an antiproliferative compound for the treatment of a B-cell proliferative disorder. Additional compounds that are useful in such methods include alkylating agents, platinum agents, antimetabolites, topoisomerase inhibitors, antitumor antibiotics, antimitotic agents, aromatase inhibitors, 10 thymidylate synthase inhibitors, DNA antagonists, farnesyltransferase inhibitors, pump inhibitors, histone acetyltransferase inhibitors, metalloproteinase inhibitors, ribonucleoside reductase inhibitors, TNF alpha agonists/antagonists, endothelin A receptor antagonist, retinoic acid receptor agonists, immuno-modulators, hormonal and antihormonal agents, 15 photodynamic agents, tyrosine kinase inhibitors, antisense compounds, corticosteroids, HSP90 inhibitors, proteosome inhibitors (for example, NPI-0052), CD40 inhibitors, anti-CS1 antibodies, FGFR3 inhibitors, VEGF inhibitors, MEK inhibitors, cyclin D1 inhibitors, NF- κ B inhibitors, anthracyclines, histone deacetylases, kinesin inhibitors, phosphatase inhibitors, 20 COX2 inhibitors, mTOR inhibitors, calcineurin antagonists, IMiDs, or other agents used to treat proliferative diseases. Specific examples are shown in Tables 5 and 6.

Table 5

17-AAG (KOS-953)	1D09C3	Activated T cells
AE 941	Aflibercept	AG 490
Alemtuzumab	Alitretinoin oral - Ligand Pharmaceuticals	Alvocidib
AMG162 (denosumab, osteoprotegerin, OPG)	Anti-CD38 antibodies	Anti-CD38 monoclonal antibody AT13/5
Anti-CD46 human monoclonal antibodies	Anti-CD5 monoclonal antibodies	Anti-HM1-24 monoclonal antibody

Anti-MUC1 monoclonal antibody - United Therapeutics/ViRexx Medical Corp	Antineoplaston A10 - injection	Antineoplaston AS2 1 - injection
AP23573	APC 8020	Aplidin®
Apo2L/TRAIL	Apomine™ (SR-45023A)	AR20.5
Arsenic trioxide	AT 101	Atacicept (TACI-Ig)
Atiprimod	Atiprimod	ATN 224
Avastin™ (bevacizumab, rhuMAb-VEGF)	AVN944	Azathioprine
B-B4-DMI	BCX-1777 (forodesine)	Belinostat
Bendamustine (SDX-105)	Benzylguanine	Beta alethine
Bexxar (Iodine I 131 tositumomab)	BIBF-1120	Bortezomib (VELCADE®)
Breva-Rex®	Brostallicin	Bufexamac
BX 471	Cadi-05	Cancer immunotherapies - Cell Genesys
Carmustine	CC 4047	CC007
CC11006	CCI-779	CD74-targeted therapeutics
Celebrex (celecoxib)	CERA (Continuous Erythropoiesis Receptor Activator)	CHIR-12.12
cKap	Clodronic acid	CNTO 328
CP 751871	CRB 15	Curcumin
Cyclophosphamide	Danton	Darinaparsin
Dasatinib	Daunorubicin liposomal	Defibrotide
Dexamethasone	Dexniguldipine	DHMEQ
Dimethylcelecoxib	DOM1112	Doxorubicin
Doxorubicin liposomal (PNU-108112) - ALZA	Doxycycline	Elsilimomab
EM164	ENMD 0995	Erbitux, cetuximab
Ethyol® (amifostine)	Etoposide	Fibroblast growth factor receptor inhibitors
Fludarabine	Fluphenazine	FR901228 (depsipeptide)
G3139	Gallium Maltolate	GCS 100
GCS-100	GCS-100LE	GRN 163L
GVAX® Myeloma Vaccine	GW654652	GX15-070

HGS-ETR1 (TRM-1, mapatumumab)	Highly purified hematopoietic stem cells	Histamine dihydrochloride injection - EpiCept Corporation
hLL1	Holmium-166 DOTMP	HSV thymidine kinase gene therapy
HuLuc63	HuMax-CD38	huN901-DM1
Idarubicin	Imexon - Heidelberg Pharma	Imexon (plimexon) - AmpliMed
IMMU 110	Incadronic acid	Interferon-alpha-2b
IPI 504	Irinotecan	ISIS 345794
Isotretinoin	ITF 2357	Kineret TM (anakinra)
KOS-1022 (alvespimycin HCl; 17-DMAG; NSC707545)	KRX-0401, perifosine	LAF 389
LBH589	Lenalidomide (Revlimid [®])	Lestaurtinib
LPAAT- β inhibitors	Lucatumumab	LY2181308
Melphalan	Menogaril	Midostaurin
Minodronic acid	MK 0646	MOR202
MS-275	Multiple myeloma vaccine - GTC	MV-NIS
Myeloma vaccine - Onyxvax	MyelomaCide	Mylovenge
Nexavar [®] (BAY 43-9006, sorafenib, sorafenib tosylate)	Noscapine	NPI 0052
O-6-benzyl-guanine	Obatoclax	Oblimersen
OGX-427	Paclitaxel	Pamidronic acid
Panzem TM (2-methoxyestradiol, 2ME2)	Parthenolide	PD173074
Phosphostim	PI 88	Plitidepsin
PR-171	Prednisone	Proleukin [®] (IL-2, Interleukin-2)
PX-12	PXD101	Pyroxamide
Quadramet [®] (EDTMP, samarium-153 ethylene diamine tetramethylene phosphonate Samarium)	RAD001 (everolimus)	Radiolabelled BLyS
RANK-Fc	Rituximab	Romidepsin
RTA402	Samarium 153 SM lexidronam	Sant 7
SCIO-469	SD-208	SDX-101
Seleciclib	SF1126	SGN 40

SGN-70	Sirolimus	Sodium Stibogluconate (VQD-001)
Spironolactone	SR 31747	SU5416
SU6668	Tanespimycin	Temodar® (temozolomide)
Thalidomide	Thrombospondin-1	Tiazofurine
Tipifarnib	TKI 258	Tocilizumab (atlizumab)
Topotecan	Tretinoin	Valspodar
Vandetanib (Zactima™)	Vatalanib	VEGF Trap (NSC 724770)
Vincristine	Vinorelbine	VNP 4010M
Vorinostat	Xcytrin (motexafin gadolinium)	XL999
ZIO-101	Zoledronic acid	ZRx 101
1D09C3	detumomab	IdioVax
A-623	diazeniumdiolates	IL-1 receptor Type 2
AEW-541	DOM-1112	Il-12
agatolimod	dovitinib	IL-6 trap
Alfaferone	doxil (pegylated dox)	ImMucin
anti CD22/N97A	doxorubicin-LL2 conjugate	INCB-18424
anti-CD20-IL2 immunocytokine	elsilimomab	infliximab
anti-CD46 mAb	enzastaurin	IPH-1101
APO-010	farnesyl transferase inhibitors	IPH-2101
apolizumab	fostamatinib disodium	ISF-154
AR-726	gadolinium texaphyrin	JAK tyrosine kinase inhibitors
B-B4-DC1	GRN-163L	K562/GM-CSF
B-B4-DM1	GVAX	KRX-0402
bectumomab	HuMax-CD38	L1R3
BHQ-880	Oncolym	LMB-2
blinatumomab	Onyxvax-M	lomustine
BT-062	P-276-00	LY-2127399
carfilzomib	pazopanib	LymphoRad-131
CAT-3888	PD-332991	mAb-1.5.3
CAT-8015	perifosine	mapatumumab
CB-001	PG-120	masitinib
CC-394	phorboxazole A, Hughes Institute	MDX-1097
CEP-18770	pomalidomide	XL-228
clofarabine	ProMab	XmAb-5592
CT-32228	MGCD-0103	YM-155

cyclolignan picropodophyllin	milatuzumab	talmapimod
CYT-997	mitumprotimut-t	tamibarotene
dacetuzumab	MM-014	temsirolimus
dasatinib	MOR-202	TG-1042
DaunoXome	MyelomaScan	Vitelethine
denosumab	N,N-disubstituted alanine	SF-1126
PS-031291	ofatumumab	SNS-032
PSK-3668	SAR-3419	SR-45023A
R-7159	SCIO-323	STAT-3 inhibitors
Rebif	SDX-101	XBP-1 peptides
retaspimycin	SDZ-GLI-328	Xcelerated T cells
Reviroc	seliciclib	semaxanib
Roferon-A		

Combinations of the invention may also be employed with combinations of antiproliferative compounds. Such additional combinations include CHOP (cyclophosphamide, vincristine, doxorubicin, and prednisone), VAD (vincristine, doxorubicin, and dexamethasone), MP (melphalan and prednisone), DT (dexamethasone and thalidomide), DM (dexamethasone and melphalan), DR (dexamethasone and Revlimid), DV (dexamethasone and Velcade), RV (Revlimid and Velcade), and cyclophosphamide and etoposide.

Additional compounds related to bortezomib that may be used in the invention are described in U.S. Patent Nos. 5,780,454, 6,083,903, 6,297,217, 6,617,317, 6,713,446, 6,958,319, and 7,119,080. Other analogs and formulations of bortezomib are described in U.S. Patent Nos. 6,221,888, 6,462,019, 6,472,158, 6,492,333, 6,649,593, 6,656,904, 6,699,835, 6,740,674, 6,747,150, 6,831,057, 6,838,252, 6,838,436, 6,884,769, 6,902,721, 6,919,382, 6,919,382, 6,933,290, 6,958,220, 7,026,296, 7,109,323, 7,112,572, 7,112,588, 7,175,994, 7,223,554, 7,223,745, 7,259,138, 7,265,118, 7,276,371, 7,282,484, and 7,371,729.

Additional compounds related to lenalidomide that may be used in the invention are described in U.S. Patent Nos. 5,635,517, 6,045,501, 6,281,230, 6,315,720, 6,555,554, 6,561,976, 6,561,977, 6,755,784, 6,908,432, 7,119,106,

and 7,189,740. Other analogs and formulations of lenalidomide are described in U.S. Patent Nos. RE40,360, 5,712,291, 5,874,448, 6,235,756, 6,281,230, 6,315,720, 6,316,471, 6,335,349, 6,380,239, 6,395,754, 6,458,810, 6,476,052, 6,555,554, 6,561,976, 6,561,977, 6,588,548, 6,755,784, 6,767,326, 6,869,399, 5 6,871,783, 6,908,432, 6,977,268, 7,041,680, 7,081,464, 7,091,353, 7,115,277, 7,117,158, 7,119,106, 7,141,018, 7,153,867, 7,182,953, 7,189,740, 7,320,991, 7,323,479, and 7,329,761.

Further compounds that may be employed with the combinations of the invention are shown in Table 6.

10

Table 6

6-Mercaptopurine	Gallium (III) Nitrate Hydrate	Altretamine
Anastrozole	Bicalutamide	Bleomycin
Busulfan	Camptothecin	Capecitabine
Carboplatin	Chlorambucil	Cisplatin
Cladribine	Cytarabine	Dacarbazine
Dactinomycin	Docetaxel	Epirubicin Hydrochloride
Estramustine	Exemestane	Floxuridine
Fluorouracil	Flutamide	Fulvestrant
Gemcitabine Hydrochloride	Hydroxyurea	Ifosfamide
Imatinib	Iressa	Ketoconazole
Letrozole	Leuprolide	Levamisole
Lomustine	Mechlorethamine Hydrochloride	Megestrol acetate
Methotrexate	Mitomycin	Mitoxantrone Hydrochloride
Nilutamide	Oxaliplatin	Pemetrexed
Plicamycin	Prednisolone	Procarbazine
Raltitrexed	Rofecoxib	Streptozocin
Suramin	Tamoxifen Citrate	Teniposide
Testolactone	Thioguanine	Thiotepa
Toremifene	Vinblastine Sulfate	Vindesine

A combination of an A2A receptor agonist and a PDE inhibitor may also be employed with IL-6 for the treatment of a B-cell proliferative disorder. If

not by direct administration of IL-6, patients may be treated with agent(s) to increase the expression or activity of IL-6. Such agents may include other cytokines (e.g., IL-1 or TNF), soluble IL-6 receptor α (sIL-6R α), platelet-derived growth factor, prostaglandin E1, forskolin, cholera toxin, dibutyryl cAMP, or IL-6 receptor agonists, e.g., the agonist antibody MT-18, K-7/D-6, and compounds disclosed in U.S. Patent Nos. 5,914,106, 5,506,107, and 5,891,998.

Administration

10 In particular embodiments of any of the methods of the invention, the compounds are administered within 28 days of each other, within 14 days of each other, within 10 days of each other, within five days of each other, within twenty-four hours of each other, or simultaneously. The compounds may be formulated together as a single composition, or may be formulated and
15 administered separately. Each compound may be administered in a low dosage or in a high dosage, each of which is defined herein.

Therapy according to the invention may be performed alone or in conjunction with another therapy and may be provided at home, the doctor's office, a clinic, a hospital's outpatient department, or a hospital. Treatment
20 optionally begins at a hospital so that the doctor can observe the therapy's effects closely and make any adjustments that are needed, or it may begin on an outpatient basis. The duration of the therapy depends on the type of disease or disorder being treated, the age and condition of the patient, the stage and type of the patient's disease, and how the patient responds to the treatment.

25 Routes of administration for the various embodiments include, but are not limited to, topical, transdermal, and systemic administration (such as, intravenous, intramuscular, subcutaneous, inhalation, rectal, buccal, vaginal, intraperitoneal, intraarticular, ophthalmic or oral administration). As used herein, "systemic administration" refers to all nondermal routes of
30 administration, and specifically excludes topical and transdermal routes of administration. In one example, RPL554 is administered intranasally.

In combination therapy, the dosage and frequency of administration of each component of the combination can be controlled independently. For example, one compound may be administered three times per day, while a second compound may be administered once per day. Combination therapy 5 may be given in on-and-off cycles that include rest periods so that the patient's body has a chance to recover from any as yet unforeseen side effects. The compounds may also be formulated together such that one administration delivers both compounds.

10 **Formulation of Pharmaceutical Compositions**

The administration of a combination of the invention may be by any suitable means that results in suppression of proliferation at the target region. The compound may be contained in any appropriate amount in any suitable carrier substance, and is generally present in an amount of 1-95% by weight of 15 the total weight of the composition. The composition may be provided in a dosage form that is suitable for the oral, parenteral (e.g., intravenously, intramuscularly), rectal, cutaneous, nasal, vaginal, inhalant, skin (patch), or ocular administration route. Thus, the composition may be in the form of, e.g., tablets, capsules, pills, powders, granulates, suspensions, emulsions, solutions, 20 gels including hydrogels, pastes, ointments, creams, plasters, drenches, osmotic delivery devices, suppositories, enemas, injectables, implants, sprays, or aerosols. The pharmaceutical compositions may be formulated according to conventional pharmaceutical practice (see, e.g., Remington: The Science and Practice of Pharmacy, 21st edition, 2005, ed. A.R. Gennaro, Lippincott 25 Williams & Wilkins, Philadelphia, and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York).

Each compound of the combination may be formulated in a variety of ways that are known in the art. For example, all agents may be formulated 30 together or separately. Desirably, all agents are formulated together for the simultaneous or near simultaneous administration of the agents. Such co-

formulated compositions can include the A2A receptor agonist and the PDE inhibitor formulated together in the same pill, capsule, liquid, etc. It is to be understood that, when referring to the formulation of "A2A agonist/PDE inhibitor combinations," the formulation technology employed is also useful

5 for the formulation of the individual agents of the combination, as well as other combinations of the invention. By using different formulation strategies for different agents, the pharmacokinetic profiles for each agent can be suitably matched.

The individually or separately formulated agents can be packaged

10 together as a kit. Non-limiting examples include kits that contain, e.g., two pills, a pill and a powder, a suppository and a liquid in a vial, two topical creams, etc. The kit can include optional components that aid in the administration of the unit dose to patients, such as vials for reconstituting powder forms, syringes for injection, customized IV delivery systems, inhalers, etc. Additionally, the unit dose kit can contain instructions for preparation and administration of the compositions. The kit may be manufactured as a single use unit dose for one patient, multiple uses for a particular patient (at a constant dose or in which the individual compounds may vary in potency as therapy progresses); or the kit may contain multiple doses suitable for administration to

15

20 multiple patients ("bulk packaging"). The kit components may be assembled in cartons, blister packs, bottles, tubes, and the like.

Dosages

Generally, the dosage of the A2A receptor agonist is 0.1 mg to 500 mg per day, e.g., about 50 mg per day, about 5 mg per day, or desirably about 1 mg

25 per day. The dosage of the PDE inhibitor is, for example, 0.1 to 2000 mg, e.g., about 200 mg per day, about 20 mg per day, or desirably about 4 mg per day.

Dosages of antiproliferative compounds are known in the art and can be determined using standard medical techniques.

Administration of each drug in the combination can, independently, be

30 one to four times daily for one day to one year.

The following examples are to illustrate the invention. They are not meant to limit the invention in any way.

5 **Example 1:**

Materials and Methods

Tumor Cell Culture

The MM.1S, MM.1R, H929, MOLP-8, EJM, INA-6, ANBL6, KSM-12-PE, OPM2, and RPMI-8226 multiple myeloma cell lines, as well as the 10 Burkitt's lymphoma cell line GA-10 and the non-Hodgkin's lymphoma cell lines Farage, SU-DHL6, and Karpas 422 were cultured at 37°C and 5% CO₂ in RPMI-1640 media supplemented with 10% FBS. ANBL6 and INA-6 culture media was also supplemented with 10ng/ml IL-6. The OCI-ly10 cell line was cultured using RPMI-1640 media supplemented with 20% human serum. 15 MM.1S, MM.1R, OCI-ly10, Karpas 422, and SU-DHL6 cells were provided by the Dana Farber Cancer Institute. H929, RPMI-8226, GA-10, and Farage cells were from ATCC (Cat #'s CCL-155, CRL-9068, CRL-2392 and CRL-2630 respectively). MOLP-8, EJM, KSM-12-PE, and OPM2 were from DSMZ. The ANBL6 and INA-6 cell lines were provided by the M.D. Anderson Cancer 20 Research Center.

Compounds

Compounds were prepared in DMSO at 1000x the highest desired concentration. Master plates were generated consisting of serially diluted 25 compounds in 2- or 3-fold dilutions in 384-well format. For single agent dose response curves, the master plates consisted of 9 individual compounds at 12 concentrations in 2- or 3-fold dilutions. For combination matrices, master plates consisted of individual compounds at 6 or 9 concentrations at 2- or 3-fold dilutions.

siRNA and Transcript Quantification

siRNA to adenosine receptor A1, A2A, A3, PDE 2A, PDE 3B, PDE 4B, PDE 4D and PDE 7A, and control siRNA siCON were purchased from 5 Dharmacon. A2B siRNA was purchased from Invitrogen. Electroporations were performed using an Amaxa Nucleoporation (program S-20) and solution V. siRNAs were used at 50nM. Electroporation efficiency (MM.1R cells) was 87% as determined using siGLO (Dharmacon), and cells remained 89% viable 24 hours post electroporation. RNA was isolated using Qiagen RNAeasy kits, and targets quantified by RT-PCR using gene specific primers purchased from 10 Applied Biosystems.

Anti-Proliferation Assay

Cells were added to 384-well plates 24 hours prior to compound addition such that each well contained 2000 cells in 35 μ L of media. Master 15 plates were diluted 100x (1 μ L into 100 μ L) into 384-well dilution plates containing only cell culture media. 4.5 μ L from each dilution plate was added to each assay plate for a final dilution of 1000x. To obtain combination data, two master plates were diluted into the assay plates. Following compound addition, assay plates were kept at 37°C and 5% CO₂ for 72 hours. Thirty 20 microliters of ATPLite (Perkin Elmer) at room temperature was then added to each well. Final amount of ATP was quantified within 30 minutes using ATPLite luminescent read-out on an Envision 2103 Multilabel Reader (Perkin Elmer). Measurements were taken at the top of the well using a luminescence aperture and a read time of 0.1 seconds per well.

25 The percent inhibition (%I) for each well was calculated using the following formula:

$$\%I = [(avg. untreated wells - treated well)/(avg. untreated wells)] \times 100.$$

The average untreated well value (avg. untreated wells) is the arithmetic mean of 40 wells from the same assay plate treated with vehicle alone.

30 Negative inhibition values result from local variations in treated wells as compared to untreated wells.

Single agent activity was characterized by fitting a sigmoidal function of the form $I = I_{max}C^\alpha/[C^\alpha + EC_{50}^\alpha]$, with least squares minimization using a downhill simplex algorithm (C is the concentration, EC₅₀ is the agent concentration required to obtain 50% of the maximum effect, and α is the 5 sigmoidicity). The uncertainty of each fitted parameter was estimated from the range over which the change in reduced chi-squared was less than one, or less than minimum reduced chi-squared if that minimum exceeded one, to allow for underestimated σ_I errors.

Single agent curve data were used to define a dilution series for each 10 compound to be used for combination screening in a 6 x 6 matrix format. Using a dilution factor f of 2, 3, or 4, depending on the sigmoidicity of the single agent curve, five dose levels were chosen with the central concentration close to the fitted EC₅₀. For compounds with no detectable single agent activity, a dilution factor of 4 was used, starting from the highest achievable 15 concentration.

The Loewe additivity model was used to quantify combination effects. Combinations were ranked initially by Additivity Excess Volume, which is defined as ADD Volume = $\sum C_X, C_Y (I_{data} - I_{Loewe})$, where $I_{Loewe}(C_X, C_Y)$ is the inhibition that satisfies $(C_X/EC_X) + (C_Y/EC_Y) = 1$, and EC_{X,Y} are the effective 20 concentrations at I_{Loewe} for the single agent curves. A “Synergy Score” was also used, where the Synergy Score S = $\log f_X \log f_Y \sum I_{data} (I_{data} - I_{Loewe})$, summed over all non-single-agent concentration pairs, and where $\log f_{X,Y}$ is the natural logarithm of the dilution factors used for each single agent. This effectively calculates a volume between the measured and Loewe additive 25 response surfaces, weighted towards high inhibition and corrected for varying dilution factors. An uncertainty σ_S was calculated for each synergy score, based on the measured errors for the I_{data} values and standard error propagation.

Chronic Lymphocytic Leukemia (CLL) Isolation and Cell Culture

30 Blood samples were obtained in heparinized tubes with IRB-approved consent from flow cytometry-confirmed B-CLL patients that were either

untreated or for whom at least 1 month had elapsed since chemotherapy. Patients with active infections or other serious medical conditions were not included in this study. Patients with white blood cell counts of less than 15,000/ μ l by automated analysis were excluded from this study. Whole blood 5 was layered on Ficoll-Hystopaque (Sigma), and peripheral blood mononuclear cells (PBMC) isolated after centrifugation. PBMCs were washed and resuspended in complete media [RPMI-1640 (Mediatech) supplemented with 10% fetal bovine serum (Sigma), 20mM L-glutamine, 100 IU/ml penicillin, and 100 μ g/ml streptomycin (Mediatech)]. One million cells were stained with 10 anti-CD5-PE and anti-CD19-PE-Cy5 (Becton Dickenson, Franklin Lakes NJ). The percentage of B-CLL cells was defined as the percentage of cells doubly expressing CD5 and CD19, as determined by flow cytometry.

Apoptosis Assays

15 Approximately five million cells per well were seeded in 96-well plates (BD, Franklin Lakes NJ) and incubated for one hour at 37°C in 5% CO₂. Compound master plates were diluted 1:50 into complete media to create working compound dilutions. Compound crosses were then created by diluting two working dilution plates 1:10 into each plate of cells. After drug addition, 20 cells were incubated for 48 hours at 37°C with 5% CO₂. Hoechst 33342 (Molecular Probes, Eugene OR) at a final concentration of 0.25 μ g/mL was added to each well, and the cells incubated at 37°C for an additional ten minutes before being placed on ice until analysis. Plates were then analyzed on a LSR-II flow cytometer (Becton Dickenson, Franklin Lakes, NJ) equipped 25 with the High Throughput Sampling (HTS) option in high throughput mode. The dye was excited using a 355 nm laser, and fluorescence was detected utilizing a 450/50 nm bandpass filter. The apoptotic fraction was calculated using FlowJo software (Tree Star Inc., Ashland, OR) after excluding debris by a FSC/SSC gate and subsequently gating for cells that accumulate the Hoechst 30 dye.

Example 2:

The RPMI-8226, MM.1S, MM.1R, and H929 MM cell lines were used to examine the activity of various compounds. The synergy scores obtained are 5 provided in the following tables.

Table 7: Summary of synergy scores for compounds that synergize with the adenosine receptor agonist ADAC in one or more MM cell line (RPMI-8226, MM.1S, MM.1R, and H929)

	RPMI- 8226	H929	MM.1S	MM.1R
Papaverine hydrochloride	1.158	1.193	3.554	3.395
Trequinsin hydrochloride	0.9183	3.044	6.619	6.47
Rolipram	0.4277	1.114	1.147	4.105
RO-20-1724	0.51	1.1	1.71	3.42
Dipyridamole	0.62	2.05	1.18	1.34

Table 8: Summary of synergy scores for compounds that synergize with the adenosine receptor agonist HE-NECA in one or more MM cell line (RPMI-8226, MM.1S, MM.1R, and H929)

	RPMI- 8226	H929	MM.1S	MM.1R
Papaverine hydrochloride	0.3933	1.025	2.087	2.128
Trequinsin hydrochloride	0.793	3.141	7.235	4.329
BAY 60-7550	0.7784	1.933	2.364	N.D.
R-(-)-Rolipram	1.16	2.148	2.965	N.D.
Rolipram	0.2845	1.089	1.076	N.D.
Cilostamide	0.2381	1.67	1.637	1.692
Cilostazol	0.2486	0.6849	1.849	N.D.
Roflumilast	0.466	0.98	2	N.D.
Zardaverine	0.43	3.39	4.39	N.D.
BRL-50481	0.147	0.193	1.38	N.D.

5 **Example 3:**

The RPMI-8226, MM.1S, MM.1R, and H929 MM cell lines were used to examine the activity of various compounds. The synergy scores obtained are provided in the following tables.

10 **Table 9: Summary of synergy scores for compounds that synergize with the adenosine receptor agonist CGS-21680 in one or more MM cell lines (RPMI-8226, MM.1S, MM.1R, and H929)**

	RPMI 8226	H929	MM.1S	MM.1R
Trequinsin	0.72	3.33	6.26	6.57
Zardaverine	0.13	3.75	3.64	2.15
BAY 60-7550	0.76	3.86	3.85	4.59
R-(-)-Rolipram	2.03	1.93	1.92	4.54
Cilostazol	0.37	1.12	4.09	1.57
Roflumilast	0.69	3.71	3.82	3.61
BRL-50481	0.19	0.34	1.78	1.22
Ibudilast	0.47	1.76	2.22	2.29

Table 10: Summary of synergy scores for compounds that synergize with the adenosine receptor agonist regadenoson in one or more MM cell lines (RPMI-8226, MM.1S, MM.1R, and H929)

	RPMI 8226	H929	MM.1S	MM.1R
Trequinsin	0.4	1.99	1.85	2.8
Zardaverine	0.52	1.02	1.45	1.49
BAY 60-7550	0.98	1.89	0.91	3.07
R-(-)-Rolipram	0.63	1.91	1.83	3.62
Cilostazol	0.12	1.34	1.85	0.76
Roflumilast	1.12	2.7	3.56	5.83
BRL-50481	0.39	0.19	0.82	1.09
Ibudilast	0.29	1.08	0.37	1

5 Representative 6 x 6 data for compounds that have synergistic anti-proliferative activity in combination with adenosine receptor agonists are shown in Tables 11-19 below. Inhibition of proliferation was measured as described above, after incubation of cells with test compound(s) for 72 hours. The effects of various concentrations of single agents or drugs in combination 10 were compared to control wells (MM cells not treated with drugs). The effects of agents alone and in combination are shown as percent inhibition of cell proliferation.

15 **Table 11: Antiproliferative activity of HE-NECA and trequinsin against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)**

Trequinsin (µM) \ HE-NECA (µM)	30.5	10.17	3.39	1.13	0.377	0
2.03	95	93	91	94	94	86
0.677	96	92	92	91	90	80
0.226	95	91	91	91	89	83
0.0752	96	92	91	89	88	79
0.0251	96	93	93	93	90	78
0	68	26	10	0.96	7.4	0.6

Table 12: Antiproliferative activity of ADAC and trequinsin against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)

ADAC (μM)						
Trequinsin Hydrochloride (μM)	31.6	15.8	7.9	3.95	1.975	0
30.5	96	96	96	96	98	87
10.2	92	93	91	92	86	30
3.39	90	88	88	87	85	5.4
1.13	85	87	81	80	72	3.7
0.377	84	75	80	69	56	0.44
0	60	66	57	49	37	7.9

5 **Table 13: Antiproliferative activity of HE-NECA and BAY 60-7550 against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)**

BAY 60-7550 (μM)						
HE-NECA (nM)	11.8	5.9	2.95	1.475	0.7375	0
20.3	83	74	70	85	82	67
6.77	80	75	62	82	70	59
2.26	71	53	52	68	59	41
0.752	44	30	17	42	31	23
0.251	25	9.9	9.5	15	15	3.4
0	13	6	4	-3.6	-9.4	0.27

Table 14: Antiproliferative activity of chloro-IB-MECA and papaverine against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)

Cl-IB-MECA (μ M)	3.1	1.55	0.775	0.3875	0.19375	0
Papaverine (μ M)	30.8	100	98	98	96	94
	15.4	97	94	91	90	88
	7.7	93	86	84	82	75
	3.85	81	79	75	66	54
	1.92	70	64	60	48	39
	0	55	51	39	29	20
						0.65

5 **Table 15: Antiproliferative activity of chloro-IB-MECA and cilostamide against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)**

Cl-IB-MECA (μ M)	1.16	0.58	0.29	0.145	0.0725	0
Cilostamide (μ M)	19.7	90	80	63	74	52
	6.57	75	72	39	32	31
	2.19	67	51	43	22	19
	0.730	63	46	41	25	18
	0.243	60	49	37	28	6.7
	0	48	41	30	22	12
						3.5

10 **Table 16: Antiproliferative activity of chloro-IB-MECA and roflumilast against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)**

Roflumilast (μ M)	1.01	0.505	0.252	0.126	0.0631	0
Cl-IB-MECA (μ M)	3.1	79	79	76	79	60
	1.03	76	76	73	75	72
	0.344	62	66	63	56	54
	0.115	38	36	24	29	17
	0.0383	14	10	10	9.5	6.7
	0	7.5	11	-3.5	1.5	-7.1
						-3.1

Table 17: Antiproliferative activity of chloro-IB-MECA and zardaverine against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)

Zardaverine (μM) \ Cl-IB-MECA (μM)	30.3	15.2	7.58	3.79	1.89	0
Cl-IB-MECA (μM)	3.1	91	91	90	88	82
3.1	91	91	90	88	82	64
1.03	90	89	87	84	79	57
0.344	85	82	77	73	69	37
0.115	64	59	54	43	35	19
0.0383	31	28	15	23	15	12
0	14	5.1	13	-1.8	0.11	2.9

5 **Table 18: Antiproliferative activity of HE-NECA and RO-20-1724 Against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)**

RO-20-1724 (μM) \ HE-NECA (nM)	36.4	18.2	9.1	4.55	2.28	0
HE-NECA (nM)	36.4	18.2	9.1	4.55	2.28	0
36.4	87	85	84	79	72	54
18.2	86	81	79	72	68	46
9.1	81	76	75	59	62	31
4.55	61	57	48	38	37	22
2.28	25	29	27	21	29	5.4
0	1.4	10	7	11	2.3	10

10 **Table 19: Antiproliferative activity of HE-NECA and R-(-)-Rolipram against human multiple myeloma cells (MM.1S) (Percent inhibition of ATP in MM.1S cells)**

R-(-)-Rolipram (μM) \ HE-NECA (nM)	6.13	3.06	1.53	0.766	0.383	0
HE-NECA (nM)	6.13	3.06	1.53	0.766	0.383	0
6.13	93	91	86	80	74	64
3.06	91	89	82	75	67	53
1.53	84	85	70	69	58	40
0.766	73	61	44	34	37	19
0.383	86	4.9	-2.8	9.9	4.8	4.5
0	-9.8	-5.6	-6.3	-8.4	-6.1	1.3

Example 4:**The cytokine IL-6 potentiates adenosine receptor agonist cell killing**

The localization of MM cells to bone is critical for pathogenesis. In this microenvironment, the interaction of MM cells with bone marrow stromal cells 5 stimulates the expansion of the tumor cells through the enhanced expression of chemokines and cytokines which stimulate MM cell proliferation and protect from apoptosis. Interleukin-6 (IL-6) is the best characterized growth and survival factor for MM cells. IL-6 can trigger significant MM cell growth and protection from apoptosis in vitro. For example, IL-6 will protect cells from 10 dexamethasone-induced apoptosis, presumably by activation of PI3K signaling. The importance of IL-6 is highlighted by the observation that IL-6 knockout mice fail to develop plasma cell tumors.

The MM.1S is an IL-6 responsive cell line that has been used to examine whether compounds can overcome the protective effects of IL-6. To 15 examine the effect of IL-6, we first cultured MM.1S cells for 72 hours with 2-fold dilutions of dexamethasone in either the presence or absence of 10ng/ml IL-6. Consistent with what has been described in the literature, we observe that MM.1S cell growth is stimulated (data not shown) and that cells are less sensitive to dexamethasone (2.9-fold change in IC₅₀) when cultured in the 20 presence of IL-6 (+IL-6, IC₅₀ 0.0617 μ M vs. IC₅₀ 0.179 μ M, no IL-6).

We have examined the antiproliferative activity of synergistic adenosine receptor agonist combinations in the absence or presence of IL-6. In each case, we find that cells exposed to IL-6 are more sensitive to the antiproliferative effects of adenosine receptor agonist (Tables 20-25). Each of the tables 25 provides percent inhibition of ATP in MM.1S cells (compare Table 20 with 21, Table 22 with 23 and Table 24 with 25)

Table 20: Antiproliferative activity of HE-NECA and trequinsin against human multiple myeloma cells (MM.1S)

Trequinsin \ HE-NECA (nM)	30.5	10.2	3.39	1.13	0.377	0
20.3	98	92	85	85	79	60
6.77	98	90	87	77	69	47
2.26	97	88	81	71	64	34
0.752	96	79	60	45	32	27
0.251	93	59	32	25	17	11
0	85	23	8.2	-3.2	-0.85	-2.3

Table 21: Antiproliferative activity of HE-NECA and trequinsin against human multiple myeloma cells (MM.1S) treated with 10 ng/mL IL-6

Trequinsin (μM) \ HE-NECA (nM)	30.5	10.2	3.39	1.13	0.377	0
20.3	100	96	94	94	93	83
6.77	100	94	94	92	90	77
2.26	100	95	94	88	83	63
0.752	99	91	84	72	64	39
0.251	97	79	50	51	32	26
0	95	26	8.9	5.1	-1.2	8.4

Table 22: Antiproliferative activity of HE-NECA and papaverine against human multiple myeloma cells (MM.1S)

Papaverine (μM) \ HE-NECA (nM)	20.7	6.9	2.3	0.767	0.256	0
20.3	95	85	68	65	58	63
6.77	95	77	62	54	45	46
2.26	90	72	49	37	26	29
0.752	86	56	36	21	21	14
0.251	78	50	25	18	8.8	11
0	68	46	23	8.8	9.1	11

Table 23: Antiproliferative activity of HE-NECA and papaverine against human multiple myeloma cells (MM.1S) treated with 10 ng/mL IL-6

HE-NECA (μM) \ Papaverine (μM)	20.7	6.9	2.3	0.767	0.256	0
20.3	97	92	86	89	89	90
6.77	97	85	80	77	78	78
2.26	93	81	70	67	66	68
0.752	87	67	50	47	46	43
0.251	76	56	28	26	20	21
0	70	46	7.9	-0.1	-2.4	-1.9

Table 24: Antiproliferative activity of ADAC and trequinsin against human multiple myeloma cells (MM.1S)

Trequinsin (μM) \ ADAC (μM)	31.6	10.5	3.51	1.17	0.390	0
30.5	96	96	96	96	98	87
10.2	92	93	91	92	86	30
3.39	90	88	88	87	85	5.4
1.13	85	87	81	80	72	3.7
0.377	84	75	80	69	56	0.44
0	60	66	57	49	37	7.9

Table 25: Antiproliferative activity of ADAC and trequinsin against human multiple myeloma cells (MM.1S) treated with 10 ng/mL IL-6

Trequinsin (μM) \ ADAC (μM)	31.6	10.5	3.51	1.17	0.390	0
30.5	97	97	98	98	100	99
10.2	94	95	95	94	95	36
3.39	93	93	94	94	95	4.5
1.13	93	94	93	93	93	4
0.377	95	93	93	92	88	7
0	83	85	81	79	61	4.9

10 Example 5:

Adenosine Receptor Ligand Analysis

Multiple adenosine receptor agonists including ADAC, (S)-ENBA, 2-chloro-N6-cyclopentyladenosine, chloro-IB-MECA, IB-MECA and HE-NECA

were active and synergistic in our assays when using the RPMI-8226, H929, MM.1S and MM.1R MM cell lines. That multiple members of this target class are synergistic is consistent with the target of these compounds being an adenosine receptor. As there are four members of the adenosine receptor 5 family (A1, A2A, A2B and A3), we have used adenosine receptor antagonists to identify which receptor subtype is the target for the synergistic antiproliferative effects we have observed.

MM.1S cells were cultured for 72 hours with 2-fold dilutions of the adenosine receptor agonist chloro-IB-MECA in either the presence or absence 10 of the A2A-selective antagonist SCH 58261 (78nM), the A3-selective antagonist MRS 1523 (87nM), the A1-selective antagonist DPCPX (89nM) or the A2B-selective antagonist MRS 1574 (89nM). The A2A antagonist SCH58261 was the most active of the antagonists, blocking chloro-IB-MECA antiproliferative activity >50% (Table 26).

15

Table 26: Percent inhibition of cell growth by chloro-IB-MECA in the presence of adenosine receptor antagonists

Conc. Chloro-IB-MECA	no antagonist	78nM SCH58261	87nM MRS1523	89nM DPCPX	89nM MRS1754
3.1 μ M	70	28	69	64	71
1.5 μ M	61	8.1	54	47	50
0.77 μ M	49	6.4	48	38	57
0.39 μ M	35	0.5	33	18	13
0.19 μ M	20	5.2	19	7.4	25

The percent inhibition of MM.1S cell growth by chloro-IB-MECA was 20 examined when the concentration of each antagonist was increased 2-fold. Again, the A2A antagonist SCH58261 was the most active of the compounds, a 2-fold increase in concentration blocking chloro-IB-MECA antiproliferative activity >70% (Table 27).

Table 27: Percent inhibition of cell growth by chloro-IB-MECA in the presence of adenosine receptor antagonists

Conc. Cl-IB-MECA	no antagonist	78nM SCH58261	150nM SCH58261	170nM MRS1523	174nM DPCPX	175nM MRS1754
3.1 μ M	70	28	16	74	60	72
1.5 μ M	61	8.1	4.3	61	46	45
0.77 μ M	49	6.4	-2.5	51	36	52
0.39 μ M	35	0.5	-2	38	17	14
0.19 μ M	20	5.2	-3.8	26	12	21

The effect of the adenosine receptor antagonists on adenosine receptor agonist (S)-ENBA was also examined. MM.1S cells were cultured for 72 hours with 3-fold dilutions of the adenosine receptor agonist (S)-ENBA in either the presence or absence of the A2A-selective antagonist SCH 58261 (78nM), the A3-selective antagonist MRS 1523 (183nM), the A1-selective antagonist DPCPX (178nM) or the A2B-selective antagonist MRS 1574 (175nM). The A2A antagonist SCH58261 was again the most active of the antagonists. The other antagonists had marginal activity at best relative to the A2A-selective antagonist SCH58261, even though they were tested at a 2-fold higher concentration than SCH58261 (Table 28).

Table 28: Percent inhibition of cell growth by (S)-ENBA in the presence of adenosine receptor antagonists

Conc (s)-ENBA	no antagonist	78nM SCH58261	183nM MRS1523	178nM DPCPX	175nM MRS1754
14 μ M	68	45	65	89	71
4.7 μ M	52	12	52	77	47
1.6 μ M	41	14	36	37	50
0.52 μ M	19	6	14	18	10
0.17 μ M	6	4.5	10	2.4	9.3

The effects of the four antagonists, when adenosine receptor agonist chloro-IB-MECA is crossed with the phosphodiesterase inhibitor trequinsin are shown below. The A2A receptor antagonist SCH58261 is the most active compound. The effects of the four antagonists on synergy, when adenosine receptor agonist (S)-ENBA is crossed with the phosphodiesterase inhibitor

trequinsin, are also shown below. Again, the A2A receptor antagonist SCH58261 is the most active compound. Percent inhibition of ATP in MM.1S cells is provided in each table (Tables 29-33).

5 **Table 29: Antiproliferative activity of chloro-IB-MECA and trequinsin against human multiple myeloma cells (MM.1S) after addition of 175nM adenosine receptor antagonist MRS 1754**

Cl-IB-MECA (μM) \ Trequinsin (μM)	2.96	1.48	0.74	0.37	0.185	0
Trequinsin (μM)	2.96	1.48	0.74	0.37	0.185	0
29.2	95	94	91	90	83	66
9.73	93	90	88	73	63	15
3.24	89	87	78	58	41	12
1.08	85	76	75	47	21	-3.1
0.360	81	73	53	46	6.1	10
0	72	45	51	14	21	-13

10 **Table 30: Antiproliferative activity of chloro-IB-MECA and trequinsin against human multiple myeloma cells (MM.1S) after addition of 153nM adenosine receptor antagonist SCH58261**

Cl-IB-MECA (μM) \ Trequinsin (μM)	2.96	1.48	0.74	0.37	0.185	0
Trequinsin (μM)	2.96	1.48	0.74	0.37	0.185	0
29.2	91	88	77	79	64	66
9.73	80	50	44	28	28	23
3.24	55	43	17	12	12	13
1.08	46	19	11	3.5	1.7	-6.6
0.360	36	14	5.7	6.4	2.7	3.9
0	15	4.3	-2.5	-0.16	-3.8	6.5

Table 31: Antiproliferative activity of chloro-IB-MECA and trequinsin against human multiple myeloma cells (MM.1S) after addition of 170nM adenosine receptor antagonist MRS 1523

Cl-IB-MECA (μM) \ Trequinsin (μM)	2.96	1.48	0.74	0.37	0.185	0
2.96	94	95	93	92	89	66
9.73	93	93	92	90	84	23
3.24	93	92	91	86	70	13
1.08	91	89	87	76	59	-4.8
0.360	88	99	77	70	36	-8.3
0	75	61	51	38	27	-12

5 **Table 32: Antiproliferative activity of chloro-IB-MECA and trequinsin against human multiple myeloma cells (MM.1S) after addition of 174 nM adenosine receptor antagonist DPCPX**

Cl-IB-MECA (μM) \ Trequinsin (μM)	2.96	1.48	0.74	0.37	0.185	0
2.96	94	94	93	90	82	64
9.73	94	92	89	77	60	22
3.24	91	91	81	64	30	7.9
1.08	89	84	75	51	27	6.6
0.360	84	76	61	32	14	-0.5
0	60	46	36	17	12	-7.5

10 **Table 33: Antiproliferative activity of chloro-IB-MECA and trequinsin against human multiple myeloma cells (MM.1S), no adenosine receptor antagonist added**

Cl-IB-MECA (μM) \ Trequinsin (μM)	2.96	1.48	0.74	0.37	0.185	0
2.96	94	94	93	93	93	66
9.73	93	93	94	91	86	22
3.24	92	93	91	87	77	13
1.08	90	88	85	80	63	-4
0.360	87	86	77	71	46	-3.6
0	71	61	51	35	23	-5.1

The use of adenosine receptor antagonists points to the A2A receptor subtype as important for the antiproliferative effect of agonists on cell growth. We note that our results do not exclude the importance of other adenosine receptor subtypes for maximal activity.

5 We also examined the antiproliferative activity of adenosine receptor agonists when the MM cell line MM.1R was transfected with siRNA targeting the A1, A2A, A2B or A3 receptor. Specific gene silencing (A1, A2A, A2B, or A3) was greater than 50% as determined by real time PCR analysis 48 hours post-transfection. At 48 hours post-transfection, cells were exposed to
 10 adenosine receptor agonist, incubated an additional 72 hours, and compounds assayed for antiproliferative activity. Representative data is in Table 34. Cells transfected with adenosine receptor siRNA or a control siRNA (scrambled sequences designed so that cellular transcripts are not targeted) were treated with the adenosine receptor agonist ADAC. While siRNA to the A1, A2B, or
 15 A3 receptor did not affect ADAC activity, an siRNA that targeted the A2A receptor reduced the adenosine receptor agonist's antiproliferative activity. Similar results were obtained with a second siRNA with specificity for different region of the A2A receptor mRNA, confirming that the reduction in adenosine receptor agonist activity is the result of specific siRNA targeting of
 20 the A2A receptor (data not shown).

Table 34: Antiproliferative activity of adenosine receptor agonist ADAC against human multiple myeloma cells (MM.1R) after transfection of siRNA silencing the adenosine receptor subtypes

25

ADAC (μM)	0.063μM	0.013μM	0.25μM	0.51μM	1μM
siRNA	0.063μM	0.013μM	0.25μM	0.51μM	1μM
control	15	19	35	43	54
A1	16	18	37	41	52
A2A	6.7	12	15	19	24
A2B	12	17	34	40	53
A3	18	22	41	46	54

We further evaluated the requirement for the A2A receptor by repeating the siRNA transfection and incubating cells with HE-NECA, a very potent A2A receptor at concentrations that are known to occupy/stimulate the A2A receptor fully (HE-NECA $K_i = \sim 27\text{nM}$). After siRNA transfection and at the 5 time of HE-NECA addition to cells, A2A RNA levels were reduced >50% as determined by real time PCR. Again, silencing of the A2A receptor had a strong effect on adenosine receptor agonist activity (Table 35).

10 **Table 35: Antiproliferative activity of potent adenosine receptor A2A agonist HE-NECA against human multiple myeloma cells (MM.1R) after transfection of siRNA silencing the adenosine A2A receptor subtype**

HE-NECA (μM)	0.25 μM	0.5 μM	1 μM	2 μM	4.1 μM
siRNA	0.25 μM	0.5 μM	1 μM	2 μM	4.1 μM
control	67	68	68	73	74
A2A	24	30	29	38	40

15 **Example 6: Phosphodiesterase Inhibitor Analysis**
 To better understand the phosphodiesterase (PDE) target in MM cells, we have crossed a panel of PDE inhibitors with the adenosine receptor agonists chloro-IB-MECA, HE-NECA, (S)-ENBA, and/or ADAC in MM.1S or H929 cells. The PDE inhibitors that showed synergy (score >1) include BAY-60-7550 (PDE 2 inhibitor), cilostamide, cilostazol and milrinone (PDE 3 inhibitors), rolipram, R-(-)-rolipram, RO-20-1724 and roflumilast (PDE 4 inhibitors), trequinsin (PDE 2/PDE 3/PDE 4 inhibitor) and zardaverine (PDE 3/PDE 4 inhibitor) and papaverine and BRL-50481 (PDE 7 inhibitors). Factors that influenced the extent to which the various PDE inhibitors were active include their specificity and the extent to which they are cell permeable.

Table 36

PDE inhibitors(spe- cificity)	Chloro-IB- MECA		HE- NECA		(S)- ENBA		ADAC	
	MM.1S	H929						
IBMX (pan)					0.055			
Pentoxifylline (pan)	0.05	0.02	0.29	0.09	0.49	0.02		
Sildenafil (1,5)	0	0.03	0	0	0	0.03	0	0.14
Vinoceptine (1)			0.26	0	0.25	0.21	0.02	0.01
BAY 60-7550 (2)	0.86	0.74	3.8	3.71	2.84	1.07	0.85	0.55
Trequinsin (2,3,4)	5.95	2.77	7.85	4.34	4.56	3.38	6.62	3.04
Cilostamide (3)	1.1	0.65	0.49	0.28		1.17		
Cilostazol (3)	0.75	0.46	3.50	1.21	1.73	0.4	0.89	0.36
Milrinone (3)	0.25	0.08	0.33	0.15	1.31			
Siguazodan (3)	0.42	0.09	0.72	0.08	1.39	0.13		
Ibudilast (3,4,10,11)	0.74	0.32	0.98	0.32	0.55	0.21	0.23	1.04
Irsogladine (4)	0.25	0.05			0.38	0.09		
(R)-Rolipram (4)	0.84	0.63	4.38	2.51	2.08	0.82	0.97	0.51
RO-20-1724 (4)	1.6	1.14	3.58	2.51	0.73	0.09	1.71	1.11
Zaprinast (1,6,10,11)	0.05	0.03	0.025	0.13	0.16	0.05		
Dipyridamole (5,6,7,8,10,11)	0.20	0.08	0.08	0.13	0.17	0.26	1.18	2.05
Papaverine (6,7,10)	2.67	1.42	2.09	1.03	2.24	0.77	3.55	1.19
Zardaverine (3,4)	3.71	2.97	4.39	3.39	2.59	4.02		
Roflumilast (4)	2.12	1.16	2	0.98	2.19	1.77		
Rolipram (4)	1.11	0.74	1.08	1.09	0.73	0.46	1.15	1.11
BRL- 50481(7)	1.47	0.34	1.41	0.23	1.22	0.26		

We examined the activity of PDE inhibitors when used in combination with adenosine receptor agonist using additional multiple myeloma cell lines to examine the breadth of activity of this type of combination on MM cell growth. As shown in Table 37, adenosine receptor agonist/PDE combinations were 5 synergistically antiproliferative in almost all of the cell lines examined, with more activity observed with PDE 3/4 inhibitors than PDE 4 inhibitors, consistent with the inhibition of multiple PDEs for maximal activity.

10 **Table 37: Summary of synergy scores for adenosine receptor agonist CGS-21680 × PDE inhibitors in the MOLP-8, EJM, INA-6, ANBL6, KSM-12-PE, and OPM2 MM cell lines.**

	MOLP-8	EJM	INA-6	ANBL6	KSM-12-PE	OPM2
roflumilast	3.44	1.06	2.62	3.73	0.27	0.29
trequinsin	4.7	4.81	3.93	4.55	2.44	4.74
zardaverine	3.06	0.98	2.69	2.11	0.49	1.15

15 Of all the PDE inhibitors, trequinsin and zardaverine (both PDE 3/PDE 4 inhibitors) had the highest synergy scores when crossed with adenosine receptor agonists. As PDE 2, PDE 3, and PDE 4 inhibitors were not as potent as either trequinsin or zardaverine, we performed crosses using mixtures of PDE inhibitors (PDE 2 with PDE 3, PDE 3 with PDE 4 and PDE 2 with PDE 4(Table 38)) to determine if the use of inhibitors that targeted individual PDEs would show an increase in activity if used in combination..

20 Crosses (6 × 6) were performed between PDE inhibitors (PDEi) and HE-NECA. For the PDE mixtures, the relative concentrations were BAY 60-7550/R-(-)-rolipram at a ratio of 1.9:1, BAY 60-7550/cilostazol at a ratio of 1.5:1 and cilostazol/R-(-)-rolipram at a ratio of 3:1. In each case, the synergy observed for the PDE mixtures was higher than for the individual compounds, 25 suggesting that for maximal synergistic antiproliferative effect, the PDE targets include PDE 2, PDE 3, PDE 4, and PDE 7 (identified using papaverine and BRL-50481).

Table 38

PDEi × HE-NECA	MM.1S	H929
BAY 60-7550	1.64	1.68
Cilostamide	1.02	0.56
R-(-)-Rolipram	2.33	1.88
Trequinsin	5.7	4.22
BAY 60-7550 + Cilostamide	3.27	2.13
BAY 60-7550 + R-(-)-Rolipram	2.85	2.53
Cilostamide + R-(-)-Rolipram	3.41	2.65
Zardaverine	4.39	3.39

We have examined the antiproliferative activity of adenosine receptor agonists/ PDE inhibitor combinations after MM.1R is transfected with siRNA targeting the PDE 2A, PDE 3B, PDE 4B, PDE 4D, or PDE 7A. As the chemical genetic analysis pointed to the importance of these four PDE family members, and all four act in cells to reduce the levels of cAMP, the effects of targeting one PDE would likely be subtle and increased if siRNA was used in concert with compounds that inhibit other family members or agents such as A2A agonists, that elevate the levels of cAMP in the cell.

In our experiments, PDE gene silencing was always greater than 50% as confirmed by real time PCR analysis 48 hours post-transfection. At 48 hours post-transfection, cells were exposed to adenosine receptor agonist and PDE inhibitor, incubated an additional 72 hours, and compounds assayed for antiproliferative activity. Representative data is in Tables 39-45. For each analysis, the activity of cells transfected with an siRNA targeting a specific PDE was compared to cells transfected with a control non-targeting siRNA (siCON). As seen in Tables 39 and 40, transfection of cells with an siRNA targeting PDE 3B increased the activity of the drug combination HE-NECA and roflumilast (a PDE 4 inhibitor). At the time of drug combination addition, PDE 3B RNA levels had been reduced 64% as determined by real time PCR.

Table 39: Antiproliferative activity of HE-NECA and roflumilast against human multiple myeloma cells (MM.1R) after transfection with control (non-targeting) siRNA (siCON).

HE-NECA (nM) \ Roflumilast (μM)	20	6.8	2.3	0.75	0.25	0
1.0	70	76	70	56	31	14
0.50	80	82	69	57	25	8.7
0.25	78	79	69	49	30	3.5
0.13	83	76	70	49	22	0.3
0.063	76	73	66	42	25	-8
0	64	54	40	17	20	-7.4

5 **Table 40: Antiproliferative activity of HE-NECA and roflumilast against human multiple myeloma cells (MM.1R) after transfection with PDE 3B siRNA**

HE-NECA (nM) \ Roflumilast (μM)	20	6.8	2.3	0.75	0.25	0
1.0	83	86	79	70	54	18
0.50	88	84	82	74	46	10
0.25	86	86	81	70	46	6.8
0.13	88	83	81	71	49	11
0.063	88	86	80	70	48	3
0	66	59	50	27	12	-3.7

Shown in Tables 41 and 42 is the effect on drug combination activity
10 (HE-NECA × cilostazol, a PDE 3 inhibitor) when cells were transfected with siRNA to PDE 7A (PDE 7A RNA reduced 60% at the time of drug addition).

Table 41: Antiproliferative activity of HE-NECA and cilostazol against human multiple myeloma cells (MM.1R) after transfection with control (non-targeting) siRNA

HE-NECA (nM)	20	6.8	2.3	0.75	0.25	0
Cilostazol (μM)						
27	84	80	77	65	57	31
9.0	80	69	67	48	34	4.7
3.0	71	70	61	43	24	-7.5
1.0	69	66	52	34	23	1.6
0.34	66	62	43	32	20	-2.5
0	63	55	48	19	27	-9.7

5 **Table 42: Antiproliferative activity of HE-NECA and cilostazol against human multiple myeloma cells (MM.1R) after transfection with PDE 7A siRNA**

HE-NECA (nM)	20	6.8	2.3	0.75	0.25	0
Cilostazol (μM)						
27	87	87	82	78	60	36
9.0	83	78	77	61	40	6.1
3.0	78	77	63	54	18	7.7
1.0	78	70	66	43	27	-8.6
0.34	73	69	55	45	12	-2.5
0	71	65	56	33	17	-8.5

Shown in Tables 43-45 is the effect on drug combination activity (HE-
10 NECA × BAY 60-7550, a PDE 2 inhibitor) when cells were transfected with siRNA to PDE 4B (PDE 4B RNA reduced 54% at the time of drug addition) or PDE 4D (PDE 4D RNA reduced 57%).

Table 43: Antiproliferative Activity of HE-NECA and BAY 60-7550 Against Human Multiple Myeloma cells (MM.1R) after Transfection with Control (Non-targeting) siRNA

HE-NECA (nM)						
BAY 60-7550 (μM)	20	6.8	2.3	0.75	0.25	0
35	91	88	84	71	50	5.9
12	85	81	72	58	35	6.8
4	78	74	66	45	20	2.8
1.3	72	63	54	44	24	2
0.44	70	59	52	28	9	-8.1
0	60	53	44	26	6.1	-0.2

5 **Table 44: Antiproliferative Activity of HE-NECA and BAY 60-7550 Against Human Multiple Myeloma cells (MM.1R) after Transfection with PDE 4B siRNA**

HE-NECA (nM)						
BAY 60-7550 (μM)	20	6.8	2.3	0.75	0.25	0
35	94	89	88	75	53	15
12	88	84	79	68	32	1.6
4	82	77	74	52	26	-0.8
1.3	78	73	63	48	26	8.7
0.44	74	62	58	31	16	2.3
0	74	66	53	35	3.3	0.2

10 **Table 45: Antiproliferative Activity of HE-NECA and BAY 60-7550 Against Human Multiple Myeloma cells (MM.1R) after Transfection with PDE 4D siRNA**

HE-NECA (nM)						
BAY 60-7550 (μM)	20	6.8	2.3	5	0.25	0
35	93	87	86	74	48	22
12	86	84	77	67	38	13
4	81	77	73	49	28	10
1.3	75	72	60	49	20	7.7
0.44	70	61	58	26	11	7.5
0	71	62	54	42	7.6	5.4

Shown in Tables 46-47 is the effect on drug combination activity (HE-NECA × R-(-)-Rolipram, a PDE 4 inhibitor) when MM.1R cells were transfected with a control siRNA (non-targeting) or an siRNA targeting PDE 5 2A. Similar to what is seen when reducing the expression of PDE 3B, PDE 4B, PDE 4D, and PDE 7A, reducing the levels of PDE 2 increases the activity of the drug combination. The relatively modest effect on activity was likely due to the fact that the expression of the PDE targets was never knocked down 100% and that PDE activity is redundant (PDE 2, 3, 4 and 7 contributing to 10 cAMP regulation).

Table 46: Antiproliferative activity of HE-NECA and R-(-)-rolipram against human multiple myeloma cells (MM.1R) after transfection with control (non-targeting) siRNA.

HE-NECA (nM)	20	10	5	2.5	1.25	0
R-(-)-Rolipram (μM)	18	82	75	74	64	66
18	78	72	74	74	66	8.9
6.1	82	75	74	64	68	5.2
2	81	71	71	68	71	-2.4
0.68	78	72	68	66	65	3.5
0.23	72	66	66	40	49	7.6
0	57	51	41	41	43	2.2

15

Table 47: Antiproliferative activity of HE-NECA and R-(-)-rolipram against human multiple myeloma cells (MM.1R) after transfection with siRNA targeting PDE 2A.

HE-NECA (nM)	20	10	5	2.5	1.25	0
R-(-)-Rolipram (μM)	18	82	76	78	78	65
18	82	76	78	78	78	65
6.1	83	78	76	75	75	5.3
2	84	80	76	71	75	8.1
0.68	80	76	73	67	68	-1.2
0.23	72	74	68	46	58	3.8
0	68	55	51	48	36	-2.7

Example 7: Activity in other cell lines

The anti-proliferative activity of adenosine receptor agonists and PDE inhibitors was examined using the GA-10 (Burkitt's lymphoma) cell line. As with the multiple myeloma cell lines, synergy was observed when adenosine receptor agonists were used in combination with PDE inhibitors (Table 48).
 5 Similar results were obtained with the DLBCL cell lines OCI-ly10, Karpas 422, and SU-DHL6 (Table 49).

10 **Table 48: Summary of synergy scores for adenosine receptor agonists × PDE inhibitors in GA-10 cell line**

Adenosine receptor agonist (×) PDE inhibitor	GA-10
Chloro-IB-MECA × BAY 60-7550	1.42
CGS-21680 × BAY 60-7550	1.65
Chloro-IB-MECA × Roflumilast	0.56
IB-MECA × Roflumilast	0.95
CGS-21680 × Roflumilast	1.2

Table 49: Summary of synergy scores for adenosine receptor agonist CGS-21680 × PDE inhibitors in the diffuse large B-cell lymphoma cell lines OCI-ly10, Karpas 422, and SU-DHL6

15

	OCI-ly10	Karpas 422	SU-DHL6
CGS-21680 × Trequinsin	1.64	2.11	0.92
CGS-21680 × Roflumilast	3.32	3.38	0.93

20

As there are no cell lines available for the B cell cancer chronic lymphocytic leukemia (CLL), tumor cells were isolated from a patient with the disease, and cells cultured in the presence of the adenosine receptor agonist CGS-21680 and either the PDE inhibitor roflumilast (Table 50) or the PDE 2/3/4 inhibitor trequinsin (Table 51). Combination (more than additive) induction of apoptosis was observed with both the CGS-21680 × roflumilast and the CGS-21680 × trequinsin combinations.

Table 50: Induction of apoptosis of patient CLL cells by CGS-21680 and roflumilast

CGS-21680 (μM)	0.45	0.15	0.05	0
Roflumilast (μM)	0.45	0.15	0.05	0
0.27	46	45	43	32
0.09	38	40	36	26
0.03	34	35	31	17
0	25	15	12	5.9

Table 51: Induction of apoptosis of patient CLL cells by CGS-21680 and trequinsin

CGS-21680 (μM)	0.45	0.15	0.05	0
Trequinsin (μM)	0.45	0.15	0.05	0
2	33	23	20	19
0.67	35	13	13	9.9
0.22	18	11	9.7	8.9
0	27	16	16	12

Other Embodiments

All publications, patents, and patent applications mentioned in the above specification are hereby incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific desired embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the fields of medicine, immunology, pharmacology, endocrinology, or related fields are intended to be within the scope of the invention.

What is claimed is:

CLAIMS

1. A method of treating a B-cell proliferative disorder, said method comprising administering to a patient a combination of an A2A receptor agonist and a PDE inhibitor in amounts that together are effective to treat said B-cell proliferative disorder.
2. The method of claim 1, wherein said A2A receptor agonist is selected from the group consisting of the compounds listed in Tables 1 and 2.
3. The method of claim 1, wherein said PDE inhibitor is selected from the group consisting of the compounds listed in Tables 3 and 4.
4. The method of claim 1, wherein said PDE inhibitor is active against at least two of PDE 2, 3, 4, and 7.
5. The method of claim 1, wherein said combination comprises two or more PDE inhibitors that when combined are active against at least two of PDE 2, 3, 4, and 7.
6. The method of claim 1, wherein said B-cell proliferative disorder is selected from the group consisting of autoimmune lymphoproliferative disease, B-cell CLL, B-cell prolymphocyte leukemia, lymphoplasmacytic lymphoma, mantle cell lymphoma, follicular lymphoma, extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT type), nodal marginal zone lymphoma, splenic marginal zone lymphoma, hairy cell leukemia, plasmacytoma, diffuse large B-cell lymphoma, Burkitt lymphoma, multiple myeloma, indolent myeloma, smoldering myeloma, monoclonal gammopathy of unknown significance (MGUS), B-cell non-Hodgkin's lymphoma, small lymphocytic lymphoma, monoclonal immunoglobulin deposition diseases, heavy chain diseases, mediastinal

(thymic) large B-cell lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, precursor B-lymphoblastic leukemia/lymphoma, Hodgkin's lymphoma, nodular lymphocyte predominant Hodgkin's lymphoma, classical Hodgkin's lymphoma, nodular sclerosis Hodgkin's lymphoma, mixed cellularity Hodgkin's lymphoma, lymphocyte-rich classical Hodgkin's lymphoma, lymphocyte depleted Hodgkin's lymphoma, post-transplant lymphoproliferative disorder, and Waldenstrom's macroglobulinemia.

7. The method of claim 1, wherein said B-cell proliferative disorder is multiple myeloma.
8. The method of claim 1, wherein said A2A receptor agonist and PDE inhibitor are administered simultaneously.
9. The method of claim 1, wherein said A2A receptor agonist and PDE inhibitor are administered within 14 days of one another.
10. The method of claim 1, wherein said patient is not suffering from a comorbid immunoinflammatory disorder.
11. The method of claim 1, further comprising administering an antiproliferative compound.
12. The method of claim 11, wherein said antiproliferative compound is selected from the group consisting of alkylating agents, platinum agents, antimetabolites, topoisomerase inhibitors, antitumor antibiotics, antimitotic agents, aromatase inhibitors, thymidylate synthase inhibitors, DNA antagonists, farnesyltransferase inhibitors, pump inhibitors, histone acetyltransferase inhibitors, metalloproteinase inhibitors, ribonucleoside reductase inhibitors, TNF alpha agonists/antagonists,

endothelin A receptor antagonist, retinoic acid receptor agonists, immuno-modulators, hormonal and antihormonal agents, photodynamic agents, tyrosine kinase inhibitors, antisense compounds, corticosteroids, HSP90 inhibitors, proteosome inhibitors, CD40 inhibitors, anti-CSI antibodies, FGFR3 inhibitors, VEGF inhibitors, MEK inhibitors, cyclin D1 inhibitors, NF- κ B inhibitors, anthracyclines, histone deacetylases, kinesin inhibitors, phosphatase inhibitors, COX2 inhibitors, mTOR inhibitors, calcineurin antagonists, and IMiDs.

13. The method of claim 11, wherein said antiproliferative compound is selected from the compounds listed in Tables 5 and 6.
14. The method of claim 1, further comprising administering a combination of at least two antiproliferative compounds.
15. The method of claim 14, wherein said combination is selected from the group consisting of CHOP (cyclophosphamide, vincristine, doxorubicin, and prednisone), VAD (vincristine, doxorubicin, and dexamethasone), MP (melphalan and prednisone), DT (dexamethasone and thalidomide), DM (dexamethasone and melphalan), DR (dexamethasone and Revlimid), DV (dexamethasone and Velcade), RV (Revlimid and Velcade), and cyclophosphamide and etoposide.
16. The method of claim 1, further comprising administering IL-6, a compound that increases IL-6 expression, or an IL-6 receptor agonist to said patient.
17. The method of claim 1, wherein said PDE inhibitor is active against PDE 4.

18. A kit comprising (i) a PDE inhibitor and (ii) an A2A receptor agonist in an amount effective to treat a B-cell proliferative disorder.
19. A kit comprising (i) an A2A receptor agonist and (ii) a PDE inhibitor having activity against at least two of PDE 2, 3, 4, and 7.
20. A kit comprising (i) an A2A receptor agonist and (ii) two or more PDE inhibitors that when combined have activity against at least two of PDE 2, 3, 4, and 7.
21. A kit comprising (i) an A2A receptor agonist, (ii) a PDE inhibitor, and (iii) an antiproliferative compound.
22. The kit of claim 18-20, further comprising an antiproliferative compound.
23. The kit of claim 21-22, wherein said antiproliferative compound is selected from the group consisting of alkylating agents, platinum agents, antimetabolites, topoisomerase inhibitors, antitumor antibiotics, antimitotic agents, aromatase inhibitors, thymidylate synthase inhibitors, DNA antagonists, farnesyltransferase inhibitors, pump inhibitors, histone acetyltransferase inhibitors, metalloproteinase inhibitors, ribonucleoside reductase inhibitors, TNF alpha agonists/antagonists, endothelin A receptor antagonist, retinoic acid receptor agonists, immuno-modulators, hormonal and antihormonal agents, photodynamic agents, tyrosine kinase inhibitors, antisense compounds, corticosteroids, HSP90 inhibitors, proteosome inhibitors, CD40 inhibitors, anti-CSI antibodies, FGFR3 inhibitors, VEGF inhibitors, MEK inhibitors, cyclin D1 inhibitors, NF- κ B inhibitors, anthracyclines, histone deacetylases, kinesin inhibitors, phosphatase inhibitors, COX2 inhibitors, mTOR inhibitors, calcineurin antagonists, and IMiDs.

24. The kit of claims 21-22, further comprising at least a second antiproliferative compound in a combination with said antiproliferative compound.
25. The kit of claim 24, wherein said combination is selected from the group consisting of CHOP (cyclophosphamide, vincristine, doxorubicin, and prednisone), VAD (vincristine, doxorubicin, and dexamethasone), MP (melphalan and prednisone), DT (dexamethasone and thalidomide), DM (dexamethasone and melphalan), DR (dexamethasone and Revlimid), DV (dexamethasone and Velcade), RV (Revlimid and Velcade), and cyclophosphamide and etoposide.
26. A pharmaceutical composition comprising (i) a PDE inhibitor and (ii) an A2A receptor agonist in an amount effective to treat a B-cell proliferative disorder and (iii) a pharmaceutically acceptable carrier.
27. A pharmaceutical composition comprising (i) an A2A receptor agonist and (ii) a PDE inhibitor having activity against at least two of PDE 2, 3, 4, and 7 and (iii) a pharmaceutically acceptable carrier.
28. A pharmaceutical composition comprising (i) an A2A receptor agonist and (ii) two or more PDE inhibitors that when combined have activity against at least two of PDE 2, 3, 4, and 7 and (iii) a pharmaceutically acceptable carrier.
29. A kit comprising:
 - (i) a composition comprising an A2A receptor agonist and a PDE inhibitor; and
 - (ii) instructions for administering said composition to a patient for the treatment of a B-cell proliferative disorder.

30. A kit comprising:

- (i) an A2A receptor agonist; and
- (ii) instructions for administering said A2A receptor agonist with a PDE inhibitor to a patient for the treatment of a B-cell proliferative disorder.

31. A kit comprising:

- (i) a PDE inhibitor; and
- (ii) instructions for administering said PDE inhibitor with an A2A receptor agonist to a patient for the treatment of a B-cell proliferative disorder.

32. A kit comprising:

- (i) a PDE inhibitor;
- (ii) an A2A receptor agonist; and
- (iii) instructions for administering said PDE inhibitor and said A2A receptor agonist to a patient for the treatment of a B-cell proliferative disorder.

33. The kit of any of claims 29-32, wherein said PDE inhibitor has activity against at least two of PDE 2, 3, 4, and 7.

34. A kit comprising:

- (i) two or more PDE inhibitors that when combined have activity against at least two of PDE 2, 3, 4, and 7;
- (ii) an A2A receptor agonist; and
- (iii) instructions for administering said two or more PDE inhibitors and said A2A receptor agonist to a patient for the treatment of a B-cell proliferative disorder.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 08/08764

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A01N 43/04 (2008.04)

USPC - 514/46; 514/252.16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

USPC: 514/46; 514/252.16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

IPC(8): A61K 31/70; A61K 31/497

USPC: 514/46; 514/252.16

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST (PGPB,USPT,USOC,EPAB,JPAB)

Google (Patents, Scholar, and Web)

Search Terms Used: for b-cell a2a adenosine agonist "multiple myeloma" phosphodiesterase anti-proliferative kit

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2006/0257407 A1 (CHEN et al.) 16 November 2006 (16.11.2006), entire document, especially: para [0141], [0147], [0149], [0172], [0183], [0187], [0198], [0206]	1-21, 26-34
Y	US 7,214,665 B2 (LINDEN et al.) 8 May 2007 (08.05.2007), col. 7, ln 26-35; Table 8	1-21, 26-34

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

2 October 2008 (02.10.2008)

Date of mailing of the international search report

10 OCT 2008

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 08/08764

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 22-25 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.