

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2659356 C 2014/07/08

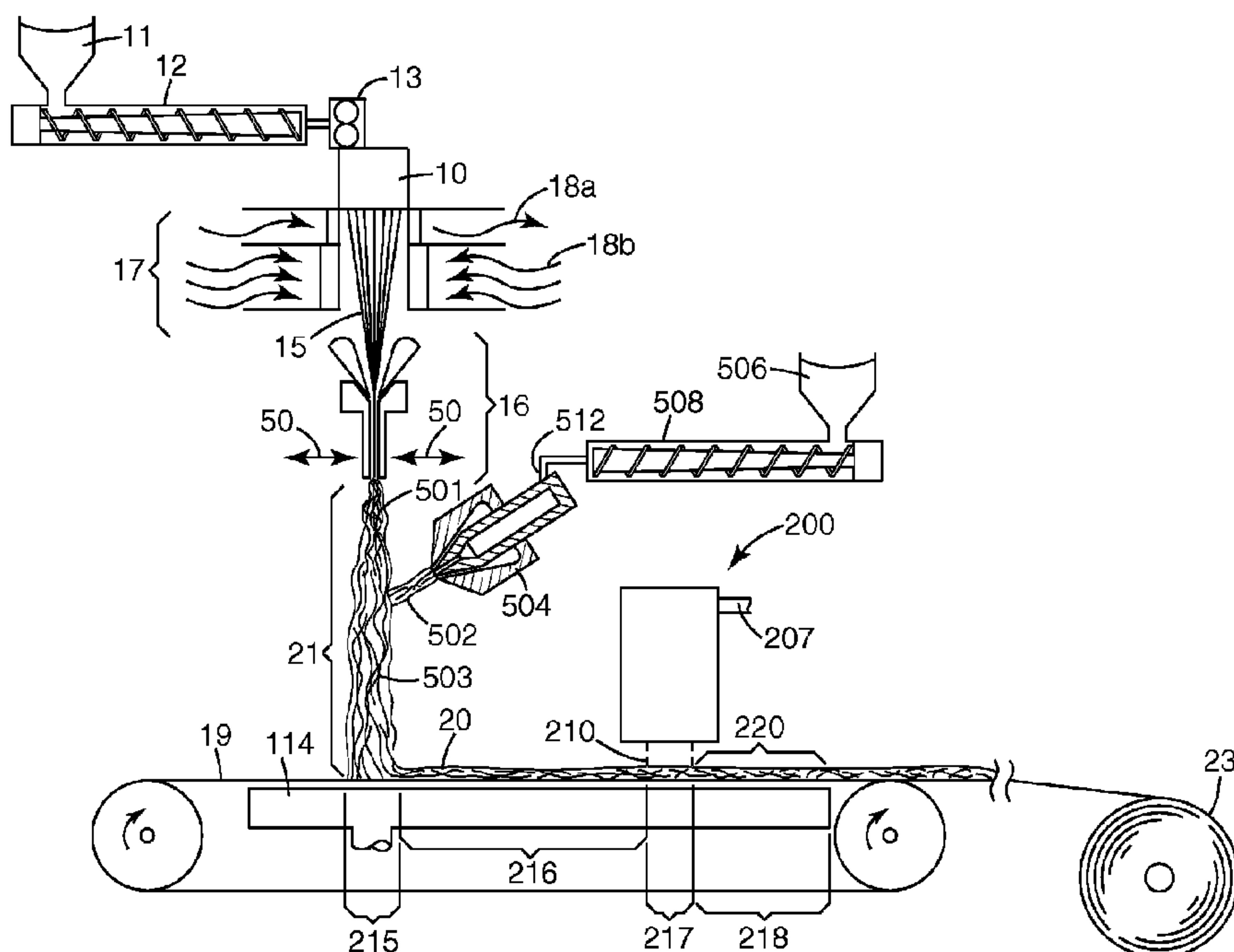
(11)(21) **2 659 356**

(12) **BREVET CANADIEN
CANADIAN PATENT**

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2007/07/19
(87) Date publication PCT/PCT Publication Date: 2008/02/07
(45) Date de délivrance/Issue Date: 2014/07/08
(85) Entrée phase nationale/National Entry: 2009/01/29
(86) N° demande PCT/PCT Application No.: US 2007/073885
(87) N° publication PCT/PCT Publication No.: 2008/016790
(30) Priorité/Priority: 2006/07/31 (US11/461,307)

(51) Cl.Int./Int.Cl. *B01D 39/00* (2006.01)


(72) **Inventeurs/Inventors:**
FOX, ANDREW R., US;
STELTER, JOHN D., US;
ANGADJIVAND, SEYED A., US;
LINDQUIST, TIMOTHY J., US;
BRANDNER, JOHN M., US;
SPRINGETT, JAMES E., US

(73) **Propriétaire/Owner:**
3M INNOVATIVE PROPERTIES COMPANY, US

(74) **Agent:** SMART & BIGGAR

(54) Titre : FILTRE ACCORDEON A SUPPORT MONOCOMPOSANTE MONOCOUCHE BIMODAL

(54) Title: PLEATED FILTER WITH BIMODAL MONOLAYER MONOCOMPONENT MEDIA

(57) **Abrégé/Abstract:**

A pleated filter is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition. Rows of pleats are formed in the nonwoven web, and the pleated web is cut to a desired size and shape to provide a filter element containing a self-supporting porous monocomponent monolayer matrix of fibers bonded to one another at at least some points of fiber intersection and having an average initial submicron efficiency of at least 15 % at a 1.52 meters/sec face velocity. The filter element is deformation resistant without requiring stiffening layers, bicomponent fibers or other reinforcing measures in the filter media layer.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
7 February 2008 (07.02.2008)

PCT

(10) International Publication Number
WO 2008/016790 A1(51) International Patent Classification:
B01D 39/00 (2006.01)

(US). SPRINGETT, James E.; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(21) International Application Number:
PCT/US2007/073885

(74) Agents: WOOD, Kenneth B. et al.; 3M Center, Office of Intellectual Property Counsel, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

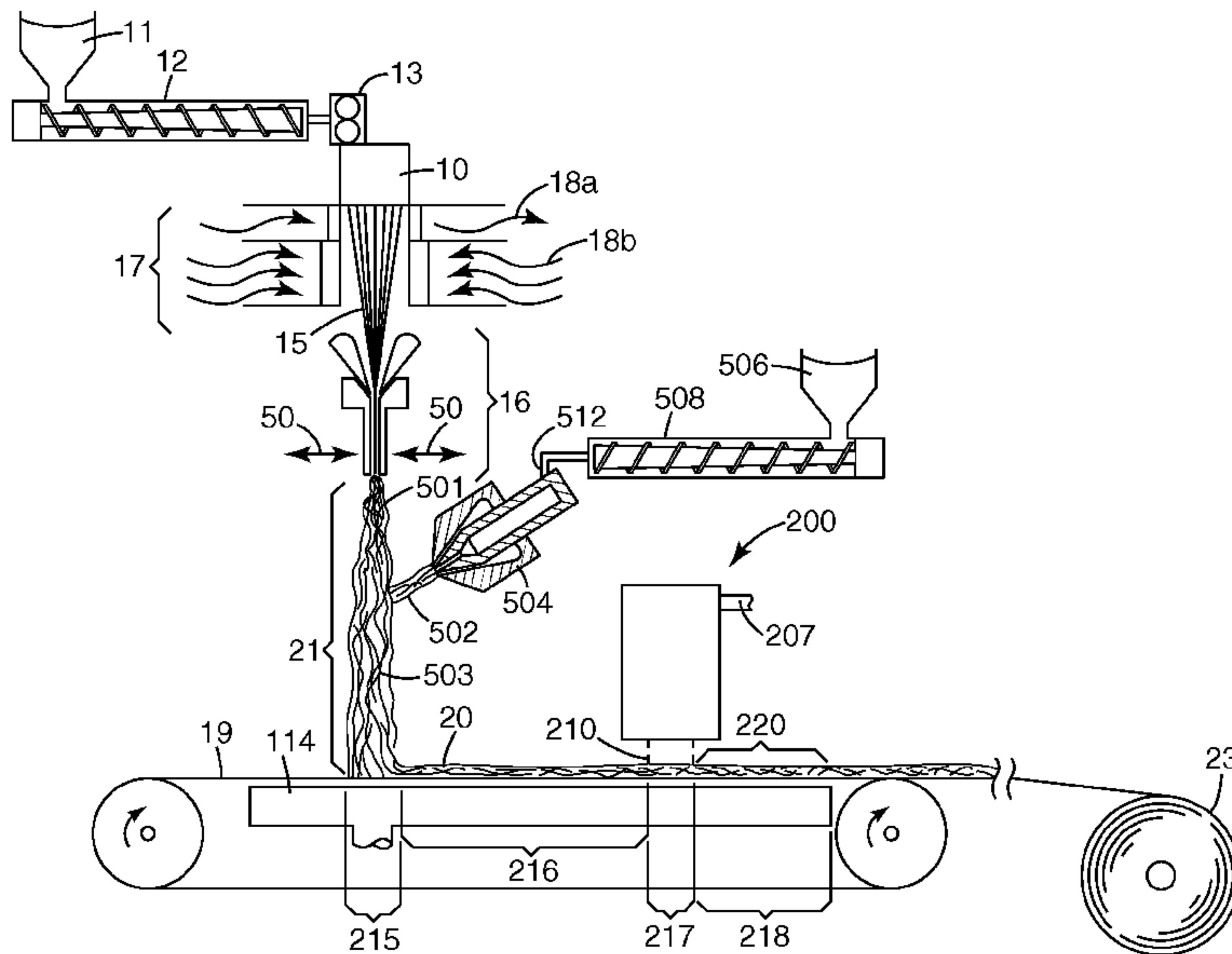
(22) International Filing Date: 19 July 2007 (19.07.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
11/461,307 31 July 2006 (31.07.2006) US

(71) Applicant: 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).


(72) Inventors: FOX, Andrew R.; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US). STELTER, John D.; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US). ANGADJIVAND, Seyed A.; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US). LINDQUIST, Timothy J.; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US). BRANDNER, John M.; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PLEATED FILTER WITH BIMODAL MONOLAYER MONOCOMPONENT MEDIA

WO 2008/016790 A1

(57) Abstract: A pleated filter is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition. Rows of pleats are formed in the nonwoven web, and the pleated web is cut to a desired size and shape to provide a filter element containing a self-supporting porous monocomponent monolayer matrix of fibers bonded to one another at at least some points of fiber intersection and having an average initial submicron efficiency of at least 15 % at a 1.52 meters/sec face velocity. The filter element is deformation resistant without requiring stiffening layers, bicomponent fibers or other reinforcing measures in the filter media layer.

WO 2008/016790 A1

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

PLEATED FILTER WITH BIMODAL MONOLAYER MONOCOMPONENT MEDIA

[0001] This invention relates to pleated filters.

Background

[0002] Meltblown nonwoven fibrous webs are used for a variety of purposes including filtration (e.g., flat web and pleated filters), insulation, padding and textile substitutes. Patents or applications relating to nonwoven webs or their manufacture include U.S. Patent Nos. 3,981,650 (Page), 4,100,324 (Anderson), 4,118,531 (Hauser), 4,818,464 (Lau), 4,931,355 (Radwanski et al.), 4,988,560 (Meyer et al.), 5,227,107 (Dickenson et al.), 5,273,565 (Milligan et al.), 5,382,400 (Pike et al. '400), 5,679,042 (Varona), 5,679,379 (Fabbricante et al.), 5,695,376 (Datta et al.), 5,707,468 (Arnold et al.), 5,721,180 (Pike et al. '180), 5,877,098 (Tanaka et al.), 5,902,540 (Kwok), 5,904,298 (Kwok et al.), 5,993,543 (Bodaghi et al.), 6,176,955 B1 (Haynes et al.), 6,183,670 B1 (Torobin et al.), 6,230,901 B1 (Ogata et al.), 6,319,865 B1 (Mikami), 6,607,624 B2 (Berrigan et al. '624), 6,667,254 B1 (Thompson et al.), 6,858,297 B1 (Shah et al.) and 6,916,752 B2 (Berrigan et al. '752); European Patent No. EP 0 322 136 B1 (Minnesota Mining and Manufacturing Co.); Japanese published application Nos. JP 2001-049560 (Nissan Motor Co. Ltd.), JP 2002-180331 (Chisso Corp. '331) and JP 2002-348737 (Chisso Corp. '737); and U.S. Patent Application Publication No. US2004/0097155 A1 (Olson et al.). Patents or applications relating to pleated filters include U.S. Patent Nos. 4,547,950 (Thompson), 5,240,479 (Bachinski), 5,709,735 (Midkiff et al.), 5,820,645 (Murphy, Jr.), 6,165,244 (Choi), 6,521,011 B1 (Sundet et al. '011), 6,740,137 B2 (Kubokawa et al.) and D449,100 S (Sundet et al. '100), and U. S. Patent Application Publication Nos. US 2003/0089090 A1 (Sundet et al. '090), US 2003/0089091 A1 (Sundet et al. '091) and US2005/0217226 A1 (Sundet et al. '226).

Summary of the Invention

[0003] Existing methods for manufacturing pleated filters generally involve some compromise of web or filter properties. For example, when a high efficiency filter containing electret charged fibers is desired, one approach is to form a multilayer filter which employs an electrostatically charged meltblown web as the primary filtration media. Meltblown fibers typically are either unoriented or weakly oriented molecularly, and they typically are insufficiently stiff and strong to provide by themselves a single layer filter media having both high efficiency and adequate strength. Inadequate strength may be manifested, for example, by damage during converting, or by pleat deformation or pleat collapse during use at high fluid flow conditions. One or more additional layers may be added to the filter media to protect the filter media and stiffen the overall filter construction. Additional layers which may be employed in such a multilayer filter include staple fiber webs, meltspun webs, scrims (e.g., fiberglass or chopped fiber mats) and wire mesh. Manufacturing a multilayer filter introduces additional cost and complexity to the filter product. A support layer can increase pressure drop without contributing to efficiency. Use of multiple layers can make it difficult or impractical to recycle waste or used filters.

[0004] Single-layer pleated filters products have been used in some applications. For example, residential furnace filters have been made from a single layer of ACCUAIR™ bi-component meltspun media from Kimberley Clark. ACCUAIR media is insufficiently stiff for use as a single layer pleated HVAC filter intended to be subjected to the typical flow rates or pressures that may arise in commercial or industrial applications. The above-mentioned Sundet et al. '226 application describes pleated furnace filters made from a single layer of meltblown fibers (e.g., polypropylene, polyester or nylon fibers), a majority of which were aligned at $90^\circ \pm 20^\circ$ with respect to the pleat row direction. Fiberglass filtration media has also been employed as a single layer pleated filter, but fiberglass is uncharged, may have a high pressure drop, sheds glass fibers, and may be difficult to form into some shapes.

[0005] We have now found monocomponent, monolayer webs which can be formed into pleated filters having a useful combination of pleat formability, stiffness when pleated, low pressure drop and efficient particulate capture.

60557-8003

[0006] The invention provides in one aspect a process for making a pleated filter comprising:

- a) forming a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition, the web having a Gurley Stiffness of at least 100 mg,
- b) forming rows of pleats in the nonwoven web, and
- c) cutting the pleated web to a desired size and shape to form a pleated filter element comprising a self-supporting porous monocomponent monolayer matrix of fibers bonded to one another at at least some points of fiber intersection and having an average initial submicron efficiency of at least 15 % at a 1.52 meters/sec face velocity.

[0006a] In an embodiment, the monolayer matrix comprises a generally uniform distribution of fiber sizes throughout a cross-section of the monolayer matrix.

[0007] The invention provides in another aspect a pleated filter comprising a self-supporting porous monocomponent monolayer matrix containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition, the fibers being bonded to one another at at least some points of fiber intersection and the matrix forming rows of folded or corrugated pleats and having an average initial submicron efficiency of at least 15 % at a 1.52 meters/sec face velocity. In an embodiment, the monolayer matrix comprises a generally uniform distribution of fiber sizes throughout a cross-section of the monolayer matrix.

[0008] The disclosed pleated filters have a number of beneficial and unique properties. For example, a finished pleated filter may be prepared consisting only of a single layer, but comprising a mixture of larger and smaller size fibers, with broadened filtration capability and increased fiber surface area. Such pleated filters offer important efficiencies - product

60557-8003

complexity and waste are reduced by eliminating laminating processes and equipment and by reducing the number of intermediate materials. By using direct- web-formation manufacturing equipment, in which a fiber-forming polymeric material is converted into a web in one essentially direct operation, the disclosed webs and matrices can be quite economically prepared. Also, if the matrix fibers all have the same polymeric composition and extraneous bonding materials are not employed, the matrix can be fully recycled.

[0009] By including microfibers of very small size in some of the disclosed embodiments, the disclosed webs and matrices are given an increased fiber surface area, with such beneficial effects as improved filtration performance. By using larger and smaller size fibers, filtration and pleating properties can be tailored to a particular use. And in contrast to the high pressure drop often characteristic of microfiber webs, pressure drops of the disclosed microfiber-containing web embodiments and matrices are kept lower, because the larger fibers physically separate and space apart the microfibers.

[0010] These and other aspects of the invention will be apparent from the detailed description below. In no event, however, should the above summaries be construed as limitations on the claimed subject matter, which subject matter is defined solely by the attached claims, as may be amended during prosecution.

Brief Description of the Drawing

[0011] **Fig. 1** is a perspective view of pleated filtration media;

[0012] **Fig. 2** through **Fig. 4** are schematic side views and **Fig. 5** is a schematic perspective view, partially in section, of an exemplary process for making a monocomponent monolayer web using meltspinning and separately prepared smaller size fibers of the same polymeric composition;

[0013] **Fig. 6** is a schematic side view of an exemplary process for making a pleatable monocomponent monolayer web using meltblowing of larger fibers and separately prepared smaller size fibers of the same polymeric composition;

[0014] **Fig. 7** is an outlet end view of an exemplary meltspinning die spinneret having a plurality of larger and smaller orifices;

[0015] **Fig. 8** is an outlet end perspective view of an exemplary meltblowing die having a plurality of larger and smaller orifices;

[0016] **Fig. 9** is an exploded schematic view of an exemplary meltspinning die having a plurality of orifices supplied with polymers of the same polymeric composition flowing at different rates or with different viscosities;

[0017] **Fig. 10** is a cross-sectional view and **Fig. 11** is an outlet end view of an exemplary meltblowing die having a plurality of orifices supplied with polymers of the same polymeric composition flowing at different rates or with different viscosities;

[0018] **Fig. 12a** and **Fig. 12b** are histograms of mass fraction vs. fiber size in μm , and **Fig. 13** is a histogram of fiber count (frequency) vs. fiber size in μm , for the web of Examples 1-7;

[0019] **Fig. 14a** and **Fig. 14b** are histograms vs. fiber size in μm for the web of Example 2; and

[0020] **Fig. 15**, **Fig. 16** and **Fig. 18** are histograms of mass fraction vs. fiber size in μm , and **Fig. 17** and **Fig. 19** are histograms of fiber count (frequency) vs. fiber size in μm , for a series of webs of Example 5.

[0021] Like reference symbols in the various figures of the drawing indicate like elements. The elements in the drawing are not to scale.

Detailed Description

[0022] The term “porous” means air-permeable.

[0023] The term “monocomponent” when used with respect to a fiber or collection of fibers means fibers having essentially the same composition across their cross-section; monocomponent includes blends (viz., polymer alloys) or additive-containing materials, in which a continuous phase of uniform composition extends across the cross-section and over the length of the fiber.

[0024] The term “of the same polymeric composition” means polymers that have essentially the same repeating molecular unit, but which may differ in molecular weight, melt index, method of manufacture, commercial form, etc.

[0025] The term “size” when used with respect to a fiber means the fiber diameter for a fiber having a circular cross section, or the length of the longest cross-sectional chord that may be constructed across a fiber having a non-circular cross-section.

[0026] The term “continuous” when used with respect to a fiber or collection of fibers means fibers having an essentially infinite aspect ratio (viz., a ratio of length to size of e.g., at least about 10,000 or more).

[0027] The term “Effective Fiber Diameter” when used with respect to a collection of fibers means the value determined according to the method set forth in Davies, C. N., “The Separation of Airborne Dust and Particles”, Institution of Mechanical Engineers, London,

Proceedings 1B, 1952 for a web of fibers of any cross-sectional shape be it circular or non-circular.

[0028] The term “mode” when used with respect to a histogram of mass fraction vs. fiber size in μm or a histogram of fiber count (frequency) vs. fiber size in μm means a local peak whose height is larger than that for fiber sizes 1 and 2 μm smaller and 1 and 2 μm larger than the local peak.

[0029] The term “bimodal mass fraction/fiber size mixture” means a collection of fibers having a histogram of mass fraction vs. fiber size in μm exhibiting at least two modes. A bimodal mass fraction/fiber size mixture may include more than two modes, for example it may be a trimodal or higher-modal mass fraction/fiber size mixture.

[0030] The term “bimodal fiber count/fiber size mixture” means a collection of fibers having a histogram of fiber count (frequency) vs. fiber size in μm exhibiting at least two modes whose corresponding fiber sizes differ by at least 50% of the smaller fiber size. A bimodal fiber count/fiber size mixture may include more than two modes, for example it may be a trimodal or higher-modal fiber count/fiber size mixture.

[0031] The term “bonding” when used with respect to a fiber or collection of fibers means adhering together firmly; bonded fibers generally do not separate when a web is subjected to normal handling.

[0032] The term “nonwoven web” means a fibrous web characterized by entanglement or point bonding of the fibers.

[0033] The term “monolayer matrix” when used with respect to a nonwoven web containing a bimodal mass fraction/fiber size mixture of fibers means having (other than with respect to fiber size) a generally uniform distribution of similar fibers throughout a cross-section of the web, and having (with respect to fiber size) fibers representing each modal population present throughout a cross-section of the web. Such a monolayer matrix may have a generally uniform distribution of fiber sizes throughout a cross-section of the web or may, for example, have a depth gradient of fiber sizes such as a preponderance of larger size fibers proximate one major face of the web and a preponderance of smaller size fibers proximate the other major face of the web.

[0034] The term “attenuating the filaments into fibers” means the conversion of a segment of a filament into a segment of greater length and smaller size.

[0035] The term “meltspun” when used with respect to a nonwoven web means a web formed by extruding a low viscosity melt through a plurality of orifices to form filaments, quenching the filaments with air or other fluid to solidify at least the surfaces of the filaments, contacting the at least partially solidified filaments with air or other fluid to attenuate the filaments into fibers and collecting a layer of the attenuated fibers.

[0036] The term “meltspun fibers” means fibers issuing from a die and traveling through a processing station in which the fibers are permanently drawn and polymer molecules within the fibers are permanently oriented into alignment with the longitudinal axis of the fibers. Such fibers are essentially continuous and are entangled sufficiently that it is usually not possible to remove one complete meltspun fiber from a mass of such fibers.

[0037] The term “oriented” when used with respect to a polymeric fiber or collection of such fibers means that at least portions of the polymeric molecules of the fibers are aligned lengthwise of the fibers as a result of passage of the fibers through equipment such as an attenuation chamber or mechanical drawing machine. The presence of orientation in fibers can be detected by various means including birefringence measurements and wide-angle x-ray diffraction.

[0038] The term “Nominal Melting Point” means the peak maximum of a second-heat, total-heat-flow differential scanning calorimetry (DSC) plot in the melting region of a polymer if there is only one maximum in that region; and, if there is more than one maximum indicating more than one melting point (e.g., because of the presence of two distinct crystalline phases), as the temperature at which the highest-amplitude melting peak occurs.

[0039] The term “meltblown” when used with respect to a nonwoven web means a web formed by extruding a fiber-forming material through a plurality of orifices to form filaments while contacting the filaments with air or other attenuating fluid to attenuate the filaments into fibers and thereafter collecting a layer of the attenuated fibers.

[0040] The term “meltblown fibers” means fibers prepared by extruding molten fiber-forming material through orifices in a die into a high-velocity gaseous stream, where the extruded material is first attenuated and then solidifies as a mass of fibers. Although meltblown fibers have sometimes been reported to be discontinuous, the fibers generally

are long and entangled sufficiently that it is usually not possible to remove one complete meltblown fiber from a mass of such fibers or to trace one meltblown fiber from beginning to end.

[0041] The term “microfibers” means fibers having a median size (as determined using microscopy) of 10 μm or less; “ultrafine microfibers” means microfibers having a median size of two μm or less; and “submicron microfibers” means microfibers having a median size one μm or less. When reference is made herein to a batch, group, array, etc. of a particular kind of microfiber, e.g., “an array of submicron microfibers,” it means the complete population of microfibers in that array, or the complete population of a single batch of microfibers, and not only that portion of the array or batch that is of submicron dimensions.

[0042] The term “separately prepared smaller size fibers” means a stream of smaller size fibers produced from a fiber-forming apparatus (e.g., a die) positioned such that the stream is initially spatially separate (e.g., over a distance of about 1 inch (25 mm) or more from, but will merge in flight and disperse into, a stream of larger size fibers.

[0043] The term “charged” when used with respect to a collection of fibers means fibers that exhibit at least a 50% loss in Quality Factor **QF** (discussed below) after being exposed to a 20 Gray absorbed dose of 1 mm beryllium-filtered 80 KVp X-rays when evaluated for percent dioctyl phthalate (% DOP) penetration at a face velocity of 7 cm/sec.

[0044] The term “self-supporting” when used with respect to a monolayer matrix means that the matrix does not include a contiguous reinforcing layer of wire, mesh, or other stiffening material even if a pleated filter element containing such matrix may include tip stabilization (e.g., a planar wire face layer) or perimeter reinforcement (e.g., an edge adhesive or a filter frame) to strengthen selected portions of the filter element.

[0045] **Fig. 1** shows in perspective view an exemplary pleated filter **1** made from the disclosed monocomponent monolayer web **2** which has been formed into rows of spaced pleats **4**. Persons having ordinary skill in the art will appreciate that filter **1** may be used as is or that selected portions of filter **1** may be stabilized or reinforced (e.g., with a planar expanded metal face layer, reinforcing lines of hot-melt adhesive, adhesively-bonded reinforcing bars or other selective reinforcing support) and optionally mounted in a

suitable frame (e.g., a metal or cardboard frame) to provide a replaceable filter for use in e.g., HVAC systems. Pleated web **2** forms a porous monolayer matrix which taken by itself has enhanced stiffness that assists in forming the pleats **4**, and after pleating assists the pleats **4** in resisting deformation at high filter face velocities. Aside from the monocomponent monolayer web **2**, further details regarding the construction of filter **1** will be familiar to those skilled in the art.

[0046] The disclosed monocomponent monolayer web has a Gurley Stiffness before pleating of at least about 100 mg, and may have a Gurley Stiffness before pleating of at least about 200 mg, at least about 300 mg, at least about 400 mg, at least about 600 mg or at least about 1000 mg. When evaluated at a 13.8 cm/sec face velocity and using a DOP challenge, the flat web preferably has an initial filtration quality factor **QF** of at least about 0.3, and more preferably at least about 0.4. After pleating, the disclosed monocomponent monolayer matrix has an average initial sub-micron efficiency of at least about 15% at a 1.52 meters/sec (300 ft/min) face velocity, and may have an average initial sub-micron efficiency of at least about 25 % or at least about 50%. The pleated filter preferably has a pressure drop less than 20 mm H₂O and more preferably less than 10 mm H₂O; and preferably has a % DOP penetration less than about 5%, and more preferably less than about 1%.

[0047] The disclosed monocomponent monolayer web contains a bimodal mass fraction/fiber size mixture of larger size and smaller size fibers. The larger size fibers may for example have a size range of about 10 to about 60 μm , about 10 to about 50 μm or about 20 to about 50 μm . The smaller size fibers may for example have a size range of about 0.1 to about 20 μm , about 0.10 to about 10 μm , about 0.1 to about 5 μm or about 0.1 to about 1 μm . A histogram of mass fraction vs. fiber size in μm may for example have a smaller size mode of about 0.1 to about 20 μm , about 0.1 to about 15 μm , about 0.1 to about 10 μm , about 0.5 to about 8 μm or about 1 to about 5 μm , and a larger size fiber mode of greater than about 10 μm (or more if the smaller size fibers have a mode more than 10 μm), about 10 to about 50 μm , about 10 to about 40 μm or about 12 to about 30 μm . The disclosed web may also have a bimodal fiber count/fiber size mixture whose histogram of fiber count (frequency) vs. fiber size in μm exhibits at least two modes whose corresponding fiber sizes differ by at least 50%, at least 100%, or at least 200% of

60557-8003

the smaller fiber size. The smaller size fibers may also for example provide at least 20% of the fibrous surface area of the web, at least 40% or at least 60%. The web may have a variety of Effective Fiber Diameter (EFD) values, for example an EFD of about 5 to about 40 μm , or of about 6 to about 35 μm . The web may also have a variety of basis weights, for example a

5 basis weight of about 60 to about 300 grams/m² or about 80 to about 250 grams/m².

[0048] **Fig. 2** through **Fig. 9** illustrate a variety of processes and equipment which may be used to make preferred monocomponent monolayer webs. The process shown in **Fig. 2**

through **Fig. 5** combines larger size meltspun fibers from a meltspinning die and smaller size meltblown fibers from a meltblowing die. The process shown in **Fig. 6** combines larger size

10 and smaller size meltblown fibers from two meltblowing dies. The die shown in **Fig. 7**

produces larger size and smaller size meltspun fibers from a single meltspinning die which may be supplied with liquefied fiber-forming material from a single extruder. The die shown

in **Fig. 8** produces larger size and smaller size meltblown fibers from a single meltblowing die which may be supplied with liquefied fiber-forming material from a single extruder. The die

15 shown in **Fig. 9** produces larger size and smaller size meltspun fibers from a single

meltspinning die which may be supplied with liquefied fiber-forming material from two extruders. The die shown in **Fig. 10** and **Fig. 11** produces larger size and smaller size

meltblown fibers from a single meltblowing die which may be supplied with liquefied fiber-forming material from two extruders.

20 [0049] Referring to **Fig. 2**, a process is shown in schematic side view for making a pleatable monocomponent monolayer bimodal mass fraction/fiber size web using

meltspinning to form larger size fibers and meltblowing to form separately prepared smaller size fibers (e.g., microfibers) of the same polymeric composition. Further details regarding this process and the nonwoven webs so made are shown in U.S. Patent Application Serial

25 No. 11/461,192, filed even date herewith, published on January 31, 2008 as US 2008/0026661 A1 and entitled "FIBROUS WEB COMPRISING MICROFIBERS DISPERSED AMONG BONDED MELTSPUN FIBERS". In the apparatus shown in **Fig. 2**, a fiber-forming material

60557-8003

is brought to a meltspinning extrusion head **10** -- in this illustrative apparatus, by introducing a polymeric fiber-forming material into a hopper **11**, melting the material in an extruder **12**, and

10a

pumping the molten material into the extrusion head **10** through a pump **13**. Solid polymeric material in pellet or other particulate form is most commonly used and melted to a liquid, pumpable state.

[0050] The extrusion head **10** may be a conventional spinnerette or spin pack, generally including multiple orifices arranged in a regular pattern, e.g., straight-line rows. Filaments **15** of fiber-forming liquid are extruded from extrusion head **10** and conveyed to a processing chamber or attenuator **16**. The attenuator may for example be a movable-wall attenuator like that shown in U.S. Patent No. 6,607,624 B2 (Berrigan et al.) whose walls are mounted for free and easy movement in the direction of the arrows **50**. The distance **17** the extruded filaments **15** travel before reaching the attenuator **16** can vary, as can the conditions to which they are exposed. Quenching streams of air or other gas **18** may be presented to the extruded filaments to reduce the temperature of the extruded filaments **15**. Alternatively, the streams of air or other gas may be heated to facilitate drawing of the fibers. There may be one or more streams of air or other fluid -- e.g., a first air stream **18a** blown transversely to the filament stream, which may remove undesired gaseous materials or fumes released during extrusion; and a second quenching air stream **18b** that achieves a major desired temperature reduction. Even more quenching streams may be used; for example, the stream **18b** could itself include more than one stream to achieve a desired level of quenching. Depending on the process being used or the form of finished product desired, the quenching air may be sufficient to solidify the extruded filaments **15** before they reach the attenuator **16**. In other cases the extruded filaments are still in a softened or molten condition when they enter the attenuator. Alternatively, no quenching streams are used; in such a case ambient air or other fluid between the extrusion head **10** and the attenuator **16** may be a medium for any change in the extruded filaments before they enter the attenuator.

[0051] The continuous meltspun filaments **15** are oriented in attenuator **16** which are directed toward collector **19** as a stream **501** of larger size fibers (that is, larger in relation to the smaller size meltspun fibers that will be added to the web; the fibers in attenuated stream **501** are smaller in size than the filaments extruded from extrusion head **10**). On its course between attenuator **16** and collector **19**, the attenuated larger size fiber stream **501** is intercepted by a stream **502** of meltblown smaller size fibers emanating from

meltblowing die **504** to form a merged bimodal mass fraction/fiber size stream **503** of larger and smaller size fibers. The merged stream becomes deposited on collector **19** as a self-supporting web **20** containing oriented continuous meltspun larger size fibers with meltblown smaller size fibers dispersed therein. The collector **19** is generally porous and a gas-withdrawal device **114** can be positioned below the collector to assist deposition of fibers onto the collector. The distance **21** between the attenuator exit and the collector may be varied to obtain different effects. Also, prior to collection, the extruded filaments or fibers may be subjected to a number of additional processing steps not illustrated in **Fig. 2**, e.g., further drawing, spraying, etc. After collection the collected mass **20** may be heated and quenched as described in more detail below; conveyed to other apparatus such as calenders, embossing stations, laminators, cutters and the like; or it may merely be wound without further treatment or converting into a storage roll **23**.

[0052] The meltblowing die **504** can be of known structure and operated in known ways to produce meltblown smaller size fibers (e.g., microfibers) for use in the disclosed process. An early description of the basic meltblowing method and apparatus is found in Wente, Van A. "Superfine Thermoplastic Fibers," in Industrial Engineering Chemistry, Vol. 48, pages 1342 et seq. (1956), or in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled "Manufacture of Superfine Organic Fibers" by Wente, V. A.; Boone, C. D.; and Fluharty, E. L. The typical meltblowing apparatus includes a hopper **506** and extruder **508** supplying liquefied fiber-forming material to die **504**. Referring to **Fig. 3**, die **504** includes an inlet **512** and die cavity **514** through which liquefied fiber-forming material is delivered to die orifices **516** arranged in line across the forward end of the die and through which the fiber-forming material is extruded; and cooperating gas orifices **518** through which a gas, typically heated air, is forced at very high velocity. The high-velocity gaseous stream draws out and attenuates the extruded fiber-forming material, whereupon the fiber-forming material solidifies (to varying degrees of solidity) and forms a stream **502** of meltblown smaller size fibers during travel to its point of merger with the meltspun larger size fiber stream **501**.

[0053] Methods for meltblowing fibers of very small size including submicron sizes are known; see, for example, U.S. Patent No. 5,993,943 (Bodaghi et al.), e.g., at column 8, line 11 through column 9, line 25. Other techniques to form smaller size fibers can also be

used, for example, as described in U.S. Patent Nos. 6,743,273 B2 (Chung et al.) and 6,800,226 B1 (Gerking).

[0054] The meltblowing die **504** is preferably positioned near the stream **501** of meltspun larger size fibers to best achieve capture of the meltblown smaller size fibers by the meltspun larger size fibers; close placement of the meltblowing die to the meltspun stream is especially important for capture of submicron microfibers. For example, as shown in **Fig. 3** the distance **520** from the exit of the die **504** to the centerline of the meltspun stream **501** is preferably about 2 to 12 in. (5 to 25 cm) and more preferably about 6 or 8 in. (15 or 20 cm) or less for very small microfibers. Also, when the stream **501** of meltspun fibers is disposed vertically as shown in **Fig. 3**, the stream **502** of meltblown smaller size fibers is preferably disposed at an acute angle θ with respect to the horizontal, so that a vector of the meltblown stream **502** is directionally aligned with the meltspun stream **501**. Preferably, θ is between about 0 and about 45 degrees and more preferably between about 10 and about 30 degrees. The distance **522** from the point of joinder of the meltblown and meltspun streams to the collector **19** is typically at least about 4 in. (10 cm) but less than about 16 in. (40 cm) to avoid over-entangling and to retain web uniformity. The distance **524** is sufficient, generally at least 6 in. (15 cm), for the momentum of the meltspun stream **501** to be reduced and thereby allow the meltblown stream **502** to better merge with the meltspun stream **501**. As the streams of meltblown and meltspun fibers merge, the meltblown fibers become dispersed among the meltspun fibers. A rather uniform mixture is obtained, especially in the x-y (in-plane web) dimensions, with the distribution in the z dimension being controlled by particular process steps such as control of the distance **520**, the angle θ , and the mass and velocity of the merging streams. The merged stream **503** continues to the collector **19** and there is collected as the web-like mass **20**.

[0055] Depending on the condition of the meltspun and meltblown fibers, some bonding may occur between the fibers during collection. However, further bonding between the meltspun fibers in the collected web may be usually needed to provide a matrix having a desired degree of coherency and stiffness, making the web more handleable and better able to hold the meltblown fibers within the matrix. However,

60557-8003

excessive bonding should be avoided so as to facilitate forming the web into a pleated filter.

[0056] Conventional bonding techniques using heat and pressure applied in a point-bonding process or by smooth calender rolls can be used, though such processes may cause undesired deformation of fibers or compaction of the web. A more preferred technique for 5 bonding the meltspun fibers is taught in U.S. Patent Application Serial No. 11/461,201, filed even date herewith, published on February 14, 2008 as US 2008/0038976 A1 and entitled "BONDED NONWOVEN FIBROUS WEBS COMPRISING SOFTENABLE ORIENTED SEMICRYSTALLINE POLYMERIC FIBERS AND APPARATUS AND METHODS FOR PREPARING SUCH WEBS". In brief summary, as applied to the present invention, this 10 preferred technique involves subjecting a collected web of oriented semicrystalline meltspun fibers which include an amorphous-characterized phase, intermingled with meltblown fibers of the same polymeric composition, to a controlled heating and quenching operation that includes a) forcefully passing through the web a fluid heated to a temperature high enough to soften the amorphous-characterized phase of the meltspun fibers (which is generally greater 15 than the onset melting temperature of the material of such fibers) for a time too short to melt the whole meltspun fibers (viz., causing such fibers to lose their discrete fibrous nature; preferably, the time of heating is too short to cause a significant distortion of the fiber cross-section), and b) immediately quenching the web by forcefully passing through the web a fluid having sufficient heat capacity to solidify the softened fibers (viz., to solidify the amorphous- 20 characterized phase of the fibers softened during heat treatment). Preferably the fluids passed through the web are gaseous streams, and preferably they are air. In this context "forcefully" passing a fluid or gaseous stream through a web means that a force in addition to normal room pressure is applied to the fluid to propel the fluid through the web. In a preferred embodiment, the disclosed quenching step includes passing the web on a conveyor through a device we 25 term a quenched flow heater, or, more simply, quenched heater. As illustrated herein, such a quenched flow heater provides a focused or knife-like heated gaseous (typically air) stream issuing from the heater under pressure and engaging one side of the web, with a gas-withdrawal device on the other side of the web to assist in drawing the heated gas

through the web; generally the heated stream extends across the width of the web. The heated stream is much like the heated stream from a conventional “through-air bonder” or “hot-air knife,” but it is subjected to special controls that modulate the flow, causing the heated gas to be distributed uniformly and at a controlled rate through the width of the web to thoroughly, uniformly and rapidly heat and soften the meltspun fibers to a usefully high temperature. Forceful quenching immediately follows the heating to rapidly freeze the fibers in a purified morphological form (“immediately” means as part of the same operation, i.e., without an intervening time of storage as occurs when a web is wound into a roll before the next processing step). In a preferred embodiment the gas-withdrawal device is positioned downweb from the heated gaseous stream so as to draw a cooling gas or other fluid, e.g., ambient air, through the web promptly after it has been heated and thereby rapidly quench the fibers. The length of heating is controlled, e.g., by the length of the heating region along the path of web travel and by the speed at which the web is moved through the heating region to the cooling region, to cause the intended melting/softening of the amorphous-characterizing phase without melting whole meltspun fiber.

[0057] Referring to **Fig. 2**, **Fig. 4** and **Fig. 5**, in one exemplary method for carrying out the quenched flow heating technique, the mass **20** of collected meltspun and meltblown fibers is carried by the moving collector **19** under a controlled-heating device **200** mounted above the collector **19**. The exemplary heating device **200** comprises a housing **201** which is divided into an upper plenum **202** and a lower plenum **203**. The upper and lower plenums are separated by a plate **204** perforated with a series of holes **205** that are typically uniform in size and spacing. A gas, typically air, is fed into the upper plenum **202** through openings **206** from conduits **207**, and the plate **204** functions as a flow-distribution means to cause air fed into the upper plenum to be rather uniformly distributed when passed through the plate into the lower plenum **203**. Other useful flow-distribution means include fins, baffles, manifolds, air dams, screens or sintered plates, *viz.*, devices that even the distribution of air.

[0058] In the illustrative heating device **200** the bottom wall **208** of the lower plenum **203** is formed with an elongated slot **209** through which an elongated or knife-like stream **210** of heated air from the lower plenum is blown onto the mass **20** traveling on the

collector **19** below the heating device **200** (the mass **20** and collector **19** are shown partly broken away in **Fig. 5**). The gas-withdrawal device **114** preferably extends sufficiently to lie under the slot **209** of the heating device **200** (as well as extending downweb a distance **218** beyond the heated stream **210** and through an area marked **220**, as will be discussed below). Heated air in the plenum is thus under an internal pressure within the plenum **203**, and at the slot **209** it is further under the exhaust vacuum of the gas-withdrawal device **114**. To further control the exhaust force a perforated plate **211** may be positioned under the collector **19** to impose a kind of back pressure or flow-restriction means which assures the stream **210** of heated air will spread to a desired extent over the width or heated area of the collected mass **20** and be inhibited in streaming through possible lower-density portions of the collected mass. Other useful flow-restriction means include screens or sintered plates. The number, size and density of openings in the plate **211** may be varied in different areas to achieve desired control. Large amounts of air pass through the fiber-forming apparatus and must be disposed of as the fibers reach the collector in the region **215**. Sufficient air passes through the web and collector in the region **216** to hold the web in place under the various streams of processing air. Sufficient openness is needed in the plate under the heating region **217** to allow treating air to pass through the web, while sufficient resistance is provided to assure that the air is evenly distributed. The temperature-time conditions should be controlled over the whole heated area of the mass. We have obtained best results when the temperature of the stream **210** of heated air passing through the web is within a range of 5 °C, and preferably within 2 or even 1 °C, across the width of the mass being treated (the temperature of the heated air is often measured for convenient control of the operation at the entry point for the heated air into the housing **201**, but it also can be measured adjacent the collected web with thermocouples). In addition, the heating apparatus is operated to maintain a steady temperature in the stream over time, e.g., by rapidly cycling the heater on and off to avoid over- or under-heating. To further control heating, the mass **20** is subjected to quenching quickly after the application of the stream **210** of heated air. Such a quenching can generally be obtained by drawing ambient air over and through the mass **20** immediately after the mass leaves the controlled hot air stream **210**. Numeral **220** in **Fig. 4** represents an area in which ambient air is drawn through the web by the gas-withdrawal device **114**.

after the web has passed through the hot air stream. Actually, such air can be drawn under the base of the housing **201**, e.g., in the area **220a** marked on **Fig. 4**, so that it reaches the web almost immediately after the web leaves the hot air stream **210**. And the gas-withdrawal device **114** may extend along the collector **19** for a distance **218** beyond the heating device **200** to assure thorough cooling and quenching of the whole mass **20**. For shorthand purposes the combined heating and quenching apparatus is termed a quenched flow heater.

[0059] The amount and temperature of heated air passed through the mass **20** is chosen to lead to an appropriate modification of the morphology of the larger size fibers. Particularly, the amount and temperature are chosen so that the larger size fibers are heated to a) cause melting/softening of significant molecular portions within a cross-section of the fiber, e.g., the amorphous-characterized phase of the fiber, but b) will not cause complete melting of another significant phase, e.g., the crystallite-characterized phase. We use the term “melting/softening” because amorphous polymeric material typically softens rather than melts, while crystalline material, which may be present to some degree in the amorphous-characterized phase, typically melts. This can also be stated, without reference to phases, simply as heating to cause melting of lower-order crystallites within the fiber. The larger size fibers as a whole remain unmelted, e.g., the fibers generally retain the same fiber shape and dimensions as they had before treatment. Substantial portions of the crystallite-characterized phase are understood to retain their pre-existing crystal structure after the heat treatment. Crystal structure may have been added to the existing crystal structure, or in the case of highly ordered fibers crystal structure may have been removed to create distinguishable amorphous-characterized and crystallite-characterized phases.

[0060] One aim of the quenching is to withdraw heat before undesired changes occur in the smaller size fibers contained in the web. Another aim of the quenching is to rapidly remove heat from the web and the larger size fibers and thereby limit the extent and nature of crystallization or molecular ordering that will subsequently occur in the larger size fibers. By rapid quenching from the molten/softened state to a solidified state, the amorphous-characterized phase is understood to be frozen into a more purified crystalline form, with reduced lower-order molecular material that can interfere with softening, or

repeatable softening, of the larger size fibers. For such purposes, desirably the mass **20** is cooled by a gas at a temperature at least 50°C less than the Nominal Melting Point or the larger size fibers; also the quenching gas is desirably applied for a time on the order of at least one second. In any event the quenching gas or other fluid has sufficient heat capacity to rapidly solidify the fibers.

[0061] An advantage of the disclosed quenched flow heater is that the smaller size meltblown fibers held within the disclosed web are better protected against compaction than they would be if present in a layer made up entirely of smaller size fibers (e.g., entirely of microfibers). The oriented meltspun fibers are generally larger, stiffer and stronger than the meltblown smaller size fibers, and the presence of the meltspun fibers between the meltblown fibers and an object applying pressure limits application of crushing force on the smaller size meltblown fibers. Especially in the case of submicron fibers, which can be quite fragile, the increased resistance against compaction or crushing provided by the larger size fibers offers an important benefit. Even when the disclosed webs are subjected to pressure, e.g., by being rolled up in jumbo storage rolls or in secondary processing, the webs offer good resistance to compaction, which could otherwise lead to increased pressure drop and poor loading performance for filters made from such webs. The presence of the larger size meltspun fibers also adds other properties such as web strength, stiffness and handling properties.

[0062] It has been found that the meltblown smaller size fibers do not substantially melt or lose their fiber structure during the bonding operation, but remain as discrete smaller size fibers with their original fiber dimensions. Meltblown fibers have a different, less crystalline morphology than meltspun fibers, and we theorize that the limited heat applied to the web during the bonding and quenching operation is exhausted in developing crystalline growth within the meltblown fibers before melting of the meltblown fibers occurs. Whether this theory is correct or not, bonding of the meltspun fibers without substantial melting or distortion of the meltblown smaller size fibers does occur and is beneficial to the properties of the finished bimodal mass fraction/fiber size web.

[0063] Referring to **Fig. 6**, another process is shown in schematic side view for making a pleatable monocomponent monolayer bimodal mass fraction/fiber size web using meltblowing to form both larger size fibers and separately prepared smaller size

fibers of the same polymeric composition. The **Fig. 6** apparatus employs two meltblowing dies **600** and **602**. Die **600** is supplied with liquefied fiber-forming material fed from hopper **604**, extruder **606** and conduit **608**. Die **602** may also be supplied with liquefied fiber-forming material from extruder **606** via optional conduit **610**. Alternatively, die **602** may be separately supplied with liquefied fiber-forming material of the same polymeric composition fed from optional hopper **612**, extruder **614** and conduit **616**. Larger size fiber stream **618** from die **600** and smaller size fiber stream **620** from die **602** merge in flight to provide a stream **622** of intermingled larger fibers and smaller fibers which can land on rotating collector drum **624** to provide a self-supporting nonwoven web **626** containing a bimodal mass fraction/fiber size mixture of such fibers. The apparatus shown in **Fig. 6** may be operated in several modes to provide a stream of larger size fibers from one die and smaller size fibers from the other die. For example, the same polymer may be supplied from a single extruder to die **600** and die **602** with larger size orifices being provided in die **600** and smaller size orifices being provided in die **602** so as to enable production of larger size fibers at die **600** and smaller size fibers at die **602**. Identical polymers may be supplied from extruder **606** to die **600** and from extruder **614** to die **602**, with extruder **614** having a larger diameter or higher operating temperature than extruder **606** so as to supply the polymer at a higher flow rate or lower viscosity into die **602** and enable production of larger size fibers at die **600** and smaller size fibers at die **602**. Similar size orifices may be provided in die **600** and die **602** with die **600** being operated at a low temperature and die **602** being operated at a high temperature so as to produce larger size fibers at die **600** and smaller size fibers at die **602**. Polymers of the same polymeric composition but different melt indices may be supplied from extruder **606** to die **600** and from extruder **614** to die **602** (using for example a low melt index version of the polymer in extruder **606** and a high melt index of the same polymer in extruder **614**) so as to produce larger size fibers at die **600** and smaller size fibers at die **602**. Those having ordinary skill in the art will appreciate that other techniques (e.g., the inclusion of a solvent in the stream of liquefied fiber-forming material flowing to die **602**, or the use of die cavities with a shorter flow path in die **600** and a longer flow path in die **602**) and combinations of such techniques and the various operating modes discussed above may also be employed. The meltblowing dies **600** and **602** preferably are positioned so that the

larger size fiber stream **618** and smaller size fiber stream **620** adequately intermingle. For example, the distance **628** from the exit of larger size fiber die **600** to the centerline of the merged fiber stream **622** is preferably about 2 to about 12 in. (about 5 to about 25 cm) and more preferably about 6 to about 8 in. (about 15 to about 20 cm). The distance **630** from the exit of smaller size fiber die **602** to the centerline of the merged fiber stream **622** preferably is about 2 to about 12 in. (about 5 to about 25 cm) and more preferably about 6 to about 8 in. (about 15 to about 20 cm) or less for very small microfibers. The distances **628** and **630** need not be the same. Also, the stream **618** of larger size fibers is preferably disposed at an acute angle θ' to the stream **620** of smaller size fibers. Preferably, θ' is between about 0 and about 45 degrees and more preferably between about 10 and about 30 degrees. The distance **632** from the approximate point of joinder of the larger and smaller size fiber streams to the collector drum **624** is typically at least about 5 in. (13 cm) but less than about 15 in. (38 cm) to avoid over-entangling and to retain web uniformity.

[0064] Referring to **Fig. 7**, a meltspinning die spinneret **700** for use in making a pleatable monocomponent monolayer bimodal mass fraction/fiber size web via yet another process is shown in outlet end view. Spinneret **700** includes a body member **702** held in place with bolts **704**. An array of larger orifices **706** and smaller orifices **708** define a plurality of flow passages through which liquefied fiber-forming material exits spinneret **700** and forms filaments. In the embodiment shown in **Fig. 7**, the larger orifices **706** and smaller orifices **708** have a 2:1 size ratio and there are 9 smaller orifices **708** for each larger orifice **706**. Other ratios of larger:smaller orifice sizes may be used, for example ratios of 1.5:1 or more, 2:1 or more, 2.5:1 or more, 3:1 or more, or 3.5:1 or more. Other ratios of the number of smaller orifices per larger orifice may also be used, for example ratios of 5:1 or more, 6:1 or more, 10:1 or more, 12:1 or more, 15:1 or more, 20:1 or more or 30:1 or more. Typically there will be a direct correspondence between the number of smaller orifices per larger orifice and the number of smaller size fibers (e.g., microfibers under appropriate operating conditions) per larger size fiber in the collected web. As will be appreciated by persons having ordinary skill in the art, appropriate polymer flow rates, die operating temperatures and orienting conditions should be chosen so that smaller size fibers are produced from oriented filaments formed by the smaller orifices, larger size fibers are produced from oriented filaments formed by the larger orifices, and the

60557-8003

completed web has the desired Gurley Stiffness. The remaining portions of the associated meltspinning apparatus will be familiar to those having ordinary skill in the art.

[0065] Referring to **Fig. 8**, a meltblowing die **800** for use in making a pleatable monocomponent monolayer bimodal mass fraction/fiber size web via yet another process is shown 5 in outlet end perspective view, with the secondary attenuating gas deflector plates removed. Die **800** includes a projecting tip portion **802** with a row **804** of larger orifices **806** and smaller orifices **808** which define a plurality of flow passages through which liquefied fiber-forming material exits die **800** and forms filaments. Holes **810** receive through-bolts (not shown in **Fig. 8**) which hold the various parts of the die together. In the embodiment shown in **Fig. 8**, the larger orifices **806** and 10 smaller orifices **808** have a 2:1 size ratio and there are 9 smaller orifices **808** for each larger orifice **806**. Other ratios of larger: smaller orifice sizes may be used, for example ratios of 1 : 1 or more, 1.5:1 or more, 2:1 or more, 2.5:1 or more, 3:1 or more, or 3.5:1 or more. Other ratios of the number of smaller orifices per larger orifice may also be used, for example ratios of 5:1 or more, 6:1 or more, 10:1 or more, 12:1 or more, 15:1 or more, 20:1 or more or 30:1 or more. Typically 15 there will be a direct correspondence between the number of smaller orifices per larger orifice and the number of smaller size fibers (e.g., micro fibers under appropriate operating conditions) per larger size fiber in the collected web. As will be appreciated by persons having ordinary skill in the art, appropriate polymer flow rates, die operating temperatures and attenuating airflow rates should be chosen so that smaller size fibers are produced from attenuated filaments formed by the 20 smaller orifices, larger size fibers are produced from attenuated filaments formed by the larger orifices, and the completed web has the desired Gurley Stiffness. Further details regarding the associated process and the nonwoven webs so made are shown in U.S. Patent Application Serial No. 11/461,136, filed even date herewith, published on January 31, 2008 as US 2008/0026659 A1 and entitled "MONOCOMPONENT MONOLAYER MELTBLOWN WEB AND 25 MELTBLOWING APPARATUS".

[0066] Referring to **Fig. 9**, a meltspinning die **900** for use in making a pleatable monocomponent monolayer bimodal mass fraction/fiber size web via yet another process is shown in exploded schematic view. Die **900** may be referred to as a "plate die", "shim die" or "stack die", and includes an inlet plate **902** whose fluid inlets **904** and **906** each

receive a stream of liquefied fiber-forming material. The streams have the same polymeric composition but different flow rates or different melt viscosities. The polymer streams flow through a series of intermediate plates **908a**, **908b**, etc. whose passages **910a**, **910b**, etc. repeatedly divide the streams. The thus serially-divided streams flow through a plurality (e.g., 256, 512 or some other multiple of the number of fluid inlets) of fluid outlet orifices **914** in outlet plate **916**. The various plates may be fastened together via bolts or other fasteners (not shown in **Fig. 9**) through holes **918**. Each fluid outlet orifice **914** will communicate via a unique flow path with one or the other of the fluid inlets **904** or **906**. The remaining portions of the associated meltspinning apparatus will be familiar to those having ordinary skill in the art, and may be used to process the liquefied fiber-forming materials into a nonwoven web of meltspun filaments having a bimodal mass fraction/fiber size mixture of intermingled larger size fibers and smaller size fibers of the same polymeric composition.

[0067] Referring to **Fig. 10** and **Fig. 11**, meltblowing die **1000** for use in making a pleatable monocomponent monolayer bimodal mass fraction/fiber size web via yet another process is shown in cross-sectional and outlet end view. Die **1000** is supplied with liquefied fiber-forming material fed from hopper **1004**, extruder **1006** and conduit **1008** at a first flow rate or first viscosity. Die **1000** is separately supplied with liquefied fiber-forming material of the same polymeric composition fed from hopper **1012**, extruder **1014** and conduit **1016** at a second, different flow rate or viscosity. The conduits **1008** and **1016** are in respective fluid communication with first and second die cavities **1018** and **1020** located in first and second generally symmetrical parts **1022** and **1024** which form outer walls for die cavities **1018** and **1020**. First and second generally symmetrical parts **1026** and **1028** form inner walls for die cavities **1018** and **1020** and meet at seam **1030**. Parts **1026** and **1028** may be separated along most of their length by insulation **1032**. As also shown in **Fig. 11**, die cavities **1018** and **1020** are in respective fluid communication via passages **1034**, **1036** and **1038** with a row **1040** of orifices **1042** and **1044**. Dependent upon the flow rates into die cavities **1018** and **1020**, filaments of larger and smaller sizes may be extruded through the orifices **1042** and **1044**, thereby enabling formation of a nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size fibers and smaller size fibers of the same polymeric composition. The

remaining portions of the associated meltblowing apparatus will be familiar to those having ordinary skill in the art, and may be used to process the liquefied fiber-forming materials into a nonwoven web of meltblown filaments having a bimodal mass fraction/fiber size mixture of intermingled larger size fibers and smaller size fibers of the same polymeric composition.

[0068] For the embodiment shown in **Fig. 11**, the orifices **1042** and **1044** are arranged in alternating order and are in respective fluid communication with the die cavities **1018** and **1020**. As will be appreciated by persons having ordinary skill in the art, other arrangements of the orifices and other fluid communication ratios may be employed to provide nonwoven webs with altered fiber size distributions. Persons having ordinary skill in the art will also appreciate that other operating modes and techniques (e.g., like those discussed above in connection with the **Fig. 6** apparatus) and combinations of such techniques and operating modes may also be employed.

[0069] The disclosed nonwoven webs may have a random fiber arrangement and generally isotropic in-plane physical properties (e.g., tensile strength), or if desired may have an aligned fiber construction (e.g., one in which the fibers are aligned in the machine direction as described in the above-mentioned Shah et al. U.S. Patent No. 6,858,297) and anisotropic in-plane physical properties.

[0070] A variety of polymeric fiber-forming materials may be used in the disclosed process. The polymer may be essentially any thermoplastic fiber-forming material capable of providing a nonwoven web. For webs that will be charged the polymer may be essentially any thermoplastic fiber-forming material which will maintain satisfactory electret properties or charge separation. Preferred polymeric fiber-forming materials for chargeable webs are non-conductive resins having a volume resistivity of 10^{14} ohm-centimeters or greater at room temperature (22° C). Preferably, the volume resistivity is about 10^{16} ohm-centimeters or greater. Resistivity of the polymeric fiber-forming material may be measured according to standardized test ASTM D 257-93. Polymeric fiber-forming materials for use in chargeable webs also preferably are substantially free from components such as antistatic agents that could significantly increase electrical conductivity or otherwise interfere with the fiber's ability to accept and hold electrostatic charges. Some examples of polymers which may be used in chargeable webs include

thermoplastic polymers containing polyolefins such as polyethylene, polypropylene, polybutylene, poly(4-methyl-1-pentene) and cyclic olefin copolymers, and combinations of such polymers. Other polymers which may be used but which may be difficult to charge or which may lose charge rapidly include polycarbonates, block copolymers such as styrene-butadiene-styrene and styrene-isoprene-styrene block copolymers, polyesters such as polyethylene terephthalate, polyamides, polyurethanes, and other polymers that will be familiar to those skilled in the art. The fibers preferably are prepared from poly-4-methyl-1 pentene or polypropylene. Most preferably, the fibers are prepared from polypropylene homopolymer because of its ability to retain electric charge, particularly in moist environments.

[0071] Electric charge can be imparted to the disclosed nonwoven webs in a variety of ways. This may be carried out, for example, by contacting the web with water as disclosed in U.S. Patent No. 5,496,507 to Angadjivand et al., corona-treating as disclosed in U.S. Patent No. 4,588,537 to Klasse et al., hydrocharging as disclosed, for example, in U.S. Patent No. 5,908,598 to Rousseau et al., plasma treating as disclosed in U.S. Patent No. 6,562,112 B2 to Jones et al. and U.S. Patent Application Publication No. US2003/0134515 A1 to David et al., or combinations thereof.

[0072] Additives may be added to the polymer to enhance the web's filtration performance, electret charging capability, mechanical properties, aging properties, coloration, surface properties or other characteristics of interest. Representative additives include fillers, nucleating agents (e.g., MILLADTM 3988 dibenzylidene sorbitol, commercially available from Milliken Chemical), electret charging enhancement additives (e.g., tristearyl melamine, and various light stabilizers such as CHIMASSORBTM 119 and CHIMASSORB 944 from Ciba Specialty Chemicals), cure initiators, stiffening agents (e.g., poly(4-methyl-1-pentene)), surface active agents and surface treatments (e.g., fluorine atom treatments to improve filtration performance in an oily mist environment as described in U.S. Patent Nos. 6,398,847 B1, 6,397,458 B1, and 6,409,806 B1 to Jones et al.). The types and amounts of such additives will be familiar to those skilled in the art. For example, electret charging enhancement additives are generally present in an amount less than about 5 wt. % and more typically less than about 2 wt. %.

[0073] The disclosed nonwoven webs may be formed into pleated filters using methods and components such as those described in the above-mentioned Kubokawa et al. Patent No. 6,740,137 B2 and the above-mentioned Sundet et al. '226 application. Pleat formation generally will be assisted by the use of heat to bond (or to further bond) the fibers to one another at at least some of the points of fiber intersection. Pleat formation may be carried out or augmented using other methods and components that will be familiar to those skilled in the art. Although not required to provide a self-supporting filter element, the disclosed pleated filters may if desired include one or more additional elements or layers other than the disclosed monolayer matrix. For example, selected portions of the filter element may be stabilized or reinforced by adding tip stabilization (e.g., a planar wire face layer or lines of hot melt adhesive) or perimeter reinforcement (e.g., an edge adhesive or a filter frame). One or more additional layers (e.g., a porous layer containing sorbent particles) may be included in the filter element to capture vapors of interest.

[0074] It may be desirable to monitor flat web properties such as basis weight, web thickness, solidity, EFD, Gurley Stiffness, Taber Stiffness, % DOP penetration, initial % NaCl penetration, pressure drop or the Quality Factor **QF** before pleat formation. After pleat formation it may be helpful to monitor pleated web properties such as average initial submicron efficiency or pressure drop.

[0075] EFD may be determined (unless otherwise specified) using an air flow rate of 32 liters/min (corresponding to a face velocity of 5.3 cm/sec), using the method set forth in Davies, C. N., "The Separation of Airborne Dust and Particles", Institution of Mechanical Engineers, London, Proceedings 1B, 1952.

[0076] Gurley Stiffness may be determined using a Model 4171E GURLEY™ Bending Resistance Tester from Gurley Precision Instruments. Rectangular 3.8 cm x 5.1 cm rectangles are die cut from the webs with the sample long side aligned with the web transverse (cross-web) direction. The samples are loaded into the Bending Resistance Tester with the sample long side in the web holding clamp. The samples are flexed in both directions, *viz.*, with the test arm pressed against the first major sample face and then against the second major sample face, and the average of the two measurements is

recorded as the stiffness in milligrams. The test is treated as a destructive test and if further measurements are needed fresh samples are employed.

[0077] Taber Stiffness may be determined using a Model 150-B TABER™ stiffness tester (commercially available from Taber Industries). Square 3.8 cm x 3.8 cm sections are carefully vivisected from the webs using a sharp razor blade to prevent fiber fusion, and evaluated to determine their stiffness in the machine and transverse directions using 3 to 4 samples and a 15° sample deflection.

[0078] Percent penetration, pressure drop and the filtration Quality Factor **QF** may be determined using a challenge aerosol containing NaCl or DOP particles, delivered (unless otherwise indicated) at a flow rate of 85 liters/min, and evaluated using a TSI™ Model 8130 high-speed automated filter tester (commercially available from TSI Inc.). For NaCl testing, the particles may be generated from a 2% NaCl solution to provide an aerosol containing particles with a diameter of about 0.075 μm at an airborne concentration of about 16-23 mg/m³, and the Automated Filter Tester may be operated with both the heater and particle neutralizer on. For DOP testing, the aerosol may contain particles with a diameter of about 0.185 μm at a concentration of about 100 mg/m³, and the Automated Filter Tester may be operated with both the heater and particle neutralizer off. The samples may be exposed to the maximum NaCl or DOP particle penetration at a 13.8 cm/sec face velocity for flat web samples (corresponding to an 85 liters/min flowrate) before halting the test. Calibrated photometers may be employed at the filter inlet and outlet to measure the particle concentration and the % particle penetration through the filter. An MKS pressure transducer (commercially available from MKS Instruments) may be employed to measure pressure drop (ΔP , mm H₂O) through the filter. The equation:

$$QF = \frac{-\ln\left(\frac{\% \text{Particle Penetration}}{100}\right)}{\Delta P}$$

may be used to calculate **QF**. Parameters which may be measured or calculated for the chosen challenge aerosol include initial particle penetration, initial pressure drop, initial Quality Factor **QF**, maximum particle penetration, pressure drop at maximum penetration, and the milligrams of particle loading at maximum penetration (the total weight challenge

to the filter up to the time of maximum penetration). The initial Quality Factor **QF** value usually provides a reliable indicator of overall performance, with higher initial **QF** values indicating better filtration performance and lower initial **QF** values indicating reduced filtration performance.

[0079] Average initial submicron efficiency may be determined by installing the framed filter into a test duct and subjecting the filter to potassium chloride particles which have been dried and charge-neutralized. A test face velocity of 300 ft/min (1.52 meters/sec) may be employed. An optical particle counter may be used to measure the concentration of particles upstream and downstream from the test filter over a series of twelve particle size ranges or channels. The particle size ranges in each channel are taken from ASHRAE standard 52.2 (“Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size”). The equation:

$$\text{Capture efficiency (\%)} = \frac{\text{upstream particle count} - \text{downstream particle count}}{\text{upstream particle count}} \times 100$$

may be used to determine capture efficiency for each channel. The capture efficiency values for each of the four submicron channels (*viz.*, particle diameters of 0.3 to 0.4 μm , 0.4 to 0.55 μm , 0.55 to 0.7 μm and 0.7 to 1.0 μm) may be averaged to obtain a single value for “average initial sub-micron efficiency”. The test velocity, efficiency and pressure drop results are usually all reported.

[0080] The invention is further illustrated in the following illustrative examples, in which all parts and percentages are by weight unless otherwise indicated.

Example 1

[0081] Nine webs were prepared using an apparatus as shown in **Fig. 2** through **Fig. 5** from polypropylene meltspun fibers and polypropylene meltblown microfibers. The meltspun fibers were prepared from FINATM 3860 polypropylene having a melt flow index of 70 from Total Petrochemicals, to which was added 0.75 wt. % of CHIMASSORB 944 hindered-amine light stabilizer from Ciba Specialty Chemicals. The extrusion head **10** had 16 rows of orifices, with 32 orifices in a row, making a total of 512 orifices. The orifices were arranged in a square pattern (meaning that orifices were in alignment transversely as

well as longitudinally, and equally spaced both transversely and longitudinally) with 0.25 inch (6.4 mm) spacing. The polymer was fed to the extrusion head at 0.8 g/hole/minute, where the polymer was heated to a temperature of 235° C (455° F). Two quenching air streams (**18b** in **Fig. 2**; stream **18a** was not employed) were supplied as an upper stream from quench boxes 16 in. (406 mm) in height at an approximate face velocity of 93 ft/min (0.47 m/sec) and a temperature of 45° F (7.2° C), and as a lower stream from quench boxes 7.75 in. (197 mm) in height at an approximate face velocity of 43 ft/min (0.22 m/sec) and ambient room temperature. A movable-wall attenuator like that shown in U.S. Patent No. 6,607,624 B2 (Berrigan et al.) was employed, using an air knife gap (**30** in Berrigan et al.) of 0.030 in. (0.76 mm), air fed to the air knife at a pressure of 14 psig (0.1 MPa), an attenuator top gap width of 0.20 in. (5 mm), an attenuator bottom gap width of 0.185 in. (4.7 mm), and 6 in. (152 mm) long attenuator sides (**36** in Berrigan et al.). The distance (**17** in **Fig. 2**) from the extrusion head **10** to the attenuator **16** was 31 in. (78.7 cm), and the distance (**524** plus **522** in **Fig. 3**) from the attenuator **16** to the collection belt **19** was 27 in. (68.6 cm). The meltspun fiber stream was deposited on the collection belt **19** at a width of about 14 in. (about 36 cm). Collection belt **19** was made from 20-mesh stainless steel and moved at a rate of 47 ft/min (about 14.3 meters/min).

[0082] The meltblown fibers were prepared from FINA 3960 polypropylene having a melt flow index of 350 from Total Petrochemicals, to which was added 0.75wt. % CHIMASSORB 944 hindered-amine light stabilizer. The polymer was fed into a drilled-orifice meltblowing die (**504** in **Fig. 2** and **Fig. 3**) having a 10-inch-wide (254 mm) nosetip, with twenty-five 0.015 in. diameter (0.38 mm) orifices per inch (one orifice per mm), at a rate of 0.5 to 1.0 pounds per hour (0.23 to 0.45 kg per hour) per inch (per 2.54 cm) of die width as shown below in Table 1A. The die temperature was 325° C (617° F) and the primary air stream temperature was 393° C (740° F). The flow of air in the primary air stream was estimated to be about 250 scfm (7.1 standard m³/ min). The relationship of the meltblowing die to the spunbond fiber stream 1 was as follows: the distances **520**, **522**, and **524** varied as shown below in Table 1A, and the angle θ was 20°. The meltblown fiber stream was deposited on the collection belt **19** at a width of about 12 in. (about 30 cm).

[0083] The vacuum under collection belt **19** was estimated to be in the range of 6-12 in. H₂O (1.5-3 KPa). The region **215** of the plate **211** had 0.062-inch-diameter (1.6 mm) openings in a staggered spacing resulting in 23% open area; the web hold-down region **216** had 0.062-inch-diameter (1.6 mm) openings in a staggered spacing resulting in 30 % open area; and the heating/bonding region **217** and the quenching region **218** had 0.156-inch-diameter (4.0 mm) openings in a staggered spacing resulting in 63% open area. Air was supplied through the conduits **207** at a rate sufficient to present 500 ft.³/min (about 14.2 m³/min) of air at the slot **209**, which was 1.5 in. by 22 in. (3.8 by 55.9 cm). The bottom of the plate **208** was $\frac{3}{4}$ to 1 in. (1.9-2.54 cm) from the collected web **20** on collector **19**. The temperature of the air passing through the slot **209** as measured at the entry point for the heated air into the housing **201** is given in Table 1A for each web.

[0084] Essentially 100% of the meltblown fibers were captured within the meltspun stream. The microfibers were observed to be distributed throughout the full thickness of the web. As shown below in Table 1A, the webs contained about 10 to about 18% meltblown fibers. The web leaving the quenching area **220** was bonded with sufficient integrity to be handled by normal processes and equipment; the web could be wound by normal windup into a storage roll or could be subjected to various operations such as pleating and assembly into a filtration device such as a pleated filter panel. Upon microscopic examination the meltspun fibers were found to be bonded at fiber intersections and the meltblown fibers were found to be substantially unmelted and having limited bonding to the meltspun fibers (which could have developed at least in part during mixing of the meltspun and microfiber streams).

[0085] Other web and forming parameters are described below in Table 1A, where the abbreviations “QFH” and “BMF” respectively mean “quenched flow heater” and “meltblown microfibers”.

Table 1A

Run No.	QFH temp, °C	Distance 520, cm	Distance 522, cm	Distance 524, cm	Meltspun rate, g/h/m	BMF rate, kg/m/hr	BMF mass, %
1-1	155	20.3	18.0	50.6	0.80	17.9	18
1-2	147	10.2	21.7	46.9	0.80	17.9	18
1-3	147	20.3	18.0	50.6	0.80	17.9	18
1-4	155	10.2	21.7	46.9	0.80	17.9	18
1-5	147	20.3	18.0	50.6	0.80	8.93	10
1-6	155	10.2	21.7	46.9	0.80	8.93	10
1-7	147	10.2	21.7	46.9	0.80	8.93	10
1-8	155	20.3	18.0	50.6	0.80	8.93	10
1-9	151	15.2	19.9	48.7	0.80	13.39	14

[0086] The collected webs were hydrocharged with deionized water according to the technique taught in U. S. Patent No. 5,496,507 (Angadjivand et al.), allowed to dry by hanging on a line overnight at ambient conditions, and then evaluated to determine initial pressure drop, initial %DOP penetration at a 13.8 cm/sec face velocity (which corresponds to an 8.28 m/min face velocity, and to an 85 liters/min flowrate for the sample size employed), Quality Factor **QF** and Gurley Stiffness. The charged webs were also compared to the flat web properties of a commercially available HVAC filter, namely a 2 in. (50 mm) deep pleated filter with 5 mm pleat spacing, the filter media being a three-layer laminate including a 17 gsm polypropylene spunbond coverweb, a 40 gsm electrostatically charged meltblown filter media, and a 90 gsm polyester spunbond stiffening layer. The web used to make the commercial pleated filter was tested in the flat condition before folding into a pleated form. The results are shown below in Table 1B:

Table 1B

Run No.	Basis Weight, gsm	Initial Pressure Drop, mm H ₂ O	Initial DOP Penetration, %	Quality Factor, 1/ mm H ₂ O	Gurley Stiffness
1-1	103	3.58	12.58	0.58	784
1-2	110	5.00	4.34	0.63	369
1-3	104	4.28	6.72	0.63	387
1-4	97	4.56	7.36	0.57	862
1-5	103	2.56	14.50	0.75	392
1-6	96	2.92	17.40	0.60	559
1-7	98	3.40	9.10	0.70	414
1-8	93	2.08	24.14	0.68	622
1-9	86	3.44	10.59	0.65	432
Commercial 3-layer filter media	143	2.77	14.8	0.69	Not Measured

[0087] The web of Run No. 1-8 had the lowest pressure drop. The webs of Run Nos. 1-1 and 1-4 had somewhat higher pressure drops, but lower penetration and higher stiffness. This higher stiffness was obtained without employing an increased basis weight. The properties of the Run Nos. 1-1 through 1-8 webs show that with minor optimization the commercial 3-layer media could readily be replicated at a basis weight considerably less than the 150 gsm basis weight for the commercial 3-layer media, and that the resulting monolayer web would have good Gurley Stiffness before pleating and good deformation resistance after pleating.

[0088] Further evaluation was performed by load-testing the Run Nos. 1-1 through 1-8 webs for % NaCl penetration using a TSI 8130 Automatic Filter Tester. Particles with an approximate 0.075 μ m diameter and an airborne concentration of about 16-23 mg/m³ were generated from a 2% NaCl solution. The Automatic Filter Tester was run with both the heater and particle neutralizer on. Some webs were tested with the collector side of the web both up and down to examine whether fiber intermixing or the collector surface affected the loading behavior. Samples were loaded to maximum penetration at a 60 liters/min (10 cm/sec face velocity) flowrate, and the tests were then stopped. The results are shown below in Table 1C.

Table 1C

Web of Run No.	Collector Side	Initial Pressure Drop, mm H ₂ O at 60 liters/min	Initial NaCl Penetration, %	Initial Quality Factor QF	Maximum Pressure Drop, mm H ₂ O at 60 liters/min	Maximum NaCl Penetration, %	Challenge at max Penetration, mg
1-1	Down	2.7	2.45	1.37	7.2	22.8	26.7
1-2	Down	4.4	0.456	1.23	11.1	6.49	28.3
1-3	Down	3.7	0.957	1.26	9.6	10.5	26.9
1-4	Down	3.2	1.32	1.35	9	15.6	62.1
1-5	Down	1.9	4.61	1.62	5.5	31.9	35.1
1-5	Up	2	3.82	1.63	7.1	32.7	35.9
1-6	Down	2.3	4.39	1.36	5.9	30	24.2
1-7	Down	2.8	1.91	1.41	7.7	16.2	29.5
1-7	Up	2.9	2.13	1.33	8.4	10.7	18.1
1-8	Down	1.8	9.38	1.31	4.5	45.9	62.4
1-9	Down	2.9	2.7	1.25	7.0	18.9	21.4
Commercial 3-layer filter media	N/A	1.9	9.97	1.21	4.3	39.9	22.2

[0089] The results in Table 1C show that the disclosed webs exhibited maximum NaCl penetration values as low as 6.49% (as the filter webs were tested, penetration gradually increased until reaching a maximum, whereupon penetration decreased because of the filtering effect of the collected challenge on the filter). The webs of Run Nos. 1-5 and 1-6 tested with the collector side down exhibited initial pressure drop values close to that of the commercial 3-layer media, but with lower initial penetration, higher initial quality factor, lower maximum penetration, and a similar pressure drop rise as a function of challenge. Compared to the commercial 3-layer media, the web of Run No. 1-8 exhibited slightly lower initial pressure drop, somewhat higher maximum penetration, and almost 3X the mass challenge at maximum penetration for a nearly equal pressure drop rise – corresponding to a better-loading filter. The webs of Run Nos. 1-5 and 1-6 tested with the collector side up and the webs of Run Nos. 1-1, 1-4, 1-7 and 1-9 tested with the collector side down exhibited moderate pressure drop, low initial penetration, moderate to high initial quality factors, and maximum penetration less than the commercial 3-layer media. In comparing Table 1B and Table 1-C, the web of Run No. 1-8 had a particularly desirable balance of flat media physical properties and filtration performance.

[0090] The web of Run No. 1-7 was submitted for analysis with a scanning electron microscope. Using a sample containing 151 meltblown fibers and 28 meltspun fibers, and assuming that all fibers less than 10 μm in size were meltblown fibers, the meltblown fibers were found to have a median size of 0.65 μm , a mean size of 0.88 μm and a standard deviation of 0.67 μm ; the maximum meltblown fiber size was 4.86 μm and the minimum meltblown fiber size was 0.20 μm . The meltspun fibers were found to have a median size of 15.8 μm , a mean size of 15.7 μm , and a standard deviation of 1.1 μm . The submicron fibers of the Run No. 1-7 web were captured with essentially 100% efficiency during the web formation process, and the resulting bonded web had adequate strength and integrity for normal handling in a pleated filter formation process.

[0091] A histogram of mass fraction vs. fiber size in μm is pictured in **Fig. 12a**, with fiber size plotted along the abscissa and the mass fraction (percent of the total fiber mass represented by fibers of a particular size range) plotted along the ordinate. A cumulative mass fraction is plotted using a solid line. To make it easier to recognize the smaller fiber modes, a further histogram of mass fraction vs. fiber size in μm for fibers with a fiber size

less than or equal to 10 μm is pictured in **Fig. 12b**. The web exhibited modes at 1-2, 4-5 and 14-15 μm . Based on component mass percentages and SEM measurements of the meltblown and meltspun fiber sizes, the surface area of the meltblown microfibers was determined to represent about 51% of the total web surface area, and the surface area of the submicron fibers was determined to represent about 23% of the total web surface area. A histogram of fiber count (frequency) vs. fiber size in μm is pictured in **Fig. 13**, with fiber size plotted along the abscissa and frequency plotted along the ordinate.

Example 2

[0092] The charged web of Run No. 1-8 was evaluated to determine additional flat web properties as shown below in Table 2A:

Table 2A

Basis weight, gsm	93
Solidity, %	11.7
Thickness, mm	0.89
EFD, μm	16
Gurley Stiffness, mg	622
Pressure Drop at 13.8 cm/sec face velocity, mm H_2O	2.08
DOP Penetration at 13.8 cm/sec face velocity, %	24.14
Quality Factor, QF , $\text{mm}^{-1} \text{H}_2\text{O}$ (DOP)	0.68

[0093] The web was formed into a pleated filter element with a pleat height of 20 mm and a pleat spacing of 4.6 mm. The pleats were stabilized by gluing an expanded wire screen to the pleat tips on both sides of the filter. The filter was framed with a one-piece chipboard frame having 0.5 in. (12.7 mm) flaps folded over the filter perimeter on both sides of the filter element. The open area of the filter was approximately 7.4 x 12.0 in. (188 x 305 mm). The filter element was tested for initial pressure drop and initial fractional efficiency at a 300 ft/min (1.52 m/sec) face velocity. The initial pressure drop was 0.252 in. (6.4 mm) H_2O . The results for the individual particle size ranges are shown below in Table 2B.

Table 2B

Size Range, μm	Initial Fractional Efficiency, %
0.3 - 0.4	74.8
0.4 - 0.55	82.7
0.55 - 0.7	88.1
0.7 - 1.0	92.0
1.0 - 1.3	94.6
1.3 - 1.6	96.0
1.6 - 2.2	97.5
2.2 - 3.0	98.8
3.0 - 4.0	99.6
4.0 - 5.5	99.8
5.5 - 7.0	99.9
7.0 - 10.0	100.0

[0094] The results in Table 1C show that the average initial submicron efficiency for this filter was 84.4%.

[0095] A similar web sample (from Run No. 1-5), prepared using lower temperature air (147° C rather than 155° C) at the slot **209** was submitted for analysis with a scanning electron microscope. Using a sample containing 339 meltblown fibers and 51 meltspun fibers, and assuming that all fibers less than 10 μm in size were meltblown fibers, the meltblown fibers were found to have a median size of 0.95 μm and the meltspun fibers were found to have a median size of 15 μm . Essentially 100% of the meltblown fibers were captured within the meltspun stream. The web sample was cross-sectioned and microfibers were found to be distributed through the full thickness of the web.

[0096] A histogram of mass fraction vs. fiber size in μm is pictured in **Fig. 14a**, and a further histogram of mass fraction vs. fiber size in μm for fibers with a fiber size less than or equal to 10 μm is pictured in **Fig. 14b**. The web exhibited modes at 1-2, 8-9 and 16-17 μm . Local peaks also appeared at 6-7, 12-13, 14-15 and 19-20 μm , but did not have larger heights than fiber sizes 2 μm larger (or, in the case of the local peak at 19-20 μm , 2 μm smaller) and did not represent a mode.

Example 3

[0097] Using a single extruder, a meltblowing die tip having a plurality of larger and smaller orifices like that shown in **Fig. 8** and procedures like those described in Wente, Van A. "superfine Thermoplastic Fiber", Industrial and Engineering Chemistry, vol. 48, No. 8, 1956, pp 1342-1346 and Naval Research Laboratory Report 111437, Apr. 15, 1954, a monocomponent monolayer meltblown web was formed from TOTALTM EOD-12 polypropylene, a 1200 melt flow rate polymer available from Total Petrochemicals to which had been added 1 % tristearyl melamine as an electret charging additive. The polymer was fed to Model 20 DAVIS STANDARDTM 2 in. (50.8mm) single screw extruder from the Davis Standard Division of Crompton & Knowles Corp. The extruder had a 60 in. (152 cm) overall length, and a 30/1 length/diameter ratio. A Zenith 10 cc/rev melt pump metered the flow of polymer to a 10 in. (25.4 cm) wide drilled orifice meltblowing die whose original 0.012 in. (0.3 mm) orifices had been modified by drilling out every 21st orifice to 0.033 in. (0.8 mm), thereby providing a 20:1 ratio of the number of smaller size to larger size holes and a 2.67:1 ratio of larger hole size to smaller hole size. The line of orifices had 25 holes/inch (10 holes/cm) hole spacing. Heated air attenuated the fibers at the die tip. The airknife employed a 0.020 in. (0.51 mm) negative set back and a 0.030 in. (0.76 mm) air gap. No to moderate vacuum was pulled through a medium mesh collector screen at the point of web formation. The polymer output rate from the extruder was 2.0 lbs/in/hr (0.36 kg/cm/hr), the DCD (die-to-collector distance) was 23.0 in. (58.4 cm) and the air pressure was adjusted as needed to provide webs with a basis weight of about 93 gsm and an EFD of about 22 μ m. The web was hydrocharged with distilled water according to the technique taught in U. S. Patent No. 5,496,507 (Angadjivand et al. '507) and allowed to dry, then evaluated to determine the flat web properties shown below in Table 3A. Eight samples were examined and averaged to measure Gurley Stiffness, NaCl penetration and DOP penetration:

Table 3A

Basis weight, gsm	93
Thickness, mm	1.2
EFD, μm	22.4
Gurley Stiffness, mg	351.3
Pressure Drop at 13.8 cm/sec face velocity (NaCl), mm H_2O	1.3
NaCl Penetration at 13.8 cm/sec face velocity, %	21.2
Quality Factor, QF , $\text{mm}^{-1} \text{H}_2\text{O}$ (NaCl)	1.28
Pressure Drop at 13.8 cm/sec face velocity (DOP), mm H_2O	1.4
DOP Penetration at 13.8 cm/sec face velocity, %	35.0
Quality Factor, QF , $\text{mm}^{-1} \text{H}_2\text{O}$ (DOP)	0.74

[0098] Using the method of Example 2, the web was formed into a pleated filter element, the pleats were stabilized, the filter was framed with a one-piece chipboard frame and the filter element was tested for initial pressure drop and initial fractional efficiency at a 300 ft/min (1.52 m/sec) face velocity. The initial pressure drop was 0.245 in. (6.2 mm) H_2O . The results for the individual particle size ranges are shown below in Table 3B.

Table 3B

Size Range, μm	Initial Fractional Efficiency, %
0.3 - 0.4	71.5
0.4 - 0.55	79.9
0.55 - 0.7	86.0
0.7 - 1.0	89.9
1.0 - 1.3	93.0
1.3 - 1.6	94.6
1.6 - 2.2	96.1
2.2 - 3.0	97.1
3.0 - 4.0	98.4
4.0 - 5.5	98.9
5.5 - 7.0	99.5
7.0 - 10.0	99.9

[0099] The results in Table 3B show that the average initial submicron efficiency for this filter was 81.8%.

Example 4

[00100] Using an apparatus like that shown in **Fig. 6** and procedures like those described in Wente, Van A. "superfine Thermoplastic Fiber", Industrial and Engineering Chemistry, vol. 48. No. 8, 1956, pp 1342-1346 and Naval Research Laboratory Report 111437, Apr. 15, 1954, a monocomponent monolayer web was formed using meltblowing of larger fibers and separately prepared smaller size fibers of the same polymeric composition. The larger size fibers were formed using TOTAL 3960 polypropylene having a melt flow index of 350 from Total Petrochemicals, to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer as an electret charging additive and 1 % POLYONE™ No. CC10054018WE blue pigment from PolyOne Corp. to aid in assessing the distribution of larger size fibers in the web. The resulting blue polymer blend was fed to a Model 20 DAVIS STANDARD™ 2 in. (50.8mm) single screw extruder from the Davis Standard Division of Crompton & Knowles Corp. The extruder had a 60 in. (152 cm) length and a 30/1 length/diameter ratio. The smaller size fibers were formed using EXXON PP3746 polypropylene having a 1475 melt flow index from Exxon Mobil Corporation, to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer. This latter polymer was white in color and was fed to a KILLION™ 0.75 in. (19 mm) single screw extruder from the Davis Standard Division of Crompton & Knowles Corp. Using 10 cc/rev ZENITH™ melt pumps from Zenith Pumps, the flow of each polymer was metered to separate die cavities in a 20 in. (50.8 cm) wide drilled orifice meltblowing die employing 0.015 in. (0.38 mm) diameter orifices at a spacing of 25 holes/in. (10 holes/cm) with alternating orifices being fed by each die cavity. Heated air attenuated the fibers at the die tip. The airknife employed a 0.010 in. (0.25 mm) positive set back and a 0.030 in. (0.76 mm) air gap. A moderate vacuum was pulled through a medium mesh collector screen at the point of web formation. The polymer output rate from the extruders was 1.0 lbs/in/hr (0.18 kg/cm/hr), the DCD (die-to-collector distance) was 22.5 in. (57.2 cm) and the collector speed was adjusted as needed to provide webs with a 208 gsm basis weight. A 20 μ m target EFD was achieved by changing the extrusion flow rates, extrusion temperatures and pressure of the heated air as needed. By adjusting the polymer rate from each extruder a web with 75% larger size fibers and 25%

smaller size fibers was produced. The web was hydrocharged with distilled water according to the technique taught in U. S. Patent No. 5,496,507 (Angadjivand et al. '507) and allowed to dry. Set out below in Table 4A are the basis weight, thickness, EFD, Gurley Stiffness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for the flat web at a 13.8 cm/sec face velocity:

Table 4A

Basis weight, gsm	208
Thickness, mm	4.49
EFD, μm	20.3
Gurley Stiffness, mg	889
Pressure Drop at 13.8 cm/sec face velocity (NaCl), mm H_2O	2.9
Initial NaCl Penetration at 13.8 cm/sec face velocity, %	4.1
Quality Factor, QF , $\text{mm}^{-1} \text{H}_2\text{O}$ (NaCl)	1.10

[00101] Using the general method of Example 2 (but using an 11 mm pleat spacing), the web was formed into a pleated filter element, the pleats were stabilized, the filter was framed with a one-piece chipboard frame and the filter element was tested for initial pressure drop and initial fractional efficiency at a 300 ft/min (1.52 m/sec) face velocity. The initial pressure drop was 0.831 in. (21.1 mm) H_2O . The results for the individual particle size ranges are shown below in Table 4B.

Table 4B

Size Range, μm	Initial Fractional Efficiency, %
0.3 - 0.4	92.0
0.4 - 0.55	95.6
0.55 - 0.7	98.1
0.7 - 1.0	99.1
1.0 - 1.3	99.6
1.3 - 1.6	99.7
1.6 - 2.2	99.8
2.2 - 3.0	99.9
3.0 - 4.0	99.9
4.0 - 5.5	100.0
5.5 - 7.0	100.0
7.0 - 10.0	100.0

[00102] The results in Table 4B show that the average initial submicron efficiency for this filter was 96.2%.

Example 5

[00103] Using the method of Comparative Example 3 of U.S. Patent No. 6,319,865 B1 (Mikami), webs were prepared using a 10 in. (25.4 cm) wide drilled orifice die whose tip had been modified to provide a row of larger and smaller sized orifices. The larger orifices had a 0.6 mm diameter (Da), the smaller orifices had a 0.4 mm diameter (Db), the orifice diameter ratio R (Da/Db) was 1.5, there were 5 smaller orifices between each pair of larger orifices and the orifices were spaced at 30 orifices/in. (11.8 orifices/cm). A single screw extruder with a 50 mm diameter screw and a 10cc melt pump were used to supply the die with 100% TOTAL 3868 polypropylene. The die also had a 0.20 mm air slit width, a 60° nozzle edge angle, and a 0.58 mm air lip opening. A fine mesh screen moving at 1 to 50 m/min was employed to collect the fibers. The other operating parameters are shown below in Table 5A:

Table 5A

Parameter	Value
Polymer melt flow rate	37 MFR
Extruder barrel temp	320° C
Screw speed	8 rpm
Polymer flow rate	4.55 kg/hr
Die temp	300° C
DCD	200 mm
Die Air temp	275° C
Die Air rate	5 Nm ³ /min
Larger Orifice diameter Da	0.6 mm
Smaller Orifice diameter Db	0.4 mm
Orifice Diameter ratio R (Da/Db)	1.5
Number of smaller orifices per larger orifice	5
Average Fiber Diameter, μ m	2.44
St Dev Fiber Diameter, μ m	1.59
Min Fiber Diameter, μ m	0.65
Max Fiber Diameter, μ m	10.16
EFD, μ m	9.4
Shot	Many

[00104] Using the above-mentioned operating parameters, a shot-free web was not obtained. Had shot-free web been formed, the observed Effective Fiber Diameter value would likely have been less than the 9.4 μ m value reported above. Shot-containing webs were nonetheless prepared at four different basis weights, namely; 60, 100, 150 and 200 gsm, by varying the collector speed.

[00105] **Fig. 15** is a histogram of mass fraction vs. fiber size in μ m for the 200 gsm web. The web exhibited modes at 2 and 7 μ m. Local peaks also appeared at 4 and 10 μ m. The 4 μ m peak did not have a larger height than fiber sizes 2 μ m smaller and 2 μ m larger and did not represent a mode, and the 10 μ m peak did not have a larger height than fiber

sizes 2 μm smaller and did not represent a mode. As shown in **Fig. 15**, the web did not have a larger size fiber mode greater than 10 μm .

[00106] It was determined that shot could be reduced by employing a higher melt flow index polymer and increasing the DCD value. Using 100% TOTAL 3860X 100 melt flow rate polypropylene available from Total Petrochemicals and the operating parameters shown below in Table 5B, webs with substantially reduced shot were formed at 60, 100, 150 and 200 gsm by varying the collector speed. The resulting webs had considerably more fibers with a diameter greater than 10 μm than was the case for the webs produced using the Table 5A operating parameters.

Table 5B

Parameter	Value
Polymer melt flow rate	100 MFR
Extruder barrel temp	320° C
Screw speed	8 rpm
Polymer flow rate	4.55 kg/hr
Die temp	290° C
DCD	305 mm
Die Air temp	270° C
Die Air rate	4.4 Nm ³ /min
Larger Orifice diameter Da	0.6 mm
Smaller Orifice diameter Db	0.4 mm
Orifice Diameter ratio R (Da/Db)	1.5
Number of smaller orifices per larger orifice	5
Average Fiber Diameter, μm	3.82
St Dev Fiber Diameter, μm	2.57
Min Fiber Diameter, μm	1.33
Max Fiber Diameter, μm	20.32
EFD, μm	13.0
Shot	Not Many

[00107] **Fig. 16** is a histogram of mass fraction vs. fiber size in μm for the 200 gsm web. The web exhibited modes at 4, 10, 17 and 22 μm . Local, non-modal peaks also appeared at 8 and 13 μm . **Fig. 17** is a histogram of fiber count (frequency) vs. fiber size in μm for the same 200 gsm web.

[00108] It was also determined that shot could be reduced by employing a die with a greater number of smaller orifices per larger orifice than the Mikami et al. dies. Webs with minimal shot were also produced at 60, 100, 150 and 200 gsm using both TOTAL 3868 and TOTAL 3860X polymers and a different 10 in. (25.4 cm) wide drilled orifice die. The die tip for this latter die had been modified to provide a row of larger and smaller sized orifices with a greater number of smaller orifices between larger orifices than disclosed in Mikami et al. The larger orifices had a 0.63 mm diameter (Da), the smaller orifices had a 0.3 mm diameter (Db), the orifice diameter ratio R (Da/Db) was 2.1, there were 9 smaller orifices between each pair of larger orifices and the orifices were spaced at 25 orifices/in. (9.8 orifices/cm). A single screw extruder with a 50 mm diameter screw and a 10cc melt pump were used to supply the die with polymer. The die also had a 0.76 mm air slit width, a 60° nozzle edge angle, and a 0.86 mm air lip opening. A fine mesh screen moving at 1 to 50 m/min and the operating parameters shown below in Table 5C were employed to collect webs at 60, 100, 150 and 200 gsm:

Table 5C

Parameter	Value	
Polymer melt flow rate	37 MFR	100 MFR
Extruder barrel temp	320° C	320° C
Screw speed	9 rpm	10 rpm
Polymer flow rate	4.8 kg/hr	4.8 kg/hr
Die temp	295° C	290° C
DCD	395 mm	420 mm
Die Air temp	278° C	274° C
Die Air rate	4.8 Nm ³ /min	4.8 Nm ³ /min
Larger Orifice diameter Da	0.63 mm	0.63 mm
Smaller Orifice diameter Db	0.3 mm	0.3 mm
Orifice Diameter ratio R (Da/Db)	2.1	2.1
Number of smaller orifices per larger orifice	9	9
Average Fiber Diameter, μm	2.31	2.11
St Dev Fiber Diameter, μm	4.05	3.12
Min Fiber Diameter, μm	0.17	0.25
Max Fiber Diameter, μm	23.28	23.99
EFD, μm	10.4	11.2
Shot	Not Many	Not Many

[00109] **Fig. 18** is a histogram of mass fraction vs. fiber size in μm for the 200 gsm 100 MFR web. The web exhibited modes at 15, 30 and 40 μm . **Fig. 19** is a histogram of fiber count (frequency) vs. fiber size in μm for the same 200 gsm web.

[00110] A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the invention. Accordingly, other embodiments are within the scope of the following claims. The scope of the claims should not be limited by the examples herein, but should be given the broadest interpretation consistent with the description as a whole.

60557-8003

CLAIMS:

1. 1. A process for making a pleated filter comprising:
 - a) forming a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition, the web having a Gurley Stiffness of at least 100 mg,
5
 - b) forming rows of pleats in the nonwoven web, and
 - c) cutting the pleated web to a desired size and shape to form a self-supporting pleated filter element comprising a porous monocomponent monolayer matrix of fibers bonded to one another at at least some points of fiber intersection and having an average initial submicron efficiency of at least 15 % at a
10 1.52 meters/sec face velocity,
wherein the monolayer matrix comprises a generally uniform distribution of fiber sizes throughout a cross-section of the monolayer matrix.
- 15 2. A process according to claim 1 wherein the histogram of mass fraction vs. fiber size in μm exhibits a larger size fiber mode of about 10 to about 50 μm .
3. A process according to claim 1 wherein the histogram of mass fraction vs. fiber size in μm exhibits a larger size fiber mode of about 10 to about 40 μm .
4. A process according to claim 1 wherein the histogram of mass fraction vs. fiber
20 size in μm exhibits a smaller size fiber mode of about 1 to about 5 μm and a larger size fiber mode of about 12 to about 30 μm .
5. A process according to claim 1 wherein a histogram of fiber count (frequency) vs. fiber size in μm exhibits at least two modes whose corresponding fiber sizes differ by at least 50% of the smaller fiber size.

60557-8003

6. A process according to claim 1 wherein the larger size fibers have a size of about 10 to about 60 μm and the smaller size fibers have a size of about 0.5 to about 20 μm .

7. A process according to claim 1 wherein the larger size fibers have a size of about 20 to about 50 μm and the smaller size fibers have a size of about 0.5 to about 10 μm .

5 8. A process according to claim 1 wherein the ratio of the number of smaller size fibers per larger size fiber is 6: 1 or more.

9. A process according to claim 1 wherein the smaller size fibers provide at least 20% of the fibrous surface area of the web.

10. A process according to claim 1 wherein the smaller size fibers provide at least 10 40% of the fibrous surface area of the web.

11. A process according to claim 1 wherein the web has an Effective Fiber Diameter of about 8 to about 40 μm .

12. A process according to claim 1 wherein the web has a basis weight of about 65 to about 250 gsm.

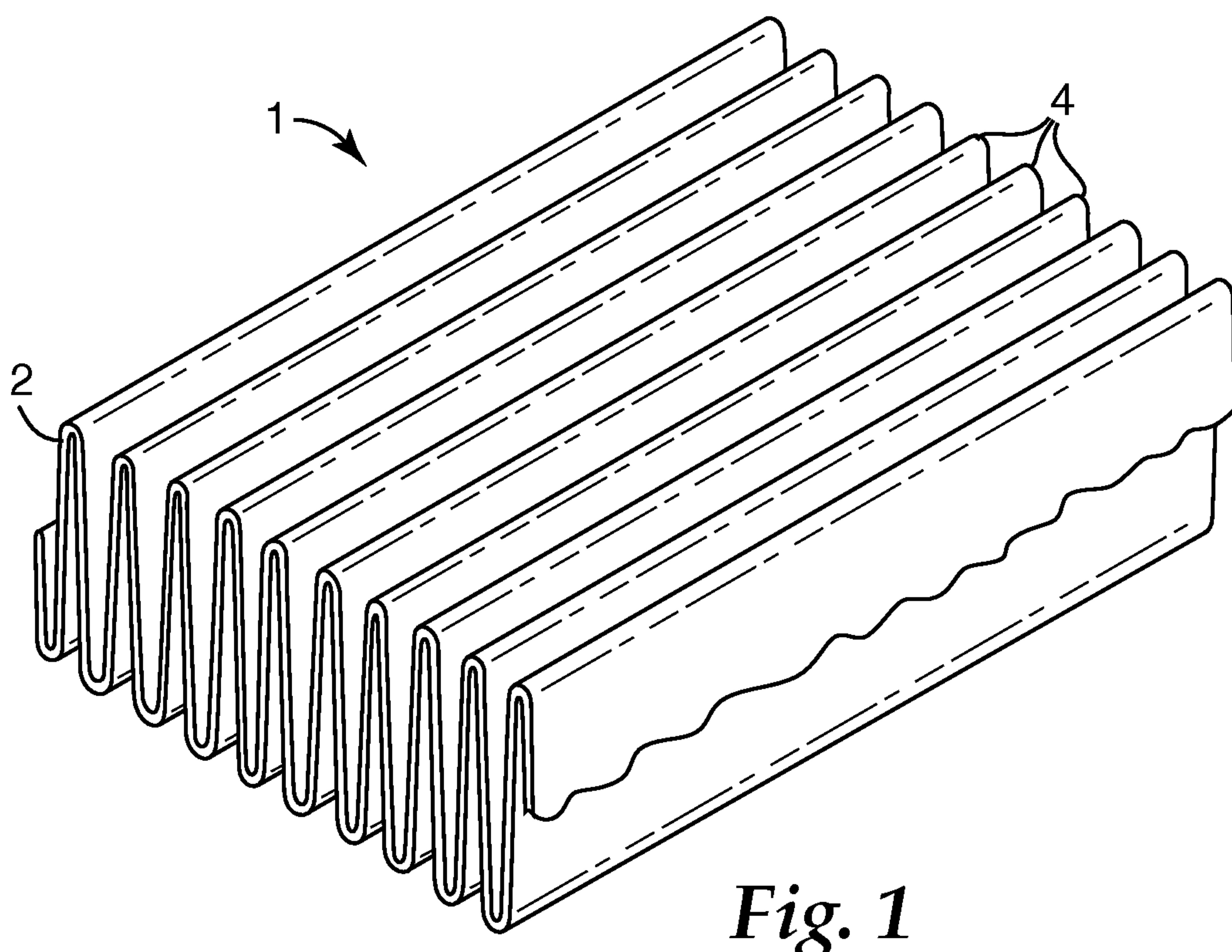
15 13. A process according to claim 1 wherein the web has a Gurley Stiffness of at least about 200 mg.

14. A process according to claim 1 wherein the web has a Gurley Stiffness of at least about 300 mg.

15. A process according to claim 1 comprising meltspinning the larger and smaller 20 size fibers.

16. A process according to claim 1 comprising meltspinning the larger size fibers and meltblowing the smaller size fibers.

17. A process according to claim 1 comprising meltblowing the larger and smaller size fibers.


60557-8003

18. A process according to claim 1 wherein the polymer is polypropylene.
19. A process according to claim 1 wherein the pleated filter element has an average initial sub-micron efficiency of at least about 25%.
20. A process according to claim 1 wherein the pleated filter element has an 5 average initial sub-micron efficiency of at least about 50%.
21. A process according to claim 1 further comprising calendaring the web.
22. A process according to claim 1 further comprising charging the web.
23. A process according to claim according to claim 21 comprising hydrocharging the web.
- 10 24. A pleated filter comprising a self-supporting porous monocomponent monolayer matrix containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition, the fibers being bonded to one another at at least some points of fiber intersection and the matrix forming rows of folded or corrugated pleats and having an average 15 initial submicron efficiency of at least 15 % at a 1.52 meters/sec face velocity, wherein the monolayer matrix comprises a generally uniform distribution of fiber sizes throughout a cross-section of the monolayer matrix.
25. A pleated filter according to claim 24 wherein the histogram of mass fraction vs. fiber size in μm exhibits a larger size fiber mode of about 10 to about 50 μm .
- 20 26. A pleated filter according to claim 24 wherein the histogram of mass fraction vs. fiber size in μm exhibits a larger size fiber mode of about 10 to about 40 μm .
27. A pleated filter according to claim 24 wherein the histogram of mass fraction vs. fiber size in μm exhibits a smaller size fiber mode of about 1 to about 5 μm and a larger size fiber mode of about 12 to about 30 μm .

60557-8003

28. A pleated filter according to claim 24 wherein a histogram of fiber count (frequency) vs. fiber size in μm exhibits at least two modes whose corresponding fiber sizes differ by at least 50% of the smaller fiber size.
29. A pleated filter according to claim 24 wherein the larger size fibers have a size of about 10 to about 60 μm and the smaller size fibers have a size of about 0.5 to about 20 μm .
30. A pleated filter according to claim 24 wherein the larger size fibers have a size of about 20 to about 50 μm and the smaller size fibers have a size of about 0.5 to about 10 μm .
31. A pleated filter according to claim 24 wherein the ratio of the number of smaller size fibers per larger size fiber is 6:1 or more.
- 10 32. A pleated filter according to claim 24 wherein the smaller size fibers provide at least 20% of the fibrous surface area of the matrix.
33. A pleated filter according to claim 24 wherein the smaller size fibers provide at least 40% of the fibrous surface area of the matrix.
- 15 34. A pleated filter according to claim 24 wherein the matrix has a basis weight of about 65 to about 250 gsm.
35. A pleated filter according to claim 24 wherein the larger and smaller size fibers are meltspun.
36. A pleated filter according to claim 24 wherein the larger size fibers are meltspun and the smaller size fibers are meltblown.
- 20 37. A pleated filter according to claim 24 wherein the larger and smaller size fibers are meltblown.
38. A pleated filter according to claim 24 wherein the polymer is polypropylene.

1/13

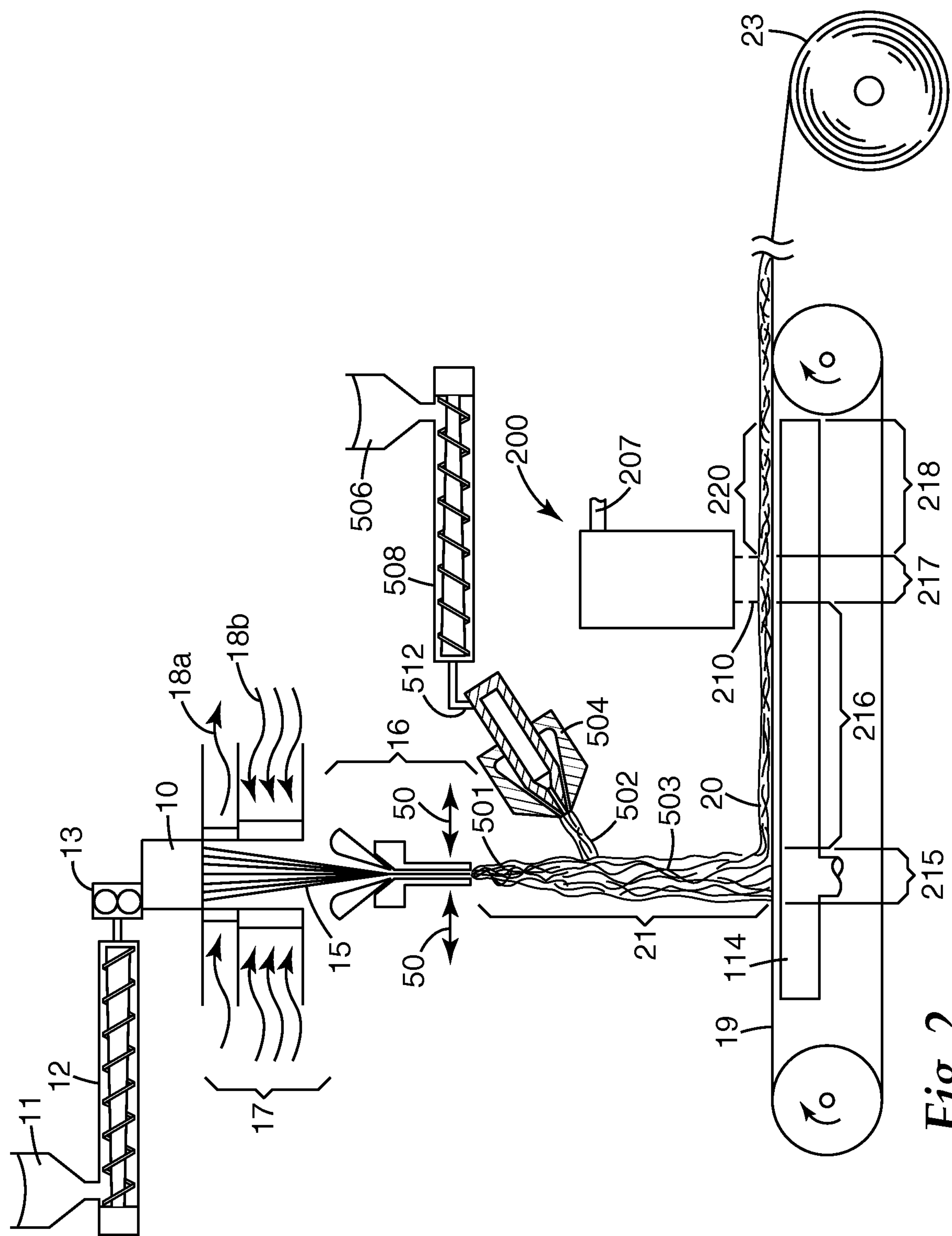
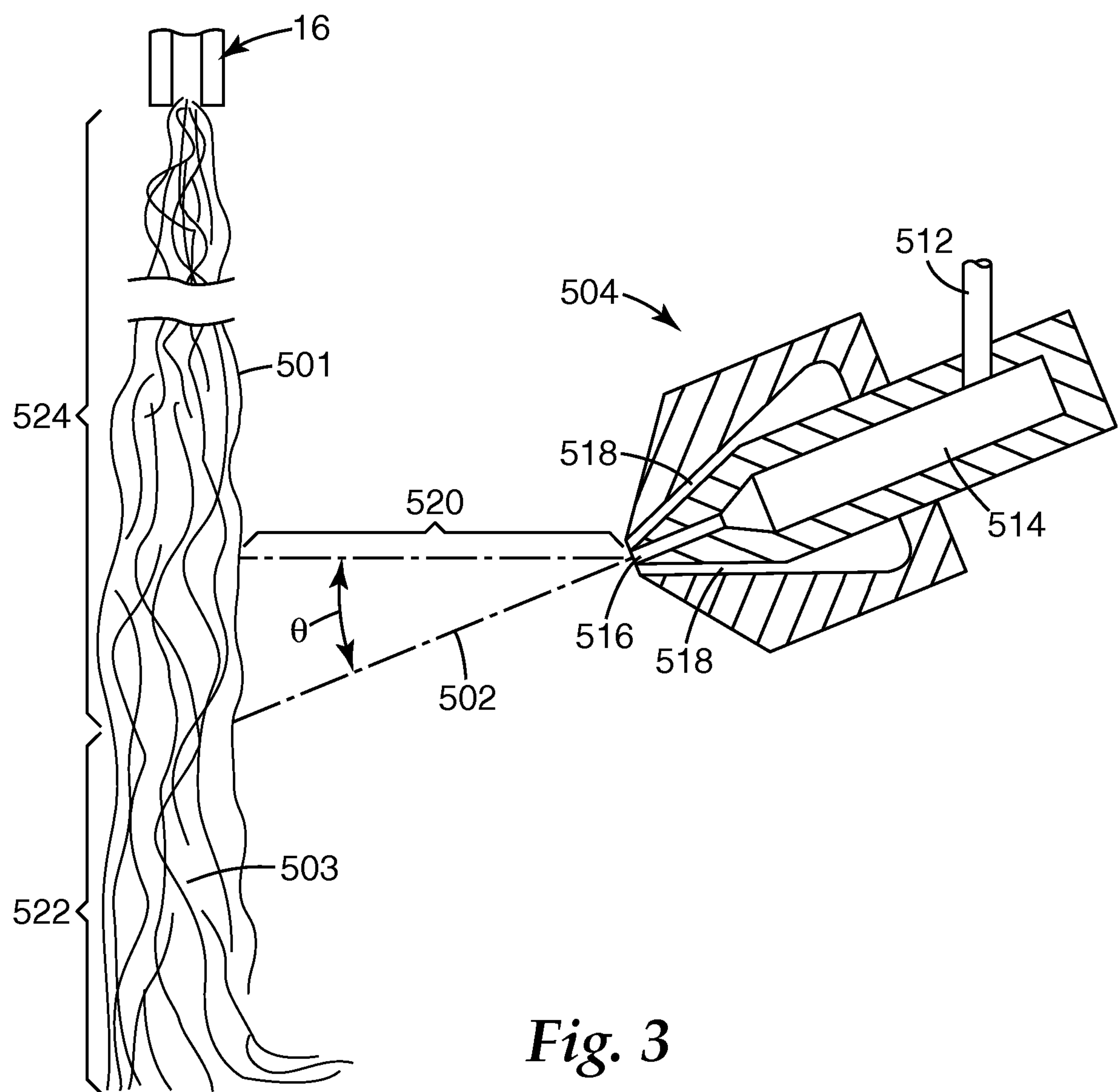



Fig. 2

3/13

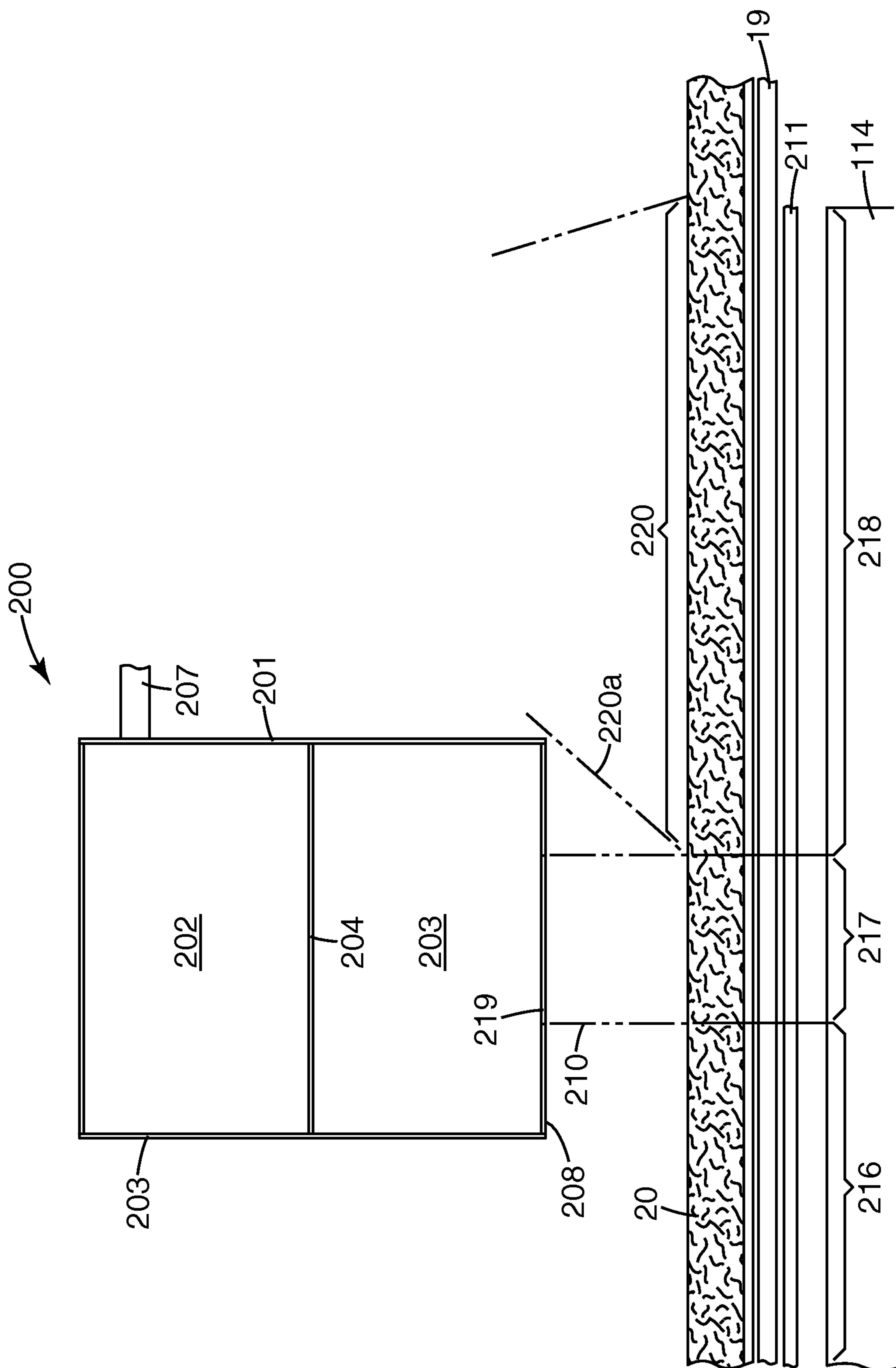
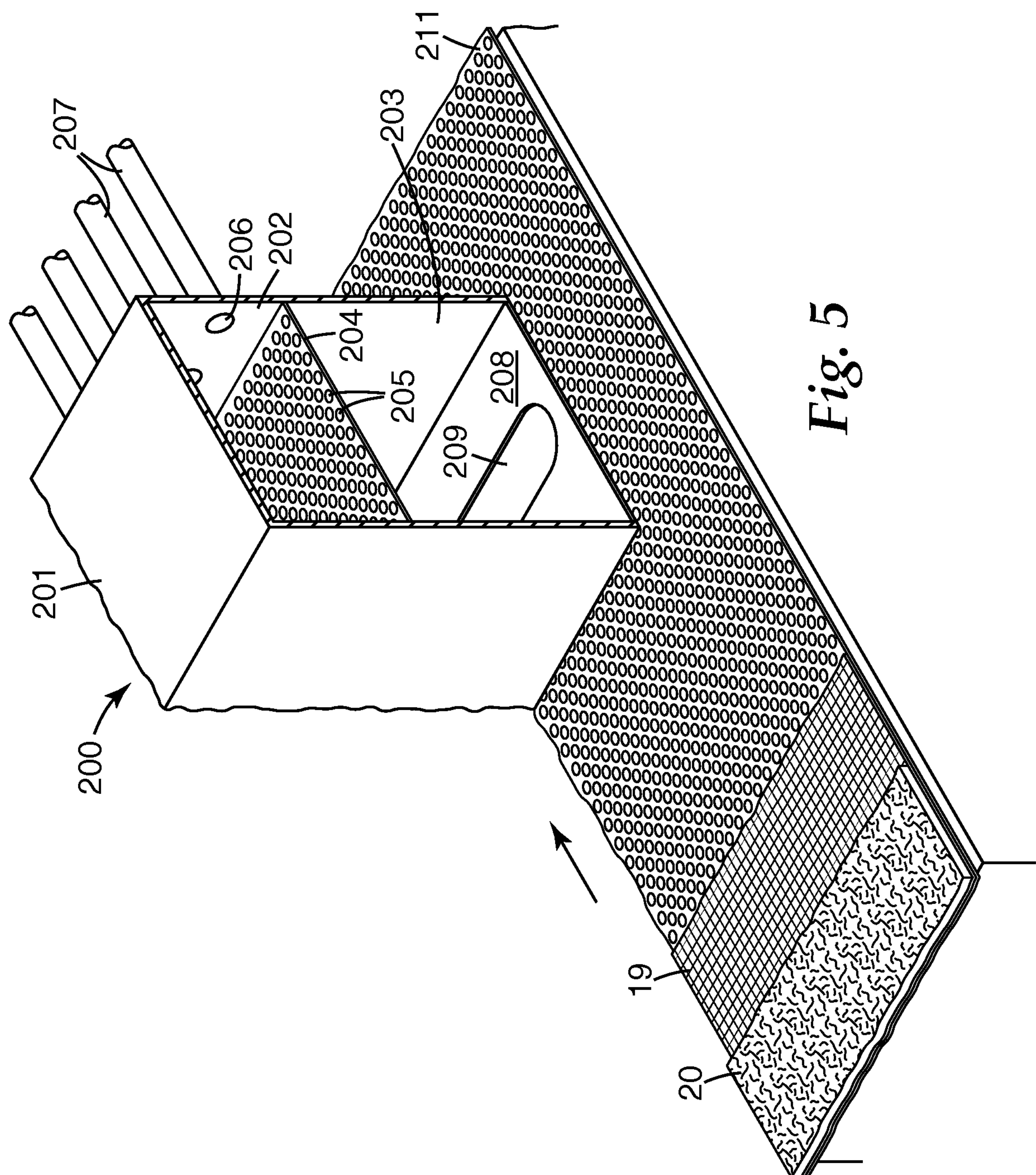



Fig. 4

5/13

6/13

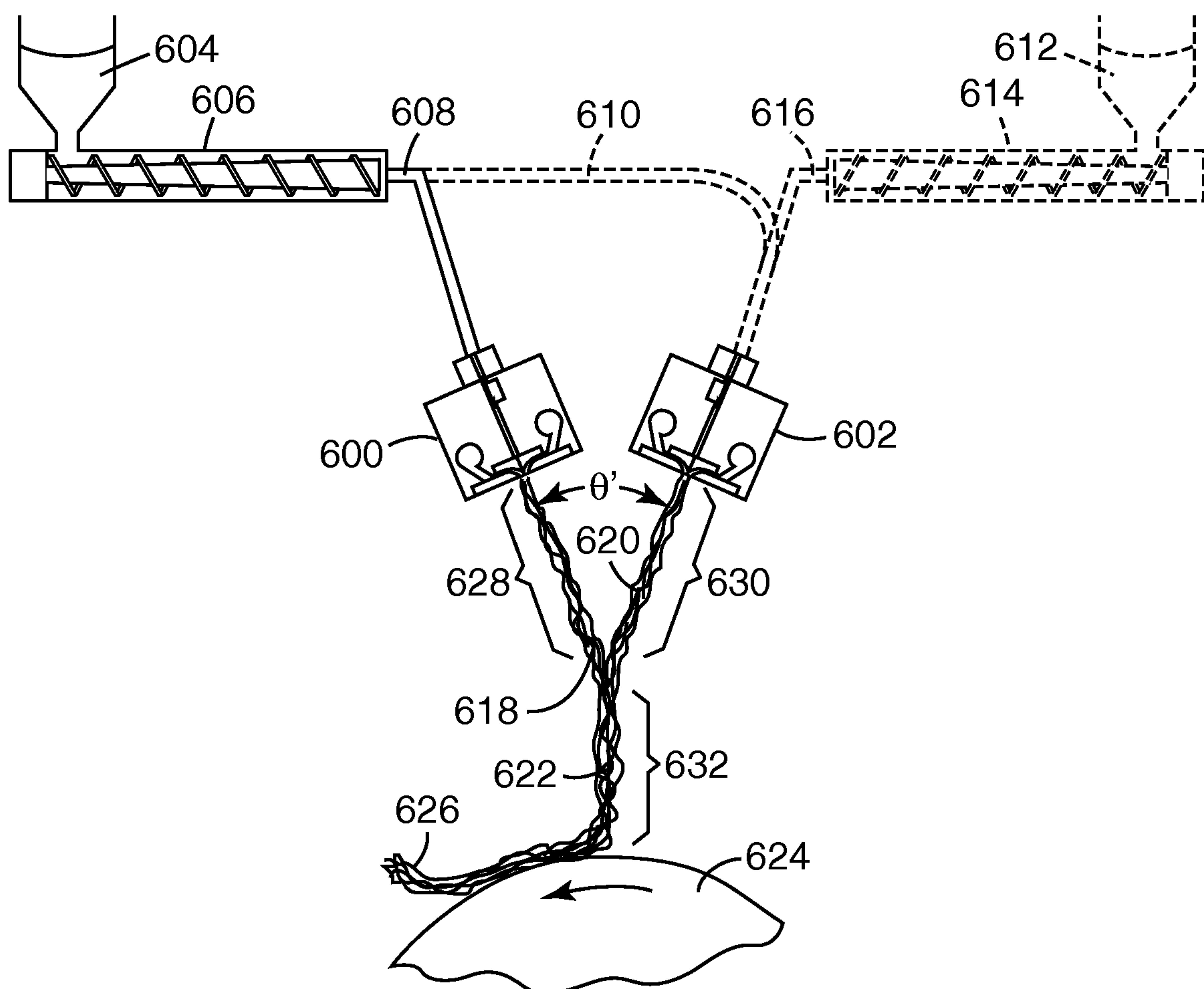


Fig. 6

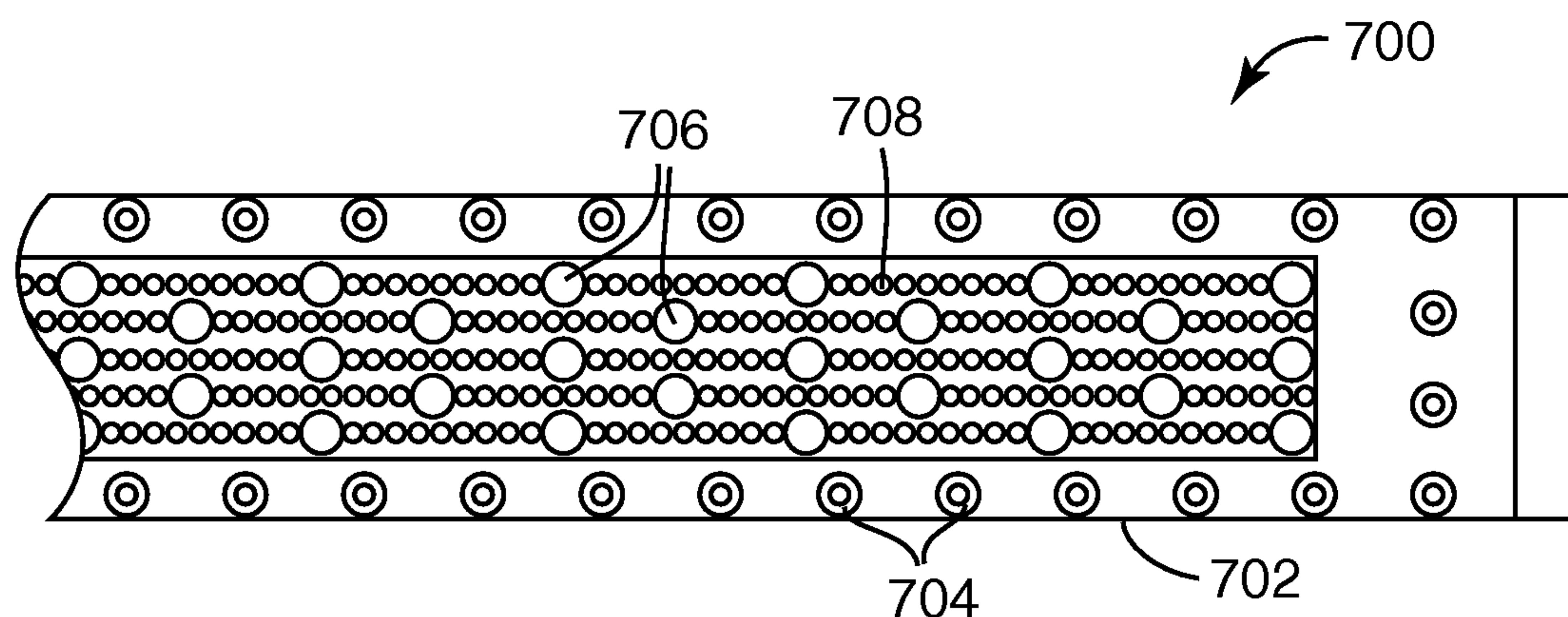
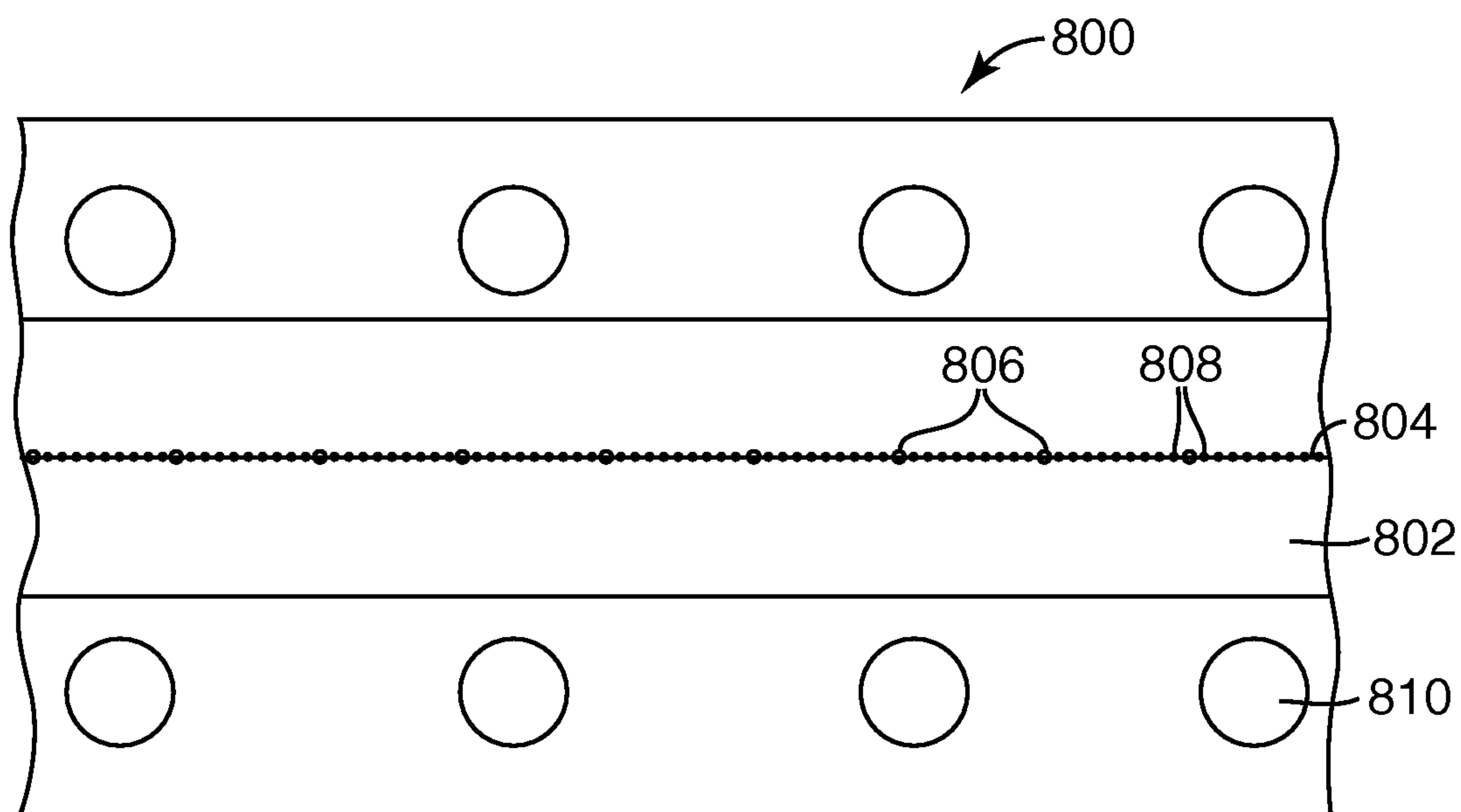
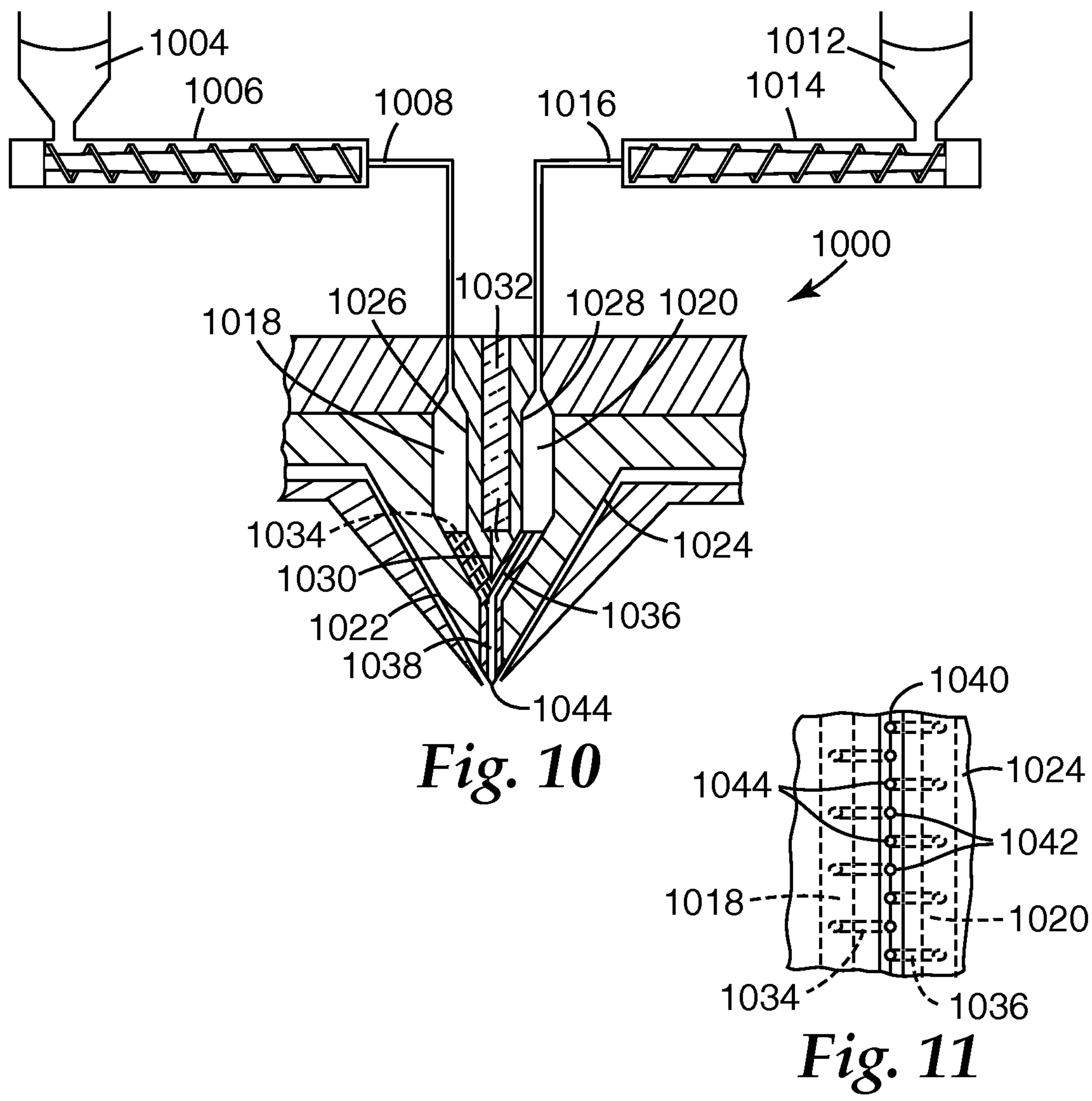




Fig. 7

7/13

Fig. 8

8/13

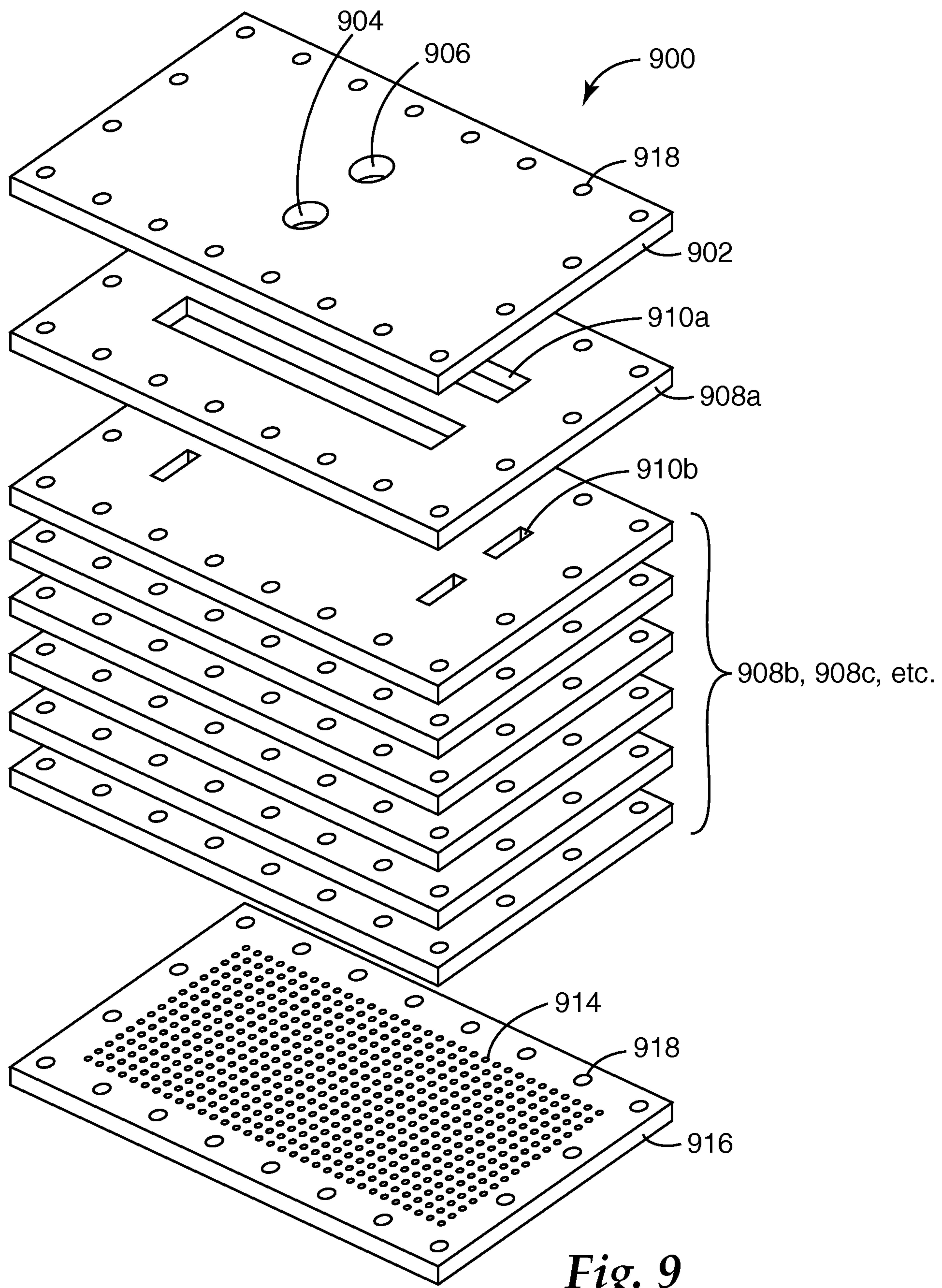
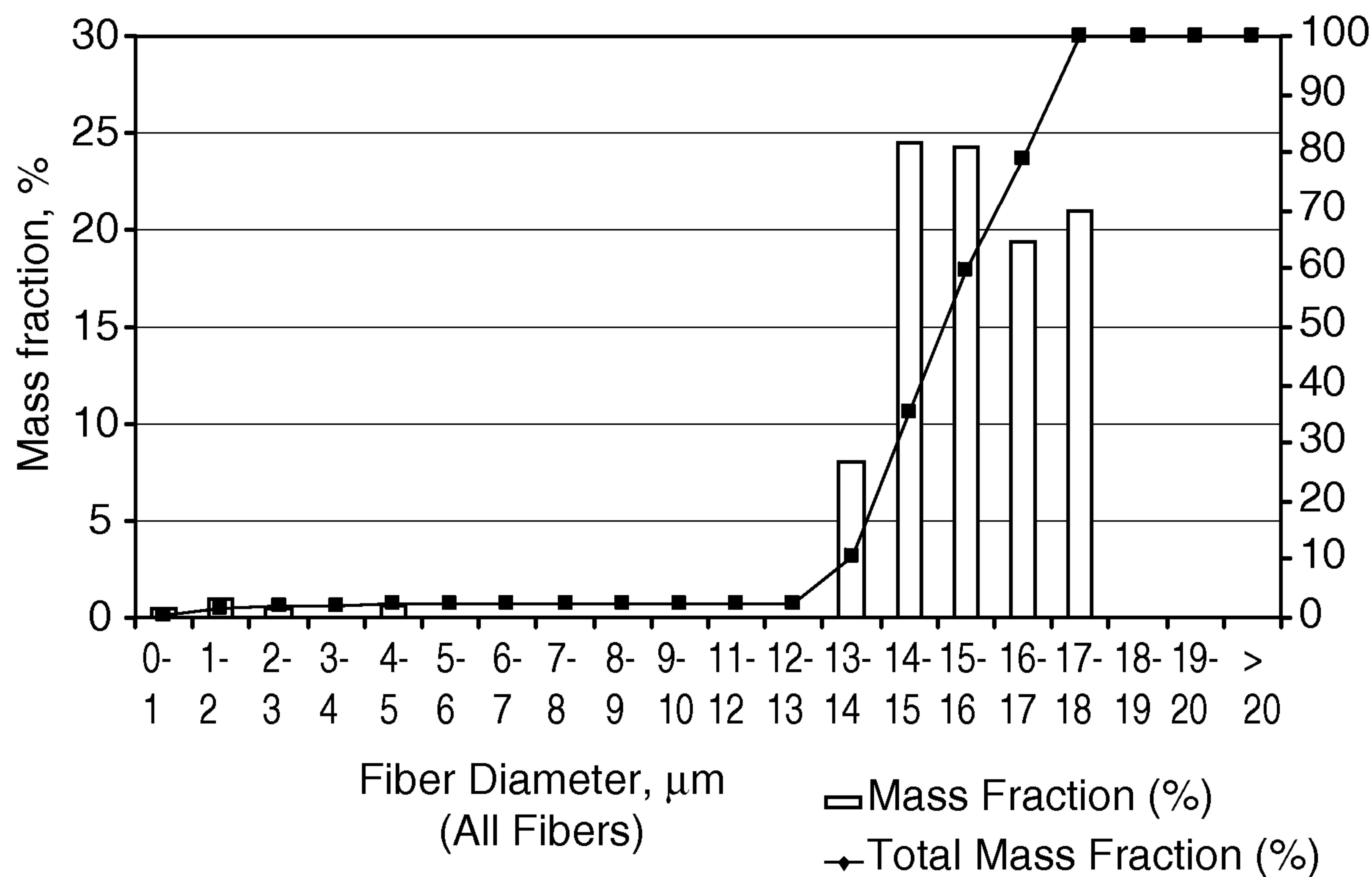
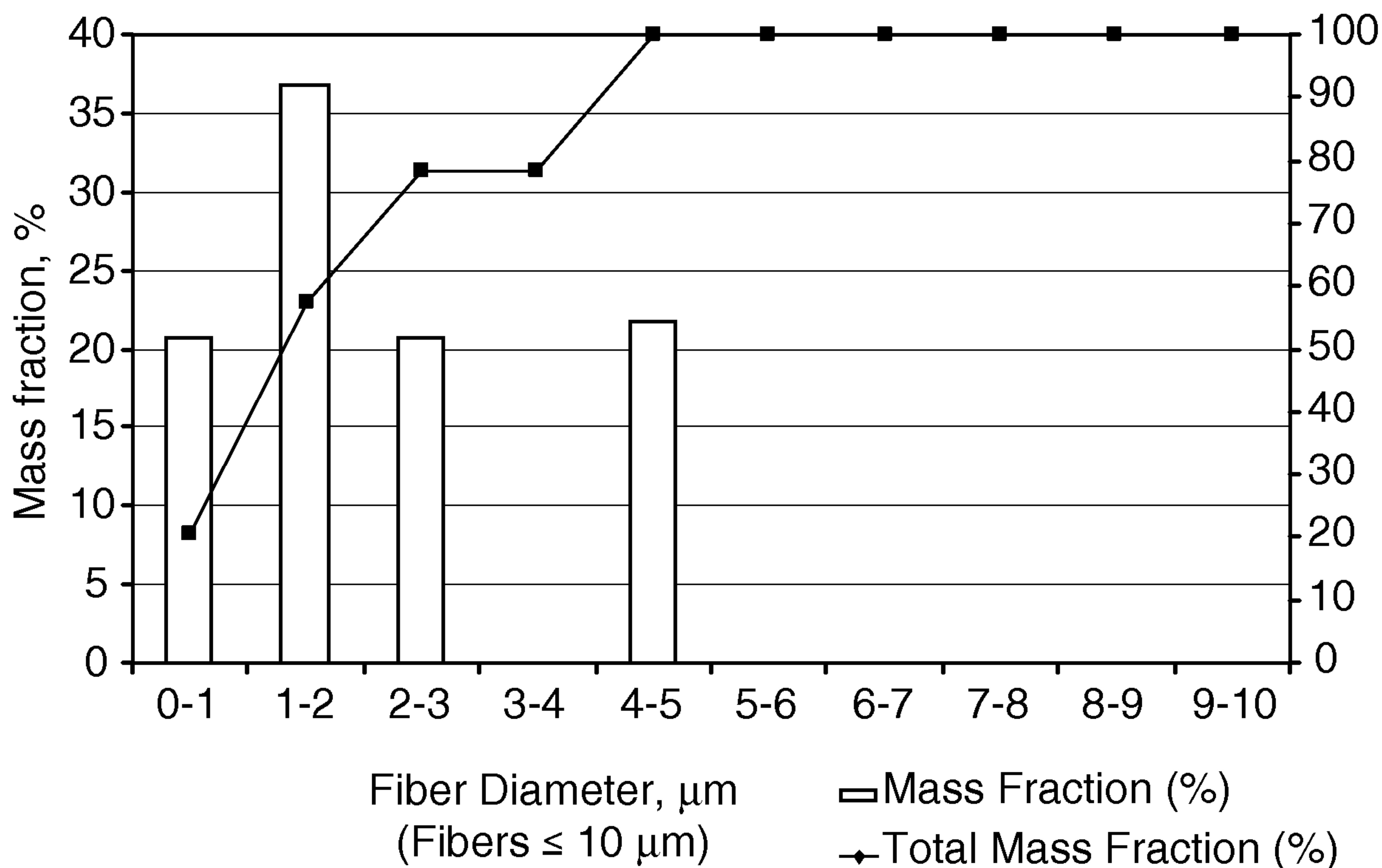
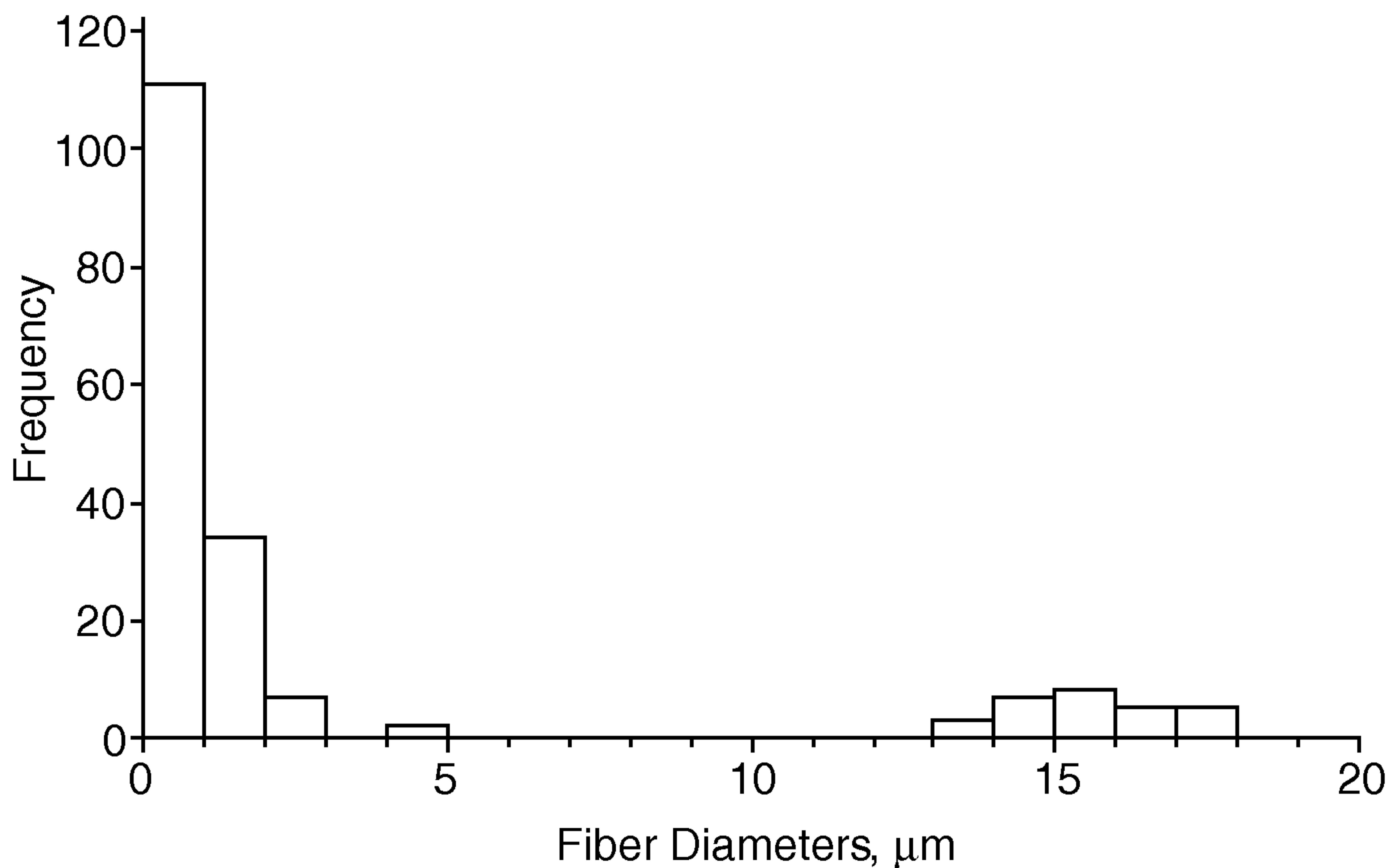
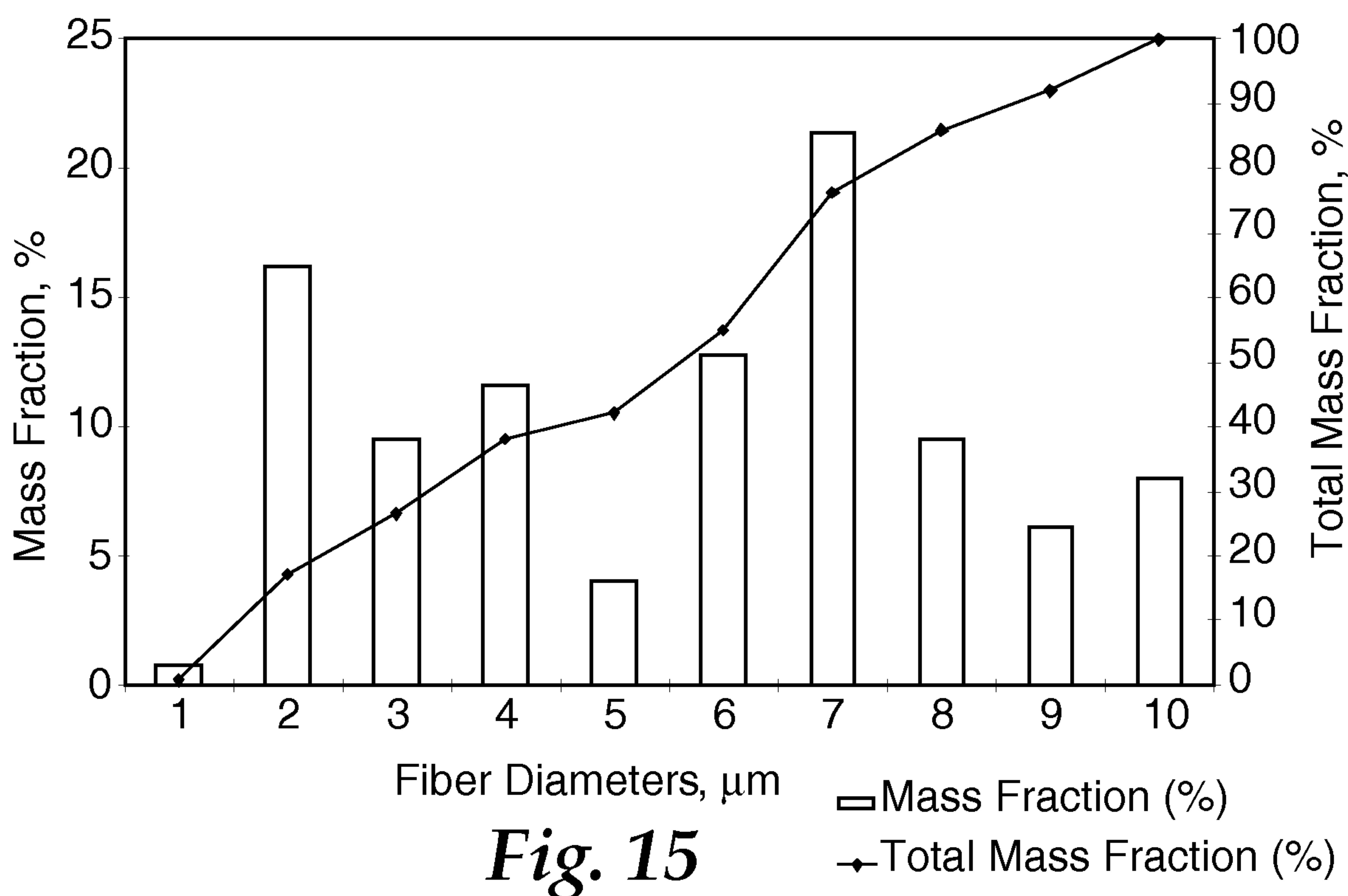





Fig. 9


9/13

*Fig. 12a**Fig. 12b*

10/13

Fig. 13

Fig. 15

11/13

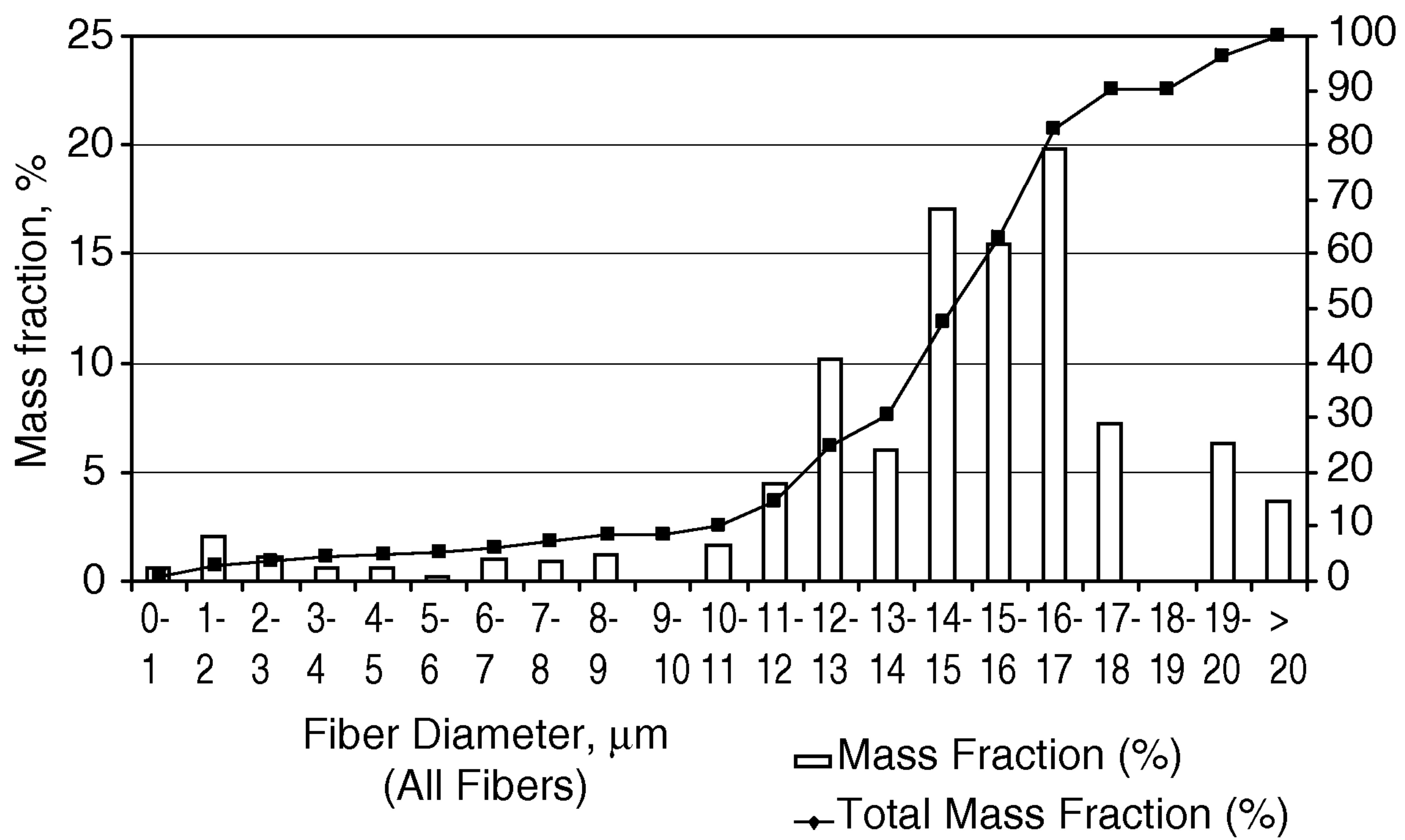


Fig. 14a

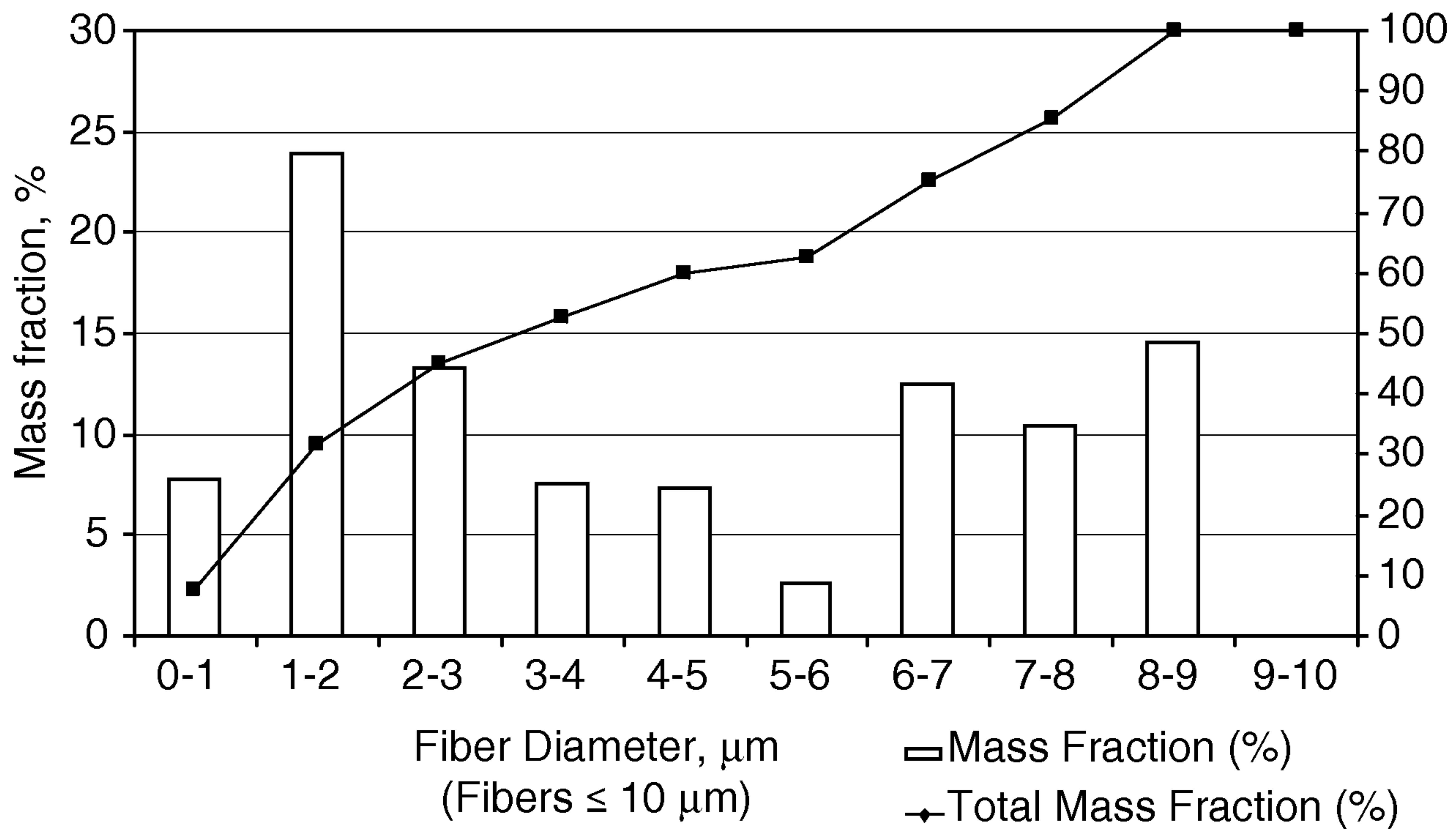
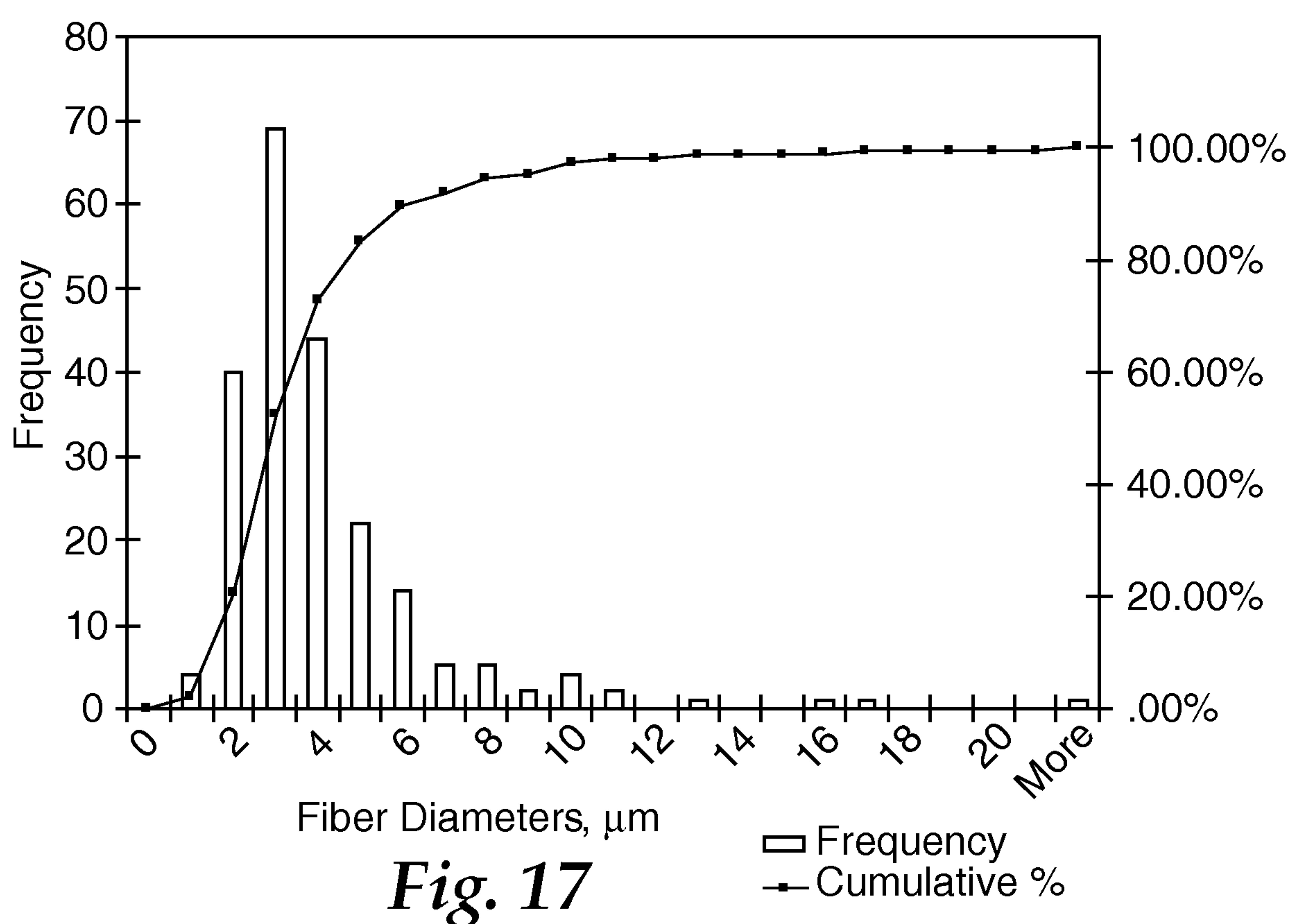
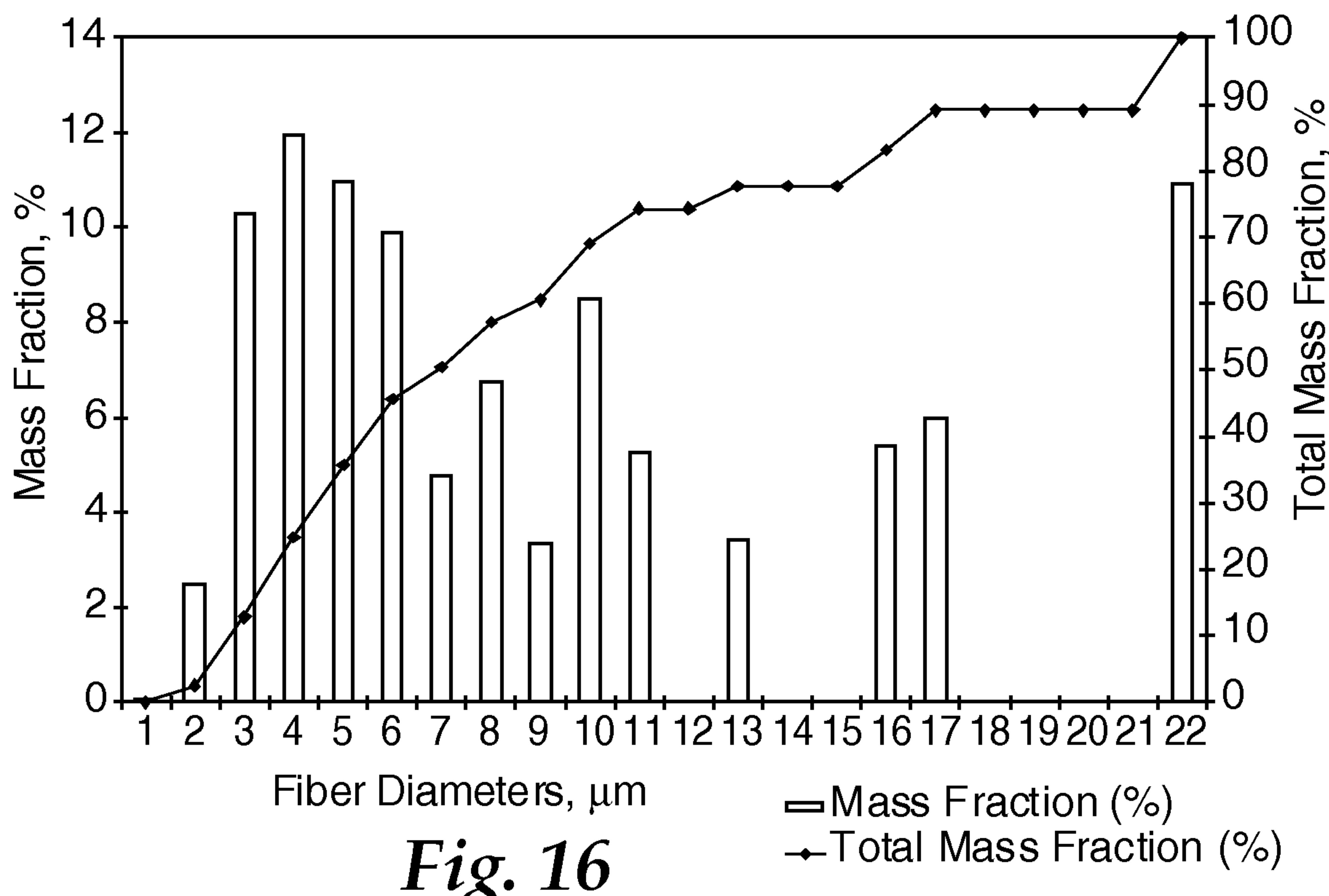




Fig. 14b

12/13

13/13

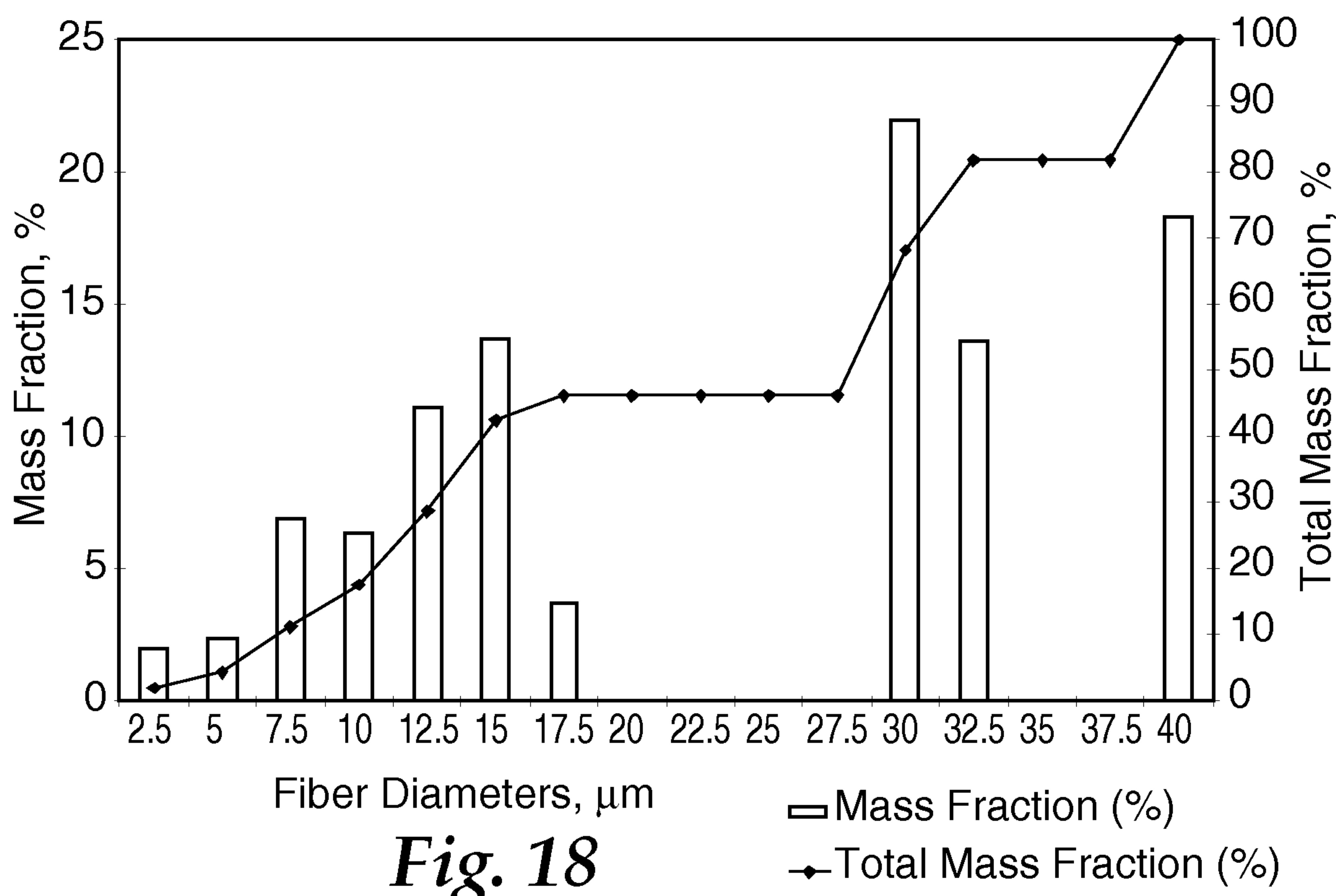


Fig. 18

■ Mass Fraction (%)
 ▶ Total Mass Fraction (%)

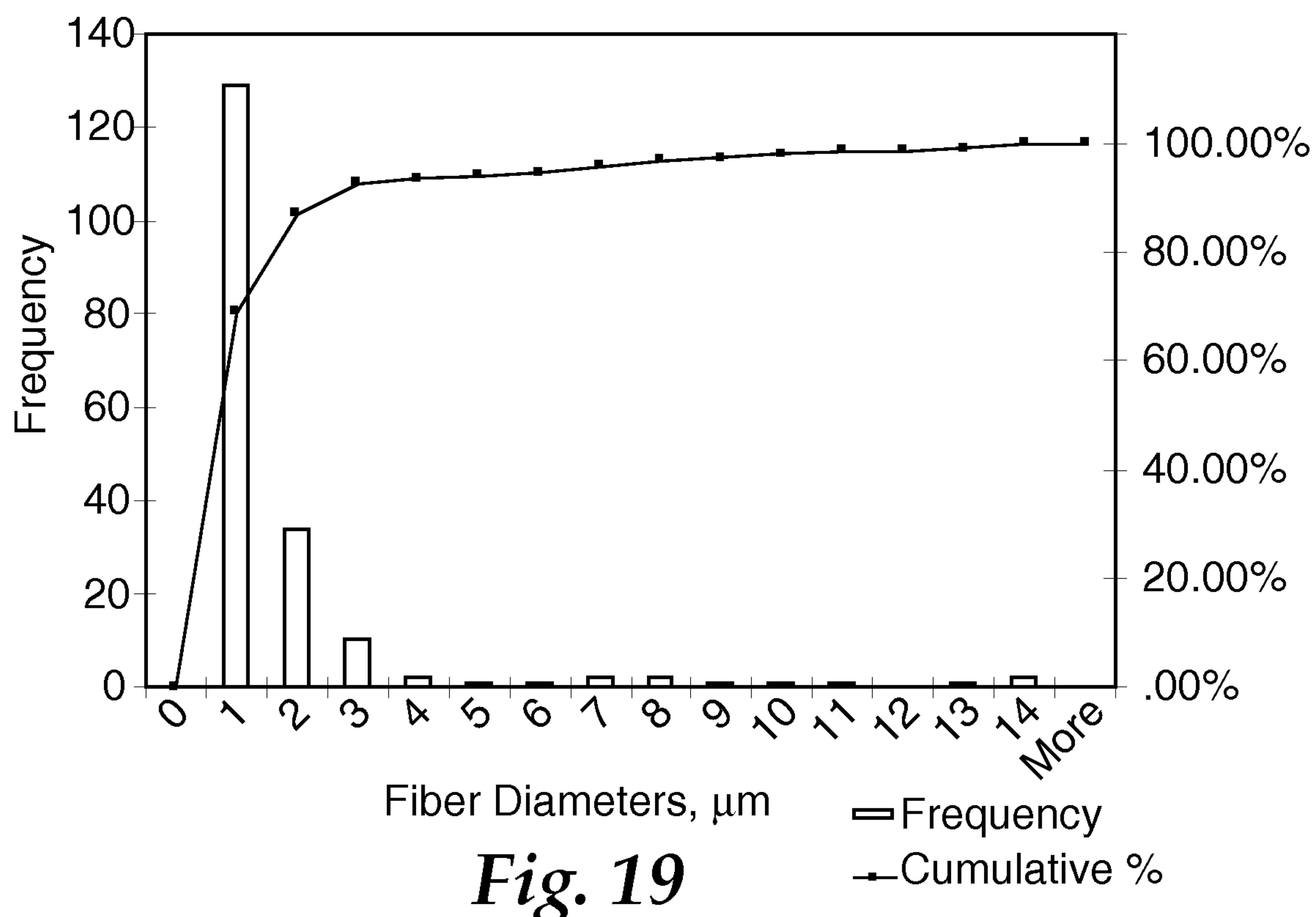
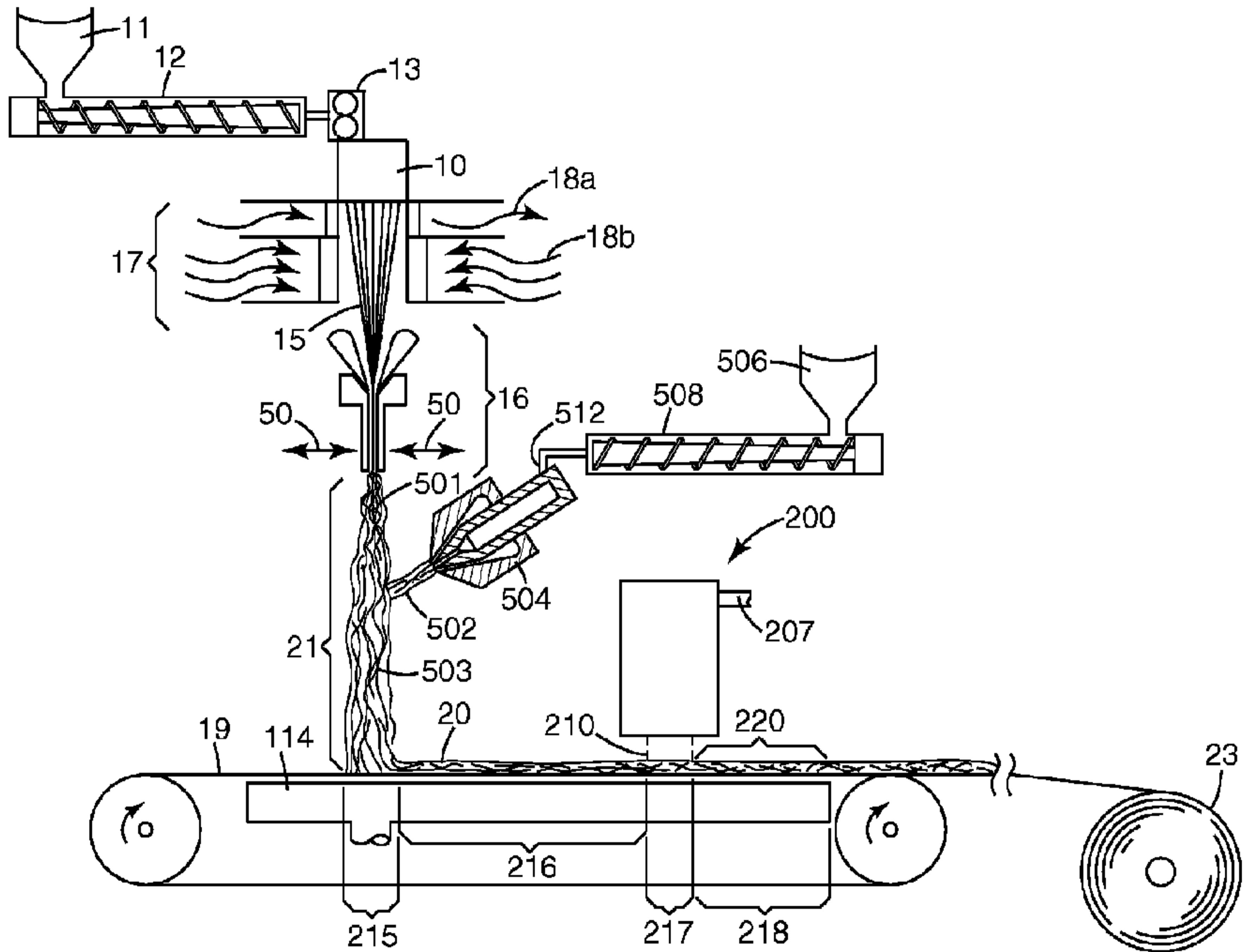



Fig. 19

■ Frequency
 ▶ Cumulative %

