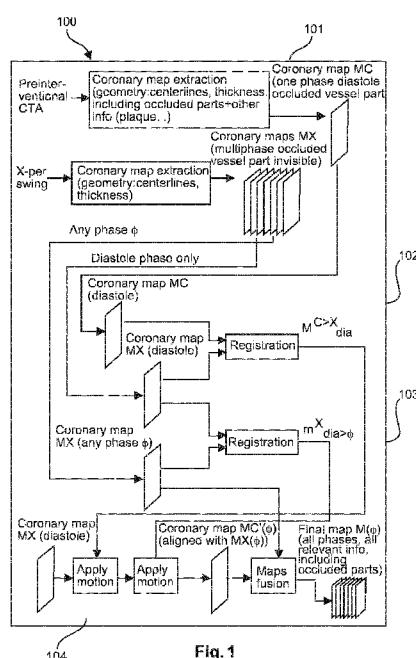


(43) International Publication Date
1 October 2015 (01.10.2015)(51) International Patent Classification:
G06T 7/00 (2006.01) A61B 6/00 (2006.01)(21) International Application Number:
PCT/EP2015/055387(22) International Filing Date:
16 March 2015 (16.03.2015)(25) Filing Language:
English(26) Publication Language:
English(30) Priority Data:
14305429.4 26 March 2014 (26.03.2014) EP(71) Applicant: **KONINKLIJKE PHILIPS N.V. [NL/NL];**
High Tech Campus 5, NL-5656 AE Eindhoven (NL).(72) Inventors: **AUVRAY, Vincent, Maurice, Andre;** c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL).
FLORENT, Raoul; c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL). **LELONG, Pierre Henri;** c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL).(74) Agents: **DAMEN, Daniel, Martijn** et al.; Philips IP&S,
High Tech Campus 5, NL-5656 AE Eindhoven (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

*[Continued on next page]***(54) Title:** DEVICE AND METHOD FOR MEDICAL IMAGING OF CORONARY VESSELS

(57) Abstract: The present invention relates to a method and a device for medical imaging of coronary vessels, the device comprising: a data extracting module configured to extract a first vessel map from computed tomography angiography data covering at least one reference cardiac phase and a set of second vessel maps from three-dimensional rotational angiography data covering at least one cardiac cycle; an interpolation module configured to generate a series of warped versions of the first vessel map aligned with the set of second vessel maps, the series starting at the at least one reference cardiac phase; and a merging module configured to merge the series and the set of second vessel maps at the different phases in order to generate a final imaging map of the coronary vessels.

Published:

— *with international search report (Art. 21(3))*

DEVICE AND METHOD FOR MEDICAL IMAGING OF CORONARY VESSELS

FIELD OF THE INVENTION

The present invention relates to a device and a method for medical imaging of coronary vessels.

5 BACKGROUND OF THE INVENTION

US 8,055,044 B2 describes a system for visualization of blood vessels and bones. One of two data sets, originating from two different radiological methods is processed to generate interim results, yielded by an operation on one of the data sets. The interim results are used to modify the other data set. Different imaging capabilities of the employed radiological methods promote a particular task, e.g. the segmentation of a given type of tissue.

When the combined data of both methods is displayed, clinical users benefit from the complementary information. It is conducted, that only relevant information is presented to the user, as to avoid irrelevant data obscuring any data of interest. Therefore, the data to be displayed is further filtered based on content, e.g. the type of tissue, and on location. Three-dimensional computer tomography and three-dimensional rotational angiography are particularly applicable radiological methods.

US 2009/0123046 A1 describes a system and a method of generating intraoperative three-dimensional image data including the processes of acquiring baseline three-dimensional image data of a region of interest. Non-contrast three-dimensional image data of the region and intra-operative two-dimensional image data of the region are acquired in addition.

The intra-operative two-dimensional image data and the baseline three-dimensional image data are each aligned to the non-contrast three-dimensionsal image data, whereby a rendering of intra-operative three-dimensional image data results from the alignment of both the baseline three-dimensional and intra-operative two-dimensional image data to the non-contrast three-dimensional image data.

US 2009/093712 A1 describes a method for navigating a catheter with a catheter tip through a blockage region in a vessel, especially a coronary vessel, whereby the

catheter is pushed forward under real-time radiological observation. For this purpose, a three-dimensional path through the blockage region is determined by reference to a set of sectional images or a three-dimensional representation of the blockage region, recorded beforehand as part of a preliminary investigation, whereby a data set including the path coordinates is

5 brought into register with the real-time radiological images, and whereby the path or a projection of the path is visualized on a display, overlaid on the real-time radiological images.

An article by Quatember, Bernhard, et al., "Development of an Accurate Method for Motion Analyses of the Heart Wall Based on Medical Imagery", Computer Aided Systems Theory – EUROCAST 2011, Springer Berlin Heidelberg, pp. 248-255, (hereinafter "document D1" or "D1") describes a technique for tracking and analyzing the regional motion of the epicardial surface of the heart throughout the cardiac cycle, based on cardiac CT and biplane cineangiography. The epicardial surface is segmented from 3D CT data. Selected bifurcation points of the epicardial arteries are defined as landmarks. Based on these landmarks, the epicardial surface is registered to a 3D reconstruction of the coronary artery tree made from the biplane cineangiograms. The initial registration is used as a basis for a time series of transformations of the epicardial surface throughout the cardiac cycle.

The recanalization of chronically total occluded, CTO, coronary arteries is one of the most difficult percutaneous interventions, because the course of the occluded part of the vessel is invisible in angiography. The occluded portion being visible in computed tomography angiography, CTA, exams, it has been proposed to extract a complete map of the coronary arteries from the computed tomography, CT, and to present it aligned with the angiography to help planning and navigation in the cath lab.

However, cardiac CTA are only performed at diastole in practice. As a result, the complete coronary map is only available at one heart phase. This is an important limitation for some applications like three-dimensional cardiac road-mapping in the case of CTO.

SUMMARY OF THE INVENTION

30 There may be a need to improve the digital image processing for medical imaging of coronary vessels and coronary mapping.

These needs are met by the subject-matter of the independent claims. Further exemplary embodiments are evident from the dependent claims and the following description.

An aspect of the invention relates to a device for medical imaging of coronary vessels, the device comprising: a data extracting module configured to extract a first vessel map from computed tomography angiography data covering at least one reference cardiac phase and a set of second vessel maps from three-dimensional rotational angiography data covering at least one cardiac cycle; an interpolation module configured to generate a series of warped versions of the first vessel map aligned with the set of second vessel maps, the series starting at the at least one reference cardiac phase; and a merging module configured to merge the series and the set of second vessel maps at the different phases in order to generate a final imaging map of the coronary vessels.

A further aspect of the invention relates to an X-ray medical imaging system comprising a computed tomography angiography device providing computed tomography angiography data, a three-dimensional rotational angiography device providing three-dimensional rotational angiography data and a device for medical imaging of coronary vessels.

A further aspect of the invention relates to a method for medical imaging of coronary vessels, the method comprising the steps of: extracting a first vessel map from computed tomography angiography data covering at least one cardiac phase and a set of second vessel maps from three-dimensional rotational angiography data covering at least one cardiac cycle; generating a series of versions the first vessel map based on estimated motions of the coronary vessels and the initial alignment of both datasets at the at least one reference phase; interpolating the set of second vessel maps from the reference cardiac phase to any other phase based on the estimated motions of the coronary vessels; and merging the series and the set of second vessel maps at different phases in order to generate a final imaging map of the coronary vessels.

The present invention provides an approach to rely on a C-arm CT reconstruction of three-dimensional rotational angiography of the coronary arteries to generate a complete multiphase map. Indeed, accurate three-dimensional maps of the injected coronaries (over which the occluded segments are invisible) can be extracted from the three-dimensional rotational angiography, 3DRA, at any given heart phase.

The present invention provides to warp the CTA coronary map over each of the 3DRA coronary maps, in order to generate accurate multiphase coronary maps that show the occluded vessel segments. In other words, a final imaging map of the coronary vessels is generated, in which vessel segments that are occluded in the 3DRA vessel maps have been made visible based on their appearance in the CT vessel map.

The present invention advantageously provides to rely on a set of second coronary vessel maps, which presents the opposite characteristics: they can be extracted accurately at any given heart phase, but they show only the vessel parts that are injected – and thus miss the occluded parts. These second coronary maps can be gained from a 3DRA, 5 typically an X-per swing acquisition or any other single or dual axis rotational coronary angiography.

The present invention advantageously provides to create coronary vessel maps that combine the advantage of the CTA-based and the 3DRA-based maps. In a first step, both maps are registered at diastole, when the arteries geometry is similar. In a second step, the 10 motion from the arteries is estimated from the 3DRA maps, and applied to the CTA-maps in order to create the missing phases of the CTA-maps. Finally, both maps are merged.

The present invention advantageously protects the alignment of the CTA-based coronary map with the 3DRA-based coronary map; the coronary vessel maps could be aligned directly, without going through the two phase's motion compensation.

15 The present invention can be advantageously applied for treatments of coronary chronic total occlusions, in short CTO treatments, in PCI, percutaneous coronary intervention. The multiphase coronary maps can for instance be displayed in real time next to the fluoroscopic image. Alternatively, they can be properly positioned and overlaid over the fluoroscopic image (three-dimensional road-mapping).

20 The present invention may be advantageously applied to C-arm based systems any other single or dual axis rotational coronary angiography system.

According to an exemplary embodiment of the invention, the data extracting module is configured to extract the first vessel map from the computed tomography angiography data covering a diastole of the cardiac cycle as the at least one reference cardiac 25 phase.

According to an exemplary embodiment of the invention, the interpolation module is configured to, at reference cardiac phase, register from the first vessel map to the set of second vessel maps and to interpolate from the reference cardiac phase to any other phase based on motions of the coronary vessels estimated of the set of second vessel 30 maps. This advantageously provides to create coronary maps that combine the advantage of the CTA-based and the 3DRA-based maps.

According to an exemplary embodiment of the invention, the interpolation module is configured to align the first map and the set of second maps by aligning common

branches of the coronary vessels. This is advantageously applied for treatments of coronary chronic total occlusions.

According to an exemplary embodiment of the invention, the merging module is configured to merge the warped series and the set of second maps by applying successively 5 estimated motions over the first vessel map. This advantageously generates accurate multiphase coronary maps that show the occluded vessel segments.

According to an exemplary embodiment of the invention, the merging module is configured to add calcified or otherwise occluded part of the vessels, visible in the first vessel map (e.g. a CT vessel map), to moving vessels detected on the set of second vessel 10 maps (e.g. a set of 3DRA vessel maps covering an entire cardiac cycle)

According to an exemplary embodiment of the invention, the at least one cardiac phase is a diastole of the cardiac cycle.

According to an exemplary embodiment of the invention, at the reference cardiac phase, the step of registering from the first map to the set of second maps is 15 conducted. This advantageously provides to create coronary maps that combine the advantage of the CTA-based and the 3DRA-based maps.

According to an exemplary embodiment of the invention, the step of merging of the series and the set of second maps is conducted by aligning common branches of the coronary vessels.

20 According to an exemplary embodiment of the invention, the step of merging the series and the set of second maps is conducted by applying successively estimated motions. This advantageously generates accurate multiphase coronary maps that show the occluded vessel segments.

According to an exemplary embodiment of the invention, the step of merging 25 adds calcified part of the vessels, visible in the first vessel map, to the moving vessels detected on the set of second maps.

According to an exemplary embodiment of the invention, the method further comprises the step of visualizing the final imaging map of the coronary vessels. This advantageously provides visualization of vessel segments occluded in the set of second maps.

30 The invention further relates to medical imaging of coronary vessels as used for molecular diagnostics, molecular pathology, in particular for cardiac applications, biological sample analysis, chemical sample analysis, food analysis, and/or forensic analysis. Molecular diagnostics may for example be accomplished with the help of magnetic beads or fluorescent particles that are directly or indirectly attached to target molecules.

The computer program may be stored on a computer-readable medium. A computer-readable medium may be a floppy disk, a hard disk, a CD, a DVD, an USB (Universal Serial Bus) storage device, a RAM (Random Access Memory), a ROM (Read Only Memory) and an EPROM (Erasable Programmable Read Only Memory). A computer-
5 readable medium may also be a data communication network, for example the Internet, which allows downloading a program code.

The methods, systems and devices described herein may be implemented as software in a Digital Signal Processor, DSP, in a micro-controller or in any other side-processor or as hardware circuit within an application specific integrated circuit, ASIC.

10 The invention can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations thereof, e.g. in available hardware of conventional mobile devices or in new hardware dedicated for processing the methods described herein.

15 A more complete appreciation of the invention and the attendant advantages thereof will be more clearly understood by reference to the following schematic drawings, which are not to scale, wherein:

Figure 1 shows a schematic flowchart diagram of a method for medical imaging of coronary vessels according to an exemplary embodiment of the invention;

20 Figure 2 shows a schematic flowchart diagram of a method for medical imaging of coronary vessels according to an exemplary embodiment of the invention;

Figure 3 shows a schematic diagram of a device for medical imaging of coronary vessels according to an exemplary embodiment of the invention; and

25 Figure 4 shows a schematic diagram of an X-ray medical imaging system for medical imaging of coronary vessels according to an exemplary embodiment of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

The illustration in the drawings is schematically and not to scale. In different drawings, similar or identical elements are provided with the same reference numerals.

30 Generally, identical parts, units, entities or steps are provided with the same reference symbols in the figures.

Figure 1 shows a schematic flowchart diagram of a method for medical imaging of coronary vessels according to an exemplary embodiment of the invention.

The method is visualized in terms of a function block diagram. A function block contains input variables, output variables, through variables, internal variables, and an internal behavior description of the function block. Function blocks are used primarily to specify the properties of a user function. Many software languages are based on function blocks.

5 The method or function block 100 may comprise, as sub-elements, four steps S1, S2, S3, S4 or four function blocks 101, 102, 103, 104:

In a first function block 101, corresponding to the first step S1 as shown in Figure 2, a coronary maps extraction is conducted, wherein the coronary maps extraction 10 may be conducted in both in CTA and 3DRA data.

The output of this first step may be the following:

- a first vessel map from computed tomography angiography data, called map MC, corresponding to one heart phase (diastole) or any other reference point with any phase, and on which the missing vessel parts are visible.

15 - a series of second maps MX(ϕ) from the 3DRA, corresponding to different phases ϕ (as asked by the user, or required by the application). They present a superior spatial resolution, but the non-injected vessel parts (mainly, the occluded coronary segments) are invisible on it.

In a second function block 102, corresponding to the second step S2 as shown 20 in Figure 2, a coronary maps registration at diastole may be conducted.

Aligning the common branches of the maps MC and MX(diastole) may be conducted. Most of the branches are visible on both maps (the only exceptions being of the occluded segments).

25 Several algorithms exist to perform that step differing in particular in the type of motions they are considering, from rigid to very local. These algorithms preferably are initialized by an approximate knowledge on the pose of the patient under examination when both volumes (CTA and 3DRA) were acquired.

In a third function block 103, corresponding to the third step S3 as shown in Figure 2, a registration of the 3DRA coronary maps at different phases is conducted.

30 Herewith, registering the branches from the maps MX(diastole) and MX(ϕ) is performed.

It may also be possible to register maps of successive phases, then to propagate the estimated motions (from diastole to diastole+1, ..., ϕ -2 to ϕ -1 and ϕ -1 to ϕ), and potentially to refine that motion, than to directly register from the diastole to ϕ .

According to a further exemplary embodiment of the present invention, the same algorithms used in the previous step or function block can also be used here, though the constraint on robustness can be relaxed (no extra branch, for instance, calcified, are expected from one map to the next).

5 In a fourth function block 104, corresponding to the fourth step S4 as shown in Figure 2, coronary maps alignment and fusion may be performed.

By applying successively the estimated motions over MC, we first wrap it from the CTA world to the 3DRA map (for instance at diastole), and then from the diastole to the considered phase. The resulting map $MC'(\phi)$ is perfectly aligned with $MX(\phi)$. Finally, 10 merging both maps is performed by preserving the information of interest that are present in both types of coronary maps.

A further implementation would display $MC'(\phi)$. In that case, generating a 3D+t multiphase coronary map from the CT aligned with the cath lab is performed. A catheterization laboratory or cath lab is an examination room in a hospital or clinic with 15 diagnostic imaging equipment used to visualize the arteries of the heart. The generating of the 3D+t multiphase could be used as a live multiphase roadmap for the CTO treatment, for instance.

According to an exemplary embodiment of the invention, the coronary maps gained from the X-per swing present a superior spatial resolution. Analyzing the maps MC' 20 for the occluded segments may be performed, wherein those that are not present in MX are processed, extracted and added to the maps MX . The augmented 3D+t multiphase MX maps may be further added.

According to an exemplary embodiment of the invention, the finally merged maps do not need to be restricted to pure geometrical aspects. Information about the nature of 25 the plaque (gained from the CTA) can also be used there.

Figure 2 shows a schematic flowchart diagram of a method for medical imaging of coronary vessels according to an exemplary embodiment of the invention.

The method for medical imaging of coronary vessels may comprise the following steps.

30 As a first step of the method, extracting S1 a first vessel map from computed tomography angiography data covering at least one cardiac phase and a set of second vessel maps from three-dimensional rotational angiography data covering at least one cardiac cycle is conducted.

As a second step of the method, generating S2 a series of warped versions of the first vessel map based on the alignment of the coronary vessels is performed.

As a third step of the method, interpolating S3 the set of second maps from the reference cardiac phase to any other phase based on the estimated motions of the coronary
5 vessels is performed.

As a fourth step of the method, merging S4 the series and the set of second maps at different phases in order to generate a final imaging map of the coronary vessels is conducted.

According to an exemplary embodiment of the invention, these steps may be
10 mixed or simultaneously processed.

Figure 3 shows a schematic diagram of a device for medical imaging of coronary vessels according to an exemplary embodiment of the invention.

A device 300 for medical imaging of coronary vessels may comprise a data extracting module 301 configured to extract a first vessel map from computed tomography
15 angiography data covering at least one reference cardiac phase and a set of second vessel maps from three-dimensional rotational angiography data covering at least one cardiac cycle.

The device may further comprise an interpolation module 302 configured to generate a series of warped versions of the first map aligned with the set of second maps, the series starting at the at least one reference cardiac phase.

20 Further, the device may comprise a merging module 303 configured to merge the series and the set of second maps at the different phases in order to generate a final imaging map of the coronary vessels.

Figure 4 shows a schematic diagram of an X-ray medical imaging system for medical imaging of coronary vessels according to an exemplary embodiment of the
25 invention.

An X-ray medical imaging system 1000 may comprise a computed tomography angiography device 400 providing computed tomography angiography data, a three-dimensional rotational angiography device 400 providing three-dimensional rotational angiography data and a device 300 for medical imaging of coronary vessels. Contrary to the
30 embodiment as depicted in Figure 4, the computed tomography angiography device 400 and the three-dimensional rotational angiography device 400 may be constructed as separated and single units.

In another exemplary embodiment of the present invention, a computer program or a computer program element is provided that is characterized by being adapted to

execute the method steps of the method according to one of the preceding embodiments, on an appropriate system.

According to a further exemplary embodiment of the present invention, the computer program element might therefore be stored on a computer unit, which might also be 5 part of an embodiment of the present invention. This computing unit may be adapted to perform or induce a performing of the steps of the method described above.

Moreover, it may be adapted to operate the components of the above described apparatus. The computing unit can be adapted to operate automatically and/or to execute the 10 orders of a user. A computer program may be loaded into a working memory of a data processor. The data processor may thus be equipped to carry out the method of the invention.

This exemplary embodiment of the invention covers both, a computer program that right from the beginning uses the invention and a computer program that by means of an up-date turns an existing program into a program that uses the invention.

Further on, the computer program element might be able to provide all 15 necessary steps to fulfill the procedure of an exemplary embodiment of the method as described above.

According to a further exemplary embodiment of the present invention, a computer readable medium, such as a CD-ROM, is presented wherein the computer readable medium has a computer program element stored on it, which computer program element is 20 described by the preceding section.

A computer program may be stored and/or distributed on a suitable medium, such as an optical storage medium or a solid state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the internet or other wired or wireless telecommunication systems.

25 However, the computer program may also be presented over a network like the World Wide Web and can be downloaded into the working memory of a data processor from such a network.

According to a further exemplary embodiment of the present invention, a medium for making a computer program element available for downloading is provided, 30 which computer program element is arranged to perform a method according to one of the previously described embodiments of the invention.

It has to be noted that embodiments of the invention are described with reference to different subject matters. In particular, some embodiments are described with

reference to method type claims whereas other embodiments are described with reference to the device type claims.

However, a person skilled in the art will gather from the above and the following description that, unless otherwise notified, in addition to any combination of 5 features belonging to one type of subject matter also any combination between features relating to different subject matters is considered to be disclosed with this application. However, all features can be combined providing synergetic effects that are more than the simple summation of the features.

While the invention has been illustrated and described in detail in the drawings 10 and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art and practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.

15 In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single processor or controller or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Any reference 20 signs in the claims should not be construed as limiting the scope.

CLAIMS:

1. A device (300) for medical imaging of coronary vessels, the device comprising:

- a data extracting module (301) configured to extract a first vessel map from computed tomography angiography data covering at least one reference cardiac phase and a set of second vessel maps from three-dimensional rotational angiography data covering at least one cardiac cycle;

- an interpolation module (302) configured to generate a series of warped versions of the first vessel map, the series being aligned with the set of second vessel maps and starting at the at least one reference cardiac phase; and

- a merging module (303) configured to merge the series and the set of second vessel maps at the different phases in order to generate a final imaging map of the coronary vessels.

2. The device for medical imaging of coronary vessels according to claim 1,

15 wherein the data extracting module (301) is configured to extract the first vessel map from the computed tomography angiography data covering a diastole of the cardiac cycle as the at least one reference cardiac phase.

3. The device for medical imaging of coronary vessels according to claim 1 or to
20 claim 2,

wherein the interpolation module (302) is configured to, at the reference cardiac phase, register from the first vessel map to the set of second vessel maps and to interpolate from the reference cardiac phase to any other phase based on motions of the coronary vessels estimated of the set of second vessel maps.

25 4. The device for medical imaging of coronary vessels according to one of the preceding claims 1 to 3,

wherein the interpolation module (302) is configured to align the first vessel map and the set of second vessel maps by aligning common branches of the coronary vessels.

5. The device for medical imaging of coronary vessels according to one of the preceding claims 1 to 4,

5 wherein the merging module (303) is configured to merge the series and the set of second vessel maps by applying successively estimated motions over the first vessel map.

6. The device for medical imaging of coronary vessels according to one of the preceding claims 1 to 4,

10 wherein the merging module (303) is configured to add a calcified part of the vessels, visible in the first vessel map, to moving vessels detected on the set of second maps.

15 7. An X-ray medical imaging system (1000) comprising a computed tomography angiography device (400) providing computed tomography angiography data, a three-dimensional rotational angiography device (400) providing three-dimensional rotational angiography data and a device (300) for medical imaging of coronary vessels according to any one of claims 1 to 6.

20 8. A method for medical imaging of coronary vessels, the method comprising the steps of:

- extracting (S1) a first vessel map from computed tomography angiography data covering at least one cardiac phase and a set of second vessel maps from three-dimensional rotational angiography data covering at least one cardiac cycle;

25 - generating (S2) a series of versions the first vessel map based on an alignment of the coronary vessels;

- interpolating (S3) the set of second vessel maps from the reference cardiac phase to any other phase based on the estimated motions of the coronary vessels; and

30 - merging (S4) the series and the set of second vessel maps at different phases in order to generate a final imaging map of the coronary vessels.

9. The method for medical imaging of coronary vessels according to claim 8, wherein the at least one cardiac phase is a diastole of the cardiac cycle.

10. The method for medical imaging of coronary vessels according to claim 8 or to claim 9,

wherein, at the reference cardiac phase, the step of registering from the first vessel map to the set of second vessel maps is conducted

5

11. The method for medical imaging of coronary vessels according to one of the preceding claims 8 to 10,

wherein the step of merging (S4) of the series and the set of second vessel maps is conducted by aligning common branches of the coronary vessels.

10

12. The method for medical imaging of coronary vessels according to one of the preceding claims 8 to 11,

wherein the step of merging (S4) the series and the set of second vessel maps is conducted by applying successively estimated motions.

15

13. The method for medical imaging of coronary vessels according to one of the preceding claims 8 to 12,

wherein the step of merging (S4) adds calcified part of the vessels, visible in the first vessel map, to the moving vessels detected on the set of second vessel maps.

20

14. The method for medical imaging of coronary vessels according to one of the preceding claims 8 to 13,

wherein the method further comprises the step of visualizing the final imaging map of the coronary vessels.

25

15. A computer program, which, when executed by a processor, performs the steps of the method according to one of the preceding claims 8 to 14.

16. A computer-readable medium, on which a computer program according to claim 15 is stored.

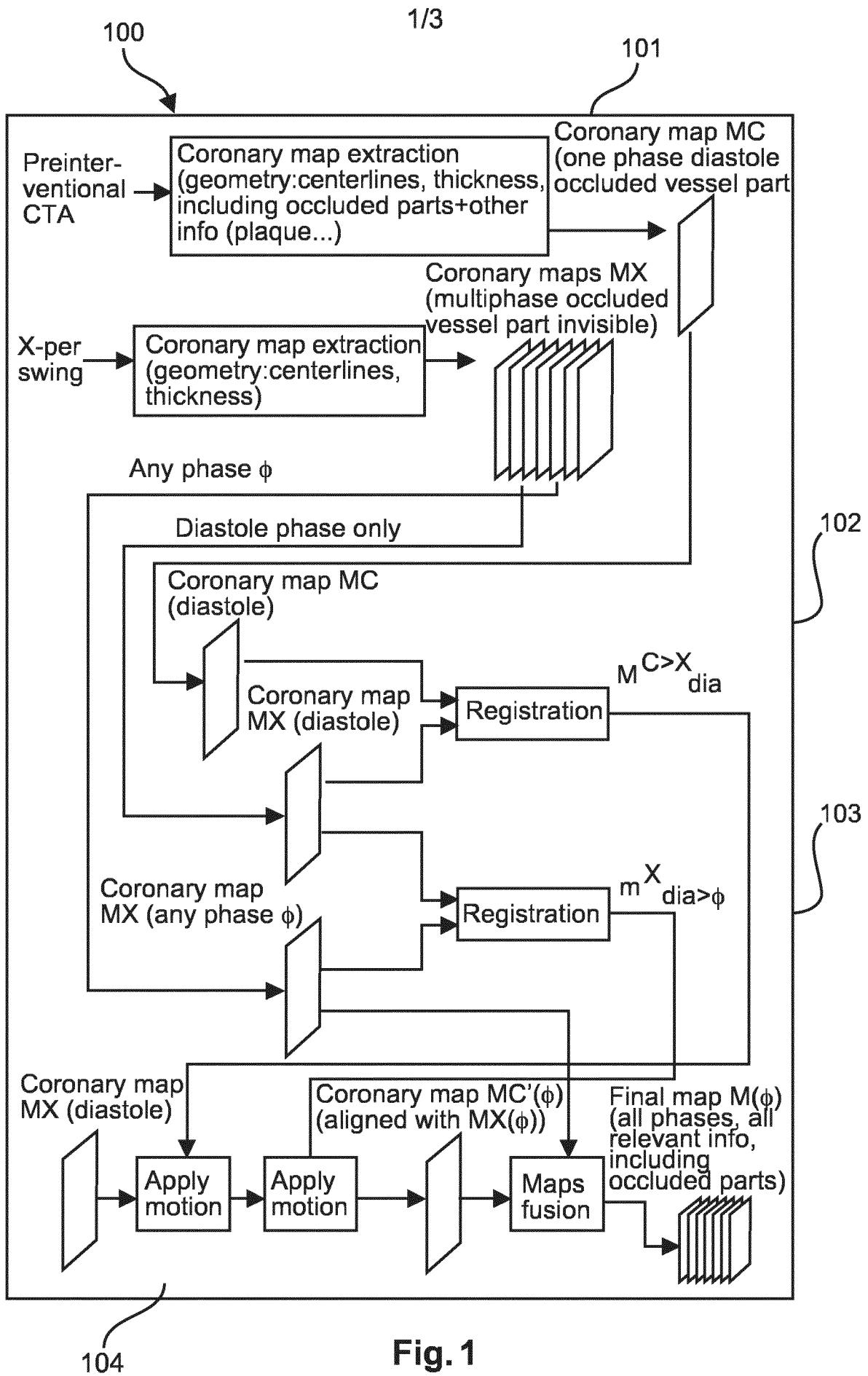
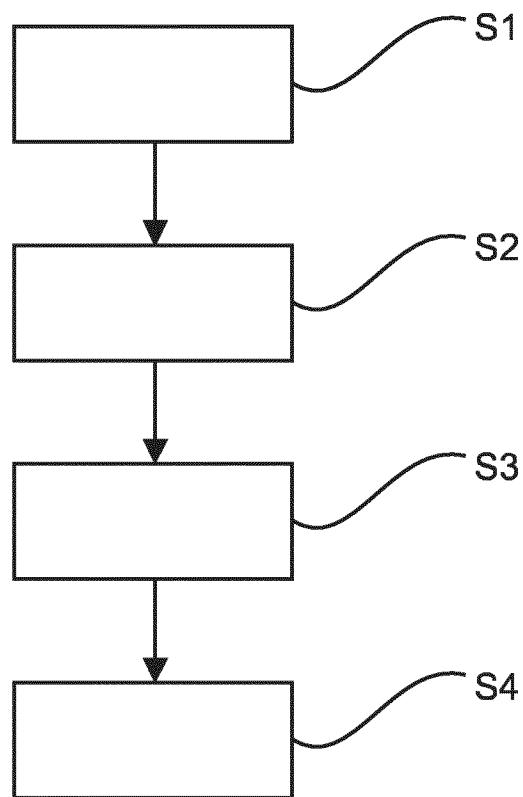



Fig. 1

2/3

Fig. 2**Fig. 3**

3/3

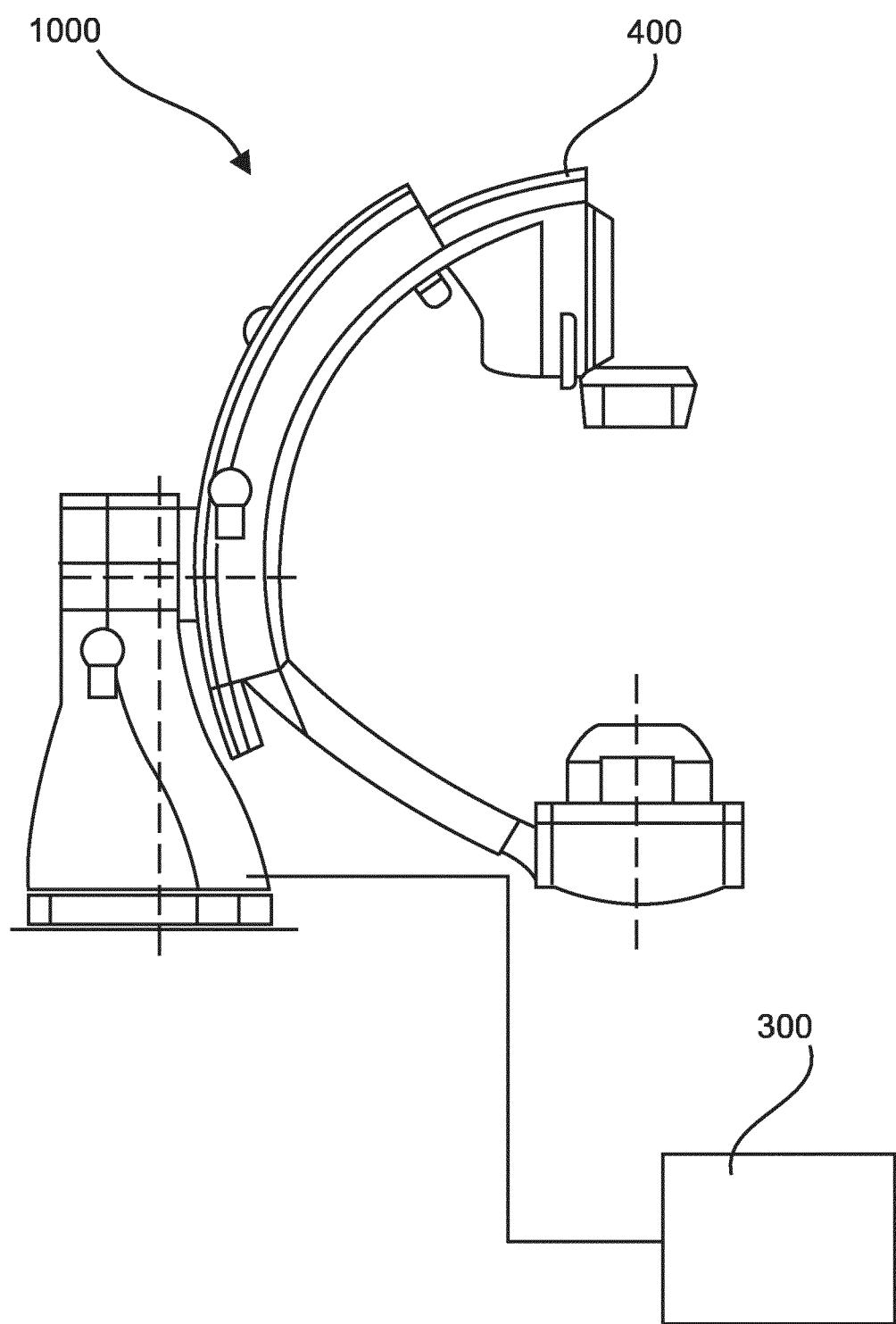


Fig. 4

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2015/055387

A. CLASSIFICATION OF SUBJECT MATTER
INV. G06T7/00 A61B6/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06T A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>BERNHARD QUATEMBER ET AL: "Development of an Accurate Method for Motion Analyses of the Heart Wall Based on Medical Imagery", 1 January 2012 (2012-01-01), COMPUTER AIDED SYSTEMS THEORY EUROCAST 2011, SPRINGER BERLIN HEIDELBERG, BERLIN, HEIDELBERG, PAGE(S) 248 - 255, XP019172370, ISBN: 978-3-642-27578-4 abstract sections 2,3 figures 2,3</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-16

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
18 May 2015	01/06/2015
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Eveno, Nicolas

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2015/055387

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BLONDEL C ET AL: "4D deformation field of coronary arteries from monoplane rotational X-ray angiography", INTERNATIONAL CONGRESS SERIES, EXCERPTA MEDICA, AMSTERDAM, NL, vol. 1256, 1 June 2003 (2003-06-01), pages 1073-1078, XP027453565, ISSN: 0531-5131, DOI: 10.1016/S0531-5131(03)00256-5 [retrieved on 2003-06-01] abstract section 2 ----- B. MOVASSAGHI ET AL: "4D coronary artery reconstruction based on retrospectively gated rotational angiography: first in-human results", PROCEEDINGS OF SPIE, vol. 6509, 6 March 2007 (2007-03-06), pages 65090P-65090P-6, XP055141549, ISSN: 0277-786X, DOI: 10.1117/12.706435 abstract section 1 figure 4 -----	1-16
A	DANIEL RINCK ET AL: "Shape-based segmentation and visualization techniques for evaluation of atherosclerotic plaques in coronary artery disease", PROCEEDINGS OF SPIE, vol. 6141, 2 March 2006 (2006-03-02), pages 61410G-61410G-9, XP055141551, ISSN: 0277-786X, DOI: 10.1117/12.653248 the whole document -----	1-16
A	HABERL R ET AL: "Multislice spiral computed tomographic angiography of coronary arteries in patients with suspected coronary artery disease: An effective filter before catheter angiography?", AMERICAN HEART JOURNAL, MOSBY- YEAR BOOK INC, US, vol. 149, no. 6, 1 June 2005 (2005-06-01), pages 1112-1119, XP004951826, ISSN: 0002-8703, DOI: 10.1016/J.AHJ.2005.02.048 the whole document ----- -/-	1-16

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2015/055387

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	QUATEMBER B ET AL: "Geometric modeling and motion analysis of the epicardial surface of the heart", MATHEMATICS AND COMPUTERS IN SIMULATION, ELSEVIER, AMSTERDAM, NL, vol. 81, no. 3, 1 November 2010 (2010-11-01), pages 608-622, XP027542986, ISSN: 0378-4754 [retrieved on 2010-07-23] abstract sections 2.1, 3.1.2, 3.2, 4 and 5 -----	1-16