

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2019/016813 A1

(43) International Publication Date
24 January 2019 (24.01.2019)

(51) International Patent Classification:

G02F 1/1333 (2006.01)

(21) International Application Number:

PCT/IL2018/050798

(72) Inventors: SHARLIN, Elad; Nahal 7d, 7684100 Mishmar David (IL). DANZIGER, Yochay; 2 Rotem Street, 2514700 Kfar Vradim (IL).

(22) International Filing Date:

19 July 2018 (19.07.2018)

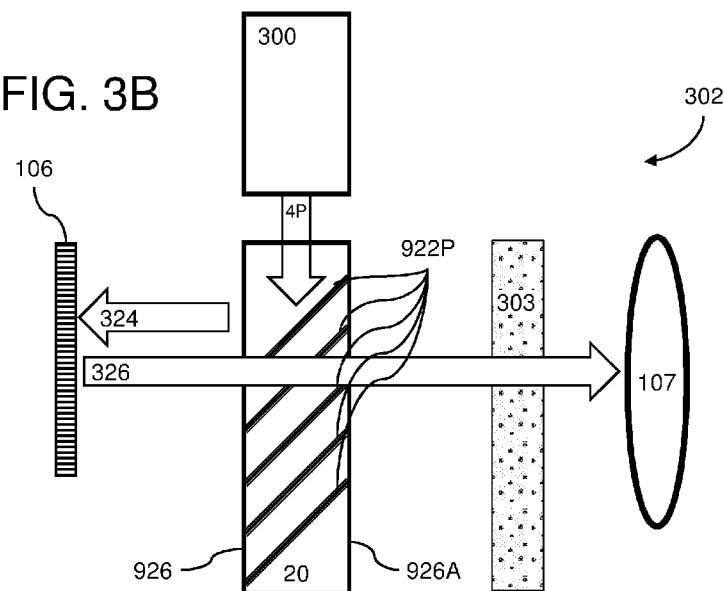
(74) Agent: FRIEDMAN, Mark; Moshe Aviv Tower 54th Floor, 7 Jabotinski St., 5252007 Ramat- Gan (IL).

(25) Filing Language:

English

(26) Publication Language:

English


(30) Priority Data:

62/534,226 19 July 2017 (19.07.2017) US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: LCOS ILLUMINATION VIA LOE

FIG. 3B

WO 2019/016813 A1

(57) Abstract: A system for uniform optical illumination of an image light provider in a smaller (compact) configuration than conventional implementations includes a lightguide having: a first external surface and a second external surface mutually parallel, and a first sequence of facets, at least a portion of which are: a plurality of parallel, partially reflecting, and polarization selective surfaces, at an oblique angle relative to the first and second external surfaces, and between the first and second external surfaces, and a front-lit reflective polarization rotating image modulator: deployed to spatially modulate light coupled-out from the first external surface, outputting reflected light corresponding to an image, and deployed such that the reflected light traverses the lightguide from the first external surface via the first sequence of facets to the second external surface.

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report (Art. 21(3))*

LCOS ILLUMINATION VIA LOE

5

FIELD OF THE INVENTION

The present invention generally relates to optical illumination, and in particular, it concerns uniform illumination of an image light provider.

BACKGROUND OF THE INVENTION

10 Referring to FIG. 1, there is shown a conventional implementation of an architecture for illumination. A light source **2L** produces an unpolarized, uniformly illuminated input beam **4L**. The unpolarized input beam **4L** is polarized by a polarizer **103** to produce a polarized, uniformly illuminated input beam **4P**, assumed to be polarized S-pol (S-polarization). The polarized input beam **4P** is input to a polarizing beam splitter (PBS) **104** and reflected by a polarization selective reflector **105** as ray **124** onto the liquid crystal on silicon (LCOS) matrix **106**. The LCOS matrix **106** is illuminated from the front of the LCOS, spatially modulates the reflected light as an image by changing polarization of the illumination, and reflects the light back as an image ray **126**. The LCOS rotates the polarization of the reflected light from the S-pol of ray **124** to P-pol (P-polarization) for white pixels in ray **126** while the polarization for black pixels is unchanged (remains S-pol). The light from the white pixels having P-polarization in ray **126** passes through the polarization selective reflector **105** while the light from the black pixels having S-polarization in ray **126** do not pass through the polarization selective reflector **105**. The P-pol ray **126** then propagates on toward projecting optics **107** (generally of a projecting system, depicted schematically as lens). The projecting optics **107** performs collimation and other functions, as necessary for specific applications.

SUMMARY

According to the teachings of the present embodiment there is provided a optical system including: a lightguide having: a first external surface and a second external surface mutually parallel, and a first sequence of facets, at least a portion of which are: a plurality of parallel,

5 partially reflecting, and polarization selective surfaces, at an oblique angle relative to the first and second external surfaces, and between the first and second external surfaces, and a front-lit reflective polarization rotating image modulator: deployed to spatially modulate light coupled-out from the first external surface, outputting reflected light corresponding to an image, and deployed such that the reflected light traverses the lightguide from the first external surface via the first
10 sequence of facets to the second external surface.

In an optional embodiment, each of the facets reflects at least a portion of first polarized light and transmits a remaining portion of the first polarized light, and transmits second polarized light.

15 In another optional embodiment, the reflectivity of the first polarization increases from one facet to a subsequent facet in the first sequence of facets.

In another optional embodiment, the first polarized light is coupled-out from the first external surface, and the reflected light is of the second polarized light.

In another optional embodiment, the first sequence of facets expands light in-coupled to the lightguide such that the light is uniformly coupled-out of the first external surface.

20 In another optional embodiment, the image modulator is a liquid crystal on silicon (LCOS) matrix.

In another optional embodiment, the facets are constructed at least in part using a technique selected from the group consisting of: multi-layer coatings, a dielectric coating, and a wire-grid.

25 In another optional embodiment, orientation of a primary axis of the facets determines reflectivity of the facets.

In another optional embodiment, reflectivity of each of the facets is dependent on an angle light impinges of the facet.

In another optional embodiment, the first sequence of facets is configured to perform coupling-out of light from the first external surface, the first sequence of facets having a constant number of facets overlapping in a line of sight toward a nominal point of observation of light coupling-out of the first external surface.

5 In another optional embodiment, further including: a second sequence of facets, at least a portion of which are: a plurality of parallel, partially reflecting, and polarization selective surfaces, at an oblique angle relative to the first and second external surfaces, and between the first and second external surfaces, wherein the facets of the first sequence of facets and the second sequence of facets are non-parallel relative to each other.

10 In another optional embodiment, each of the sequences of facets spans an area of coverage, the spanning being an area over which each of the sequences of facets are deployed, and wherein the areas of coverage for the first and second sequences of facets are at least partially overlapping.

BRIEF DESCRIPTION OF FIGURES

15 The embodiment is herein described, by way of example only, with reference to the accompanying drawings, wherein:

FIG. 1, a conventional implementation of an architecture for illumination.

FIG. 2, a side view of an exemplary lightguide optical element (LOE) **903** configured for use with the current embodiment.

20 FIG. 3A and FIG. 3B, respective front and side view sketches of an exemplary compact system for optical illumination **302**.

FIG. 3C, a sketch of a first exemplary embodiment **300C** of source optics **300**.

FIG. 3D, a sketch of a second exemplary embodiment **300D** of source optics **300**.

FIG. 4A, a sketch of a side view of facets with uniform angular response.

25 FIG. 4B, a sketch of a side view of facets with differing angular response.

FIG. 5A, a schematic view of a lightguide with non-overlapping facets, illustrating the effects of variation on image uniformity.

FIG. 5B, a schematic view of a lightguide with overlapping facets, illustrating the effects of variation on image uniformity.

FIG. 5C, a sketch of triple facets

FIG. 6, a sketch of an angular space architecture of the lightguide **20**.

5 FIG. 7, a sketch of an angular space architecture of FIG. 6 with improved energy extraction.

FIG. 8, a chart of performance of coating designed for the configuration of FIG. 7.

FIG. 9, a sketch of angular distribution of a configuration including tapered (or cylindrical lens) expansion of the second exemplary embodiment **300D**.

FIG. 10A, a sketch of a first optional architecture for optical illumination **302A**.

10 FIG. 10B and FIG. 10C, respective side and front view sketches of a second optional architecture for optical illumination **302B**.

FIG. 11A and FIG. 11B, the reflection process by the internal facets in lightguides **10** and **20**.

DETAILED DESCRIPTION - FIG. 2 TO FIG. 11B

15 The principles and operation of the system according to a present embodiment may be better understood with reference to the drawings and the accompanying description. A present invention is a system for optical illumination. The system facilitates uniform illumination of an image light provider in a smaller (compact) configuration than conventional implementations.

20 A system for uniform optical illumination of an image light provider in a smaller (compact) configuration than conventional implementations includes a lightguide having: a first external surface and a second external surface mutually parallel, and a first sequence of facets, at least a portion of which are: a plurality of parallel, partially reflecting, and polarization selective surfaces, at an oblique angle relative to the first and second external surfaces, and between the first and second external surfaces, and a front-lit reflective polarization rotating image modulator: deployed
25 to spatially modulate light coupled-out from the first external surface, outputting reflected light corresponding to an image, and deployed such that the reflected light traverses the lightguide from the first external surface via the first sequence of facets to the second external surface.

BASIC TECHNOLOGY

Referring to FIG. 2, there is shown a side view of an exemplary lightguide optical element (LOE) 903 configured for use with the current embodiment. A collimated light source 2C emanates 5 a collimated input beam 4C. In the context of this document, light sources are also referred to as “projectors.” Light sources can be lasers or an LED that transmits a single or plurality of wavelengths. The light has a plurality of angular propagation directions that are oriented around the axis of the transmission, such as in a lightguide. For simplicity in the current figures, generally only the center direction of propagation is depicted for clarity. Only one light ray is generally 10 depicted, the incoming light ray, the input beam (for example the collimated input beam 4C), also referred to as the “beam” or the “incoming ray”. Generally, wherever an image is represented herein by a light beam, it should be noted that the beam is a sample beam of the image, which typically is formed by multiple beams at slightly differing angles each corresponding to a point or pixel of the image. Except where specifically referred to as an extremity of the image, the beams 15 illustrated are typically a centroid of the image. That is, the light corresponds to an image and the central ray is a center ray from a center of the image or a central pixel of the image.

A first reflecting surface **916** is illuminated by the collimated input beam **4C**. A first region 954 is proximal to the collimated input beam **4C** where an image illumination is coupled into a lightguide **920**. The reflecting surface **916** at least partially reflects the incident light of the 20 collimated input beam **4C** from the collimated light source **2C** such that the light is trapped inside the lightguide **920** by internal reflection, typically total internal reflection (TIR). The lightguide **920** is typically a transparent substrate, and is also referred to as a “planar substrate”, “light-transmitting substrate”, and “waveguide”. The lightguide **920** includes at least two (major, 25 external) surfaces, typically parallel to each other (mutually parallel), shown in the current figure as a first (back, major) surface **926** and a front (second, major) surface **926A**. Note that the designation of “front” and “back” with regard to the major surfaces (**926**, **926A**) is for convenience of reference. Coupling-in to the lightguide **920** can be from various surfaces, such as the front, back, side edge, or any other desired coupling-in geometry.

The collimated input beam **4C** enters the lightguide substrate at a proximal end of the 30 substrate (right side of the figure). Light propagates through the lightguide **920** and one or more facets, normally at least a plurality of facets, and typically several facets, toward a distal end of the lightguide **920** (left side of the figure). The lightguide **920** typically guides rays of propagating light in the substrate by internal reflection of the external surfaces.

After optionally reflecting off the internal surfaces of the substrate **920**, the trapped waves reach a set of selectively reflecting surfaces (facets) **922**, which couple the light out of the substrate into the eye **10** of a viewer. In the current exemplary figure, the trapped ray is gradually coupled out from the substrate **920** by two other partially reflecting surfaces **922** at the points **944**.

5 Internal, partially reflecting surfaces, such as the set of selectively reflecting surfaces **922** are generally referred to in the context of this document as “facets.” For applications such as augmented reality, the facets are partially reflecting, allowing light from the real world to enter via the front surface **926A**, traverse the substrate including facets, and exit the substrate via the back surface **926** to the eye **10** of the viewer. Exemplary ray **942** shows light of the collimated input 10 beam **4C** partially reflected from reflecting surface **916**, and exemplary ray **941** shows light of the collimated input beam **4C** partially transmitted through reflecting surface **916**.

15 The internal partially reflecting surfaces **922** generally at least partially traverse the lightguide **920** at an oblique angle (i.e., non-parallel, neither parallel nor perpendicular) to the direction of elongation of the lightguide **920**. Partial reflection can be implemented by a variety of techniques, including, but not limited to transmission of a percentage of light, or use of polarization.

20 The lightguide **920** optionally has a second pair of external surfaces (not shown in the current figure side view) parallel to each other and non-parallel to the first pair of external surfaces. In some implementations, the second pair of external surfaces is perpendicular to the first pair of external surfaces. Typically, each of the facets is at an oblique angle to the second pair of external surfaces. In other cases, where reflections from peripheral surfaces of the lightguide are not desired, those peripheral surfaces are typically left unpolished and/or coated with light absorbent (e.g., black) material to minimize undesired reflections.

FIRST EMBODIMENT

25 Referring to FIG. 3A and FIG. 3B, there are shown respective front and side view sketches of an exemplary compact system for optical illumination **302**. The conventional PBS **104** is replaced by a lightguide (waveguide) polarization splitter (WGPS), such as a lightguide **20** (similar to the LOE **903** described above). Source optics **300** provides polarized light with uniform illumination **4P** into the lightguide **20**. Source optics **300** has an exit width **300W** and lightguide **20** has an input width **20W** of the polarized light uniform illumination **4P**. The side faces **21** (second 30 pair of external faces) of the lightguide **20** can be coated with a reflective coating in order to prevent energy loss from the sides. While the collimated input beam **4C** was described above as

being used by the LOE **903**, the polarized light with uniform illumination **4P** into the lightguide **20** is preferably not strictly collimated, but illuminates a spread of angles within a determined range of angles.

As light (uniform polarized light **4P**) propagates along the lightguide **20** the light is partially reflected by a sequence of polarization selective facets **922P**. The polarization selective partially reflecting facets **922P** are similar to the above-described set of selectively reflecting surfaces (facets) **922**, with the selective reflection based on polarization. These polarization selective facets **922P** reflect a first polarization (for example S-pol) of light **324** and transmit a second, orthogonal, polarization (for example P-pol) of light **326**.

An innovative feature of the current embodiment is that the facets are polarization selective and partially reflecting. This feature can be implemented during the production process of the lightguide **20**. Refer to US patent 6,829,095 (granted 2004-December-7 and assigned to LUMUS Ltd) for general exemplary method of production. Preferred methods of creating the polarization selective partially reflecting facets are to use a dielectric coating or wire-grid between plates of the lightguide. It is foreseen that other methods of implementing partially reflecting polarization selectivity can be developed and could be implemented for the current embodiment. In the case of using a wire-grid, the wire-grid polarizer can be made only partially reflective to the polarization (parallel to the wires) by controlling parameters of the wire-grid such as the conductivity of the wires. For example, less conductive wires can be used for less reflection. Conductivity can be controlled by wire material, thickness, and spacing. Another option to control reflectivity is to rotate, or “twist” the wire grid. A combination of techniques, such as combining a dielectric material with a wire-grid, controls intensity of light on the wire-grid, and therefore controls the reflectivity. Additional information and exemplary graphs of polarization selective coatings can be found for example in US patent 7,643,214 (granted 2010-January-05 and assigned to LUMUS Ltd.).

The first polarized light **324** is output from the lightguide **20** via the first external surface **926** toward a front-lit reflective polarization rotating image modulator, for example, the LCOS **106**. For simplicity in the current description, specific implementation using an LCOS will be described. The first polarized light **324** impinges on the LCOS **106**. Preferably, the first polarized light **324** illuminates every pixel with a cone of light around appropriate center angle. Preferably, the lightguide **20** should be slightly away from the LCOS **106** in order to prevent observable non-uniformities. The impinging first polarized light **324** is spatially modulated by polarization rotation

by the LCOS **106** and reflected toward the lightguide **20**. For example, the first polarized light **324** is reflected and rotated as the (orthogonal) second polarized light **326**. As the polarization selective facets **922P** are designed to be transparent to this second polarization light **326**, the second polarized light **326** passes through (traverses) the lightguide **20** from the first external surface **926**, 5 via the polarization selective facets **922P**, and exits from the second external surface **926A** toward the projecting optics **107**. In order to filter out scattered light, an optional polarizer **303** can be deployed between the lightguide **20** and the projecting optics **107**. In the current example, the polarizer **303** is at P-pol orientation and filters any S-pol polarized light.

Referring to FIG. 3C, there is shown a sketch of a first exemplary embodiment **300C** of 10 source optics **300**. The unpolarized light source **2U** emits (not necessarily uniform) unpolarized light **4U** that is introduced perpendicularly into a 2D (two-dimensional) lightguide **9**. As the light propagates and reflects in the 2D lightguide **9** the light's illumination becomes more uniform **4L1**. An optional diffuser (not shown) can be placed before the lightguide **20**, for example, along, or as 15 part of external faces of the 2D lightguide **9** to improve further light uniformity across the output width of the lightguide **9**. Optionally, a small PBS can be introduced into the 2D lightguide **9**. The small PBS can be used to pass S-polarized light, while outputting P-polarized light that is then rotated by $1/2$ wave-plate to be S-pol and combined in parallel with the passed S-polarization, thereby avoiding loss of 50% power. Alternatively, to 2D lightguide **9**, other implementations are known in the art for generating uniform light **4L1**.

20 The uniform light **4L1** then enters a first lightguide **10** that has internal partial reflecting facets **12** (similar to the above-described LOE **903** with selectively reflecting facets **922**). These facets are at an angle to reflect the internal propagating light out of first lightguide **10** as light with uniform illumination **4L** towards the lightguide **20**.

25 Optionally and preferably, the light with uniform illumination **4L** reflected out of the first lightguide **10** then passes through optional polarization management **314**. Polarization management **314** components can include a polarizer (similar to polarizer **103**, described above) and a $1/2$ wave plate. A pure polarization is preferred in order to minimize scattering of light in the lightguide **20** and to obtain a high contrast image from the LCOS **106**. Orientation of a polarizer is preferably along a direction of maximal intensity coupled out by the facets **12** (most probably S-polarization). 30 Since generally coatings (on the facets **12**) and/or wire-grids reflect S-polarization at much higher efficiency than P-polarization, mostly the S-pol component of the uniform light **4L1** will be reflected as uniform illumination **4L**. A wave-plate is required if polarization orientation emitted by the first lightguide **10** (and filtered by the polarizer if used) does not overlap the optimal

polarization for a next stage in the light propagation path. In a typical case, the S-pol from the first lightguide **10** is oriented as P-pol after reflection therefore a 1/2 wave-plate is required to obtain the S-pol orientation again.

The polarization management **314** is optional, depending on purity of the first polarized 5 light **324** impinging on the LCOS **106** (single polarization is preferred for good image contrast). The polarization management **314** should preferably be as thin as possible, without disrupting the TIR in the first lightguide **10**. One alternative is for the polarization management **314** to be glued between the first lightguide **10** and the lightguide **20** by low index glue (n~1.3 for example).

As the lightguide **20** does not do imaging, the light propagation in the lightguide **20** can be 10 injected along an axis of the lightguide **20** corresponding to a direction of the sequence of facets. In this case, a low index glue (for example, with n=1.3) can be used on the external facets of the lightguides **10** and **20**. The glue can be between the 2D lightguide **9** and the first lightguide **10**, between the lightguide **20** and the projecting optics **107** (prism for example), and between the lightguide **20** and the LCOS **106**. This way there will be no air-gap.

15 Referring to FIG. 3D, there is shown a sketch of a second exemplary embodiment **300D** of source optics **300**. The light source **2U** emits unpolarized light **4U** that is introduced perpendicularly into the 2D lightguide **9**. As the light propagates and reflects in the 2D lightguide **9** the light's illumination becomes more uniform **4L1**. The uniform light **4L1** then enters a tapered non-imaging lightguide **326** that laterally expands the internal propagating light out of the tapered 20 non-imaging lightguide **326** as light with uniform illumination **4L** towards (optional polarization management **314** and) the lightguide **20**.

In both of the above exemplary embodiments, the polarized light with uniform illumination **4P**, is output from the source optics (**300C**, **300D**) and enters the lightguide **20**.

25 Optionally, prior to injection of light (the polarized light with uniform illumination **4P**) into the lightguide **20**, light with improper angular distribution is filtered, that is, light that does not overlap the desired image. Therefore, only angular distribution overlapping the image is injected into the lightguide **20**. This technique reduces the scattering and contrast reduction.

The lightguides (the lightguide **20**, the first lightguide **10**) can be based on metallic coating, 30 dielectric coating, or on total internal reflection (TIR) in order to reflect the propagating light internally. The face between the first lightguide **10** and lightguide **20** is preferably angular selective transmittance, preferably based on TIR

The combination of aperture management and/or partial reflectors, waveguide-based reflection, coating management, and 2D expansion are features of the compact system for optical illumination **302**, more compact than conventional implementations such as based on polarizing beam splitters. A more compact system allows for reduction in cost, weight, and possibly more 5 room for imaging / projecting optics **107**.

ALTERNATIVE EMBODIMENT

Referring to FIG. 4A, there is shown a sketch of a side view of facets with uniform angular response. Illumination of the LCOS **106** can be improved by configuring angular reflectivity of facets in the lightguide 20. The lightguide 20 includes a sequence of facets **922A** (similar to the 10 above-described set of facets **922**). Several exemplary pixels **434** of the LCOS **106** are shown. Polarized light with uniform illumination **4P** enters the lightguide 20 as angular distribution **430**. The facets **922A** have uniform angular response, therefore, the reflecting pixels **434** all see the same illumination angle cones **432** and will reflect the same illumination angle cones **432**. The current 15 configuration improves illumination for telecentric optics, for example if the projecting optics **107** are telecentric.

Referring to FIG. 4B, there is shown a sketch of a side view of facets with differing angular response. For a non-telecentric optical configuration, facets **922N** (similar to the above-described set of facets **922**) can be constructed with differing angular reflectivities, resulting in differing illumination angle cones **440**. In this exemplary configuration, facets in section **922N1** will reflect 20 light at larger angles (relative to a vertex, where each vertex is perpendicular to the same one external surface of the lightguide **20**) and be transmissive to all other angles. Facets in sections **922N2**, **922N1**, and **922N3** all reflect at a same angular spread, but the angular spread of each section is relative to (centered on) a different angular spread..

For reference, in telecentric illumination, the chief rays are collimated and parallel to the 25 optical axis in image and/or object space. Collimated light rays remain collimated as the collimated light rays strike an object's surface. In comparison, light rays from a standard backlight expand and interfere with one another. In the context of this document, telecentric illumination describes illumination in which a cone of light converges perpendicularly on every pixel. In non-telecentric illumination, each of different pixels is illuminated by a cone of light that is tilted differently with 30 respect to the pixel. Collimation is used to describe optics that take diverging rays reflected from a pixel (mostly cone distribution) and makes all the reflected rays parallel at a specific direction. Different pixels are "collimated" to different directions.

UNIFORM ILLUMINATION

In order to assist in obtaining uniform illumination across the LCOS **106**, the reflectivity of the S-polarization (a first polarization) should preferably increase along the lightguide, that is,

5 increase from one facet in the sequence of facets **922P** to a subsequent facet as the light propagates along the lightguide **20**. First facets in the propagation path should be designed with relatively low reflectivity and last facets with relatively high reflectivity of the (first) S-Polarization. The transmissivity of the P-polarized light (a second polarization) reflected by the LCOS should be maximal for each facet. That is, the facets should be as transparent as possible to P-polarization. In 10 the below description, generally S-pol reflectivity and P-pol transmissivity are used, and a telecentric illumination will be assumed for simplicity.

A first requirement is that the illumination of the LCOS **106** should preferably be uniform in order to achieve uniform image intensity (of reflected light **326**). A second requirement is for near-eye-display optics (projecting optics **107**) exit pupil should also be illuminated uniformly for 15 optimal observation. These two requirements imply that the LCOS **106** pixels (pixels **434**) should be illuminated uniformly and the illumination angle cone **432** angle should be uniform. In other words, preferably, 100% full spatial illumination and uniform angular illumination across the numerical aperture of the optical system.

Uniform illumination of the LOE lightguide **20** can be achieved if coupling from the source 20 optics **300** fills completely the entrance to the lightguide **20**. Therefore, the exit width **300W** of the source optics **300** should preferably be equal or wider than the input width **20W** of the lightguide **20**. Furthermore, the source optics **300** should preferably also be illuminated uniformly, which can be achieved, for example, by use of diffusers and proper length of the initial 2D lightguide **9**.

Some non-uniformity may exist in the light entering and propagating within the lightguide 25 **20**, and some uniformity may be introduced by the facets **922P** themselves. To reduce and handle this non-uniformity, the first lightguide **10** that has internal partial reflecting facets **12** and the lightguide **20** sequence of polarization selective facets **922P** are preferably in an overlapping configuration.

30 Referring to FIG. 5A, there is shown a schematic view of a lightguide (such as lightguide 920) with non-overlapping facets, illustrating the effects of variation on image uniformity. A

source of perceived non-uniformity relates to angular overlap of internal facets in different fields of view. In the region of the lightguide illustrated here, the lightguide contains internal facets (two are depicted as last facet **2515** and first facet **2517**). Most of the out-coupled light is reflected from a single internal facet. However, at the edge of the facets, there is non-uniformity at off-axis angles.

5 For a region of the FOV pointing to the left (marked as solid arrows), a conventional gap area **2520** (also generally referred to as an “underlapping area”, “black line” area, or “dark strip” area) will not reflect any light, since at this angle there is an effective gap between the light reflected by the last facet **2515** and the first facet **2517**, resulting in a dark strip in the perceived. On the other hand,

10 light out-coupled to the right (marked as dashed arrows) has a conventional bright area **2525** (also generally referred to as a “partially overlapping” area, or “intense” area) within which there is overlap of the light reflected from **2515** and **2517** so that the lightguide will reflect almost twice the amount of light. Therefore, the non-uniformity in the current figure will vary between roughly 200% and 0% of the median image intensity across the extended aperture in different regions of the FOV and eye positions.

15 Referring to FIG. 5B, there is shown a schematic view of a lightguide with overlapping facets, illustrating the effects of variation on image uniformity. Substantial overlap is introduced between the facets, as illustrated in the current figure. In this case, the spacing between adjacent facets is halved, resulting in most parts of the FOV at most eye positions receiving illumination from the image via overlaid reflections from two facets. In this exemplary case, a single middle

20 facet **2535** is configured between the last facet **2515** and the first facet **2517**. Near the angular extremities of the image and the extremities of the facets, there will still be changes in the number of overlapping facets which contribute to certain regions of the image, as illustrated by underlapping area **2540** which originates from only one facet (the middle facet **2535**) and bright area **2545** which is contributed to by three adjacent facets (**2517**, **2535**, and **2515**). Therefore, the

25 output non-uniformity will vary between 50% and 150% of the median reflectivity.

30 The light from the first half (light propagating from the right) of facet **2517** will couple out as reduced energy (ray / output beam **2546**) since at this position there is no overlapping of the next facet **2535** i.e. there is only one facet reflect the light to the observer. The same reduced power happens at the last half of facet **2515** (ray / output beam **2547**). In these regions, the reflectivity will be 50% of the median reflectivity.

Referring to FIG. 5C, there is shown a sketch of triple facets (triple facet crossing, triple overlap). Similar to the other examples, a lightguide (the lightguide 20) includes overlapping internal facets 922T, which are shown as double-lines, between the first surfaces (**26**, **26A**). A solid arrow shows a nominal ray crossing three facets and then outcoupled from the substrate (arrow

outcoupling ray **38B**). As in similar figures, dashed lines are used to show alignment of the facets **922T**. In this example, multiple (specifically two) first partial facets and multiple (two) last partial facets are shown.

In the current embodiment, management of configuration of facets in an overlapping

5 configuration, specifically optimizing the overlap to obtain a constant number of facets (more than one) reflecting light onto the observer, in other words, at least two facets reflect light toward a FOV of an observer, can reduce non-uniformity of light output from the lightguides.

Referring to FIG. 6, there is shown a sketch of an angular space architecture of the lightguide **20** (FIG. 3A, FIG. 3B) being fed by the first exemplary embodiment **300C** (FIG. 3C).

10 Efficiency of extracting the light from the lightguide **20** depends on the angles and coating parameters of the facets **922P**. Exemplary parameters used for the current case are based on BK7 glass and MY-130 glue, but other optical materials may be used.

The critical angles **60** (represented as circles) of the first lightguide **10** are 59 degrees within a BK7 glass lightguide surrounded by protective coating having $n=1.3$. Four circles represent the

15 critical angles **60** of the four external facets of the lightguide **20**. The unpolarized light source **2U** and the 2D lightguide **9** generate uniform illumination distribution, therefore we can assume for simplicity that the angular area between the critical angles **62** is uniformly illuminated. Assuming rectangular aperture of the projecting optics **107** having $f/2$, then the half angle divergence of the required image light is 14 degrees as presented by illumination **64**. This required illumination 20 angular distribution propagate along the first lightguide **10** until reflected by the facets **12** at 45 degrees onto the lightguide **20** as depicted by required illumination **66**. As the required illumination **66** propagates along the first lightguide **10**, the required illumination **66** is reflected by the facets **922P** at 45 degrees out of the lightguide **20** and onto the LCOS **106** as depicted by illumination **68**.

25 In order to minimize scattering, it is preferable that the coatings on the facets **12** and the facets **922P** have reflectivity of S-polarization at the required angles only. In this example, this should be approximately ± 14 degrees around 45 degrees.

The efficiency of this configuration of the present invention is determined by the ratio of the illumination angular distribution (within the angular area defined by the critical angles **62**) to the 30 required angular area of the illumination **64**. The 2D lightguide **9** (including optional diffusers)

with limited angular distribution overlapping the required distribution can optionally be used to improve efficiency.

Referring to FIG. 7, there is shown a sketch of an angular space architecture of FIG. 6 with improved energy extraction. The axis and the critical angles are the same as described in reference 5 the case of FIG. 6.

The required optical illumination angular distribution **70** has the same parameters as in FIG. 6 but is off-center. This way, this distribution is reflected by the four external facets of the first lightguide **10** to generate distributions **70**, **72**, **74** and **76**. These four distributions engage energy as the four distributions propagate along the first lightguide **10**.

10 The facets **12** in this embodiment are at 37 degrees and have coating that partially reflects S-polarization at angles between 20 to 53 degrees (relative to facet vertex). These facets **12** will reflect distributions **70** and **72** onto the lightguide **20** as distributions **78** and **80** respectively. These two distributions (**78**, **80**) also exchange energy as the two distributions propagate along the lightguide **20**.

15 The facets **922P** within the lightguide **20** (having same parameter as in the first lightguide **10** in this example) partially reflect distribution **78** out of the lightguide **20** onto the LCOS **106** as distribution **82**.

20 In the current embodiment, the facets partially reflect the light and the continuous coupling with the other distributions within the lightguide enable more energy to be coupled to the required distribution. It is apparent from the current figure that the combined distribution of **70**, **72**, **74**, and **76** fills efficiently the illuminating angular distribution between the critical angles of the first lightguide **10**.

25 A combination of facet (**12**, **922P**) and corresponding coatings can be designed in the lightguides (**10**, **20**) to convert light propagating with a large angle (relative to a normal to the facets) to propagate with a relatively shallower angle. This design combination can be based on reflection at high angles and facets at low angles, preferably only with regard to S-polarization. This design combination can improve efficiency as compared to implementations allowing light to propagate with high angles.

30 Referring to FIG. 8, there is shown a chart of performance of coating designed for the configuration of FIG. 7. The performance in the current chart includes overlapping facets. The

reflectance of S-polarization **Rs** (toward the LCOS **106**) is 10-15%, while the transmittance of the P-polarization **Tp** (from the LCOS **106** toward the projecting optics **107**) is >95%. The transmittance of the other images **Ts** (**74**, **76** and **80**) is relatively good >85% in most of the angular spectrum. Reflectivity of **Rs** can cause energy loss to unobservable directions.

5 The coating design of figure 8 is based on an exemplary multi-layer refractive configuration. However, lower cost (with somewhat lower performance) single layer can be used including a glue with different refractive index.

Referring to FIG. 9, there is shown a sketch of angular distribution of a configuration including tapered (or cylindrical lens) expansion of the second exemplary embodiment **300D**. The 10 configuration depicted in the second exemplary embodiment **300D** describes a tapered 1D expansion of the light (the unpolarized light **4U** using the tapered non-imaging lightguide **326**) from the 2D lightguide **9**. This expansion can also optionally be by cylindrical lenses. It is common knowledge to perform these types of expansion by preserving the Etendue of the light distribution. This way, the spatial expansion of the width of the illumination is accompanied by equivalent 15 reduction of the angular distribution of illumination on the same axis.

The angular illumination distribution in the 2D lightguide **9** (illumination between all critical angles) is depicted as area **84**. The tapered conversion is depicted as a transformation to thin rectangle **86** (the rotation from one direction to another is not mandatory and is for clarity).

20 The required intensity distributions **88** and **90** exchange energy and coupled out to **92** by facets **922P** the same way as **78** and **80** in FIG. 7. This way, the conversion of light energy from the lightguide **9** to the required illumination distribution is improved in efficiency.

Referring to FIG. 10A, there is shown a sketch of a first optional architecture for optical illumination **302A**. A tilted angle is between the first lightguide **10** and the lightguide **20** can be used for optimizing the angular parameters of the coating depicted in FIG. 8.

25 Referring to FIG. 10B and FIG. 10C, there are shown respective side and front view sketches of a second optional architecture for optical illumination **302B**. The source optics **300** provides uniform illumination light **4L1** (in this case polarized or unpolarized) into an overlapping lightguide **20A** having a first set of facets **922M** and a second set of facets **922N**. The crossing (overlapping) orientations of the first and second sets of facets cause lateral expansion of the source 30 aperture within the overlapping lightguide **20A** and projects the first polarization of light **324** while transmitting the second, orthogonal, polarization of light **326**.

Referring to FIG. 11A and FIG. 11B, there is shown the reflection process by the internal facets in lightguides **10** and **20**. Two basic configurations are depicted, and differ by the relative angles of the light beams and the facets. In this schematic illustration, the beams **a1**, **a2** and **b1** are 5 depicted as same vector (for simplicity referred to as beam **b1**) since the same geometrical considerations apply to each as observed from a side view of the corresponding lightguide. Beams **a3**, **a4** and **b2** are also depicted as same vector (reference will be only to **b2**). The beam **b1** represents **74**, **78**, **80**, or **90**. Beam **b2** represent **70**, **72**, **78**, or **88**.

Light beams **b2** are actually a bundle of rays propagating in same direction as depicted by 10 two vectors in FIG. 11A. In this case, one vector is reflected by the external face to become beam **b1** and onto an internal facet **40** (corresponding to facets **922P**) where part of the one vector is reflected as beam **c1**. The other beam **b2** vector is reflected directly by facet as vector beam **c2**. The vector beams **c1** and **c2** represent the normal image and ghost image not necessarily in this order. In this configuration, beams **b1** and **b2** impinge on the facet **40** from the same side.

15 FIG. 11B describes a similar process as described with reference to FIG. 11A, but where the geometry is such that beams **b1** and **b2** impinge on facet **40** from opposite sides of facet **40**.

In both cases, the magnitude of reflection for images **c1** and **c2** in S- and P-polarizations is 20 determined by the coating on these facets **40**. Preferably, one reflection is the image and the other is suppressed since the other image corresponds to an unwanted “ghost” image. Suitable coatings for controlling which ranges of incident beam angles are reflected and which ranges of incident beam angles are transmitted can be found described in detail in US Patents Nos. 7,391,573 and 7,457,040, coassigned with the present invention.

Note that the above-described examples, numbers used, and exemplary calculations are to 25 assist in the description of this embodiment. Inadvertent typographical errors, mathematical errors, and/or the use of simplified calculations do not detract from the utility and basic advantages of the invention.

To the extent that the appended claims have been drafted without multiple dependencies, this has been done only to accommodate formal requirements in jurisdictions that do not allow such 30 multiple dependencies. Note that all possible combinations of features that would be implied by rendering the claims multiply dependent are explicitly envisaged and should be considered part of the invention.

It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the scope of the present invention as defined in the appended claims.

WHAT IS CLAIMED IS:

1. An optical system comprising:
 - (a) a lightguide having:
 - (i) a first external surface and a second external surface mutually parallel, and
 - (ii) a first sequence of facets, at least a portion of which are:
 - (A) a plurality of parallel, partially reflecting, and polarization selective surfaces,
 - (B) at an oblique angle relative to said first and second external surfaces, and
 - (C) between said first and second external surfaces, and
 - (b) a front-lit reflective polarization rotating image modulator:
 - (i) deployed to spatially modulate light coupled-out from said first external surface,
 - (ii) outputting reflected light corresponding to an image, and
 - (iii) deployed such that said reflected light traverses said lightguide from said first external surface via said first sequence of facets to said second external surface.
2. The optical system of claim 1 wherein each of said facets reflects at least a portion of first polarized light and transmits a remaining portion of said first polarized light, and transmits second polarized light.
3. The optical system of claim 2 wherein reflectivity of said first polarization increases from one facet to a subsequent facet in said first sequence of facets.
4. The optical system of claim 2 wherein said first polarized light is coupled-out from said first external surface, and said reflected light is of said second polarized light.
5. The optical system of claim 1 wherein said first sequence of facets expands light in-coupled to said lightguide such that said light is uniformly coupled-out of said first external surface.

6. The optical system of claim 1 wherein said image modulator is a liquid crystal on silicon (LCOS) matrix.

7. The optical system of claim 1 wherein said facets are constructed at least in part using a technique selected from the group consisting of:

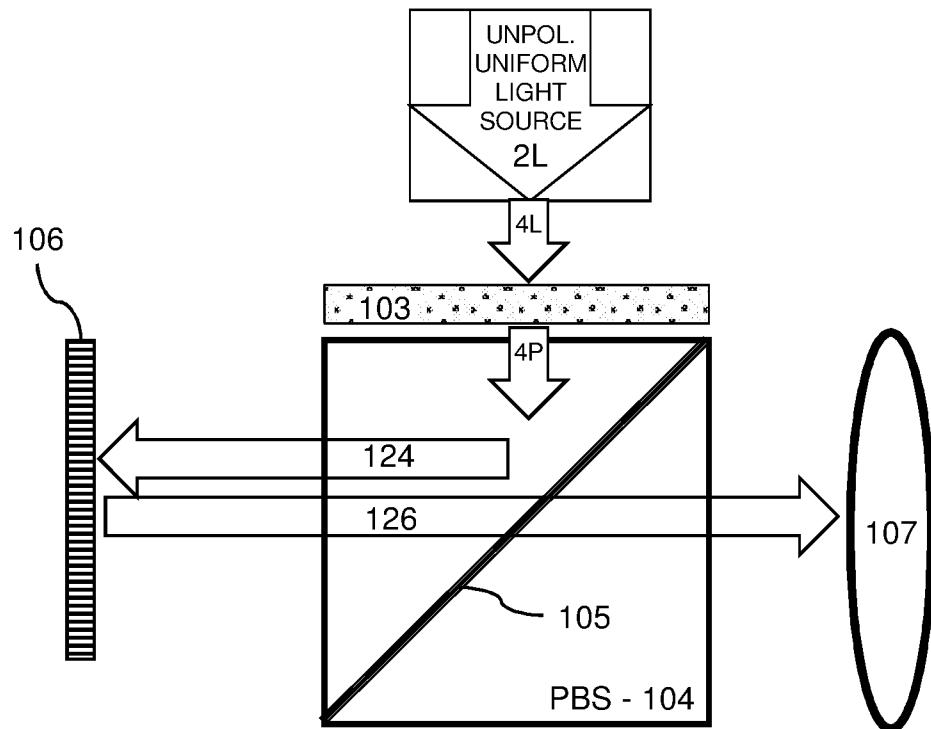
- (a) multi-layer coatings,
- (b) a dielectric coating; and
- (c) a wire-grid.

8. The optical system of claim 7 wherein orientation of a primary axis of said facets determines reflectivity of said facets.

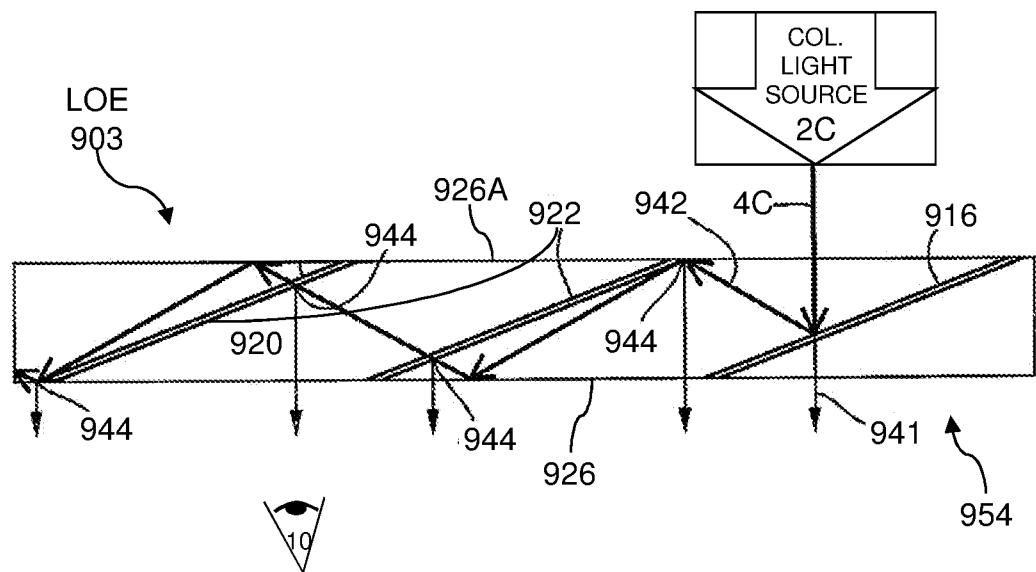
9. The optical system of claim 1 wherein reflectivity of each of said facets is dependent on an angle light impinges of said facet.

10. The optical system of claim 1 wherein said first sequence of facets is configured to perform coupling-out of light from said first external surface, said first sequence of facets having a constant number of facets overlapping in a line of sight toward a nominal point of observation of light coupling-out of said first external surface.

11. The optical system of claim 1 further comprising:


- (iii) a second sequence of facets, at least a portion of which are:
 - (A) a plurality of parallel, partially reflecting, and polarization selective surfaces,
 - (B) at an oblique angle relative to said first and second external surfaces, and
 - (C) between said first and second external surfaces,

wherein the facets of said first sequence of facets and said second sequence of facets are non-parallel relative to each other.


12. The optical system of claim 11 wherein each of said sequences of facets spans an area of coverage, said spanning being an area over which each of said sequences of facets are deployed, and

wherein said areas of coverage for said first and second sequences of facets are at least partially overlapping.

1 / 9

PRIOR ART
FIG. 1

FIG. 2

2 / 9

FIG. 3A

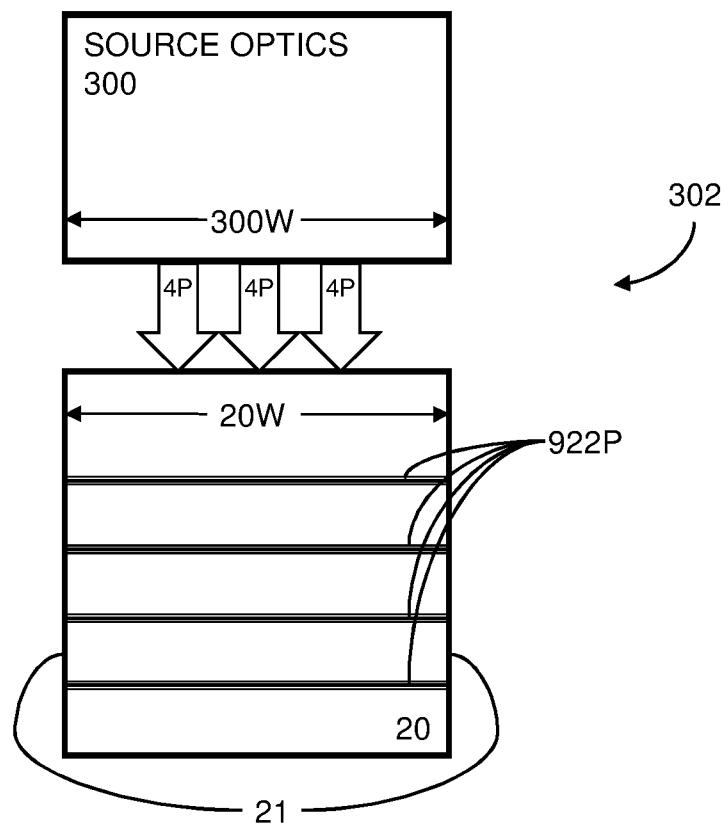
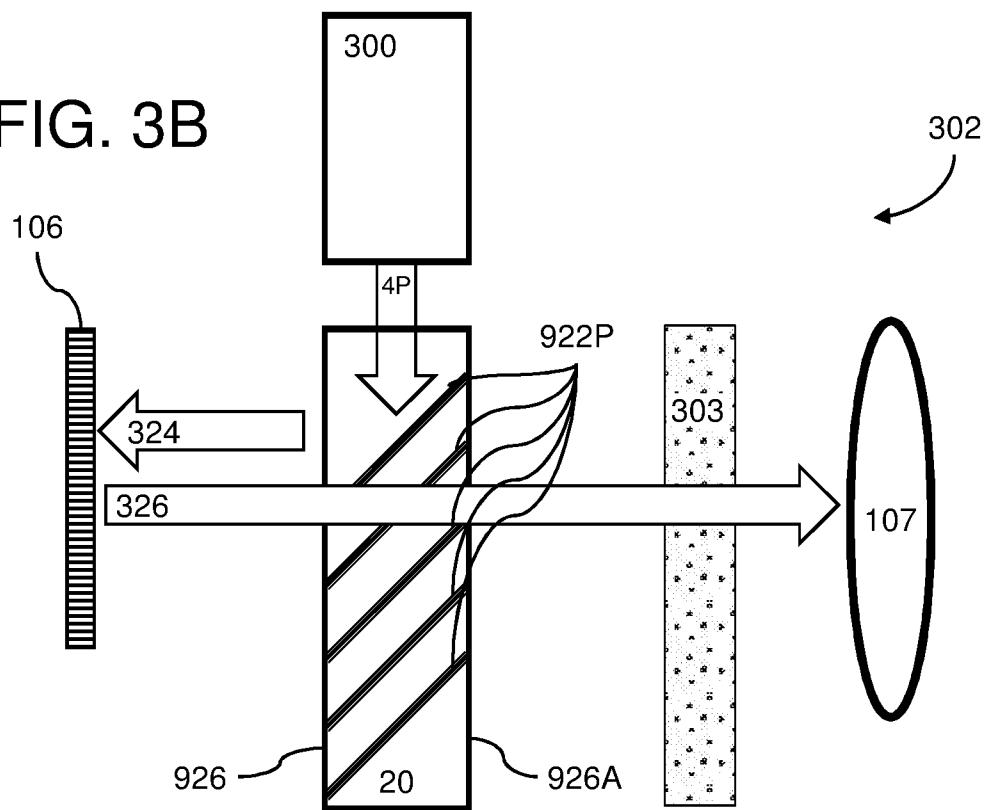



FIG. 3B

3 / 9

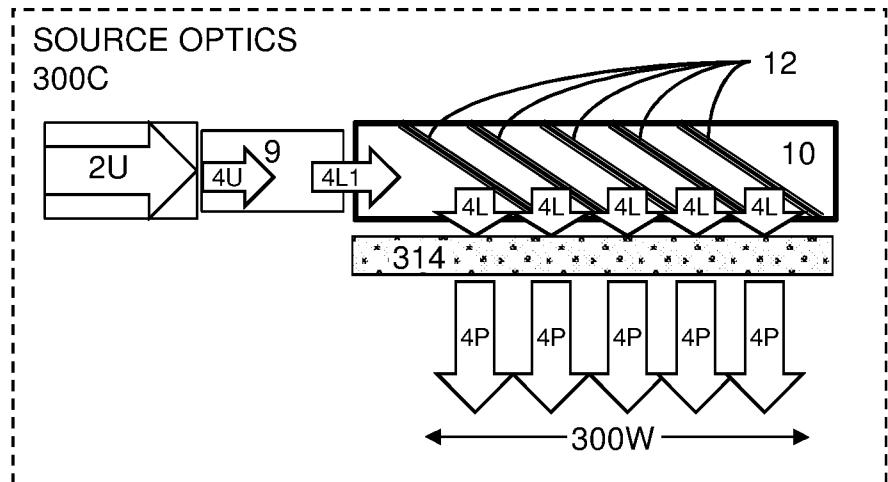


FIG. 3C

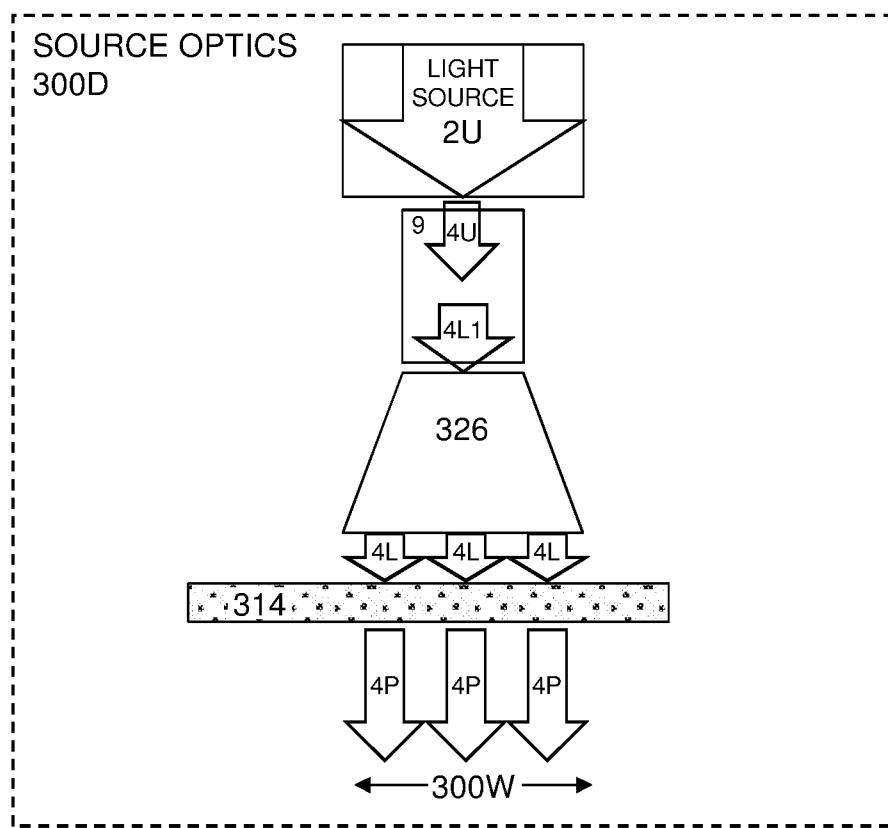


FIG. 3D

4 / 9

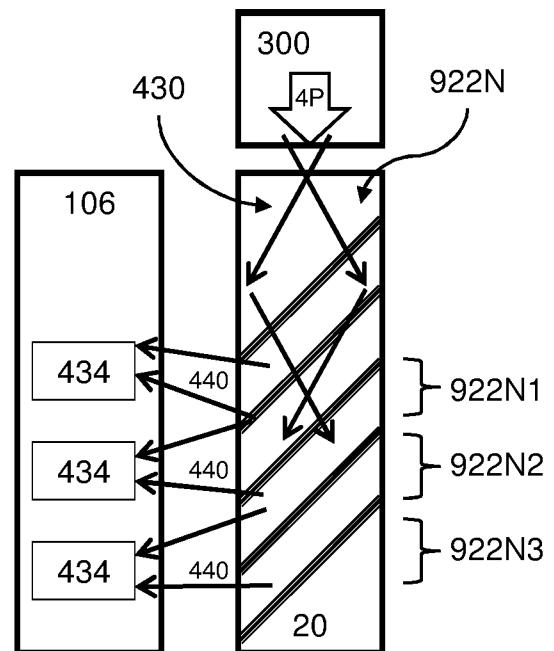
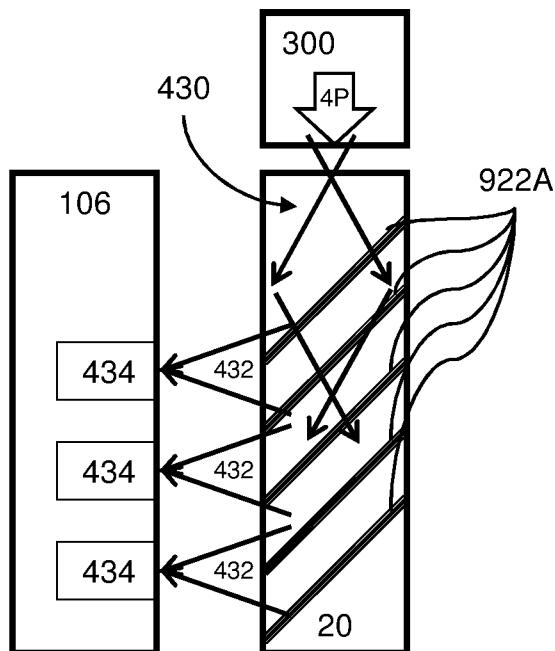



FIG. 4A

FIG. 4B

5 / 13

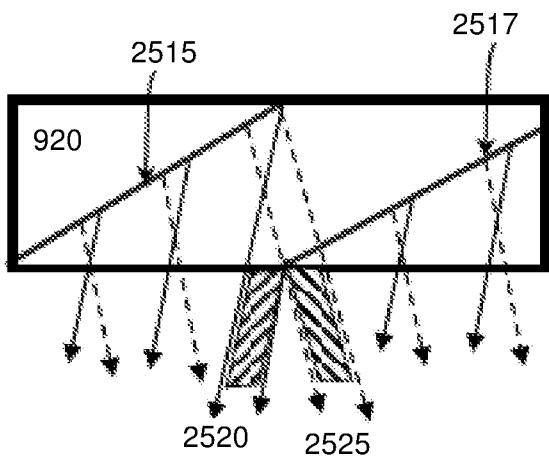


FIG. 5A

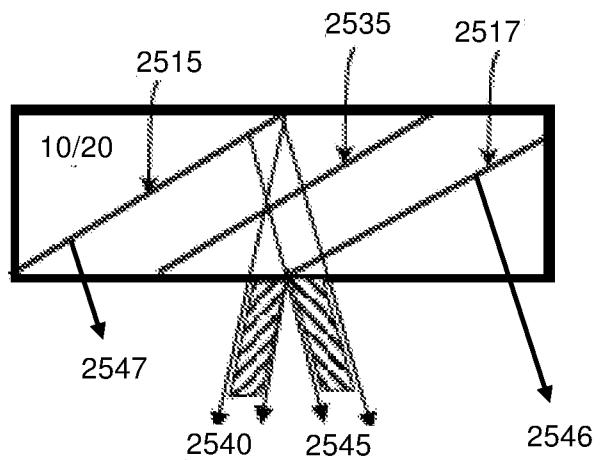


FIG 5B

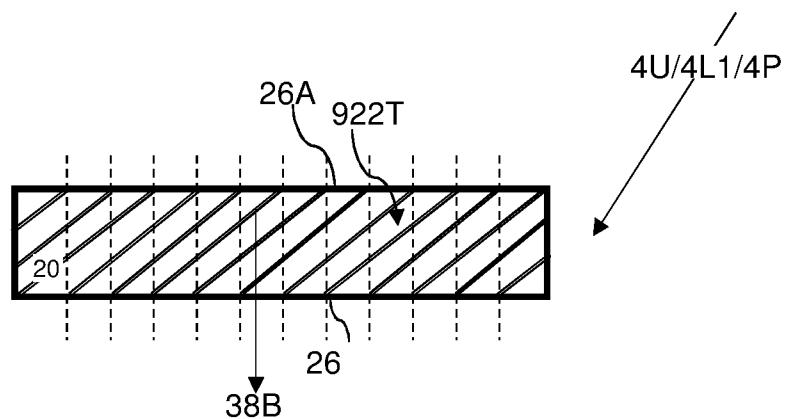


FIG 5C

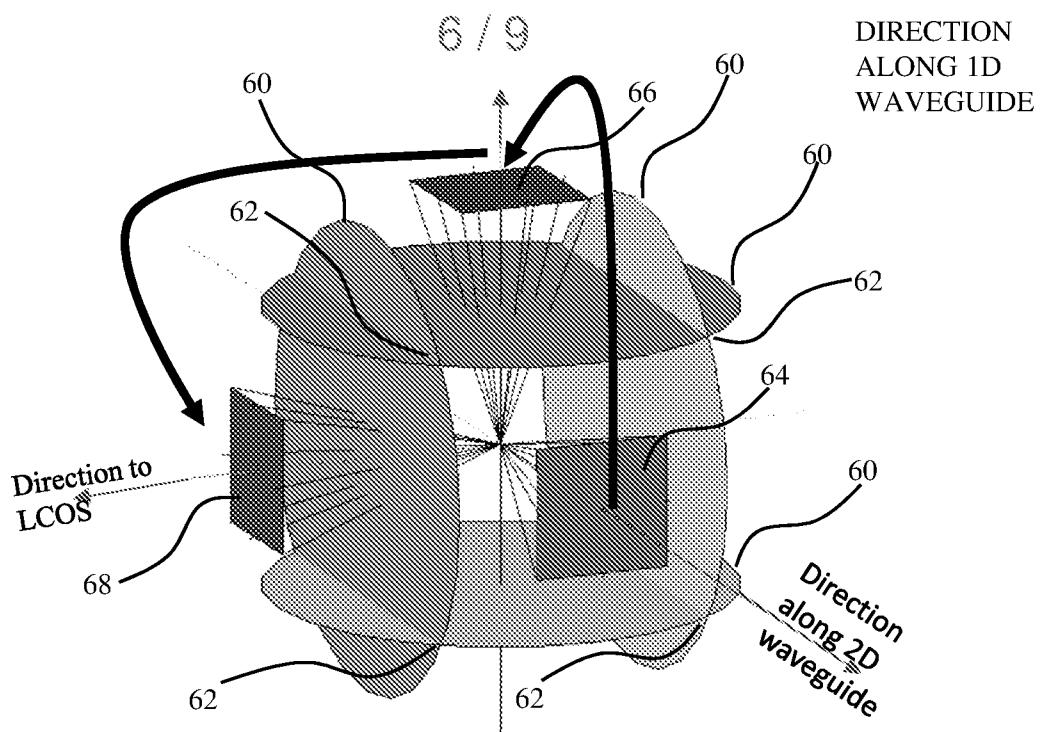


FIG. 6

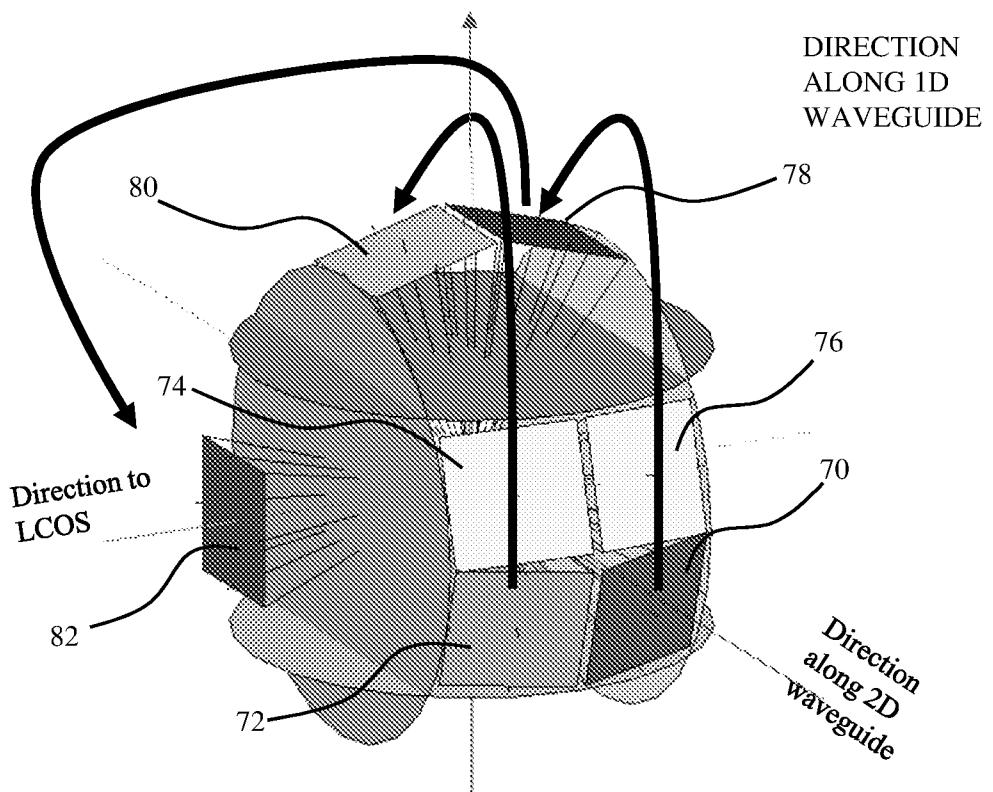


FIG. 7

7 / 9

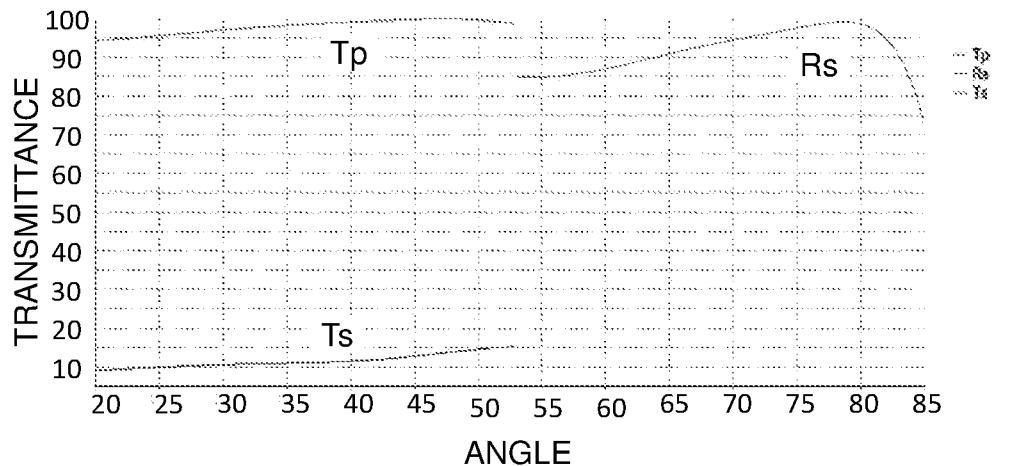


FIG. 8

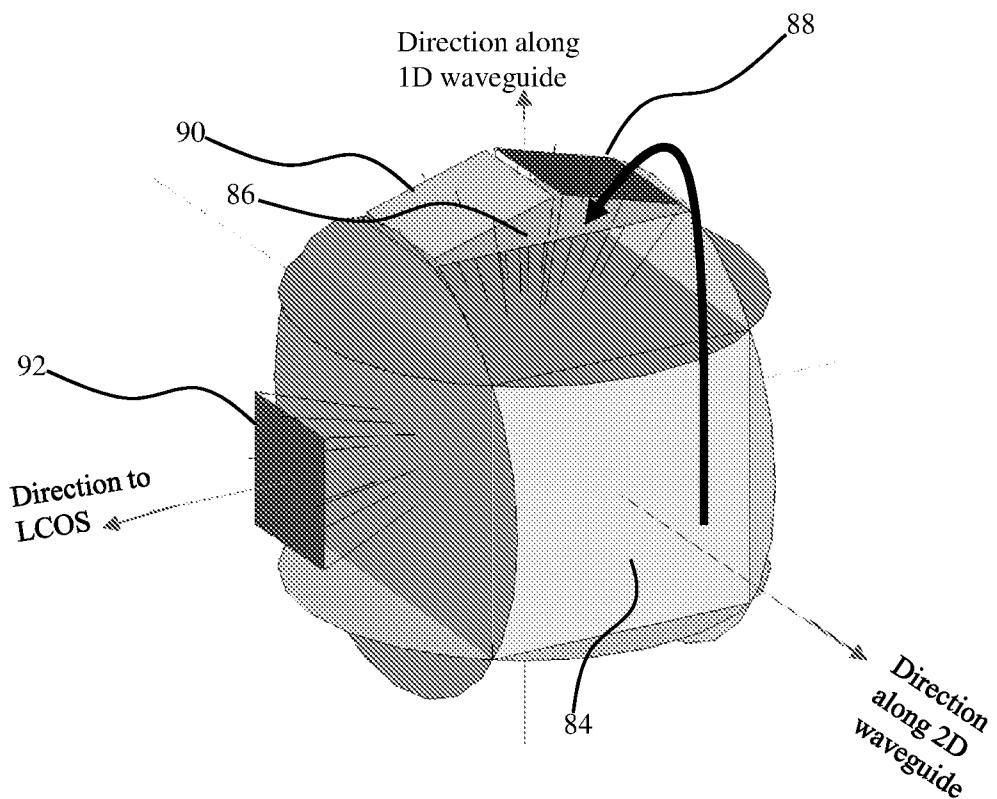


FIG. 9

8 / 9

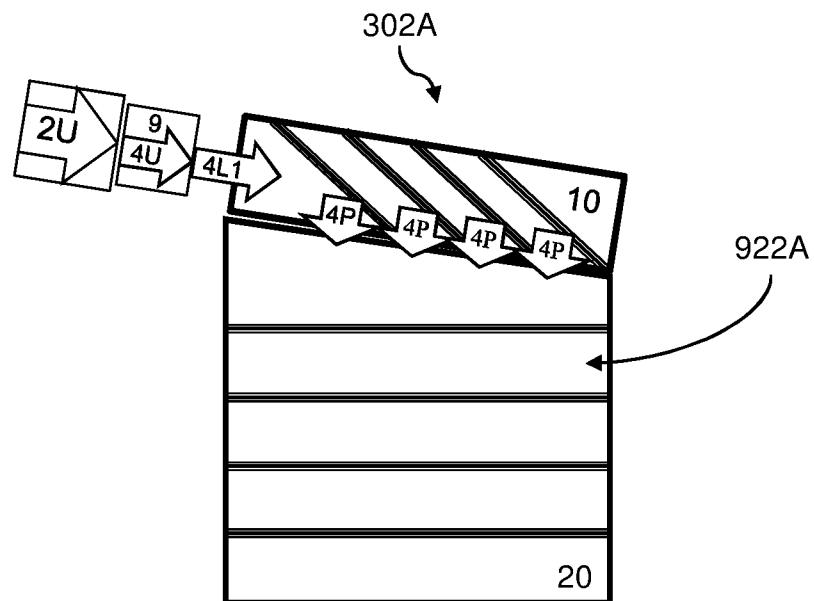


FIG. 10A

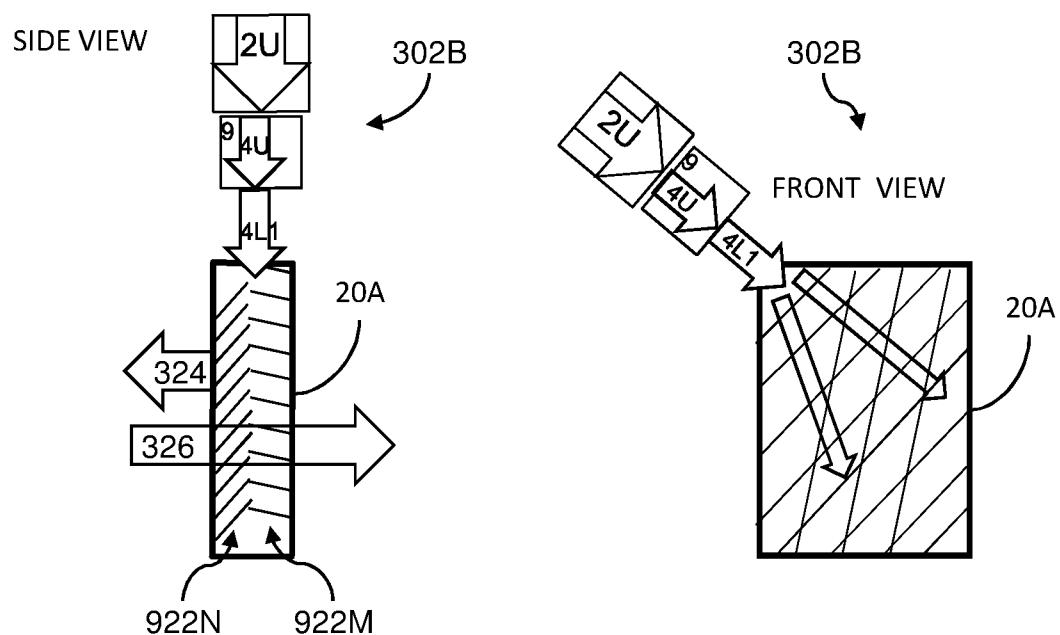
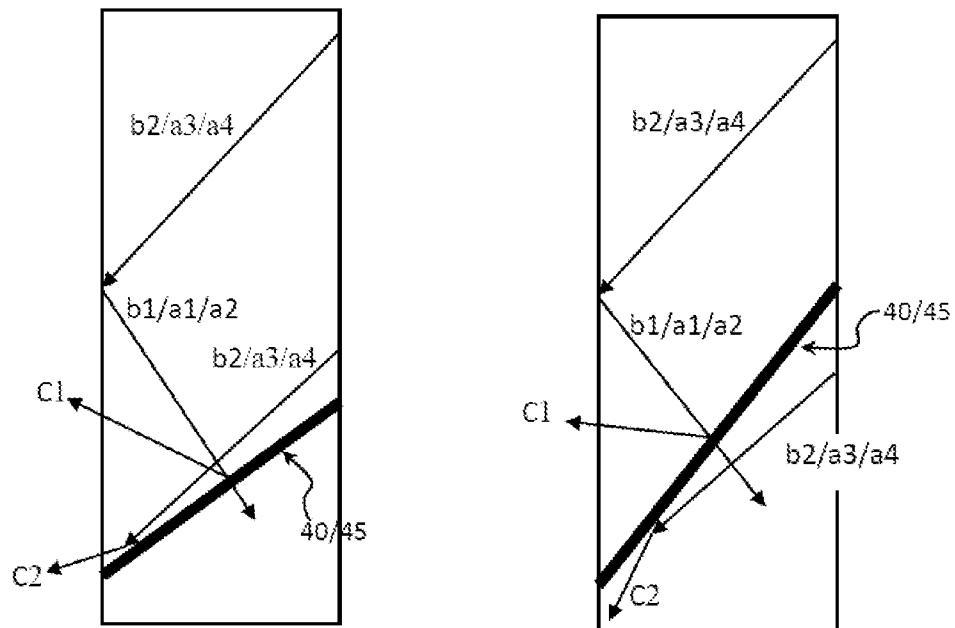



FIG. 10B

FIG. 10C

9 / 9

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IL2018/050798

A. CLASSIFICATION OF SUBJECT MATTER

IPC (2018.01) G02F 1/133300

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC (2018.01) G02F 1/133300

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Databases consulted: Esp@cenet, Google Patents, Orbit

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5896232 A BUDD RUSSELL ALAN et al. 20 Apr 1999 (1999/04/20) The whole document	1-12
Y	US 9551880 B2 AMITAI YAAKOV 24 Jan 2017 (2017/01/24) The whole document	1-12
Y	US 7643214 B2 AMITAI YAAKOV 05 Jan 2010 (2010/01/05) The whole document	1-12
Y	US 6829095 B2 AMITAI YAAKOV 07 Dec 2004 (2004/12/07) The whole document	7-9

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“Y” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

12 Sep 2018

Date of mailing of the international search report

17 Sep 2018

Name and mailing address of the ISA:

Israel Patent Office

Technology Park, Bldg.5, Malcha, Jerusalem, 9695101, Israel

Facsimile No. 972-2-5651616

Authorized officer

DAVIDI Ariel

Telephone No. 972-2-5651727

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/IL2018/050798

Patent document cited search report	Publication date	Patent family member(s)		Publication Date
US 5896232 A	20 Apr 1999	US 5896232	A	20 Apr 1999
US 9551880 B2	24 Jan 2017	US 2008278812	A1	13 Nov 2008
		US 9551880	B2	24 Jan 2017
		CA 2628871	A1	18 May 2007
		CA 2628871	C	09 Jul 2013
		EP 1949169	A1	30 Jul 2008
		IL 171820	A	30 Apr 2014
		JP 2009515225	A	09 Apr 2009
		JP 5457033	B2	02 Apr 2014
		US 2017052377	A1	23 Feb 2017
		US 10048499	B2	14 Aug 2018
		US 2017052376	A1	23 Feb 2017
		WO 2007054928	A1	18 May 2007
US 7643214 B2	05 Jan 2010	US 2008198471	A1	21 Aug 2008
		US 7643214	B2	05 Jan 2010
		EP 1756648	A1	28 Feb 2007
		EP 1756648	B1	01 Nov 2017
		IL 162573	D0	20 Nov 2005
		IL 162573	A	30 May 2013
		WO 2005124428	A1	29 Dec 2005
		WO 2005124428	B1	09 Feb 2006
US 6829095 B2	07 Dec 2004	US 2003165017	A1	04 Sep 2003
		US 6829095	B2	07 Dec 2004
		AT 473464	T	15 Jul 2010
		AU 5664401	A	17 Dec 2001
		AU 2001256644	B2	16 Jun 2005
		CA 2411442	A1	13 Dec 2001
		CA 2411442	C	13 Jul 2010

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/IL2018/050798

Patent document cited search report	Publication date	Patent family member(s)	Publication Date
	CN 1440513	A	03 Sep 2003
	CN 100507636	C	01 Jul 2009
	CZ 20023902	A3	14 May 2003
	CZ 302883	B6	04 Jan 2012
	DE 60142516	D1	19 Aug 2010
	DK 1295163	T3	25 Oct 2010
	EP 1295163	A2	26 Mar 2003
	EP 1295163	B1	07 Jul 2010
	ES 2348532	T3	09 Dec 2010
	HK 1057613	A1	05 Feb 2010
	HU 0400526	A2	28 May 2004
	HU 0400526	A3	28 Jul 2005
	HU 227185	B1	28 Oct 2010
	JP 2013210633	A	10 Oct 2013
	JP 5698297	B2	08 Apr 2015
	JP 2003536102	A	02 Dec 2003
	KR 20030028479	A	08 Apr 2003
	KR 100839574	B1	19 Jun 2008
	PL 361735	A1	04 Oct 2004
	PL 209571	B1	30 Sep 2011
	WO 0195027	A2	13 Dec 2001
	WO 0195027	A3	15 Aug 2002