
DE69822534T220050127
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 698 22 534 T2 2005.01.27

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 856 796 B1
(21) Deutsches Aktenzeichen: 698 22 534.1
(96) Europäisches Aktenzeichen: 98 101 562.1
(96) Europäischer Anmeldetag: 29.01.1998
(97) Erstveröffentlichung durch das EPA: 05.08.1998
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 24.03.2004
(47) Veröffentlichungstag im Patentblatt: 27.01.2005

(51) Int Cl.7: G06F 12/08
G06F 12/10, G06F 12/02

(54) Bezeichnung: Gemeinsame Speicherbenutzung mit variablen Blockgrössen für symmetrische Multiporzes-
sor-Gruppen

(30) Unionspriorität:
794172 03.02.1997 US

(73) Patentinhaber:
Compaq Computer Corp., Houston, Tex., US

(74) Vertreter:
Andrae Flach Haug, 83022 Rosenheim

(84) Benannte Vertragsstaaten:
DE, FR, GB

(72) Erfinder:
Scales, Daniel J., Palo Alto, California 94306, US;
Gharachorloo, Kourosh, Menlo Park, California
94025, US; Aggarwal, Anshu, Mountain View, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/32

DE 698 22 534 T2 2005.01.27
Beschreibung

Gebiet der Erfindung

[0001] Die vorliegende Erfindung bezieht sich allge-
mein auf symmetrische Multiprozessoren und insbe-
sondere auf die gemeinsame Nutzung von Daten
zwischen symmetrischen Multiprozessoren.

Hintergrund der Erfindung

[0002] Verteilte Computersysteme weisen typi-
scherweise mehrere Computer auf, die über ein
Kommunikationsnetzwerk miteinander verbunden
sind. Bei manchen verteilten Computersystemen
können die vernetzten Computer auf gemeinsame
Daten zugreifen. Solche Systeme werden manchmal
auch als parallele Computer bezeichnet. Wenn eine
große Anzahl von Computern vernetzt ist, wird das
verteilte System als "massiv" parallel bezeichnet. Ein
Vorteil von massiv parallelen Computern ist, dass sie
komplexe Rechenaufgaben in vertretbarer Zeit lösen
können.

[0003] Bei solchen Systemen werden die Speicher
der Computer kollektiv als verteilter gemeinsamer
Speicher (Distributed Shared Memory/DSM) be-
zeichnet. Dabei besteht insofern ein Problem, weil
nämlich garantiert werden muss, dass die im verteil-
ten gemeinsamen Speicher gespeicherten Daten in
kohärenter Weise abgerufen werden. Kohärenz be-
deutet teilweise, dass nur ein Prozessor einen be-
stimmten Teil der Daten zu einer bestimmten Zeit mo-
difizieren kann, weil sonst der Zustand des Systems
nicht deterministisch wäre.

[0004] In Yeung D., "MGS: A Multigrain Shared Me-
mory System" ("Gemeinsames Speichersystem mit
mehreren Granularitäten"), Association for Compu-
ting Machinery, Bd. 24, Nr. 2, 1996 ist ein verteiltes
skalierbares gemeinsames Speicher-Multiprozessor-
system beschrieben. Die Konstruktion dieses ge-
meinsamen Speichersystems verwendet multiple
Granularitäten einer gemeinsamen Nutzung.

[0005] Fig. 1 zeigt ein typisches verteiltes gemein-
sames Speichersystem 100, das mehrere Computer
110 aufweist. Jeder Computer 110 enthält einen Ein-
zelprozessor 101, einen Speicher 102 und Einga-
be/Ausgabe(Input/Output/I/O)-Schnittstellen 103, die
über einen Bus 104 miteinander verbunden sind. Die
Computer sind über ein Netzwerk 120 miteinander
verbunden. Hierbei bilden die Speicher 102 der Com-
puter 110 den gemeinsamen Speicher.

[0006] In letzter Zeit wurden verteilte gemeinsame
Speichersysteme als ein Cluster symmetrischer Mul-
tiprozessoren (SMP) aufgebaut. Bei SMP-Systemen
kann der gemeinsam genutzte Speicher in wirkungs-
voller Weise in Hardware implementiert werden, da

die Prozessoren symmetrisch sind, z. B. in ihrem Auf-
bau und Betrieb identisch, und auf einem einzigen
gemeinsamen Prozessorbus betrieben werden.
SMP-Systeme haben ein gutes Preis/Leistungs-Ver-
hältnis mit vier oder acht Prozessoren. Aufgrund des
speziell gefertigten Busses ist es jedoch schwierig,
die Größe eines SMP-Systems über zwölf oder
sechszehn Prozessoren hinaus zu skalieren.

[0007] In Scales, D. J. et al., "Shasta: a low over-
head, software-only approach for supporting fi-
ne-grain shared memory" ("Shasta: ein kostengünsti-
ges, nur in Software implementiertes Verfahren zur
Unterstützung eines gemeinsam genutzten Spei-
chers feiner Granularität"), Sigplan Notices, Bd. 31,
Nr. 9, 1996, ist ein verteiltes, gemeinsam genutztes
Speichersystem beschrieben, das einen gemeinsa-
men Adressraum in Software auf Clustern von Com-
putern mit physisch verteiltem Speicher unterstützt.
Ein besonderes Merkmal des Shasta-Systems ist,
dass die gemeinsam genutzten Daten in einer feinen
Granularität kohärent gehalten werden können und
die Kohärenz-Granularität sich in einer einzigen An-
wendung über verschiedene gemeinsam genutzte
Datenstrukturen verändern kann.

[0008] Es ist wünschenswert, große verteilte ge-
meinsam genutzte Speichersysteme unter Verwen-
dung symmetrischer Multiprozessoren aufzubauen,
die über ein Netzwerk miteinander verbunden sind.
Das Ziel ist dabei, dass die Prozesse die Speicher in
einer wirkungsvollen Weise nutzen, so dass von ei-
nem auf einem ersten SMP ausgeführten Prozess
von einem mit einem zweiten SMP verbundenen
Speicher abgerufene Daten sofort für alle auf dem
ersten SMP ausgeführten Prozesse zur Verfügung
stehen.

[0009] Bei den meisten bestehenden verteilten ge-
meinsamen Speichersystemen signalisiert eine Logik
der virtuellen Speicherhardware (Paging) typischer-
weise, wenn ein Prozess versucht, auf gemeinsame
Daten zuzugreifen, die nicht im Speicher des lokalen
SMP gespeichert sind, auf dem der Prozess ausge-
führt wird. In dem Fall, wo die Daten nicht lokal ver-
fügbar sind, werden die Funktionen der Paging-Feh-
lerhandhabungsroutinen durch Softwareroutinen er-
setzt, die Nachrichten mit auf entfernten Prozessoren
ausgeführten Prozessen austauschen.

[0010] Bei dieser Vorgehensweise besteht das
Hauptproblem darin, dass die Datenkohärenz nur mit
großen (groben) Quantitäten vorgesehen werden
kann, da typische virtuelle Speicherseiteneinheiten 4
KB oder 8 KB betragen. Diese Größe kann mit viel
kleineren Dateneinheiten, zum Beispiel 32 oder 64
Bytes, auf die von vielen Prozessen zugegriffen wer-
den, inkonsistent sein. Eine Granularität mit einer
großen Seitengröße erhöht den Netzverkehr und
kann zu einer Verringerung der Systemleistung füh-
2/32

DE 698 22 534 T2 2005.01.27
ren.

[0011] Außerdem nutzen auf dem gleichen SMP
ausgeführte multiple Prozesse typischerweise zu-
sammen Zustandsinformation über gemeinsam ge-
nutzte Daten. Es können daher potentiell Wettlaufsi-
tuationen (Racing) entstehen. Eine Wettlaufsituation
entsteht dann, wenn der Zustand des Systems davon
abhängt, welcher Prozess zuerst abgeschlossen
wird. Wenn zum Beispiel viele Prozesse Daten an
eine identische Adresse schreiben können, werden
von der Adresse gelesene Daten von der Ausfüh-
rungsreihenfolge der Prozesse abhängen. Die Rei-
henfolge kann jedoch mit Laufzeitbedingungen vari-
ieren. Wettlaufsituationen können dadurch vermie-
den werden, dass dem Prozess vorgeschaltete Syn-
chronisationsüberprüfungen, wie zum Beispiel Sper-
ren oder Flags, hinzugefügt werden. Eine explizite
Synchronisation erhöht jedoch die Kosten und kann
dazu führen, dass das System nicht mehr praktisch
zu implementieren ist.

[0012] Es ist wünschenswert, der Datentransferein-
heit zwischen den symmetrischen Multiprozessoren
zu erlauben, je nach der Größe der zugegriffenen Da-
tenstrukturen zu variieren. Eine Kohärenzsteuerung
für große Datenstrukturen sollte die Übertragung gro-
ßer Dateneinheiten erlauben, so dass die zum Trans-
fer der Daten benötigte Zeit amortisiert werden kann.
Eine Kohärenz für kleinere Datenstrukturen sollte
den Transfer kleiner Dateneinheiten erlauben. Au-
ßerdem sollte möglich sein, kleine Kohärenzeinhei-
ten für große Datenstrukturen zu verwenden, bei de-
nen eine falsche gemeinsame Nutzung auftreten
kann. Eine falsche gemeinsame Nutzung (False Sha-
ring) ist eine Situation, die auftritt, wenn unabhängige
Datenelemente, auf die von unterschiedlichen Pro-
zessen zugegriffen wird, in einer kohärenten Daten-
einheit gespeichert sind.

Zusammenfassung der Erfindung

[0013] Ein in Software implementiertes Verfahren
ermöglicht eine gemeinsame Nutzung von Daten
zwischen symmetrischen Multiprozessoren, die ein
verteiltes gemeinsames Speichersystem verwenden,
indem Datenquantitäten mit variabler Größe verwen-
det werden. Beim verteilten gemeinsamen Speicher-
system sind die symmetrischen Multiprozessoren
über ein Netzwerk miteinander verbunden. Jeder
symmetrische Multiprozessor enthält mehrere identi-
sche Prozessoren, einen Speicher mit Adressen und
eine E/A-Schnittstelle zur Verbindung der symmetri-
schen Multiprozessoren über das Netzwerk.

[0014] Die Erfindung besteht in ihrer weitest gefass-
ten Form aus einem Verfahren zum gemeinsamen
Zugreifen auf in den Speichern symmetrischer Multi-
prozessoren in einem Computersystem gespeicherte
Daten, nach Anspruch 1.

[0015] Wie hiernach beschrieben wird, wird ein Satz
der Adressen der Speicher kollektiv als virtuelle ge-
meinsame Adressen zum Speichern gemeinsamer
Daten bezeichnet. Die gemeinsamen Daten können
durch die Befehle von Programmen abgerufen wer-
den, die auf einem beliebigen der Prozessoren der
symmetrischen Multiprozessoren als Prozesse ab-
laufen. Ein Teil der virtuellen gemeinsamen Adressen
wird zum Speichern einer gemeinsamen Datenstruk-
tur zugewiesen, die von den Prozessen als einer oder
mehrere Blöcke verwendet wird. Die Daten werden
auf der Ebene einzelner Blöcke abgerufen und kohä-
rent gehalten.

[0016] In einer bevorzugten Ausführungsform der
Erfindung kann die Größe eines bestimmten zuge-
wiesenen Blocks für eine bestimmte gemeinsame
Datenstruktur variieren. Jeder Block enthält eine
ganzzahlige Anzahl von Zeilen, und jede Zeile enthält
eine vorbestimmte Anzahl von Bytes gemeinsamer
Daten.

[0017] Verzeichnisinformation (Directory-Informati-
on) eines bestimmten Blocks kann in einem Verzeich-
nis (Directory) im Speicher eines Prozessors gespei-
chert werden, der als der "Heim"-Prozessor (Home
Processor) bezeichnet wird. Zugewiesene Blöcke
werden den verschiedenen Prozessoren in zykli-
scher Weise zugeteilt. Die Verzeichnisinformation
enthält die Größe des bestimmten Blocks, die Identi-
tät des Prozessors, der den Block zuletzt modifiziert
hat, und die Identitäten aller Prozessoren, die eine
Kopie des Blocks haben.

[0018] Vor der Ausführung werden die Programme
vorzugsweise statisch analysiert, um Speicherzu-
griffsbefehle, wie zum Beispiel Lade- und Speicher-
befehle, zu lokalisieren. Die Programme werden
durch Einfügen zusätzlicher Befehle in die Program-
me instrumentiert. Die zusätzlichen Befehle können
dynamisch überprüfen, ob die Zieladresse von Lade-
und Speicherbefehlen auf eine bestimmte Zeile der
gemeinsam genutzten Datenstruktur zugreift, und ob
die Daten an der Zieladresse einen gültigen Zustand
haben.

[0019] Wenn die Daten ungültig sind, wird eine Zu-
griffsanforderung erzeugt. In Reaktion auf den Emp-
fang der Zugriffsanforderung von einem Anfordern-
den der Prozessoren wird ein bestimmter die be-
stimmte Zeile enthaltender Block und die Größe des
bestimmten Blocks an den anfordernden Prozessor
gesendet. Der Block wird über das Netzwerk gesen-
det. Hierdurch wird es den symmetrischen Multipro-
zessoren ermöglicht, gemeinsame Datenstrukturen,
die in Blocks verschiedener Größe gespeichert sind,
über das Netzwerk auszutauschen.
3/32

DE 698 22 534 T2 2005.01.27
Kurzbeschreibung der Zeichnungen

[0020] Ein detaillierteres Verständnis der Erfindung
geht aus der folgenden Beschreibung einer bevor-
zugten Ausführungsform hervor, die als Beispiel an-
geführt ist und anhand der beiliegenden Zeichnun-
gen zu verstehen ist. Es zeigt:

[0021] Fig. 1 ein auf einem Uni-Prozessor basieren-
des verteiltes gemeinsames Speichersystem des
Standes der Technik;

[0022] Fig. 2 ein Blockdiagramm eines auf symme-
trischen Multiprozessoren basierenden verteilten ge-
meinsamen Speichersystems gemäß einer bevor-
zugten Ausführungsform der vorliegenden Erfindung;

[0023] Fig. 3 ein Fließdiagramm eines Prozesses
zum Instrumentieren von Programmen;

[0024] Fig. 4 ein Blockdiagramm von Optimierungs-
schritten;

[0025] Fig. 5 ein Blockdiagramm einer Speicherpar-
titionierung;

[0026] Fig. 6 ein Diagramm eines optimierten Spei-
cher-Fehlzugriffs-Prüfcodes;

[0027] Fig. 7 ein Diagramm eines Fehlzugriffs-Prüf-
codes, der zu einer optimalen Planung (Scheduling)
angeordnet ist;

[0028] Fig. 8 ein Fließdiagramm eines Verfahrens
zum Überprüfen ungültiger Daten auf einem Ladezu-
griff;

[0029] Fig. 9 ein Diagramm von Befehlen, die nach
einem ungültigen Flag suchen;

[0030] Fig. 10 ein Blockdiagramm einer Aus-
schlusstabelle;

[0031] Fig. 11 ein Blockdiagramm eines Prozesses
zur Überprüfung von Stapeln von Zugriffsbefehlen;

[0032] Fig. 12 ein Diagramm von Befehlen, die den
Prozess von Fig. 11 implementieren und für ein opti-
males Scheduling angeordnet sind;

[0033] Fig. 13 ein Blockdiagramm eines Blockver-
zeichnisses; und

[0034] Fig. 14 ein Blockdiagramm von Datenstruk-
turen, die variable Granularitäten aufweisen.

Detaillierte Beschreibung der bevorzugten Ausfüh-
rungsform

Systemüberblick

[0035] Fig. 2 zeigt ein zur Verwendung der Erfin-
dung geeignetes Computersystem 200 mit einem auf
symmetrische Multiprozessoren (SMP) verteiltem ge-
meinsamen Speicher (DSM). Das DSM-SMP-Sys-
tem 200 weist mehrere SMP-Systeme 210 auf, die
über ein Netzwerk 220 miteinander verbunden sind.
Jedes SMP-System 210 weist 2, 4, 8 oder mehr sym-
metrische Prozessoren 211 auf, die über einen Pro-
zessorbus 209 miteinander verbunden sind. Außer-
dem kann jeder SMP 210 Speicher (M) 212 und Ein-
gabe/Ausgabe-Schnittstellen (E/A) 214 aufweisen,
die über einen Systembus 213 mit den symmetri-
schen Prozessoren 211 verbunden sind.

[0036] Die Speicher 212 können dynamische Spei-
cher mit wahlfreiem Zugriff (Dynamic Random Ac-
cess Memories/DRAM) sein. Die Speicher 212 kön-
nen Hochgeschwindigkeits-Hardware-Caches ha-
ben, um die räumlichen und zeitlichen Orte von Da-
ten ausnutzen zu können. Häufig benutzte Daten
werden mit größerer Wahrscheinlichkeit im Cache
gespeichert.

[0037] Die Speicher 212 speichern Programme 215
und Datenstrukturen 216. Manche Adressen der
Speicher 212 können kollektiv als ein einziger Satz
gemeinsamer virtueller Adressen bezeichnet wer-
den. Einige der Datenstrukturen können gemeinsa-
me Daten einschließen. Gemeinsame Daten können
von jedem beliebigen Prozess, der auf einen beliebi-
gen der Prozessoren 211 eines beliebigen der SMPs
210 ausgeführt wird, unter der Verwendung der virtu-
ellen Adressen abgerufen werden.

[0038] Die Busse 209 und 213 verbinden die Kom-
ponenten der SMPs 210 unter der Verwendung von
Daten-, Adress- und Steuerleitungen. Das Netzwerk
220 verwendet Netzwerkprotokolle, zum Beispiel ei-
nen asynchronen Transfermodus (ATM) oder
FDDI-Protokolle, zur Kommunikation von Nachrich-
ten zwischen symmetrischen Multiprozessoren 210.
Alternativ dazu kann das Netzwerk 220 die Form ei-
nes Hochleistungs-Cluster-Netzwerks haben, wie
zum Beispiel eines Memory Channel, der von Digital
Equipment Corporation hergestellt wird.

Allgemeiner Systembetrieb

[0039] Während des Betriebs des SMP-DSM-Sys-
tems 200 werden Befehle der Programme 215 durch
die Prozessoren 211 als Ausführungsstränge oder
-prozesse ausgeführt. Die Befehle können unter der
Verwendung von Lade- und Speicherbefehlen auf die
Datenstrukturen 216 zugreifen. Es ist wünschens-
wert, dass ein Beliebiges der Programme 215, das
4/32

DE 698 22 534 T2 2005.01.27
auf einem Beliebigen der Prozessoren 211 ausge-
führt wird, auf eine Beliebige der gemeinsamen Da-
tenstrukturen 216 zugreifen kann, die in einem Belie-
bigen der Speicher 212 abgelegt ist.

Instrumentierung

[0040] Vorzugsweise werden die Programme 215,
wie hier beschrieben, vor der Ausführung instrumen-
tiert. Unter Instrumentierung versteht man einen Vor-
gang, der Zugriffsbefehle (Lade- und Speichervor-
gänge) in den Programmen 215 statisch lokalisiert.
Die Instrumentierung lokalisiert auch Befehle, die Tei-
le der Speicher 211 zuweisen und aberkennen.

[0041] Nachdem die Befehle lokalisiert wurden,
können zusätzliche Befehle, z. B. Fehlzugriffs-Prüf-
code, vor den Zugriffsbefehlen in die Programme ein-
gefügt werden, um sicherzustellen, dass Speicherzu-
griffe korrekt ausgeführt werden. Der Fehlzu-
griffs-Prüfcode wird optimiert, um den zusätzlichen
Aufwand (Overhead) zu minimieren, der zur Durch-
führung der zusätzlichen Befehle benötigt wird. Die
zusätzlichen Befehle, die für Zuweisungs- und Aber-
kennungsbefehle eingefügt werden, unterhalten Ko-
härenzsteuerinformation, wie zum Beispiel die Größe
der zugewiesenen Blöcke.

[0042] Wie oben erwähnt, können die Programme
215 einen Teil der Adressen der verteilten Speicher
212 als gemeinsamen Speicher betrachten. Für be-
stimmte Zieladressen des gemeinsamen Speichers
kann ein Befehl auf eine lokale Kopie der Daten zu-
greifen, oder es muss eine Nachricht an einen ande-
ren Prozessor gesendet werden, um eine Kopie der
Daten anzufordern.

Zugriffszustände

[0043] Bei einem beliebigen SMP können die im ge-
meinsamen Speicher abgelegten Daten zwei mögli-
che Zustände einnehmen: ungültig (Invalid) oder gül-
tig (Valid). Der gültige Zustand kann die Unterzustän-
de "gemeinsam" (Shared) oder "exklusiv" (Exclusive)
haben. Wenn der Zustand der Daten ungültig ist, ist
ein Zugriff auf die Daten nicht erlaubt. Wenn der Zu-
stand gemeinsam ist, existiert eine lokale Kopie und
andere SMPs haben ebenfalls eine Kopie. Wenn der
Zustand exklusiv ist, hat nur ein SMP eine gültige Ko-
pie der Daten, und keine anderen SMPs können auf
die Daten zugreifen. Außerdem können die Daten,
wie unten beschrieben, auch in einem Übergangszu-
stand bzw. "schwebend" (Pending) sein.

[0044] Die Zustände der Daten werden durch über
das Netzwerk 220 mitgeteilte Kohärenzsteuernach-
richten gepflegt. Die Nachrichten werden durch Pro-
zeduren erzeugt, die vom Fehlzugriffs-Prüfcode der
instrumentierten Programme aufgerufen werden.

[0045] Daten können nur dann direkt vorn Speicher
eines lokalen SMP aufgerufen werden, wenn die Da-
ten einen gemeinsamen oder exklusiven Zustand ha-
ben. Daten können nur dann im lokalen Speicher ge-
speichert werden, wenn der Zustand exklusiv ist.
Eine Kommunikation wird benötigt, wenn ein Prozes-
sor versucht, Daten zu laden, die in einem ungültigen
Zustand sind oder wenn ein Prozessor versucht, Da-
ten zu speichern, die in einem ungültigen oder ge-
meinsamen Zustand sind. Diese Zugriffe, die Kom-
munikationen erfordern, werden als Fehlzugriffe
(Misses) bezeichnet.

[0046] Die Adressen der Speicher 212 können dy-
namisch zum Speichern gemeinsamer Daten zuge-
wiesen werden. Einige der Adressen können statisch
zugewiesen werden, um private Daten zu speichern,
auf die nur von Prozessen zugegriffen werden kann,
die auf einem lokalen Prozessor ausgeführt werden.
Zusätzlicher Aufwand kann dadurch verringert wer-
den, dass einige der Adressen für private Daten re-
serviert werden, da Zugriffe auf die privaten Daten
durch den lokalen Prozessor nicht auf Fehlzugriffe
überprüft werden müssen.

[0047] Wie bei einem durch Hardware gesteuerten
gemeinsamen Speichersystem sind die Adressen
der Speicher 212 in zuweisbare Blöcke partitioniert.
Alle Daten innerhalb eines Blocks werden als eine
kohärente Einheit abgerufen. Als ein Merkmal des
Systems 200 können Blöcke für unterschiedliche Be-
reiche von Adressen variable Größen haben. Zum
Vereinfachen des unten beschriebenen Fehlzu-
griffs-Prüfcodes sind die variabel abgemessene Blö-
cke weiter in Adressbereiche fester Größe, die als
"Zeilen" (lines) bezeichnet werden, partitioniert.

[0048] Zustandsinformation wird in Zustandstabel-
len zeilenweise unterhalten. Die Größe der Zeile, ty-
pischerweise 32, 64 oder 128 Bytes, wird zu der Zeit
bestimmt, zu der ein bestimmtes Programm 215 in-
strumentiert wird. Ein Block kann eine ganzzahlige
Anzahl von Zeilen enthalten.

[0049] Während des Betriebs des Systems 200
stellt vor der Ausführung eines Speicherzugriffbe-
fehls der Fehlzugriffs-Prüfcode fest, ob die Zieladres-
se in einem privaten Speicher ist. Wenn die Ziel-
adresse in einem privaten Speicher ist, dann kann
der Fehlzugriffs-Prüfcode sofort abgeschlossen wer-
den, da private Daten immer von einem lokalen Pro-
zessor abgerufen werden können. Ansonsten be-
rechnet der Fehlzugriffs-Prüfcode, welche Zeile eines
bestimmten Blocks die Zieladresse des Befehls ent-
hält und stellt fest, ob die Zeile für den Zugriff im kor-
rekten Zustand ist. Wenn der Zustand nicht korrekt
ist, dann wird eine Fehlzugriffs-Behandlungsroutine
aufgerufen, um die Daten aus dem Speicher eines
entfernten SMP abzurufen.
5/32

DE 698 22 534 T2 2005.01.27
Instrumentierungsvorgang

[0050] Fig. 3 zeigt ein Fließdiagramm eines Vor-
gangs 300, der zum Instrumentieren von Program-
men so verwendet werden kann, dass der für die zu-
sätzlichen Befehle benötigte zusätzliche Aufwand
verringert wird. Außerdem erlaubt der Vorgang 300
eine Kohärenzsteuerung für Datenquantitäten vari-
abler Größe, auf die von symmetrischen Multiprozes-
soren zugegriffen wird. Der Vorgang 300 enthält ein
Analysier-Modul 320, ein Optimier-Modul 330 und ei-
nen Generator 340 für ein ausführbares Image.

[0051] Maschinenausführbare Programme 310 wer-
den einem Analysier-Modul 320 vorgelegt. Das Ana-
lysier-Modul 320 unterteilt die Programme 310 in Pro-
zeduren 301 und die Prozeduren 301 in grundlegen-
de Ausführungsblöcke 302. Ein grundlegender Block
302 ist als ein Satz von Befehlen definiert, die alle
ausgeführt werden, wenn der erste Befehlt des Sat-
zes ausgeführt wird. Die Befehle von Prozeduren und
den grundlegenden Blöcken werden analysiert, um
die Programm-Aufruf- und -Fließ-Graphen 303 zu bil-
den.

[0052] Die Graphen 303 können verwendet werden,
um einen Daten- und Ausführungsfluss der Program-
me 310 zu erstellen. Die grundlegenden Blöcke und
Graphen 303 werden analysiert, um Befehle zu loka-
lisieren, die Speicheradressen zuteilen und Zugriffe
auf zugewiesene Adressen durchführen. Wenn ein
Befehl auf gemeinsame Teile der Speicher 212 zu-
greift, wird ein Fehlzugriffs-Prüfcode eingefügt, um si-
cherzustellen, dass der Zugriff in einer kohärenten
Weise erfolgt.

[0053] Der Fehlzugriffs-Prüfcode wird durch das
Optimier-Modul 330 eingefügt, wie unten eingehend
beschrieben ist. Nachdem die Programme 310 in-
strumentiert wurden, erzeugt der Image-Generator
340 ein modifiziertes maschinenausführbares Image
350. Das modifizierte Image 350 enthält instrumen-
tierte Programme 351 mit Fehlzugriffs-Prüfcode,
Fehlzugriffs-Behandlungs-Protokollprozeduren 352
und einer Nachrichten-Weiterleitungsbibliothek 353.
Das Image 350 kann die Programme 310 ersetzen.

[0054] Fig. 4 zeigt die Schritte, die vom Opti-
mier-Modul 330 von Fig. 3 ausgeführt werden. Diese
Schritte enthalten Speicherpartitionierungs- 410, Re-
gisteranalyse-420, Codescheduling- 430, Ladeprüfa-
nalyse- 440 und Stapelbildungs(Batching)-Schritte
450.

Speicheraufbau

[0055] Fig. 5 zeigt eine Zuweisung von Adressen zu
den Speichern 212 von Fig. 2. Die Adressen werden
in Fig. 5 von unten nach oben größer. Die Adressen
werden für Stapel 510, Programmtext 520, statisch

zugewiesene private Daten 530, Zustandstabellen
540 und dynamisch zugewiesene gemeinsame Da-
ten 550 reserviert.

[0056] Während des Betriebs verringern sich die
von den Stapeln 510 verwendeten Adressen zum
Stapelüberlaufbereich 505 hin. Der Textraum 520
wird zum Speichern der ausführbaren Befehle, z. B.
des Images 350 von Fig. 3, verwendet. Die für Text
zugewiesenen Adressen steigen zum Textüberlauf-
bereich 525 hin an. Die Adressen des privaten Daten-
abschnitts 530 werden zum Speichern von Daten-
strukturen verwendet, die exklusiv von einem einzi-
gen lokalen Prozessor verwendet werden, z. B. wer-
den die Daten nicht gemeinsam genutzt. Die Adres-
sen in diesem Teil des Speichers werden statisch zu-
gewiesen, wenn ein bestimmtes Programm zur Aus-
führung geladen wird.

Zustandstabellen (State Tables)

[0057] Die Zustandstabellen 540 enthalten eine ge-
meinsame Zustandstabelle 541, private Zustandsta-
bellen 542 und Ausschlusstabellen 1000. Die Aus-
schlusstabellen 1000 können auch einen gemeinsam
1001 und einen privaten 1002 Teil enthalten.

[0058] Die gemeinsamen und privaten Zustandsta-
bellen 541 enthalten für jede Zeile zugewiesene
Adressen ein Byte gemeinsamer bzw. privater Zu-
standseinträge 545. Die Bits der Zustandseinträge
545 können dazu verwendet werden, die verschiede-
nen Zustände der entsprechenden Datenzeile anzu-
zeigen. Eine oder mehrere Datenzeilen bilden einen
Block.

[0059] Gemäß der bevorzugten Umsetzung können
alle Prozessoren 211 eines bestimmten SMP 210 die
gleichen Daten gemeinsam nutzen. Daher werden
die Zustandstabelleneinträge 545 für alle Prozesso-
ren des SMP 210 gemeinsam genutzt. Dies bedeutet,
dass beim Abrufen eines Blocks, z. B. eine oder meh-
rere Datenzeilen, von einem entfernten SMP und
beim Ändern des Zustands des Blocks von ungültig
auf gemeinsam oder exklusiv die gemeinsam genutz-
te Speicherhardware des SMP den Zustand der Da-
ten erkennt und ein beliebiger Prozessor 211 des
SMP auf die neuen Daten zugreifen kann.

[0060] Da es sein kann, dass mehr als ein Prozes-
sor des bestimmten SMP gleichzeitig auf einen Zu-
standstabelleneintrag zuzugreifen versucht, wird der
Eintrag gesperrt, bevor ein Zugriff auf den Eintrag er-
folgt. Die Fehlzugriffsprüfungen, die im Code einge-
fügt wurden, können auch einen Zugriff auf den Zu-
standstabelleneintrag erfordern. In diesem Fall wird
jedoch der Eintrag nicht gesperrt, um den zusätzli-
chen Aufwand gering zu halten. Stattdessen unter-
hält jeder Prozessor eine entsprechende private Zu-
standstabelle 542, auf die durch einen vorgeschalte-
6/32

DE 698 22 534 T2 2005.01.27
ten Code ohne zusätzlichen Aufwand zugegriffen
werden kann.

[0061] Die Einträge der privaten Zustandstabellen
542 der Prozessoren werden durch zwei unter-
schiedliche Mechanismen aktualisiert.

[0062] In dem Fall, in dem ein Prozessor versucht,
auf ungültige Daten zuzugreifen, wird ein Fehlzu-
griffszustand eintreten, und die Daten werden von ei-
nem entfernten SMP abgerufen. Nach Empfang wird
der Zustand der Daten gültig. Dies wird als "Höher-
stufen" (Upgrade) des Zustands bezeichnet, da die
Daten nun verfügbar sind, während sie vorher nicht
verfügbar waren. Die Daten sind jedoch in den priva-
ten Zustandstabellen der anderen Prozessoren auf
dem gleichen SMP 210 immer noch als ungültig mar-
kiert.

[0063] Wenn einer dieser anderen Prozessoren nun
versucht, auf die Daten zuzugreifen, werden die an-
deren Prozessoren in ihren privaten Zustandstabel-
len 542 immer noch einen ungültigen Zustand vorfin-
den. Der andere Prozessor kann eine Sperrung der
gemeinsamen Zustandstabelle 541 erlangen und
feststellen, dass die Daten für den lokalen SMP gültig
sind und seine private Zustandstabelle 542 entspre-
chend aktualisieren. Nachfolgende Zugriffe auf Da-
ten können dann durchgeführt werden, ohne dass auf
die gemeinsame Zustandstabelle 541 zugegriffen
werden muss.

[0064] In dem Fall, wo der Zustand der Daten auf
ungültig zurückgesetzt werden muss, z. B. braucht
ein Prozessor eines anderen SMP die Daten, wird
der Zustand der Daten "herabgestuft" (Downgrade).
In diesem Fall sendet der die Anforderung empfan-
gende Prozessor eine interne Nachricht an andere
auf dem lokalen SMP tätige Prozessoren, so dass
der in ihren privaten Zustandstabellen 542 unterhal-
tene Zustand herabgestuft werden kann. Dieses "He-
rabstufen" einer Zeile ist erst dann abgeschlossen,
bis alle Prozessoren ihre privaten Zustandstabellen
geändert haben.

[0065] Es wird darauf hingewiesen, dass eine Wett-
laufsituation entstehen kann, wenn der die Invalidie-
rungsanfrage empfangende Prozessor alle privaten
Zustandstabellen aller Prozessoren des lokalen
SMPs direkt ändern würde. Zum Beispiel würde eine
Wettlaufsituation dadurch entstehen, dass ein erster
Prozessor einen gültigen Zustand sieht, während er
die vorgeschaltete Überprüfung für einen Speicher-
vorgang durchführt, ein zweiter Prozessor jedoch
den Zustand der Daten auf ungültig herabstufen wür-
de, bevor der erste Prozessor die Möglichkeit hat, die
modifizierten Daten zu speichern.

[0066] Eine Möglichkeit zur Vermeidung von Wettl-
aufsituationen besteht darin, Zustandstabellensper-

ren mit dem vorgeschalteten Fehlzugriffs-Prüfcode
zu erlangen. Dies lässt jedoch den zusätzlichen Auf-
wand aufgrund der Sperrung anwachsen. Dies trifft
insbesondere auf Prozessoren mit einem entspann-
ten Speichermodell zu, wie zum Beispiel einen Al-
pha-Prozessor, der von Digital Equipment Corporati-
on hergestellt wird. Daher ist die Verwendung privater
Zustandstabellen zum wirkungsvollen Vermeiden
von Wettlaufsituationen wichtig.

[0067] Die Verwendung privater Zustandstabellen
542 vermeidet nicht nur Wettlaufsituationen im Fehl-
zugriffs-Prüfcode, sondern verringert auch die Anzahl
von Nachrichten, die weitergeleitet werden müssen,
während der Zustand von Daten innerhalb eines
SMP 210 herabgestuft wird. Wenn zum Beispiel ein
lokaler Prozessor niemals auf Daten zugreift, die in-
nerhalb eines lokalen SMPs gültig sind, dann braucht
seine private Zustandstabelle nicht aktualisiert zu
werden.

Gemeinsame Daten

[0068] Die Adressen der gemeinsamen Daten 550
werden durch die Programme während der Ausfüh-
rung dynamisch zugewiesen. Ein Vorteil hierbei ist,
dass die Adressen der gemeinsamen Daten 550 in
Blöcken variabler Größe 551 zugewiesen werden
können. Die Blöcke werden weiter in Zeilen 552 un-
terteilt.

[0069] Bei dem in Fig. 5 gezeigten Aufbau brau-
chen nicht alle Zugriffsbefehle instrumentiert zu wer-
den. Zum Beispiel sind in den Programmstapeln 510
gespeicherte Daten nicht gemeinsam genutzt. Daher
brauchen nicht alle Befehle, die das Stapelzeigerre-
gister (SP) als Basis verwenden, mit einem Fehlzu-
griffs-Prüfcode versehen zu werden. Außerdem brau-
chen nicht alle Befehle instrumentiert zu werden, die
unter der Verwendung eines Privatdaten-Zeigerregis-
ters (PR) auf private Daten 530 zugreifen.

Registergebrauch

[0070] Das Analysier-Modul 320 von Fig. 3 verwen-
det die Graphen 303 und Datenflussanalyse zum
Nachverfolgen des Inhalts von Allzweckregistern
zum Feststellen, ob in den Registern gespeicherte
Werte aus Adressen stammen, die auf dem SP oder
PR-Register basieren. Dann braucht nämlich ein auf
den Stapel oder die privaten Daten über eine abgelei-
tete Adresse zugreifender Befehl nicht instrumentiert
zu werden. Das Analysier-Modul 320 kann auch alle
Register lokalisieren, die zu der Zeit frei sind, zu der
der Fehlzugriffs-Prüfcode anzuwenden ist, wodurch
sich die Notwendigkeit des Speicherns und erneuten
Speicherns der vom Fehlzugriffs-Prüfcode verwen-
deten Register erübrigt.

[0071] Durch Starten der privaten Zustandstabelle
7/32

DE 698 22 534 T2 2005.01.27
540 bei der Adresse 0x2000000000 im privaten
Adressraum eines jeden Prozessors kann eine Ver-
schiebung der Zielzugriffsadresse direkt die Adresse
des entsprechenden Eintrags 545 in der privaten Zu-
standstabelle 540 erzeugen. Auch wenn der in Fig. 5
gezeigte Aufbau der Adressen für einen Prozessor
mit 64-Bit-Adressierung gedacht ist, versteht es sich,
dass der Aufbau 500 für Prozessoren mit 32-Bit- und
anderen Adressierungen modifiziert werden kann.

Optimierter Fehlzugriffs-Prüfcode

[0072] Fig. 6 zeigt den Fehlzugriffs-Prüfcode 600,
der für den Speicheraufbau von Fig. 5 optimiert ist.
Die Zieladresse für einen Zugriff kann durch den Be-
fehl 601 festgestellt werden. Wenn die Ziel-Basisa-
dresse jedoch schon in einem Register zum Beispiel
durch einen zuvor ausgeführten Lade- oder
Speicherbefehl eingerichtet wurde, ist der Befehl
601, der die Ziel-Basisadresse lädt, nicht erforderlich.

[0073] Der Verschiebungsbefehl 602 stellt fest, ob
die Zieladresse innerhalb des gemeinsamen Daten-
bereichs 550 ist. Der Verzweigungsbefehl 603 geht
direkt zum Ausführen des ursprünglichen Speicher-
befehls weiter, wenn dies nicht der Fall ist. Der Ver-
schiebungsbefehl 604 erzeugt die Adresse des Ein-
trags in der Zustandstabelle, die der die Zieladresse
enthaltenden Zeile entspricht. Dadurch, dass der
Wert des Zustands durch eine Null auf "exklusiv" ge-
setzt wird, erübrigt sich die Notwendigkeit eines Ver-
gleichs mit einem konstanten Wert. Stattdessen kann
ein einfacher Sprungbefehl 607 zur Überprüfung ei-
nes Fehlzugriffs durchgeführt werden. Die Befehle
605 bis 606 rufen den Zustandstabelleneintrag ab.
Der Fehlzugriffs-Behandlungscode 608 wird in dem
Fall eines Fehlzugriffs ausgeführt, und der ursprüng-
liche Speicherbefehl wird bei 609 ausgeführt.

[0074] Der Fehlzugriffs-Prüfcode 600 erfordert nur
die Ausführung von drei Befehlen, wenn die Ziel-
adresse nicht im gemeinsamen Datenbereich ist. In
dem Fall eines Zugriffs auf gemeinsame Daten müs-
sen sieben Befehle ausgeführt werden.

Code-Scheduling

[0075] Im Schritt 430 von Fig. 4 können Be-
fehls-Scheduling-Verfahren zur weiteren Verringe-
rung des zusätzlichen Aufwands für den Fehlzu-
griffs-Prüfcode 600 verwendet werden. In modernen
Prozessoren, die im Pipelining-Verfahren arbeiten
und superskalar sind, kann der hinzugefügte Fehlzu-
griffs-Prüfcode in vielen Fällen so ausgelegt sein,
dass er minimale Pipelineverzögerungen einführt
und das Potential für eine Vielzahl von Befehlen er-
höht, die während eines einzigen Prozessorzyklus
ausgegeben werden.

[0076] Zum Beispiel ergibt sich in manchen Prozes-

soren nur eine Verzögerung von einem einzigen Zy-
klus, bevor das Ergebnis eines Verschiebungsvor-
gangs verwendet werden kann. Wenn daher der
zweite Verschiebungsbefehl 604 von Fig. 6 vorge-
schoben wird, um den Verzögerungsschlitz zu beset-
zen, der aus dem ersten Verschiebungsbefehl 702
resultiert, wird die Verzögerung zwischen dem ver-
legten zweiten Verschiebungsbefehl 703 und dem
Idq_u-Befehl 705 ausgeschlossen. Dies bedeutet,
dass der Code 700 in weniger Maschinenzyklen als
der Code 600 abgeschlossen werden kann. Es wird
darauf hingewiesen, dass sich wie beim Code 600
die Notwendigkeit für den Befehl 701 in vielen Fällen
erübrigt. Die Befehle 705– 707 laden und prüfen den
Datenzustand.

[0077] Zur weiteren Verringerung zusätzlicher Kos-
ten bei Mehrfachausgabeprozessoren können die
Befehle des Fehlzugriffs-Prüfcodes 700 so platziert
werden, dass sie während Pipelineverzögerungen im
ursprünglichen ausführbaren Code oder gleichzeitig
mit den Befehlen des ausführbaren Images ausgege-
ben werden. Es wird darauf hingewiesen, dass die
Ausführung der ersten drei Befehle 701–703 in einem
grundlegenden Befehlsblock vorgeschoben werden
kann, solange die Register (r1 und r2) frei bleiben. In
vielen Fällen können nämlich alle drei Befehle so weit
vorgeschoben werden, dass sie den zusätzlichen
Aufwand der Ausführung der Befehle vollständig ver-
bergen. Daher ist es ganz klar von Vorteil, den Code
wie in Fig. 7 gezeigt anzuordnen.

Speicherprüfung

[0078] Der Fehlzugriffs-Prüfcode kann weiter opti-
miert werden, wenn der Zugriffsbefehl ein Speicher-
befehl 710 ist. In diesem Fall werden die ersten drei
Befehle 701–703 vor dem Speicherbefehl 710 ange-
ordnet. Die verbleibenden Befehle 704–707 werden
nach dem Speicherbefehl 710 angeordnet. Diese An-
ordnung ist in Fällen vorteilhaft, wo Befehle mit lan-
gen Latenzen dem Speicherbefehl 710 unmittelbar
vorausgehen, während das Programm den zu spei-
chernden Wert berechnet. In diesem Fall muss der
Speicherbefehl 710 warten, bis der Wert verfügbar
wird. Daher kann der zusätzliche Aufwand beim Aus-
führen der vorgeschobenen Befehle vollständig ver-
borgen werden.

Ladeprüfung

[0079] Wie in den Fig. 8 und 9 gezeigt, können die
durch einen Ladebefehl geladenen Daten analysiert
werden, um den zusätzlichen Aufwand für den Fehl-
zugriffs-Prüfcode weiter zu verringern. Immer wenn
Daten einer Zeile ungültig werden, wird ein "Flag"
801 an allen der Zeile zugeordneten Adressen
810–811 gespeichert. Der Flag 801 ist zum Beispiel
0xFFFFFF03 (–253). Dann kann anstelle der Fest-
stellung des Zustands einer Zeile über Zustandsta-
8/32

DE 698 22 534 T2 2005.01.27
belleneinträge in fast allen Fällen der Zustand aus
den geladenen Daten bestimmt werden.

[0080] Zum Beispiel werden die Daten an Zieladres-
sen mit einem Ladebefehl 901 abgerufen, Schritt
820. Bei Schritt 830 wird das Komplement 840 des
Flags hinzugefügt, z. B. 253. Bei Schritt 850 wird
überprüft, ob die vom Speicher geladenen Daten aller
Wahrscheinlichkeit nach einen ungültigen Zustand
anzeigen. Wenn dies zutrifft, wird mit dem Fehlzu-
griffs-Prüfcode 870 fortgefahren, ansonsten wird mit
Schritt 860 fortgefahren, der keinen Fehlzugriff dar-
stellt. In dem Fall, wo ein vermuteter Fehlzugriff auf-
tritt, kann der Fehlzugriffscode 870 dies durch Über-
prüfen des Eintrags für die Zeile in der Zustandsta-
belle 540 prüfen. Hierbei werden die seltenen Fälle
behandelt, wo das Programm tatsächlich die dem
Flag entsprechenden Daten verwendet.

[0081] Der Flag wird so gewählt, dass ein einzelner
Befehl 902 zum Überprüfen nach ungültigen Daten
verwendet werden kann. Hierbei ist es möglich, dass
so gut wie jede Konstante verwendet werden kann.
Es wird darauf hingewiesen, dass bei der Verwen-
dung eines Werts Null zum Anzeigen eines ungülti-
gen Zustands ein einfacher Sprungbefehl genügen
würde. In Fällen, wo jedoch eine Null oder eine ande-
re kleine ganze Zahl, z. B. –1, 0, +1, verwendet wird,
wird der gemessene zusätzliche Aufwand des Fehl-
zugriffs-Prüfcodes anscheinend größer, weil die grö-
ßere Anzahl falscher Fehlzugriffe bewältigt werden
muss. In der Praxis treten bei der Verwendung des
Flags 0xFFFFFF03 falsche Fehlzugriffe nur selten
auf, daher verringert der optimierte Fehlzugriffs-Prüf-
code 900, wie er in Fig. 9 gezeigt ist, den Fehlzu-
griffs-Prüfcode für Ladebefehle beträchtlich, z. B. auf
zwei Befehle.

[0082] Neben einer Verringerung des zusätzlichen
Aufwands hat das Flagverfahren auch weitere Vortei-
le. Der Hauptvorteil besteht darin, dass die Notwen-
digkeit einer Überprüfung der Zustandstabelle in Fäl-
len wegfällt, wo der Ladezugriff gültig ist. Außerdem
geschieht das Laden der "Flag"-Daten von der Ziel-
adresse und die Zustandsüberprüfung atomisch.
Durch diese Atomizität werden mögliche Wettlaufsi-
tuationen zwischen dem Ladebefehl und Protokollo-
perationen für die gleiche Adresse ausgeschlossen,
die auf einem anderen Prozessor des gleichen SMP
auftreten können.

[0083] Das Flag-Prüfverfahren kann auch für Gleit-
komma-Lade-Zugriffsbefehle verwendet werden. In
diesem Fall lädt der Fehlzugriffs-Prüfcode die Daten
der Zieladresse in ein Gleitkommaregister, gefolgt
von einem Gleitkomma-Additions- und -Vergleichs-
vorgang. Auf manchen Prozessoren bringen Gleit-
kommabefehle jedoch lange Verzögerungen mit sich.
Deswegen kann der Gleitkomma-Fehlzugriffscode
dadurch optimiert werden, dass ein ganzzahliges La-

den für die gleiche Zieladresse eingefügt wird und die
Flagüberprüfung, wie oben für die Fig. 8 und 9 be-
schrieben, implementiert wird. Auch mit dem zusätz-
lichen Ladebefehl hat dieses Verfahren immer noch
einen größeren Wirkungsgrad als die Überprüfung ei-
nes Eintrags der Zustandstabelle.

[0084] Alternativ dazu können die Gleitkommadaten
direkt vom Gleitkommaregister an das ganzzahlige
Register übertragen werden, wenn ein solcher Vor-
gang auf dem zugrundeliegenden Prozessor verfüg-
bar ist.

[0085] Es versteht sich, dass das Befehlsschedu-
ling auf die Befehle von Fig. 9 für Lade-Fehlzu-
griffs-Codeprüfungen angewendet werden kann. Bei
einer bevorzugten Umsetzung versucht der Schedu-
lingschritt 430 von Fig. 4, die Ausführung der Befehle
902 und 903 zu verzögern, um einen Pipelinestau
(Stalling) zu vermeiden, wenn der Wert des Ladevor-
gangs zu verwenden ist.

Cache-Fehlzugriffe

[0086] Beim Laden von Einträgen aus der Zustand-
stabelle 540 können Fehlzugriffe in einem Cache
eine potentielle Quelle von zusätzlichem Aufwand für
den Fehlzugriffs-Prüfcode sein. Wenn das Programm
eine gute räumliche Lokalität hat, dann werden beim
Programm nicht viele Hardware-Cache-Fehlzugriffe
auftreten. Wenn 64-Byte-Zeilen verwendet werden,
dann ist der für die Zustandstabelle benötigte Spei-
cher nur 1/64 des Speichers der entsprechenden Zei-
len. Wenn das Programm jedoch keine gute räumli-
che Lokalität hat, dann sind Cache-Fehlzugriffe auf
die Daten sowie Fehlzugriffe auf die Zustandstabelle
wahrscheinlicher.

Ausschlusstabelle (Exclusion Table)

[0087] Fig. 10 zeigt die gemeinsam genutzte Aus-
schlusstabelle 1001. Die privaten Ausschlusstabellen
1002 von Fig. 5, eine für jeden Prozessor, können in
ihrem Aufbau ähnlich sein. Der Zweck der Aus-
schlusstabellen 1000 ist es, Hardware-Cache-Fehl-
zugriffe zu verringern, die dadurch verursacht wer-
den, dass der Fehlzugriffs-Prüfcode Zustandstabel-
leneinträge für Speicherbefehle lädt. Die Ausschluss-
tabelle 1001 hat Biteinträge 1010, jeweils ein Bit für
jede entsprechende Zeile. Ein Bit wird auf eine logi-
sche Eins gesetzt, wenn die entsprechende Zeile den
exklusiven Zustand hat, sonst wird das Bit auf eine lo-
gische Null gesetzt.

[0088] Anstelle des Prüfens der Einträge 545 der
Zustandstabelle 540 kann der Speicher-Fehlzu-
griffs-Prüfcode die Bits 1010 der Ausschlusstabelle
1000 prüfen, um festzustellen, ob eine entsprechen-
de Zeile den exklusiven Zustand hat. Wenn die Zeile
den exklusiven Zustand hat, dann kann die Speiche-
9/32

DE 698 22 534 T2 2005.01.27
rung sofort durchgeführt werden.

[0089] Bei 64-Byte-Zeilen ist der von der Aus-
schlusstabelle 1000 verwendete Speicher 1/512 des
von den Zeilen verwendeten Speichers. Daher kann
die Anzahl von Hardware-Cache-Fehlzugriffen, die
vom Speicher-Fehlzugriffs-Prüfcode unter der Ver-
wendung der Ausschlusstabelle 1001 verursacht
werden, ein Achtel der Hardware-Cache-Fehlzugriffe
sein, die lediglich unter der Verwendung der Zustand-
stabellen auftreten würden. Es wird darauf hingewie-
sen, dass die Verwendung der Ausschlusstabellen
1000 für Speicher-Fehlzugriffs-Codeprüfungen teil-
weise durch den Ungültig-Flag 801 von Fig. 8 ermög-
licht wird. Der Lade-Fehlzugriffs-Prüfcode für Lade-
vorgänge muss in dem Fall nicht auf die Zustandsta-
belle 540 zugreifen, wo die Daten gültig sind. Daher
wird nur durch den Fehlzugriffs-Prüfcode für
Speicherbefehle auf die Ausschlusstabellen 1000 zu-
gegriffen.

Stapelbildung (Batching)

[0090] Der Batch-Optimierungsschritt 450 von
Fig. 4 erkennt, dass Lade- und Speichervorgänge
von Daten häufig in Stapeln (Batches) im Verhältnis
zu einem gemeinsamen Basisregister durchgeführt
werden. Zum Beispiel ist es in Programmen häufig
der Fall, dass Daten in einer Reihenfolge gemäß ihrer
Adressen abgerufen und manipuliert werden. Der
Batch-Optimierschritt 450 erfasst einen Satz von Be-
fehlen, die auf einen Bereich von Zieladressen zu-
greifen, der nicht größer als die Größe einer Zeile ist,
z. B. ist der Bereich höchstens 64 Bytes groß. Ein sol-
cher Satz von Lade- und Speicherbefehlen kann
höchstens auf Daten in zwei unmittelbar nebeneinan-
derliegenden Zeilen und in manchen Fällen nur auf
eine einzige Zeile zugreifen.

[0091] In diesem Fall stellt der Fehlzugriffs-Prüf-
code fest, ob die beiden Zeilen in einem korrekten
Zustand sind. Wenn dies der Fall ist, können alle La-
de- und/oder Speicherbefehle im Satz ohne irgend-
welche zusätzlichen Überprüfungen durchgeführt
werden. Es versteht sich, dass eine Stapelüberprü-
fung auch für einen Bereich von Zieladressen durch-
geführt werden kann, die sich über eine einzige Zeile
erstrecken. Jedoch kann der Code, der zwei neben-
einander liegende Zeilen überprüft, ohne viel zusätz-
lichen Aufwand auch eine einzige Zeile überprüfen.

[0092] Eine Einschränkung besteht darin, dass die
gestapelten Lade- und Speicherbefehle nicht mit an-
deren Lade- und Speichervorgängen gemischt wer-
den können, die ihren eigenen Fehlzugriffs-Prüfcode
haben. Fehlzugriffe, die durch andere Lade- und
Speichervorgänge hervorgerufen werden, können
den Zustand einer Zeile verändern, wodurch sich für
die gestapelten Lade- und Speicherbefehle ein feh-
lerhaftes Ergebnis ergibt. Jedoch können Lade- und

Speichervorgänge über mehrere Basisregister gesta-
pelt werden, solange richtige Fehlzugriffsüberprüfun-
gen für entsprechende Leitungen durchgeführt wer-
den, die über die entsprechenden Basisregister refe-
renziert sind.

[0093] Eine weitere Einschränkung besteht darin,
dass das vom Stapel von Befehlen verwendete Ba-
sisregister nicht durch eine Variable modifiziert wer-
den kann, während der Stapel auf Zieladressen im
überprüften Bereich zugreift. Dies würde die anfäng-
liche Prüfung für den Stapel ungültig machen. Es ist
möglich, das Basisregister durch eine Konstante zu
modifizieren, da in diesem Fall die Bereichsprüfung
statisch für der Ausführung der gestapelten Zugriffs-
befehle durchgeführt werden kann.

[0094] Das Stapelbildungsverfahren ist beim Verrin-
gern des zusätzlichen Aufwands für den Fehlzu-
griffs-Prüfcode immer erfolgreich. Das Verfahren ist
jedoch insbesondere für Befehle einer Schleife nütz-
lich, die "entrollt" wurde. Eine entrollte Schleife ent-
hält Befehle, die linear und nicht in einer iterativen zir-
kulären Weise durchgeführt werden. Hier funktionie-
ren Zugriffsbefehle typischerweise innerhalb eines
kleinen Bereichs eines Basisregisters, das während
der Iterationen nicht modifiziert wird. In diesem Fall
kann das Batching-Verfahren fast immer und auf sehr
wirkungsvolle Weise angewendet werden.

[0095] Auch wenn das Batching immer für Befehle
eines einzelnen Basisblocks versucht wird, kann es
auch möglich sein, das Batching für Lade- und
Speicherbefehle durchzuführen, die sich über mehre-
re Basisblocks hinweg erstrecken. Wenn Lade- und
Speichervorgänge über mehrere Basisblocks hinweg
gestapelt werden, ergeben sich zusätzliche Ein-
schränkungen. Der gestapelte Satz von Befehlen
kann keine Sub-Routinen-Aufrufe enthalten, da diese
Aufrufe die Ausführungen von Lade- und Speicher-
vorgängen mit unbekannten Zieladressen in den auf-
gerufenen Subroutinen auslösen könnten. Außerdem
können die gestapelten Befehle keine Schleife ent-
halten, da erst bei Ausführung der Befehle des Sta-
pels festgestellt werden kann, wie oft die Schleife
wiederholt wird. Außerdem muss in einem Stapel, der
bedingte Sprünge enthält, ein Speichervorgang, der
in einem der abgezweigten Ausführungspfade auf-
tritt, in allen Pfaden auftreten. Nur dann kann festge-
stellt werden, welche Speicherzugriffe durchgeführt
werden, wenn die gestapelten Befehle ausgeführt
werden.

[0096] Der Batching-Vorgang kann willkürlich viele
Lade- und Speichervorgänge im Verhältnis zu einer
beliebigen Anzahl von Basisregistern und über einen
oder mehrere Basisblocks hinweg stapeln.

[0097] Es kann auch ein "gieriger" Batching-Algo-
rithmus verwendet werden. Der gierige Algorithmus
10/32

DE 698 22 534 T2 2005.01.27
lokalisiert so viele Lade- und Speicherbefehle wie
möglich, um sie in einen Batch einzubinden. Der Al-
gorithmus wird abgeschlossen, wenn ein Beendi-
gungszustand, wie unten beschrieben, erreicht ist.
Wenn sich in einem Batch nur ein einziger Lade- oder
Speicherbefehl befindet, wird der gestapelte Fehlzu-
griffs-Prüfcode nicht verwendet.

[0098] Wenn ein bedingter Abzweigbefehl angetrof-
fen wird, der zwei mögliche Ausführungspfade zum
Ergebnis hat, dann werden beide Pfade nach Befeh-
len untersucht, die in einen Batch aufgenommen wer-
den könnten. Die Abtastung der zwei getrennten Aus-
führungspfade wird zusammengeführt, wenn die
Ausführung der beiden Pfade zusammengeführt
wird.

[0099] Beendigungszustände können die Folgen-
den sein: ein Lade- oder Speicherbefehl, der ein Ba-
sisregister verwendet, das durch eine Variable modi-
fiziert ist; ein Lade- oder Speicherbefehl, der eine
Zieladresse außerhalb der überprüften Zeilen hat;
das Aufrufen einer Subroutine; ein bedingter Ab-
zweigbefehl, der eine Schleife verursacht, z. B. das
erneute Ausführen eines oder mehrerer Befehle; das
Ende einer Subroutine wird erreicht; ein Speicherbe-
fehl in einem von mehreren Zweigen; und das Abtas-
ten eines Zweigs, der mit einem parallelen Zweig zu-
sammengeführt wird, wobei jedoch die Abtastung
des parallelen Zweigs schon abgeschlossen ist.

Fehlzugriffs-Prüfcode für Stapel von Befehlen

[0100] Die Fig. 11 und 12 zeigen den Fluss 1100
bzw. den Fehlzugriffs-Prüfcode 1200 für eine Gruppe
gestapelter Ladebefehle, die auf einen Bereich von
Zieladressen 1130 zugreifen. Der Bereich 1130 kann
ganz leicht dadurch überprüft werden, dass eine
Fehlzugriffs-Codeüberprüfung 1140–1141 an der ers-
ten Adresse 1111 und der letzten Adresse 1121 des
Bereichs 1130 von Adressen durchgeführt wird, auf
die vom Satz von Zugriffsbefehlen zugegriffen wird.
Die ersten und letzten Adressen müssen in der ers-
ten bzw. letzten Zeile 1110 bzw. 1120 sein, siehe Be-
fehle 1201–1204. Die Befehle 1205 und 1206 über-
prüfen den Ungültig-Flag.

[0101] Wenn entweder die Adresse 1111 oder die
Adresse 1121 ungültig ist (1150), dann wird der Fehl-
zugriffs-Behandlungscode 1160 aufgerufen. Wenn
sowohl die erste als auch die letzte Adresse gültige
Daten speichern, können alle Befehle des Satzes
ohne weitere Überprüfung ausgeführt werden. Ein
Vorteil des Fehlzugriffs-Prüfcodes 1200 besteht da-
rin, dass die Endpunktadressen miteinander ver-
schachtelt sein können, um Pipeline-Staus (Stalls)
wirkungsvoll auszuschließen.

Nachrichten-Weiterreichungs-Bibliothek

[0102] Die Nachrichten-Weiterreichungs-Bibliothek
353 von Fig. 3 liefert die notwendigen Prozeduren,
um es symmetrischen Multiprozessoren 210 zu er-
lauben, über das Netzwerk 220 zu kommunizieren.
Wenn zum Beispiel das Netzwerk 220 ATM-Protokol-
le verwendet, teilen die Routinen der Bibliothek 353
Nachrichten des ATM-Typs mit. Die Routinen der Bi-
bliothek 353 können Nachrichten einer beliebigen
Größe senden und empfangen. Außerdem können
die Routinen periodisch nach eintreffenden Nachrich-
ten sehen.

Fehlzugriffs-Behandlungsprotokoll

[0103] Der andere Code, der mit dem instrumentier-
ten Programm 351 von Fig. 3 in Verbindung steht, ist
der Fehlzugriffs-Behandlungsprotokollcode 352. Die-
ser Code kann Daten aus dem Speicher eines ande-
ren symmetrischen Multiprozessors abrufen, Kohä-
renz zwischen gemeinsam genutzten Kopien von Da-
ten aufrechterhalten und garantieren, dass ein Pro-
zessor, der das Speichern von Daten versucht, die al-
leinige Verfügung (Ownership) über die Daten hat.

[0104] Der Protokollcode 352 implementiert auch
Synchronisierungsoperationen, wie zum Beispiel
"Sperren" und "Barrieren". Der Code 352 wird aufge-
rufen, wenn der Fehlzugriffs-Prüfcode einen Lade-
oder Speicherfehlzugriff erfasst oder wenn ein Syn-
chronisationsvorgang erforderlich ist.

[0105] Der Protokollcode 352 ist ein verzeichnisba-
siertes Invalidierungsprotokoll. Für jeden Block 551
gemeinsam genutzter Daten 550 von Fig. 5 wird ei-
ner der Prozessoren als der "Heim"-Prozessor zuge-
teilt. Blöcke können unterschiedlichen Heimprozes-
soren in einer zyklischen Weise zugewiesen werden,
z. B. nach einer Zuweisungsreihenfolge. Blöcke kön-
nen ausdrücklich einem bestimmten Prozessor zuge-
teilt werden, wenn von einem der Programme 310
von Fig. 3 Platzierungshinweise abgegeben werden.

[0106] Ein Heimprozessor ist für das Initialisieren
der an den Adressen des Blocks gespeicherten Da-
ten verantwortlich. Der Heimprozessor stellt auch die
anfänglichen Zustände der Zeilen des zugewiesenen
Blocks her, wobei der Zustand zum Beispiel eine ex-
klusive Verfügung (Ownership) über die Daten reflek-
tieren kann. Der Heimprozessor erzeugt auch die an-
fängliche Verzeichnisinformation über den Block.

[0107] Das Verzeichnis zeigt auch, wie unten be-
schrieben, an, welche Prozessoren eine Kopie des
dem Heimprozessor zugewiesenen Blocks haben.
Wenn ein Prozessor, der nicht der Heimprozessor ist,
auf die Daten des Blocks zugreifen möchte, sendet er
eine Nachricht an den Heimprozessor, die anzeigt,
dass er Daten des Blocks entweder laden oder spei-
11/32

DE 698 22 534 T2 2005.01.27
chern möchte. Wenn er sie speichern möchte, wird
auch eine Ownership-Anforderung gesendet.

Heimprozessorverzeichnis

[0108] Wie in Fig. 13 gezeigt, unterhält jeder Pro-
zessor 210 ein Verzeichnis 1300, das Information
über in Blöcken enthaltene Zeilen speichern kann, für
die der Prozessor der Heimprozessor ist. Außerdem
hat zu jeder Zeit jede Zeile eines bestimmten Blocks
einen "steuernden" Prozessor. Der Prozessor, der
eine Zeile steuert, kann der Prozessor sein, der die
Zeile zum letzten Mal exklusiv besessen hat.

[0109] Für jeden von einem Heimprozessor beses-
senen Block hat das Verzeichnis 1300 einen Eintrag
1301 für jede Zeile im Block. Jeder Eintrag 301 ent-
hält eine Identifizierung (ID) 1310, eine Blockgröße
1315 und einen Bitvektor 1320. Die ID 1310 zeigt an,
welcher Prozessor derzeit den Block steuert, und der
Vektor 1320 hat ein Bit 1321 für jeden Prozessor, der
eine Kopie des Blocks hat. Die Größe des Blocks
1315 kann, wie unten im Einzelnen beschrieben, va-
riiert werden.

Protokollnachrichten

[0110] Die Prozessoren 211 tauschen über das
Netzwerk 220 von Fig. 2 Nachrichten aus. Bei den
Nachrichten gibt es die folgenden allgemeinen Ty-
pen. Anforderungsnachrichten können Kopien von
Daten zum Zwecke des Ladens und Speicherns an-
fordern, und Antwortnachrichten können die angefor-
derten Daten enthalten. Anforderungen nach Daten
werden typischerweise an den Heimprozessor ge-
sendet. Wenn der Heimprozessor keine Kopie der
Daten hat, dann wird die Anforderung an den steu-
ernden Prozessor weitergeleitet. Der steuernde Pro-
zessor kann dem Prozessor direkt antworten, von
dem die Anforderung ausging.

[0111] Manche Nachrichten werden auch zur Pro-
zesssynchronisation verwendet. Zwei Typen von
Synchronisationsmechanismen können eingesetzt
werden. Zuerst können Prozessoren mit einer vorge-
gebenen "Barrieren"-Adresse synchronisiert werden.
Wenn sie mit einer Barrierenadresse synchronisiert
sind, warten Prozessoren, die die Barrierenadresse
erreicht haben, bis alle anderen Prozessoren eben-
falls die Barrierenadresse erreicht haben.

[0112] Ein weiterer Typ einer Synchronisation ge-
schieht über eine Sperre. Eine "Sperre" kann von ei-
nem beliebigen Prozessor an einer bestimmten
Adresse des gemeinsamen Speichers ausgeübt wer-
den. Ein anderer Prozessor kann erst dann an der
gleichen Adresse eine Sperre ausüben, wenn die
Sperre gelöst wurde.

[0113] Die Einzelheiten der vom Fehlzugriffs-Be-

handlungscode 352 unterstützten Nachrichten sind in
den folgenden Abschnitten beschrieben.

Lesenachricht

[0114] Eine Lesenachricht fordert Daten von einem
bestimmten Prozessor zum Lesen an. Diese Nach-
richt enthält die Adresse des Blocks, der die angefor-
derten Daten speichert, sowie eine Identität des an-
fordernden Prozessors. Auf die Nachricht wird ein ge-
samter Block, der die angeforderten Daten enthält,
abgerufen.

Schreibnachricht

[0115] Die Schreibnachricht enthält die Adresse der
angeforderten Daten und eine Identität des anfor-
dernden Prozessors. Diese Nachricht fordert einen
Block von Daten zum Zweck des Speicherns neuer
Daten im Block an, wenn der anfordernde Prozessor
nicht selbst eine Kopie der Daten hat. Daher fordert
die Nachricht auch die Verfügung (Ownership) über
den Datenblock an.

Ownership-Nachricht

[0116] Diese Nachricht fordert die Verfügung (Ow-
nership) über die Daten in dem Fall an, wo der anfor-
dernde Prozessor keine Kopie der Daten hat. Diese
Nachricht wird verwendet, wenn der anfordernde
Prozessor seine Kopie der Daten modifizieren möch-
te. Die Ownership-Nachricht enthält die Adresse der
Daten und eine Identität des anfordernden Prozes-
sors.

Sauber-Nachricht

[0117] Diese Nachricht wird zum Mitteilen einer An-
forderung nach einer (sauberen) Nur-Lese-Kopie der
Daten verwendet. Die Sauber-Nachricht enthält die
Adresse der angeforderten Daten, die Anzahl von
Bytes und eine Identität des anfordernden Prozes-
sors. Eine Optimierung besteht darin, dass die Anfor-
derung an keinen weiteren Prozessor weitergeleitet
zu werden braucht, wenn der Heimprozessor eine
Kopie der angeforderten Daten hat.

Weiterleitungsnachricht

[0118] Diese Nachricht fordert an, dass eine
schreibbare Kopie der Daten vom Prozessor, der der-
zeit die Daten steuert, an den Prozessor geschickt
wird, der eine Anforderung der Daten gesendet hat.
Die Weiterleitungsnachricht enthält die Adresse der
angeforderten Daten, die Anzahl von Bytes und eine
Identität des anfordernden Prozessors.

Invalidierungsnachricht

[0119] Diese Nachricht fordert, dass eine Kopie der
12/32

DE 698 22 534 T2 2005.01.27
Daten invalidiert wird. Wenn die Invalidierung abge-
schlossen ist, wird an den anfordernden Prozessor
eine Bestätigung geschickt. Die Invalidierungsnach-
richt enthält die Adresse der angeforderten Daten,
die Anzahl von zu invalidierenden Bytes und eine
Identität des anfordernden Prozessors.

Herabstufungsnachricht

[0120] Diese Nachricht wird, wenn der Zustand ei-
nes Blocks herabgestuft wird, lokal innerhalb eines
SMP an Prozessoren gesendet, deren private Zu-
standstabellen ebenfalls herabgestuft werden müs-
sen. Die Herabstufungsnachricht enthält den Typ der
Herabstufung, die Adresse der angeforderten Daten,
die Anzahl von Bytes und die Identität des anfordern-
den Prozessors. Der letzte Prozessor, der die Herab-
stufungsnachricht erhält, schließt den mit der Anfor-
derung zusammenhängenden Vorgang ab, welcher
die Herabstufung anstieß.

Sauber-Antwort-Nachricht

[0121] Diese Nachricht enthält eine Kopie der tat-
sächlich in der Sauber-Nachricht angeforderten Da-
ten. Die Sauber-Antwort-Nachricht enthält die Adres-
se der angeforderten Daten, die Anzahl der Bytes
und die Daten.

Weiterleitungs-Antwort-Nachricht

[0122] Diese Nachricht enthält eine schreibbare Ko-
pie der angeforderten Daten. Die Weiterleitungs-Ant-
wort-Nachricht enthält die Adresse der angeforderten
Daten, die Anzahl von Bytes und die Daten.

Invalidierungs-Antwort-Nachricht

[0123] Diese Nachricht ist eine Bestätigung, dass
Daten invalidiert wurden. Die Invalidierungs-Ant-
wort-Nachricht enthält die Adresse der angeforderten
Daten und die Anzahl invalidierter Bytes.

Barrieren-Warte-Nachricht

[0124] Diese Nachricht fordert eine an den anfor-
dernden Prozessor gerichtete Mitteilung an, wenn
alle Prozessoren eine bestimmte Barrierenadresse
erreicht haben. Die Barrieren-Warte-Nachricht ent-
hält die Barrierenadresse und die Identität des anfor-
dernden Prozessors.

Barriere-Fertig-Nachricht

[0125] Diese Nachricht zeigt an, dass die Bedingun-
gen der Barrieren-Warte-Nachricht erfüllt sind. Die
Barriere-Fertig-Nachricht enthält die Barrierenadres-
se.

Sperrnachricht

[0126] Diese Nachricht fordert die Verfügung (Ow-
nership) über eine Sperre an. Bei der vorliegenden
Umsetzung wird die Sperre auf einer spezifischen
Adresse des gemeinsamen Speichers ausgeführt.
Die an der Adresse gespeicherten Daten spielen hin-
sichtlich der Sperrnachricht keine Rolle. Die Sperr-
nachricht enthält die der Sperre zugeordnete Adres-
se.

Sperre-Weiterleitungsnachricht

[0127] Diese Nachricht leitet eine Sperranforderung
an einen Prozessor weiter, der derzeit die Verfügung
(Ownership) über die gesperrte Adresse hat. Die
Sperr-Weiterleitungsnachricht enthält die Sperra-
dresse.

Sperr-Antwortnachricht

[0128] Diese Nachricht überträgt die Verfügung
(Ownership) über die gesperrte Adresse an den an-
fordernden Prozessor. Die Sperr-Antwortnachricht
enthält die gesperrte Adresse.

Schmutzige Daten

[0129] Die oben beschriebenen Protokollnachrich-
ten erlauben die gemeinsame Nutzung "schmutziger"
Daten. Dies bedeutet, dass der Heimprozessor eines
Blocks nicht eine saubere, aktuelle Kopie der Daten
haben muss. Zum Beispiel könnte ein anderer Pro-
zessor seine Kopie der Daten geändert haben und
die modifizierte Kopie der Daten mit anderen Prozes-
soren außer dem Heimprozessor geteilt haben. Die-
ses Merkmal bewirkt, dass ein Rückschreiben an den
Heimprozessor optional wird. Ansonsten ist ein
Rückschreiben an den Heimprozessor immer dann
erforderlich, wenn ein Prozessor eine Kopie schmut-
ziger Daten von einem anderen Prozessor liest.

Polling (Abfragen)

[0130] Ein Polling-Mechanismus wird zum Verarbei-
ten der Nachrichten verwendet, die von den Prozes-
soren 211 erzeugt wurden. Zum Beispiel wird das
Netzwerk 220 nach einer eintreffenden Nachricht ab-
gefragt, wenn ein Prozessor auf eine Antwort zu einer
Anforderungsnachricht wartet. Hierdurch wird eine
gegenseitige Sperrsituation vermieden.

[0131] Außerdem werden, um angemessene Ant-
wortzeiten für Anforderungen zu garantieren, die Pro-
gramme so instrumentiert, dass sie immer dann ein-
treffende Nachrichten abfragen, wenn die Program-
me einen Funktionsaufruf durchführen. Wenn das
Netzwerk 220 ein Netzwerk ist, das kurze Latenzen
hat, kann ein Polling (Abfragen) auch häufiger durch-
geführt werden, wie zum Beispiel an jeder Pro-
13/32

DE 698 22 534 T2 2005.01.27
grammsteuerungs-Hinterflanke. Eine Programm-
steuerungshinterflanke kann ein Sprungbefehl sein,
der verursacht, dass eine Schleife iterativ erneut
durchgeführt wird. Daher wird für jede Iteration einer
Schleife eine Hinterflankenabfrage durchgeführt.

[0132] Nachrichten könnten unter der Verwendung
eines Unterbrechungsmechanismus behandelt wer-
den. Jedoch dauert das Behandeln einer Unterbre-
chung üblicherweise länger in der Verarbeitung, da
der Zustand, der zur Zeit der Unterbrechung besteht,
zunächst gespeichert und in der Folge wieder herge-
stellt werden muss. Außerdem ist beim Abfragen
(Polling) die Aufgabe der Umsetzung unteilbarer Pro-
tokollvorgänge vereinfacht.

[0133] Aufgrund des relativ hohen Aufwands des
Sendens von Nachrichten zwischen Prozessoren
werden äußere Protokoll-Kohärenznachrichten mini-
miert. Da ein Heimprozessor eines Blocks die Be-
handlung der Anforderung durch eine Weiterleitung
der Anforderung an den derzeit steuernden Prozes-
sor garantiert, können alle Nachrichten, die Informa-
tion im Verzeichnis 1300 ändern, abgeschlossen
werden, wenn die Nachrichten den Heimprozessor
erreicht haben. Es besteht daher keine Notwendig-
keit, eine zusätzliche Nachricht zu schicken, um zu
bestätigen, dass eine Weiterleitungsanforderung er-
füllt wurde. Außerdem werden alle Invalidierungsbe-
stätigungen, die auf Exklusiv-Anforderungen erzeugt
wurden, direkt an den anfordernden Prozessor und
nicht über den Heimprozessor geleitet.

Sperr-freier Cache (Lock-up Free Cache)

[0134] Das Protokoll 352 sieht auch ein Lö-
sungs-Konsistenzmodell vor, das im Wesentlichen
äquivalent mit einem in Hardware implementierten
sperr-freien Cache ist, der nicht blockierende Lade-
und Speichervorgänge erlaubt. Daten, die in den ver-
teilten gemeinsam genutzten Speichern zwischenge-
speichert werden, können einen der folgenden Zu-
stände haben: ungültig (Invalid), gemeinsam
(Shared), exklusiv (Exclusive), schwebend-ungültig
(Pending-Invalid) oder schwebend-gemeinsam (Pen-
ding-Shared). Die schwebenden Zustände sind vorü-
bergehende Zustände einer Zeile, wenn eine Anfor-
derung nach dem die Zeile enthaltenden Block an-
steht. Der Schwebend-Ungültig-Zustand besteht für
Daten, bei denen eine Lese- oder Schreibanforde-
rung ansteht. Der Schwebend-Gemeinsam-Zustand
besteht für Daten, bei denen eine Ownership-Anfor-
derung ansteht.

[0135] Nicht blockierende Speichervorgänge wer-
den dadurch unterstützt, dass ein Prozessor mit der
Verarbeitung von Befehlen fortfährt, nachdem eine
Anforderung nach Daten gemacht wurde. Während
die Anforderung ansteht, erkennt das Protokoll die
Adressen aller Daten, die in der lokalen Kopie des

Blocks modifiziert sind. Dann können, wenn der an-
geforderte Block von Daten verfügbar wird, die modi-
fizierten Daten mit den angeforderten Daten zusam-
mengeführt werden. Es wird darauf hingewiesen,
dass das oben beschriebene Stapeln von Lade- und
Speichervorgängen nicht blockierende Ladevorgän-
ge erlaubt, da das Stapeln von Ladevorgängen dazu
führen kann, dass für eine einzige Überprüfung meh-
rere anstehende Ladevorgänge vorliegen.

[0136] Ein sperr-freies Verhalten kann auch für Da-
ten unterstützt werden, die einen schwebenden Zu-
stand haben. Das Speichern von Daten an Adressen
schwebender Daten kann zur Durchführung zugelas-
sen werden, indem die Adressen aufgezeichnet wer-
den, wo die Daten gespeichert sind, und die Adres-
sen an den Fehlzugriffs-Behandlungscode 352 von
Fig. 3 übergeben werden.

[0137] Alle Speichervorgänge in einem Block in ei-
nem schwebenden Zustand werden innerhalb der
Protokollroutine abgeschlossen, während auf dem
entsprechenden Zustandstabelleneintrag eine Sper-
re liegt. Dieses Verfahren der Durchführung schwe-
bender Speichervorgänge ist wichtig, um sicherzu-
stellen, dass die Speichervorgänge für alle Prozesso-
ren sichtbar sind, die später am selben Block einen
Protokollvorgang durchführen.

[0138] Ladungsvorgänge von Adressen von Daten,
die einen Schwebend-Gemeinsam-Zustand haben,
werden sofort zugelassen, da der Prozessor schon
eine Kopie der Daten hat. Ladungsvorgänge von
Adressen von Daten eines Blocks, der den Schwe-
bend-Ungültigzustand hat, können ebenfalls durch-
geführt werden, solange die Ladevorgänge von
Adressen einer Zeile des Blocks sind, der gültige Da-
ten speichert. Gültige Ladevorgänge an schwebende
Zeilen werden aufgrund der Verwendung des Ungül-
tig-Flags 801 von Fig. 8 schneller durchgeführt. Ein
gültiger Ladevorgang einer schwebenden Zeile kann
sofort durchgeführt werden, weil der geladene Wert
nicht gleich dem Ungültig-Flag ist.

Variable Granularitäten

[0139] Ein Merkmal der hier beschriebenen Proto-
kolle ist die Möglichkeit variabler Granularitäten für
die Kohärenz, auch innerhalb eines einzigen Pro-
gramms oder einer einzigen Datenstruktur. Variable
Granularitäten sind möglich, weil alle Überprüfungen
nach Fehlzugriffen von Softwarebefehlen durchge-
führt werden, die auf Daten sehr kleiner Granularitä-
ten zugreifen, z. B. Bytes, lange Wörter (long) und
Quad-Wörter. Im Gegensatz dazu verwenden andere
verteilte Speichersysteme virtuelle Speicherhard-
ware zur Durchführung von Fehlzugriffsüberprüfun-
gen an festen und groben granularen Adressen, die
durch eine virtuelle Speicherseitengröße, typischer-
weise 4096 oder 8192 Bytes, bestimmt werden.
14/32

DE 698 22 534 T2 2005.01.27
[0140] Unterschiedliche Typen von Daten, die von
einem Programm verwendet werden, werden am na-
türlichsten und wirkungsvollsten mit variablen Granu-
laritäten abgerufen. Zum Beispiel werden Datenblö-
cke, die von aufeinanderfolgenden Massenadressen
von Eingabe/Ausgabe-Geräten gelesen und an diese
geschrieben werden, am besten mit groben Granula-
ritäten, z. B. 2 K, 4 K usw., behandelt. Jedoch erfor-
dern viele Programme auch einen wahlfreien Zugriff
auf Bereiche von Adressen, die beträchtlich kleiner,
z. B. 32, 256, 1024 Bytes, sind.

[0141] Dass Anwendungsprogramme und Daten-
strukturen variable Zugriffsgranularitäten haben dür-
fen, kann die Leistung steigern, weil Daten in der wir-
kungsvollsten Übertragungseinheit kommuniziert
werden können. Daten mit guter räumlicher Lokalität,
z. B. in Blöcke "geklumpte" Daten, können mit groben
Granularitäten transportiert werden, um die Zeit lan-
ger Kommunikationslatenzen zu amortisieren. Im
Gegensatz dazu können Daten, die einer "falschen
Gemeinsamkeit" unterliegen, mit feineren Granulari-
täten kommuniziert werden.

[0142] Eine falsche Gemeinsamkeit (False Sharing)
ist ein Zustand, bei dem unabhängige Teile von Da-
ten, z. B. Feldelemente, in der Datenstruktur, z. B. in
einem oder mehreren Blöcken, gespeichert und von
vielen symmetrischen Multiprozessoren abgerufen
werden. Bei Blöcken variabler Größe erübrigt sich die
Notwendigkeit des wiederholten Transfers großer
Datenquantitäten fester Größe, die kleinere unab-
hängige Teile falscher gemeinsamer Daten enthal-
ten, zwischen den symmetrischen Multiprozessoren.

[0143] Demnach ist der Vorgang 300 von Fig. 3 da-
hingehend optimiert, Datentransfereinheiten zu ver-
arbeiten, die variable Granularitäten besitzen. Eine
Datentransfereinheit, z. B. ein Block, kann eine belie-
bige geradzahlige Vielfache von Zeilen sein, je nach
der für das Programm gewählten festen Zeilengröße,
z. B. können unterschiedliche Programme auf Daten
mit unterschiedlichen Zeilengrößen (32, 64, 128
Byte-Zeilen) zugreifen.

[0144] Um eine entsprechende Blockgröße für eine
bestimmte Datenstruktur zu wählen, kann eine auf
der zugewiesenen Größe basierende Heuristik ver-
wendet werden. Die zu Grunde liegende Heuristik
wählt eine Blockgröße, die gleich der Größe der zu-
gewiesenen Datenstruktur ist, bis zu einer vorbe-
stimmten Schwellengröße der Datenstruktur, z. B. 1
K oder 2 K Bytes. Für zugewiesene Datenstrukturen,
die größer als die vorbestimmte Schwellengröße
sind, kann die Granularität einfach die Größe einer
Zeile sein. Die der Heuristik zu Grunde liegende Ar-
gumentation besteht darin, dass kleine Datenstruktu-
ren als eine Einheit übertragen werden sollten, wenn
auf sie zugegriffen wird, während große Datenstruk-
turen, wie zum Beispiel Felder, in feinen Granularitä-

ten übertragen werden sollten, um eine falsche Ge-
meinsamkeit zu vermeiden.

[0145] Die Heuristik kann dadurch modifiziert wer-
den, dass spezielle Zuweisungsbefehle in die Pro-
gramme eingefügt werden, die explizit die Blockgrö-
ße definieren. Da die Größe zugewiesener Blöcke die
Korrektheit des Programms nicht beeinträchtigt, kann
die Blockgröße für die maximale Leistung empirisch
festgestellt werden.

[0146] Wie in Fig. 13 gezeigt, wird die Blockgröße
1315 eines zuweisbaren Datenstücks vom Heimpro-
zessor in einem Verzeichnis 1300 unterhalten. Jeder
Zeileneintrag enthält die Größe 1315 des entspre-
chenden Blocks. Prozessoren erhalten Kenntnis über
die Größe eines Blocks, wenn Daten des Blocks an
einen anfordernden Prozessor transportiert werden.

[0147] Da Prozessoren die Größe von Blöcken nicht
zu wissen brauchen, können die Größen dynamisch
festgelegt werden. Zum Beispiel kann ein Heimpro-
zessor die Granularität einer gesamten Datenstruktur
dadurch ändern, dass zuerst alle Zeilen invalidiert
werden, welche die Datenstruktur enthalten, und
dann die Blockgrößen in den Verzeichniseinträgen
1301 geändert werden.

[0148] Der Heimprozessor kann die Größe eines
Blocks nachschlagen, wenn eine Zugriffsanforde-
rung, z. B. Lesen, Schreiben, Ownership, an einer
Zieladresse einer bestimmten Zeile empfangen wird.
Dann kann der Heimprozessor die korrekte Anzahl
von Zeilen, die den gesamten Block enthalten, an
den anfordernden Prozessor senden. Alle anderen
Kopien der Zeilen können unter der Verwendung des
Vektors 1320 entsprechend vom Prozessor behan-
delt werden. In Reaktion auf eine Zugriffsanforde-
rung, die nicht die anfängliche Anforderung ist, wer-
den alle Protokolloperationen an allen Zeilen des
Blocks durchgeführt.

[0149] Um den Fehlzugriffs-Prüfcode zu vereinfa-
chen, werden die Zustände der Datenstücke Zeile für
Zeile überprüft und gepflegt. Das Protokoll 352 stellt
jedoch sicher, dass alle Zeilen eines Blocks immer im
selben Zustand sind. Daher kann der vorgeschaltete
Fehlzugriffs-Prüfcode Zustände für Blöcke variabler
Größe wirkungsvoll pflegen.

[0150] Im Fall Granularitäten variabler Größe kann
es sein, dass ein Prozessor die Größe eines Blocks
nicht weiß, der eine angeforderte Zeile enthält. Zum
Beispiel fordert ein Prozessor an, auf Daten an einer
Adresse A und an einer Adresse A + 64 zuzugreifen.
In dem Fall, wo der Prozessor die Größe des Blocks
nicht weiß, kann es sein, dass er zwei Anforderungen
unter der Annahme einer Zeilengröße von 64 Bytes
macht, jeweils eine für jede Zieladresse, auch wenn
die Adressen im selben Block sind.
15/32

DE 698 22 534 T2 2005.01.27
[0151] Ein Vorteil hierbei ist jedoch, dass das Proto-
koll, wie hier beschrieben, in einer einzigen Nachricht
den gesamten die Zeilen enthaltenden Block über-
trägt. Danach kann der die anfängliche Anforderung
verarbeitende Heimprozessor auch erkennen, dass
die zweite Anforderung nicht benötigt wird. Dies trifft
in allen Fällen zu, außer wenn ein anderer Prozessor
eine Anforderung zum Zugreifen auf die erste Zeile
macht, bevor die Anforderung für die zweite Zeile voll
verarbeitet ist. In diesem Fall muss die zweite Anfor-
derung als eine anfängliche Anforderung behandelt
werden, da die aktuellen Zustände der Daten nicht
immer feststellbar sind.

[0152] Fig. 14 zeigt Datenstrukturen, die variable
Granularitäten besitzen. Die Speicher 1401 sind ei-
nem ersten Prozessor (PROC1) zugeordnet, und die
Speicher 1402 sind einem zweiten Prozessor
(PROC2) zugeordnet.

[0153] Innerhalb der Speicher 1401 des ersten Pro-
zessors wurden einem ersten Programm (P1) 1411
Datenstrukturen mit Zeilen von 64 Bytes zugeordnet,
und einem zweiten Programm (P2) 1441 sind Daten-
strukturen mit Zeilen von 32 Bytes zugeordnet.

[0154] Das erste Programm 1411 enthält Daten-
strukturen 1421 und 1431. Die Datenstrukturen 1421
enthalten einen Block von 128 Bytes, z. B. zwei Zei-
len pro Block. Die Datenstrukturen 1431 haben acht
Blöcke von 64 Bytes, z. B. eine Zeile pro Block.

[0155] Das zweite Programm enthält Datenstruktu-
ren 1451, 1461 und 1471. Die Datenstrukturen 1451
enthalten acht Blöcke von jeweils 32 Bytes (einer Zei-
le). Die Datenstrukturen 1461 enthalten drei Blöcke
von jeweils 128 Bytes (vier Zeilen). Die Datenstruktu-
ren 1471 enthalten einen Block von 256 Bytes, z. B.
acht Zeilen.

[0156] Die Speicher 1402 des zweiten Prozessors
enthalten vergleichbare Programme 1412 und 1442
und ihre Datenstrukturen. Wie oben beschrieben,
kommunizieren die Prozessoren Daten in Datenüber-
tragungseinheiten von einem Block. Zum Beispiel
übertragen die ersten Programme 1411 und 1412
Daten unter der Verwendung der Blöcke 1403 und
die zweiten Programme 1441 und 1442 übertragen
Blöcke 1404. Ein Vorteil hierbei ist, dass die Blöcke
1403 und 1404 unterschiedliche Größen, z. B. variab-
le Granularitäten, und unterschiedliche Zeilengrö-
ßen, z. B. 32 und 64 Bytes, haben können.

[0157] Die vorliegende Erfindung wurde unter der
Verwendung spezifischer Begriffe und Beispiele be-
schrieben. Es versteht sich, dass verschiedene an-
dere Anpassungen und Modifikationen innerhalb des
Umfangs der Erfindung vorgenommen werden kön-
nen. Die nachfolgenden Ansprüche decken alle sol-
che Variationen und Modifikationen ab, die im Um-

fang der Erfindung enthalten sind.

Patentansprüche

1. In Software implementiertes Verfahren zum
gemeinsamen Zugriff auf Daten, die in Speichern
(212) symmetrischer Multi-Prozessoren (210) in ei-
nem Computersystem (200) gespeichert sind, das
mehrere symmetrische Multi-Prozessoren aufweist,
wobei jeder symmetrische Multi-Prozessor mehrere
Prozessoren (211), einen Speicher mit Adressen und
eine Eingabe/Ausgabe-Schnittstelle (214), die über
einen Bus (213) miteinander verbunden sind, auf-
weist, wobei die Eingabe/Ausgabe-Schnittstellen die
symmetrischen Multi-Prozessoren durch ein Netz-
werk (220) miteinander verbinden, mit den folgenden
Schritten:
– Bezeichnen eines Satzes der Adressen der Spei-
cher als virtuelle gemeinsam genutzte Adressen zum
Speichern gemeinsam genutzter Daten (550),
– Zuweisen eines Teils der virtuellen gemeinsam ge-
nutzten Adressen zum Speichern einer gemeinsam
genutzten Datenstruktur (551) als einen oder mehre-
re Blöcke, auf die durch Programme (310) zugegrif-
fen werden kann, die in einem der Prozessoren aus-
geführt werden, wobei die Größe eines bestimmten
zugewiesenen Blocks mit der Größe der gemeinsam
genutzten Datenstruktur variiert, wobei jeder Block
eine ganzzahlige Anzahl von Zeilen (552) enthält,
wobei jede Zeile eine vorbestimmte Anzahl von Bytes
gemeinsam genutzter Daten enthält;
– Unterhalten einer gemeinsam genutzten Zustand-
stabelle (541), die mehrere gemeinsam genutzte Zu-
standseinträge (545) enthält, wobei es für jede Zeile
des einen oder mehr Blocks einen gemeinsam ge-
nutzten Tabelleneintrag gibt, wobei jeder gemeinsam
genutzte Zustandseintrag einen möglichen Zustand
der Zeile anzeigt, wobei die möglichen Zustände un-
gültig, gemeinsam, exklusiv und schwebend sind;
– Unterhalten einer privaten Zustandstabelle (542)
für jeden Prozessor der mehreren symmetrischen
Multi-Prozessoren, wobei jede private Zustandsta-
belle mehrere private Zustandseinträge (545) auf-
weist, wobei die privaten Zustandstabelleneinträge
einer bestimmten privaten Zustandstabelle einen
möglichen Zustand einer bestimmten Zeile anzeigen,
auf die vom zugeordneten bestimmten Prozessor zu-
gegriffen wird;
– Speichern von Verzeichnisinformation eines be-
stimmten Blocks der gemeinsam genutzten Daten-
struktur im Speicher eines Heimprozessors, wobei
die Verzeichnisinformation die Größe (1315) des be-
stimmten Blocks enthält;
– Instrumentieren der Programme (310) bei Befeh-
len, die auf die gemeinsamen Daten zugreifen, um zu
überprüfen, ob die Daten verfügbar sind; und
– in Reaktion auf den Empfang einer Zugriffsanforde-
rung von einem Anfordernden der Prozessoren zum
Zugreifen auf die gemeinsam genutzten Daten, Sen-
den eines bestimmten Blocks, der die bestimmte Zei-
16/32

DE 698 22 534 T2 2005.01.27
le und die Größe des bestimmten Blocks enthält, an
den anfordernden Prozessor über das Netzwerk, um
es den Prozessoren zu ermöglichen, in Blöcken mit
variabler Größe gespeicherte gemeinsam genutzte
Datenstrukturen über das Netzwerk auszutauschen;
– wobei das Instrumentieren dadurch gekennzeich-
net ist, dass es die folgenden Schritte aufweist:
– Unterteilen von Programmen (310) mit einer Analy-
siereinrichtung (320) in Prozeduren (301) und die
Prozeduren (301) in Basis-Ausführungsblöcke (302),
wobei ein Basis-Ausführungsblock aus einem Satz
von Befehlen besteht, die ausgeführt werden, wenn
der erste Befehl des Satzes ausgeführt wird;
– Analysieren der Basis-Ausführungsblöcke und der
Daten und eines Ausführungsflusses (303) zum Lo-
kalisieren von Befehlen, die Speicheradressen zutei-
len und Zugriffe auf die zugewiesenen Adressen in
den gemeinsam genutzten Teilen der Speicher (212)
durchführen;
– Einfügen mit einem Optimier-Modul (330) von Be-
fehlen in die Programme (310) zum Überprüfen, ob
Daten verfügbar sind, um sicherzustellen, dass der
Zugriff in einer kohärenten Weise erfolgt;
– Erzeugen mit einem Image-Generator (340) eines
modifizierten maschinenausführbaren Images (350),
das instrumentierte Programme (351) mit den Befeh-
len zum Überprüfen und einer Prozedur für Fehlzu-
griffs-Handhabungs-Protokollprozeduren (352) und
eine Nachrichten-Weiterleitungs-Bibliothek (353) ent-
hält.

2. Verfahren nach Anspruch 1, weiter mit dem fol-
genden Schritt:
– Ablegen der Verzeichnisinformation in einem Ver-
zeichnis (1300), das vom Heimprozessor unterhalten
wird, wobei das Verzeichnis für jede Zeile (552) des
einen oder der mehreren Blöcke der gemeinsam ge-
nutzten Datenstruktur (551) einen Eintrag (1301) ent-
hält, wobei jeder Eintrag die Größe (1315) des be-
stimmten die Zeile enthaltenden Blocks enthält.

3. Verfahren nach Anspruch 2, weiter mit dem fol-
genden Schritt:
– Unterhalten im Eintrag (1301) für jede Zeile (552)
des bestimmten Blocks einer Identität (1310) eines
Steuernden der Prozessoren (211), wobei der steu-
ernde Prozessor als Letztes eine exklusive Kopie des
bestimmten die bestimmte Zeile enthaltenden Blocks
aufweist.

4. Verfahren nach Anspruch 3, weiter mit dem fol-
genden Schritt:
– Unterhalten eines Bitvektors (1320) im Eintrag
(1301), wobei der Bitvektor ein Bit (1321) für jeden
Prozessor (211) enthält, wobei das Bit jeweils an-
zeigt, ob ein entsprechender Prozessor eine gemein-
sam genutzte Kopie des bestimmten Blocks hat.

5. Verfahren nach Anspruch 1, weiter mit dem fol-
genden Schritt:

– dynamisches Ändern der Größe des einen oder der
mehreren Blöcke, die für die gemeinsam genutzte
Datenstruktur (551) zugewiesen wurden, während
die Programme (310) ausgeführt werden.

6. Verfahren nach Anspruch 1, weiter mit den fol-
genden Schritten:
– Sperren der gemeinsam genutzten Zustandstabelle
(541) vor dem Modifizieren eines der gemeinsam ge-
nutzten Tabelleneinträge (545), weiter mit dem fol-
genden Schritt:
– Setzen des Zustands jeder Zeile (552) des einen
oder der mehreren Blöcke auf ungültig, bevor die
Größe des einen oder der mehreren Blöcke dyna-
misch geändert wird.

7. Verfahren nach Anspruch 6, weiter mit dem fol-
genden Schritt:
– Modifizieren einer der privaten Zustandstabellen
(512) ausschließlich durch den Prozessor (211), der
der privaten Zustandstabelle zugeordnet ist.

8. Verfahren nach Anspruch 7, weiter mit dem fol-
genden Schritt:
– selektives Senden einer Nachricht von einem Be-
stimmten der Prozessoren (211) eines bestimmten
symmetrischen Multi-Prozessors (210) an andere
Prozessoren der bestimmten symmetrischen Mul-
ti-Prozessoren, wenn Zustände in der privaten Zu-
standstabelle (542), die dem bestimmten Prozessor
zugeordnet ist, herabgestuft werden.

9. Verfahren nach Anspruch 1, bei dem die An-
zahl von Zeilen des einen oder der mehreren Blöcke
einer ersten gemeinsam genutzten Datenstruktur
(1421) sich von der Anzahl von Zeilen des einen oder
der mehreren Blöcke einer zweiten Datenstruktur
(1431) unterscheidet.

10. Verfahren nach Anspruch 1, bei dem die An-
zahl von Bytes in einer der Zeilen der ersten Daten-
struktur (1421) in einem Programm (1411) sich von
der Anzahl von Bytes in einer der Zeilen einer zwei-
ten Datenstruktur (1451) in einem anderen Pro-
gramm (1441) unterscheidet.

11. System, mit:
– einem Netzwerk (220);
– mehreren symmetrischen Multi-Prozessoren (210),
die durch das Netzwerk miteinander verbunden sind,
wobei jeder symmetrische Multi-Prozessor mehrere
Prozessoren (211) enthält;
– einem Speicher (212), der eine Anordnung von
Adressen für jeden symmetrischen Multi-Prozessor
hat, wobei jede Speicheradresse einen zugewiese-
nen Satz virtueller gemeinsam genutzter Adressen
zum Speichern gemeinsam genutzter Daten (550)
hat, wobei in einem Teil der virtuellen gemeinsam ge-
nutzten Adressen eine gemeinsam genutzte Daten-
struktur (551) als einen oder mehrere Blöcke spei-
17/32

DE 698 22 534 T2 2005.01.27
chert, auf die durch Programme (310) zugegriffen
werden kann, die in einem beliebigen der Prozesso-
ren ausgeführt werden, wobei die Größe eines be-
stimmten zugewiesenen Blocks mit einer Größe der
gemeinsam genutzten Datenstruktur variiert, wobei
jeder Block eine ganzzahlige Anzahl von Zeilen (552)
enthält, wobei jede Zeile eine vorbestimmte Anzahl
von Bytes gemeinsam genutzter Daten enthält; und
– eine Einrichtung (320) zum Instrumentieren der
Programme (351) bei Befehlen, die auf die gemein-
sam genutzten Daten zugreifen, um zu überprüfen,
ob die Daten verfügbar sind; und
– wobei die Anordnung aufweist:
i) eine gemeinsame Zustandstabelle (541), die meh-
rere gemeinsame Zustandseinträge (545) enthält,
wobei jeweils ein gemeinsamer Eintrag für jede Zeile
des einen oder der mehreren Blöcke ist, wobei jeder
gemeinsame Eintrag einen möglichen Zustand der
Zeile anzeigt, wobei die möglichen Zustände ungül-
tig, gemeinsam, exklusiv und schwebend sind;
ii) eine private Zustandstabelle (542) für jeden Pro-
zessor der mehreren symmetrischen Multi-Prozesso-
ren, wobei jede private Zustandstabelle mehrere pri-
vate Zustandseinträge (545) hat, wobei die privaten
Zustandseinträge einer bestimmten privaten Zu-
standstabelle einen möglichen Zustand einer be-
stimmten Zeile anzeigen, auf die vom zugeordneten
bestimmten Prozessor zugegriffen wird;
– wobei auf die gemeinsam genutzten Daten zuge-
griffen wird, um zu überprüfen, ob die Daten verfüg-
bar sind, und ein bestimmter Block von einem ande-
ren Prozessor über das Netzwerk an einen anfor-
dernden Prozessor gesendet wird, um in Blöcken va-
riabler Größe gespeicherte gemeinsam genutzte Da-
tenstrukturen auszutauschen;
– wobei die Einrichtung zum Instrumentieren dadurch
gekennzeichnet ist, dass sie aufweist:
– ein Analysier-Modul (320) zum Unterteilen von Pro-
grammen (310) in Prozeduren (301) und die Proze-
duren (301) in Basis-Ausführungsblöcke (302), wobei
ein Basis-Ausführungsblock aus einem Satz von Be-
fehlen besteht, die ausgeführt werden, wenn der ers-
te Befehl des Satzes ausgeführt wird;
– wobei das Analysier-Modul auch zum Analysieren
der Basis-Ausführungsblöcke und Daten und eines
Ausführungsflusses (303) ist, um Befehle zu lokali-
sieren, die Speicheradressen zuweisen und Zugriffe
auf die zugewiesenen Adressen in den gemeinsam
genutzten Teilen der Speicher (212) ausführen;
– ein Optimier-Modul (330) zum Einfügen von Befeh-
len in die Programme (310), um zu überprüfen, ob
Daten verfügbar sind, um sicherzustellen, dass der
Zugriff in einer kohärenten Weise erfolgt;
– einen Image-Generator (340) zum Erzeugen eines
modifizierten maschinenausführbaren Images (350),
das instrumentierte Programme (351) mit den Befeh-
len zum Überprüfen und eine Prozedur für Fehlzu-
griffs-Handhabungs-Protokollprozeduren (352) and
eine Nachrichten-Weiterleitungs-Bibliothek (353) ent-
hält.

12. System nach Anspruch 11, bei dem die Zu-
standstabellen (540) eine Ausschlusstabelle (1000)
enthalten.

13. System nach Anspruch 12, bei dem die Aus-
schlusstabelle (1000) einen gemeinsam genutzten
Teil (1001) und einen privaten Teil (1002) enthält.

Es folgen 14 Blatt Zeichnungen
18/32

DE 698 22 534 T2 2005.01.27
Anhängende Zeichnungen
19/32

DE 698 22 534 T2 2005.01.27
20/32

DE 698 22 534 T2 2005.01.27
21/32

DE 698 22 534 T2 2005.01.27
22/32

DE 698 22 534 T2 2005.01.27
23/32

DE 698 22 534 T2 2005.01.27
24/32

DE 698 22 534 T2 2005.01.27
25/32

DE 698 22 534 T2 2005.01.27
26/32

DE 698 22 534 T2 2005.01.27
27/32

DE 698 22 534 T2 2005.01.27
28/32

DE 698 22 534 T2 2005.01.27
29/32

DE 698 22 534 T2 2005.01.27
30/32

DE 698 22 534 T2 2005.01.27
31/32

DE 698 22 534 T2 2005.01.27
32/32

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

