(19) (19 DE 698 22 534 T2 2005.01.27

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 0 856 796 B1 1) intcl”: GO6F 12/08
(21) Deutsches Aktenzeichen: 698 22 534.1 GO6F 12/10, GO6F 12/02

(96) Europaisches Aktenzeichen: 98 101 562.1
(96) Europaischer Anmeldetag: 29.01.1998
(97) Erstverdffentlichung durch das EPA: 05.08.1998
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 24.03.2004
(47) Veroffentlichungstag im Patentblatt: 27.01.2005

(30) Unionsprioritéat: (84) Benannte Vertragsstaaten:
794172 03.02.1997 us DE, FR, GB
(73) Patentinhaber: (72) Erfinder:
Compaq Computer Corp., Houston, Tex., US Scales, Daniel J., Palo Alto, California 94306, US;
Gharachorloo, Kourosh, Menlo Park, California
(74) Vertreter: 94025, US; Aggarwal, Anshu, Mountain View, US
Andrae Flach Haug, 83022 Rosenheim

(54) Bezeichnung: Gemeinsame Speicherbenutzung mit variablen Blockgrossen fiir symmetrische Multiporzes-
sor-Gruppen

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 698 22 534 T2 2005.01.27

Beschreibung
Gebiet der Erfindung

[0001] Die vorliegende Erfindung bezieht sich allge-
mein auf symmetrische Multiprozessoren und insbe-
sondere auf die gemeinsame Nutzung von Daten
zwischen symmetrischen Multiprozessoren.

Hintergrund der Erfindung

[0002] Verteilte Computersysteme weisen typi-
scherweise mehrere Computer auf, die Uber ein
Kommunikationsnetzwerk miteinander verbunden
sind. Bei manchen verteilten Computersystemen
kénnen die vernetzten Computer auf gemeinsame
Daten zugreifen. Solche Systeme werden manchmal
auch als parallele Computer bezeichnet. Wenn eine
groRe Anzahl von Computern vernetzt ist, wird das
verteilte System als "massiv" parallel bezeichnet. Ein
Vorteil von massiv parallelen Computern ist, dass sie
komplexe Rechenaufgaben in vertretbarer Zeit 16sen
kénnen.

[0003] Bei solchen Systemen werden die Speicher
der Computer kollektiv als verteilter gemeinsamer
Speicher (Distributed Shared Memory/DSM) be-
zeichnet. Dabei besteht insofern ein Problem, weil
namlich garantiert werden muss, dass die im verteil-
ten gemeinsamen Speicher gespeicherten Daten in
koharenter Weise abgerufen werden. Koharenz be-
deutet teilweise, dass nur ein Prozessor einen be-
stimmten Teil der Daten zu einer bestimmten Zeit mo-
difizieren kann, weil sonst der Zustand des Systems
nicht deterministisch ware.

[0004] In Yeung D., "MGS: A Multigrain Shared Me-
mory System" ("Gemeinsames Speichersystem mit
mehreren Granularitaten"), Association for Compu-
ting Machinery, Bd. 24, Nr. 2, 1996 ist ein verteiltes
skalierbares gemeinsames Speicher-Multiprozessor-
system beschrieben. Die Konstruktion dieses ge-
meinsamen Speichersystems verwendet multiple
Granularitaten einer gemeinsamen Nutzung.

[0005] Fig. 1 zeigt ein typisches verteiltes gemein-
sames Speichersystem 100, das mehrere Computer
110 aufweist. Jeder Computer 110 enthalt einen Ein-
zelprozessor 101, einen Speicher 102 und Einga-
be/Ausgabe(Input/Output/I/O)-Schnittstellen 103, die
Uber einen Bus 104 miteinander verbunden sind. Die
Computer sind Uber ein Netzwerk 120 miteinander
verbunden. Hierbei bilden die Speicher 102 der Com-
puter 110 den gemeinsamen Speicher.

[0006] In letzter Zeit wurden verteilte gemeinsame
Speichersysteme als ein Cluster symmetrischer Mul-
tiprozessoren (SMP) aufgebaut. Bei SMP-Systemen
kann der gemeinsam genutzte Speicher in wirkungs-
voller Weise in Hardware implementiert werden, da

die Prozessoren symmetrisch sind, z. B. in ihrem Auf-
bau und Betrieb identisch, und auf einem einzigen
gemeinsamen Prozessorbus betrieben werden.
SMP-Systeme haben ein gutes Preis/Leistungs-Ver-
haltnis mit vier oder acht Prozessoren. Aufgrund des
speziell gefertigten Busses ist es jedoch schwierig,
die GréRe eines SMP-Systems Uber zwolf oder
sechszehn Prozessoren hinaus zu skalieren.

[0007] In Scales, D. J. et al., "Shasta: a low over-
head, software-only approach for supporting fi-
ne-grain shared memory" ("Shasta: ein kostenguinsti-
ges, nur in Software implementiertes Verfahren zur
Unterstltzung eines gemeinsam genutzten Spei-
chers feiner Granularitat"), Sigplan Notices, Bd. 31,
Nr. 9, 1996, ist ein verteiltes, gemeinsam genutztes
Speichersystem beschrieben, das einen gemeinsa-
men Adressraum in Software auf Clustern von Com-
putern mit physisch verteiltem Speicher unterstitzt.
Ein besonderes Merkmal des Shasta-Systems ist,
dass die gemeinsam genutzten Daten in einer feinen
Granularitat koharent gehalten werden kénnen und
die Koharenz-Granularitat sich in einer einzigen An-
wendung Uber verschiedene gemeinsam genutzte
Datenstrukturen verandern kann.

[0008] Es ist wiinschenswert, groe verteilte ge-
meinsam genutzte Speichersysteme unter Verwen-
dung symmetrischer Multiprozessoren aufzubauen,
die Uber ein Netzwerk miteinander verbunden sind.
Das Ziel ist dabei, dass die Prozesse die Speicher in
einer wirkungsvollen Weise nutzen, so dass von ei-
nem auf einem ersten SMP ausgefiihrten Prozess
von einem mit einem zweiten SMP verbundenen
Speicher abgerufene Daten sofort fir alle auf dem
ersten SMP ausgefiihrten Prozesse zur Verfigung
stehen.

[0009] Bei den meisten bestehenden verteilten ge-
meinsamen Speichersystemen signalisiert eine Logik
der virtuellen Speicherhardware (Paging) typischer-
weise, wenn ein Prozess versucht, auf gemeinsame
Daten zuzugreifen, die nicht im Speicher des lokalen
SMP gespeichert sind, auf dem der Prozess ausge-
fuhrt wird. In dem Fall, wo die Daten nicht lokal ver-
fugbar sind, werden die Funktionen der Paging-Feh-
lerhandhabungsroutinen durch Softwareroutinen er-
setzt, die Nachrichten mit auf entfernten Prozessoren
ausgeflhrten Prozessen austauschen.

[0010] Bei dieser Vorgehensweise besteht das
Hauptproblem darin, dass die Datenkoharenz nur mit
grolRen (groben) Quantitdten vorgesehen werden
kann, da typische virtuelle Speicherseiteneinheiten 4
KB oder 8 KB betragen. Diese GréRe kann mit viel
kleineren Dateneinheiten, zum Beispiel 32 oder 64
Bytes, auf die von vielen Prozessen zugegriffen wer-
den, inkonsistent sein. Eine Granularitat mit einer
grolRen Seitengrofle erhoht den Netzverkehr und
kann zu einer Verringerung der Systemleistung fih-

2/32

DE 698 22 534 T2 2005.01.27

ren.

[0011] AuBerdem nutzen auf dem gleichen SMP
ausgeflihrte multiple Prozesse typischerweise zu-
sammen Zustandsinformation tGber gemeinsam ge-
nutzte Daten. Es kdnnen daher potentiell Wettlaufsi-
tuationen (Racing) entstehen. Eine Wettlaufsituation
entsteht dann, wenn der Zustand des Systems davon
abhangt, welcher Prozess zuerst abgeschlossen
wird. Wenn zum Beispiel viele Prozesse Daten an
eine identische Adresse schreiben kdnnen, werden
von der Adresse gelesene Daten von der Ausflih-
rungsreihenfolge der Prozesse abhangen. Die Rei-
henfolge kann jedoch mit Laufzeitbedingungen vari-
ieren. Wettlaufsituationen kénnen dadurch vermie-
den werden, dass dem Prozess vorgeschaltete Syn-
chronisationsuberprifungen, wie zum Beispiel Sper-
ren oder Flags, hinzugefiugt werden. Eine explizite
Synchronisation erhéht jedoch die Kosten und kann
dazu fuhren, dass das System nicht mehr praktisch
zu implementieren ist.

[0012] Es ist wiinschenswert, der Datentransferein-
heit zwischen den symmetrischen Multiprozessoren
zu erlauben, je nach der GroRe der zugegriffenen Da-
tenstrukturen zu variieren. Eine Koharenzsteuerung
fiir groRe Datenstrukturen sollte die Ubertragung gro-
Rer Dateneinheiten erlauben, so dass die zum Trans-
fer der Daten benétigte Zeit amortisiert werden kann.
Eine Koharenz fur kleinere Datenstrukturen sollte
den Transfer kleiner Dateneinheiten erlauben. Au-
Rerdem sollte méglich sein, kleine Koharenzeinhei-
ten fur grofRe Datenstrukturen zu verwenden, bei de-
nen eine falsche gemeinsame Nutzung auftreten
kann. Eine falsche gemeinsame Nutzung (False Sha-
ring) ist eine Situation, die auftritt, wenn unabhangige
Datenelemente, auf die von unterschiedlichen Pro-
zessen zugegriffen wird, in einer koharenten Daten-
einheit gespeichert sind.

Zusammenfassung der Erfindung

[0013] Ein in Software implementiertes Verfahren
ermoglicht eine gemeinsame Nutzung von Daten
zwischen symmetrischen Multiprozessoren, die ein
verteiltes gemeinsames Speichersystem verwenden,
indem Datenquantitaten mit variabler Gré3e verwen-
det werden. Beim verteilten gemeinsamen Speicher-
system sind die symmetrischen Multiprozessoren
Uber ein Netzwerk miteinander verbunden. Jeder
symmetrische Multiprozessor enthalt mehrere identi-
sche Prozessoren, einen Speicher mit Adressen und
eine E/A-Schnittstelle zur Verbindung der symmetri-
schen Multiprozessoren Uber das Netzwerk.

[0014] Die Erfindung besteht in ihrer weitest gefass-
ten Form aus einem Verfahren zum gemeinsamen
Zugreifen auf in den Speichern symmetrischer Multi-
prozessoren in einem Computersystem gespeicherte
Daten, nach Anspruch 1.

[0015] Wie hiernach beschrieben wird, wird ein Satz
der Adressen der Speicher kollektiv als virtuelle ge-
meinsame Adressen zum Speichern gemeinsamer
Daten bezeichnet. Die gemeinsamen Daten kénnen
durch die Befehle von Programmen abgerufen wer-
den, die auf einem beliebigen der Prozessoren der
symmetrischen Multiprozessoren als Prozesse ab-
laufen. Ein Teil der virtuellen gemeinsamen Adressen
wird zum Speichern einer gemeinsamen Datenstruk-
tur zugewiesen, die von den Prozessen als einer oder
mehrere Blocke verwendet wird. Die Daten werden
auf der Ebene einzelner Blécke abgerufen und koha-
rent gehalten.

[0016] In einer bevorzugten Ausfuhrungsform der
Erfindung kann die GréRe eines bestimmten zuge-
wiesenen Blocks flir eine bestimmte gemeinsame
Datenstruktur variieren. Jeder Block enthalt eine
ganzzahlige Anzahl von Zeilen, und jede Zeile enthalt
eine vorbestimmte Anzahl von Bytes gemeinsamer
Daten.

[0017] Verzeichnisinformation (Directory-Informati-
on) eines bestimmten Blocks kann in einem Verzeich-
nis (Directory) im Speicher eines Prozessors gespei-
chert werden, der als der "Heim"-Prozessor (Home
Processor) bezeichnet wird. Zugewiesene Bldcke
werden den verschiedenen Prozessoren in zykli-
scher Weise zugeteilt. Die Verzeichnisinformation
enthalt die GroRe des bestimmten Blocks, die Identi-
tat des Prozessors, der den Block zuletzt modifiziert
hat, und die Identitaten aller Prozessoren, die eine
Kopie des Blocks haben.

[0018] Vor der Ausfihrung werden die Programme
vorzugsweise statisch analysiert, um Speicherzu-
griffsbefehle, wie zum Beispiel Lade- und Speicher-
befehle, zu lokalisieren. Die Programme werden
durch Einfugen zusatzlicher Befehle in die Program-
me instrumentiert. Die zusatzlichen Befehle kénnen
dynamisch Uberprifen, ob die Zieladresse von Lade-
und Speicherbefehlen auf eine bestimmte Zeile der
gemeinsam genutzten Datenstruktur zugreift, und ob
die Daten an der Zieladresse einen glltigen Zustand
haben.

[0019] Wenn die Daten unglltig sind, wird eine Zu-
griffsanforderung erzeugt. In Reaktion auf den Emp-
fang der Zugriffsanforderung von einem Anfordern-
den der Prozessoren wird ein bestimmter die be-
stimmte Zeile enthaltender Block und die Grofie des
bestimmten Blocks an den anfordernden Prozessor
gesendet. Der Block wird Uber das Netzwerk gesen-
det. Hierdurch wird es den symmetrischen Multipro-
zessoren ermdglicht, gemeinsame Datenstrukturen,
die in Blocks verschiedener GréRe gespeichert sind,
Uber das Netzwerk auszutauschen.

3/32

DE 698 22 534 T2 2005.01.27

Kurzbeschreibung der Zeichnungen

[0020] Ein detaillierteres Verstandnis der Erfindung
geht aus der folgenden Beschreibung einer bevor-
zugten Ausfihrungsform hervor, die als Beispiel an-
gefuhrt ist und anhand der beiliegenden Zeichnun-
gen zu verstehen ist. Es zeigt:

[0021] Fig. 1 ein auf einem Uni-Prozessor basieren-
des verteiltes gemeinsames Speichersystem des
Standes der Technik;

[0022] Fig. 2 ein Blockdiagramm eines auf symme-
trischen Multiprozessoren basierenden verteilten ge-
meinsamen Speichersystems gemal einer bevor-
zugten Ausfuhrungsform der vorliegenden Erfindung;

[0023] Fig. 3 ein FlieRdiagramm eines Prozesses
zum Instrumentieren von Programmen;

[0024] Fig. 4 ein Blockdiagramm von Optimierungs-
schritten;

[0025] Fig. 5 ein Blockdiagramm einer Speicherpar-
titionierung;

[0026] Fig. 6 ein Diagramm eines optimierten Spei-
cher-Fehlzugriffs-Prifcodes;

[0027] Fig. 7 ein Diagramm eines Fehlzugriffs-Pruf-
codes, der zu einer optimalen Planung (Scheduling)
angeordnet ist;

[0028] Fig. 8 ein Fliefddiagramm eines Verfahrens
zum Uberpriifen ungiiltiger Daten auf einem Ladezu-
griff;

[0029] Fig. 9 ein Diagramm von Befehlen, die nach
einem ungultigen Flag suchen;

[0030] Fig. 10 ein Blockdiagramm einer Aus-
schlusstabelle;

[0031] Fig. 11 ein Blockdiagramm eines Prozesses
zur Uberpriifung von Stapeln von Zugriffsbefehlen;

[0032] Fig. 12 ein Diagramm von Befehlen, die den
Prozess von Fig. 11 implementieren und fur ein opti-
males Scheduling angeordnet sind;

[0033] Fig. 13 ein Blockdiagramm eines Blockver-
zeichnisses; und

[0034] Fig. 14 ein Blockdiagramm von Datenstruk-
turen, die variable Granularitaten aufweisen.

Detaillierte Beschreibung der bevorzugten Ausfih-
rungsform

Systemuberblick

[0035] Fig. 2 zeigt ein zur Verwendung der Erfin-
dung geeignetes Computersystem 200 mit einem auf
symmetrische Multiprozessoren (SMP) verteiltem ge-
meinsamen Speicher (DSM). Das DSM-SMP-Sys-
tem 200 weist mehrere SMP-Systeme 210 auf, die
Uber ein Netzwerk 220 miteinander verbunden sind.
Jedes SMP-System 210 weist 2, 4, 8 oder mehr sym-
metrische Prozessoren 211 auf, die lUber einen Pro-
zessorbus 209 miteinander verbunden sind. Auler-
dem kann jeder SMP 210 Speicher (M) 212 und Ein-
gabe/Ausgabe-Schnittstellen (E/A) 214 aufweisen,
die Uber einen Systembus 213 mit den symmetri-
schen Prozessoren 211 verbunden sind.

[0036] Die Speicher 212 kénnen dynamische Spei-
cher mit wahlfreiem Zugriff (Dynamic Random Ac-
cess Memories/DRAM) sein. Die Speicher 212 kdn-
nen Hochgeschwindigkeits-Hardware-Caches ha-
ben, um die rdumlichen und zeitlichen Orte von Da-
ten ausnutzen zu kdénnen. Haufig benutzte Daten
werden mit grofRerer Wahrscheinlichkeit im Cache
gespeichert.

[0037] Die Speicher 212 speichern Programme 215
und Datenstrukturen 216. Manche Adressen der
Speicher 212 kdnnen kollektiv als ein einziger Satz
gemeinsamer virtueller Adressen bezeichnet wer-
den. Einige der Datenstrukturen kénnen gemeinsa-
me Daten einschlieBen. Gemeinsame Daten kénnen
von jedem beliebigen Prozess, der auf einen beliebi-
gen der Prozessoren 211 eines beliebigen der SMPs
210 ausgefuhrt wird, unter der Verwendung der virtu-
ellen Adressen abgerufen werden.

[0038] Die Busse 209 und 213 verbinden die Kom-
ponenten der SMPs 210 unter der Verwendung von
Daten-, Adress- und Steuerleitungen. Das Netzwerk
220 verwendet Netzwerkprotokolle, zum Beispiel ei-
nen asynchronen Transfermodus (ATM) oder
FDDI-Protokolle, zur Kommunikation von Nachrich-
ten zwischen symmetrischen Multiprozessoren 210.
Alternativ dazu kann das Netzwerk 220 die Form ei-
nes Hochleistungs-Cluster-Netzwerks haben, wie
zum Beispiel eines Memory Channel, der von Digital
Equipment Corporation hergestellt wird.

Allgemeiner Systembetrieb

[0039] Wahrend des Betriebs des SMP-DSM-Sys-
tems 200 werden Befehle der Programme 215 durch
die Prozessoren 211 als Ausflihrungsstrange oder
-prozesse ausgefihrt. Die Befehle kdnnen unter der
Verwendung von Lade- und Speicherbefehlen auf die
Datenstrukturen 216 zugreifen. Es ist wlnschens-
wert, dass ein Beliebiges der Programme 215, das

4/32

DE 698 22 534 T2 2005.01.27

auf einem Beliebigen der Prozessoren 211 ausge-
fuhrt wird, auf eine Beliebige der gemeinsamen Da-
tenstrukturen 216 zugreifen kann, die in einem Belie-
bigen der Speicher 212 abgelegt ist.

Instrumentierung

[0040] Vorzugsweise werden die Programme 215,
wie hier beschrieben, vor der Ausfiihrung instrumen-
tiert. Unter Instrumentierung versteht man einen Vor-
gang, der Zugriffsbefehle (Lade- und Speichervor-
gange) in den Programmen 215 statisch lokalisiert.
Die Instrumentierung lokalisiert auch Befehle, die Tei-
le der Speicher 211 zuweisen und aberkennen.

[0041] Nachdem die Befehle lokalisiert wurden,
kénnen zusatzliche Befehle, z. B. Fehlzugriffs-Prif-
code, vor den Zugriffsbefehlen in die Programme ein-
gefligt werden, um sicherzustellen, dass Speicherzu-
griffe korrekt ausgefiihrt werden. Der Fehlzu-
griffs-Prufcode wird optimiert, um den zuséatzlichen
Aufwand (Overhead) zu minimieren, der zur Durch-
fuhrung der zusatzlichen Befehle bendtigt wird. Die
zusatzlichen Befehle, die fiir Zuweisungs- und Aber-
kennungsbefehle eingefiigt werden, unterhalten Ko-
harenzsteuerinformation, wie zum Beispiel die Groflie
der zugewiesenen Blocke.

[0042] Wie oben erwahnt, kdnnen die Programme
215 einen Teil der Adressen der verteilten Speicher
212 als gemeinsamen Speicher betrachten. Fur be-
stimmte Zieladressen des gemeinsamen Speichers
kann ein Befehl auf eine lokale Kopie der Daten zu-
greifen, oder es muss eine Nachricht an einen ande-
ren Prozessor gesendet werden, um eine Kopie der
Daten anzufordern.

Zugriffszustande

[0043] Beieinem beliebigen SMP kénnen die im ge-
meinsamen Speicher abgelegten Daten zwei mogli-
che Zustande einnehmen: unglltig (Invalid) oder gul-
tig (Valid). Der guiltige Zustand kann die Unterzustan-
de "gemeinsam" (Shared) oder "exklusiv" (Exclusive)
haben. Wenn der Zustand der Daten ungliltig ist, ist
ein Zugriff auf die Daten nicht erlaubt. Wenn der Zu-
stand gemeinsam ist, existiert eine lokale Kopie und
andere SMPs haben ebenfalls eine Kopie. Wenn der
Zustand exklusiv ist, hat nur ein SMP eine gultige Ko-
pie der Daten, und keine anderen SMPs kénnen auf
die Daten zugreifen. AulRerdem koénnen die Daten,
wie unten beschrieben, auch in einem Ubergangszu-
stand bzw. "schwebend" (Pending) sein.

[0044] Die Zustéande der Daten werden durch tber
das Netzwerk 220 mitgeteilte Koharenzsteuernach-
richten gepflegt. Die Nachrichten werden durch Pro-
zeduren erzeugt, die vom Fehlzugriffs-Priifcode der
instrumentierten Programme aufgerufen werden.

[0045] Daten kdnnen nur dann direkt vorn Speicher
eines lokalen SMP aufgerufen werden, wenn die Da-
ten einen gemeinsamen oder exklusiven Zustand ha-
ben. Daten kénnen nur dann im lokalen Speicher ge-
speichert werden, wenn der Zustand exklusiv ist.
Eine Kommunikation wird bendtigt, wenn ein Prozes-
sor versucht, Daten zu laden, die in einem ungdltigen
Zustand sind oder wenn ein Prozessor versucht, Da-
ten zu speichern, die in einem unglltigen oder ge-
meinsamen Zustand sind. Diese Zugriffe, die Kom-
munikationen erfordern, werden als Fehlzugriffe
(Misses) bezeichnet.

[0046] Die Adressen der Speicher 212 kénnen dy-
namisch zum Speichern gemeinsamer Daten zuge-
wiesen werden. Einige der Adressen kdnnen statisch
zugewiesen werden, um private Daten zu speichern,
auf die nur von Prozessen zugegriffen werden kann,
die auf einem lokalen Prozessor ausgefihrt werden.
Zusatzlicher Aufwand kann dadurch verringert wer-
den, dass einige der Adressen fiir private Daten re-
serviert werden, da Zugriffe auf die privaten Daten
durch den lokalen Prozessor nicht auf Fehlzugriffe
Uberpruft werden muissen.

[0047] Wie bei einem durch Hardware gesteuerten
gemeinsamen Speichersystem sind die Adressen
der Speicher 212 in zuweisbare Blocke partitioniert.
Alle Daten innerhalb eines Blocks werden als eine
koharente Einheit abgerufen. Als ein Merkmal des
Systems 200 kénnen Blocke fir unterschiedliche Be-
reiche von Adressen variable GroRen haben. Zum
Vereinfachen des unten beschriebenen Fehlzu-
griffs-Prifcodes sind die variabel abgemessene BIl6-
cke weiter in Adressbereiche fester Grole, die als
"Zeilen" (lines) bezeichnet werden, partitioniert.

[0048] Zustandsinformation wird in Zustandstabel-
len zeilenweise unterhalten. Die Grofde der Zeile, ty-
pischerweise 32, 64 oder 128 Bytes, wird zu der Zeit
bestimmt, zu der ein bestimmtes Programm 215 in-
strumentiert wird. Ein Block kann eine ganzzahlige
Anzahl von Zeilen enthalten.

[0049] Wahrend des Betriebs des Systems 200
stellt vor der Ausflihrung eines Speicherzugriffbe-
fehls der Fehlzugriffs-Prifcode fest, ob die Zieladres-
se in einem privaten Speicher ist. Wenn die Ziel-
adresse in einem privaten Speicher ist, dann kann
der Fehlzugriffs-Prifcode sofort abgeschlossen wer-
den, da private Daten immer von einem lokalen Pro-
zessor abgerufen werden koénnen. Ansonsten be-
rechnet der Fehlzugriffs-Priifcode, welche Zeile eines
bestimmten Blocks die Zieladresse des Befehls ent-
halt und stellt fest, ob die Zeile fir den Zugriff im kor-
rekten Zustand ist. Wenn der Zustand nicht korrekt
ist, dann wird eine Fehlzugriffs-Behandlungsroutine
aufgerufen, um die Daten aus dem Speicher eines
entfernten SMP abzurufen.

5/32

DE 698 22 534 T2 2005.01.27

Instrumentierungsvorgang

[0050] Fig. 3 zeigt ein Flielidiagramm eines Vor-
gangs 300, der zum Instrumentieren von Program-
men so verwendet werden kann, dass der fur die zu-
satzlichen Befehle bendtigte zusatzliche Aufwand
verringert wird. Aul3erdem erlaubt der Vorgang 300
eine Koharenzsteuerung fir Datenquantitaten vari-
abler GroR3e, auf die von symmetrischen Multiprozes-
soren zugegriffen wird. Der Vorgang 300 enthalt ein
Analysier-Modul 320, ein Optimier-Modul 330 und ei-
nen Generator 340 fir ein ausfihrbares Image.

[0051] Maschinenausfiihrbare Programme 310 wer-
den einem Analysier-Modul 320 vorgelegt. Das Ana-
lysier-Modul 320 unterteilt die Programme 310 in Pro-
zeduren 301 und die Prozeduren 301 in grundlegen-
de Ausfiihrungsbldcke 302. Ein grundlegender Block
302 ist als ein Satz von Befehlen definiert, die alle
ausgefihrt werden, wenn der erste Befehlt des Sat-
zes ausgefihrt wird. Die Befehle von Prozeduren und
den grundlegenden Blécken werden analysiert, um
die Programm-Aufruf- und -FlieR-Graphen 303 zu bil-
den.

[0052] Die Graphen 303 kdnnen verwendet werden,
um einen Daten- und Ausfihrungsfluss der Program-
me 310 zu erstellen. Die grundlegenden Blécke und
Graphen 303 werden analysiert, um Befehle zu loka-
lisieren, die Speicheradressen zuteilen und Zugriffe
auf zugewiesene Adressen durchfiihren. Wenn ein
Befehl auf gemeinsame Teile der Speicher 212 zu-
greift, wird ein Fehlzugriffs-Prifcode eingeflgt, um si-
cherzustellen, dass der Zugriff in einer koharenten
Weise erfolgt.

[0053] Der Fehlzugriffs-Prifcode wird durch das
Optimier-Modul 330 eingefiigt, wie unten eingehend
beschrieben ist. Nachdem die Programme 310 in-
strumentiert wurden, erzeugt der Image-Generator
340 ein modifiziertes maschinenausfuhrbares Image
350. Das modifizierte Image 350 enthalt instrumen-
tierte Programme 351 mit Fehlzugriffs-Prifcode,
Fehlzugriffs-Behandlungs-Protokollprozeduren 352
und einer Nachrichten-Weiterleitungsbibliothek 353.
Das Image 350 kann die Programme 310 ersetzen.

[0054] Fig.4 zeigt die Schritte, die vom Opti-
mier-Modul 330 von Fig. 3 ausgefiihrt werden. Diese
Schritte enthalten Speicherpartitionierungs- 410, Re-
gisteranalyse-420, Codescheduling- 430, Ladeprifa-
nalyse- 440 und Stapelbildungs(Batching)-Schritte
450.

Speicheraufbau

[0055] Fig. 5 zeigt eine Zuweisung von Adressen zu
den Speichern 212 von Fig. 2. Die Adressen werden
in Fig. 5 von unten nach oben gréRer. Die Adressen
werden fur Stapel 510, Programmtext 520, statisch

zugewiesene private Daten 530, Zustandstabellen
540 und dynamisch zugewiesene gemeinsame Da-
ten 550 reserviert.

[0056] Wahrend des Betriebs verringern sich die
von den Stapeln 510 verwendeten Adressen zum
Stapeliberlaufbereich 505 hin. Der Textraum 520
wird zum Speichern der ausflihrbaren Befehle, z. B.
des Images 350 von Fig. 3, verwendet. Die fir Text
zugewiesenen Adressen steigen zum Textiberlauf-
bereich 525 hin an. Die Adressen des privaten Daten-
abschnitts 530 werden zum Speichern von Daten-
strukturen verwendet, die exklusiv von einem einzi-
gen lokalen Prozessor verwendet werden, z. B. wer-
den die Daten nicht gemeinsam genutzt. Die Adres-
sen in diesem Teil des Speichers werden statisch zu-
gewiesen, wenn ein bestimmtes Programm zur Aus-
fuhrung geladen wird.

Zustandstabellen (State Tables)

[0057] Die Zustandstabellen 540 enthalten eine ge-
meinsame Zustandstabelle 541, private Zustandsta-
bellen 542 und Ausschlusstabellen 1000. Die Aus-
schlusstabellen 1000 kdnnen auch einen gemeinsam
1001 und einen privaten 1002 Teil enthalten.

[0058] Die gemeinsamen und privaten Zustandsta-
bellen 541 enthalten fiir jede Zeile zugewiesene
Adressen ein Byte gemeinsamer bzw. privater Zu-
standseintrdge 545. Die Bits der Zustandseintrage
545 kdnnen dazu verwendet werden, die verschiede-
nen Zustande der entsprechenden Datenzeile anzu-
zeigen. Eine oder mehrere Datenzeilen bilden einen
Block.

[0059] Gemal der bevorzugten Umsetzung kénnen
alle Prozessoren 211 eines bestimmten SMP 210 die
gleichen Daten gemeinsam nutzen. Daher werden
die Zustandstabelleneintrage 545 fir alle Prozesso-
ren des SMP 210 gemeinsam genutzt. Dies bedeutet,
dass beim Abrufen eines Blocks, z. B. eine oder meh-
rere Datenzeilen, von einem entfernten SMP und
beim Andern des Zustands des Blocks von ungilltig
auf gemeinsam oder exklusiv die gemeinsam genutz-
te Speicherhardware des SMP den Zustand der Da-
ten erkennt und ein beliebiger Prozessor 211 des
SMP auf die neuen Daten zugreifen kann.

[0060] Da es sein kann, dass mehr als ein Prozes-
sor des bestimmten SMP gleichzeitig auf einen Zu-
standstabelleneintrag zuzugreifen versucht, wird der
Eintrag gesperrt, bevor ein Zugriff auf den Eintrag er-
folgt. Die Fehlzugriffsprifungen, die im Code einge-
fugt wurden, kénnen auch einen Zugriff auf den Zu-
standstabelleneintrag erfordern. In diesem Fall wird
jedoch der Eintrag nicht gesperrt, um den zusatzli-
chen Aufwand gering zu halten. Stattdessen unter-
halt jeder Prozessor eine entsprechende private Zu-
standstabelle 542, auf die durch einen vorgeschalte-

6/32

DE 698 22 534 T2 2005.01.27

ten Code ohne zusatzlichen Aufwand zugegriffen
werden kann.

[0061] Die Eintrage der privaten Zustandstabellen
542 der Prozessoren werden durch zwei unter-
schiedliche Mechanismen aktualisiert.

[0062] In dem Fall, in dem ein Prozessor versucht,
auf ungultige Daten zuzugreifen, wird ein Fehlzu-
grifiszustand eintreten, und die Daten werden von ei-
nem entfernten SMP abgerufen. Nach Empfang wird
der Zustand der Daten glltig. Dies wird als "Hoéher-
stufen" (Upgrade) des Zustands bezeichnet, da die
Daten nun verfiigbar sind, wahrend sie vorher nicht
verfigbar waren. Die Daten sind jedoch in den priva-
ten Zustandstabellen der anderen Prozessoren auf
dem gleichen SMP 210 immer noch als ungiltig mar-
kiert.

[0063] Wenn einer dieser anderen Prozessoren nun
versucht, auf die Daten zuzugreifen, werden die an-
deren Prozessoren in ihren privaten Zustandstabel-
len 542 immer noch einen ungultigen Zustand vorfin-
den. Der andere Prozessor kann eine Sperrung der
gemeinsamen Zustandstabelle 541 erlangen und
feststellen, dass die Daten fur den lokalen SMP giiltig
sind und seine private Zustandstabelle 542 entspre-
chend aktualisieren. Nachfolgende Zugriffe auf Da-
ten kdnnen dann durchgefiihrt werden, ohne dass auf
die gemeinsame Zustandstabelle 541 zugegriffen
werden muss.

[0064] In dem Fall, wo der Zustand der Daten auf
ungultig zurickgesetzt werden muss, z. B. braucht
ein Prozessor eines anderen SMP die Daten, wird
der Zustand der Daten "herabgestuft" (Downgrade).
In diesem Fall sendet der die Anforderung empfan-
gende Prozessor eine interne Nachricht an andere
auf dem lokalen SMP tatige Prozessoren, so dass
der in ihren privaten Zustandstabellen 542 unterhal-
tene Zustand herabgestuft werden kann. Dieses "He-
rabstufen" einer Zeile ist erst dann abgeschlossen,
bis alle Prozessoren ihre privaten Zustandstabellen
geandert haben.

[0065] Es wird darauf hingewiesen, dass eine Wett-
laufsituation entstehen kann, wenn der die Invalidie-
rungsanfrage empfangende Prozessor alle privaten
Zustandstabellen aller Prozessoren des lokalen
SMPs direkt andern wiirde. Zum Beispiel wiirde eine
Wettlaufsituation dadurch entstehen, dass ein erster
Prozessor einen gultigen Zustand sieht, wahrend er
die vorgeschaltete Uberpriifung fiir einen Speicher-
vorgang durchfiihrt, ein zweiter Prozessor jedoch
den Zustand der Daten auf ungultig herabstufen wir-
de, bevor der erste Prozessor die Moglichkeit hat, die
modifizierten Daten zu speichern.

[0066] Eine Mdglichkeit zur Vermeidung von Wettl-
aufsituationen besteht darin, Zustandstabellensper-

ren mit dem vorgeschalteten Fehlzugriffs-Prifcode
zu erlangen. Dies lasst jedoch den zuséatzlichen Auf-
wand aufgrund der Sperrung anwachsen. Dies trifft
insbesondere auf Prozessoren mit einem entspann-
ten Speichermodell zu, wie zum Beispiel einen Al-
pha-Prozessor, der von Digital Equipment Corporati-
on hergestellt wird. Daher ist die Verwendung privater
Zustandstabellen zum wirkungsvollen Vermeiden
von Wettlaufsituationen wichtig.

[0067] Die Verwendung privater Zustandstabellen
542 vermeidet nicht nur Wettlaufsituationen im Fehl-
zugriffs-Priifcode, sondern verringert auch die Anzahl
von Nachrichten, die weitergeleitet werden mussen,
wahrend der Zustand von Daten innerhalb eines
SMP 210 herabgestuft wird. Wenn zum Beispiel ein
lokaler Prozessor niemals auf Daten zugreift, die in-
nerhalb eines lokalen SMPs giiltig sind, dann braucht
seine private Zustandstabelle nicht aktualisiert zu
werden.

Gemeinsame Daten

[0068] Die Adressen der gemeinsamen Daten 550
werden durch die Programme wahrend der Ausfiih-
rung dynamisch zugewiesen. Ein Vorteil hierbei ist,
dass die Adressen der gemeinsamen Daten 550 in
Blécken variabler GroRe 551 zugewiesen werden
kénnen. Die Blocke werden weiter in Zeilen 552 un-
terteilt.

[0069] Bei dem in Fig. 5 gezeigten Aufbau brau-
chen nicht alle Zugriffsbefehle instrumentiert zu wer-
den. Zum Beispiel sind in den Programmstapeln 510
gespeicherte Daten nicht gemeinsam genutzt. Daher
brauchen nicht alle Befehle, die das Stapelzeigerre-
gister (SP) als Basis verwenden, mit einem Fehlzu-
griffs-Prifcode versehen zu werden. Aul3erdem brau-
chen nicht alle Befehle instrumentiert zu werden, die
unter der Verwendung eines Privatdaten-Zeigerregis-
ters (PR) auf private Daten 530 zugreifen.

Registergebrauch

[0070] Das Analysier-Modul 320 von Fig. 3 verwen-
det die Graphen 303 und Datenflussanalyse zum
Nachverfolgen des Inhalts von Allzweckregistern
zum Feststellen, ob in den Registern gespeicherte
Werte aus Adressen stammen, die auf dem SP oder
PR-Register basieren. Dann braucht namlich ein auf
den Stapel oder die privaten Daten Gber eine abgelei-
tete Adresse zugreifender Befehl nicht instrumentiert
zu werden. Das Analysier-Modul 320 kann auch alle
Register lokalisieren, die zu der Zeit frei sind, zu der
der Fehlzugriffs-Prifcode anzuwenden ist, wodurch
sich die Notwendigkeit des Speicherns und erneuten
Speicherns der vom Fehlzugriffs-Prifcode verwen-
deten Register eriibrigt.

[0071] Durch Starten der privaten Zustandstabelle

7/32

DE 698 22 534 T2 2005.01.27

540 bei der Adresse 0x2000000000 im privaten
Adressraum eines jeden Prozessors kann eine Ver-
schiebung der Zielzugriffsadresse direkt die Adresse
des entsprechenden Eintrags 545 in der privaten Zu-
standstabelle 540 erzeugen. Auch wenn der in Fig. 5
gezeigte Aufbau der Adressen fir einen Prozessor
mit 64-Bit-Adressierung gedacht ist, versteht es sich,
dass der Aufbau 500 fir Prozessoren mit 32-Bit- und
anderen Adressierungen modifiziert werden kann.

Optimierter Fehlzugriffs-Priifcode

[0072] Fig. 6 zeigt den Fehlzugriffs-Prifcode 600,
der flir den Speicheraufbau von Fig. 5 optimiert ist.
Die Zieladresse fir einen Zugriff kann durch den Be-
fehl 601 festgestellt werden. Wenn die Ziel-Basisa-
dresse jedoch schon in einem Register zum Beispiel
durch einen zuvor ausgefiihrten Lade- oder
Speicherbefehl eingerichtet wurde, ist der Befehl
601, der die Ziel-Basisadresse 1adt, nicht erforderlich.

[0073] Der Verschiebungsbefehl 602 stellt fest, ob
die Zieladresse innerhalb des gemeinsamen Daten-
bereichs 550 ist. Der Verzweigungsbefehl 603 geht
direkt zum Ausfiihren des urspriinglichen Speicher-
befehls weiter, wenn dies nicht der Fall ist. Der Ver-
schiebungsbefehl 604 erzeugt die Adresse des Ein-
trags in der Zustandstabelle, die der die Zieladresse
enthaltenden Zeile entspricht. Dadurch, dass der
Wert des Zustands durch eine Null auf "exklusiv" ge-
setzt wird, erlbrigt sich die Notwendigkeit eines Ver-
gleichs mit einem konstanten Wert. Stattdessen kann
ein einfacher Sprungbefehl 607 zur Uberpriifung ei-
nes Fehlzugriffs durchgefiihrt werden. Die Befehle
605 bis 606 rufen den Zustandstabelleneintrag ab.
Der Fehlzugriffs-Behandlungscode 608 wird in dem
Fall eines Fehlzugriffs ausgefiihrt, und der urspring-
liche Speicherbefehl wird bei 609 ausgefihrt.

[0074] Der Fehlzugriffs-Prufcode 600 erfordert nur
die Ausflihrung von drei Befehlen, wenn die Ziel-
adresse nicht im gemeinsamen Datenbereich ist. In
dem Fall eines Zugriffs auf gemeinsame Daten mus-
sen sieben Befehle ausgefiihrt werden.

Code-Scheduling

[0075] Im Schritt 430 von Fig.4 koénnen Be-
fehls-Scheduling-Verfahren zur weiteren Verringe-
rung des zusatzlichen Aufwands fir den Fehlzu-
griffs-Prufcode 600 verwendet werden. In modernen
Prozessoren, die im Pipelining-Verfahren arbeiten
und superskalar sind, kann der hinzugefugte Fehlzu-
griffs-Prufcode in vielen Fallen so ausgelegt sein,
dass er minimale Pipelineverzégerungen einfuhrt
und das Potential fur eine Vielzahl von Befehlen er-
hoéht, die wahrend eines einzigen Prozessorzyklus
ausgegeben werden.

[0076] Zum Beispiel ergibt sich in manchen Prozes-

soren nur eine Verzdgerung von einem einzigen Zy-
klus, bevor das Ergebnis eines Verschiebungsvor-
gangs verwendet werden kann. Wenn daher der
zweite Verschiebungsbefehl 604 von Fig. 6 vorge-
schoben wird, um den Verzégerungsschlitz zu beset-
zen, der aus dem ersten Verschiebungsbefehl 702
resultiert, wird die Verzdgerung zwischen dem ver-
legten zweiten Verschiebungsbefehl 703 und dem
Idg_u-Befehl 705 ausgeschlossen. Dies bedeutet,
dass der Code 700 in weniger Maschinenzyklen als
der Code 600 abgeschlossen werden kann. Es wird
darauf hingewiesen, dass sich wie beim Code 600
die Notwendigkeit flir den Befehl 701 in vielen Fallen
erubrigt. Die Befehle 705- 707 laden und prifen den
Datenzustand.

[0077] Zur weiteren Verringerung zusatzlicher Kos-
ten bei Mehrfachausgabeprozessoren koénnen die
Befehle des Fehlzugriffs-Prifcodes 700 so platziert
werden, dass sie wahrend Pipelineverzégerungen im
ursprunglichen ausfuhrbaren Code oder gleichzeitig
mit den Befehlen des ausfiihrbaren Images ausgege-
ben werden. Es wird darauf hingewiesen, dass die
Ausflihrung der ersten drei Befehle 701-703 in einem
grundlegenden Befehlsblock vorgeschoben werden
kann, solange die Register (r1 und r2) frei bleiben. In
vielen Fallen kdnnen namlich alle drei Befehle so weit
vorgeschoben werden, dass sie den zusatzlichen
Aufwand der Ausfihrung der Befehle vollstandig ver-
bergen. Daher ist es ganz klar von Vorteil, den Code
wie in Fig. 7 gezeigt anzuordnen.

Speicherprifung

[0078] Der Fehlzugriffs-Prifcode kann weiter opti-
miert werden, wenn der Zugriffsbefehl ein Speicher-
befehl 710 ist. In diesem Fall werden die ersten drei
Befehle 701-703 vor dem Speicherbefehl 710 ange-
ordnet. Die verbleibenden Befehle 704-707 werden
nach dem Speicherbefehl 710 angeordnet. Diese An-
ordnung ist in Fallen vorteilhaft, wo Befehle mit lan-
gen Latenzen dem Speicherbefehl 710 unmittelbar
vorausgehen, wahrend das Programm den zu spei-
chernden Wert berechnet. In diesem Fall muss der
Speicherbefehl 710 warten, bis der Wert verfligbar
wird. Daher kann der zuséatzliche Aufwand beim Aus-
fuhren der vorgeschobenen Befehle vollstandig ver-
borgen werden.

Ladeprifung

[0079] Wie in den Fig. 8 und 9 gezeigt, kdnnen die
durch einen Ladebefehl geladenen Daten analysiert
werden, um den zusatzlichen Aufwand fir den Fehl-
zugriffs-Prifcode weiter zu verringern. Immer wenn
Daten einer Zeile ungultig werden, wird ein "Flag"
801 an allen der Zeile zugeordneten Adressen
810-811 gespeichert. Der Flag 801 ist zum Beispiel
OxFFFFFFO3 (-253). Dann kann anstelle der Fest-
stellung des Zustands einer Zeile Uber Zustandsta-

8/32

DE 698 22 534 T2 2005.01.27

belleneintrage in fast allen Fallen der Zustand aus
den geladenen Daten bestimmt werden.

[0080] Zum Beispiel werden die Daten an Zieladres-
sen mit einem Ladebefehl 901 abgerufen, Schritt
820. Bei Schritt 830 wird das Komplement 840 des
Flags hinzugefigt, z. B. 253. Bei Schritt 850 wird
Uberpriift, ob die vom Speicher geladenen Daten aller
Wahrscheinlichkeit nach einen ungultigen Zustand
anzeigen. Wenn dies zutrifft, wird mit dem Fehlzu-
griffs-Prufcode 870 fortgefahren, ansonsten wird mit
Schritt 860 fortgefahren, der keinen Fehlzugriff dar-
stellt. In dem Fall, wo ein vermuteter Fehlzugriff auf-
tritt, kann der Fehlzugriffscode 870 dies durch Uber-
prufen des Eintrags fir die Zeile in der Zustandsta-
belle 540 prifen. Hierbei werden die seltenen Falle
behandelt, wo das Programm tatsachlich die dem
Flag entsprechenden Daten verwendet.

[0081] Der Flag wird so gewahlt, dass ein einzelner
Befehl 902 zum Uberpriifen nach ungiiltigen Daten
verwendet werden kann. Hierbei ist es moglich, dass
so gut wie jede Konstante verwendet werden kann.
Es wird darauf hingewiesen, dass bei der Verwen-
dung eines Werts Null zum Anzeigen eines ungiilti-
gen Zustands ein einfacher Sprungbefehl genligen
wirde. In Fallen, wo jedoch eine Null oder eine ande-
re kleine ganze Zahl, z. B. -1, 0, +1, verwendet wird,
wird der gemessene zusatzliche Aufwand des Fehl-
zugriffs-Priifcodes anscheinend grof3er, weil die gro-
Rere Anzahl falscher Fehlzugriffe bewaltigt werden
muss. In der Praxis treten bei der Verwendung des
Flags OxFFFFFFO3 falsche Fehlzugriffe nur selten
auf, daher verringert der optimierte Fehlzugriffs-Prif-
code 900, wie er in Fig. 9 gezeigt ist, den Fehlzu-
griffs-Prufcode fur Ladebefehle betrachtlich, z. B. auf
zwei Befehle.

[0082] Neben einer Verringerung des zusatzlichen
Aufwands hat das Flagverfahren auch weitere Vortei-
le. Der Hauptvorteil besteht darin, dass die Notwen-
digkeit einer Uberpriifung der Zustandstabelle in Fal-
len wegfallt, wo der Ladezugriff giltig ist. Aulerdem
geschieht das Laden der "Flag"-Daten von der Ziel-
adresse und die Zustandslberprifung atomisch.
Durch diese Atomizitat werden mdgliche Wettlaufsi-
tuationen zwischen dem Ladebefehl und Protokollo-
perationen fur die gleiche Adresse ausgeschlossen,
die auf einem anderen Prozessor des gleichen SMP
auftreten kénnen.

[0083] Das Flag-Prufverfahren kann auch fir Gleit-
komma-Lade-Zugriffsbefehle verwendet werden. In
diesem Fall 1adt der Fehlzugriffs-Priifcode die Daten
der Zieladresse in ein Gleitkommaregister, gefolgt
von einem Gleitkomma-Additions- und -Vergleichs-
vorgang. Auf manchen Prozessoren bringen Gleit-
kommabefehle jedoch lange Verzégerungen mit sich.
Deswegen kann der Gleitkomma-Fehlzugriffscode
dadurch optimiert werden, dass ein ganzzahliges La-

den fur die gleiche Zieladresse eingefiigt wird und die
Flaguberprifung, wie oben fir die Fig. 8 und 9 be-
schrieben, implementiert wird. Auch mit dem zuséatz-
lichen Ladebefehl hat dieses Verfahren immer noch
einen groReren Wirkungsgrad als die Uberpriifung ei-
nes Eintrags der Zustandstabelle.

[0084] Alternativdazu kénnen die Gleitkommadaten
direkt vom Gleitkommaregister an das ganzzahlige
Register Ubertragen werden, wenn ein solcher Vor-
gang auf dem zugrundeliegenden Prozessor verflg-
bar ist.

[0085] Es versteht sich, dass das Befehlsschedu-
ling auf die Befehle von Fig.9 fur Lade-Fehlzu-
griffs-Codeprufungen angewendet werden kann. Bei
einer bevorzugten Umsetzung versucht der Schedu-
lingschritt 430 von Fig. 4, die Ausfiihrung der Befehle
902 und 903 zu verzégern, um einen Pipelinestau
(Stalling) zu vermeiden, wenn der Wert des Ladevor-
gangs zu verwenden ist.

Cache-Fehlzugriffe

[0086] Beim Laden von Eintrdgen aus der Zustand-
stabelle 540 kdnnen Fehlzugriffe in einem Cache
eine potentielle Quelle von zusatzlichem Aufwand fir
den Fehlzugriffs-Prifcode sein. Wenn das Programm
eine gute raumliche Lokalitat hat, dann werden beim
Programm nicht viele Hardware-Cache-Fehlzugriffe
auftreten. Wenn 64-Byte-Zeilen verwendet werden,
dann ist der fur die Zustandstabelle bendtigte Spei-
cher nur 1/64 des Speichers der entsprechenden Zei-
len. Wenn das Programm jedoch keine gute raumli-
che Lokalitat hat, dann sind Cache-Fehlzugriffe auf
die Daten sowie Fehlzugriffe auf die Zustandstabelle
wahrscheinlicher.

Ausschlusstabelle (Exclusion Table)

[0087] Fig. 10 zeigt die gemeinsam genutzte Aus-
schlusstabelle 1001. Die privaten Ausschlusstabellen
1002 von Fig. 5, eine fiir jeden Prozessor, kénnen in
ihrem Aufbau ahnlich sein. Der Zweck der Aus-
schlusstabellen 1000 ist es, Hardware-Cache-Fehl-
zugriffe zu verringern, die dadurch verursacht wer-
den, dass der Fehlzugriffs-Prifcode Zustandstabel-
leneintrage fur Speicherbefehle |adt. Die Ausschluss-
tabelle 1001 hat Biteintrage 1010, jeweils ein Bit fir
jede entsprechende Zeile. Ein Bit wird auf eine logi-
sche Eins gesetzt, wenn die entsprechende Zeile den
exklusiven Zustand hat, sonst wird das Bit auf eine lo-
gische Null gesetzt.

[0088] Anstelle des Prifens der Eintrage 545 der
Zustandstabelle 540 kann der Speicher-Fehlzu-
griffs-Prufcode die Bits 1010 der Ausschlusstabelle
1000 prifen, um festzustellen, ob eine entsprechen-
de Zeile den exklusiven Zustand hat. Wenn die Zeile
den exklusiven Zustand hat, dann kann die Speiche-

9/32

DE 698 22 534 T2 2005.01.27

rung sofort durchgefihrt werden.

[0089] Bei 64-Byte-Zeilen ist der von der Aus-
schlusstabelle 1000 verwendete Speicher 1/512 des
von den Zeilen verwendeten Speichers. Daher kann
die Anzahl von Hardware-Cache-Fehlzugriffen, die
vom Speicher-Fehlzugriffs-Priifcode unter der Ver-
wendung der Ausschlusstabelle 1001 verursacht
werden, ein Achtel der Hardware-Cache-Fehlzugriffe
sein, die lediglich unter der Verwendung der Zustand-
stabellen auftreten wirden. Es wird darauf hingewie-
sen, dass die Verwendung der Ausschlusstabellen
1000 fur Speicher-Fehlzugriffs-Codeprifungen teil-
weise durch den Unguiltig-Flag 801 von Fig. 8 ermog-
licht wird. Der Lade-Fehlzugriffs-Prifcode fir Lade-
vorgange muss in dem Fall nicht auf die Zustandsta-
belle 540 zugreifen, wo die Daten gultig sind. Daher
wird nur durch den Fehlzugriffs-Prifcode fir
Speicherbefehle auf die Ausschlusstabellen 1000 zu-
gegriffen.

Stapelbildung (Batching)

[0090] Der Batch-Optimierungsschritt 450 von
Fig. 4 erkennt, dass Lade- und Speichervorgange
von Daten haufig in Stapeln (Batches) im Verhaltnis
zu einem gemeinsamen Basisregister durchgefiihrt
werden. Zum Beispiel ist es in Programmen haufig
der Fall, dass Daten in einer Reihenfolge gemaf ihrer
Adressen abgerufen und manipuliert werden. Der
Batch-Optimierschritt 450 erfasst einen Satz von Be-
fehlen, die auf einen Bereich von Zieladressen zu-
greifen, der nicht grofRer als die Grole einer Zeile ist,
z. B. ist der Bereich héchstens 64 Bytes grof3. Ein sol-
cher Satz von Lade- und Speicherbefehlen kann
héchstens auf Daten in zwei unmittelbar nebeneinan-
derliegenden Zeilen und in manchen Fallen nur auf
eine einzige Zeile zugreifen.

[0091] In diesem Fall stellt der Fehlzugriffs-Prif-
code fest, ob die beiden Zeilen in einem korrekten
Zustand sind. Wenn dies der Fall ist, kdnnen alle La-
de- und/oder Speicherbefehle im Satz ohne irgend-
welche zusatzlichen Uberpriifungen durchgefiihrt
werden. Es versteht sich, dass eine Stapeliberpri-
fung auch flr einen Bereich von Zieladressen durch-
gefuhrt werden kann, die sich Uber eine einzige Zeile
erstrecken. Jedoch kann der Code, der zwei neben-
einander liegende Zeilen Uberprift, ohne viel zusatz-
lichen Aufwand auch eine einzige Zeile Uberprtfen.

[0092] Eine Einschrankung besteht darin, dass die
gestapelten Lade- und Speicherbefehle nicht mit an-
deren Lade- und Speichervorgangen gemischt wer-
den kdénnen, die ihren eigenen Fehlzugriffs-Prufcode
haben. Fehlzugriffe, die durch andere Lade- und
Speichervorgange hervorgerufen werden, kdnnen
den Zustand einer Zeile verandern, wodurch sich fir
die gestapelten Lade- und Speicherbefehle ein feh-
lerhaftes Ergebnis ergibt. Jedoch kénnen Lade- und

Speichervorgange Uber mehrere Basisregister gesta-
pelt werden, solange richtige Fehlzugriffstiberprifun-
gen flr entsprechende Leitungen durchgefiihrt wer-
den, die Uber die entsprechenden Basisregister refe-
renziert sind.

[0093] Eine weitere Einschrankung besteht darin,
dass das vom Stapel von Befehlen verwendete Ba-
sisregister nicht durch eine Variable modifiziert wer-
den kann, wahrend der Stapel auf Zieladressen im
Uberpruften Bereich zugreift. Dies wirde die anfang-
liche Prifung fur den Stapel ungultig machen. Es ist
moglich, das Basisregister durch eine Konstante zu
modifizieren, da in diesem Fall die Bereichspriifung
statisch fur der Ausfuhrung der gestapelten Zugriffs-
befehle durchgefiihrt werden kann.

[0094] Das Stapelbildungsverfahren ist beim Verrin-
gern des zusatzlichen Aufwands fur den Fehlzu-
griffs-Prifcode immer erfolgreich. Das Verfahren ist
jedoch insbesondere flir Befehle einer Schleife niitz-
lich, die "entrollt" wurde. Eine entrollte Schleife ent-
halt Befehle, die linear und nicht in einer iterativen zir-
kularen Weise durchgefuhrt werden. Hier funktionie-
ren Zugriffsbefehle typischerweise innerhalb eines
kleinen Bereichs eines Basisregisters, das wahrend
der lterationen nicht modifiziert wird. In diesem Fall
kann das Batching-Verfahren fast immer und auf sehr
wirkungsvolle Weise angewendet werden.

[0095] Auch wenn das Batching immer fir Befehle
eines einzelnen Basisblocks versucht wird, kann es
auch moglich sein, das Batching fur Lade- und
Speicherbefehle durchzufiihren, die sich Gber mehre-
re Basisblocks hinweg erstrecken. Wenn Lade- und
Speichervorgange Uber mehrere Basisblocks hinweg
gestapelt werden, ergeben sich zusatzliche Ein-
schrankungen. Der gestapelte Satz von Befehlen
kann keine Sub-Routinen-Aufrufe enthalten, da diese
Aufrufe die Ausfiihrungen von Lade- und Speicher-
vorgangen mit unbekannten Zieladressen in den auf-
gerufenen Subroutinen auslésen kénnten. Auflerdem
kénnen die gestapelten Befehle keine Schleife ent-
halten, da erst bei Ausflihrung der Befehle des Sta-
pels festgestellt werden kann, wie oft die Schleife
wiederholt wird. Auflerdem muss in einem Stapel, der
bedingte Spriinge enthalt, ein Speichervorgang, der
in einem der abgezweigten Ausfihrungspfade auf-
tritt, in allen Pfaden auftreten. Nur dann kann festge-
stellt werden, welche Speicherzugriffe durchgefuhrt
werden, wenn die gestapelten Befehle ausgefiihrt
werden.

[0096] Der Batching-Vorgang kann willkirlich viele
Lade- und Speichervorgange im Verhaltnis zu einer
beliebigen Anzahl von Basisregistern und Gber einen
oder mehrere Basisblocks hinweg stapeln.

[0097] Es kann auch ein "gieriger" Batching-Algo-
rithmus verwendet werden. Der gierige Algorithmus

10/32

DE 698 22 534 T2 2005.01.27

lokalisiert so viele Lade- und Speicherbefehle wie
moglich, um sie in einen Batch einzubinden. Der Al-
gorithmus wird abgeschlossen, wenn ein Beendi-
gungszustand, wie unten beschrieben, erreicht ist.
Wenn sich in einem Batch nur ein einziger Lade- oder
Speicherbefehl befindet, wird der gestapelte Fehlzu-
griffs-Prufcode nicht verwendet.

[0098] Wenn ein bedingter Abzweigbefehl angetrof-
fen wird, der zwei mogliche Ausfiihrungspfade zum
Ergebnis hat, dann werden beide Pfade nach Befeh-
len untersucht, die in einen Batch aufgenommen wer-
den koénnten. Die Abtastung der zwei getrennten Aus-
fuhrungspfade wird zusammengefihrt, wenn die
Ausfuhrung der beiden Pfade zusammengefihrt
wird.

[0099] Beendigungszustande kénnen die Folgen-
den sein: ein Lade- oder Speicherbefehl, der ein Ba-
sisregister verwendet, das durch eine Variable modi-
fiziert ist; ein Lade- oder Speicherbefehl, der eine
Zieladresse aulerhalb der Uberpriften Zeilen hat;
das Aufrufen einer Subroutine; ein bedingter Ab-
zweigbefehl, der eine Schleife verursacht, z. B. das
erneute Ausflihren eines oder mehrerer Befehle; das
Ende einer Subroutine wird erreicht; ein Speicherbe-
fehl in einem von mehreren Zweigen; und das Abtas-
ten eines Zweigs, der mit einem parallelen Zweig zu-
sammengefiuhrt wird, wobei jedoch die Abtastung
des parallelen Zweigs schon abgeschlossen ist.

Fehlzugriffs-Prifcode fur Stapel von Befehlen

[0100] Die Fig. 11 und 12 zeigen den Fluss 1100
bzw. den Fehlzugriffs-Priifcode 1200 fir eine Gruppe
gestapelter Ladebefehle, die auf einen Bereich von
Zieladressen 1130 zugreifen. Der Bereich 1130 kann
ganz leicht dadurch Uberpruft werden, dass eine
Fehlzugriffs-Codetiberprifung 1140-1141 an der ers-
ten Adresse 1111 und der letzten Adresse 1121 des
Bereichs 1130 von Adressen durchgefiihrt wird, auf
die vom Satz von Zugriffsbefehlen zugegriffen wird.
Die ersten und letzten Adressen mussen in der ers-
ten bzw. letzten Zeile 1110 bzw. 1120 sein, siehe Be-
fehle 1201-1204. Die Befehle 1205 und 1206 Uber-
prufen den Ungiiltig-Flag.

[0101] Wenn entweder die Adresse 1111 oder die
Adresse 1121 ungiltig ist (1150), dann wird der Fehl-
zugriffs-Behandlungscode 1160 aufgerufen. Wenn
sowohl die erste als auch die letzte Adresse gliltige
Daten speichern, kénnen alle Befehle des Satzes
ohne weitere Uberpriifung ausgefiihrt werden. Ein
Vorteil des Fehlzugriffs-Priifcodes 1200 besteht da-
rin, dass die Endpunktadressen miteinander ver-
schachtelt sein kénnen, um Pipeline-Staus (Stalls)
wirkungsvoll auszuschlief3en.

Nachrichten-Weiterreichungs-Bibliothek

[0102] Die Nachrichten-Weiterreichungs-Bibliothek
353 von Fig. 3 liefert die notwendigen Prozeduren,
um es symmetrischen Multiprozessoren 210 zu er-
lauben, Gber das Netzwerk 220 zu kommunizieren.
Wenn zum Beispiel das Netzwerk 220 ATM-Protokol-
le verwendet, teilen die Routinen der Bibliothek 353
Nachrichten des ATM-Typs mit. Die Routinen der Bi-
bliothek 353 kdnnen Nachrichten einer beliebigen
Grole senden und empfangen. AuRerdem kdnnen
die Routinen periodisch nach eintreffenden Nachrich-
ten sehen.

Fehlzugriffs-Behandlungsprotokoll

[0103] Der andere Code, der mit dem instrumentier-
ten Programm 351 von Fig. 3 in Verbindung steht, ist
der Fehlzugriffs-Behandlungsprotokollcode 352. Die-
ser Code kann Daten aus dem Speicher eines ande-
ren symmetrischen Multiprozessors abrufen, Koha-
renz zwischen gemeinsam genutzten Kopien von Da-
ten aufrechterhalten und garantieren, dass ein Pro-
zessor, der das Speichern von Daten versucht, die al-
leinige Verfliigung (Ownership) Gber die Daten hat.

[0104] Der Protokolicode 352 implementiert auch
Synchronisierungsoperationen, wie zum Beispiel
"Sperren" und "Barrieren". Der Code 352 wird aufge-
rufen, wenn der Fehlzugriffs-Prifcode einen Lade-
oder Speicherfehlzugriff erfasst oder wenn ein Syn-
chronisationsvorgang erforderlich ist.

[0105] Der Protokollcode 352 ist ein verzeichnisba-
siertes Invalidierungsprotokoll. Fir jeden Block 551
gemeinsam genutzter Daten 550 von Fig. 5 wird ei-
ner der Prozessoren als der "Heim"-Prozessor zuge-
teilt. Blocke kdnnen unterschiedlichen Heimprozes-
soren in einer zyklischen Weise zugewiesen werden,
z. B. nach einer Zuweisungsreihenfolge. Blécke kon-
nen ausdrucklich einem bestimmten Prozessor zuge-
teilt werden, wenn von einem der Programme 310
von Fig. 3 Platzierungshinweise abgegeben werden.

[0106] Ein Heimprozessor ist fir das Initialisieren
der an den Adressen des Blocks gespeicherten Da-
ten verantwortlich. Der Heimprozessor stellt auch die
anfanglichen Zustande der Zeilen des zugewiesenen
Blocks her, wobei der Zustand zum Beispiel eine ex-
klusive Verfigung (Ownership) tber die Daten reflek-
tieren kann. Der Heimprozessor erzeugt auch die an-
fangliche Verzeichnisinformation tGber den Block.

[0107] Das Verzeichnis zeigt auch, wie unten be-
schrieben, an, welche Prozessoren eine Kopie des
dem Heimprozessor zugewiesenen Blocks haben.
Wenn ein Prozessor, der nicht der Heimprozessor ist,
auf die Daten des Blocks zugreifen mochte, sendet er
eine Nachricht an den Heimprozessor, die anzeigt,
dass er Daten des Blocks entweder laden oder spei-

11/32

DE 698 22 534 T2 2005.01.27

chern mdchte. Wenn er sie speichern mochte, wird
auch eine Ownership-Anforderung gesendet.

Heimprozessorverzeichnis

[0108] Wie in Fig. 13 gezeigt, unterhalt jeder Pro-
zessor 210 ein Verzeichnis 1300, das Information
Uber in Blocken enthaltene Zeilen speichern kann, fur
die der Prozessor der Heimprozessor ist. Auflerdem
hat zu jeder Zeit jede Zeile eines bestimmten Blocks
einen "steuernden" Prozessor. Der Prozessor, der
eine Zeile steuert, kann der Prozessor sein, der die
Zeile zum letzten Mal exklusiv besessen hat.

[0109] Fur jeden von einem Heimprozessor beses-
senen Block hat das Verzeichnis 1300 einen Eintrag
1301 fir jede Zeile im Block. Jeder Eintrag 301 ent-
halt eine Identifizierung (ID) 1310, eine Blockgrofie
1315 und einen Bitvektor 1320. Die ID 1310 zeigt an,
welcher Prozessor derzeit den Block steuert, und der
Vektor 1320 hat ein Bit 1321 fiir jeden Prozessor, der
eine Kopie des Blocks hat. Die Grofe des Blocks
1315 kann, wie unten im Einzelnen beschrieben, va-
riiert werden.

Protokollnachrichten

[0110] Die Prozessoren 211 tauschen uber das
Netzwerk 220 von Fig. 2 Nachrichten aus. Bei den
Nachrichten gibt es die folgenden allgemeinen Ty-
pen. Anforderungsnachrichten kénnen Kopien von
Daten zum Zwecke des Ladens und Speicherns an-
fordern, und Antwortnachrichten kénnen die angefor-
derten Daten enthalten. Anforderungen nach Daten
werden typischerweise an den Heimprozessor ge-
sendet. Wenn der Heimprozessor keine Kopie der
Daten hat, dann wird die Anforderung an den steu-
ernden Prozessor weitergeleitet. Der steuernde Pro-
zessor kann dem Prozessor direkt antworten, von
dem die Anforderung ausging.

[0111] Manche Nachrichten werden auch zur Pro-
zesssynchronisation verwendet. Zwei Typen von
Synchronisationsmechanismen koénnen eingesetzt
werden. Zuerst kdnnen Prozessoren mit einer vorge-
gebenen "Barrieren"-Adresse synchronisiert werden.
Wenn sie mit einer Barrierenadresse synchronisiert
sind, warten Prozessoren, die die Barrierenadresse
erreicht haben, bis alle anderen Prozessoren eben-
falls die Barrierenadresse erreicht haben.

[0112] Ein weiterer Typ einer Synchronisation ge-
schieht Uber eine Sperre. Eine "Sperre" kann von ei-
nem beliebigen Prozessor an einer bestimmten
Adresse des gemeinsamen Speichers ausgeubt wer-
den. Ein anderer Prozessor kann erst dann an der
gleichen Adresse eine Sperre ausuben, wenn die
Sperre geldst wurde.

[0113] Die Einzelheiten der vom Fehlzugriffs-Be-

handlungscode 352 unterstitzten Nachrichten sind in
den folgenden Abschnitten beschrieben.

Lesenachricht

[0114] Eine Lesenachricht fordert Daten von einem
bestimmten Prozessor zum Lesen an. Diese Nach-
richt enthalt die Adresse des Blocks, der die angefor-
derten Daten speichert, sowie eine ldentitat des an-
fordernden Prozessors. Auf die Nachricht wird ein ge-
samter Block, der die angeforderten Daten enthalt,
abgerufen.

Schreibnachricht

[0115] Die Schreibnachricht enthalt die Adresse der
angeforderten Daten und eine Identitdt des anfor-
dernden Prozessors. Diese Nachricht fordert einen
Block von Daten zum Zweck des Speicherns neuer
Daten im Block an, wenn der anfordernde Prozessor
nicht selbst eine Kopie der Daten hat. Daher fordert
die Nachricht auch die Verfliigung (Ownership) tber
den Datenblock an.

Ownership-Nachricht

[0116] Diese Nachricht fordert die Verfuigung (Ow-
nership) Uber die Daten in dem Fall an, wo der anfor-
dernde Prozessor keine Kopie der Daten hat. Diese
Nachricht wird verwendet, wenn der anfordernde
Prozessor seine Kopie der Daten modifizieren moch-
te. Die Ownership-Nachricht enthalt die Adresse der
Daten und eine Identitat des anfordernden Prozes-
Sors.

Sauber-Nachricht

[0117] Diese Nachricht wird zum Mitteilen einer An-
forderung nach einer (sauberen) Nur-Lese-Kopie der
Daten verwendet. Die Sauber-Nachricht enthalt die
Adresse der angeforderten Daten, die Anzahl von
Bytes und eine Identitdt des anfordernden Prozes-
sors. Eine Optimierung besteht darin, dass die Anfor-
derung an keinen weiteren Prozessor weitergeleitet
zu werden braucht, wenn der Heimprozessor eine
Kopie der angeforderten Daten hat.

Weiterleitungsnachricht

[0118] Diese Nachricht fordert an, dass eine
schreibbare Kopie der Daten vom Prozessor, der der-
zeit die Daten steuert, an den Prozessor geschickt
wird, der eine Anforderung der Daten gesendet hat.
Die Weiterleitungsnachricht enthalt die Adresse der
angeforderten Daten, die Anzahl von Bytes und eine
Identitat des anfordernden Prozessors.

Invalidierungsnachricht

[0119] Diese Nachricht fordert, dass eine Kopie der

12/32

DE 698 22 534 T2 2005.01.27

Daten invalidiert wird. Wenn die Invalidierung abge-
schlossen ist, wird an den anfordernden Prozessor
eine Bestatigung geschickt. Die Invalidierungsnach-
richt enthalt die Adresse der angeforderten Daten,
die Anzahl von zu invalidierenden Bytes und eine
Identitat des anfordernden Prozessors.

Herabstufungsnachricht

[0120] Diese Nachricht wird, wenn der Zustand ei-
nes Blocks herabgestuft wird, lokal innerhalb eines
SMP an Prozessoren gesendet, deren private Zu-
standstabellen ebenfalls herabgestuft werden mus-
sen. Die Herabstufungsnachricht enthalt den Typ der
Herabstufung, die Adresse der angeforderten Daten,
die Anzahl von Bytes und die Identitat des anfordern-
den Prozessors. Der letzte Prozessor, der die Herab-
stufungsnachricht erhalt, schliet den mit der Anfor-
derung zusammenhangenden Vorgang ab, welcher
die Herabstufung anstieR.

Sauber-Antwort-Nachricht

[0121] Diese Nachricht enthalt eine Kopie der tat-
sachlich in der Sauber-Nachricht angeforderten Da-
ten. Die Sauber-Antwort-Nachricht enthalt die Adres-
se der angeforderten Daten, die Anzahl der Bytes
und die Daten.

Weiterleitungs-Antwort-Nachricht

[0122] Diese Nachricht enthalt eine schreibbare Ko-
pie der angeforderten Daten. Die Weiterleitungs-Ant-
wort-Nachricht enthalt die Adresse der angeforderten
Daten, die Anzahl von Bytes und die Daten.

Invalidierungs-Antwort-Nachricht

[0123] Diese Nachricht ist eine Bestatigung, dass
Daten invalidiert wurden. Die Invalidierungs-Ant-
wort-Nachricht enthalt die Adresse der angeforderten
Daten und die Anzahl invalidierter Bytes.

Barrieren-Warte-Nachricht

[0124] Diese Nachricht fordert eine an den anfor-
dernden Prozessor gerichtete Mitteilung an, wenn
alle Prozessoren eine bestimmte Barrierenadresse
erreicht haben. Die Barrieren-Warte-Nachricht ent-
halt die Barrierenadresse und die Identitat des anfor-
dernden Prozessors.

Barriere-Fertig-Nachricht

[0125] Diese Nachricht zeigt an, dass die Bedingun-
gen der Barrieren-Warte-Nachricht erflllt sind. Die
Barriere-Fertig-Nachricht enthalt die Barrierenadres-
se.

Sperrnachricht

[0126] Diese Nachricht fordert die Verfugung (Ow-
nership) Uber eine Sperre an. Bei der vorliegenden
Umsetzung wird die Sperre auf einer spezifischen
Adresse des gemeinsamen Speichers ausgefiihrt.
Die an der Adresse gespeicherten Daten spielen hin-
sichtlich der Sperrnachricht keine Rolle. Die Sperr-
nachricht enthalt die der Sperre zugeordnete Adres-
se.

Sperre-Weiterleitungsnachricht

[0127] Diese Nachricht leitet eine Sperranforderung
an einen Prozessor weiter, der derzeit die Verfiigung
(Ownership) Uber die gesperrte Adresse hat. Die
Sperr-Weiterleitungsnachricht enthalt die Sperra-
dresse.

Sperr-Antwortnachricht

[0128] Diese Nachricht Ubertragt die Verfigung
(Ownership) uber die gesperrte Adresse an den an-
fordernden Prozessor. Die Sperr-Antwortnachricht
enthalt die gesperrte Adresse.

Schmutzige Daten

[0129] Die oben beschriebenen Protokollnachrich-
ten erlauben die gemeinsame Nutzung "schmutziger"
Daten. Dies bedeutet, dass der Heimprozessor eines
Blocks nicht eine saubere, aktuelle Kopie der Daten
haben muss. Zum Beispiel kdnnte ein anderer Pro-
zessor seine Kopie der Daten geandert haben und
die modifizierte Kopie der Daten mit anderen Prozes-
soren aufler dem Heimprozessor geteilt haben. Die-
ses Merkmal bewirkt, dass ein Riickschreiben an den
Heimprozessor optional wird. Ansonsten ist ein
Ruckschreiben an den Heimprozessor immer dann
erforderlich, wenn ein Prozessor eine Kopie schmut-
ziger Daten von einem anderen Prozessor liest.

Polling (Abfragen)

[0130] Ein Polling-Mechanismus wird zum Verarbei-
ten der Nachrichten verwendet, die von den Prozes-
soren 211 erzeugt wurden. Zum Beispiel wird das
Netzwerk 220 nach einer eintreffenden Nachricht ab-
gefragt, wenn ein Prozessor auf eine Antwort zu einer
Anforderungsnachricht wartet. Hierdurch wird eine
gegenseitige Sperrsituation vermieden.

[0131] AuRerdem werden, um angemessene Ant-
wortzeiten fur Anforderungen zu garantieren, die Pro-
gramme so instrumentiert, dass sie immer dann ein-
treffende Nachrichten abfragen, wenn die Program-
me einen Funktionsaufruf durchfihren. Wenn das
Netzwerk 220 ein Netzwerk ist, das kurze Latenzen
hat, kann ein Polling (Abfragen) auch haufiger durch-
gefihrt werden, wie zum Beispiel an jeder Pro-

13/32

DE 698 22 534 T2 2005.01.27

grammsteuerungs-Hinterflanke. Eine Programm-
steuerungshinterflanke kann ein Sprungbefehl sein,
der verursacht, dass eine Schleife iterativ erneut
durchgefiihrt wird. Daher wird fir jede Iteration einer
Schleife eine Hinterflankenabfrage durchgefiihrt.

[0132] Nachrichten kénnten unter der Verwendung
eines Unterbrechungsmechanismus behandelt wer-
den. Jedoch dauert das Behandeln einer Unterbre-
chung ublicherweise langer in der Verarbeitung, da
der Zustand, der zur Zeit der Unterbrechung besteht,
zunachst gespeichert und in der Folge wieder herge-
stellt werden muss. AuRerdem ist beim Abfragen
(Polling) die Aufgabe der Umsetzung unteilbarer Pro-
tokollvorgange vereinfacht.

[0133] Aufgrund des relativ hohen Aufwands des
Sendens von Nachrichten zwischen Prozessoren
werden aulere Protokoll-Koharenznachrichten mini-
miert. Da ein Heimprozessor eines Blocks die Be-
handlung der Anforderung durch eine Weiterleitung
der Anforderung an den derzeit steuernden Prozes-
sor garantiert, kdbnnen alle Nachrichten, die Informa-
tion im Verzeichnis 1300 andern, abgeschlossen
werden, wenn die Nachrichten den Heimprozessor
erreicht haben. Es besteht daher keine Notwendig-
keit, eine zusatzliche Nachricht zu schicken, um zu
bestatigen, dass eine Weiterleitungsanforderung er-
fullt wurde. AulRerdem werden alle Invalidierungsbe-
statigungen, die auf Exklusiv-Anforderungen erzeugt
wurden, direkt an den anfordernden Prozessor und
nicht Uber den Heimprozessor geleitet.

Sperr-freier Cache (Lock-up Free Cache)

[0134] Das Protokoll 352 sieht auch ein LO-
sungs-Konsistenzmodell vor, das im Wesentlichen
aquivalent mit einem in Hardware implementierten
sperr-freien Cache ist, der nicht blockierende Lade-
und Speichervorgange erlaubt. Daten, die in den ver-
teilten gemeinsam genutzten Speichern zwischenge-
speichert werden, kdnnen einen der folgenden Zu-
stdnde haben: ungiltig (Invalid), gemeinsam
(Shared), exklusiv (Exclusive), schwebend-ungultig
(Pending-Invalid) oder schwebend-gemeinsam (Pen-
ding-Shared). Die schwebenden Zusténde sind voru-
bergehende Zustande einer Zeile, wenn eine Anfor-
derung nach dem die Zeile enthaltenden Block an-
steht. Der Schwebend-Ungiiltig-Zustand besteht fir
Daten, bei denen eine Lese- oder Schreibanforde-
rung ansteht. Der Schwebend-Gemeinsam-Zustand
besteht fur Daten, bei denen eine Ownership-Anfor-
derung ansteht.

[0135] Nicht blockierende Speichervorgange wer-
den dadurch unterstitzt, dass ein Prozessor mit der
Verarbeitung von Befehlen fortfahrt, nachdem eine
Anforderung nach Daten gemacht wurde. Wahrend
die Anforderung ansteht, erkennt das Protokoll die
Adressen aller Daten, die in der lokalen Kopie des

Blocks modifiziert sind. Dann kénnen, wenn der an-
geforderte Block von Daten verfligbar wird, die modi-
fizierten Daten mit den angeforderten Daten zusam-
mengefihrt werden. Es wird darauf hingewiesen,
dass das oben beschriebene Stapeln von Lade- und
Speichervorgangen nicht blockierende Ladevorgan-
ge erlaubt, da das Stapeln von Ladevorgangen dazu
fihren kann, dass fiir eine einzige Uberpriifung meh-
rere anstehende Ladevorgange vorliegen.

[0136] Ein sperr-freies Verhalten kann auch fiir Da-
ten unterstitzt werden, die einen schwebenden Zu-
stand haben. Das Speichern von Daten an Adressen
schwebender Daten kann zur Durchfiihrung zugelas-
sen werden, indem die Adressen aufgezeichnet wer-
den, wo die Daten gespeichert sind, und die Adres-
sen an den Fehlzugriffs-Behandlungscode 352 von
Fig. 3 Ubergeben werden.

[0137] Alle Speichervorgange in einem Block in ei-
nem schwebenden Zustand werden innerhalb der
Protokollroutine abgeschlossen, wahrend auf dem
entsprechenden Zustandstabelleneintrag eine Sper-
re liegt. Dieses Verfahren der Durchfuhrung schwe-
bender Speichervorgange ist wichtig, um sicherzu-
stellen, dass die Speichervorgange fir alle Prozesso-
ren sichtbar sind, die spater am selben Block einen
Protokollvorgang durchfihren.

[0138] Ladungsvorgange von Adressen von Daten,
die einen Schwebend-Gemeinsam-Zustand haben,
werden sofort zugelassen, da der Prozessor schon
eine Kopie der Daten hat. Ladungsvorgange von
Adressen von Daten eines Blocks, der den Schwe-
bend-Ungiiltigzustand hat, kénnen ebenfalls durch-
gefuhrt werden, solange die Ladevorgange von
Adressen einer Zeile des Blocks sind, der gultige Da-
ten speichert. Gultige Ladevorgéange an schwebende
Zeilen werden aufgrund der Verwendung des Ungul-
tig-Flags 801 von Fig. 8 schneller durchgefihrt. Ein
gultiger Ladevorgang einer schwebenden Zeile kann
sofort durchgefiihrt werden, weil der geladene Wert
nicht gleich dem Unglltig-Flag ist.

Variable Granularitaten

[0139] Ein Merkmal der hier beschriebenen Proto-
kolle ist die Moglichkeit variabler Granularitaten fur
die Koharenz, auch innerhalb eines einzigen Pro-
gramms oder einer einzigen Datenstruktur. Variable
Granularitaten sind méglich, weil alle Uberpriifungen
nach Fehlzugriffen von Softwarebefehlen durchge-
fuhrt werden, die auf Daten sehr kleiner Granularita-
ten zugreifen, z. B. Bytes, lange Worter (long) und
Quad-Woérter. Im Gegensatz dazu verwenden andere
verteilte Speichersysteme virtuelle Speicherhard-
ware zur Durchfihrung von Fehlzugriffsiberprifun-
gen an festen und groben granularen Adressen, die
durch eine virtuelle Speicherseitengrof3e, typischer-
weise 4096 oder 8192 Bytes, bestimmt werden.

14/32

DE 698 22 534 T2 2005.01.27

[0140] Unterschiedliche Typen von Daten, die von
einem Programm verwendet werden, werden am na-
turlichsten und wirkungsvollsten mit variablen Granu-
laritdten abgerufen. Zum Beispiel werden Datenbl6-
cke, die von aufeinanderfolgenden Massenadressen
von Eingabe/Ausgabe-Geraten gelesen und an diese
geschrieben werden, am besten mit groben Granula-
ritaten, z. B. 2 K, 4 K usw., behandelt. Jedoch erfor-
dern viele Programme auch einen wahlfreien Zugriff
auf Bereiche von Adressen, die betrachtlich kleiner,
z. B. 32, 256, 1024 Bytes, sind.

[0141] Dass Anwendungsprogramme und Daten-
strukturen variable Zugriffsgranularitaten haben dur-
fen, kann die Leistung steigern, weil Daten in der wir-
kungsvolisten Ubertragungseinheit kommuniziert
werden kénnen. Daten mit guter raumlicher Lokalitat,
z. B. in Blécke "geklumpte" Daten, kbnnen mit groben
Granularitaten transportiert werden, um die Zeit lan-
ger Kommunikationslatenzen zu amortisieren. Im
Gegensatz dazu kénnen Daten, die einer "falschen
Gemeinsamkeit" unterliegen, mit feineren Granulari-
taten kommuniziert werden.

[0142] Eine falsche Gemeinsamkeit (False Sharing)
ist ein Zustand, bei dem unabhéangige Teile von Da-
ten, z. B. Feldelemente, in der Datenstruktur, z. B. in
einem oder mehreren Blécken, gespeichert und von
vielen symmetrischen Multiprozessoren abgerufen
werden. Bei Bloécken variabler GroR3e ertibrigt sich die
Notwendigkeit des wiederholten Transfers grof3er
Datenquantitaten fester GroRe, die kleinere unab-
hangige Teile falscher gemeinsamer Daten enthal-
ten, zwischen den symmetrischen Multiprozessoren.

[0143] Demnach ist der Vorgang 300 von Fig. 3 da-
hingehend optimiert, Datentransfereinheiten zu ver-
arbeiten, die variable Granularitdten besitzen. Eine
Datentransfereinheit, z. B. ein Block, kann eine belie-
bige geradzahlige Vielfache von Zeilen sein, je nach
der fir das Programm gewabhlten festen ZeilengroRRe,
z. B. kénnen unterschiedliche Programme auf Daten
mit unterschiedlichen Zeilengroflen (32, 64, 128
Byte-Zeilen) zugreifen.

[0144] Um eine entsprechende Blockgrofe fiir eine
bestimmte Datenstruktur zu wahlen, kann eine auf
der zugewiesenen Grolie basierende Heuristik ver-
wendet werden. Die zu Grunde liegende Heuristik
wahlt eine Blockgrolie, die gleich der GrofRe der zu-
gewiesenen Datenstruktur ist, bis zu einer vorbe-
stimmten Schwellengréfie der Datenstruktur, z. B. 1
K oder 2 K Bytes. Fur zugewiesene Datenstrukturen,
die groRer als die vorbestimmte SchwellengrofRe
sind, kann die Granularitat einfach die Grof3e einer
Zeile sein. Die der Heuristik zu Grunde liegende Ar-
gumentation besteht darin, dass kleine Datenstruktu-
ren als eine Einheit Gbertragen werden sollten, wenn
auf sie zugegriffen wird, wahrend grofl’e Datenstruk-
turen, wie zum Beispiel Felder, in feinen Granularita-

ten Ubertragen werden sollten, um eine falsche Ge-
meinsamkeit zu vermeiden.

[0145] Die Heuristik kann dadurch modifiziert wer-
den, dass spezielle Zuweisungsbefehle in die Pro-
gramme eingefiigt werden, die explizit die Blockgro-
Re definieren. Da die GroRRe zugewiesener Blocke die
Korrektheit des Programms nicht beeintrachtigt, kann
die BlockgroRe fur die maximale Leistung empirisch
festgestellt werden.

[0146] Wie in Fig. 13 gezeigt, wird die BlockgroRe
1315 eines zuweisbaren Datenstlicks vom Heimpro-
zessor in einem Verzeichnis 1300 unterhalten. Jeder
Zeileneintrag enthélt die GroRe 1315 des entspre-
chenden Blocks. Prozessoren erhalten Kenntnis tiber
die Grole eines Blocks, wenn Daten des Blocks an
einen anfordernden Prozessor transportiert werden.

[0147] Da Prozessoren die Groe von Blocken nicht
zu wissen brauchen, kdnnen die Groflen dynamisch
festgelegt werden. Zum Beispiel kann ein Heimpro-
zessor die Granularitat einer gesamten Datenstruktur
dadurch andern, dass zuerst alle Zeilen invalidiert
werden, welche die Datenstruktur enthalten, und
dann die BlockgroRen in den Verzeichniseintragen
1301 geandert werden.

[0148] Der Heimprozessor kann die GréRe eines
Blocks nachschlagen, wenn eine Zugriffsanforde-
rung, z. B. Lesen, Schreiben, Ownership, an einer
Zieladresse einer bestimmten Zeile empfangen wird.
Dann kann der Heimprozessor die korrekte Anzahl
von Zeilen, die den gesamten Block enthalten, an
den anfordernden Prozessor senden. Alle anderen
Kopien der Zeilen kénnen unter der Verwendung des
Vektors 1320 entsprechend vom Prozessor behan-
delt werden. In Reaktion auf eine Zugriffsanforde-
rung, die nicht die anfangliche Anforderung ist, wer-
den alle Protokolloperationen an allen Zeilen des
Blocks durchgefiihrt.

[0149] Um den Fehlzugriffs-Prifcode zu vereinfa-
chen, werden die Zustande der Datenstlicke Zeile fur
Zeile uberpruft und gepflegt. Das Protokoll 352 stellt
jedoch sicher, dass alle Zeilen eines Blocks immer im
selben Zustand sind. Daher kann der vorgeschaltete
Fehlzugriffs-Prifcode Zustande fur Blocke variabler
GroRe wirkungsvoll pflegen.

[0150] Im Fall Granularitaten variabler Gréf3e kann
es sein, dass ein Prozessor die Grée eines Blocks
nicht weil3, der eine angeforderte Zeile enthalt. Zum
Beispiel fordert ein Prozessor an, auf Daten an einer
Adresse A und an einer Adresse A + 64 zuzugreifen.
In dem Fall, wo der Prozessor die Grolie des Blocks
nicht weil3, kann es sein, dass er zwei Anforderungen
unter der Annahme einer Zeilengrof3e von 64 Bytes
macht, jeweils eine fir jede Zieladresse, auch wenn
die Adressen im selben Block sind.

15/32

DE 698 22 534 T2 2005.01.27

[0151] Ein Vorteil hierbei ist jedoch, dass das Proto-
koll, wie hier beschrieben, in einer einzigen Nachricht
den gesamten die Zeilen enthaltenden Block Uber-
tragt. Danach kann der die anfangliche Anforderung
verarbeitende Heimprozessor auch erkennen, dass
die zweite Anforderung nicht bendtigt wird. Dies trifft
in allen Fallen zu, auer wenn ein anderer Prozessor
eine Anforderung zum Zugreifen auf die erste Zeile
macht, bevor die Anforderung fur die zweite Zeile voll
verarbeitet ist. In diesem Fall muss die zweite Anfor-
derung als eine anfangliche Anforderung behandelt
werden, da die aktuellen Zustande der Daten nicht
immer feststellbar sind.

[0152] Fig. 14 zeigt Datenstrukturen, die variable
Granularitaten besitzen. Die Speicher 1401 sind ei-
nem ersten Prozessor (PROC1) zugeordnet, und die
Speicher 1402 sind einem zweiten Prozessor
(PROC2) zugeordnet.

[0153] Innerhalb der Speicher 1401 des ersten Pro-
zessors wurden einem ersten Programm (P1) 1411
Datenstrukturen mit Zeilen von 64 Bytes zugeordnet,
und einem zweiten Programm (P2) 1441 sind Daten-
strukturen mit Zeilen von 32 Bytes zugeordnet.

[0154] Das erste Programm 1411 enthalt Daten-
strukturen 1421 und 1431. Die Datenstrukturen 1421
enthalten einen Block von 128 Bytes, z. B. zwei Zei-
len pro Block. Die Datenstrukturen 1431 haben acht
Blocke von 64 Bytes, z. B. eine Zeile pro Block.

[0155] Das zweite Programm enthalt Datenstruktu-
ren 1451, 1461 und 1471. Die Datenstrukturen 1451
enthalten acht Blocke von jeweils 32 Bytes (einer Zei-
le). Die Datenstrukturen 1461 enthalten drei Blocke
von jeweils 128 Bytes (vier Zeilen). Die Datenstruktu-
ren 1471 enthalten einen Block von 256 Bytes, z. B.
acht Zeilen.

[0156] Die Speicher 1402 des zweiten Prozessors
enthalten vergleichbare Programme 1412 und 1442
und ihre Datenstrukturen. Wie oben beschrieben,
kommunizieren die Prozessoren Daten in Datentber-
tragungseinheiten von einem Block. Zum Beispiel
Ubertragen die ersten Programme 1411 und 1412
Daten unter der Verwendung der Blocke 1403 und
die zweiten Programme 1441 und 1442 (bertragen
Blocke 1404. Ein Vorteil hierbei ist, dass die Blocke
1403 und 1404 unterschiedliche GréR3en, z. B. variab-
le Granularitaten, und unterschiedliche Zeilengro-
Ren, z. B. 32 und 64 Bytes, haben kénnen.

[0157] Die vorliegende Erfindung wurde unter der
Verwendung spezifischer Begriffe und Beispiele be-
schrieben. Es versteht sich, dass verschiedene an-
dere Anpassungen und Modifikationen innerhalb des
Umfangs der Erfindung vorgenommen werden kon-
nen. Die nachfolgenden Anspriiche decken alle sol-
che Variationen und Modifikationen ab, die im Um-

fang der Erfindung enthalten sind.
Patentanspriiche

1. In Software implementiertes Verfahren zum
gemeinsamen Zugriff auf Daten, die in Speichern
(212) symmetrischer Multi-Prozessoren (210) in ei-
nem Computersystem (200) gespeichert sind, das
mehrere symmetrische Multi-Prozessoren aufweist,
wobei jeder symmetrische Multi-Prozessor mehrere
Prozessoren (211), einen Speicher mit Adressen und
eine Eingabe/Ausgabe-Schnittstelle (214), die Uber
einen Bus (213) miteinander verbunden sind, auf-
weist, wobei die Eingabe/Ausgabe-Schnittstellen die
symmetrischen Multi-Prozessoren durch ein Netz-
werk (220) miteinander verbinden, mit den folgenden
Schritten:

— Bezeichnen eines Satzes der Adressen der Spei-
cher als virtuelle gemeinsam genutzte Adressen zum
Speichern gemeinsam genutzter Daten (550),

— Zuweisen eines Teils der virtuellen gemeinsam ge-
nutzten Adressen zum Speichern einer gemeinsam
genutzten Datenstruktur (551) als einen oder mehre-
re Blécke, auf die durch Programme (310) zugegrif-
fen werden kann, die in einem der Prozessoren aus-
geflhrt werden, wobei die Groflie eines bestimmten
zugewiesenen Blocks mit der GroRe der gemeinsam
genutzten Datenstruktur variiert, wobei jeder Block
eine ganzzahlige Anzahl von Zeilen (552) enthalt,
wobei jede Zeile eine vorbestimmte Anzahl von Bytes
gemeinsam genutzter Daten enthalt;

— Unterhalten einer gemeinsam genutzten Zustand-
stabelle (541), die mehrere gemeinsam genutzte Zu-
standseintrage (545) enthalt, wobei es fir jede Zeile
des einen oder mehr Blocks einen gemeinsam ge-
nutzten Tabelleneintrag gibt, wobei jeder gemeinsam
genutzte Zustandseintrag einen maoglichen Zustand
der Zeile anzeigt, wobei die méglichen Zustande un-
gultig, gemeinsam, exklusiv und schwebend sind;

— Unterhalten einer privaten Zustandstabelle (542)
fur jeden Prozessor der mehreren symmetrischen
Multi-Prozessoren, wobei jede private Zustandsta-
belle mehrere private Zustandseintrage (545) auf-
weist, wobei die privaten Zustandstabelleneintrage
einer bestimmten privaten Zustandstabelle einen
moglichen Zustand einer bestimmten Zeile anzeigen,
auf die vom zugeordneten bestimmten Prozessor zu-
gegriffen wird;

— Speichern von Verzeichnisinformation eines be-
stimmten Blocks der gemeinsam genutzten Daten-
struktur im Speicher eines Heimprozessors, wobei
die Verzeichnisinformation die Gréflke (1315) des be-
stimmten Blocks enthalt;

— Instrumentieren der Programme (310) bei Befeh-
len, die auf die gemeinsamen Daten zugreifen, um zu
Uberprtfen, ob die Daten verfligbar sind; und

—in Reaktion auf den Empfang einer Zugriffsanforde-
rung von einem Anfordernden der Prozessoren zum
Zugreifen auf die gemeinsam genutzten Daten, Sen-
den eines bestimmten Blocks, der die bestimmte Zei-

16/32

DE 698 22 534 T2 2005.01.27

le und die GréRRe des bestimmten Blocks enthalt, an
den anfordernden Prozessor Uber das Netzwerk, um
es den Prozessoren zu ermoglichen, in Blécken mit
variabler Grolke gespeicherte gemeinsam genutzte
Datenstrukturen tber das Netzwerk auszutauschen;
— wobei das Instrumentieren dadurch gekennzeich-
net ist, dass es die folgenden Schritte aufweist:

— Unterteilen von Programmen (310) mit einer Analy-
siereinrichtung (320) in Prozeduren (301) und die
Prozeduren (301) in Basis-Ausfluhrungsblocke (302),
wobei ein Basis-Ausfihrungsblock aus einem Satz
von Befehlen besteht, die ausgefiihrt werden, wenn
der erste Befehl des Satzes ausgefihrt wird;

— Analysieren der Basis-Ausfuhrungsblécke und der
Daten und eines Ausfuhrungsflusses (303) zum Lo-
kalisieren von Befehlen, die Speicheradressen zutei-
len und Zugriffe auf die zugewiesenen Adressen in
den gemeinsam genutzten Teilen der Speicher (212)
durchflhren;

— Einfugen mit einem Optimier-Modul (330) von Be-
fehlen in die Programme (310) zum Uberpriifen, ob
Daten verflgbar sind, um sicherzustellen, dass der
Zugriff in einer koharenten Weise erfolgt;

— Erzeugen mit einem Image-Generator (340) eines
modifizierten maschinenausfihrbaren Images (350),
das instrumentierte Programme (351) mit den Befeh-
len zum Uberpriifen und einer Prozedur fiir Fehlzu-
griffs-Handhabungs-Protokollprozeduren (352) und
eine Nachrichten-Weiterleitungs-Bibliothek (353) ent-
halt.

2. Verfahren nach Anspruch 1, weiter mit dem fol-
genden Schritt:
— Ablegen der Verzeichnisinformation in einem Ver-
zeichnis (1300), das vom Heimprozessor unterhalten
wird, wobei das Verzeichnis fir jede Zeile (552) des
einen oder der mehreren Blocke der gemeinsam ge-
nutzten Datenstruktur (651) einen Eintrag (1301) ent-
halt, wobei jeder Eintrag die GroRe (1315) des be-
stimmten die Zeile enthaltenden Blocks enthalt.

3. Verfahren nach Anspruch 2, weiter mit dem fol-
genden Schritt:
— Unterhalten im Eintrag (1301) fir jede Zeile (552)
des bestimmten Blocks einer Identitat (1310) eines
Steuernden der Prozessoren (211), wobei der steu-
ernde Prozessor als Letztes eine exklusive Kopie des
bestimmten die bestimmte Zeile enthaltenden Blocks
aufweist.

4. Verfahren nach Anspruch 3, weiter mit dem fol-
genden Schritt:
— Unterhalten eines Bitvektors (1320) im Eintrag
(1301), wobei der Bitvektor ein Bit (1321) fur jeden
Prozessor (211) enthalt, wobei das Bit jeweils an-
zeigt, ob ein entsprechender Prozessor eine gemein-
sam genutzte Kopie des bestimmten Blocks hat.

5. Verfahren nach Anspruch 1, weiter mit dem fol-
genden Schritt:

— dynamisches Andern der GroéRe des einen oder der
mehreren Blocke, die fir die gemeinsam genutzte
Datenstruktur (551) zugewiesen wurden, wahrend
die Programme (310) ausgefiihrt werden.

6. Verfahren nach Anspruch 1, weiter mit den fol-
genden Schritten:
— Sperren der gemeinsam genutzten Zustandstabelle
(541) vor dem Modifizieren eines der gemeinsam ge-
nutzten Tabelleneintrage (545), weiter mit dem fol-
genden Schritt:
— Setzen des Zustands jeder Zeile (552) des einen
oder der mehreren Blécke auf unglltig, bevor die
GroRe des einen oder der mehreren Blocke dyna-
misch geandert wird.

7. Verfahren nach Anspruch 6, weiter mit dem fol-
genden Schritt:
— Modifizieren einer der privaten Zustandstabellen
(512) ausschlieBlich durch den Prozessor (211), der
der privaten Zustandstabelle zugeordnet ist.

8. Verfahren nach Anspruch 7, weiter mit dem fol-
genden Schritt:
— selektives Senden einer Nachricht von einem Be-
stimmten der Prozessoren (211) eines bestimmten
symmetrischen Multi-Prozessors (210) an andere
Prozessoren der bestimmten symmetrischen Mul-
ti-Prozessoren, wenn Zustande in der privaten Zu-
standstabelle (542), die dem bestimmten Prozessor
zugeordnet ist, herabgestuft werden.

9. Verfahren nach Anspruch 1, bei dem die An-
zahl von Zeilen des einen oder der mehreren Blocke
einer ersten gemeinsam genutzten Datenstruktur
(1421) sich von der Anzahl von Zeilen des einen oder
der mehreren Blocke einer zweiten Datenstruktur
(1431) unterscheidet.

10. Verfahren nach Anspruch 1, bei dem die An-
zahl von Bytes in einer der Zeilen der ersten Daten-
struktur (1421) in einem Programm (1411) sich von
der Anzahl von Bytes in einer der Zeilen einer zwei-
ten Datenstruktur (1451) in einem anderen Pro-
gramm (1441) unterscheidet.

11. System, mit:

— einem Netzwerk (220);

— mehreren symmetrischen Multi-Prozessoren (210),
die durch das Netzwerk miteinander verbunden sind,
wobei jeder symmetrische Multi-Prozessor mehrere
Prozessoren (211) enthalt;

— einem Speicher (212), der eine Anordnung von
Adressen fur jeden symmetrischen Multi-Prozessor
hat, wobei jede Speicheradresse einen zugewiese-
nen Satz virtueller gemeinsam genutzter Adressen
zum Speichern gemeinsam genutzter Daten (550)
hat, wobei in einem Teil der virtuellen gemeinsam ge-
nutzten Adressen eine gemeinsam genutzte Daten-
struktur (551) als einen oder mehrere Blocke spei-

17/32

DE 698 22 534 T2 2005.01.27

chert, auf die durch Programme (310) zugegriffen
werden kann, die in einem beliebigen der Prozesso-
ren ausgefuhrt werden, wobei die GréRe eines be-
stimmten zugewiesenen Blocks mit einer Grofe der
gemeinsam genutzten Datenstruktur variiert, wobei
jeder Block eine ganzzahlige Anzahl von Zeilen (552)
enthalt, wobei jede Zeile eine vorbestimmte Anzahl
von Bytes gemeinsam genutzter Daten enthalt; und
— eine Einrichtung (320) zum Instrumentieren der
Programme (351) bei Befehlen, die auf die gemein-
sam genutzten Daten zugreifen, um zu Uberprifen,
ob die Daten verfligbar sind; und

— wobei die Anordnung aufweist:

i) eine gemeinsame Zustandstabelle (541), die meh-
rere gemeinsame Zustandseintrdge (545) enthalt,
wobei jeweils ein gemeinsamer Eintrag fur jede Zeile
des einen oder der mehreren Blécke ist, wobei jeder
gemeinsame Eintrag einen moglichen Zustand der
Zeile anzeigt, wobei die moglichen Zustande ungiil-
tig, gemeinsam, exklusiv und schwebend sind;

ii) eine private Zustandstabelle (542) fir jeden Pro-
zessor der mehreren symmetrischen Multi-Prozesso-
ren, wobei jede private Zustandstabelle mehrere pri-
vate Zustandseintrage (545) hat, wobei die privaten
Zustandseintrage einer bestimmten privaten Zu-
standstabelle einen mdglichen Zustand einer be-
stimmten Zeile anzeigen, auf die vom zugeordneten
bestimmten Prozessor zugegriffen wird;

— wobei auf die gemeinsam genutzten Daten zuge-
griffen wird, um zu Uberprifen, ob die Daten verflg-
bar sind, und ein bestimmter Block von einem ande-
ren Prozessor Uber das Netzwerk an einen anfor-
dernden Prozessor gesendet wird, um in Blécken va-
riabler Grof3e gespeicherte gemeinsam genutzte Da-
tenstrukturen auszutauschen;

—wobei die Einrichtung zum Instrumentieren dadurch
gekennzeichnet ist, dass sie aufweist:

— ein Analysier-Modul (320) zum Unterteilen von Pro-
grammen (310) in Prozeduren (301) und die Proze-
duren (301) in Basis-Ausflihrungsblocke (302), wobei
ein Basis-Ausflihrungsblock aus einem Satz von Be-
fehlen besteht, die ausgefiihrt werden, wenn der ers-
te Befehl des Satzes ausgefihrt wird;

— wobei das Analysier-Modul auch zum Analysieren
der Basis-Ausflhrungsblécke und Daten und eines
Ausfuhrungsflusses (303) ist, um Befehle zu lokali-
sieren, die Speicheradressen zuweisen und Zugriffe
auf die zugewiesenen Adressen in den gemeinsam
genutzten Teilen der Speicher (212) ausfihren;

— ein Optimier-Modul (330) zum Einfiigen von Befeh-
len in die Programme (310), um zu uberprifen, ob
Daten verflgbar sind, um sicherzustellen, dass der
Zugriff in einer koharenten Weise erfolgt;

— einen Image-Generator (340) zum Erzeugen eines
modifizierten maschinenausfihrbaren Images (350),
das instrumentierte Programme (351) mit den Befeh-
len zum Uberpriifen und eine Prozedur fiir Fehlzu-
griffs-Handhabungs-Protokollprozeduren (352) and
eine Nachrichten-Weiterleitungs-Bibliothek (353) ent-
halt.

12. System nach Anspruch 11, bei dem die Zu-
standstabellen (540) eine Ausschlusstabelle (1000)
enthalten.

13. System nach Anspruch 12, bei dem die Aus-
schlusstabelle (1000) einen gemeinsam genutzten
Teil (1001) und einen privaten Teil (1002) enthalt.

Es folgen 14 Blatt Zeichnungen

18/32

DE 698 22 534 T2 2005.01.27

Anhangende Zeichnungen

o¢l

— et wmat mmmmm ommt m—— —

on

L e — —__ — -

MINHO31 Y30 ANV1S

NH3IMZLAN

1"914

19/32

DE 698 22 534 T2 2005.01.27

602

e

¢ 914

002

m MYIMZLIN v
Pz 212 Y 212 SNIH- 22
S I Ry Y
v {josx wit o o w) Jorzoe m Wi
| — " | —] b cie ~— “
_ 'S >
< 7 ez ” S Teiz) 1 q_-ﬂm_w oz
= | | b A
oEnoeen| | | e Be ||| TE 5,
_ dWS ' dNS L dS _
_ _ | |
llllllll — L e e e — — — - — e Ve - o —
2 oz’ e o1z’ Nz orz/

20/32

DE 698 22 534 T2 2005.01.27

0S¢e
- - =

M3H10I1919
“SONNLIFTIILIIM
"N31HOIHHOVN

TI0M010dd

€914

-SONNTANVH3E
-S44149NZTH34

JNAYEO0Nd
JLY3IININNHLSNI

— e m—— ——— Gw A— G- -

WINVHO0Yd

oig /

00¢
Ovmv Onm» (0 F Ay V
HOLVHINTOle4] Tnaow el Tnaow g
-JOVII “43INILdO “H3ISATVYNY
H 4
10e~
10e~ O~4-20¢

¢cos’

WAVYO0Hd

ole /

WINVHO0¥d

oig /

21/32

DE 698 22 534 T2 2005.01.27

v "Old

oce
JONYOHOA NINVIdNIT NIH3INININ ANV
“43HOI3ds aNn ¢ _3SATVNY 3000444 HONv¥E3D (4= -SS3uav
EAREEVIS 4(18d30V1 -S4I4ONZTH34 -43LSI93Y “Nv84Nny
osy / obb ! osy ! ozb/ o’

22/32

DE 698 22 534 T2 2005.01.27

S'Old

0000000001X0

000000002IXx0

00000000P1X0

200l 4

0000000002X0
000!

0000000008X%X0

~GS0G
13dV1S ~0IG
1X3L 026G
~G26
N3LVQ X
3LVAIYd FHOSILYLS Oes
~, 1001
g Q00 LvAnd WYSNIZW3D [ICIC) |~ OvS
sbs’ 2v6/ I1bg 7 S, .
N3LYQ 3LZLANIO > 0SS
WYSNIZW39
JHOSINYNAQ .
(=
—
! 7

/
156~ 266

/

00¢

23/32

DE 698 22 534 T2 2005.01.27

609

9914

NIYHN4SNY TH3438 NIHOITONNYLSHN

809

JA0JSONNTANYHIE-S4414ONZTHIA

SSIW~OU

L09 L
909 |

S09
v09 |

€09 |
209 |

109

ssiw-ou ‘zu baq

24 14 ‘24 |q4xd

(14)0 ‘24 n~bpi

14 ‘9 ‘14 |4s
sslw—ou ‘ji baq
24 'ee ‘11 tis
(siseg)iosyo ‘| 4 op|
7

009

24/32

DE 698 22 534 T2 2005.01.27

NY3HOIZdS

LOL
902 |
S0L

pOL _

g0z [

20L <,

102

L' 93

00¢L

g SSIwW™ou ‘'z - bag
q 2411 ‘2 jaxe
g (11)0 ‘24 nbp)
. ssiw—ou ‘| bsq

14 ‘g ‘1 |4
1 24'eg ‘14 IE
% (siseg)respo | Op|

7

25/32

DE 698 22 534 T2 2005.01.27

108

8 914

44149NZ -
: ssiw-ou
TH3d HOSVA
0.8’ 0%8 098/
oc8 N3Y3IAAY-ONO ¢ €G?e
1 ove
028+ N3av1-avnd

1 1

034343444 X0

€0d34444 XO

:m\

ois

)

26/32

DE 698 22 534 T2 2005.01.27

€06 -
206 —

106 <}

6 °9ld
- SSiw—ou ‘24 auq
[24 ‘ege 14 IPPD
(siseg)iosyo | 4 bp
)

006

27/32

DE 698 22 534 T2 2005.01.27

F1G. 10

1010
A

1001

28/32

3INILNOY "ot

; -SONNTANVH3E
oot -544149NZTH34

oGl

|

ole]}

:v:v AO¢__

ONNNHd ONNANYd
-S44149NZ -S44149NZ
-TH34 -1H34

og!l
A

DE 698 22 534 T2 2005.01.27

ﬁ)
!
!
!
|
|
|

Ve e o e =

{
|
|
l
|
|
7

I
|
|
|
|
_
\ 5.7 \/2”
ON:\ ﬁ_m__ om / f it

29/32

DE 698 22 534 T2 2005.01.27

902

N
sozl |
v02! |

€021
c02l

1021

¢l 914

SSIW™ouU ‘g auq
ssiw ‘21 baq

¢Jl'gce ‘24 IPPD

24 ‘gce ‘24 IPPO

(1) 'pp ‘€4 1P|
(140 24 IP
]

002!

30/32

/ 1320

J 1310 / 13I5/l32l

DE 698 22 534 T2 2005.01.27

L1301
A |30‘

VEKTOR

s| Ao

I0

1300

31/32

13

FIG.

DE 698 22 534 T2 2005.01.27

v1°o1d

NovC _ov_v
—2d
vObI R S ey P2
= —
|
2ov1 bObI : : : — 19t
L —- 160
Id
nOWI_N_ L4+~ 1!
AL 1 1~ 111
1
mo_,u_ [fd—- 120!
2 J04d 1 20¥d B

32/32

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

