7109631 A2 I} 10 0 00O 0 A A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [I

) IO O T O O O

International Bureau

(43) International Publication Date
27 September 2007 (27.09.2007)

(10) International Publication Number

WO 2007/109631 A2

(51) International Patent Classification:
GOGF 9/38 (2006.01)

(21) International Application Number:
PCT/US2007/064331

19 March 2007 (19.03.2007)
English
English

(22) International Filing Date:
(25) Filing Language:
(26) Publication Language:
(30) Priority Data:
11/378,712 17 March 2006 (17.03.2006) US
(71) Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; Attn: International

IP Administration, 5775 Morehouse Drive, San Diego, Cal-
ifornia 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DIEFFENDER-
FER, James Norris [US/US]; 4000 Inkberry Court,
Apex, North Carolina 27539 (US). RY CHLIK, Bohuslav
[US/US]; 1017 Sweet Spot Circle, Morrisville, North
Carolina 27560 (US).

(74) Agents: OGROD, Gregory D. et al.; Attn: International
IP Administration, 5775 Morehouse Drive, San Diego, Cal-
ifonia 92121 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ,DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR,HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: REPRESENTING LOOP BRANCHES IN A BRANCH HISTORY REGISTER WITH MULTIPLE BITS

35

LOOP-ENDING
BRANCH
DETECTION

LOOP-ENDING INDICATOR

BRANCH

THRESHOLDS
20

BRANCH HISTORY REGISTER

[TTTTITTITTTTd
Y

30
DISCARD N\
OLDEST ] |

EVALUATIONS  ©

EVALUATION

BRANCH
PREDICTION
TABLE

]
2772

BRANCH
PREDICTION

(57) Abstract: In response to a property of a conditional branch instruction associated with a loop, such as a property indicating
&= that the branch is a loop-ending branch, a count of the number of iterations of the loop is maintained, and a multi-bit value indicative
& of the loop iteration count is stored in a Branch History Register (BHR). In one embodiment, the multi-bit value may comprise the
actual loop count, in which case the number of bits is variable. In another embodiment, the number of bits is fixed (e.g., two) and
loop iteration counts are mapped to one of a fixed number of multi-bit values (e.g., four) by comparison to thresholds. Separate
iteration counts may be maintained for nested loops, and a multi-bit value stored in the BHR may indicate a loop iteration count of

only an inner loop, only the outer loop, or both.



WO 2007/109631 A2 | NI 0A0 00 0T 000000 0O 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.



WO 2007/109631 PCT/US2007/064331

REPRESENTING LOOP BRANCHES IN A BRANCH HISTORY REGISTER WITH
MULTIPLE BITS

FIELD

[0001] The present disclosure relates generally to the field of processors and in
particular to a method of representing loop branches in a branch history register with
multiple bits.

BACKGROUND

[0002] Microprocessors perform computational tasks in a wide variety of
applications. Improved processor performance is almost always desirable, to allow for
faster operation and/or increased functionality through software changes. In common
embedded applications, such as portable electronic devices, conserving power is also
desirable.

[0003] Common modern processors employ a pipelined architecture, where
sequential instructions, each having multiple execution steps, are overlapped in
execution. For maximum performance, the instructions should flow continuously
through the pipeline. Any situation that causes instructions to stall in the pipeline
detrimentally affects performance. If instructions must be flushed from the pipeline and
subsequently re-fetched, both performance and power consumption may suffer.

[0004] Commonly all real-world programs include conditional branch instructions,
the actual branching behavior of which is commonly not known until the instruction is
evaluated deep in the pipeline. To avoid a stall that may result from waiting for actual
evaluation of the branch instruction, common modern processors employ some form of
branch prediction, whereby the branching behavior of conditional branch instructions is
predicted early in the pipeline. Based on the predicted branch evaluation, the
processor speculatively fetches (prefetches) and executes instructions from a predicted
address — either the branch target address (if the branch is predicted taken) or the next

sequential address after the branch instruction (if the branch is predicted not taken).
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When the actual branch behavior is determined, if the branch was mispredicted, the
speculatively fetched instructions must be flushed from the pipeline, and new
instructions fetched from the correct next address. Prefeteching instructions in
response to an erroneous branch prediction adversely impacts processor performance
and power consumption. Consequently, improving the accuracy of branch prediction is
desirable.

[0005] Known branch prediction techniques include both static and dynamic
predictions. The likely behavior of some branch instructions can be statically predicted
by a programmer and/or compiler. One example is an error checking routine.
Common code executes properly, and errors are rare. Hence, the branch instruction
implementing a “branch on error” function will evaluate “not taken” a very high
percentage of the time. Such an instruction may include a static branch prediction bit
in the op code, set by a programmer or compiler with knowledge of the common likely
outcome of the branch condition.

[0006] Dynamic prediction is generally based on the branch evaluation history (and
in some cases the branch prediction accuracy history) of the branch instruction being
predicted and/or other branch instructions in the same code. Extensive analysis of
actual code indicates that recent past branch evaluation patterns may be a good
indicator of the evaluation of future branch instructions.

[0007] One known form of dynamic branch prediction, depicted in Figure 1, utilizes
a Branch History Register (BHR) 100 to store the past n branch evaluations. In a
simple implementation, the BHR 30 comprises a shift register. The common recent
branch evaluation result is shifted in (for example, a 1 indicating taken and a 0
indicating not taken), with the oldest past evaluation in the register being displaced. A
processor may maintain a local BHR 100 for each branch instruction. Alternatively (or

additionally), a BHR 100 may contain the recent past evaluations of all conditional
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branch instructions, sometimes known in the art as a global BHR, or GHR. As used
herein, BHR refers to both local and global Branch History Registers.

[0008] As depicted in Figure 1, the BHR 100 may index a Branch Predictor Table
(BPT) 102, which again may be local or global. The BHR 100 may index the BPT 102
directly, or may be combined with other information, such as the Program Counter (PC)
of the branch instruction in BPT index logic 104. Other inputs to the BPT index logic
104 may additionally be utilized. The BPT index logic 104 may concatenate the inputs
(known in the art as gselect), XOR the inputs (gshare), perform a hash function, or
combine or transform the inputs in a variety of ways.

[0009] As one example, the BPT 102 may comprise a plurality of saturation
counters, the MSBs of which serve as bimodal branch predictors. For example, each
table entry may comprise a 2-bit counter that assumes one of four states, each
assigned a weighted prediction value, such as:

[0010] 11 — Strongly predicted taken

[0011] 10 — Weakly predicted taken

[0012] 01 — Weakly predicted not taken

[0013] 00 — Strongly predicted not taken

[0014] The counter increments each time a corresponding branch instruction
evaluates “taken” and decrements each time the instruction evaluates “not taken.” The
MSB of the counter is a bimodal branch predictor; it will predict a branch to be either
taken or not taken, regardless of the strength or weight of the underlying prediction. A
saturation counter reduces the prediction error of an infrequent branch evaluation
direction. A branch that consistently evaluates one way will saturate the counter. An
infrequent evaluation the other way will alter the counter value (and the strength of the
prediction), but not the bimodal prediction value. Thus, an infrequent evaluation will

only mispredict once, not twice. The table of saturation counters is an illustrative
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example only; in general, a BHT may index a table containing a variety of branch
prediction mechanisms.

[0015] Regardless of the branch prediction mechanism employed in the BPT 102,
the BHR 100 — either alone or in combination with other information such as the branch
instruction PC — indexes the BPT 102 to obtain branch predictions. By storing prior
branch evaluations in the BHR 100 and using the evaluations in branch prediction, the
branch instruction being predicted is correlated to past branch behavior — its own past
behavior in the case of a local BHR 100 and the behavior of other branch instructions
in the case of a global BHR 100. This correlation is the key to accurate branch
predictions, at least in the case of highly repetitive code.

[0016] Note that Figure 1 depicts branch evaluations being stored in the BHR 100
— that is, the actual evaluation of a conditional branch instruction, which may only be
known deep in the pipeline, such as in an execute pipe stage. While this is the ultimate
result, in practice, common high performance processors store the predicted branch
evaluation from the BPT 102 in the BHR 100, and correct the BHR 100 later as part of
a misprediction recovery operation if the prediction turns out to be erroneous. The
drawing figures do not reflect this implementation feature, for clarity.

[0017] A common code structure that may reduce the efficacy a branch predictor
employing a BHR 100 is the loop. A loop ends with a conditional branch instruction
that tests a loop-ending condition, such as whether an index variable that is
incremented each time through the loop has reached a loop-ending value. If not,
execution branches back to the beginning of the loop for another iteration, and another
loop-ending conditional branch evaluation.

[0018] If the loop executes through a large number of iterations, the “taken”
backwards branches of the loop-ending branch instruction partially or fully saturate the
BHR 100. Where the number of loop iterations equals or exceeds the BHR 100 width,

at the end of the loop an n-bit BHR will contain precisely n-1 ones (taken) followed by a
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single zero (not taken), corresponding to a long series of branch taken evaluations
resulting from the loop iterations, and ending with a single not-taken branch evaluation
when the loop terminates. This effectively destroys the efficacy of the BHR 100, as all
correlations with prior branch evaluations (for either a local or global BHR 100) are lost.
In this case, the BHR 100 will likely map to the same BPT 102 entry for a given branch
instruction (depending on the other inputs to the BPT index logic 104), rather than to an
entry containing a branch prediction that reflects the correlation of the branch
instruction to prior branch evaluations.

[0019] Additionally, the saturated BHR 100 may increase aliasing in the BPT 102.
That is, all branch instructions following loops with common iterations will map to the
same BPT 102 entry, if the BHR 100 directly indexes the BPT 102. Even where the
BHR 100 is combined with other information, the chance of aliasing is increased. This
adversely impacts prediction accuracy not only for the branch instruction following the
loop, but also for all of the branch instructions that alias to its entry in the BPT 102.
[0020] If the loop executes through fewer iterations than the width of the BHR 100,
the BHR 100 is not saturated and some prior branch evaluation history is retained.
However, the bits representing the prior branch evaluation history are displaced in the
BHR 100 by numerous “taken” results of the loop-ending branch instruction.
Particularly where the number of loop iterations varies, this has two deleterious effects
on branch prediction. First, the branch instruction will map to a much larger number of
entries in the BPT 102 to capture the same correlation with prior branch evaluations,
requiring a larger BPT 102 to support the same accuracy for the same number of
branch instructions than would be required without the loop-ending branch affecting the
BHR 30. Second, the branch predictors in the BPT 102 will take longer to “train,”
increasing the amount of code that must execute before the BPT 102 begins to provide

accurate branch predictions.
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[0021] Patent application Serial No. 11/066,508, assigned to the assignee of the
present application and incorporated herein by reference, proposes to suppress
updating the BHR 100 for loop-ending branch instructions. This resolves common of
the deleterious effects of BHR 100 saturation or partial saturation on branch prediction
accuracy. However, it fails to capture and exploit correlations that may exist between
loop behavior and subsequent branch evaluation.

[0022] In common applications, the evaluation of a branch instruction may be
correlated to the number of iterations of a preceding loop. For example, a scientific
program may capture data points in a loop and, following the loop, branch to a
statistical analysis subroutine where the captured data is analyzed. However, if the
loop iterates relatively few times, capturing few data points and yielding a small
sample, statistical analysis may be unreliable, and may be skipped. In this case, the
evaluation of the conditional instruction branching to the statistical analysis subroutine
is strongly correlated to the number of iterations of the data acquisition loop.

[0023] In another example, an application may use a loop structure to search
through a list, transaction log, history file, or similar data structure. If an item matching
the search parameters appears frequently in the list, relatively few loop iterations will
be required to locate the item. Consequently, an item appearing infrequently may
require a large number of iterations through the search loop. The evaluation of a
subsequent branch instruction may be correlated to the frequency with which a
particular item appears in the list, and hence correlated to the number of loop iterations
required to locate the item.

[0024] Suppressing the update of the BHR 100 in response to loop-ending branch
instruction evaluations fails to capture any correlation between the number of loop
iterations and the branch behavior of a subsequent branch instruction. On the other

hand, maintaining a full history of the evaluations of the loop-ending branch instruction
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fully or partially saturates the BHR 100, losing the correlation to branch instruction

evaluations prior to the loop.

SUMMARY

[0025] In response to a property of a conditional branch instruction associated with
a loop, such as a property indicating that the branch is a loop-ending branch, a count of
the number of iterations of the loop is maintained, and a multi-bit value indicative of the
loop iteration count is stored in the BHR. In one embodiment, the multi-bit value may
comprise the actual loop count, in which case the number of bits is variable. In another
embodiment, the number of bits is fixed (e.g., two) and loop iteration counts are
mapped to a multi-bit value by comparison to thresholds. Separate iteration counts
may be maintained for nested loops, and a multi-bit value stored in the BHR may
indicate a loop iteration count of only an inner loop, only the outer loop, or both.

[0026] One embodiment relates to a method of branch prediction. A property of a
branch instruction associated with a loop is identified. In response to the property, a
multi-bit value is stored in a BHR, the multi-bit value indicative of the number of
iterations of a loop associated with the branch instruction.

[0027] Another embodiment relates to a processor. The processor includes a
branch predictor operative to predict the evaluation of conditional branch instructions,
and an instruction execution pipeline operative to speculatively fetch and execute
instructions based on a prediction from the branch predictor. The processor also
includes a BHR operative to store the evaluation of conditional branch instructions, and
a loop counter operative to count the number of iterations of a code loop. The
processor further includes a control circuit operative to store in the BHR a multi-bit
value indicative of the number of iterations of a loop associated with a conditional

branch instruction.



WO 2007/109631 PCT/US2007/064331

BRIEF DESCRIPTION OF DRAWINGS

[0028] Figure 1 is a functional block diagram of a prior art branch predictor circuit.
[0029] Figure 2 is a functional block diagram of a processor.

[0030] Figure 3 is a flow diagram of a method of executing a branch instruction.
[0031] Figure 4 is a functional block diagram of a branch predictor circuit including

one or more Last Branch PC registers and Loop Counters.

DETAILED DESCRIPTION

[0032] Figure 2 depicts a functional block diagram of a processor 10. The
processor 10 executes instructions in an instruction execution pipeline 12 according to
control logic 14. In some embodiments, the pipeline 12 may be a superscalar design,
with multiple pipelines. The pipeline 12 includes various registers or latches 16,
organized in pipe stages, and one or more Arithmetic Logic Units (ALU) 18. A General
Purpose Register (GPR) file 20 provides registers comprising the top of the memory
hierarchy.

[0033] The pipeline 12 fetches instructions from an instruction cache (l-cache) 22,
with memory address translation and permissions managed by an Instruction-side
Translation Lookaside Buffer (ITLB) 24. When conditional branch instructions are
decoded early in the pipeline 12, a branch predictor 26 predicts the branch behavior,
and provides the prediction to an instruction prefetch unit 28. The instruction prefetch
unit 28 speculatively fetches instructions from the I-cache 22, at a branch target
address calculated in the pipeline 12 for “taken” branch predictions, or at the next
sequential address for branches predicted “not taken.” In either case, the prefetched
instructions are loaded into the pipeline 12 for speculative execution.

[0034] The branch predictor 26 includes a Branch History Register (BHR) 30, a

Branch Predictor Table (BPT) 32, BPT index logic 34, and BHR update logic 36. The
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branch predictor 26 may additionally include one or more Last Branch PC registers 38,
and one or more loop counters 37 providing inputs to the BHR update logic 36.

[0035] Data is accessed from a data cache (D-cache) 40, with memory address
translation and permissions managed by a main Translation Lookaside Buffer (TLB)
42. The TLB 42 may be a dedicated data TLB, or may comprise an integrated TLB
that manages address translations and permissions for both instructions and data.
Additionally, in various embodiments of the processor 10, the |-cache 22 and D-cache
40 may be integrated, or unified. Misses in the |-cache 22 and/or the D-cache 40
cause an access to main (off-chip) memory 44, under the control of a memory interface
46.

[0036] The processor 10 may include an Input/Output (I/O) interface 48, controlling
access to various peripheral devices 50, 52. Those of skill in the art will recognize that
numerous variations of the processor 10 are possible. For example, the processor 10
may include a second-level (L2) cache for either or both the | and D caches 22, 40. In
addition, one or more of the functional blocks depicted in the processor 10 may be
omitted from a particular embodiment.

[0037] Multi-Bit Indications of Loop lterations

[0038] According to one or more embodiments, branch prediction accuracy is
improved by correlating branch evaluation to both previous branch evaluations and the
iteration count of previous loops. This is accomplished by storing a multi-bit value
indicative of loop iteration count(s) in the BHR 30. By mapping potentially large loop
iteration counts to relatively few bits, characteristic information about the loop is
preserved while preventing the loop-ending branches from fully or partially saturating
one or more BHRs 30 in the branch predictor 26.

[0039] This process is depicted as a flow diagram in Figure 3. An instruction is
fetched and decoded (block 52). If the instruction is a not conditional branch

instruction (block 53), it proceeds in the pipeline and the process returns to fetch the
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next instruction (block 52). If the instruction is a conditional branch instruction (block
53), a determination is made whether the branch is a loop-ending branch (block 54). If
not, when the branch evaluates (such as in an execute stage of the pipeline) the BHR
30 is updated to record the branch evaluation using a single bit (block 56), i.e., whether
the branch instruction evaluated as “taken” or “not taken.” Execution then continues
(block 64) at the branch target address or the next sequential address, respectively. If
the branch is a loop-ending branch (block 54), a loop iteration count is incremented
(block 58). When the loop completes (block 60), a multi-bit value indicative of the
number of loop iterations is written to the BHR 30 (block 62). The loop iteration counter
is then cleared (block 63) and execution continues (block 64) at the next sequential
address.

[0040] Both the query (block 54) — that is, identifying a branch instruction as a loop-
ending branch instruction — and maintaining the loop iteration count (block 58) may be
accomplished in a variety of ways. In one embodiment, one or more Loop Counters
(LC) 37 are incremented when a conditional branch instruction that is determined to be
a loop-ending branch evaluates “taken.” The value of the LC 37, or a value derived
therefrom (as discussed more fully herein), is written to the BHR 30 when the loop-
ending branch evaluates “not taken,” indicating an exit of the loop. The LC 37 is also
cleared at that time.

[0041] Identifying Loop-Ending Branch Instructions

[0042] Loops iterate by branching backwards from the end of the loop to the
beginning of the loop. According to one embodiment, every conditional branch
instruction with a branch target address less than the branch instruction address, or
PC — that is, a backwards branch — is assumed to be a loop-ending branch instruction.
This method of identifying Loop-Ending branches offers simplicity. As depicted in
Figure 4, the branch instruction PC is compared to the branch target address (BTA) in

Loop-Ending Branch Detection logic 35 when the branch instruction is actually
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evaluated in the pipeline. If BTA < PC, a Loop Counter (LC) 37 is incremented. This
embodiment requires an address comparison when the branch target address is
determined, and may suffer from some inaccuracy as not all backward branches are
loop-ending branches.

[0043] Another way to detect a loop-ending branch is to recognize repeated
execution of the same branch instruction. In one embodiment, as depicted in Figure 4,
a Last Branch PC (LBPC) register 38 stores the PC of the last branch instruction
executed. In the case of a simple loop, if the PC of a branch instruction matches the
LBPC 38 in the Loop-Ending Branch Detection logic 35 — that is, the branch instruction
was the last branch instruction evaluated — the branch instruction is assumed to be a
loop-ending branch instruction, and a LC 37 is incremented.

[0044] Code that includes conditional branch instructions within a loop can
complicate loop-ending branch detection. For example, common algorithms for
searching an array or linked list create a loop. A branch within the loop checks for a
match and exits the loop early if a match is found, while a loop-ending branch checks
for the end of the array or linked list. In this case, a single LBPC 38 cannot detect the
loop-ending branch, because it will be alternately overwritten by the two branch PCs.
Accordingly, in one embodiment, two or more LBPC registers 38 may be provided (as
depicted in Fig. 4), with the PCs of successively evaluated branch instructions stored in
corresponding LBPC registers (LBPCy, LBPC4, ... LBPCy) 38. This allows for the
detection of loop-ending branches even in the presence of other conditional branches
within the loop.

[0045] Loop-ending branch instructions may also be statically marked by a
compiler or assembler. In one embodiment, a compiler generates a particular type of
branch instruction that is only used for loop-ending branches, for example, “BRLP”.
The BRLP instruction is recognized, and a LC 37 is incremented every time a BRLP

instruction evaluates as taken in an execution pipe stage. In another embodiment, a
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compiler or assembler may embed a loop-ending branch indication in a branch
instruction, such as by setting one or more predefined bits in the instruction op code.
The loop-ending branch bits are detected, and a LC 37 is incremented when that
branch instruction evaluates as taken in an execute pipe stage. In general, a Loop-
Ending Indicator may be provided to the Loop-Ending Branch Detection logic 35.
Static identification of loop-ending branches reduces hardware and computational
complexity by moving the loop-ending identification function into the compiler or
assembler.

[0046] Generating and Storing an Indicator of the Number of Loop Iterations

[0047] Regardless of the technique used to identify a loop-ending branch
instruction (for either an inner or outer loop), according to one or more embodiments,
an indication of the number of times the loop iterates is stored in the BHR 30, to exploit
any correlation between the number of loop iterations and subsequent conditional
branch instruction evaluation.

[0048] In one embodiment, the actual count of loop iterations is stored in the BHR
30. That is, the multi-bit count from, e.g., a LC 37 is shifted into the BHR 30, displacing
prior branch evaluations in the MSBs of the BHR 30. For very large loops, this count
will require log, (n) bits for n loop iterations, displacing a corresponding number of prior
branch evaluations. However, even for large loop iteration counts, the binary
representation is a significant compression of the loop-ending branch behavior stored
in prior art branch history registers (i.e., n-1 ones followed by a single zero). In one
embodiment, the iteration count is accumulated in a LC 37 and shifted into the BHR 30.
In another embodiment (not shown), at least the lower k bits of the BHR 30 may be
implemented as a dual-mode shift-register/counter, and the loop iteration count may be
incremented directly in the BHR 30 (with prior BHR 30 contents shifting left as the

count grows).
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[0049] In another embodiment, a fixed, multi-bit indication of the number of loop
iterations is stored in the in the BHR 30. For example, two bits may be allocated to
record an indication of the number of loop iterations, with the following meanings:
[0050] 11 — Very large number of loop iterations

[0051] 10 — Large number of loop iterations

[0052] 01 — Moderate number of loop iterations

[0053] 00 — Small number of loop iterations

[0054] In this example, three threshold values — between small and moderate (00 -
> 01); between moderate and large (01 -> 10), and between large and very large (10 ->
11) — are used to map the actual loop iteration count to a two-bit representation, as
indicated by Thresholding logic 39. In one embodiment, the threshold values may be
fixed for a given processor implementation, such as for certain embedded applications
where common loop sizes are generally known. In another embodiment, the mapping
may be scalable, with the threshold values read from GPRs 20, a table in memory 44,
or the like. In common applications, a fixed multi-bit indication of the number of loop
iterations may provide sufficient indication of the loop iteration count to allow for
meaningful correlation with branch evaluation behavior, while at the same time limiting
the number of prior branch evaluations displaced from the BHR 30 by loop-ending
branches.

[0055] Of course, actual loop iteration counts may be mapped to any fixed number
of bits, with the corresponding number of threshold values, e.g., three bits and seven
thresholds; four bits and fifteen thresholds; etc., to achieve the desired or required
balance between loop iteration count accuracy and branch evaluation displacements in
the BHR 30.

[0056] Nested Loops

[0057] A loop may contain one or more nested, or inner, loops. Accordingly, in one

embodiment, a plurality of LC counters (LCq, LC4, ... LCy) 37 are provided, which may
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correspond to the number of LBPC 38 registers. A LC 37 is incremented upon a taken
evaluation and a match with the relevant LBPCy 38, to maintain the iteration counts of
nested loops.

[0058] By storing a multi-bit indication of the number of iterations of an inner loop
every time the inner loop exits, the BHR 30 may become partially or completely
saturated by the time the outer loop iterates relatively few times. Accordingly, in one
embodiment, once a loop is determined to be an inner loop, subsequent iteration
counts after an initial execution of the inner loop may be suppressed from updating the
BHR 30. In this embodiment, by the time the outer loop exits, the BHR 30 will include
an indication of the iteration count of the inner loop only for the first iteration of the
outer loop, and an indication of the iteration count of the outer loop.

[0059] In another embodiment, the inner loop iteration count may be discarded by
overwriting its value in the BHR 30 with an indication of the outer loop iteration count.
This preserves the greatest number of prior branch evaluations in the BHR 30, while
allowing for correlation of subsequent branch evaluations with the iteration count of the
outer loop.

[0060] In another embodiment, the outer loop iteration count may be discarded by
suppressing an update of the BHR 30 when the outer loop exits. This again preserves
the greatest number of prior branch evaluations in the BHR 30, while allowing for
correlation of subsequent branch evaluations with the iteration count of the inner loop,
which may be more predictive of subsequent branch evaluation in some applications.
[0061] A conditional branch instruction has common properties, including for
example the branch instruction address or PC, the instruction type, and the presence,
vel non, of indicator bits in the op code. As used herein, properties of the branch
operation, and/or properties of the program that relate to the branch, are considered
properties of the branch instruction. For example, whether the branch instruction PC

matches the contents of one or more LBPC registers 38, and whether the branch target
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address is forward or backward relative to the branch instruction PC, are properties of
the branch instruction.

[0062] Although the present disclosure has been described herein with respect to
particular features, aspects and embodiments thereof, it will be apparent that
numerous variations, modifications, and other embodiments are possible within the
broad scope of the present disclosure, and accordingly, all variations, modifications
and embodiments are to be regarded as being within the scope of the disclosure. The
present embodiments are therefore to be construed in all aspects as illustrative and not
restrictive and all changes coming within the meaning and equivalency range of the

appended claims are intended to be embraced therein.
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CLAIMS
What is claimed is:
1. A method of branch prediction, comprising:

identifying a property of a branch instruction associated with a loop; and
in response to the property, storing a multi-bit value in a Branch History
Register (BHR), the value indicative of the number of iterations of a loop

associated with the branch instruction.

2. The method of claim 1 wherein the property is the direction of the branch.

3. The method of claim 2 wherein the branch is backwards.

4. The method of claim 1 wherein the branch instruction is a loop-ending branch
instruction.

5. The method of claim 4 wherein the PC of the branch instruction matches the

contents of a Last Branch PC (LBPC) register storing the PC of the last branch

instruction to update the BHR.

6. The method of claim 4 wherein the PC of the branch instruction matches the
contents of any of a plurality of LBPC registers storing PCs of the last plurality of

branch instruction to update the BHR.

7. The method of claim 4 wherein the branch instruction is a unique branch

instruction generated by a compiler for ending loops.
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8. The method of claim 4 wherein the branch instruction op-code includes one or

more bits indicating it is a loop-ending branch instruction.

9. The method of claim 1 wherein storing a multi-bit value in the BHR comprises

storing a predetermined number of bits in the BHR.

10. The method of claim 9 further comprising determining the value of the
predetermined number of bits according to a fixed mapping of the number of loop

iterations to the multi-bit value.

11. The method of claim 9 further comprising determining the value of the
predetermined number of bits according to a scalable mapping of the number of loop

iterations to the multi-bit value.

12. The method of claim 11 further comprising reading a plurality of thresholds to

determine the scalable mapping of the number of loop iterations to the multi-bit value.

13. The method of claim 1 wherein storing a multi-bit value in the BHR comprises
storing a variable number of bits in the BHR, the number of bits varying in response to

the number of iterations of the loop.

14. The method of claim 13 further comprising counting loop iterations in the least

significant plurality of bits of the BHR.

15. The method of claim 13 further comprising counting loop iterations in a loop
counter, and transferring the value of the loop counter to the BHR when the loop

terminates.
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16. The method of claim 1 wherein identifying a property of a branch instruction
associated with a loop comprises detecting a first loop-ending branch instruction
associated with a first loop and a second loop-ending branch instruction associated

with a second loop, the first loop nested within the second loop.

17. The method of claim 16 wherein storing a multi-bit value in the BHR comprises
storing a multi-bit value indicative of the number of iterations of the first loop in the
BHR, and further comprising storing a multi-bit value indicative of the number of

iterations of the second loop in the BHR.

18. The method of claim 16 wherein storing a multi-bit value in the BHR comprises
storing only a multi-bit value indicative of the number of iterations of the first loop in the

BHR.

19. The method of claim 16 wherein storing a multi-bit value in the BHR comprises
storing only a multi-bit value indicative of the number of iterations of the second loop in

the BHR.
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20. A processor, comprising:

a branch predictor operative to predict the evaluation of conditional branch
instructions;

an instruction execution pipeline operative to speculatively fetch and execute
instructions based on a prediction from the branch predictor;

a Branch History Register (BHR) operative to store the evaluation of conditional
branch instructions;

a Loop Counter (LC) operative to count the number of iterations of a code loop;
and

a control circuit operative to store in the BHR a multi-bit value indicative of the
number of iterations of a loop associated with a conditional branch

instruction.

21. The processor of claim 20 further comprising a Last Branch PC (LBPC) register
operative to store the PC of a conditional branch instruction, and wherein the control
circuit determines a conditional branch instruction is associated with a loop if the PC of

the branch instruction matches the contents of the LBPC register.

22. The processor of claim 21 further comprising two or more LBPCs registers and
a corresponding two or more LCs, a first LBPCs operative to store the PC of a
conditional branch instruction associated with a first loop and a first LC operative to
maintain a count of iterations of the first loop, and a second LBPCs operative to store
the PC of a conditional branch instruction associated with a second loop and a second
LC operative to maintain a count of iterations of the second loop, wherein the first loop

is nested within the second loop.
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23. The processor of claim 22, wherein the control circuit is operative to store in the
BHR a multi-bit value indicative of the number of iterations of one execution of the first

loop and a multi-bit value indicative of the number of iterations of the second loop.

24. The processor of claim 22, wherein the control circuit is operative to store in the
BHR a multi-bit value indicative of the number of iterations of one execution of the first
loop and to not store in the BHR an indication of the number of iterations of the second

loop.

25. The processor of claim 22, wherein the control circuit is operative to store in the
BHR a multi-bit value indicative of the number of iterations of the second loop and to
not store in the BHR an indication of the number of iterations of any execution of the

first loop.

26. The processor of claim 20 wherein the BHR operative to increment a plurality of
bits in response to each taken evaluation of the conditional branch instruction

associated with the loop so as to maintain a loop iteration count directly in the BHR.

27. The processor of claim 20 further comprising thresholding logic operative to
map a loop iteration count to a fixed, a multi-bit value in response to a plurality of

threshold values.
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