WO 2006/028656 A2 || 0000000 0 000 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 March 2006 (16.03.2006)

lﬂb A 00 0 O 0

(10) International Publication Number

WO 2006/028656 A2

(51) International Patent Classification:
GOGF 3/00 (2006.01)

(21) International Application Number:
PCT/US2005/028838

(22) International Filing Date: 15 August 2005 (15.08.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/936,421 8 September 2004 (08.09.2004) US

(71) Applicant (for all designated States except US):
FISHER-ROSEMOUNT SYSTEMS, INC. [US/US];

8301 Cameron Road, Austin, Texas 78754 (US).

(72)
(75)

Inventors; and

Inventors/Applicants (for US only): FRANCHUK,
Brian, A. [US/US]; c¢/o Fisher-Rosemount Systems, Inc.,
8301 Cameron Road, Austin, Texas 78754 (US). BEN-
SON, Roger, R. [US/US]; c/o Fisher-Rosemount Systems,
Inc., 8301 Cameron Road, Austin, Texas 78754 (US).

(74) Agents: FAIRBAIRN, David, R. et al.; Kinney & Lange,
PA, Kinney & Lange Building, 312 South Third Street,

Minneapolis, Minnesota 55415-1002 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: LOW LATENCY DATA PACKET RECEPTION AND PROCESSING

10

4
12
Power
Supply L, — > |
PN 114 eree ||t eree | [haree |
Basic
@ Device i
207" yrNy=zo 24~ yrnpeas ZEngzz 2 yrgers 28 ierngeFs

(57) Abstract: Devices in a process control system communicate by data messages over a communication medium segment. Each
device includes a communication controller that includes a data queue and a queue of received message objects. The data queue
stores a plurality of messages received on the communication medium. The received message objects contain information about a

corresponding message in the data queue.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

LOW LATENCY DATA PACKET RECEPTION AND PROCESSING

BACKGROUND OF THE INVENTION

The present invention relates to a communications controller for
use in field instruments and other devices of process control systems. In
particular, the present invention is a system and method for low latency data
packet reception and processing in a communications controller.

In a typical industrial plant, a distributed control system (DCS)
is used to control many of the industrial processes performed at the plant.
Typically, the plant has a centralized control room having a computer system
with user input/output (1/0), disc /O, and other peripherals as are known in
the computing art. Coupled to the computing system are a controller and a
process 1/O subsystem.

The process /O subsystem includes of /O ports which are
connected to various field devices throughout the plant. Field devices
include various types of analytical equipment, silicon pressure sensors,
capacitive pressure sensors, resistive temperature detectors, thermocouples,
strain gauges, limit switches, on/off switches, flow transmitters, pressure
transmitters, capacitance level switches, weigh scales, transducérs, valve
positioners, valve controllers, actuators, solenoids, and indicator lights. The
term “field device” encompasses these devices, as well as any other device
that performs a function in a distributed control system.

Traditionally, analog field devices have been connected to the
control room by two-wire twisted pair current loops, with each device
connected to the control room by a single two-wire twisted pair. Analog field
devices are capable of responding to or transmitting an electrical signal
within a specified range. In a typical configuration, it is common to have a
voltage differential of approximately 20-25 volts between the two wires of the
pair and a current of 4-20 milliamps running through the loop. An analog
field device that transmits a signal to the control room modulates the current
running through the current loop, with the current proportional to the sensed
process variable. On the other hand, an analog field device that performs an

action under control of the control room is controlled by the magnitude of the

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

current through the loop, which is modulated by the /O port of the process
I/O system, which in turn is controlled by the controller. Traditional two-wire
analog devices having active electronics can also receive up to 40 milliwatts
of power from the loop. Analog field devices requiring more power are
typically connected to the control room using four wires, with two of the wires
delivering power to the device. Such devices are known in the art as four-
wire devices and are not power limited, as are two-wire devices.

In contrast, traditional discrete field devices transmit or respond
to a binary signal. Typically, discrete field devices operate with a 24-volt
signal (either AC or DC), a 110- or 240-volt AC signal, or a 5-volt DC signal.
Of course, a discrete device may be designed to operate in accordance with
any electrical specification required by a particular control environment. A
discrete input field device is simply a switch which either makes or breaks the
connection to the control room, while a discrete output field device will take
an action based on the presence or absence of a signal frém the control
room.

Historically, most traditional field devices have had either a
single input or a single output that was directly related to the primary function
performed by the field device. For example, the only function implemented
by a traditional analog resistive temperature sensor is to transmit a
temperature by modulating the current flowing through the two-wire twisted
pair, while the only function implemented by a traditional analog valve
positioner is to position a valve between an open and closed position,
inclusive, based on the magnitude of the current flowing through the two-wire
twisted pair.

More recently, hybrid systems that superimpose digital data on
the current loop have been used in distributed control systems. One hybrid
system is known in the control art as the Highway Addressable Remote
Transducer (HART) and is similar to the Bell 202 modem specification. The
HART system uses the magnitude of the current in the current loop to sense
a process variable (as in the traditional system), but also superimposes a

digital carrier signal upon the current loop signal. The carrier signal is

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

relatively slow, and can provide updates of a secondary process variable at a
rate of approximately 2-3 updates per second. Generally, the digital carrier
signal is used to send secondary and diagnostic information and is not used
to realize the primary control function of the field device. Examples of
information provided over the carrier signal include secondary process
variables, diagnostic information (including sensor diagnostics, device
diagnostics, wiring diagnostics, and process diagnostics), operating
temperatures, temperature of the sensor, calibration information, device ID
numbers, materials of construction, configuration or programming
information, etc. Accordingly, a single hybrid field device may have a variety
of input and output variables and may implement a variety of functions.

HART 1is an indusiry standard nonproprietary system.
However, it is relatively slow. Other companies in the industry have
developed proprietary digital transmission schemes which are faster, but
these schemes are generally not used by or available to competitors.

More recently, a newer control protocol has been defined by
the Instrument Society of America (ISA). The new protocol is generally
referred to as Fieldbus. Fieldbus is a multi-drop serial digital two-way
communications protocol intended for connecting field instruments and other
process devices such as monitoring and simulation units in distributed control
systems. Fieldbus allows enhanced digital communication over previous
process control loop methods while maintaining the ability to power process
devices coupled to the Fieldbus loop and while meeting intrinsic safety
requirements.

Two reasonably standardized industrial Fieldbus protocols are
Foundation Fieldbus and Profibus. The physical layer of the Fieldbus
protocols are defined by Instrument Society of America standard ISA-S50.02-
1992, and its draft two extension dated 1995. The Fieldbus protocol defines
two subprotocols. An H1 Fieldbus network transmits data at a rate up to
31.25 kilobits per second (Kbps) and provides power to field devices coupled
to the network. The H1 physical layer subprotocol is defined in Clause 11 of
the ISA standard, part two approved in September 1992. An H2 Fieldbus

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

network transmits data at a rate up to 2.5 megabits per second (Mbps), does
not provide power to field devices connected to the network, and is provided
with redundant transmission media.

Fieldbus provides significant capabilities for digitally
communicating immense amounts of process data. Thus, there is a
continuing need to develop process control devices capable of maximizing
fieldbus communication effectiveness.

BRIEF SUMMARY OF THE INVENTION

The present invention is a communication controller for use in a
device on a network that processes messages received over a
communication medium. The communications controller includes a data
queue and a queue of received message objects. The data queue stores a
plurality of messages received on the communication medium. The received
messages are preferably written to the received data memory at a write
pointer position and read from the received data memory at a read pointer
position. The communications controller also includes received message
objects. Each received message object contains information about a
corresponding message in the data queue.

Each received message object preferably contains a plurality of
attributes, including Overflow, Underflow, DataReady, EndPosition, and an
active flag. Overflow indicates whether an overflow occurred in the data
queue while receiving a message from the communication medium.
Underflow indicates whether a read from the data queue failed due to lack of
data. DataReady indicates that the data queue is almost full based on a
threshold queue depth maintained in the device. EndPosition stores position
information from the data queue. The active flag selects and enables the
received message object.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a process control system with digital
communication between devices over a communication medium segment.

FIG. 2 shows a message format for communications between

devices of the process control system of FIG.1.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

FIG. 3 is a block diagram of a device of the process control
system. ,

FIG. 4 is a functional block diagram of a communication
controller of the device of FIG. 3.

FIG. 5 is a functional block diagram of a receive/transmit event
manager for processing data packets received on the communication
medium segment. '

DETAILED DESCRIPTION

Process Control System Overview

The present invention relates to a communication controller for
use in field instruments and other devices of process control systems. The
purpose of the communication controller is to perform a substantial portion of
the link layer processing of messages andl timer management, thereby
freeing the application processor or CPU to perform other functions. For the
purpose of this detailed description, the communication controller will be
described in the context of a system using the Foundation Fieldbus
communications protocol, although it has general applicability to packet-
based communication protocols.

The fieldbus physical layer defines the electrical characteristics
of the physical means of transmission and reception of the communications
protocol data in the form of a Physical Layer Protocol Data Unit (PhPDU). In
addition, the fieldbus physical layer specifies the symbol encoding, message
framing, and error detection method. The ISA fieldbus standard defines
three signaling speeds and two modes of coupling. For purposes of this
description, the invention will be described in the context of the H1 physical
layer defined in clause 11 of ISA $50.02 Standard, Part 2. That clause
covers a 31.25 Kbps, voltage mode, wire medium, with a low-power option.
This option allows for a device connected to the communications medium to
receive its operational power from the communications medium. The
physical layer can be capable of meeting the intrinsic safety requirements for

hazardous environments. The protocol operates on low-grade twisted pair

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

cable and supports multiple devices, in accordance with the voltage and
current limitations which are defined by the standard.

FIG. 1 shows a typical process control system 10 including
segment 12, power supply 14 and five devices: Link Active Scheduler (LAS)
device 20, Link Master (LM) device 22, and basic devices 24, 26, and 28.
Segment 12 can support up to thirty-two devices on a single pair of wires.
Typically, segment 12 will have from four to sixteen devices, based on loop
execution speed, power, and intrinsic safety requirements.

LAS device 20 maintains a central schedule for all the
communication between devices on segment 12. LAS device 20 improves
the overall communication reliability by sending Compel Data (CD) Data Link
Protocol Data Units (DLPDUS) to each device to transmit back cyclic data
which is then scheduled to do so. LAS device 20 serves as the local source
of Data Link time (DL-time) on segment 12. A DLPDU is the data content of
the PhPDU message that is communicated across segment 12.

LM device 22 is configured to take over the responsibilities of
LAS device 20 should LAS device 20 fail or become inoperable. Although
only LM device 22 is shown in FIG. 1, more than one Link Master device can
be present on a segment. This allows for the case if both the Link Active
Scheduler and the first Link Master were to fail, then the second Link Master
can take over for the Link Active Scheduler. Once the Link Active Scheduler
is disabled, the Link Master takes over the functionality of the Link Active
Scheduler.

Each device has a unique address called the V(TN), which
represents the local node-ID(This_Node). In the example shown in FIG. 1,
LAS device 20 has an address V(TN)=20; LM device 22 has address
V(TN)=22; basic device 24 has address V(TN)=A5; basic device 26 has
address V(TN) =F3; and basic device 28 has address V(TN)=F5.

LAS device 20 sends Pass Token (PT) and Probe Node (PN)
messages to all devices on segment 12. Each of the other devices (LAS
device 22 and basic devices 24, 26, 28) send Return Token (RT) and Probe

Response (PR) messages back to LAS device 20, as appropriate.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

7

Each basic'device 24, 26, 28 only needs to see its own PT and
PN messages that are sent by LAS device 20. PT and PN messages have a
designation address (DA) encoded in the second byte of the DLPDU. LAS
device 20 passes a token (PT) or probes a node (PN) one at a time to all
devices on segment 12.

Once basic device 24, 26, or 28 receives a PT message with a
designation address equal to that device’s unique address (DA=V(TN)), it
then will respond back to LAS device 20 with an RT message. If basic
device 24, 26, or 28 receives a PN DLPDU with DA=V(TN), it is required to
respond back with a PR message.

The transmission of PT and PN messages from LAS 20 and RT
and PR messages to LAS 20 creates several messages on segment 12 that
a particular basic device 24, 26, 28 does not need to receive and take action
on. Each basic device 24, 26, 28 only needs to respond to PT and PN
messages addressed to that particular device. Constantly getting interrupted
by PT and PN messages from LAS 20 that are addressed to other devices,
as well as RT and PR messages from other devices addressed to LAS
device 20, can create undue processing time to handle these “nuisance
interrupts.” With basic devices 24, 26, and 28, DLPDU filtering can be-used
to reduce the number of interrupts that the basic device has to process. On
the other hand, LAS device 20 must process every message on segment 12.

All devices on segment 12 transmit data onto segment 12 as a
Manchester encoded baseband signal. With Manchester encoding, “0” and
“1” are represented by transitions that occur from low-to-high and high-to-
low, respectively, in the middle of the bit period. For fieldbus, the nominal bit
time is 32 microseconds (psec), with the transition occurring at 16 psec. The
Manchester encoding rules have been extended to include two additional
symbols, non-data plus (N+) and non-data minus (N-), wherein no transition
occurs during the bit period and the Manchester encoded baseband signal
remains high (N+) or low (N-).

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

Message Format

FIG. 2 shows the format of a Physical Layer Protocol Data Unit
(PhPDU) used to transmit messages over segment 12. The PhPDU includes
a preamble, a Start Delimiter (SD) a Data Link Protocol Data Unit (DLPDU)
and an End Delimiter (ED). The preamble is the first several bits of the
PhPDU message. The fieldbus specification allows for one to eight bytes of
preamble. The device receiving the message uses the preamble to
synchronize with the incoming message. As shown in FIG. 2, the sequence
of the first byte of the preambleis 1010101 0.

The Start Delimiter (SD) immediately follows the preamble.
There is one SD per message. The fieldbus specification requires that the
SD have non-character data (N+ and N-), which always'appear in the SD
message in complementary pairs. This encoding scheme makes the SD
unique and impossible to confuse with the data portion (DLPDU) of the
message. The sequence shown in FIG. 2 for the SD is 1 N+ N-1 0 N- N+ 0.

The DLPDU is a variable length message. It contains a Frame
Control (FC) byte as its first byte and a Frame Check Sequence (FCS) check
sum as its final two bytes. The length of DLPDU is variable, with a minimum
of three bytes (in the case of an RT message) up to a jabber limit of, for
example, about 300 bytes.

The End Delimiter (ED) follows the DLPDU. It represents the
last byte of any PhPDU message transmitted over segment 12. Similar to
the SD, the ED includes non-character data in complementary pairs. This
encoding scheme makes the ED unique and impossible to confuse with the
DLPDU. The sequence shown in FIG. 2 for the End Delimiter is 1 N+ N- N+
N-101.

FIG. 2 also shows a Carrier Detect signal. The purpose of the
Carrier Detect signal is to indicate when (a) an incoming PhPDU message is
present on segment 12 or (b) a device is transmitting a message onto

segment 12.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

Start of Transmit (SOT) occurs at the moment that a Transmit
Enable (TxE) goes active, i.e., when the preamble of a PhPDU message is
first presented to segment 12.

Start of Activity (SOA) occurs after the Carrier Detect signal
goes active and has been stable for at least one bit time or two bit times
(approximately 16 to 32 psec). This time depends on when the Carrier
Detect goes active with respect to the internal clock of the device receiving
the message. This allows the communication controller of the device to
ignore noise glitches that are most apt to occur at the front end of the
preamble. Additional time is used to synchronize with the bit boundaries to
eliminate the potential for short noise bursts on segment 12 being
misinterpreted as activity. For a transmitted message, SOA occurs once the
Transmit Enable goes active (i.e., the preamble of the PhPDU is presented to
segment 12).

Start of Message (SOM) occurs at the beginning of the first bit
of when the FC byte is detected for a received message.

SOM_xmt is the Start of Message Transmit, which occurs at
the beginning of the first bit of when the FC byte is detected for a transmitted
message.

SOMf is an SOM of a received filtered DLPDU. This occurs
when the communication controller within the device has detected enough
information to make the determination that the incoming message is to be
filtered.

End of Message (EOM) occurs at the end of the last bit of the
ED being encountered in a received message. End of Transmission (EOT)
occurs at the end of the last bit of the ED a transmitted message.

End of Activity (EOA) occurs when the Carrier Detect has gone
inactive. The EOA occurs for both transmitted and received DLPDUs.

Device Architecture

FIG. 3 shows a block diagram of the communications portion of
basic device 24, which is representative of the architecture in each of devices

20-28. Basic device 24 includes central processing unit (CPU) 30, random

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

10

access memory (RAM) 32, flash memory 34, communications controller 36,
and medium attachment unit (MAU) 38.

In the embodiment shown in FIG. 3, CPU 30 is a
microprocessor such as Motorola 68LC302, Motorola Mcore 2075, Motorola
PowerPC 850, Atmel Thumb processor AT91M40800 and others. CPU 30 is
‘an 8-bit or higher processor.

in the embodiment shown in FIG. 3, communication controller
36 is an application specific integrated circuit (ASIC) chip that serves as an
interface between MAU 38 and CPU 30. It transmits and receives encoded
Manchester data to and from external analog circuitry connected to fieldbus
segment 12. After receiving the serial data from MAU 38, communication
controller 36 decodes the data, forms the data into bytes, strips off the
preamble, SD, and ED, (and, optionally, the FCS bytes) and provides the
message data for the link layer to read. For data transmission,
communication controller 36 receives bytes of DLPDU data from the link
layer and adds the preamble, the SD, optionally generates the FCS, and
adds the ED. Communication controller 36 then forms serially encoded
Manchester data, which is sent to MAU 38 for transmission on fieldbus
segment 12.

Communication between communication controller 36 and
MAU 38 is provided through four signals: RxS, RxA, TxS, and TxE. RXxS is
the received Manchester Encoded serial data. RxA is the Carrier Detect
signal for received data. TxS is the transmitted encoded serial data. TxE is
the transmit enable signal. '

In other embodiments of the invention, communication
controller 36 can be formed on a common integrated circuit with CPU 30. In
addition, RAM 32 and flash memory 34 may also be combined with CPU 30
in some embodiments. In the case of LAS device 20, CPU 30, RAM 32 and
flash memory 34 may be a part of a host computer system of process control
system 10.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

11

MAU 38 provides the network connection to Fieldbus segment
12. MAU 38 may be an integrated circuit, or discrete components can be
used to form MAU 38.

Communication Controller 36

FIG. 4 is a functional block diagram of communication controller
36. In this embodiment, communication controller 36 includes debounce
circuif 42, digital phase lock loop (PLL) 44, front end state machine 46,
receive message filtering 48, receive first-in-first-out (FIFO) memory 50,
transmit state machine 52, transmit FIFO memory 54, transmit driver circuitry
56, receive/transmit event manager 58, registers 60, clock generation
circuitry 62, oscillator 64, timers 68, and CPU interface circuitry 70.

When an incoming message is detected by MAU 38, a Carrier
Detect signal is provided to communication controller 36 at the RxA input,
and the incoming asynchronized Manchester data is provided at the RxS
input. The RxA and RxS inputs are presented to front end state machine 46.
Digital PLL 44 recovers and regenerates the clock from the incoming serial
Manchester encoded data. This regenerated clock is then used to clock front
end state machine 46.

Front end state machine 46 detects the incoming serial bit
stream RxS. It strips off the preamble, SD, and ED, and stores the DLPDU
into receive FIFO memory 50. Front end state machine 46, together with
receive message filtering 48, can be configured to filter out specific frame
controls, plus Probe Node (PN) and Pass Token (PT) messages addressed
to other devices. Front end state machine 46 keeps track of the number of
bytes that have been written into receive FIFO memory 50. The FCS is
automatically verified at the end of each message, and can be optionally
stored into receive FIFO memory 50.

Front end state machine 46 also provides signals representing
specific events it has detected. These include the SOM, SOMf, EOM, SOA,
and EOA event pulses.

Front end state machine 46 is activated when the RxA line

goes active. Front end state machine 46 then synchronizes with the edges

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

12

of the preambile field and decodes the Manchester encoded data of the RxS
signal. The SOA event indicates that front end state machine 46 has started.

Once the preamble has been detected, front end state machine
46 waits for the Start Delimiter (SD) sequence. After the SD has been
detected, front end state machine 46 converts the serial data stream into
octets, and writes them to receive FIFO memory 50 in 8-bit bytes. Front end
state machine 46 continues writing new octets of data into receive FIFO
memory 50 until the End Delimiter (ED) is detected, or until receive FIFO
memory 50 is full.

When the ED has been detected, front end state machine 46
waits for the RxA line to go inactive, which is indicated by the EOA event.

With the RXA line inactive, front end state machine 46 returns
to its initial state. It remains in that initial state until the next activity on
fieldbus segment 12 (i.e., until a Carrier Detect signal is provided at RxA
again).

Filtering circuitry is used for basic devices, to reduce IRQ
loading on messages that are not important to the device. In contrast, a
device configured as an LAS must receive all messages on the segment and
therefore must have filtering disabled. When filtering is disabled, all received
messages will be stored in receive FIFO memory 50 and will be passed-on to
registers 60 and then to CPU 30. SOMf is a Start Of Message signal for a
received filtered DLPDU. It occurs when front end state machine 46 has
determined that the received message has detected enough information to
determine that the incoming message is to be filtered.

With filtering enabled, messages that are filtered are not stored
in received FIFO memory 50. For filtered messages, SOMf will not be
generated, therefore no event or IRQ will occur.

Examples of filtered messages are Return Token (RT), idle,
Request Interval (RI) and Probe Response (PR) DLPDU messages will |
always be rejected. These are identified based upon the Frame Control (FC)
byte. Pass Token (PT) and Probe Node (PN) messages will be accepted if

the destination address in the message matches the address for the device.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

13

If the destination address does not match, then the PT and PN messages are
rejected.

The ability to filter message types based on the FC byte and
based upon the destination address reduces the software interrupt loading by
limiting the number of interrupt requests (IRQs) that CPU 30 must process.

Front end state machine 46 and receive FIFO memory 50 are
used to parse the serial data frames from MAU 38. CPU 30 reads the data
from receive FIFO memory 50 and places it in its local memory space to
decode the received DLPDU.

Receive FIFO memory 50 is 63 bytes by eight bits wide.
Receive FIFO memory 50 will store all of the DLPDU bytes up to three
complete received messages (up to a total of 63 bytes). Front end state
machine 46 decodes the serial data stream from the filtered RxS signal, and -
converts it to an 8-bit parallel formatted byte. After the formation of the byte,
front end state machine 46 creates a write pulse that stores the coded data
into the location that is pointed to by a write pointer. After the write operation
is complete, the write pointer is incremented to store the next DLPDU byte.

CPU 30 interfaces with a read pointer to receive FIFO memory
50. Any read from the receive FIFO register of registers 60 (which contains
the actual DLPDU data) places the 8-bit data from receive FIFO memory 50
immediately onto the data bus for reading by CPU 30. After the read
operation is complete, the read pointer is incremented. This can be
continued until receive FIFO memory 50 is empty.

To prevent an overflow condition from occurring in receive
FIFO memory 50, there is a register within registers 60 that allows an IRQ to
be generated if receive FIFO memory 50 is approaching a full condition. The
threshold for generating the IRQ is configurable.

Transmit state machine 52 reads the DLPDU data to be
transmitted from transmit FIFO memory 54. The preamble, SD, and ED are
automatically inserted. To start transmit state machine 52, the interPDU
trigger or, optionally, the Next Scheduled Event trigger needs to be activated

to commence the transmit operation. Transmit state machine 52 keeps track

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

14

of the number of bytes that have been transmitted. An error status will be
indicated if there is an underflow or transmitted count violation. The FCS can
be optionally transmitted automatically as the last two bytes of the DLPDU.

Transmit state machine 52 encodes the Manchester serial data
supplied through interface circuitry 70 on the TxS line to MAU 38 to be’
presented on fieldbus segment 12. Transmit state machine 52 also asserts
the Transmit Enable (TxE) line at the instant that the first bit the first
preamble is sent until the last bit of the ED occurs. Transmit state machine
52 also generates the Start Of Transmission (SOT) event signal when it
asserts the TXE line, and generates the End Of Transmission (EOT) event
signal when the TxE line returns to inactive.

Transmit FIFO memory 54 will store all of the DLPDU bytes
that are required for a message to be transmitted, up to a total of 63 bytes. A
configurable threshold can be set to send an IRQ telling CPU 30 when
transmit FIFO memory 54 is almost empty. In that way, if more than 63 bytes
are required to be transmitted, CPU 30 is notified so that it can add more
data to transmit FIFO memory 54. This continues until all DLPDU bytes have.
been written. CPU 30 writes to transmit FIFO memory 54 using a write
pointer, while transmit state machine 52 reads bytes from transmit FIFO
memory 54 using a read pointer.

Communication controller 36 works on events, and must be
capable of handling the occurrence of multiple events. Examples of events
include an SOM, EOM, or EOA for a received message or an EOT for a
transmitted message. Receive/transmit event manager 58 manages all of
the events that occur for up to a total of three received messages and one
transmitted message.

As shown in FIG. 4, receive/transmit manager 58 includes three
received message objects labeled rcvmsg1, revmsg2, and rcvmsg3, and one
transmit message object labeled xmtmsg. In addition, receive/transmit
manager 58 includes message queue manager (MsgQmngr) 80, event
manager (EventMngr) 82, transmit manager (xmtmngr) 84, and event MUX
86.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

15

Receive FIFO memory 50 is capable of storing the DLPDU
bytes for up to three complete received messages. Each of those three
messages has a corresponding object rcvmsg1, rcvmsg2, and rcvmsg3.
Each object contains the status of all of the IRQs, message errors, and time
stamping that occur for its corresponding received message. This
information constitutes the event data for that message.

The status of all IRQs, message errors, and time stamping that
occur for a transmit message are stored in the xmtmsg object. The stored
information constitutes the event data for the transmitted message.

MsgQmngr 80 controls the selection and the enabling of the
three received messages. Only one rcvmsg object can be active at a time.
MsgQmngr 80 allows the events to be associated with the active received
message. In the case of a fourth message being received before the other
three mességes have been acknowledged by CPU 30, MsgQmngr 80
disables any further messages from being received until the event data has
been read or acknowledged.

EventMngr 82 manages the order of occurrence of events. As
events occur, event manager 82 assigns each event an order of occurrence
identification (OOO_ID). This allows CPU 30 to read the events one at a
time as they occur. CPU 30 must acknowledge each event as it occurs.
After the first event has been acknowledged, the subsequent event will be
ready for CPU 30 to read.

Xmtmngr 84 monitors the InterPDU trigger (InterPDU_trig) and
the Next Scheduled Event trigger and initiates the Transmit Trigger
Command (Xmt_Trig_Cmd) to transmit state machine 52 to cause the next
message to begin to be transmitted.

Communication controller 36 includes registers 60. These
registers designated REG00 - REG3F can be written to and read from by
CPU 30. Interrupts (IRQs) are also handled through registers 60.

Clock generation circuitry 62 receives an external clock and
either uses that clock or the clock signals from its internal oscillator 64 to

generate all necessary clock signals for communication controller 36.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

16

Clock generation circuitry 62 preferably has the capability of
currently adjusting both its node timer and its octet timer clock rates. This
allows communication controller 36 to synchronize the relationship of its
Node Time with the Link Address Scheduler (LAS 20). Octet Time is used
for internal message timing, while Node Time is used to share a common
sense of time across fieldbus segment 12.

Timer 68 will be divided into two groups, representing different
senses of time. A first set of timers called segment timers, operate based on
a variable clock rate produced by clock generation circuitry 62 under
software control from CPU 30. A second set of timers, called message
timers, operates on a fixed rate clock.

There are two segment timers in communication controller 36.
The first segment timer is a Node timer, which has a clock tick rate of 31.25
usec (32 kHz). The Node timer is used to implement the Next Function
Block Execution Time, Link Schedule Time V(LST), and Data Link Time (DL-
Time).

The second segment timer is the Octet Timer, which has a
clock tick rate of 2 psec (500 kHz). The Octet Timer is used for the Next
Scheduled Event trigger (which interfaces to transmit state machine 52 for
transmitting messages at a specific time). When the clock rate is adjusted,
the Node and Octet timers will track one another at the same rate. This is
because the clock signals driving the Node timer and the Octet timer are
derived from a common variable clock.

The message timers are started and stopped based upon
fieldbus message events (transmit and receive). The message timers
include an inactivity timer, an interPDU delay timer, a receive reply timer, a
transmit reply timer, a delegated token recovery timer.

The inactivity timer is a decrementing counter. It is used for
measuring the idle time between two PhPDUs. The inactivity timer works on
both filtered and non-filtered received messages as well as any transmitted
messages on fieldbus segment 12. When commanded to start, the inactivity

timer will decrement every 16 psec. The inactivity timer starting point is

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

17

determined from a configurable preloaded set point loaded into one of
registers 60. The decrementing of the inactivity timer can be cancelled or
stopped via events that are related to either a received or transmitted
message. |f the timer ever reaches 0 or expires, an IRQ will be generated.
The inactivity timer will remain at 0 until the IRQ is acknowledged. If the IRQ
remains high, no additional message events that occur will effect the
inactivity timer until this IRQ is acknowledged.

The interPDU delay timer is an incrementing counter. It is used
in conjunction with a V(MID) threshold register to implement the fieldbus
V(MID) minimum-interPDU delay that insures a minimum time duration (or
gap time) of non-transmission between a transmitted or received message.
The interPDU timer is affected by both filtered and non-filtered received
messages as well as any transmitted messages on the fieldbus segment.
When there is no fieldbus activity, the interPDU timer will continuosly
increment. Once the count value equals or exceeds a predetermined value
stored in a register 60, the InterPDU_trig signal will go active. This signal is
used for determining that the interPDU delay time has been met. This signal
interfaces to xmtmngr 84 to give the command that a transmitted DLPDU can
commence.

The receive reply timer is a decrementing counter. It is used to
allow a subscribing device to monitor for an immediate response to a Compel
Data (CD) DLPDU. It is also used for a device to monitor its own address
when coming on line. When commanded to start, the receive reply timer will
decrement every 16 usec. The receive reply timer starting point is
determined from a configurable preloaded 16-bit set point loaded into one of
registers 60. The decrementing of the receive reply timer can be cancelled
or stopped via either a SOM or SOT event. [f the receive reply timer ever
reaches 0 or expires, an IRQ will be generated. The receive reply timer
requires that the IRQ be enabled for the IRQ to be generated. The receive
reply timer will remain at 0 until the IRQ is acknowledged. If the IRQ remains
high, no additional message events that occur will affect the receive reply

timer until this IRQ is acknowledged.

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

18

The transmit reply timer is a decrementing counter. It allows a
device to monitor for an immediate response after transmitting one of several
DLPDUs (e.g., compel data, pass token). When commanded to start, the
transmit reply timer will decrement every 16 psec. The transmit reply timer
starting point is determined from a configurable preloaded set point loaded
into one of registers 60. The decrementing of the transmit reply timer can be
cancelled or stopped via either a SOM event or SOT event of any transmitted
DLPDU except that of a Probe Node (PN). If the transmit reply timer ever
reaches 0 or expires, an IRQ will be generated. The transmit reply timer will
remain at O until the IRQ is acknowledged. If the IRQ remains high, no
additional message events that occur will affect the transmit reply timer until
this IRQ is acknowledged.

The delegated token recovery timer is a decrementing counter.
It is used for monitoring the idle time of receiving a delegated token from
another device. The delegated token recovery timer works on both filtered
and non-filtered received messages as well as any transmitted messages on
fieldbus segment 12. When commanded to start, the delegated token
recovery timer will decrement every 16 psec. The delegated token recovery
timer starting point is determined from a configurable preloaded set point
loaded into one of registers 60. The decrementing of the delegated token
recovery timer can be cancelled or stopped via events that are related to
either a received or transmitted message. If the delegated token recovery
timer ever reaches 0 or expires, an IRQ will be generated. The delegated
token recovery timer will remain at O until this IRQ is acknowledged. If the
IRQ remains high, no additional message events that may happen to occur
will affect the delegated token recovery timer until this IRQ is acknowledged.

L ow Latency Data Packet Processing

When receiving packets of information from segment 12,
queuing the data packets in receive FIFO memory 50 allows for software
latency. In addition to the data packet itself, communication controller 36
must maintain information about the reception state (e.g., whether bytes of

the packet are still being received from the network). Because

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

19

communication controller 36 is capable of queuing multiple packets of data in
receive FIFO memory 50, it is essential that it be able to associate the data
packet with the information related to the state of its reception. The
hardware of a communication control system can be designed to mimic this
required behavior, which is typically provided externally by, for example,
software in CPU 30.

FIG. 5 is a functional block diagram of receive/transmit event
manager 58 for managing processing of data packets received by MAU 38
on segment 12. Receive/transmit event manager 58 includes message
queue manager (MsgQmngr) 80, event MUX 86, received message object
queue 100, and multiplexers 102, 106, and 108. Received message object
queue 100 includes space for three received message objects, labeled
revmsg1, revmsg2, and rcvmsg3. MsgQmngr 80 is connected to received
message objects rcvmsgl, rcvmsg2, and rcvmsg3 via MUX 102
Multiplexers 106 and 108 are outside the scope of the present invention, but
are shown in FIG. 5 to illustrate the connections between the various
components of receive/transmit event manager 58. MUX 106 provides an
output to the received message objects and MUX 108 based on an input
from register Reg15 of registers 60, and the output of MUX 108 provides an
input to MsgQmngr 80. The outputs of MUX 106 is also provide an input to
MsgQmngr 80 via OR gate 110. Event manager 82 and transmit manager
84, which were shown in receive/transmit event manager 58 in FIG. 4, are
omitted from FIG. 5 for clarity. Also shown in FIG. 5 is a portion (Reg15-
Reg1F) of registers 60 for storing event data associated with received and
transmitted message objects for an active message.

Receive/transmit event manager 58 allows CPU 30 to read the
received message object (rcvmsg1, rcevmsg2, revmsg3) associated with each
respective message that has occurred in sequence. The received message
object for an active message is available for CPU 30 to read via registers 60,
and in particular, in registers Reg15 through Reg1F. The transmit message
object for an active message is available to MAU 38 for transmission in

registers Reg16, Reg17 and Regi1B. FEach received message object

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

20

contains an assortment of message IRQs, errors, status, and information and
data regarding receive FIFO memory 50.

The information and data regarding receive FIFO memory 50
includes several attributes readable by software that pertain to the reception
state of the message to which the object corresponds. These attributes
include Overflow, Underflow, DataReady, EndPosition, and an active flag.
Overflow is a Boolean attribute that, when set, indicates that an overflow of
receive FIFO memory 50 occurred while receiving a message from the
network. Underflow is a Boolean attribute that indicates that the last attempt
to read from receive FIFO memory 50 failed due to a lack of data.
DataReady is a Boolean attribute that indicates that receive FIFO memory 50
is approaching a full state and needs to be read to prevent overflow of
receive FIFO memory 50. EndPosition is an integer attribute that stores
position information from receive FIFO memory 50. The active flag of the
received message object is set by MsgQmngr 80 when its corresponding
message is currently active.

MsgQmngr 80 controls the selection and the enabling of the
three received messages. This is controlled via the active flag of the
received message object (signals RcvMsgil_sel, RcvMsg2_sel, and
RcvMsg3_sel), as selected. through MUX 102. Thus, only one received
message object (rcvmsg1, rcvmsg2, rcvmsg3) can be active at a time.
MsgQmngr 80 allows the events to be associated with the active received
message.

In operation, MAU 38 receives messages from segment 12. As
a message is received from segment 12, the active flag of a received
message object in received message object queue 100 is set. For example,
if no data is contained in receive FIFO memory 50 when MAU 38 receives a
message, signal RcvMsg1_sel is set by MsgQmngr 80, thereby activating
rcvmsg1 in received message object queue 100.

Front end state machine 46 decodes the serial data stream,
and converts it to an 8-bit parallel formatted byte. After the formation of the

byte, front end state machine 46 creates a write pulse that stores the coded

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

21

data into the location in receive FIFO memory 50 that is pointed to by a write
pointer. As the message DLPDU data is being written into receive FIFO
memory 50, the current position of the write pointer to receive FIFO memory
50 is continuously transferred to the EndPosition attribute of the active
received message object, and the write pointer is subsequently incremented
after each byte is written. Since the data is added to receive FIFO memory
50 in the same order as received message objects are added to received
message object queue 100, a consistent ordering is maintained between
receive FIFO memory 50 and received message object queue 100.

During the transfer of data from front end state machine 46 to
receive FIFO memory 50, receive FIFO memory 50 continuously monitors
whether it is approaching its 63-byte storage limit. If the number of unread
bytes in receive FIFO memory 50 is equal to or greater than the DataReady
threshold, an IRQ is generated by the active received message object. This
IRQ sets the DataReady attribute in the active rcvmsg object. The threshold
for generating the DataReady IRQ is configurable. The DataReady attribute
can subsequently be cleared by software after data is read from receive
FIFO memory 50. If receive FIFO memory 50 fills up before data is read -
from receive FIFO memory 50, receive FIFO memory 50 sends a signal to all
rcvmsg objects to set the Overflow attribute. This will prevent further data
from being written to receive FIFO memory 50 until data is read from the data
queue and software clears the Overflow attribute. The software can
determine which received message object (rcvmsg1, rcvmsg2, or rcvmsg3)
had the overflow condition, since only the active received message object will
have this attribute set.

MsgQmngr 80 controls the selection and the enabling of three
received messages. In the case of a fourth message being received before
at least one of the other three messages has been acknowledged by CPU
30, MsgQmngr 80 disables any further messages from being received until
the event data has been read or acknowledged by forcing
RevMsgQMux_enb low (inactive). This causes all RcvMsg_sel signals low.

By having MsgQmngr 80 prevent a fourth received message from coming in,

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

22

corruption of received message objects rcvmsg1, rcvmsg2, and rcvmsg3 is
prevented.

CPU 30 interfaces with a read pointer to receive FIFO memory
50 through the three received message objects (rcvmsg1, rcvmsg2, and
rcvmsg3) located in received message object queue 100. When CPU 30 is
ready to read the stored DLPDU data from received FIFO memory 50,
software in CPU 30 generates a GetDataByte_in command via register
Reg1D of registers 30. Any read from register Reg1D places the data from
receive FIFO memory 50 immediately onto the data bus for reading by CPU
30. The GetDataByte in signal is ported to all three received message
objects. Only one of the three received message objects is readable (or
visible) to CPU 30 at a time. The EventMUX_sel(2:0) signal selects the
currently visible received message object for CPU 30 read via MUX 106.
There are three visible signals, RcvMsg1_visible, RcvMsg2_visible, and
RcvMsg3_visible, which respectively correspond to received message
objects rcvmsg1, rcevmsg2, and rcvmsg3.

If, for example, RcvMsg1_visible is active, the GetDataByte1
signal output from received message object rcvmsg1 will be generated. This
causes the read pointer to receive FIFO memory 50 to increment one
position. GetDataByte2 and GetDataByte3 will remain inactive since they
cannot be visible to CPU 30 at the same time as GetDataByte1. Since one
of the three GetDataByte outputs is always activated, they are passed
through OR gate 114 to create the read pointer increment pulse. As
subsequent read operations from received message object rcvmsg1 are
performed, the read pointer is compared with the EndPosition value of
rcvmsgl. This comparison allows CPU 30 to know the number of bytes in
receive FIFO memory 50 for the particular message that is associated with
rcvmsg1.

When the read pointer value equals the EndPosition value,
there is no data available for the visible received message object, and
receive FIFO memory 50 is considered empty for the visible received

message object. When no data is available for a visible received message

10

15

20

25

30

WO 2006/028656 PCT/US2005/028838

23

object, an internal Empty flag will be activated. In the event of the generation

~ of an additional read command when the Empty Flag is active, the Underflow

attribute for the visible received message object will be set. This attribute is
available to be read in register Reg17 of registers 60. The Empty flag
prevents the increment of the read pointer from occurring, thus maintaining
proper pointer position and integrity of DLPDU data association. This is very
important when receive FIFO memory 50 contains DLPDU data that is
associated with up to three different received message objects.

CPU 30 may determine the number of bytes to read out of
receive FIFO memory 50 for the visible received message object by
performing a read operation of Reg1F in registers 60. The value read out of
register Reg1F is the difference in position between EndPosition and the’
read pointer. For example, if received message object rcvmsg1 is visible,
and CPU 30 reads 08h from register Reg1F, CPU 30 would require eight
read operations (through Reg1D) to completely read all DLPDU data
associated with rcvmsg1. This ensures that all DLPDU data associated with
the visible received message object is properly read out of receive FIFO
memory 50. CPU 30 reads from registers Reg15 through Reg1F of registers
60 for the visible received message object, and subsequently takes a
corresponding action based on the information from these registers.

After all information for the visible received message
information object has been processed by CPU 30 (such as IRQ status, error
status, DLPDU data and time stamp readings), an Event_Ack (event
acknowledgement) signal is generated to signal that CPU 30 has completed
removing data associated with the visible received message object in
received message object queue 100. This signal, which is created by
performing a write operation to register Reg15 of registers 60, is ported to
event manager 82 and receive FIFO memory 50 to update the
EventMUX_sel(2:0) signal. This activates the visible signal of the next
received message object in received message object queue 100 (e.g.,

revmsg2), which allows event data registers 60 for the next received

10

15

20

25

WO 2006/028656 PCT/US2005/028838

24

message object to be visible to CPU 30. The read sequence heretofore
described can then be performed for the next received message object.

In summary, conventional approaches in hardware to handling
of messages received on a network require separate data queue elements
for storing received messages, and a received message object associated
with each separate data queue element for storing information about the
messages. In addition, to account for software latency, the hardware
designer must provide a large data queues to avoid overflow of the data
queues as messages are received from the network. This approach suffers
from scalability problems that stem from the data queue depth requirements.
The present invention is a communication controller that includes a single
data queue and a queue of received message objects. The data queue
stores messages received on the communication medium. The received
messages are preferably written to the received data memory at a write
pointer position and read from the received data memory at a read pointer
position. The communications controller also includes received message
objects. Each received message object contains information about a
corresponding message in the data queue. This represents a queuing
solution that can be scaled without incurring any additional data queue
overhead. In addition, the data queue depth can be made larger to allow for
unknown software latency without greatly affecting the overall data queue
storage requirements.

Although the present invention has been described wifh
reference to preferred embodiments, workers skilled in the art will recognize
the changes may be made in form and detail without departing from the spirit

and scope of the invention.

10

15

20

25

WO 2006/028656 PCT/US2005/028838
25
CLAIMS:
1. A device for communicating over a communication

medium, the device comprising:

a medium attachment unit (MAU) for receiving and
transmitting messages on the communication
medium;

a central processing unit (CPU) for processing data
contained in messages received and creating data
to be contained in messages to be transmitted; and

a communication controller for interfacing between the
MAU and the CPU, the communication controller
including a data queue and a queue of received
message objects, the data queue for storing a
plurality of messages received on the
communication medium, the received message
objects each containing information about a
corresponding message in the data queue.

2. The device of claim 1, wherein the data queue includes a
write pointer and a read pointer, the write pointer corresponding to a
location in the data queue for storing a néw message received from the
communication medium, the read pointer corresponding to a location in
the data queue for reading a message from the data queue by the CPU.
3. The device of claim 2, wherein the write pointer and the
read pointer implement the data queue as a first-in-first-out (FIFO)
queue.

4, The device of claim 2, wherein each received message
object comprises:

an Overflow attribute readable by software in the CPU, the
Overflow attribute indicating whether an overflow

10

15

20

25

30

WO 2006/028656

26

occurred in the data queue while receiving a
message from the communication medium;
an Underflow attribute readable by software in the CPU,
the underflow attribute indicating whether a read
from the data queue failed due to lack of data;
a DataReady attribute readable by software in the CPU, the
DataReady attribute indicating that the data queue is
almost full;
an EndPosition attribute for storing position information
from the data queue; and
an active flag for selecting and enabling the received
message object.
5. The device of claim 4, wherein, as a message is received
on the communication medium, a value of the write pointer is
continuously transferred to the EndPosition attribute in a corresponding
received message object.
6. The device of claim 4, wherein the Underflow attribute is
set in a received message object when the read pointer has a same
value as the EndPosition attribute.
7. The device of claim 4, wherein the data queue sets the
DataReady signal when the data queue reaches a depth that is greater
than a predetermined threshold depth.

8. The device of claim 1, wherein the data queue is stored in
a ring buffer.
9. A communication controller for processing messages

received over a communication medium, the communication controller
comprising:

a received data memory for storing messages received

from the communication medium, wherein the

messages are written to the received data memory

PCT/US2005/028838

10

15

20

25

30

WO 2006/028656

27

at a write pointer position and read from the received
data memory at a read pointer position; and
a plurality of received message objects for storing
information related to the messages stored in the
received data memory, each received message
object corresponding to a message stored in the
received data memory.
10. The communication controller of claim 9, further comprising
a message queue manager for associating an active
message in the received data memory its
corresponding received message object.
1. The communication controller of claim 10, wherein, as the
active message is received from the communication medium, a value -of
the w.rite pointer is continuously transferred to an EndPosition value in a
corresponding received message object.
12. The communication controller of claim 11, wherein the
received data memory sets an Underflow attribute in the received
message object corresponding to the active message when the read
pointer has a same value as the EndPosition value in the active received
message object.
13. The communication controller of claim 9, wherein the
received data memory sets a DataReady attribute in all received
message objects when the received data memory nears capacity.
14. The communication controller of claim 9, wherein the write
pointer and the read pointer change locations during read and write
processes to implement the data queue as a first-in-first-out (FIFO)
queue.
15. A method of handling messages received by a
device on a process control network, the method comprising:

receiving messages from the process control network;

PCT/US2005/028838

5

10

15

20

25

WO 2006/028656

16.

comprises:

17.

18.

19.

20.

PCT/US2005/028838

28

updating received message objects which contain
information related to the messages; and

writing the messages to a received data memory, the
received data memory for storing a data queue.

The method. of claim 15, wherein writing the message

setting an active flag in a first available received message
object in a received message object queue;

determining a write pointer position in the received data
memory;

writing the message to the received data memory starting
at the write pointer position; and

incrementing the write pointer position until the message is
written to the received data memory.

The method of claim 16, further comprising:

setting a DataReady attribute in the received message
object if the received data memory is almost full.

The method of claim 16, further comprising:

setting an Overflow attribute in the received message
object if the received data memory becomes full
while receiving a message from the process control
network.

The method of claim 16, further comprising:

transferring a value of the write pointer to an EndPosition
attribute in the received message object as the
message is received from the process control
network.

The method of claim 15, updating a received message

object comprises:

10

15

20

25

WO 2006/028656

21.

22.

PCT/US2005/028838

29

updating a plurality of attributes maintained in the received
message object including message interrupt
requests (IRQs), message errors, message status,
and received data memory information.

The method of claim 15, further comprising:

providing the messages to a central processing unit (CPU)
in a first-in-first-out (FIFO) order.

The method of claim 21, wherein providing the messages

to a CPU comprises:

23.

setting an active flag of a received message object at a
front of received message object queue;

determining a read pointer position in the received data
memory;

transferring the message to the CPU starting at the read
pointer position;

incrementing the read pointer position until the message is
transferred to the CPU; and

removing the received message object from the received
message object queue.

The method of claim 22, further comprising:

setting an Underflow attribute in the received message
object when the read pointer has a same value as
an EndPosition attribute in the received message

object.

PCT/US2005/028838

/5

WO 2006/028656

[914

= - = .QTN\ZK\L =
G/ =(NU - E£4=(NLN 07 22=(NLN 27 b2 02=(NUMN 0z

22112Q
oIspg

4 LY | h&\.& k.

Ayddng

L Jamod

4

or

PCT/US2005/028838

WO 2006/028656

2/5

c 914

| dyuaq pUT e(41r7 42GG0L 01 £) NAJTA—>, 42HUYEQ 4IDIS (8 04 [) 2/quiva.4d
[zlolrinInn[n] 1 | .&.3%&%%_3*2_.2_3:.2_%_:J/:_S:E:EN_39
avd
Q.\E.HQE 1) 103 » » _ (41usupd)
(a/12228) WO (2/12028) JWOS (41suD.LL) JUX"WOS 10S
2
= sy p 2n12923) 03 (on2324) WOS (2112923) YOS tgeor2]

(/puI24X3) 42242Q J214IDD

WO 2006/028656 PCT/US2005/028838

3/5
cs/
RAM | 32
OE/ W 24
Addr(18:1 wes
"I8D | der17:0)
D(15:0)
cs/ 34
: OE/ /
cPU we/ Flash
Add{19:1)
Addr(18:0)
s _RAM/ D(15:0)
s Raven/ c5_N il oA Segment
OE/ Read N Pl RxS
WE/ Write N
INT/ INT_N xS > TxS
Reset/ POR MAU
A(19:0) < Addrin(4:0) T"E > TE
D(15:8)
D(7:0) 1 Databus(7:0) 1z
|

/_/

30 \\36 \

WO 2006/028656 PCT/US2005/028838

4/5

36

, e

60 g’ A
50\ Receive § } !
P N Td Front End State|Y 4] !
< P FFo ® Machine 3|) :
T N |
63bytes | | N | |
70 E FCS Check E A :
A S |
it 7 S !
Control &fbfz;;"g;:: 48 :]
. OM, SOMY. , S04,
Reg/ 'sters 58 *5 MY, EOM, SOA, EOA 4 |
\ Y Receive/Transmit Event Manager : :
—_ Reg00
1 |
| \ To E 14 82 80 SOM, SOMS, ! 1
i I < Avi(nr ‘1000 ID, o os 504, |
| * c Eventi £0A)
|) R 6_93/: < > MsgQimngr ; s)
\ } » » - control ;z::s{;: { I
] : revmsgl € ! Lput Srals:) > :
Stamp,
Lo Read/ Erent - rorro e | Xy
\ White ata revinsg2 4 Shaje B3
|] e, < & Machine, ete. ¥
oy} CONTro] |t] i
! | revmsg3 €= 84 y 1
1 ; ” 1" |
\ | TS - InterPDU Y} !
| Q I # < Xmtmngr < rj'igger , } :
F(—-—) _) O < "Next Sch.
: QS 1 AA %ZLAZ’; N Event trigger : |
i I /. XmiFIFO j;meM EOT| Xmt_Trig_cmd) i
Lo 86 s | L |y !
| : Transmit || Xmt State TxE, ! :
! Machine 1
p) < » Fro !
! ! Event &niﬁr;-;rinn | i
| } Interrupt | | IRQs 63 bytes L2c2 | :
' I Handling/ S Timer 12gs g) |
L2 Masking 54 v \52 L —
f sor
| Timers
3 0 Message — InterPOU trigger
Yy Timers —» Next Sch. Event trigger
/64 A 4 / RevRply
i XmtRply
| fixed rate 3, Py S504,50M,SOME,EOM,
ExXTAL ‘ clock Ty | € eonsoror
P Oscillator » InterPDU Delay
Clock
Generation Segment
Timers
Octet Timer Timer Valve for
Variable rate, Node Timer > Tine Stamping (T5)
Tocks P CNT)

FIG. 4

PCT/US2005/028838

WO 2006/028656

91 62 AM yyyy Y000
(DT 241422522 YW 11t 07
P " L
49 yo02 ‘DI 23Oy 0k J<k) o010 1, = 9qISN_EBSYA%Y 80I— 1 orr 89 m m |N.u
uyay ehsyrdy \
g1 62y _ pXXXX XX XX “ ST 100 . = 9IqIsIA_2B5 iAoy 101
(423 Jua.Lins ayy sbpajmouyon - wpay 2bswny
1 Gt G2y 04 D41 Auo, 000 . = 3Y9ISIATOSWAZY
!) oor
A uyy 16syyA2y
(0:1)125s™Dbs A%
Nm _ quaxnybsyrcy
JBup Lo
_ NN
(0:2)os XnWiuar3 —oer 103 <
b BSpmaNy
\r wbuwpuang |—(0:1)QIbswnay QN.N
00000000,
1 b2y |y OATAN2Y Ut SaHAG 40 24 g 007 "= = quarg ou ‘v
Jr b3y |y 58149 DLOG Q77 0 #
a %NQ g O sindinp b (1ppovoer SUBULL PUD YYS JUSUD.
Jtt—— 1 S “ 4
o1 6y 1y (a11-7q) 44385 S.L o ,Mv xw %18 m sqnduy Bsuiux ; X smhts%
a1 62y |y AT E0E on| | g Lafao mar 00| —— o sundoz B
5 143 &.NQ ¥ (211 ~7Q/42420) WOS S.L 010Q £ SAIULL PUD WS pUI Juodd
W 67 By] pantasay ndnp pueaa3 wonsagpug sinduy £6sWASY " UTBAgDI0QI29
g7 bay |y (£) oL By A2y <= JUBAZ A%Y (0:¢) :l«m..:\GRN e ﬂﬁw.\hmww%mmwnww
L1 Bay o) BT L0 T <= A0S X {|eHeoivaies Ry Sy eor
& (2) $Aio1s 20473 BSYA2Y <= JUdAT A2Y o1 sending BsyAsy 3jqISINTDSWAY
$N140; X €= JUBA; — .
of By |y e ol bz, | AL 000 1aapg0 49000 XX0 \poe32125 4ou £-1Bspnzd
DLDQ fUBAT JO pDAI £ bsunoa |25 "ELSWNY OIT | ebsynzy 4225,
- BEWAY 149775,
63, X X P S4nduT 265 YAy W -
groo [y X X1 0] AAAT | e (0:8) 0120 DUT Q0T | 1A 22125,
M utWﬂuQMm% Wy “Bswnsy
- — sanding bsyAsy
(0:2)1 000 U3 100 424917000 15000 m\nﬁ“wﬂ.ﬁ\“w
\ Paudxg wauiL 000 1L Q 2 2 Bswass pas~zbsyAy qua Xy DbEWA%S $2y oA
\/l\ 7 H .
09 A . o GEEE L smdug pBspnoy e ‘ (s DEWAR o Bsypans
U242 oU 104 4,00, ... 2cuk22pn o120 3 (0:p)2 DY
Bsurguix 204 ,0F, = 21AgDi0QL29 uy21 B Z K
£ 0 2t Bstundu 104 O, =(0:1)3AAL ~puA3 00 q::«Sm Esyyrsy &MWNIMWM\\CM SWMIN u;.tuwv\.www
beid A DLI¢ i
1241 000 123/q0 w2017 000 \MM wﬁu&u wolf (0'TJazBs WAy TS
V N N. 1 Bstunss 1957185 YA%Y | :2)02PL 000 o0 DB |4 Jbuobsy .
s ——ovr 08 P
Sy TsWasy €——

121Ag010Q499
Yoy Bsyuny ————

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

