(21) 申请号 201310077763.1
(22) 申请日 2013.03.12
(71) 申请人 中国农业大学
 地址 100193 北京市海淀区圆明园西路2号
(72) 发明人 沈建忠 王战辉 梁琦 史为民
 张素霞 江海洋 丁双阳 曹兴元
 李建民
(74) 专利代理机构 北京纪凯知识产权代理有限公司 11245
 代理人 关畅
(51) Int.Cl.
 B01J 20/22(2006.01)

(54) 发明名称
 一种克多巴胺抗体免疫亲和层析柱及其应用

(57) 摘要
 本发明公开了一种克多巴胺抗体免疫亲和层析柱及其应用。本发明所提的克多巴胺抗体免疫亲和层析柱的制备由克多巴胺抗原与固相载体交联而成；所述克多巴胺抗原的结构如式I所示；所述固相载体为琼脂糖凝胶、纤维素、葡聚糖凝胶、聚丙烯酰胺-琼脂糖凝胶、多孔玻璃或聚丙烯酰胺-琼脂糖凝胶。本发明与现有的抗体层析技术相比，主要优点在于：(1)利用克多巴胺引入氨基的处理，可以使抗原克多巴胺与固相载体结合；(2)利用抗原与抗体的特异性亲和，有效的去除了非特异性抗体及其他杂质，提高克多巴胺抗体的纯化效率，且操作简单。

式 I。
1. 一种莱克多巴胺抗体的免疫亲和吸附剂，由莱克多巴胺半抗原与固相载体交联而成；所述莱克多巴胺半抗原的结构如式1所示；所述固相载体为琼脂糖凝胶、纤维素、聚丙烯酰胺凝胶、多孔玻璃或聚丙烯酰胺－琼脂糖凝胶－聚丙烯酰胺凝胶。”

式1。

2. 根据权利要求1所述的免疫亲和吸附剂，其特征在于：所述莱克多巴胺半抗原按照包括如下步骤的方法制备：将莱克多巴胺、N-(4-溴丁基) 邻苯二甲酰亚胺、水合肼按照摩尔比为1:1:5 的比例进行反应，获得所述莱克多巴胺半抗原。

3. 一种莱克多巴胺抗体的免疫亲和层析柱，其特征在于：所述免疫亲和层析柱以权利要求1或2所述的免疫亲和吸附剂为填料。

4. 含有权利要求1或2所述免疫亲和吸附剂的试剂盒。

5. 含有权利要求3所述免疫亲和层析柱的试剂盒。

6. 根据权利要求4或5所述的试剂盒，其特征在于：所述试剂盒还包括洗脱液；所述洗脱液为pH3.0的0.1M 甘氨酸水溶液。

7. 根据权利要求4-6中任一所述的试剂盒，其特征在于：所述试剂盒还包括洗涤液；所述洗涤液为pH7.2的含有0.14M NaCl的0.01M 磷酸盐缓冲液；或所述试剂盒还包括中和液；所述中和液为1M pH8.8Tris-HCl缓冲液。

8. 制备权利要求6或7所述试剂盒的方法，包括如下步骤：将所述免疫亲和吸附剂或所述免疫亲和层析柱，与下述中的至少一种分别单独包装，所述洗脱液、所述洗涤液和所述中和液。

9. 权利要求1或2所述免疫亲和吸附剂，或权利要求3所述免疫亲和层析柱，或权利要求4-7中任一所述试剂盒在莱克多巴胺抗体纯化中的应用。

10. 利用权利要求3所述免疫亲和层析柱，或权利要求4、6和7中任一所述试剂盒纯化莱克多巴胺抗体的方法，包括如下步骤：将待纯化样品加入到所述免疫亲和层析柱，以权利要求7中所述的洗涤液洗涤，再利用权利要求6中所述的洗脱液进行洗脱，接着用权利要求7中所述的中和液中和，得到纯化后的莱克多巴胺抗体。
一种莱克多巴胺抗体免疫亲和层析柱及其应用

技术领域
[0001] 本发明涉及一种莱克多巴胺抗体免疫亲和层析柱及其应用。

背景技术
[0002] 莱克多巴胺是一种医药原料，具有广泛的生理效应，可用治疗充血性心力衰竭症的强心药，且可用于支气管哮喘、支气管痉挛和产科疾病的治疗。当其用量增加到临床用量的5-10倍时，可增加肌肉生长，减少脂肪蓄积，是良好的营养分配剂和生长促进剂。美国FDA在2000年批准，可以用于动物营养品重新配剂，广泛地用于畜牧业和养殖业。可以同时提高动物的生长率，提高饲料利用率，提高动物的蛋白质含量。但是其在动物体内的残留一旦进入食物链进入人体，会对食用者产生巨大危害，特别对心脏病、糖尿病、高血圧、甲亢、青光眼、前列腺肥大等病人危害更大，甚至死亡。如瘦肉精（莱克多巴胺是“瘦肉精”中的一种）在上海曾经引发几百人的中毒事件；在台湾由于从美国进口的猪肉含有瘦肉精，几乎掀起一场政治争端。目前我国禁止将β－激动剂等药物动物促生长剂使用。但长期以来，各种非但非法使用β－激动剂而造成的中毒事件时有发生，为打击非法用药，保护消费者的健康与安全，迫切需要健全相关的检测方法。

[0003] 目前，兽药残留检测常用的方法有气相色谱、高效液相色谱以及气质联用等理化分析方法。虽然这些方法特异性强、灵敏度高，但是样品预处理步骤繁琐，成本较高，也不适用于大批量样品的筛选检测。免疫化学分析基于在抗原抗体的定性定量方面独特的优势和操作简便快速、成本低、灵敏度高、分析速度大的优点弥补了理化分析的不足。在莱克多巴胺的残留检测中起着越来越重要的作用，而抗血清或腹水的成分非常复杂，一些杂质可能会影响抗体与抗原的反应，因此莱克多巴胺抗体的纯化就显得尤为重要。

[0004] 目前抗体纯化方法主要是盐析法、有机溶剂沉淀法、各种原理的层析法以及亲和纯化法。通常是Protein A或Protein G等，这些都不能得到很纯的特异性抗体，即使是亲和纯化法，也只能得到特异性抗体和非特异性抗体的混合物，而不能将两者分离而得到特异性的抗体。因此研究一种能够有效去除纯化特异性抗体的纯化方法，具有较高的学术价值和应用前景。

发明内容
[0005] 本发明的一个目的是提供了一种莱克多巴胺抗体免疫亲和吸附剂。
[0006] 本发明所提供的莱克多巴胺抗体的免疫亲和吸附剂，是由莱克多巴胺半抗原与固相载体交联而成；所述莱克多巴胺半抗原的结构如图1所示，所述固相载体为琼脂糖凝胶、纤维素、葡聚糖凝胶、聚丙烯酰胺凝胶、多孔玻璃或聚丙烯酰胺－琼脂糖凝胶。
[0008] 式 I

[0009] 在本发明中，所述固相载体具体为 Sepharose 4B。更加具体的，在本发明的一个实施例中，所述 Sepharose 4B 为 GE 公司产品，货号为 17-5437-01。

[0010] 所述莱克多巴胺抗体具体可按照包括如下步骤的方法制备：将莱克多巴胺、N-(4-溴丁基) 苯二甲酰亚胺、水合肼按照摩尔比为 1:1:5 的比例进行反应，获得所述莱克多巴胺抗体（氨基活化）。

[0011] 在本发明的一个实施例中，所述免疫亲和吸附剂的制备方法包括如下步骤：将所述莱克多巴胺抗体与溴化氮活化的 Sepharose 4B 固相载体交联，并进行封闭处理，获得所述免疫亲和吸附剂。所述交联具体为在将所述莱克多巴胺抗体与所述溴化氮活化的 Sepharose 4B 在 0.1M pH8.0 的碳酸氢钠溶液（称取 0.84g 碳酸氢钠，溶于 100ml 去离子水）中室温（20-25℃）反应 4h，所述莱克多巴胺抗体、所述溴化氮活化的 Sepharose 4B 和所述 0.1M pH8.0 的碳酸氢钠溶液（称取 0.84g 碳酸氢钠，溶于 100ml 去离子水）的配比具体可为 4mg：1ml：2ml；所述封闭处理具体为用 1M pH8.0 的乙醇胺溶液（量取 5.98ml 乙醇胺，溶于 80ml 去离子水中，用 0.1M HCl 调节 pH 至 8.0）于室温（20-25℃）下封闭 2h。在上述方法中，在所述交联后，还包括以 0.1M pH8.0 的碳酸氢钠溶液（称取 0.84g 碳酸氢钠，溶于 100ml 去离子水）洗涤填料去除未结合的所述莱克多巴胺抗体的步骤。

[0012] 本发明的再一个目的是提供一种莱克多巴胺抗体的免疫亲和层析柱。

[0013] 本发明所提供的莱克多巴胺抗体的免疫亲和层析柱，以所述免疫亲和吸附剂为填料。

[0014] 在本发明的一个实施例中，所述免疫亲和层析柱的制备方法包括如下步骤：将所述免疫亲和吸附剂装入层析柱，用醋酸缓冲液（0.1M pH4.0，含有 0.5M NaCl）和 Tris-HCl 缓冲液（0.1M pH8.0，含有 0.5M NaCl）交替洗涤填料三次（完成一次交替洗涤为一次），得到所述免疫亲和层析柱。

[0015] 所述醋酸缓冲液（0.1M pH4.0，含有 0.5M NaCl）的组成如下：醋酸钠 8.2g/L，醋酸 1.04mL/L，NaCl 29.22g/L，余量为水，pH4.0。

[0016] 所述 Tris-HCl 缓冲液（0.1M pH8.0，含有 0.5M NaCl）的组成如下：Tris 12.114g/L，NaCl 29.22g/L，余量为水，pH8.0。

[0017] 含所述免疫亲和吸附剂或所述免疫亲和层析柱的试剂盒也属于本发明的保护范围。

[0018] 所述试剂盒还可包括洗脱液；所述洗脱液为 pH3.0 的 0.1M 甘氨酸水溶液。
所述试剂盒还可包括洗涤液；所述洗涤液为 pH 7.2 的含有 0.14 M NaCl 的 0.01 M 磷酸盐缓冲液。所述 0.01 M 磷酸盐缓冲液的溶剂为水，溶质及其浓度如下：NaCl 18.5 g/L，KCl 0.2 g/L，NaHPO 4 • 12H 2 O 9.2 g/L，NaH 2 PO 4 • 2H 2 O 0.593 g/L。

所述试剂盒还可包括中和液；所述中和液为 1 M pH 8.8 Tris-HCl 缓冲液。所述 1 M pH 8.8 Tris-HCl 缓冲液的组成如下：Tris 121.4 g/L，余量为水，pH 8.8（用 0.1 M HCl 调 pH）。具体配制方法如下：取 121.4g Tris，加蒸馏水 800ml，用 0.1 M HCl 调 pH 至 8.8，加蒸馏水至 1000ml。

制备所述试剂盒的方法也属于本发明的保护范围。

所述试剂盒的制备方法具体可包括如下步骤：将所述免疫亲和吸附剂或所述免疫亲和层析柱，与下述中至少一种分别单独包装；所述洗脱液、所述洗涤液和所述中和液。

所述免疫亲和吸附剂，或所述免疫亲和层析柱，或所述试剂盒在莱克多巴胺抗体纯化中的应用也属于本发明的保护范围。

本发明的另一个目的是提供一种纯化莱克多巴胺抗体的方法。

本发明所提供的纯化莱克多巴胺抗体的方法，具体为利用所述免疫亲和层析柱，或所述试剂盒纯化莱克多巴胺抗体，可包括如下步骤：将待纯化样品加入到所述免疫亲和层析柱，以所述洗涤液洗涤至紫外分光光度计测定 OD 280 值至 0.01 以下，再利用所述洗脱液进行洗脱，接着用所述中和液中和，所述洗脱液与所述中和液的配比为 3000 μL:360 μL，得到纯化后的莱克多巴胺抗体。

上述所有的所述莱克多巴胺抗体均可为莱克多巴胺单克隆抗体或莱克多巴胺多克隆抗体。在本发明中，所述莱克多巴胺抗体为莱克多巴胺单克隆抗体，具体为由杂交瘤细胞株 RAC CGMCC No. 3776（该杂交瘤细胞株保藏于中国微生物菌种保藏管理委员会普通微生物中心，保藏中心登记入册编号：CGMCC No. 3776，该杂交瘤细胞株已在 2010 年 8 月 3 日申请的专利中公开过，专利申请号为 201010244260.5，申请公布号为 CN101915845A）产生的单克隆抗体。

与现有盐析、传统层析等抗体的纯化技术相比较，本发明的主要优点在于：

（1）利用对莱克多巴胺引入氨基的处理，可以使半抗原莱克多巴胺与固相载体结合；

（2）利用抗原与抗体的特异性亲和，有效的去除了非特异性抗体及其他杂蛋白，提高莱克多巴胺抗体的纯化效率，且操作简单。

附图说明

图 1 为莱克多巴胺半抗原的正离子质谱图。

图 2 为莱克多巴胺半抗原的核磁共振氢谱图。

图 3 为莱克多巴胺抗体纯化图谱。

图 4 为莱克多巴胺抗体纯化前后抗体效价测定结果。

图 5 为莱克多巴胺抗体纯化前后 SDS-PAGE 检测结果。其中，泳道 M 为蛋白分子量标准；泳道 1 为纯化前抗体（待纯化样品 - 腹水）；泳道 2 为纯化后抗体（亲和纯化洗脱液）；泳道 3 为亲和纯化流穿液。
具体实施方式

[0035] 下述实施例中所使用的实验方法如无特殊说明，均为常规方法。
[0036] 下述实施例中所用的材料、试剂等，如无特殊说明，均从商业途径得到。
[0037] 莱克多巴胺：Sigma 公司，货号 34198。
[0038] N,N-二甲基甲酰胺：国药集团化学试剂有限公司，货号 81007718。
[0039] N-(4-溴丁基) 邻苯二甲酰亚胺：Sigma 公司，货号 100919。
[0040] 三乙胺：北京化学试剂公司，货号 80134392。
[0041] 乙酸乙酯：国药集团化学试剂有限公司，货号 10009148。
[0042] 氯化钠：国药集团化学试剂有限公司，货号 10019318。
[0043] 甲醇：国药集团化学试剂有限公司，货号 10014118。
[0044] 二氯甲烷：国药集团化学试剂有限公司，货号 80047318。
[0045] 水合肼：阿拉丁试剂（上海）有限公司，货号 87006570。
[0046] 碳酸氢钠：国药集团化学试剂有限公司，货号 10018992。
[0047] 无水乙酸钠：国药集团化学试剂有限公司，货号 10018818。
[0048] 冰醋酸：国药集团化学试剂有限公司，货号 10000218。
[0049] Tris：Amresco 公司，货号 0497。
[0050] 浓盐酸：国药集团化学试剂有限公司，货号 10011094。
[0051] 溴化氰活化的 Sepharose4B 填料：购自 GE 公司，货号 17-5437-01。
[0052] 乙醇胺：Sigma 公司，货号 398136。
[0053] 甘氨酸：国药集团化学试剂有限公司，货号 62011516。
[0054] 氯化钾：国药集团化学试剂有限公司，货号 10016318。
[0055] Na₄HPO₄·12H₂O：国药集团化学试剂有限公司，货号 100203190。
[0056] NaH₂PO₄·2H₂O：国药集团化学试剂有限公司，货号 20040717。
[0057] proclin-300：Sigma 公司，货号 48912-U。
[0058] Triton X-100：Sigma 公司，货号 79284。
[0059] HRP 标兔抗鼠二抗：Jackson ImmunoResearch 公司，货号 111-035-003。
[0060] 3,3',5,5'-四甲基联苯胺（TMB）：Sigma 公司，货号 ST056501。
[0061] Marker：北京全圣金生物技术有限公司，货号 DR101。
[0062] 丙稀酰胺：Amresco 公司，货号 0341。
[0063] N,N’-甲叉双丙稀酰胺：Amresco 公司，货号 0172。
[0064] TEMED（N,N-二甲基乙二胺）：Amresco 公司，货号 0761。
[0065] β-巯基乙醇：Amresco 公司，货号 M131。
[0066] 十二烷基磺酸钠：，货号 30166627。
[0067] 溴酚蓝：Amresco 公司，货号 0449。
[0068] 甘油：国药集团化学试剂有限公司，货号 10010618。
[0069] 过硫酸铵：Sigma 公司，A3678。
[0070] 考马斯亮蓝 R-250：Sigma 公司，货号 27816。
[0071] 甲醇：国药集团化学试剂有限公司，货号 10014118。
[0072] 冰醋酸：国药集团化学试剂有限公司，货号 10000218。
[0073] 浓硫酸：国药集团化学试剂有限公司，货号 73108460。
[0074] 酚酶：Sigma 公司，货号 C6554。
[0075] 薯糖：国药集团化学试剂有限公司，货号 10021418。
[0076] 小牛血清：郑州益康生物工程有限公司。
[0077] 实施例 1. 莱克多巴胺抗体免疫亲和层析柱的制备
[0078] 一、莱克多巴胺半抗原的制备及结构鉴定
[0079] 1. 莱克多巴胺半抗原的制备
[0080] 将莱克多巴胺溶于 N,N-二甲基甲酰胺 (DMF) 中，于单口瓶中搅拌，加入 N-(4-溴丁基) 邻苯二甲酰亚胺，莱克多巴胺和 N-(4-溴丁基) 邻苯二甲酰亚胺摩尔比 1:1，再加入三乙胺 (作为催化剂)，100-110℃搅拌回流 8-16h，薄层色谱监控至反应完全 (薄层色谱上的条带数与反应之前条带数有所不同，且稳定后即反应完全)，加少量水淬灭反应，乙酸乙酯 (E To AC)，饱和氯化钠水洗有机相，干燥，旋干，薄层色谱纯化产物 (固定相为硅胶，流动相为甲醇：二氯甲烷 =3:50 (体积比)，产物的 Rf 值 =0.3)，将纯化后的产物溶于乙醇中，加入水合肼 (整个反应中，所述莱克多巴胺、所述 N-(4-溴丁基) 邻苯二甲酰亚胺、所述水合肼的摩尔比为 1:1:5) 室温水解 24h，反应结束后直接干燥，旋干，获得莱克多巴胺半抗原。
[0081] 2. 莱克多巴胺半抗原的结构鉴定
[0082] (1) 质谱鉴定
[0083] 质谱条件：电子源：ESI 源，干燥气温度：350℃，喷雾器压力：15.00psi，干燥气流速：5.00l/min，锥孔电压：-34.7 — -6.0Volt，扫描质量范围：100 — 800m/z，倍压器电压：1696Volt，倍增极电压：7.0Volt。
[0084] 正离子质谱图如图 1 所示，MS (ESI, source, positive) : 372.3 (M+1)，证明莱克多巴胺半抗原的分子量为 372.3。
[0085] (2) 核磁鉴定
[0086] 莱克多巴胺半抗原的核磁共振氢谱图结果如图 2 所示：1HNMR (300MHz, 氯代甲醇) δ : 8.16 (dd, 1H), 7.59 (dd, 1H), 7.02 ~ 6.95 (m, 3H), 6.69~6.54 (m, 3H), 4.37 (dt, 1H) 2.80~2.71 (m, 3H), 2.48~2.31 (m, 6H), 1.70 (dd, 2H), 1.52 (dd, 2H), 1.19 (s, 2H), 1.01 ~ 0.80 (m,3H)。
[0087] 由于用氯代甲醇作溶剂，它与分子中的羟基作用，所以 5.0 附近应该有苯基基的 2H (5.0 (dd, 2H)): 2.0 处应该有氨基的 2H 和羟基的 1H (3H)。
[0088] 将上述鉴定，得到所述莱克多巴胺半抗原的结构式如式 1 所示。
式I

二、免疫亲和层析柱的制备

0.1M pH 8.0的碳酸氢钠溶液，称取0.84g碳酸氢钠，加蒸馏水至100ml。

醋酸钠缓冲液（0.1M pH 4.0，含有0.5M NaCl）：称取醋酸钠8.2g，1.04ml醋酸，29.22gNaCl，加蒸馏水定容至1000ml。

Tris-HCl缓冲液（0.1M pH 8.0，含有0.5M NaCl）：称取12.114g Tris，29.22gNaCl，加蒸馏水800ml，用0.1M HCl调pH至8.0，加蒸馏水定容至1000ml。

取4mg步骤一制备的莱克多巴胺半抗原，与1ml溴化氰活化的Sephrose4B（购自GE公司，货号17-5437-01）填料，在2ml0.1M pH 8.0的碳酸氢钠溶液中充分混合，室温反应4h；以10ml该碳酸氢钠缓冲液洗涤填料去除为结合的莱克多巴胺半抗原后，用2ml11M pH 8.0的乙醇胺（Sigma公司，货号398136）水溶液于室温下封闭填料2h；然后将填料装入8ml层析小柱中，分别用5ml醋酸缓冲液（0.1M pH 4.0，含有0.5M NaCl）和Tris-HCl缓冲液（0.1M pH 8.0，含有0.5M NaCl）交替洗涤填料三次（完成一次交替洗涤为一次），得到待用的莱克多巴胺抗体免疫亲和层析柱。

实施例2 莱克多巴胺抗体免疫亲和层析柱的制备及其应用

一、莱克多巴胺抗体免疫亲和层析柱的制备

莱克多巴胺抗体免疫亲和层析柱试剂盒由实施例1制备所得的莱克多巴胺抗体免疫亲和层析柱、洗涤液、洗脱液和中和液组成。

洗涤液：pH 7.2的含有0.14M NaCl的0.01M磷酸盐缓冲液，所制0.01M磷酸盐缓冲液NaCl18.5g，KCl10.02g，Na₂HPO₄·12H₂O2.9g，NaH₂PO₄·2H₂O0.593g，加蒸馏水至1000ml。

洗脱液：pH 3.0的0.1M甘氨酸-HCl水溶液，即称取7.507g甘氨酸，加蒸馏水800ml，用0.1M HCl调pH至3.0，加蒸馏水至1000ml。

中和液：1M pH 8.8Tris-HCl缓冲液，称取121.14g Tris，加蒸馏水800ml，用0.1M HCl调pH至8.8，加蒸馏水至1000ml。

二、利用步骤一的试剂盒纯化莱克多巴胺抗体

1.纯化

待纯化样品：将Balb/c小鼠腹腔注入灭菌石蜡油0.4ml/只，7天后腹腔注射杂交瘤细胞株RAC CGMCC No.3776（该杂交瘤细胞株保藏于中国微生物菌种保藏管理委员会普通微生物中心，保藏中心登记入册编号：CGMCC No.3776，该杂交瘤细胞株已在2010年8月3日申请的专利中公开过，专利申请号为201010244260.5，申请公布号为CN101915845A）,
5×10⁶个/只,7天后采集腹水作为待纯化样品。

【0105】将待纯化样品用步骤一中的洗涤液稀释后，取2ml样品液加入步骤一试剂盒中的莱克多巴胺抗体免疫亲和层析柱中，流液装入该柱中，再封住流出口，再室温下反应30min，以步骤一中的洗涤液清洗层析柱，至OD₃₅₀值低于0.01(收集杂蛋白流穿液，作为下述步骤2中纯化效果检测的对照品);以步骤一中的洗涤液洗脱层析柱，使结合到层析柱上的抗体解离，至OD₃₅₀值低于0.01，收集时，在收集管中预先加入360μl步骤一中的中和液(收集到的洗脱液体积为3000μl)，即洗脱液与中和液的配比为3000μl:360μl，以调节组分的pH，获得纯化后抗体。

【0106】注意:在利用莱克多巴胺抗体免疫亲和层析柱进行样品纯化过程中，层析柱以及各溶液的温度都需要回复到室温，否则抗体结合的速度会变慢;另外，注意待纯化的腹水中不能含有固体杂质(如反复冻融两次除去絮状的脂质，用0.45μm的滤膜过滤)，否则会堵塞柱子，影响柱子使用寿命。

【0107】莱克多巴胺抗体纯化图谱如图3所示，从图中可以看出，在步骤一中洗涤液的清洗下，杂蛋白非特异性抗体与未结合的特异性抗体随洗涤液流出(峰A)，而换为步骤一中洗脱液洗脱时，结合到层析柱上的非特异性抗体被解离下来(峰B)。

【0108】2.纯化效果分析

【0109】(1)间接ELISA法测定纯化前后抗体效价

【0110】包被缓冲液:0.05mol/L pH9.6的磷酸缓冲液，配方为Na₂HCO₃1.59g，NaHCO₃2.93g，加蒸馏水至1000mL。

【0111】0.1M磷酸盐缓冲液的配方为:NaCl18.5g，KC10.02g，Na₂HP0₄·12H₂O2.9g，NaH₂P0₄·2H₂O0.593g，加蒸馏水至1000mL。

【0112】封闭液:Na₂HP0₄·12H₂O5.80g，NaH₂P0₄，2H₂O0.593g，NaCl18.0g，酪蛋白2.50g，载糖50.00g，小牛血清50ml，ProC1n-300300μl，加蒸馏水至1000mL，pH7.4。

【0113】抗体稀释液:NaCl116g，KC10.04g，Na₂HP0₄·12H₂O2.9g，NaH₂P0₄·2H₂O0.593g，proelin-300300μl，triton x-100500μl，加蒸馏水至1000mL。

【0114】采用间接ELISA法测定纯化前后抗体效价，操作步骤具体如下；

【0115】1)包被:在96孔酶标板中加入100μL的2μg/mL实施例1步骤一中制备的莱克多巴胺半抗原溶液(用包被缓冲液稀释)，同时设置不包被抗原的对照，4℃包被过夜，用PBS缓冲液洗涤3次。

【0116】2)封闭:加入150μL/孔的封闭液，在37℃孵育1h，弃包被液，洗涤3次，拍干。置于4℃冰箱保存备用。

【0117】3)加待测样品:吸取待测样品(纯化前或纯化后的抗体，调节浓度至0.1mg/ml)后用抗体稀释液进行梯度稀释(1×100×20×40×80×100×200×400×800×)，100μl，加入对应的酶标板中，37℃孵育30min，洗涤4次，拍干。每个浓度梯度做3个平行实验。

【0118】同时设置以PBS代替待检测样品的对照(阴性对照孔)。

【0119】4)加酶标二抗:取HRP标羊抗鼠二抗(Jackson ImmunoResearch公司，货号111-035-003)，按体积比1:5000倍稀释(用抗体稀释液稀释)后，100μl/孔，37℃孵育30min，洗涤4次，拍干。
[0120] 5）显色：将 20×TMB 稀释至 1×TMB，按 100 μ l/ 孔加入，37℃显色 15-30min。
[0121] 6）终止：加入终止液（2M H₂SO₄）50 μ l/ 孔。
[0122] 7）读数：以 450nm、630nm 双波长测定各孔吸光值，以与阴性对照孔（以 PBS 代替待
测样品的对照）OD 值的比值（P/N）大于 2.1 为限，作为判断为抗体效价的临界点。
[0123] ELISA 结果判定方法：以 P/N>2.1 的抗体最大稀释倍数表示。
[0124] 纯化前后抗体的吸光值检测结果如图 4 所示，根据吸光值计算得到，纯化前抗体
（待纯化样品）的效价为 1：3000，纯化后的抗体的效价为 1：12000。经过纯化后的莱克多巴胺抗体，在相同的起始浓度下，其效价较纯化前可以提高约 4 倍。
[0125] （2）SDS-PAGE 分析纯化前后抗体纯度
[0126] 以纯化前抗体（待纯化样品 - 腹水）、纯化后抗体（洗脱液），以及步骤 1 中收集的杂
蛋白流穿液，进行 SDS-PAGE 分析，每种样品在各自泳道的上样量均为 10 μ g 蛋白总量，从而
检测纯化前后抗体纯度。
[0127] SDS-PAGE 检测结果如图 5 所示，从图中可以看出，大部分莱克多巴胺抗体（重链大
小约为 50KD，轻链大小约为 25KD 的目的条带）都在洗脱液中，而流穿液中抗体的量大大减
少，纯化后抗体的纯度很高。
图 1
图 5